
Goethe Universität Frankfurt

Institut für Informatik

Infrastruktur und Rechnersysteme in der Informatik

Master Thesis

Analysis of Security Isolation
Technologies for
HEP-Computing

Supervisor:
Prof. Dr. Udo
Kebschull

Student:
Daniel Bilanović

21.12.2017

Abstract:

Virtual machines are for the most part not used inside of high-energy
physics (HEP) environments. Even though they provide a high degree of iso-
lation, the performance overhead they introduce is too great for them to be
used. With the rising number of container technologies and their increasing
separation capabilities, HEP-environments are evaluating if they could utilize
the technology. The container images are small and self-contained which al-
lows them to be easily distributed throughout the global environment. They
also offer a near native performance while at the same time aproviding an
often acceptable level of isolation. Only the needed services and libraries
are packed into an image and executed directly by the host kernel. This
work compared the performance impact of the three container technologies
Docker, rkt and Singularity. The host kernel was additionally hardened with
grsecurity and PaX to strengthen its security and make an exploitation from
inside a container harder. The execution time of a physics simulation was
used as a benchmark. The results show that the different container technolo-
gies have a different impact on the performance. The performance loss on a
stock kernel is small; in some cases they were even faster than no container.
Docker showed overall the best performance on a stock kernel. The difference
on a hardened kernel was bigger than on a stock kernel, but in favor of the
container technologies. rkt showed performed in almost all cases better than
all the others.

1

Contents

1 Introduction 7
1.1 Motivation . 8
1.2 Goal of the Thesis . 8

2 Basics 8
2.1 Virtualization . 8
2.2 Security Features . 10

2.2.1 Capabilities . 10
2.2.2 Application Armor . 11
2.2.3 Control Groups . 11

2.3 Separation . 12
2.3.1 Chroot . 12
2.3.2 FreeBSD Jails . 12
2.3.3 Linux-VServer . 13
2.3.4 Linux Namespaces . 13

2.4 Container . 15
2.5 Differences between Virtual Machines and Containers 15
2.6 Application hardening . 16
2.7 Kernel hardening with grsecurity and PaX 17
2.8 High-Energy Physics . 18

3 Methodology 19
3.1 Used hardware . 19
3.2 Used software . 19

3.2.1 Kernel patching . 20
3.2.2 CERN software . 21
3.2.3 Un-containered Simulation 22
3.2.4 Docker . 23
3.2.5 rkt . 26
3.2.6 Singularity . 28

3.3 Test procedure . 31
3.4 Test setup . 31

4 Results 33
4.1 Results . 34
4.2 Discussion . 34

2

5 Conclusion and Future Work 41
5.1 Conclusion . 41
5.2 Future Work . 42

3

List of Figures

1 Architecture of a Type-1 and Type-2 hypervisor. 9
2 Setup of a container environment and a virtual machine envi-

ronment. 16
3 Comparison of runtimes without a container, Docker, rkt and

Singularity on a stock kernel, in seconds. 35
4 Comparison of runtimes without a container, rkt and Singu-

larity on a hardened kernel, in seconds. 36
5 Average runtimes of the un-containered simulation on a stock

and a hardened kernel, in seconds. 37
6 Average runtimes of the simulation inside Docker on a stock

kernel, in seconds. 38
7 Average runtimes of the simulation inside rkt on a stock and

a hardened kernel, in seconds. 39
8 Average runtimes of the simulation inside Singularity on a

stock and a hardened kernel, in seconds. 40

4

List of Tables

1 Average runtimes of all simulations on a stock kernel, in seconds. 34
2 Average runtimes of all simulations on a hardened kernel, in

seconds. 35
3 Runtime difference of the container compared to un-containered

simulation on a stock kernel. 39
4 Runtime difference of the container compared to un-containered

simulation on a hardened kernel. 40

5

Listings

1 Applying the grsecurity and PaX patches to the kernel and
compiling it. 20

2 Patching AUFS and compiling the kernel. 20
3 Content of the cvmfs config file. 21
4 Command to start a simulation inside the PbPbbench-directory. 22
5 Set all environment variables as in the alien environment. . . . 22
6 Command to save starttime with variable container ID. 24
7 Dockerfile to create the testimage. 24
8 Command to create Docker image from a Dockerfile. 25
9 Command to create Docker container with ID 1 from an image. 26
10 Command to save starttime with fixed container ID. 26
11 Commands to create and modify an ACI container from a

Docker image. 27
12 Command to start rkt container. 28
13 Singularity recipe to create the testimage. 28
14 Singularity recipe to create the testimage. 30
15 Command to start Singularity image. 31
16 Commands to fix error of too many levels of symbolic links. . 32
17 PaX error message of un-containered simulation. 32
18 Disabling PaX filesystem protection features preventing rkt

from starting a pod. 33

6

1 Introduction

Efficient usage of available resources is an often sought-afte goal, especially in
datacenters. The old model, where one physical server had one task, wasted a
lot of resources as these servers rarely used all available resources. Addition-
ally they were difficult to scale. If more requests had to be served, another
server would have had to be set up. One physical server could host multiple
different services, but this would have two major drawbacks. The first one
would be the more complicated upgrades and migrations. The system would
have to satisfy the dependencies of all services that were running on it. Not
only would it need a lot of libraries, some of them would even be needed in
different versions. One would need to carefully set the environment up and
maintain it. The second one would be the increased security and availability
risk of the running services. If one of the services would crash the system,
all the other services would also be unavailable. A programming error or a
malicous service crashing the system would prevent the other services from
functioning as inteded. It would also be able to read, modify or destroy data
from the other services. If one of these services got compromized, the at-
tacker would gain access to all data and services running on that machine.

One solution to these problems are virtual machines (VM). Virtual ma-
chines contain fully functional operating systems that are completely isolated
from the host system and other VMs running on the same host. Even though
virtual machines have a lot of advantages, they also have a major drawback:
they need a lot of additional resources. A hypervisor is emulating hardware
and executing full operating systems and their services. Namespaces (as
called in the Linux kernel) are a possible resource-efficient alternative. They
isolate processes on a system from one another without the need to emulate
hardware. Technologies like Docker, rkt and Singularity make it easy for a
user to create and execute a so-called container with the wanted processes
and all their dependencies.

Previous researches have compared the performance loss of VMs in regard
to containers [18] [15] [53]. This work focuses on the performance difference
introduced by the different container technologies compared to an execution
without any isolations. Chapter 2 explains the history and technical compo-
nents that are used to create container. Chapter 3 describes the test setup,
the used software and how it was configured and used. Chapter 4 shows the

7

testresults and the discusses them. And chapter 5 finally concludes this work
and proposes possible directions for future research.

1.1 Motivation

Datacenter operator strive to run as many jobs on their available hardware as
possible while eliminating, or at least minimizing, the interference of them
running on the system. Virtual machines are a great way to separate the
jobs and host machines from each other, but they incur a rather big resource
overhead, which often is not feasable for the operator. Containers promise
an easy and resource saving way to separate processes on a machine, similar
to virtual machines, but with fewer security guarantees.

1.2 Goal of the Thesis

The goal of this thesis is to measure the performance difference of container
technologies by measuring the time an application needs to finish 1) outside of
any container on an unmodified Linux kernel, 2) inside of different containers
on an unmodified Linux kernel, 3) outside of any container on a Linux kernel
patched with grsecurity and PaX, 4) and inside of the same containers on a
Linux kernel patched with grsecurity and PaX. This work tries to determine
if the mere packaging of a physics simulation impacts its runtime.

2 Basics

This chapter describes the technologies used in this work.

2.1 Virtualization

Virtual machines can be traced back as far as 1970. [35] IBM presented a
system that could run multiple System/360 operating systems on one physical
machine. The software that ran these machines was divided into two parts,
the Virtual Machine Control Program (VMCP), and the Cambridge Monitor
System (CMS). The VMCP provided time-sharing and resource allocation,
while the CMS enabled users to control the virtualized host easily over a
console typewriter. Every users had their own virtual machine and could not
interfere with the others.

8

Today the software that runs virtual machines is called Virtual Machine
Monitor (VMM) or Hypervisor and it completely manages the virtual ma-
chines, their resources, is responsible for the clean resource separation be-
tween the host and all virtual machines, and translates privileged instruc-
tions into less privileged ones (interpreting instructions) if necessary. This
strict separation provides great security and reliability. A virtual machine
cannot use more system resources than provided by the hypervisor. There-
fore it is not possible, as long as the hypervisor has no errors, for one virtual
machine to disrupt another or to access its data. The hypervisor has to main-
tain proper control of the executing VMs and their resources, otherwise they
could execute privileged instructions and gain acces to the host and other
VMs on that system.

The privileged instructions of the hypervisor are only needed to manage
the memory adresses of the running VMs. If this mapping were invisible to
software, a hypervisor would have no need for privileged instructions. [5]

Hypervisors are categorized into one of two types, Type-1 and Type-2. A
Type-1 hypervisors, like the CMVP from the seventies or newer ones such as
ESXi and Xen, run directly on the hardware without the need of an operating
system. They can host on the same hardware more virtual machines than a
Type-2 because there is no host operating system that uses resources. Type-
2 hypervisors, like Oracle VirtualBox, VMWare Player and Linux KVM, run
on top of an operating system. Due to the additional abstraction provided
by the host operating system they are more portable and easier to implement
but have less resources available for the virtual machines. Figure 1 illustrates
the difference between a Type-1 and a Type-2 Hypervisor. [41, Chapter 2]

Figure 1: Architecture of a Type-1 and Type-2 hypervisor.

With the reduces hardware costs in the eighties and nineties companies
bought more hardware if they needed more resource power, which almost
completely eliminated virtual machines except on mainframes. Around the

9

year 2000 VMWare developed a hypervisor for xommodity x86 processors
which enabled IT-Staff to easily create and manage VMs on cheap hardware.
This and the increased processing power of the processors (i.e. more cores
on one chip and specialized instructions for virtualization) helped virtual
machines gain popularity. [6, Chapter 1.5] [41, Chapter 1]

Even though the performance loss from virtualization not as big as it was
before, it can for some use case and technologies still be significant. Previous
works like [18], [15] and [53] focused their measurements on the difference
between virtual machines and container.

2.2 Security Features

2.2.1 Capabilities

The traditional way to check permission on a UNIX system is to compare the
user, or rather the user-ID, the process belongs to with the set permissions
of the resource the process is trying to access (file, network, etc.). On a
UNIX-system there are essentially two kinds of users, privileged (root) and
unprivileged (all other) users. Privileged processes bypass permission checks
and can do everything on the system, while unprivileged users are subject
to all checks. An all-powerful user on a system is comfortable but also a
huge risk. If this user gets compromised, an attacker can do everything on
that system. Some operations, like listening on a network port, require some
privileges. With the traditional permission model that means that the user
either has to be root or escalate its privileged with programs like sudo [36].

With the kernel version 2.2, Linux began dividing the capabilities of the
all-powerful root user into smaller ones. They can be individually assigned
and revoked to both users and executable files. This way a normal user
can gain some privileges, like listening on a network port or mounting file
systems, without the risk of a complete system takeover in case of a mali-
cious or erroneous user or executable file. Up until version 4.9 (used for this
work) Linux separated the capabilities into 38 groups (like CAP CHOWN,
CAP NET BIND SERVICE, etc.). Capabilities can be programatically set
with the capset(2) system call. The new capability-set must be a subset of
the previously owned capabilities if the user or executable doesn’t have the
CAP SETCAP capability. Executing a program sets the capabilities of it to
the combination of the users and executables capabilities. The capabilities
of a process can be inspected via the /proc/[pid]/status file. [27]

10

2.2.2 Application Armor

Application Armor, also called AppArmor, is a mandatory access mechanism
that binds access capabilities to files. The allowed files and operations are
written into a profile file that can be loaded by the kernel and applied to
processes. By default AppArmor blocks everything not explicitly allowed
in a profile. Not allowed accesses will generate an entry into the system
logfile, and additionally terminate the process if it is configured that way
(enforcement mode instead of complain mode). It’s possible to restrict net-
work access, files/directories, system calls, and more [1]. Profiles have to be
applied just before the program that should be confined is executed because
an already running process cannot be confined [50]. The idea is to specify
every path, system call, etc. a program needs to function properly in a profile
and to confine the process with it. If that program gets compromized and
the attacker tries to execute system calls that were previously not allowed,
the process will be terminated and damage to the system or other processes
and files will be prevented.

2.2.3 Control Groups

In 2006 a group from Google Inc. announced that they were working on a
project to create and manage processes as groups on a Linux system, called
Process Containers [12, 47]. In 2008 it got merged into the upstream kernel
and renamed to Control cgroups. [39] It allows the Linux kernel to control
the system resources a group of processes can use. I allows to define a max-
imum amount of resources and, depending on the resource, also guarantee a
minimal amount. The following resources can be limited: CPU shares, CPU
accounting, CPU core binding, memory usage, devices, freezer, network clas-
sid, block devices, perf events, network priorities, huge memory pages, and
PIDs. Cgroups can be nested, where all groups inside one parent group can-
not exceed the resource usage of that parent, even if the the child cgroups’
limits would exceed that limit.

The CPU share cgroup allows a minimum and maximum amount of CPU
resources to be assigned. Groups can be limited to prevent denial-of-service
attacks on the CPU, but also allow a group to get some CPU time even if
the whole system is under heavy load.

cpuacct provides accounting for the CPU usage of cgroups.
cpuset binds processes inside a cgroup to a set of CPUs and NUMA

11

(non-uniform memory access) nodes.
With the memory cgroup it is possible to report and limit the usage of

process and kernel memory, as well as the swap memory.
The creation and opening of devices for read and write can be restricted

with the devices cgroup.
The freezer cgroup allows the suspension and resumption of processes

inside a cgroup and all its direct descendants.
With the help of the net cls cgroup outgoing network packets will be

labeled. These labels can be used for firewall rules on the host system.
Access rates to specific block devices can be throttled through the blkio

cgroup. The rates can be a percentage or an I/O-rate.
perf event enables the system to perform the integrated perf monitoring

of processes inside that cgroup.
net prio permit cgroups to have priorities assigned to their network in-

terfaces.
hugetlb limits the number of translation lookaside buffers (TLB) a cgroup

is allowed to use. A TLB is a cache that stores the translation of a virtual
address to the corresponding physical one.

And pids limits the number of processes that can be created inside a
cgroup. [31]

2.3 Separation

2.3.1 Chroot

Resource isolation began in 1979 on the operating system Unix Version 7. In
this release the system call chroot appeared for the first time and it allowed to
change a running process’ view of the filesystem. It changed the global root
of the calling process on the whole filesystem structure to the directory called
by chroot. The idea is to contain file accesses of processes to a specific part
and to prevent one process from reading or manipulating files belonging to
another process. A major expansion on that idea were Jails on the FreeBSD
operating system. [19] [46]

2.3.2 FreeBSD Jails

Jails were introduced with the release of FreeBSD version 4.0 in the year
2000 [20, 43]. Jails expand the isolation idea of chroot by virtualizing file

12

system access, users, and networking. [44] They are in a way like virtual
FreeBSD machines and are used to contain processes on a system in different
ways. Every jail can contain a whole FreeBSD system and has a separate
root user that can do almost everything inside it. Users and processes inside
a jail can not determine if they are inside a jail. Todays jails transform
the Namepsaces of the file system, process IDs, and network, and they can
limit system resources for each jail. Processes inside a jail only have access
to the files in their own file system, they can not see or communicate with
processes on neither the host system nor inside other jails on that system,
and their CPU, memory, hard disk, and network usage can be restricted (e.g.
only one core, max 2GB RAM). Due to these isolations and restrictions it
is not possible for a compromized service to disrupt the other services on
that system. The namespace isolations (PID, file system, etc.) prohibit
direct access, while the resource restrition helps to mitigate denial of service
attempts by overusing the CPU, memory, or network bandwidth. Unlike
virtual machines, all processes on a system, regardless if they are inside a jail
or not, share the same kernel. [34, Chapter 5.9] [45]

2.3.3 Linux-VServer

The first wide-ranging isolation implemented on Linux was Linux-VServer,
whose development started in the year 2001 [17]. Linux-VServer modifies the
kernel to enable or extend resource isolation, like the networking stack, inter
process communication, and process IDs; and resource accounting/limiting,
like CPU time consumed and maximum memory usage. As in jails, processes
inside an isolated environment, here called Virtual Private Server, can not
see or interact with processes running on the host or inside other VPS. In the
beginning, Linux-VServer implemented their own isolations by patching the
lernel [42]. Over the years, the kernel developer implemented some isolation
techniques into the mainline kernel called Namespaces.

2.3.4 Linux Namespaces

The first namespace, for mounts, was implemented in Version 2.4.19 released
in 2002 [29, 38]. Since then other kinds namespaces were implemented to
isolate process groups from each other. Currently (Linux version 4.9) there
are seven different namespaces: Cgroups, IPC, Network, Mount, PID, User,
and UTS. Namespaces change the view of system resources for a process or a

13

group of processes by restricting access to resources outside of its own scope,
similar to Jails and Linux-VServer. Different container technologies leverage
them to isolate running container from each other and the host system.

Cgroup namespaces isolate the view of cgroups of a group of processes.
When a process creates a new namespace using clone(2) or unshare(2) with
the CLONE NEWGROUP flag, it enters a new namespace, where the root
directories are set to its current directories. To use cgroup namespaces the
kernel has to be configured with CONFIG CGROUPS. Without it, processes
inside a container could see the directories outside of it and therefore gain
valuable information. Additionally, containers are easier to migrate and con-
fined because they do not need to know the pathnames of the parent cgroups,
which allows them to be mounted below any aprent directory. [28]

IPC stands for Inter Process Communication and consists of different
techniques processes can use to communicate and exchange data with each
other. IPC namespaces isolate IPC objects and POSIX message queues in
such a way that processes inside of one namespace can neither see nor ineract
with processes on the outside or inside other IPC namespaces. [30]

A network namespace isolates the network stack and everything associ-
ated with it, like network routes, firewall rules, and network devices. By
default a process inherits the namespace from its parent process. [30, 4]

Mount namespaces isolate the mountpoints a group of processes can see.
When creating a new mount namespace the child namespace has the same
hierarchy as the parent namespace, which can then be modified as needed.
Mounting or unmounting devices in one namespace doesn’t affect the mount
status inside of other namespaces. Additionally, parts of the filesystem tree
can be shared across multiple namespaces. [29]

PID namespaces isolate the process IDs on the inside from the outside.
PIDs in one namespace are unique, but the same PID can be assigned to
a process inside another namespace on the same system. The first process
inside a namespace has the PID 1 and is therefore the init process. If this pro-
cess terminates, then all other processes in that namespace will be stopped.
Only processes that are visible to a namespace are listed below the /proc
directory. [32]

14

User namespaces isolate security-related identifiers and attributes like the
UID, GID, root directory, and capabilities. A process can have multiple UIDs
and GIDs, one inside and one outside of a namespace. That allows a pro-
cess to be restricted inside the parent namespace, but be unrestricted inside
a child namespace. Upon creating a new child namespace, the process can
gain capabilities inside that namespace that it doesn’t have inside the parent
namespace. System-wide operations, like setting the time, creating a device,
or loading a kernel module, can only be performed by processes in the root
namespace. [33]

UTS namespaces provide isolation for the hostname and the NIS domain
name. [30]

2.4 Container

Container on Linux utilize both namespaces and cgroups for the separation
and resource limitation. Docker was the first solution that made it easy to
use them. They consist of an image and a program.

The image contains a description of the container and directories that
make up a filesystem. Inside these directories are all files, libraries and de-
pendencies the programs running inside a container need. No kernel is packed
inside since the processes are running on the host kernel. The processes run-
ning inside a container are therefore executed directly by the kernel running
on the host system.

The program manages the images and the running container. It reads the
image, sets up the needed environment (create directories, apply namespaces
and cgroups, start the first process of the image) and manages the running
container.

2.5 Differences between Virtual Machines and Con-
tainers

Both virtual machines and containers separate groups of processes from each
other and the host system, but in different ways. Virtual machines are con-
trolled and separated by a hypervisor, a software layer that manages its
resources and completely controls it. Its isolation is therefore stronger, but

15

comes with an increased resource usage. For containers this separation is
happening inside the host kernel. There is no additional software layer be-
tween a container and the host sytem. This results in a less sophisticated
separation but also in a smaller resource usage.

The missing software layer in the case of containers also poses a security
risk. If one of the processes inside a container compromizes the kernel it gains
access to all the other containers on that system. There is only one piece of
software that needs to be exploitet. In the case of VMs, an attack needs to
compromize the guest OS, the hypervisor and then the host system to gain
unrestrained access. Furthermore, if an attack from inside a container can
crash the kernel, all the other containers on this machine will also terminate.
The kernel of a container host can be hardened to reduce the risk of an ex-
ploitation.

Figure 2 shows a container and a virtual machine setup. Please note
that the container engine is not really sitting between the container and the
kernel. It just sets the environment up and starts the containers, it is not
executing them. The processes inside the containers are executed directly
from the kernel.

Figure 2: Setup of a container environment and a virtual machine environ-
ment.

2.6 Application hardening

Applications on a classical desktop and server operating system, like GNU/Linux
and Windows, are mostly unrestricted. They can consume as much CPU and

16

memory as they want, they can access network resources, and communicate
with other processes on the system. On other operating systems, like An-
droid and iOS, access to a lot of resources is restricted by the operating
system. Spplications have to request permissions for them, like reading the
contact list or accessing the camera. There are a few methods to limit the
impact of a malicious or compromized program running on a system: attack
surface reduction, dropping unneeded privileges, using the right algorithms
for a task (e.g. encryption, digital signing). All of them can be addressed
by the program developers. Depending on the program and usage, some can
also be tackled from others, such as attack surface reduction and dropping
of unneeded privileges.

Let us first examine attack surface reduction. Every software has bugs.
The larger a piece of software, the greater the risk of bugs. This risk can
be reduced if the application has fewer entry points from the outside, like
parsing arbitrary user input, but this has to be done by the developer. If
a software is written in a loosely coupled multi-process way the user could
deactivate not needed parts of it. Instead of running a bundle with a few
different services, one could disable not needed services via a config file. If
this is not possible a user could restrict access to that service, for example
with a firewall.

The second method is dropping privileges and denying access to unneded
resources. With the help of AppArmor, capabilities and others, a user can
define files and directories, system calls, etc. that a program is allowed to
access. Capabilities split all privileged access of a Linux system into small
bits that can be applied to or revoked from processes. These tools empower
a user to control the access a process has on the system without the need to
modify the sourcecode.

2.7 Kernel hardening with grsecurity and PaX

The kernel of an operating system is the most important and most privileged
process running on a machine. It manages the available hardware resources,
provides inter process communication, schedules running processes, and does
a lot more. Because of it’s privilege it is a frequent target of attacks. If it
gets successfully compromized, the attacker can execute arbitrary code with
the highest privilege on the system, which means that it can do everything

17

a software is able to do. As previously explained, a VM contains a whole
operating system that runs on top of a hypervisor, which in turn runs on
the host system. Containers on the other hand do not have that many layers
between the untrusted process (inside the container) and the kernel of the
host machine, all untrusted processes interact directly with the host kernel.
It is therefore the only piece of software that needs to get compromized in
order to gain full access to the host machine. There are some techniques to
make it harder to compromize the kernel and gain unauthorized access on
the system. These can be patches, compile-time options or runtime settings.

Grsecurity, that also contains PaX, is the product of a company, Open
Source Security, Inc., that provides hardening patches for the Linux ker-
nel [37]. Up until April 2017 the development patches were freely accesible
for everyone, with a paid option for support and more stable patches. The
patches contained in PaX provide memory safety features. Executable mem-
ory is made not-writable to prevent buffer overflow bugs, the address space
of processes is randomized to make it significantly harder for an attacker to
determine the address of a function he or she wants to execute. Grsecurity
introduces different defensive and hardening protections into the kernel: pre-
venting the kernel to execute code that resides in a memory region owned
by a user process, greater separation of memory stacks belonging to different
processes, bounds checking when copying data from a userland process to
the kernel, and a lot of other features. A complete list can be found on their
page [16].

They also significantly expand the logging of events. Memoy acces vio-
lations, trying to execute blocked system calls and a whole array of other
events are logged. These entries could be used to feed an Intrusion Detection
System or Intrusion Prevention System and to detect anomalies in running
processes.

2.8 High-Energy Physics

High-energy physics, also called particle physics, is a field that studies the
fundamental constituents of matter and how particles interact. Particles are
accelerated to almost light speed before they collide heads on with other
particles also travelling at almost light-speed in the opposite direction. The
enegies created by these collisions are measured and stored for later analysis.

18

This data includes hints at how these particles interact, how correct the stan-
dard model of physics is, and what happened just after the big bang. CERN
in Geneva, Switzerland is such an institution and also the biggest and most
sophisticated accelerator and detector in the world. The analyzation is done
on a high-throughput computing (HTC) grid distributed all over the world.
HTC aims to provide a reliable infrastructure for a large amount of comput-
ing resources that can be used to execute long running jobs, typically over
weeks and months of runtime. Jobs running inside these environments are
usually not that tightly coupled like the ones executed in high-performance
computing environments. [9, 26, 3]

3 Methodology

This chapter describes the used hard- and software, the testcases, and how
the measurement was conducted.

3.1 Used hardware

Alle the tests were conducted on a Supermicro X8DAH Mainboard (Version
2.1) with two Intel Xeon E5520 processors for a total of 8 cores and 16
threads, dynamically clocked to up to 2.27GHz. The machine had 12GB
of RAM and a Western Digital WD5002ABYS-0 HDD with a capacity of
500GB, 7200 RPM and 16MB Cache. The swap area was set up as a file on
the root file system, not as a separate partition. The network interface was
an Intel 82576 Gigabit Network card, which is capable of transfering 1Gbps
over ethernet.

3.2 Used software

The host machine ran Ubuntu 14.04 LTS with a different kernel (version 4.9
instead of 4.4) but with the default settings and the tools needed to create
and run the tests. These were the containers, namely Docker [21], rkt [13],
Singularity [48], the cvmfs [7] and PbPbbench as well as their dependencies.
Depending on the test the kernel was patched with AUFS or grsecurity.

19

3.2.1 Kernel patching

The linux kernel version 4.9 was chosen because it was the latest version
with available grsecurity and PaX patches at the time of writing. AUFS,
which Docker depends on, was was available for all Linux versions. For half
of the testruns a kernel patched with grsecurity and PaX was used. Applying
them was straight forward. The Linux sources were obtained from [40] and
the grsecurity and PaX patches from [37]. Both were extracted and placed
inside the same directory. grsecurity and PaX were applied with the com-
mands show in listing 1. None of the upstream kernel options were changed.
grsecurity and PaX can be configured to set a lot of options based on the
preferred usage: security or performance. Because the performance impact
should be low the performance option was chosen. During the tests occured
some errors that could only be resolved by disabling PaX’ recomputation of
size parameters of function arguments (CONFIG PAX SIZE OVERFLOW).
As shown in listing 2 AUFS was similarily easy to apply after downloading
it from [52].

1 cd l inux −4.9.23/
2 patch −p1 < . . / g r s e cu r i t y −3.1−4.9.23−201704181901. patch
3 make menuconfig
4 f ake roo t make deb−pkg

Listing 1: Applying the grsecurity and PaX patches to the kernel and
compiling it.

1 cd l inux −4.9.23/
2 patch −p1 < . . / aufs−s tanda lone / aufs4−kbui ld . patch
3 patch −p1 < . . / aufs−s tanda lone / aufs4−base . patch
4 patch −p1 < . . / aufs−s tanda lone / aufs4−mmap. patch
5 cp −r . . / aufs−s tanda lone /Documentation .
6 cp −r . . / aufs−s tanda lone / f s .
7 cp −r . . / aufs−s tanda lone / inc lude /uapi / l i nux / au f s type . h

inc lude /uapi / l i nux /
8 make menuconfig
9 f ake roo t make deb−pkg
10 sudo dkpg − i . . / ∗ . deb

Listing 2: Patching AUFS and compiling the kernel.

The command make menuconfig opens a menu where the user can browse
through all the kernel features and enable, disable, or modify them as needed.

20

AUFS had to be enabled this way as it is not enabled by default. The
grsecurity and PaX parameters were also enabled and modified this way.
After the kernel compilation is finished, the Debian-packages will be placed
inside the parent directory. They can be installed with through the packet
manager dpkg.

3.2.2 CERN software

CERN provides its software through the CernVM File System, also called
cvmfs. It is a POSIX-compliant file system in userspace, implemented as a
FUSE module on Linux. It is read-only and, unlike other network file sys-
tems like NFS, accessed over HTTP. The communication over HTTP allows
it to be easily accessed through firewalls. It’s main usage is to distribute the
software thats needed to reconstruct and simulate the collisions to the other
locations of the worldwide-distributed computing infrastructure. The soft-
ware and environment needed to run the benchmark-software, PbPbbench,
is also located on there. Mounting is managed by autofs, but it can also be
done via cvmfs config. After the repository has been added to the system
the cvmfs packages were installed through apt. A config file default.local was
created inside /etc/cvmfs/ with the content shown in listing 3. For a more
detailed explanation on how to install, configure, and debug it, please see [8].

1 CVMFS REPOSITORIES=a l i c e . cern . ch
2 CVMFS CACHE BASE=/tmp/cvmfs
3 CVMFS QUOTA LIMIT=50000

Listing 3: Content of the cvmfs config file.

An important program for these tests is AliRoot. It is based on the
ROOT framework, also developed at CERN, and used by the ALICE exper-
iment to simulate, reconstruct, and analyze data obtained from collisions.
These capabilities are needed by PbPbbench, which was used in this work
as a benchmark to measure the impact of different container technologies.
PbPbbench was chosen as the benchmark because it is a physics simulation
and therefore similar to the other jobs usually running in this environment.
For more information about ROOT or AliRoot, please see [10] or [11].

21

3.2.3 Un-containered Simulation

PbPbbench in version v5-05-Rev-16, which was obtained from the CVMFS
drive, was used as the benchmarking-software. The exact path was /cvmf-
s/alice.cern.ch/x86 64-2.6-gnu-4.1.2/Packages/AliRoot/v5-05-Rev-16/test/PbPbbench/.
Inside this directory is a script called runtest.sh which executes aliroot with
sim.C and also other files, but only this sim.C was important for the tests.
This starts a monte carlo simulation of a collision based on the data saved
in the OCDB directory which is also located in the PbPbbench directory.
The simulation calculates amongst other things, the generation of particles
that form during a collision and their energy deposition and path through
the detector [51, Chapter 3.5]. The command to start it is shown in listing
4. To separate the individual testruns from each other every instance copied
the PbPbbench directory, including the OCDB directory, to an own separate
directory based on the ID received from the calling process. The aforemen-
tioned OCDB directory is a database of recorded data from previous events,
taken from [24], commit 8a334a30 from July 31st 2015.

1 cp −r ˜/ . a l i e n /tmp/PbPbbench ˜/workdir /PbPbbench ${2}
2 cd ˜/workdir /PbPbbench ${2}
3 echo ” s t a r t t ime : t h i s=$ {2} : ‘ / bin /date +%F %H:%M:%S ‘ ” >>

$LOGDIR/ na t i v e r e s u l t t ime . l og
4 a l i r o o t − l −b −q sim .C
5 echo ”endtime : t h i s=$ {2} : ‘ / bin /date +%F %H:%M:%S ‘ ” >>

$LOGDIR/ na t i v e r e s u l t t ime . l og

Listing 4: Command to start a simulation inside the PbPbbench-directory.

For aliroot and the simulation to work some environment variables had
to be set. The easiest way to do this was to print the environment of the
aliroot user, evaluate it inside of the user’ shell and to overwrite the variables
not containing the correct value, like the path to the OCDB. Listing 5 shows
the setting of the environment variables. All the dependencies, except libg-
fortran.so, were installed from the reposiroty. This library was copied from
one of the CentOS container to the host system as it could not have been
found inside the repository.

1 Al iRootVers ion=”v5−05−Rev−16”

22

2 eval ‘/ cvmfs/ a l i c e . cern . ch/bin / a l i e nv pr intenv
VO ALICE@AliRoot : : $AliRootVersion ‘

3 export ALICE ROOT OCDB=˜/workdir /PbPbbench ${2}/OCDB
4 . . .

Listing 5: Set all environment variables as in the alien environment.

The simulation inside of the three containers started after changing into
the PbPbbench directory, while the simulation outside of the container had
to make an additional step. Before the simulation, and also before the start
time was saved, the PbPbbench directory was copied into a new directory
before being started from inside that new directory. Every instance of the
un-containered execution received its ID as a commandline parameter not
only to create this directory but also to log its ID next to its time into the
logfile. Just before the simulation started and just after it finished, every
instance saved the time and their ID into that file.

3.2.4 Docker

Docker was the first container technology on Linux that gained mainstream
popularity. It provides their own tools to ease the creation, modification,
execution, and management of container. It uses namespaces and cgroups to
isolate the container that are built with a Dockerfile. This file contains a base
image from which the container inherits its environment (package manager,
libraries, etc.) and optionally additional instructions. These instructions are
additional steps to extend and customize the base image to the needs of the
user. They can be anything like installing new packages, copying files from
the host machine inside the container, manipulating files, or enabling and
disabling processes on startup.

Besides the namespace isolation and cgroup resource limitation, Docker
by default sets capabilities on a container before it is being executed. Pro-
cesses inside of containers can for example listen on a network port and
change ownership of files and directories, but they can’t load kernel mod-
ules and enable or disable kernel auditing, as well as some other operations.
The complete list can be found in [22]. Docker container can additionally
be secured with SELinux, AppArmor, or other hardening techniques [23].
Containers are managed by a daemon, dockerd, which can receive commands
over the network and the docker binary on the local machine. The daemon
is always running as the root user on the host machine.

23

The container was created with the Dockerfile shown in listing 7. The
first entry of a Dockerfile has to be the base image upon which the rest of
the Dockerfile builds; in this case centos6. After that the CERN repositories
are added, the package database is updated and the needed packages are
installed. Next the needed directories are created, the user and group aliprod
are added and environment variables are set. After that the PbPbbench di-
rectory is copied into the container and the default directory and user when
starting the container are set. Before copying the PbPbbench directory into
the container the runtest.sh script was modyfied to save the right parameter,
the container ID, into the logfile.

1 echo ” s t a r t t ime : t h i s =1: ‘/ bin /date +%F %H:%M:%S ‘ ” >> $LOGDIR
/ dock e r r e su l t t ime . l og

2 a l i r o o t − l −b −q sim .C
3 echo ”endtime : t h i s =1: ‘/ bin /date +%F %H:%M:%S ‘ ” >> $LOGDIR/

dock e r r e su l t t ime . l og

Listing 6: Command to save starttime with variable container ID.

1 FROM centos : centos6
2
3 # Add cern repos
4 RUN cu r l http :// l i n u x s o f t . cern . ch/wlcg/wlcg−s l 6 . repo −o /

e tc /yum. repos . d/wlcg−s l 6 . repo
5 RUN cu r l http :// l i n u x s o f t . cern . ch/wlcg/RPM−GPG−KEY−wlcg −o

/tmp/RPM−GPG−KEY−wlcg
6 RUN rpm −−import /tmp/RPM−GPG−KEY−wlcg
7 RUN /usr /bin /yum −−enab lerepo=∗−t e s t i n g c l ean a l l
8 RUN rm /tmp/RPM−GPG−KEY−wlcg
9 RUN rm −r f / var / cache /yum
10
11 # I n s t a l l i n g p r e r e q u i s i t e s .
12 RUN yum update −y
13 RUN groupadd −g 355 a l i p r od
14 RUN useradd −g 355 −d /var / l i b / a l i p r od −m a l i p r od
15 RUN yum i n s t a l l −y HEP OSlibs SL6
16 RUN yum i n s t a l l −y which
17 RUN yum i n s t a l l −y gcc−g f o r t r an
18 RUN yum i n s t a l l −y redhat−l sb−core −4.0−7. e l 6 . centos . x86 64

24

19 RUN sed − i ’ $ a\ export PATH=”/cvmfs/ a l i c e . cern . ch/bin :$PATH
” ’ /var / l i b / a l i p r od / . bashrc

20 RUN sed − i ’ $ a\ export LANG=C’ /var / l i b / a l i p r od / . bashrc
21
22 # Create the read only c on f i gu r a t i on f i l e s f o r
23 # AliEn s e r v i c e s and Jobs .
24 COPY opt / . a l i e n /var / l i b / a l i p r od / . a l i e n
25
26 # Create wr i t ab l e d i r e c t o r i e s f o r the AliEn jobs
27 RUN mkdir /var / l i b / a l i p r od / . a l i e n / cache
28 RUN mkdir /var / l i b / a l i p r od / . a l i e n / l o g s
29 RUN mkdir /var / l i b / a l i p r od / . a l i e n /tmp
30
31 # Copy s imu la t i on f i l e s
32 COPY ./ PbPbbench/ /var / l i b / a l i p r od / . a l i e n /tmp/PbPbbench
33
34 # Make a l i p r od the owner o f the se d i r e c t o r i e s and f i l e s
35 RUN chown −R a l i p r od : a l i p r od /var / l i b / a l i p r od / . a l i e n
36
37 ENV HOME=”/var / l i b / a l i p r od ”
38 ENV PATH=”/cvmfs/ a l i c e . cern . ch/bin :$PATH”
39 ENV LANG=C
40
41 USER a l i p r od
42 WORKDIR /var / l i b / a l i p r od / . a l i e n /tmp

Listing 7: Dockerfile to create the testimage.

An image can be created from a Dockerfile with docker build as shown
in listing 8. This image is placed inside the Docker directory on the sys-
tem and it can be managed or started. Before the tests were conducted 10
separate containers were created from the same image. During the tests the
pre-created container just had to be started as the on-demand creation of
them would have taken additional time. Because Docker by defaults starts
the containers with an AppArmor profile, it had to disabled during container
creation with the commandline argument --privileged.

1 docker bu i ld −−tag t e s t s : pbpbbench .

Listing 8: Command to create Docker image from a Dockerfile.

25

When starting a container, directories from the host system can be mapped
into the container and accesses by processes from within. This was used so
that the simulations would save their times and IDs into the same file on the
host system. Listing 9 shows the command to start a container with the di-
rectory /home/daniel/my times/ on the host mapped to the same directory
in the container and without an AppArmor profile and the simulation ID 1.

1 docker run −−p r i v i l e g e d −−mount type=bind , source=/home/
dan i e l /my logs , t a r g e t=/home/ dan i e l /my logs −−name docker
−1 t e s t s : pbpbbench /var / l i b / a l i p r od / . a l i e n /tmp/PbPbbench
/ runte s t . sh 1

Listing 9: Command to create Docker container with ID 1 from an image.

3.2.5 rkt

The main focus of rkt is to be used inside cloud-based environments. The
tools provided allow pods to be started and managed, but not created or
modified. One or more images can be packed together to work as one unit.
This unit is called a pod and all processes running inside of one pod can
communicate with each other and share the same environment, even if they
were in different images before being placed into a pod [2]. For the creation
and manipulation of images the user has to use other tools like acbuild, or
just specify a Docker container which rkt will convert to its native image
format before executing. The supported image formats are ACI and OCI.
For the tests the ACI image format was used.

The rkt-image was created from the previously created Docker image
with docker2aci. This program takes a Docker image and converts it to an
ACI image, which then was extracted, modified and repacked. The script
runscript.sh from PbPbbench had to be modified because a rkt container
is not able to receive parameters from the calling process like Docker. The
only lines that were changed were the output of the times. Instead of the
variable output shown in listing 6, the container ID was hard-coded into the
command as shown in listing 10. this=1 was changed to the respective ID
for every container image.

26

1 echo ” s t a r t t ime : t h i s =1: ‘/ bin /date +%F %H:%M:%S ‘ ” >> $LOGDIR
/ r k t r e s u l t t im e . l og

2 a l i r o o t − l −b −q sim .C
3 echo ”endtime : t h i s =1: ‘/ bin /date +%F %H:%M:%S ‘ ” >> $LOGDIR/

r k t r e s u l t t im e . l og

Listing 10: Command to save starttime with fixed container ID.

The repacking was done manually. At first the Docker image was ex-
tracted with docker export and converted to an ACI image with docker2aci, as
shown in listing 11. Then it was unpacked with tar, wich created a directory
rootfs and a manifest file, and both files were moved into the working direc-
tory workdir that was previously created. The manifest file describes the con-
tainer and its settings that are needed for both the startup phase and during
execution, and rootfs contains all files of that container, exactly as they are
when it runs. workdir/rootfs/var/lib/aliprod/.alien/tmp/PbPbbench/runtest.sh
was modified as shown in listing 10. After every modification of runtest.sh a
container image was created with tar.

1 docker export t e s t s : pbpbbench > dockerimg . ta r
2 docker2ac i . / dockerimg . ta r
3 mkdir workdir
4 ta r zx f dockerimg . a c i
5 mv r o o t f s mani f e s t workdir
6 vim workdir / r o o t f s /var / l i b / a l i p r od / . a l i e n /tmp/PbPbbench/

runte s t . sh
7 ta r −pcz f r k t 1 . a c i workdit /mani f e s t workdir / r o o t f s /

Listing 11: Commands to create and modify an ACI container from a Docker
image.

rkt also applies some capabilties to a pod before it is started, like denying
applications to listen to a port number below 1000, change its capabilities,
execute chroot system calls, and others. Currently there are 14 denied ca-
pabilities which can be seen at [14]. Additional capabilities can be set or
revoked with the --caps-retain and --caps-remove commandline arguments,
or by modifying the capabilities-retain-set or the capabilities-remove-set files
(exact location depends on the distribution).

Just as with Docker, rkt also allows directories from the host system to be

27

mapped into pods. Listing 12 shows how to start one rkt container with the
cvmfs directory mapped into the container and the /home/daniel/my logs di-
rectory on the host mapped to /var/lib/aliprod/my logs inside the container.

1 rkt run −−i n s ecure−opt ions=image −−volume=log−dir , kind=host
, source=/home/ dan i e l /my logs , readOnly=fa l se −−volume=cvm
−vol , kind=host , source=/cvmfs , readOnly=true −−mount
volume=cfm−vol , t a r g e t=/cvmfs −−mount volume=log−dir ,
t a r g e t=/var / l i b / a l i p r od /my logs −−exec PbPbbench/ runte s t
. sh

Listing 12: Command to start rkt container.

3.2.6 Singularity

Singularity was developed to be primarily used inside of HPC-environments.
It was designed with HPC-provider to bring the portability, reproducibility,
and security of containers into their datacenters. Like Docker, it delivers
tools to create and modify container images, as well as to run and manage
them. Container can be created interactively, with a script like the others,
or a Docker image can be imported and converted to the Singularity image
format. Processes running inside a container cannot gain privileges, for ex-
ample become root, if they don’t have that capability on the host machine
as well. It can easily be integrated into existing HPC software like a job
scheduler (e.g. SLURM, SGE) [25].

It is a known problem that Singularity can’t just create CentOS images
on an Ubuntu host. But Singularity is able to bootstrap from a Docker image
and continue the remaining adjustments. Similar to Docker, Singularity also
has a recipe file containing every command needed to setup and create a
container. This container was based on the Docker image of CentOS 6 and
executed the same commands as Docker. Listing 13 shows this recipe.

1 # Base system
2 BootStrap : docker
3 From : centos : 6
4
5 # Setup needed environment v a r i a b l e s f o r the s imu la t i on
6 %environment

28

7 HOME=”/var / l i b / a l i p r od ”
8 PATH=”/cvmfs/ a l i c e . cern . ch/bin :$PATH”
9 LANG=C
10
11 # Copy f i l e s from host system in to the conta ine r
12 %f i l e s
13 opt / . a l i e n /var / l i b / a l i p r od / . a l i e n
14 . / PbPbbench/ /var / l i b / a l i p r od / . a l i e n /tmp/PbPbbench
15 s t a r t t e s t a l i p r o d . sh /var / l i b / a l i p r od / t e s t run . sh
16
17 # I n s t a l l packages and c r ea t e d i r e c t o r i e s / user
18 %post
19 # Add cern repos
20 cu r l http :// l i n u x s o f t . cern . ch/wlcg/wlcg−s l 6 . repo −o /

e tc /yum. repos . d/wlcg−s l 6 . repo
21 cu r l http :// l i n u x s o f t . cern . ch/wlcg/RPM−GPG−KEY−wlcg −o

/tmp/RPM−GPG−KEY−wlcg
22 rpm −−import /tmp/RPM−GPG−KEY−wlcg
23 / usr /bin /yum −−enab lerepo=∗−t e s t i n g c l ean a l l
24 rm /tmp/RPM−GPG−KEY−wlcg
25 rm −−r e c u r s i v e −−f o r c e /var / cache /yum
26
27 # I n s t a l l i n g p r e r e q u i s i t e s .
28 yum update −y
29 groupadd −−g id 355 a l i p r od
30 useradd −−g id 355 −−home /var / l i b / a l i p r od −−create−home

dan i e l −−password xx/xxxxxxxxxx
31 yum i n s t a l l −y HEP OSlibs SL6−1.0.18−0. e l 6
32 yum i n s t a l l −y which
33 yum i n s t a l l −y vim
34 yum i n s t a l l −y gcc−g f o r t r an
35 yum i n s t a l l −y redhat−l sb−core −4.0−7. e l 6 . centos . x86 64
36
37 # Create needed d i r e c t o r i e s
38 mkdir −−parents / runtimes
39 mkdir −−parents /var / l i b / a l i p r od
40 mkdir −−parents /var / l i b / a l i p r od / . a l i e n
41 mkdir −−parents /var / l i b / a l i p r od / . a l i e n / cache
42 mkdir −−parents /var / l i b / a l i p r od / . a l i e n / l o g s
43 mkdir −−parents /var / l i b / a l i p r od / . a l i e n /tmp

29

44 mkdir −−parents /cvmfs
45 mkdir −−parents /cvmfs/ a l i c e . cern . ch
46 mkdir −−parents /cvmfs/ a l i c e−ocdb . cern . ch
47
48 # Set ownership o f a l i p r od home d i r e c t o r y
49 chown −−r e c u r s i v e dan i e l : a l i p r od /var / l i b / a l i p r od / .

a l i e n
50 chmod −−r e c u r s i v e 777 /var / l i b / a l i p r od
51 chown −−r e c u r s i v e dan i e l : a l i p r od / runtimes
52 chmod −−r e c u r s i v e 777 / runtimes
53
54 %run s c r i p t
55 cd
56 . / t e s t run . sh $∗

Listing 13: Singularity recipe to create the testimage.

The file is divided into sections that begin with a % followed by the name
of the section [49]. Entries inside environment are saved inside the container
and are globally applied to all processes running inside a container. The
file section copies all files and directories from the host system (left-hand
side) inside the container (right-hand side). After these steps are finished,
the build processes executes the commands inside the section from inside
the container. The final section runscript contains the commands that will
be executed when the container is normally started. An image is created
with the command shown in 14 while inside the same directory as the recipe
file. The resulting image was then copied 10 times. Images created with
Singularity have a storage limit, unlike the ones created with Docker and
rkt. The default size is around 768 megabytes but this is not enough for the
files and dependencies needed for the simulation. During the creation of the
container the size was therefore increased to 2 gigabytes.

1 sudo s i n g u l a r i t y c r e a t e −−s i z e 2048 s i n g u l a r i t y t e s t . img

Listing 14: Singularity recipe to create the testimage.

When starting a container, directories from the host system can be mapped
into the container and accesses from processes from within (just as Docker
and rkt). This was used so that the simulations would save their times and
IDs into a file on the host system. Listing 15 shows the command to start the
container with the ID 2 for the testcase with 5 concurrent container at once.

30

The directory /home/daniel/times singularity on the host system is mapped
into the container at /runtimes, and the host directory /cvmfs/alice.cern.ch
is mapped to the same position.

1 s i n g u l a r i t y run −w −B /home/ dan i e l / t im e s s i n g u l a r i t y : /
runtimes −B /cvmfs/ a l i c e . cern . ch s i n g u l a r i t y 1 . img 5 2

Listing 15: Command to start Singularity image.

3.3 Test procedure

The wall clock time the aliroot simulation needed to finish was measured
and taken as the reference. The number of concurrent instances ranged from
1 through 10 for both the containers (Docker, rkt, Singularity) and the un-
containered simulation. All of these test cases were executed five times. All
these tests were conducted on two different kernels: one patched with AUFS
and one patched with grsecurity and PaX.

This yields the following tests cases that were all executed five times:

1. Stock Kernel

• Without Container: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 jobs at once.

• Inside Docker: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 jobs at once.

• Inside rkt: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 jobs at once.

• Inside Singularity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 jobs at once.

2. Hardened Kernel (grsecurity and PaX)

• Without Container: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 jobs at once.

• Inside Docker: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 jobs at once.

• Inside rkt: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 jobs at once.

• Inside Singularity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 jobs at once.

3.4 Test setup

The wall clock time it took the simulation to finish without any container on
a stock kernel was measured first. Five runs of each testrun were taken, first

31

executing one job alone, then two simultaneously, then three, and so on up
to and including ten at once. After the five runs of the un-containered tests
the same process was repeated with Docker, rkt and Singularity.

After the first round the machine rebooted with the hardened kernel for
the second round of tests. Only the testruns without a container, inside rkt,
and inside Singularity were repeated. As explained above, Docker needs the
AUFS kernel module whose patches had to be applied to the kernel. Both
AUFS and grsecurity with PaX modified the same files and just applying
the patches one after the other, as explained above, reversed some of the
changes of the previous one, which resulted in compilation errors. It should
be possible to apply the two patches manually but it would have taken too
much time and it was not the main scope of this work.

During both of the kernels (stock and hardened) the started programs
sometimes failed instantly with a message that there are too many levels of
symbolic links inside the directory /cvmfs/alice.cern.ch. Clearing the cache
and probing the configured directories with the provided cvmfs config pro-
gram solved the error. Listing 16 shows how.

1 cvmf s con f i g wipecache
2 cvmf s con f i g probe

Listing 16: Commands to fix error of too many levels of symbolic links.

Another issue during the tests of the un-containered simulation was grse-
curity and PaX. The simulation got killed with the message shown in listing
17. PaX’ overflow detection plugin spottet a memory overflow and killed
the process aliroot. This error was not necessarily a bug in aliroot it could
also be a bug in the PaX plugin. Other people had the same problem with
different kinds of applications. Thoroughly inverstigating the source of the
issue would have consumed too much time. The PAX SIZE OVERFLOW in
the kernel configuration was therefore disabled and the kernel was recompiled.

1 PAX: s i z e over f l ow detec ted in func t i on
i nva l i d a t e i n od e pag e s 2 r ang e mm/ truncate . c :626 c i c u s
.140 280 max , count : 5 , de c l : unmap mapping range ; num:
3 ; context : f nd e c l ;

32

2 CPU: 6 PID : 1234 Comm: a l i r o o t Tainted : G I 4.9.23− g r s e c #4
3 . . .

Listing 17: PaX error message of un-containered simulation.

The next issue came from rkt trying to start a pod. The filesystem
protections of grsecurity were preventing rkt from setting up the container
environment and starting it. Disabling it at compile time would remove a
lot of mitigations that could be useful in a production environment. Some of
them can be enabled and disabled during the runtime of the kernel by writing
a 1 or a 0 into the proper subdirectory of the /proc virtual filesystem. Only
the protections that prevented rkt from starting the pod were disabled, one
after the other. A total of four protections had to be disabled this way at
runtime (without recompiling the kernel). The four protections were: deny
calling fchdir while inside a chroot, deny calling chroot while inside a chroot,
deny changing capabilities while inside a chroot, deny mounting directories
while inside a chroot. All of these system calls are potentially dangerous if
called from within a chroot’ed environment, as they could be used to escape
the already effective chroot. The commands with the complete paths are
shown in listing 18.

1 echo 0 > /proc / sys / ke rne l / g r s e c u r i t y / ch roo t deny f chd i r .
2 echo 0 > /proc / sys / ke rne l / g r s e c u r i t y / chroot deny chroot .
3 echo 0 > /proc / sys / ke rne l / g r s e c u r i t y / chroot caps .
4 echo 0 > /proc / sys / ke rne l / g r s e c u r i t y / chroot deny mount .

Listing 18: Disabling PaX filesystem protection features preventing rkt from
starting a pod.

4 Results

This chapter presents the results, discusses them and shows possible rea-
sons for the time differences between the un-conainered simulation and the
different container solutions.

33

4.1 Results

Tables 1 and 2 show the average runtime, in seconds, of the un-containered
simulation and every container for the stock kernel and hardened kernel re-
spectively. Every testcase (one concurrent job, two concurrent jobs, etc.)
was executed and measured five times. The times are for easier comparison
also shown in figure 3 (stock kernel) and 4 (hardened kernel).

Figures 5, 7 and 8 show the time difference of the un-containered simula-
tion, the simulation inside a rkt container, and the simulation inside a singu-
larity container, between a stock and a hardened kernel respectiely. Figure
6 show the average time of Docker only on a stock kernel. As previously
explained Docker could not be tested on a hardened kernel.

Concurrent Jobs un-containered [s] Docker [s] rkt [s] Singularity [s]
1 4406 4257 4316 4287
2 4387 4273 4324 4400
3 4380 4327 4395 4395
4 4288 4369 4478 4413
5 4450 4488 4607 4522
6 4511 4564 4697 4617
7 4574 4583 4730 4656
8 4846 4630 4794 4882
9 5287 5023 5226 5148
10 5699 5497 5686 5702

Table 1: Average runtimes of all simulations on a stock kernel, in seconds.

4.2 Discussion

The execution time of the un-containered simulation was measured and all
container runtimes were compared against it. The speedup of containers on
a stock kernel was at most 2.84%, while the biggest slowdown was almost
5%. All speedups and slowdowns are shown in table 3. A positive value
reprents a slowdown of this testcase compared to the un-containered case
while a negative value shows that this container was faster.

Except for four un-containered jobs at once the execution time of all four
testcases increased with the number of simultaneous jobs. All four test cases

34

Concurrent Jobs un-containered [s] rkt [s] Singularity [s]
1 4886 4333 4755
2 4872 4366 4769
3 4925 4430 4794
4 4928 4496 4850
5 4935 4630 4866
6 4935 4709 4881
7 4960 4754 4938
8 5071 5013 5129
9 5317 5342 5565
10 5781 5811 6033

Table 2: Average runtimes of all simulations on a hardened kernel, in seconds.

Stock Kernel

Av
er

ag
e

ru
nt

im
e

[s
]

4,200

4,400

4,600

4,800

5,000

5,200

5,400

5,600

5,800

Number of simultaneous Jobs
0 2 4 6 8 10

Singularity
Rkt
Native
Docker

Figure 3: Comparison of runtimes without a container, Docker, rkt and
Singularity on a stock kernel, in seconds.

them show a sharp increase at or after eight concurrent jobs. The memory
consumption of the simulation is not the reason for this sharp increase. One
un-containered job comsumed at most approximately 1020 megabytes of main
memory while the containers consumed not more than 980 megabytes. The

35

Hardened Kernel
Av

er
ag

e
ru

nt
im

e
[s

]

4,000

4,500

5,000

5,500

6,000

6,500

Number of simultaneous Jobs
0 2 4 6 8 10

Singularity
Rkt
Native

Figure 4: Comparison of runtimes without a container, rkt and Singularity
on a hardened kernel, in seconds.

testmachine had 12 gigabytes of main memory and the operating system
used around 250 megabytes. Even with ten jobs running at the same time
the operating system did not had to swap memory pages out onto the hard
disk.

Possible reasons for the sharp increase could be kernel, disk or proces-
sor caching effects, or an increased management overhead from the kernel.
The kernel caches some recently accessed data, both main memory and disk
data, to speed up the access time if it is requested again in the near future.
It could have been that these caches got purged while there were many jobs
running, which means that the needed data had to be requested from the
main memory (in the case of the CPU cache) or from the disk (in the re-
maining cases). The possible increased management overhead of the kernel
can be explained with the almost completely used main memory and the
corresponding housekeeping (e.g. memory pages for virtual memory). The
increased number of process switches and associated context-switches could
also have flushed the processor caches which resulted in longer waiting times
for all running processes.

The difference between the containers on a hardened kernel is bigger than
on a stock kernel. The speedup was as big as 12.75%, while the slowdown was

36

Un-containered
Av

er
ag

e
ru

nt
im

e
[s

]

4,200

4,400

4,600

4,800

5,000

5,200

5,400

5,600

5,800

Number of simultaneous Jobs
0 2 4 6 8 10

Hardened Kernel
Stock Kernel

Figure 5: Average runtimes of the un-containered simulation on a stock and
a hardened kernel, in seconds.

only 4.44%. The only difference between these tests and the previous ones is
the kernel which means the time difference arises solely from the hardening
process. The same container images, settings and restrictions were used on
both kernels. The memory consumption of the running container (and un-
containered simulation) was also the same as on the stock kernel. Additional
checks, randomizations, etc. inside the hardened kernel increased time of
system calls which thereby also increased the overall execution time of the
simulation. It could also be that the size of the data structures for managing
user processes are bigger on a hardened kernel than on a stock kernel.

Every testcase on both kernels had the same resource limitation, not one
container had different limits (neither minimal nor maximum). The nice-
value, used to influence the scheduling priority of a process, was also the
same in every test. The simulation itself could be in some way affected
when running inside a container. This could be analyzed with one of the
recommended profiler for aliroot listed in the offline bible [51, Chapter 3.4.10].
Another difference that could have impacted the performance between the

37

Docker
Av

er
ag

e
ru

nt
im

e
[s

]

4,200

4,400

4,600

4,800

5,000

5,200

5,400

5,600

Number of simultaneous Container
0 2 4 6 8 10

Stock Kernel

Figure 6: Average runtimes of the simulation inside Docker on a stock kernel,
in seconds.

un-containered simulation and the containers were some of the used libraries.
A lot of distributions modify, compile and package the available software on
their own. The libraries installed from the respective repositories therefore
differed from distribution to distribution.

The physics simulation used in these tests almost never accessed the hard
disk. The I/O performance of Docker, rkt and Singularity was therefore not
tested. These measurements should therefore not be applied to I/O-heavy
applications such as a database or webserver. The performance difference of
them could differ substantially from the simulation used in this work.

Specialized tests could be used to determine the performance impact of
container technologies on the I/O-throughput and also other parts of the
system. Benchmarking-softwares are capable to test only one subsystem, like
I/O or network. These tests could be conducted on container technologies
to determine if a subsystem performs significantly worse and if yes, if they
could be optimized.

Another interesting container technology to test would be LXD ?? which

38

rkt
Av

er
ag

e
ru

nt
im

e
[s

]

4,200

4,400

4,600

4,800

5,000

5,200

5,400

5,600

5,800

6,000

Number of simultaneous Container
0 2 4 6 8 10

Hardened Kernel
Stock Kernel

Figure 7: Average runtimes of the simulation inside rkt on a stock and a
hardened kernel, in seconds.

Concurrent Jobs Docker to un-cont. rkt to un-cont. Singularity to un-cont.
1 3.39% -2.09% -2.78%
2 2.61% -1.46% 0.30%
3 1.21% 0.35% 0.35%
4 -1.88% 4.25% 2.84%
5 -0.86% 3.40% 1.59%
6 -1.18% 3.96% 2.29%
7 -0.22% 3.30% 1.77%
8 4.47% -1.08% 0.74%
9 4.99% -1.15% -2.69%
10 3.54% -0.22% 0.05%

Table 3: Runtime difference of the container compared to un-containered
simulation on a stock kernel.

39

Singularity
Av

er
ag

e
ru

nt
im

e
[s

]

4,000

4,500

5,000

5,500

6,000

6,500

Number of simultaneous Container
0 2 4 6 8 10

Hardened Kernel
Stock Kernel

Figure 8: Average runtimes of the simulation inside Singularity on a stock
and a hardened kernel, in seconds.

Concurrent Jobs rkt to un-cont. Singularity to un-cont.
1 -12.75% -2.76%
2 -11.58% -2.16%
3 -11.17% -2.73%
4 -9.62% -1.60%
5 -6.59% -1.43%
6 -4.81% -1.11%
7 -4.35% -0.44%
8 -1.15% 1.13%
9 0.45% 4.44%
10 0.51% 4.18%

Table 4: Runtime difference of the container compared to un-containered
simulation on a hardened kernel.

40

is developed by Canonical Ltd. Unlike the container solution tested in this
work, LXD container run on top of a hypervisor. As explained in chapter 2.1,
hypervisors are a software layer that completely manages a running virtual
machine. The authors claim that there is no performance penalty for the
software running inside a LXD container compared to an un-containered
execution.

Manually patching a kernel with grsecurity and PaX is not always possible
or desired. Security features provided by the stock Linux kernel could still
be used to secure running applications on a system. AppArmor, SELinux
and others allow a user to restrict access to resources of running processes.
The performance impact of these features could be investigated.

These security features are most effective if the profile is customized for
the application it is applied to. This can be a tedious and time-consuming
task that could be automated. AppArmor has two modes: complain and
enforcement. In the complain-mode AppArmor logs all profile violations but
does not terminate a process. This approach could be applied to SELinux to
automatically create custom profiles for an application.

5 Conclusion and Future Work

5.1 Conclusion

This work analyzed the impact different container technologies have on the
performance of jobs on a high-energy physics grid. The physics simulation
PbPbbench, from the ALICE experiment of CERN, was used as a benchmark
to compare the differences. Physics simulations inside of CERN run inside a
high-energy physics/high-throughput computing environment. Providers of
these environments strive to provide as much computing resources as possible
with their available hardware, while at the same time securing their own and
their customers data. This protection can be achieved with separation of
jobs as provided by virtual machines or containers. Unlike containers, virtual
machines incur a rather big resource overhead that make them unattractive
in these environments.

The time the simulation needs to finish outside of a container was mea-
sured and taken as a baseline. Three container solutions, namely Docker, rkt
and Singularity, were tested in this work. The same simulation was packed
into these containers, measured and compared with the un-containered sim-

41

ulation. The difference between the un-containered simulation and the con-
tainers was at most 5% on a stock Linux kernel, and almost 13% on a Linux
kernel that was hardened with grsecurity and PaX. Packaging the simulation
into containers even reduced the execution time in some cases.

Even though containered processes are stronger separated by the kernel
from each than when not running inside a container, the performance did
not nessecarily degrade. Not only the runtime but also the resource usage is
affected by the container technology used. All three of the tested containers
used slightly less main memory than the un-containered simulation.

5.2 Future Work

This work showed how the performance of an average physics simulation
is affected by packaging it into different containers technologies. Physics
simulation do not extensively use all subsystems (e.g. hard disk access).
These subsystem could be tested with microbenchmarks to determined if
any of them is significantly slower.

Some container technologies allow an easy confinement of container with
AppArmor, SELinux, and others. It is also possible to restrict a process or
group of processes in its capabilities without using any container. It could
be investigated how these confinements impact the performance of a process
or container.

Thinking this idea further a program could be designed that analyzes a
program and creates custom SELinux profiles.

Another container technology that could be tested is LXD from Canon-
ical. These container run on top of a hypervisor but allegedly without any
performance loss compared to an un-containered execution.

42

References

[1] Ubuntu manpage: apparmor.d - syntax of security profiles for apparmor.
http://manpages.ubuntu.com/manpages/xenial/man5/apparmor.d.5.html.
[Online, accessed November 25th 2017].

[2] Kubernetes Authors. Pods - kubernetes.
https://kubernetes.io/docs/concepts/workloads/pods/pod/. [On-
line, accessed November 5th 2017].

[3] Jim Basney and Miron Livny. Deploying a high throughput computing
cluster.

[4] Eric W. Biederman. ip-netns(8). http://man7.org/linux/man-
pages/man8/ip-netns.8.html. [Online, accessed October 21th 2017].

[5] J. P. Buzen and U. O. Gagliardi. The evolution of virtual machine
architecture. National Computer Conference, 1973.

[6] Massimo Cafaro and Giovanni Aloisio. Grids, clouds and virtualization,
2011.

[7] CERN. Cernvm file system. https://cernvm.cern.ch/portal/filesystem.
[Online, accessed November 4th 2017].

[8] CERN. Cernvm-fs client quick start.
https://cernvm.cern.ch/portal/filesystem/quickstart. [Online, ac-
cessed November 4th 2017].

[9] CERN. Physics — cern. https://home.cern/about/physics. [Online,
accessed December 3rd 2017].

[10] CERN. Root a data analysis framework. https://root.cern.ch/. [Online,
accessed November 5th 2017].

[11] CERN. Welcome to the home page of the alice off-line project — alice
offline. https://alice-offline.web.cern.ch/. [Online, accessed November
4th 2017].

[12] corbet. Process containers [lwn.net]. https://lwn.net/Articles/236038/.
[Online, accessed October 22th 2017].

43

[13] CoreOS. rkt, a security-minded, standards-based container engine.
https://coreos.com/rkt/. [Online, accessed November 12th 2017].

[14] CoreOS. spec/ace.md at master appc/spec github.
https://github.com/appc/spec/blob/master/spec/ace.md#oslinuxcapabilities-
remove-set. [Online, accessed November 12th 2017].

[15] Wes Felter, Alexandre Ferreira, Ramakrishnan Rajamony, and Juan C.
Rubio. An updated performance comparison of virtual machines and
linux containers. 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 171–172, 2015.

[16] grsecurity Team. Grsecurity/appendix/grsecurity and pax con-
figuration options - wikibooks, open books for an open world.
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity and PaX Configuration Options.
[Online, accessed November 1st 2017].

[17] Jaques Glinas. vserver 0.4 change log. http://archives.linux-
vserver.org/200110/0001.html. [Online, accessed October 18th 2017].

[18] Joshua Higgins, Violeta Holmes, and Colin C. Venters. Securing user de-
fined containers for scientific computing. 2016 International Conference
on High Performance Computing & Simulation (HPCS), pages 449–453,
2016.

[19] Murray Hill. Unix time-sharing system: Unix programmer’s man-
ual. https://s3.amazonaws.com/plan9-bell-labs/7thEdMan/v7vol1.pdf.
[Seventh Edition, Online, accessed October 21th 2017].

[20] Jordan K. Hubbard. Freebsd 4.0 announcement.
https://www.freebsd.org/releases/4.0R/announce.html. [Online,
accessed October 17th 2017].

[21] Docker Inc. Docker - build, ship, and run any app, anywhere.
https://www.docker.com/. [Online, accessed October 17th 2017].

[22] Docker Inc. Docker run reference — docker documentation.
https://docs.docker.com/engine/reference/run/#runtime-privilege-
and-linux-capabilities. [Online, accessed December 7th 2017].

44

[23] Docker Inc. Docker security. https://docs.docker.com/engine/security/security/#other-
kernel-security-features. [Online, accessed November 5th 2017].

[24] Mikolaj Krzewicki. Ocdb master mikolaj krzewicki / aliroot.
https://gitlab.cern.ch/mkrzewic/AliRoot/tree/master/OCDB. [Online,
accessed December 5rd 2017].

[25] Gregory M Kurtzer, Vanessa V. Sochat, and Michael W. Bauer. Sin-
gularity: Scientific containers for mobility of compute. In PloS one,
2017.

[26] Miron Livny, Jim Basney, and Ramakrishnan Raman. Mechanisms for
high throughput computing. 1997.

[27] Linux man-pages project. capabilities(7). http://man7.org/linux/man-
pages/man7/capabilities.7.html. [Online, accessed November 15th
2017].

[28] Linux man-pages project. cgroup namespaces(7).
http://man7.org/linux/man-pages/man7/cgroup namespaces.7.html.
[Online, accessed October 19th 2017].

[29] Linux man-pages project. mount namespaces(7).
http://man7.org/linux/man-pages/man7/mount namespaces.7.html.
[Online, accessed October 21th 2017].

[30] Linux man-pages project. namespaces(7). http://man7.org/linux/man-
pages/man7/namespaces.7.html. [Online, accessed October 19th 2017].

[31] Linux man-pages project. pid namespaces(7).
http://man7.org/linux/man-pages/man7/cgroups.7.html. [Online,
accessed October 22th 2017].

[32] Linux man-pages project. pid namespaces(7).
http://man7.org/linux/man-pages/man7/pid namespaces.7.html.
[Online, accessed October 22th 2017].

[33] Linux man-pages project. user namespaces(7).
http://man7.org/linux/man-pages/man7/user namespaces.7.html.
[Online, accessed October 19th 2017].

45

[34] Watson McKusick, Neville-Neil. The Design and Implementation of the
FreeBSD Opearting System. Addison-Wesley Professional, 2 edition,
2014.

[35] R. A. Meyer and L. H. Seawright. A virtual machine time-sharing sys-
tem. IBM Syst. J., 9:199–218, 1970.

[36] Todd C. Miller. Sudo manual. https://www.sudo.ws/man/1.8.18/sudo.man.html.
[Online, accessed November 25th 2017].

[37] Inc Open Source Security. grsecurity. https://grsecurity.net/. [Online,
accessed November 1st 2017].

[38] Linux Kernel Organization. Index of /pub/linux/kernel/v2.4/.
https://www.kernel.org/pub/linux/kernel/v2.4/. [Online, accessed Oc-
tober 21th 2017].

[39] Linux Kernel Organization. Index of /pub/linux/kernel/v2.6/.
https://www.kernel.org/pub/linux/kernel/v2.6/. [Online, accessed Oc-
tober 21th 2017].

[40] Linux Kernel Organization. The linux kernel archives.
https://www.kernel.org/. [Online, accessed December 3rd 2017].

[41] Matthew Portnoy. Virtualization essentials, 2012.

[42] Linux VServer Project. Paper. http://linux-vserver.org/Paper. [Online,
accessed October 18th 2017].

[43] The FreeBSD Project. Freebsd 4.0 release notes.
https://www.freebsd.org/releases/4.0R/notes.html. [Online, accessed
October 17th 2017].

[44] The FreeBSD Project. Freebsd 4.0 release notes.
https://www.freebsd.org/doc/handbook/jails.html. [Online, accessed
October 17th 2017].

[45] The FreeBSD Project. Jail man page.
https://www.freebsd.org/cgi/man.cgi?query=jail&sektion=8. [On-
line, accessed October 17th 2017].

46

[46] The OpenBSD Project. chroot(2). https://man.openbsd.org/chroot.2.
[Online, accessed October 21th 2017].

[47] Rohit Seth. Containers: Introduction [lwn.net].
https://lwn.net/Articles/199643/. [Online, accessed October 22th
2017].

[48] Singularity. Singularity. http://singularity.lbl.gov/. [Online, accessed
November 5th 2017].

[49] Singularity. Singularity. http://singularity.lbl.gov/docs-recipes. [Online,
accessed December 7th 2017].

[50] AppArmor Team. Ubuntu manpage: Apparmor - kernel en-
hancement to confine programs to a limited set of resources.
http://manpages.ubuntu.com/manpages/xenial/man7/apparmor.7.html.
[Online, accessed November 25th 2017].

[51] The ALICE Team. The alice offline bible, version 0.00 (rev. 23).
http://svn.cern.ch/guest/AliRoot/trunk/doc/OfflineBible.doc. [Online,
accessed December 5rd 2017].

[52] The AUFS Team. http://aufs.sourceforge.net/. [Online, accessed De-
cember 3rd 2017].

[53] Miguel G. Xavier, Marcelo Veiga Neves, Fabio D. Rossi, Tiago C. Fer-
reto, Timoteo Lange, and César A. F. De Rose. Performance evaluation
of container-based virtualization for high performance computing envi-
ronments. 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pages 233–240, 2013.

47

	Introduction
	Motivation
	Goal of the Thesis

	Basics
	Virtualization
	Security Features
	Capabilities
	Application Armor
	Control Groups

	Separation
	Chroot
	FreeBSD Jails
	Linux-VServer
	Linux Namespaces

	Container
	Differences between Virtual Machines and Containers
	Application hardening
	Kernel hardening with grsecurity and PaX
	High-Energy Physics

	Methodology
	Used hardware
	Used software
	Kernel patching
	CERN software
	Un-containered Simulation
	Docker
	rkt
	Singularity

	Test procedure
	Test setup

	Results
	Results
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

