
Erasure and Corruption Resilience
Methods for High Performance

Parallel File Systems

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim
Fachbereich Informatik und Mathematik
der Johann Wolfgang Goethe-Universität

in Frankfurt am Main

von
Gvozden Nešković

aus Gračanica, Bosnien und Herzegowina

Frankfurt am Main 2018
(D 30)

vom Fachbereich Informatik und Mathematik

der Johann Wolfgang Goethe-Universität

als Dissertation angenommen.

Dekan Prof. Dr. Andreas Bernig

Gutachter Prof. Dr. Volker Lindenstruth

Prof. Dr. Ivan Kisel

Datum der Disputation 26.10.2018

Abstract

We live in age of data ubiquity. Even the most conservative estimates predict exponential
growth in produced, transmitted and stored data. Big data is used to power business
analytics as well as to foster scientific discoveries. In many cases, explosion of produced
data exceeds capabilities of digital storage systems. Scientific high-performance computing
environments cope with this problem by utilizing large, distributed, storage systems.
These complex systems can only provide a high degree of reliability and durability
by means of data redundancy. The most straight-forward way of doing that is by
replicating the data over different physical devices. However, more elaborate approaches,
such as erasure coding, can provide similar data protection while utilizing less storage.
Recently, software-defined reliability methods began to replace traditional, hardware-
based, solutions. Complicated failure modes of storage system components also warrant
checksums to guaranty long-term data integrity. To cope with ever increasing data
volumes, flexible and efficient software implementation of error correction codes is of great
importance. This thesis introduces a method for realizing a flexible Reed-Solomon erasure
code using the “Just-In-Time” compilation technique. By exploiting intrinsic arithmetic
redundancy in the algorithm, and by relying on modern optimizing compilers, we obtain
a throughput-efficient erasure code implementation. Additionally, exploitation of data
parallelism is achieved effortlessly by instructing the compiler to produce SIMD code for
desired execution platform. We show results of codes implemented using SSE and AVX2
SIMD instruction sets for x86, and NEON instruction set for ARM platforms. Next, we
introduce a framework for efficient vectorized RAID-Z redundancy operations of ZFS file
system. Traditional, table-based Galois field multiplication algorithms are replaced with
custom SSE and AVX2 parallel methods, providing significantly faster and more efficient
parity operations. The implementation of this framework was made publicly available
as a part of ZFS on Linux project, since version 0.7. Finally, we propose a new erasure
scheme for use with existing, high performance, parallel filesystems. Described reliability
middleware (ECCFS) allows definition of flexible, file-based, reliability policies, adapting
to customized user needs. By utilizing the block erasure code, the ECCFS achieves
optimal storage, computation, and network resource utilization, while providing a high
level of reliability. The distributed nature of the middleware allows greater scalability and
more efficient utilization of storage and network resources, in order to improve availability
of the system.

Contents

1 Introduction 1
1.1 Storage technologies . 2
1.2 Storage reliability . 2
1.3 RAID . 8
1.4 ZFS . 10
1.5 Lustre . 11
1.6 Summary . 13

2 Introduction to Error Correction Codes 15
2.1 Mathematical concepts . 16

2.1.1 Groups . 16
Finite Groups . 18

2.1.2 Fields . 19
Finite Fields . 20
Vector Spaces over Finite Fields 23
Construction of Galois Fields . 25

2.2 Linear Block Codes . 29
2.2.1 Introduction to block codes . 30
2.2.2 Generator matrix . 31
2.2.3 Bounds of linear block codes . 33
2.2.4 Cyclic block codes . 35

2.3 Reed-Solomon Code . 36
2.3.1 Vandermonde Reed-Solomon code 37

Erasure decoding . 38
2.3.2 Distributed Reed-Solomon code . 39

2.4 Algebraic signatures . 41

3 On Implementing Reed-Solomon Codes 45
3.1 Galois Field multiplication . 46

3.1.1 Carry-less multiplication . 46
3.1.2 Modulo operation . 47

3.2 Reed-Solomon Encoding . 50

i

3.3 Summary . 53

4 Micro Benchmarks 55
4.1 Arithmetic and logic operations . 56
4.2 Memory load throughput . 56

4.2.1 Multi stream memory throughput 58
4.2.2 Memory load latency . 60

4.3 Conclusion . 63

5 JIT Generation of Reed-Solomon Erasure Codes 65
5.1 Vectorization . 66

5.1.1 Carry-less multiplication . 67
5.1.2 Modulo operation . 71
5.1.3 Evaluation . 72

5.2 Just-In-Time compilation of Reed-Solomon codes 73
5.2.1 LLVM as a JIT compiler . 74

LLVM IR representation . 75
5.2.2 Reed-Solomon Encoding . 77
5.2.3 Carry-less multiplication . 79

5.3 Evaluation . 80
5.4 Summary . 86

6 Vectorization of ZFS Erasure Codes 89
6.1 RAID-Z theoretical background . 90
6.2 Implementation . 92

6.2.1 RAID-Z parity generation . 94
6.2.2 RAID-Z data reconstruction . 96

6.3 Evaluation . 100
6.4 Summary . 104

7 ECCFS Middleware 105
7.1 Motivation . 106
7.2 Design of ECCFS . 108

7.2.1 ECCFS Monitor . 110
7.2.2 ECCFS Changelog . 111
7.2.3 ECCFS MD Worker . 111
7.2.4 ECCFS ECC Worker . 112

7.3 Implementation . 112
7.3.1 ECCFS Monitor . 113
7.3.2 ECCFS Changelog . 115
7.3.3 ECCFS MD Worker . 116
7.3.4 ECCFS ECC Worker . 117

ii

7.3.5 Deployment and Administration 119
7.4 Summary . 120

8 Summary 123

References 127

A Appendix 135
A Test-bed platforms . 136
B Example of Hexagon DSP VLIW code . 137
C Galois Field used in RAID-Z . 138

List of Tables 143

List of Figures 145

List of Algorithms 147

List of Listings 149

Zusammenfassung 151

iii

CHAPTER 1
Introduction

This chapter gives overview of current storage technologies and file systems used in
distributed storage environments. Fundamental concepts of error correction coding
theory, necessary for understanding the work in the thesis, are found in chapter 2.
Next, in chapter 3, implementation aspects of the Reed-Solomon block-based erasure
code are discussed. chapter 4 gives an overview of the micro-benchmarks that are
used to understand limitations and performance optimization of different computing
platforms. An implementation of the multi-platform, JIT generated, vectorized Reed-
Solomon block-based erasure codes is presented in chapter 5. chapter 6 shows a practical
implementation of erasure codes for storage systems used in the ZFS file system. Design
and implementation of middleware for adding error correction codes for the data stored
in a parallel file system is given in chapter 7. Finally, chapter 8 provides a summary and
outlook for future work.

1

1 Introduction

1.1 Storage technologies

Memory hierarchy in computer architecture distinguishes each level by capacity and re-
sponse time. In the most general form, observed from a data processing unit’s perspective,
memory hierarchy has four levels:

1. Internal includes CPU registers and caches. As such it is the most capacity
constrained but it is able to operate at, or close to, the speed of CPU.

2. Local memory includes directly attached random access memory, RAM, but also
memory of other CPUs in non-uniform memory architecture (NUMA) configura-
tions.

3. Mass, secondary, level consists of hard disk drives (HDD) and solid state drives
(SDD). All devices of this level are online and support non- volatile operation.

4. Off-line, tertiary, storage encompasses data storage devices and mediums that
are not directly controlled, or accessible, from a processing unit. Advantages of
these mediums, such as magnetic tape and optical disc, are long data retention and
much better price per gigabyte ratio.

In reality, however, storage hierarchy is not demarcated so precisely. Faster, non-
volatile storage technologies, such as non-volatile RAM (NVRAM), are used as an
intermediate cache layer between RAM and hard drives[57][64]. Nearline storage[83] is
a class of long-term storage that can be made online automatically, but with a delay.
This is achieved by using a robotic arm to place magnetic tape into the tape drive, or by
optical disc jukebox systems[39]. The Massive array of idle drives (MAID), is a nearline
technology that utilizes hard drives for data archival. It relies on the fact that disk drives
are powered only when in use, enabling higher capacity densities with a fraction of the
power and cooling requirements used in comparable online storage. A comparison of
desktop, enterprise and nearline hard drives is given in Table 1-1.

Reliability specifications vary form one HDD vendor to another significantly, and
are given by different metrics1. Big studies [100][86][54][75] found significantly larger
failure rates than were specified. To better understand how these reliability metrics affect
reliability of a storage system, we present two Markov chain models for reliability of more
complex storage systems.

1.2 Storage reliability

Capacity increase of hard disk drives has not shown signs of slowing, but other char-
acteristics have not kept the same pace. Linear read/write throughput is limited by
physical rotational speed of the platters. Unfortunately, reliability characteristics have

1Power-on hours (POH), Annualized Failure Rate (AFR), Mean Time To Failure (MTTF)

2

1.2 Storage reliability

Specification (Unit) Enterprise Desktop Nearline

Capacity (TB) 0.3-1.8 1.0-6.0 6.0-10.0
Rotational speed (RPM) 10.5 - 15 5.4 - 7.2 5.4 - 7.2
Throughput (MBs−1) 250 180 150

Reliability (MTTF) 2 000 000h 600 000h 1 500 000h

Un-recoverable error rate (bit−1) 10−16 10−14 10−15

Load/Unload (cycles) 600 000 300 000 300 000

Interface SAS SATA SATA
Interface speed(Gbps) 12 Gbps 3/6 6

Power operation/idle (W) 7.4/5.1 5.6/4 6.5/4.8

Table 1-1: Comparison of hard disks (mid 2016) [110][108][102][46]

not improved at the same rate, if at all. Current server grade hard drives2 offer capacities
from 1 TB up to 8 TB, with a sustained data transfer rate of 200MBs−1. The hard
drive has a mean time between failures3 (MTBF) of 2 000 000h, and a bit error rate4

(BER), of 10−15. However, reliability studies have shown that the specified numbers are
usually much different. Authors of [25] have fund HDD MTBF to be between 87 600 and
438 000h, while another big survey of cloud storage installation[75] has found the average
annualized failure rate (AFR) to be 2.12%. The relation between MTTF and AFR is:

MTBF = 8760
AFR 100 [days] (1.1)

This gives the MTBF of 413 207h for the [75] study. Another big concern with
increasing HDD capacities are unrecoverable read errors (URE). These errors can be
transient, caused by an undetected error in magnetic flux density decoding, or permanent,
caused by physical errors of the magnetic medium. This presents problems, especially
for traditional RAID systems, where the integrity of data is not verified with checksums.
With increasing HDD capacities, the likelihood of URE during a RAID rebuild operation
has increased significantly. Even worse, the process is likely to spread the error to newly
reconstructed blocks[17]. The solution proposed in [65] tries to address the issue by using
triple-parity RAID systems.

To illustrate the problem of data integrity with traditional erasure coding, such as
RAID and Reed-Solomon codes, we extended the reliability of Markov models for the
code given in [94] and [40]. Instead of solving for mean time to data loss (MTTDL), as
shown in [55], we are going to investigate the influence of data checksumming on the

2Based on WD GoldTM datacenter hard drives specifications (model number WD6002FRYZ, 2016)
3Since HDDs are typically non-repairable, this is a measure of Mean Time To Failure (MTTF)
4Also called unrecoverable read errors, URE

3

1 Introduction

erasure recovery process of the δ-erasure resistant code. We will call this metric mean
time to data corruption (MTTDC). Silent errors can be caused by many factors, for
example during the reading of a magnetic medium, during transmission, RAM bit flip,
etc. Since the rate of these errors is not known, we assume that the specified read bit
rate is a combination of detectable and silent errors. The transition rate diagram of the
Markov model for a traditional k-erasure resistant code is shown in Figure 1-1. The
model has the following parameters:

d Number of disks in an erasure code block

δ Number of erasures the code can recover from

λ Failure rate of an HDD, given as MTBF−1 [h−1]

µ Rebuild rate of the array [h−1]

RER Read error rate, per HDD [B−1]

SR Proportion of silent errors in RER

0 1 2 δ DC…

f0

s

s
s

f1

r
r

r

fδ

Figure 1-1: Transition rate diagram of parallel rebuilding of δ-erasure tolerant code without data
checksum validation.

Model’s states represent operation modes, where 0 is a fully operational state with
no erasures, states 1 to k represent a state with a corresponding number of erasures, and
finally, DC, which is a data corruption state. For our analysis, we’ll assume that the
system is capable of returning from an arbitrary number of erasures to a fully operational
state at the same rate r, shown by arcs from states i to state 0 (0 < i 6 δ). In other
words, rebuilding is performed in parallel, utilizing exactly (d − δ) operational HDDs.
Transitions from state i to state i+ 1, labeled fi, represent the rate at which the system
encounters a new HDD failure after already experiencing i failures. Finally, the system can
transition from any of the erasure states to the DC state, with a rate s, which is the rate
of encountering silent errors during rebuild. Probability of read error during rebuild, per
single HDD, is calculated as h = 1− (1−RER)C, and probability of read error happening

4

1.2 Storage reliability

on any of d− δ disks participating in rebuild[33] is given by hr = 1 − (1 − RER)(d−δ)C.
Compound transition rates for this model are:

fi = (d− i)× λ+ (1 − SR)× hr × µ
r = (1 − hr)× µ
s = SR× hr × µ

(1.2)

From this formulation, we derive steady state probability distribution using a transi-
tion generator matrix of the system. Since state DC is clearly an absorbing state of the
system, we define the total system failure rate as the total flow rate into that state. The
infinitesimal generator matrix of the model in Figure 1-1 is:

Q =

−f0 f0 0 · · · 0 0
r −(r+ f1 + s) f1 · · · 0 s

r 0 −(r+ f2 + s) · · · 0 s
...

...
... . . . fδ−1

...
r 0 0 · · · −(r+ fδ + s) fδ + s

 (1.3)

Each column of the generator matrix represents a state of the model, with the last
being the absorbing state DC, while rows represent non-absorbing states (δ+ 1 in total).
Non-diagonal entries represent transition rates from row state to column state. Entries
on the diagonal a are a negative row sum of off-diagonal elements, so that each row sums
to 0. The MTTDC(Q) is calculated by constructing matrix Q ′, as a negative matrix of
Q after removing the last column [40]. The following formula gives the mean time to
data corruption of the Markov model:

coli(Q
′) := coli(−Q) (i = 1, . . . , δ+ 1)

MTTDC(Q) =
[
1 0 · · · 0

]
Q
′−1
[
1 1 · · · 1

]ᵀ (1.4)

Using data integrity verification during rebuilding can increase MTTDC of the
system. Silent errors during erasure reconstruction can be detected, and the system can
use another parity HDD to finish the process. The Markov model of such a system is
shown in Figure 1-2. Recovery from states less than δ is not affected by silent errors since
another HDD can be chosen to complete the reconstruction. This holds if the system has
less than δ erasures. If a silent error is encountered in state δ, the system transitions into

5

1 Introduction

0 1 2 δ DC…

r

r

r

f0 f1 fδ

s

Figure 1-2: A revised transition rate diagram of the parallel rebuilding of an δ-erasure tolerant
code with data integrity validation

state DC because no more available replicas exist, as shown by transition s. Transition
rates for this model are:

fi = (d− i)× λ+ hr × µ
r = (1 − hr)× µ
s = SR× hr × µ

(1.5)

To evaluate these two models, we use typical values for parameters [32][75], given in
Table 1-2. We use disk capacity of 4 TB and assume a rebuild time of 12h.

Parameter Value

λ 1/(1× 106)h−1

µ 1/12h−1

C 4 TB

RER 1× 10−15 bit−1

SR 1/100

h 0.003 546 4

Table 1-2: Parameters of the δ-erasure resilient Markov models

We evaluated both models using the symbolic computation in SageMath[99] mathe-
matics software, because resulting matrices are numerically ill-conditioned. Constants
were represented using Rational number data type, and final evaluation is carried out
using high precision Real number types that provide arbitrarily high numerical precision.
Results are shown in Figure 1-3.

6

1.2 Storage reliability

104

105

106

107

108

109

1010

1011

1012

1013

1014

1015

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total number of disks

M
T
T
D
C
[h
ou

rs
]

δ = 1, without checksum

δ = 2, without checksum

δ = 3, without checksum

δ = 4, without checksum

δ = 1, with checksum

δ = 2, with checksum

δ = 3, with checksum

δ = 4, with checksum

Figure 1-3: Mean Time To Data Corruption of δ-erasure resilient code; with and without check-
summing during reconstruction

The graph shows MTTDC for different erasure resiliency code configurations, with
and without data verification on rebuild. The total number of disks is shown on the
x-axis. Both models show the same value for δ = 1, because for that case, their transition
rate Markov chains are equivalent. The results show two important aspects of redundant
arrays. First, solutions of both models show that MTTDC is directly proportional to
∼ (µ)δ, also observed in [25][40]. This indicates that the best recovery strategy is to
rebuild as fast as possible. Second, MTTDC decreases with adding more disks into the
erasure code block, with a rate of ∼ 1/(dλ)δ.

Codes with low resiliency, δ 6 2, show only marginal improvement in the enhanced
model. This is explained by the small finite number of states from which the system
can recover (δ) and a relatively high likelihood of read error during the rebuild. The
likelihood of encountering the RER for d×HDD array is proportional to ∼ RER(d−δ)C.
Finally, for more erasure-resilient codes, δ > 2, results show improvement in MTTDC
when data verification is used. Even with a conservative amount of silent errors, 1% of
all RER errors, data verification provided a significant increase in MTTDC.

The described models can also be used to describe replicated storage systems. To
compare the reliability metric of replication and erasure coding, we use the second Markov
model in Figure 1-2. Data replication is modeled as a δ-resilient erasure code where
δ = d− 1. We use the same recovery rate for both cases because replicating the entire

7

1 Introduction

HDD is limited mostly by single disk I/O bandwidth. Mean time to data corruption, as
a function of storage overhead that is used for redundancy, is shown in Figure 1-4.

104

106

108

1010

1012

1014

0% 3% 6% 11% 16% 20% 27% 33% 43% 50% 56% 67% 75% 80%

Percent of storage capacity used for redundancy

M
T
T
D
C
[h
ou

rs
]

Replication

Erasure code, 4 data disks

Erasure code, 8 data disks

Erasure code, 16 data disks

Erasure code, 32 data disks

Figure 1-4: MTTDC as a function of redundancy overhead for replication and δ-resilient erasure
codes

Results show that erasure coding requires less disk capacity for the same level of
reliability. Paper [13], which compares the erasure coding and replication, concludes that
while replication has lower storage costs, replicated systems may provide lower latency
and simpler implementation. A hybrid approach is described in [48], where new data is
first replicated, and erasure encoded later for long term storage.

1.3 RAID

The most dominant technology for data redundancy and performance improvement
used today is RAID, which stands for redundant array of inexpensive disks. Since its
introduction [82], different configurations of disks, so called RAID levels, have been used
for grouping disks into fault-tolerant arrays. Standard RAID levels include:

RAID0 array has no parity. Drives are organized in a striping pattern, which distributes
data equally among all drives. Concurrent requests to RAID0 array are serviced by
rate of a single disk multiplied with number of disks.

8

1.3 RAID

RAID1 mirrors data on all available drives. RAID1 array is able to operate as long as a
single drive is operational, thus providing the best reliability. However, its capacity
is limited to the capacity of the smallest drive in the array.

RAID4 array introduces block parity to achieve data reliability. Parity block, XOR
of all blocks in the horizontal group, is stored on a dedicated drive, as shown in
Figure 1-5(a).

RAID5 array performs block-level striping with one distributed parity. With the single
parity, RAID5 array continues to be operational with one drive failure.

RAID6 is similar to RAID5, but it uses double parity, which increases fault tolerance to
two drives.

The data/parity distribution scheme of RAID6 is shown in Figure 1-5(b). Two parity
symbols, P and Q, are calculated, usually using a variant of the Reed-Solomon codes[1].
Parity symbols are interleaved with data, spreading them equally among all drives in the
array.

L
B
A

DISK

D0 D1 D2
D3

D0 D1 D2
D3 D5 P

D0 D1 D2 D3

D0 D1 D2 D3

P

P

P

D5

D5

D5

D4

D4

D4

D4

(a) RAID 4 configuration

L
B
A

DISK

D0 D3 D4 D5

D0 D1 D2 D3 D4 D5 P

D0 D1 D2 D3 D4 D5

D0 D1 D2 D3 D4 D5

P

P

P

Q

Q

Q

QD1 D2

(b) RAID 6 configuration

Figure 1-5: Standard RAID configurations

Every modification of data causes the parity symbol to be updated, reducing the write
performance to the RAID6 array. Furthermore, the write operation requires atomicity
in updating data and party disks. Otherwise, a power failure or system crash can
cause inconsistency between data and parity, referred to as RAID write hole, which
would cause errors during recovery [2]. For this reason, hardware RAID controllers with
write-back caches include a battery pack to preserve data until the system comes online
again. Software implementations solve the problem by utilizing transaction journaling
techniques.

Read error rates of hard drives are unlikely to decrease with increase of capacity, which
means that the probability of read error during a RAID rebuild becomes a significant
factor E.g., chances of read error during recovery of the RAID6 array consisting of

9

1 Introduction

8 × HDD, with parameters as in Table 1-2, is 17%. This problem has has long been
recognized [65], which prompted storage vendors to stop recommending RAID5 solutions
for business-critical data [21].

1.4 ZFS

Traditionally, file systems have not offered any data protection. Data integrity can be
compromised in many ways due to many byzantine faults that can occur anywhere in the
storage hardware and software stack. It has been proven that traditional parity-based
RAID techniques are not sufficient protection against increasingly complex failures in
both hardware and software components[60]. Such failures include silent data corrup-
tion[79][3][22], hard drive firmware errors[103], various software and driver errors[92],
network errors, etc.

ZFS is a disk file system that integrates several management technologies that are
traditionally not part of a file system. The Logical volume manager, LVM, is a base
infrastructure of ZFS that provides software RAID and data integrity features. ZFS
LVM supports assembling underlying storage into mirroring and RAID-Z data/parity
distribution schemes, called vdev5. It is generally advised not to use hardware RAID
controllers and to let ZFS manage drives itself. ZFS is built with different storage
technologies in mind. As such, most accessed data is stored in the memory, the so-called
ARC6 cache. For the second level of caches, ZFS uses fast non-volatile storage solutions,
most prominently SSDs. Each vdev can have optional dedicated read and write caches.
The read cache, called L2ARC can maintain a considerably large amount of frequently
accessed data. The write cache is called Log Device, and is used to absorb random
synchronous writes. ZFS forms an Intent Log from data buffered in the Log device, which
enables faster sequential writes to underlying hard drives.

ZFS uses a transactional copy on write (COW) model for data and metadata. All
on-disk block pointers contain checksums of referenced data, and metadata, block. Then,
the block pointer itself is checksummed and its checksum value is saved in its parent
block pointer, continuing all the way to the top level.

This technique is called Merkle tree[69][70], and allows for efficient and secure data
integrity verification. Checksums are always verified when a block is read from a storage
medium, and if needed, the block is reconstructed from a replica or by using the RAID-
Z erasure scheme. ZFS supports online integrity verification and data reconstruction.
Capacity of hard drives has increased exponentially, whereas the throughput has not kept
up. This means that reconstruction of failed disk drives can take several hours up to a

5Virtual Devices
6ARC uses a variant of Adaptive replacement cache algorithm

10

1.5 Lustre

P D0 D1 D2 D3

P D0 D1 D2 P

D0 D1 P D0

L
B
A

DISK

D0 D2 D4 D6

D1 D3 D5P1

P0

Q

Q

Q0

Q1

Q

Q

Figure 1-6: RAID-Z dynamic block layout

few days. Enabling this operation to happen while the file system is still available is of
great significance for large storage systems installations[81].

RAID-Z is an advanced parity distribution scheme with the intention of providing
software-defined RAID-like redundancy. In contrast to hardware solutions, RAID-Z
uses dynamic stripe widths, which in combination with transactional COW semantics
eliminates write hole error. The RAID-Z scheme is shown in Figure 1-6. There are
three RAID-Z levels supported by ZFS. First, RAID-Z1, is similar to traditional RAID5,
where the vdev can tolerate a single drive failure. RAID-Z2 is therefore akin to RAID6.
Lastly, the RAID-Z3 erasure scheme supports recovery from three failures. Since the
combined reliability of a redundant array ultimately depends on fast rebuilding, in this
thesis we describe an implementation of vectorized methods for parity generation and
data reconstruction for the ZFS file system.

1.5 Lustre

With the popularity of cluster computers came the need for distributed file systems.
Scalability and capacity of network attached storage (NAS) systems quickly became
limiting factors. Also, with advancements in network interconnects, parallel access to
multiple storage systems became desirable. Lustre is an example of a parallel, POSIX-
compliant, distributed file system[10] that fulfills many requirements of high performance
computing (HPC). Currently it is the most popular open source file system in HPC and
data center environments.

The main components of a typical Lustre installation are Metadata Servers (MDS),
Object Storage Servers (OSS), and Lustre clients. The Metadata server uses the Metadata

11

1 Introduction

Target (MDT) to store all file system metadata. Each OSS is connected to one or multiple
Object Storage Targets (OST), which provide data storage for the file system. Lustre
clients presents the entire file system’s namespace using well-established POSIX semantics,
while providing coherent and parallel access to the files. A diagram of Lustre components
is shown in Figure 1-7.

Lustre Clients
Object Storage

Servers

Metadata Server Metadata
Target

Lustre
Networking

(LNET)

Figure 1-7: Components of Lustre file system installation

Lustre Networking (LNET) provides a connection for clients and servers of Lustre
file system. It supports multiple networking technologies, such as Ethernet, InfiniBand,
Omni-Path, and utilizes Remote Direct Memory Access (RDMA) if available. More
complicated network installations are supported by LNET Router functionality. For
availability, storage targets can be connected to multiple storage servers in active/active
or active/passive failover configurations.

The Metadata server is only contacted for filename and permission checks, and is not
involved in actual data operations. File inode7 structures contain object layout which
specifies object server and object number where file’s data reside. Files in Lustre file
system can be striped over multiple OSTs, similar to RAID0 scheme, to enables higher
bandwidth for large files. Once a client has obtained the layout of desired file, all data
read and write I/O operations are performed directly with corresponding OSTs. This
enables total client I/O bandwidth to scale almost linearly with the number of OSTs in
the system. To provide atomicity of the read/write operations, required by the POSIX

7An inode is data structure used to represent a file system object

12

1.6 Summary

semantics, Lustre uses distributed lock manager [107]. Locking is orchestrated by the
MDS, and guaranties client cache coherency.

Data reliability is delegated to OSTs. Traditionally, a modified version of ext3
file system, called ldiskfs, have been used on top of hardware RAID arrays, to provide
object-based interface. As of the Lustre 2.4 version, the ZFS file system can be used
instead. This change brings end-to-end data integrity, and online OST recovery and file
system checking. Using ZFS to ensure OST reliability also removes the need for hardware
RAID solutions. Instead, more cost-effective deployments using OSS with JBODs8 are
becoming more common. However, loss of an OST leads to an unrecoverable loss of
data. Because the failed OST is used for storing parts of many files, the magnitude of
unavailability or data loss is much greater. We propose a solution for this problem based
on a flexible, file-level, OST de-clustered erasure scheme.

1.6 Summary

Reliability aspects of individual components are an important factor when estimating the
reliability of complex systems. High capacity storage components, mainly hard disk drives,
exhibit a set of failure modes which have to be understood. Many studies have concluded
that specified reliability characteristics are not reflected in the real data. Standard RAID
levels, as the industry de facto standard method for providing storage reliability, has
been rendered unsuitable by disparity between capacity and reliability trends of HDDs.
Furthermore, in order to deal with many types of failures, additional techniques, like
checksumming and online data integrity checks, are required. Data replication can be
used for increased reliability and availability, but requires significantly more storage
capacity when compared to flexible erasure coding schemes.

Software defined reliability, provided by file systems or other layers of an operating
system, requires less capital and operational costs. Removing hardware erasure coding
accelerators, such as RAID controllers, requires an efficient, software-based, erasure
scheme. Distributed file systems, while providing flexibility in usability and deployment,
lack fine-grained and user-defined reliability. These problems provided motivation for an
efficient, flexible and retargetable Reed-Solomon erasure scheme described in the following
chapters.

8JBOD stand for "just a bunch of disks"

13

CHAPTER 2
Introduction to

Error Correction Codes
and

Algebraic Signatures

Error correction codes are an integral part of digital data transmission and storage.
They are used in cell phone networks, packet-based communication like internet, digital
video broadcasts, deep space communication transmissions etc. They also have an
important role in digital data storage and are found in devices like computer memories,
compact discs, hard drives and solid state drives. While these examples are widely
different in implementation and operation, they can be represented by a general model
of communication, first formally introduced by C. Shannon in [104]. This model of
message transmission over a noisy channel is shown in Figure 2-1. The original message
is encoded to protect bits during transmission over channels that can introduce noise
or distortion of data. The channel encoder achieves this by transforming the original
message into alternate sequence containing redundancy, used to provide protection from

15

2 Introduction to Error Correction Codes

Sender

Encoder Channel Decoder

Receiver

original
message

codeword
received

vector

decoded
message

NOISE

Figure 2-1: Communication system with a noisy channel

channel noise. The ratio of input and output data bits of the channel encoder is called
the code rate, denoted R, with 0 < R < 1. For example, if a code rate of an encoder is 1/2,
each codeword contains the same amount of redundant information as the message itself.
The role of the channel decoder is to reconstruct the data received from the channel
(received vector), and produce the original message data, using added redundancy to
negate errors introduced by the channel. The channel is the transmission or storage
medium used to convey the message. It is often prone to adding noise or interference
from other signals. On the basis of this model, Shannon introduced a measure of how
much information the channel can convey, called the channel capacity C. When C is
expressed within the context of the channel code rate R, Shannon showed that arbitrary
reliable codes exist provided that R < C is satisfied. Conversely, if R > C, no code can
provide reliable communication. Following we give an important mathematical concept
needed for constructing error correction codes. Parts of this chapter are based on the
presentation of the concepts in [111].

2.1 Mathematical concepts

Error-correcting codes and algebraic signatures described in this thesis are based on
finite fields and the operations defined on them. This chapter outlines the basic algebra
concepts used to construct such codes.

2.1.1 Groups

A group is an algebraic structure composed of a set with one binary operation defined on
it.

16

2.1 Mathematical concepts

Definition 2.1 A group is a set G together with a binary operation “∗” defined on G
such that the following axioms are satisfied:

1. The binary operation “∗” is associative.
2. G contains an element e such that, for any element a of G,

a ∗ e = e ∗ a = a

Element e is called an identity element of G with respect to the “∗” operation.
3. For any element a in G, there exists an element a ′ in G such that

a ∗ a ′ = a ′ ∗ a = e

The element a ′ is called an inverse element of a, and vice versa, with respect to
the “∗” operation.

Definition 2.2 A group is called abelian group (commutative group) if the binary
operation “∗” defined on it is also commutative.

Theorem 2.1 The identity element e of a group G is unique.

Proof. Suppose both e and e ′ are identity elements of G. Then

e ∗ e ′ = e and e ∗ e ′ = e ′.

This implies that e and e ′ are identical. Therefore, the identity of a group is unique.

Theorem 2.2 The inverse of any element in a group G is unique.

Proof. Let a be an element of G. Suppose a has two inverses, a′ and a′′. Then

a′′ = e ∗ a′′ = (a′ ∗ a) ∗ a′′ = a′ ∗ (a ∗ a′′) = a′ ∗ e = a′

This implies that a′ and a′′ are identical and therefore, a has a unique inverse.

One example of a group we are familiar with is set of rational numbers, together
with a real addition operation “+”. The number 0 is the identity element of this group.
The rational number of form a/b has an additive inverse of the rational form −a/b

(b is a nonzero integer) and vice versa. Another example of a commutative group is a
set of all rational numbers excluding 0 under the multiplication operation “·”. In this
case, integer 1 is the identity element, and the rational number a/b is the inverse of the
rational number b/a (both a and b are nonzero integers) with respect to multiplication
operation.

17

2 Introduction to Error Correction Codes

Finite Groups

Finite groups are of special practical importance, particularly in the field of coding theory.
In the following, a special class of finite group is described. The binary operation of
these groups is similar to real multiplication, hence these groups are also called the
multiplicative groups.

Definition 2.3 (Finite group) Group G is called finite if it contains a finite number of
elements. The number of elements in a finite group is called the order of the group.

Following describes definition of closed binary operation on finite fields whose order
is a prime.

Let p be a prime number. Consider the set of p − 1 integers less than p, G =
{1, 2, ..., p − 1}. Let “·” denote real multiplication. Every integer element i of G is
relatively prime to p. A binary operation “◦” on G is defined as follows: for any two
integers, i and j in G

i ◦ j = r

where r is the reminder resulting from dividing i · j by the prime p. It follows that i · j
is not divisible by p, and therefore r cannot be zero. As a result, 1 6 r < p and r is an
element in G. Therefore, the set G = {1, 2, ..., p − 1} is closed under the operation “◦”,
which is called modulo-p multiplication. Set G together with modulo-p multiplication
makes a finite group of the order p− 1. The modulo-p multiplication “◦” is in fact both
associative and commutative. Element 1 is the identity element of G.

Definition 2.4 (Multiplicative Groups) Set of integers G = {1, 2, ..., p− 1}, where p is a
prime number, together with modulo-p multiplication constitutes a class of finite groups
called multiplicative group.

Let i be an integer in G. Since i and p are relatively prime, according to the Bézout’s
identity, there exist two relatively prime integers a and b such that

a · i+ b · p = 1

From the last identity, it follows that:

a · i = −b · p+ 1

The last equation says that reminder of the product a · i divided by p is 1. Choosing a
form G, that is 1 6 a < p, we have:

a ◦ i = i ◦ a = 1

18

2.1 Mathematical concepts

Therefore, a is inverse of i and vice versa. When a is not an integer from G, a is divided
by p which gives:

a = q · p+ r

Since r must be an integer between 1 and p− 1 it is an element of G. Finally, it follows
that

r · i = −(b+ q · i) · p+ 1

As r ·i = i ·r, from the definition of modulo-p multiplication, it follows that r◦i = i◦r = 1,
and that r is the inverse of i with respect to the “◦” operation. This completes the proof
that set G = {1, 2, ..., p− 1} with modulo-p multiplication is a commutative group.

Definition 2.5 Powers of element a from the multiplicative group G = {1, 2, ..., p− 1}
under the modulo-p multiplication “◦” are defined as follows:

a1 = a, a2 = a ◦ a, ..., ai = a ◦ a ◦ a ◦ · · · ◦ a︸ ︷︷ ︸
i factors

As the module-p multiplication is closed in group G, it follows that all powers are
also elements of G.

Definition 2.6 A multiplicative group G is said to be cyclic if there exists an element
a in G such that, for any b in G, there exists an integer i which satisfies b = ai. Such
element a is said to be a generator of the cyclic group, denoted as G = 〈a〉.

More than one generator may exist for a cyclic group. For every prime p, the
multiplicative group G = {1, 2, ..., p− 1} under modulo-p multiplication is cyclic.

2.1.2 Fields

Fields are useful in variety of practical areas. The field is an algebraic system with
two binary operations. Fields with a finite number of elements, called finite fields, are
widely used in constructing efficient error-correction codes. Some of the well-known error-
correction codes that are based on finite fields are BCH (Bose–Chaudhuri–Hocquenghem)
codes [9] and RS (Reed-Solomon) codes [95]. More recently, LDPC (low-density parity-
check) codes [28] have been based on the finite fields as well.

Definition 2.7 Let F be a set of elements on which two binary operations, called addition
“+” and multiplication “·” are defined. F is a filed under these two operations, addition
and multiplication, if the following axioms are satisfied:

1. F is a commutative group under addition “+”. The identity element with respect to
addition is called the zero element of F and is denoted by 0.

19

2 Introduction to Error Correction Codes

2. The set F\{0} of non-zero elements of F forms a commutative group under multipli-
cation “·”. The identity element with respect to multiplication is called the unit
element of F and is denoted by 1.

3. For any three elements a, b, and c in F,

a · (b+ c) = a · b+ a · c

i.e., multiplication is distributive over addition (distributive law).

The definition suggests that a field consists of two groups, one with an addition
operation and the other with a multiplication operation. They are called the additive
group and multiplicative group respectively. For any element a in F, additive inverse
is denoted by −a and multiplicative inverse by a−1, provided a 6= 0. For the sake
of convenience, two additional operations can be defined using inverse elements. The
Subtraction operation (a− b) can be defined as adding the additive inverse, the −b to a,
i.e.,

a− b ≡ a+ (−b)

Division operation (a÷ b) is defined as multiplying a by the multiplicative inverse, b−1,
of b, i.e.,

a÷ b ≡ a · (b−1)

It is clear that a−a = 0 and a÷a = 1, resulted in a 6= 0. From this overview of the field
definition, it follows that a field is simply an algebraic system in which we can perform
addition, subtraction, multiplication and division without leaving the field.

One example of a field is the field of rational numbers Q, consisting of numbers
that can be written as fractions in the form of a/b, where a and b are integers, and
b 6= 0. Field Q has an infinite number of elements. Its additive inverse is −a/b, and
multiplicative inverse is b/a, when a 6= 0. Another example is a field of complex numbers,
denoted by Q and a field of real numbers R.

Table 2-1 shows important axioms for both additive and multiplicative groups of the
field.

Finite Fields

Since the error-correction codes in this thesis are based on finite fields, the following
section gives an overview of the class of finite fields constructed from prime numbers and
their important algebraic properties. Finite fields are also referred to as Galois Fields by
mathematician Évariste Galois, who introduced the concept of finite fields.

Definition 2.8 The number of elements in a field is called the order of the field. A field
with a finite order is called a finite field.

20

2.1 Mathematical concepts

Axiom Addition Multiplication

Associativity (a+ b) + c = a+ (b+ c) (a · b) · c = a · (b · c)
Commutativity a+ b = b+ a a · b = b · a
Distributivity a · (b+ c) = a · b+ a · c (a+ b) · c = a · c+ b · c
Identity a+ 0 = a = 0 + a a · 1 = a = 1 · a
Inverse a+ (−a) = 0 = (−a) + a a · a−1 = 1 = a−1 · a, a 6= 0

Table 2-1: Summary of field axioms

Definition 2.9 Let F be a field and 1 be its multiplicative identity (also referred to as a
unity element). The characteristic of F is defined as the smallest positive integer λ such
that

λ∑
i=1

1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
λ summands

= 0 (2.1)

where summation represents repeated application of addition + operator of the field. If
no such integer exists, F is said to have a zero characteristic, i.e., λ = 0, and F is an
infinite field.

Theorem 2.3 The characteristic λ of a finite filed is a prime.

Proof. Suppose that λ is not a prime, and that l and k are factors of λ, 1 < l and k < λ.
From the distributive law, it follows that

λ∑
i=1

1 =
(

l∑
i=1

1
)(

k∑
i=1

1
)

= 0 (2.2)

To satisfy this equation, either
(∑l

i=1 1
)

= 0 or
(∑k

i=1 1
)

= 0. Since 1 < l and k < λ,
this is a contradiction. Therefore, λ must be a prime.

In other words, Theorem 2.3 states that for every prime p, there exists a field GF(p).
For any positive integer m, a Galois field GF(pm) can be constructed using a root of an
irreducible polynomial with coefficients from GF(p). The GF(pm) has pm elements and
contains GF(p) as a subfield.

Definition 2.10 Let a be a non-zero element of a finite field GF(pm). The smallest
positive integer is n such that an = 1 is called the order of the non-zero field element a.

The rest of the Theorems are given without proofs. They are crucial for construction
of finite fields GF(pm). More detailed theoretical background can be found in [111].

21

2 Introduction to Error Correction Codes

Theorem 2.4 Let a be a non-zero element of the order n in a finite field GF(pm). The
powers of a,

an = 1, a, a2, .., an−1

form a cyclic subgroup of the multiplicative group of GF(pm).

Theorem 2.5 Let a be a non-zero element of a finite field GF(pm). Then apm−1 = 1.

Theorem 2.6 Let n be the order of a non-zero element a in GF(pm). Then n divides
pm − 1.

Definition 2.11 A non-zero element a of a finite field GF(pm) is called a primitive
element if its order is pm − 1. That is, apm−1 = 1, a, a2, ..., ap

m−2 form all the non-zero
elements of GF(pm).

An important construct in coding theory are polynomials with coefficients from a
finite field GF(pm). A polynomial with one variable X over GF(pm) has the following
form:

a(X) = a0 + a1X+ a2X
2 + · · ·+ anXn

where n is a non-negative integer and the coefficients ai, 0 6 i 6 n, are elements of
GF(pm). The degree of a polynomial, denoted as deg(a(X)), is the largest power of X
with a non-zero coefficient. A polynomial is called monic if the coefficient of the highest
power of X is 1. A polynomial with all zero coefficients is called a zero polynomial and is
denoted by 0.

Addition and multiplication of polynomials over GF(pm) is carried out in the usual
way. Let

a(X) = a0 + a1X+ · · ·+ anXn , and b(X) = b0 + b1X+ · · ·+ bmXm

be two polynomials over GF(pm) with degrees n and m, respectively. Assuming that
m 6 n, adding a(X) and b(X) we get

a(X) + b(X) = (a0 + b0) + (a1 + b1)X+ · · ·+
(am + bm)Xm + am+1X

m+1 + · · ·+
anX

n

where ai + bi is carried out with the addition of GF(pm). Multiplication of a(X) and
b(X) is defined as:

a(X) · b(X) = c0 + c1X+ · · ·+ cn+mX
n+m

where ck is defined as
ck =

∑
i+j=k,

06i6n,06j6m

ai · bj

22

2.1 Mathematical concepts

where ai · bj is carried out with the multiplication of GF(pm).

When a(X) is divided by b(X), provided b(X) 6= 0, we obtain a unique pair of
polynomials over GF(pm), q(X) (quotient) and r(X) (remainder), such that

a(X) = q(X) · b(X) + r(X)

where 0 6 deg(r(X)) < deg(b(X)). This formulation is known as Euclid’s division. If
r(X) = 0, a(X) is said to be divisible by b(X), or b(X) divides a(X).

Definition 2.12 A polynomial p(X) of degree n over GF(q) is said to be irreducible over
GF(q) if it is not divisible by any polynomial over GF(q) that has a degree less than n
and is greater than 0.

In other words, a polynomial p(X) is said to be irreducible if it is not the product of
two polynomials of positive degree. A polynomial of positive degree that is not irreducible
is called reducible polynomial.

Theorem 2.7 Any irreducible polynomial p(X) over GF(q) of degreem divides Xqm−1−1.

Definition 2.13 A monic irreducible polynomial p(X) of degree m over GF(q) is said to
be a primitive polynomial if the smallest positive integer n for witch p(X) divides Xn − 1
is n = qm − 1.

Vector Spaces over Finite Fields

Vector spaces defined over finite fields are very important in the algebraic system for
definition of error-correcting codes. A vector space consists of a field F, a commutative
group V and a multiplication operation defined between elements of F and elements of V .
Elements of V are called vectors, and elements of F scalars. The following definitions are
important for defining linear-algebraic error-correcting codes.

Definition 2.14 (Vector space) Let F be a field. Let V be a set of of elements on which
an addition operation “+” is defined. A multiplication operation “·” is defined between
the elements of F and the elements of V . The set V is called a vector space over the field
F if it satisfies the following axioms:

1. V is a commutative group under addition + defined on V.
2. For any element a from F and any element v from V, a · v is an element of V.
3. For any elements a and b from F and any element v from V, associative law is

satisfied:
(a · b) · v = a · (b · v)

23

2 Introduction to Error Correction Codes

4. For any element a from F and any element v and u from V , the distributive law of
vector sums is satisfied:

a · (v+ u) = a · v+ a · u

5. For any elements a and b from F and any element v from V , the distributive law of
scalar sums is satisfied:

(a+ b) · v = a · v+ b · v

6. Let 1 be the unit element of F. Then, for any element v from V:

1 · v = v

Definition 2.15 (Vector subspace) Let S be a non-empty subset of a vector space V
over a field F. S is called a subspace of V if it satisfies all the vector space axioms given
by Definition 2.14.

Definition 2.16 (Linear independence) A set of vectors v1, v2, ..., vk in a vector space
V over a field F is said to be linearly independent over F if and only if, for all k scalars ai
from F, the relation

a1 · v1 + a2 · v2 + · · ·+ ak · vk = 0

implies that

a1 = a2 = · · · = ak = 0

Vectors that are not linearly independent are said to be linearly dependent.

Definition 2.17 (Linear combination) Let u, v1, v2, ..., vk be vectors in a vector space
V over a field F. Vector u is said to be linearly dependant on v1, v2, ..., vk if it can be
expressed as a linear combination of v1, v2, ..., vk as:

u = a1 · v1 + a2 · v2 + · · ·+ ak · vk

where ai are scalars from F, 1 6 i 6 k.

Definition 2.18 (Spanning vector set) A set of vectors is said to span a vector space V
over a field F if every vector in the vector space V is equal to a linear combination of the
vectors in the set.

Set B of linearly independent vectors that spans a vector space V is called a basis,
or base, of V. The cardinality of set B is called the dimension of the vector space V. In
case the basis of the vector space has a finite number n of linearly independent vectors,
this is expressed as dim(V) = n, otherwise dim(V) =∞. Let V be a vector space with
a dimension of n. For 0 6 k 6 n, a set of k linearly independent vectors in V spans a
k-dimensional subspace of V. The k-dimensional vector space over a finite field GF(q)
has qk elements.

24

2.1 Mathematical concepts

Definition 2.19 (Inner product) Let u = (u0, u1, ..., uk) and v = (v0, v1, ..., vk) be
vectors in a vector space V over a field F. The vector product u · v is defined as:

u · v =
k−1∑
i=0

ui · vi

Construction of Galois Fields

To construct an extension field GF(pm), we begin with the prime field GF(p) and a
primitive polynomial of degree m over GF(p),

p(X) = p0 + p1X+ · · ·+ pm−1X
m−1 + Xm

Let α be a root of p(X). Since p(X) is irreducible over GF(p), α must be an element of a
larger field that contains GF(p) as a subfield. Since α is a root of p(X),

p(α) = p0 + p1α+ · · ·+ pm−1α
m−1 + αm = 0

As p(X) divides Xpm−1 − 1 (Theorem 2.7), the following holds:

Xp
m−1 − 1 = q(X) · p(X)

After replacing X by α in the last equation, we obtain:

αp
m−1 − 1 = q(α) · p(α) = q(α) · 0 = 0

which means that α is also a root of Xpm−1 − 1. Finally, we have the following identity:

αp
m−1 = 1

Let F be a set, F = {0, 1, α, ..., αpm−2}. We define a multiplication “·” operation on
elements of F (0 and 1 are zero and unit elements) as follows:

0 · 0 = 0,
0 · 1 = 1 · 0 = 0,
0 · α = α · 0 = 0,

1 · 1 = 1,
1 · α = α · 1 = α,

25

2 Introduction to Error Correction Codes

α2 = α · α,
...
αj = α · α · · · · · α︸ ︷︷ ︸

j multiplicands

From the multiplication definition above it also follows that

0 · αj = αj · 0 = 0,
1 · αj = αj · 1 = αj,

αi · αj = αj · αi = αi+j

Next, the addition operation “+” is defined using a polynomial representation of the
elements, as follows. For any αi and αj,

αi + αj = (ai,0 + ai,1α+ · · ·+ ai,m−1α
m−1) + (aj,0 + aj,1α+ · · ·+ aj,m−1α

m−1)
= (ai,0 + aj,0) + (ai,1 + aj,1)α+ · · ·+ (ai,m−1 + aj,m−1)αm−1

where ai,l + aj,l is carried out over the prime field GF(p). Hence the polynomial given
by the last identity is a polynomial of α over GF(p), and thus represents an element of
GF(pm). It can be proven that the set F forms a field with pm elements, denoted by
GF(pm). The characteristic of GF(p) is p and since GF(p) is a subfield of GF(pm), the
characteristic of GF(pm) is also p.

Elements of GF(pm) can be represented also in vector form. Let

ai,0 + ai,1α+ · · ·+ ai,m−1α
m−1

be the polynomial representation of element αi. The same element in vector form is
represented by m-tuple:

(ai,0, ai,1, ..., ai,m−1)

where the m components are coefficients of the polynomial representation of αi. In the
vector representation, to add two elements, we simply add their corresponding vector
representations component-wise:

(ai,0, ai,1, ..., ai,m−1) + (aj,0, aj,1, ..., aj,m−1)
= (ai,0 + aj,0, ai,1 + aj,1, ..., ai,m−1 + aj,m−1)

where addition ai,l + aj,l is carried out over the ground field GF(p).

To demonstrate construction of an extended field GF(pm), the example of GF(25)
is used. First, we define the addition and multiplication operations in the ground field

26

2.1 Mathematical concepts

+ 0 1
0 0 1
1 1 0

Table 2-2: Modulo-2 addition

· 0 1
0 0 0
1 0 1

Table 2-3: Modulo-2 multiplication

GF(2) which has two elements {0, 1}. Modulo-2 addition and multiplication operations
are defined in Tables 2-2 and 2-3.

The additive inverse of 0 and 1 in GF(2) are themselves. This implies that 1−1 = 1+1,
hence, over GF(2), addition and subtraction are the same. The multiplicative inverse
of 1 is itself. The common name for GF(2) is binary field, and it is the simplest finite
field. GF(2) is very important for implementation of error-correction codes because it
uses the same binary alphabet as a digital computer. Furthermore, from Table 2-2 it
is clear that the module-2 addition operation on GF(2) is defined exactly the same as
the binary exclusive or (XOR) operation. The modulo-2 operation, shown in Table 2-3
follows the definition of the binary and (AND) operation. For this reason, many codes
choose to use GF(2) as the base field.

The next step in constructing a GF(25) is the selection of a primitive polynomial p(X)
of degree 5 over GF(2). Let p(X) = 1 + X3 + X5. It follows that p(α) = 1 + α3 + α5 = 0,
which means that α5 = 1 + α3. Additionally, α25−1 = α31 = 1, which is used in
multiplication. Table 2-4 shows elements of GF(25) in power, polynomial and vector
representations.

27

2 Introduction to Error Correction Codes

Power
representation

Polynomial
representation

Vector
representation

0 0 (00000)
1 1 (10000)
α α (01000)
α2 α2 (00100)
α3 α3 (00010)
α4 α4 (00001)
α5 1 + α3 (10010)
α6 α+ α4 (01001)
α7 1 + α2 + α3 (10110)
α8 α+ α3 + α4 (01011)
α9 1 + α2 + α3 + α4 (10111)
α10 1 + α+ α4 (11001)
α11 1 + α+ α2 + α3 (11110)
α12 α+ α2 + α3 + α4 (01111)
α13 1 + α2 + α4 (10101)
α14 1 + α (11000)
α15 α+ α2 (01100)
α16 α2 + α3 (00110)
α17 α3 + α4 (00011)
α18 1 + α3 + α4 (10011)
α19 1 + α+ α3 + α4 (11011)
α20 1 + α+ α2 + α3 + α4 (11111)
α21 1 + α+ α2 + α4 (11101)
α22 1 + α+ α2 (11100)
α23 α+ α2 + α3 (01110)
α24 α2 + α3 + α4 (00111)
α25 1 + α4 (10001)
α26 1 + α+ α3 (11010)
α27 α+ α2 + α4 (01101)
α28 1 + α2 (10100)
α29 α+ α3 (01010)
α30 α2 + α4 (00101)

α31 = 1

Table 2-4: Extended field GF(25) generated using primitive polynomial p(X) = 1 + X3 + X5 over
GF(2)

28

2.2 Linear Block Codes

2.2 Linear Block Codes

Two structurally different types of codes have been widely used in communication and
storage systems. These are known as block and convolutional codes. The difference
between the two is the result of encoding principle. Block codes process information bits
in chunks and produce the redundancy bits. Examples of block codes are Reed-Solomon
codes, Hamming codes [43] and Walsh-Hadamard codes [5]. Convolutional codes process
the information bits to produce codeword sequentially. They are usually coupled with
block codes, e.g. Reed-Solomon codes. Since errors can appear in bursts, data is usually
interleaved before convolutional encoding, so that error bursts can be repaired by an
outer block code. This approach is first described in [26] and is known as concatenated
code. A diagram of such code scheme is shown in the Figure 2-2.

Outer Coder
(Block coder)

Inner Coder
(Convolutional

coder)

channel

Inner Decoder
(Convolutional

decoder)

Outer Decoder
(Block decoder)

original
message

original
message

redundancy

decoded
original
message

decoded
original
message

convoluted
codeword

received
convoluted
codeword

decoded
redundancy

Figure 2-2: Block diagram of concatenated code

The original message is first encoded with an outer block code, which produces
additional redundancy data. Output of outer code is then encoded with an inner
convolutional code. The resulting codeword is then transmitted over a noise-prone
channel, which adds errors in different size bursts, which are shown in grey. The inner
convolutional decoder is able to correct short error bursts, while the long error bursts are
corrected by the block decoder.

29

2 Introduction to Error Correction Codes

For the remainder of this chapter, linear block codes will be discussed in detail. The
block codes are more suitable when a channel has the form of a physical medium for data
storage, as opposed to transmission mediums. Another important characteristic of block
codes is that they can be used for creating erasure coding schemes. Erasure is an error
whose location in the codeword is known in advance. In the context of storage this can
be a failed storage device or loss of connection of an attached network storage device.

2.2.1 Introduction to block codes

Input of linear block code is a continued sequence of binary symbols over GF(2). The
binary block code then segments this binary symbol sequence into message blocks. Each
block has a fixed length of k binary bits. This means there are 2k distinct message
blocks. Each input message of a block code encoder can thus be represented as a vector
d = (d0, d1, ..., dk−1) over the binary field GF(2). This input message is encoded by
the block code encoder into a longer sequence c = (c0, c1, ..., cn−1) of n bits, where
n > k. The longer sequence c is called the codeword of the input message d. Since each
distinct input message is encoded to unique codewords, there are 2k unique codewords,
one for each unique input message. This set of 2k codewords forms an (n, k) block code.
The additional n − k bits, added by the block code encoder, are called redundant bits,
or redundancy. The redundancy, by definition, contains no new information. Its only
purpose is to enable the detection and correction of transmission errors, caused by a
noisy channel. Generally, the code rate R of a block code is R = k/n, which represents
the amount of information bits carried by a single codeword bit.

One important aspect of practical usability of a block code is the definition of
mapping between input message and corresponding codeword. Unless the code cannot
be defined using some mathematical structures, the block code encoder and decoder
would have to store a complete table of 2k mappings between message and codewords.
Therefore, codes with specific structural properties are used for practical implementations.
An especially desirable property of block codes is linearity. Block codes with this property
are called linear block codes. Linear block codes can be defined using formulations from
linear algebra.

Definition 2.20 (Linear block code) A block code of length n over GF(2) with 2k
codewords is called an (n, k) linear block code if and only if its 2k codewords form a
k-dimensional subspace of the vector space of all the n-tuples over GF(2).

From Definition 2.20 it follows that there exists k linearly independent codewords,
g0,g1, ...,gk−1, in a binary (n, k) block code C, such that every codeword v in C is a linear
combination of these k linearly independent codewords. Thus, the encoding procedure
of a binary (n, k) linear block code can be defined as follows. Let d = (d0, d1, ..., dk−1)
be the message to be encoded. The codeword for this message, c = (c0, c1, ..., cn−1), is

30

2.2 Linear Block Codes

given by the following linear combination of g0,g1, ...,gk−1, with k message bits of d as
the coefficients:

c = d0g0 + d1g1 + · · ·+ dk−1gk−1 (2.3)

2.2.2 Generator matrix

To create a matrix representation of the equation (2.3), the k linearly independent
codewords, g0,g1, ...,gk−1, of the C can be arranged as rows of a k × n matrix over
GF(2) as follows:

G =

g0

g1

...

gk−1

=

g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1

...
...

gk−1,0 gk−1,1 · · · gk−1,n−1

(2.4)

The codeword c = (c0, c1, ..., cn−1) for message d = (d0, d1, ..., dk−1), using equation
(2.4) can be expressed as matrix product of vector d and matrix G:

c = d ·G

c =

d0

d1

...

dk−1

·

g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1

...
...

gk−1,0 gk−1,1 · · · gk−1,n−1

(2.5)

The codeword c for message d is thus a linear combination of the rows of matrix
G and the message bits of d as the coefficients. Matrix G is called a generator matrix
of the (n, k) linear block code C. A generator matrix of a given (n, k) linear block is
not unique. Any choice of linearly independent codewords g0,g1, ...,gk−1 of C gives a
generator matrix of C. The rank of a generator matrix of a linear block code C is equal
to the dimension of C.

The check matrix H of a block code C is given by the following expression:

G ·HT = O (2.6)

31

2 Introduction to Error Correction Codes

where O is a k× (n− k) zero matrix. This implies that the C is completely specified by
an H matrix as:

C = {v ∈ V : v ·HT = 0} (2.7)

Usually, encoding of a linear block code is based on a generator matrix of the code, using
equation (2.5), and decoding is based on a check matrix of the code.

A desirable property of linear block codes is to have a codeword with the format
shown in Figure 2-3. The codeword is divided into two parts, the message part and
the redundancy part. The message part contains k original information digits, and the
redundancy part consists of n− k parity digits. A linear block code which produces a
codeword with this structure is called a linear systematic code.

A linear systematic code (n, k) block code is specified by a k× n generator matrix
of the form:

G =

g0

g1

...

gk−1

=

a0,0 a0,1 · · · a0,n−k−1 1 0 · · · 0

a1,0 a1,1 · · · a1,n−k−1 0 1 · · · 0
...

...
...

...

︸ ︷︷ ︸
A matrix

ak−1,0 ak−1,1 · · · ak−1,n−k−1 ︸ ︷︷ ︸
Ik matrix

0 0 · · · 1

(2.8)

The generator matrix G of a linear systematic (n, k) block code consists of two
submatrices. The left side forms a k× (n− k) submatrix A with elements over GF(2).
The right side of the matrix G is a k×k identity matrix, Ik. This relation can be written
as G = [A Ik]. Identity matrix Ik in equation (2.8) guarantees that the rightmost k
bits of codeword c are identical to k the message information bits of d. The leftmost

Message part
(information bits)

Check part
(redundancy bits)

n digit codeword

n-k digits k digits

Figure 2-3: Systematic format of a codeword

32

2.2 Linear Block Codes

n−k codeword bits of c are a linear combination of information bits. These n−k bits are
commonly called parity-check bits or simply parity bits. It is apparent from equation (2.8),
that the parity bits are completely defined by the n− k columns of the A submatrix of
the generator matrix G. Evaluating the codeword c from equation (2.8) we get equations
for calculating each bit of the codeword:

ci =
{
d0a0,i + d1a1,i + · · ·+ dk−1ak−1,i for i = 0, 1, . . . , n− k− 1
di−(n−k) for i = n− k, . . . , n− 1

(2.9)

The first n− k equations from (2.9) generate parity bits and are thus called parity
equations of the code C. The A submatrix of G is called the parity submatrix of the
generator matrix G. This form of generator matrix, as given in (2.8), is called a systematic
form. If a generator matrix G of an (n, k) linear block code C is given in the systematic
form of (2.8), then the check matrix H of C is given as:

H =
[
In−k AT

]

H =

1 0 · · · 0 a0,0 a1,0 · · · ak−1,0

0 1 · · · 0 a0,1 a1,1 · · · ak−1,1

...
...

...
...

0 0 · · · 1 a0,n−k−1 a1,n−k−1 · · · ak−1,n−k−1

(2.10)

2.2.3 Bounds of linear block codes

Definition 2.21 (Hamming weight) Let v = (v0, v1, . . . , vn−1) be an n-tuple over GF(2).
The Hamming weight of V, denoted ω(v), is defined as the number of nonzero elements
in v.

The smallest weight of non-zero codeword in C, denoted by ωmin(C), is called the
minimum weight of C. The minimum weight of binary block code C is given by:

ωmin(C) = min{ω(u) : u ∈ C, u 6= 0} (2.11)

Definition 2.22 (Hamming distance) Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . ,

vn−1) be two n-tuples over GF(2). The Hamming distance between u and v, denoted
as d(u, v), is defined as the number of elements where vectors u and v are different.
Hamming distance function d(u, v) satisfies the triangle inequality. Let w = (w0, w1, . . . ,

wn−1) be an additional n-tuple over GF(2). Then:

d(u, v) + d(v,w) > d(u,w) (2.12)

33

2 Introduction to Error Correction Codes

Definition 2.23 (Distance of linear block code) The minimum Hamming distance of
an (n, k) linear block code C, denoted by dmin(C), is defined as the smallest Hamming
distance between two codewords from C, expressed as:

dmin(C) = min{d(u, v) : u, v ∈ C, u 6= v} (2.13)

The Hamming distance between two n-tuples, u and v, is equal to the Hamming
weight of the vector sum of u and v, i.e., d(u, v) = ω(u+ v). Using this fact, minimum
distance dmin(C) of C can be written as:

dmin(C) = min{d(u, v) : u, v ∈ C, u 6= v}
= min{ω(u+ v) : u, v ∈ C, u 6= v}
= min{ω(x) : x ∈ C, x 6= 0}
= ωmin(C)

(2.14)

Definition 2.24 (Singleton bound) For any linear (n, k) block code C, its distance dmin
is bounded by

dmin − 1 6 n− k (2.15)

A linear (n, k) block code C with a distance of dmin(C) = n − k + 1 is called the
maximum distance separable (or MDS) code.

A block code C with minimum distance dmin is able to correct all error patterns of t
or fewer bits, where

t =
⌊

(dmin − 1)
2

⌋
The parameter t is called the random-error correcting capability of a block code. A code
with random-error correcting capability of t must have at least a distance given by

dmin > 2t+ 1

The error where the location of the error in codeword is known is called erasure. Let e
be the number of errors and ε the number of erasures in a codeword. The distance of
linear block code that is able to correct them is given by

dmin > 2e+ ε+ 1

34

2.2 Linear Block Codes

2.2.4 Cyclic block codes

Cyclic codes are a special type of linear block codes. The cyclic property of these codes
makes them easy to implement using simple shift registers with a feedback connection.
Many cyclic codes have been constructed. Important properties of cyclic codes are listed
below.
Definition 2.25 (Cyclic shift) Let u = (u0, u1, . . . , un−1) be an n-tuple over GF(2). If
every component of u is shifted cyclically one place to the right, the following n-tuple is
obtained:

u(1) = (un−1, u0, . . . , un−2) (2.16)

which is called the right cyclic-shift, or simply the cyclic-shift of u.

Definition 2.26 (Cyclic code) An (n, k) linear block code C is said to be cyclic code if
the cyclic-shift of each codeword of C is also a codeword in C.

An (n, k) cyclic code C consists of 2k polynomials, called the code polynomials. There
exists a unique non-zero code polynomial g(X) of degree n− k of the following form:

g(X) = 1 + g1X+ g2X
2 + · · ·+ gn−k−1X

n−k−1 + Xn−k (2.17)

Every code polynomial in C is divisible by g(X), i.e., every code polynomial of C is
a multiple of g(X). Therefore, to fully specify an (n, k) cyclic code C, only the unique
polynomial of the form given by (2.17) is needed. This polynomial is called the generator
polynomial of the (n, k) cyclic code C. The degree of g(X) determines the number of
parity bits of such code.

Let mi(X) = Xi, 0 6 i < k, be the polynomial representing the message to be
encoded (message polynomial). Dividing Xn−kmi(X) = Xn−k+i by g(X), we get

Xn−k+i = ai(X)g(X) + bi(X) (2.18)

where the remainder bi(X) has the following form:

bi(X) = bi,0 + bi,1X+ · · ·+ bi,n−k−1X
n−k−1 (2.19)

Polynomial bi+Xn−k+i is divisible by g(X), which means that it is a code polynomial
in C. Arranging the n-tuple representation of the n− k code polynomials, bi + Xn−k+i,
0 6 i < k, as the rows of k × n matrix over GF(2), the generator matrix of the (n, k)
cyclic code C in systematic form is obtained:

GC,sys =

b0,0 b0,1 · · · b0,n−k−1 1 0 · · · 0
b1,0 b1,1 · · · b1,n−k−1 0 1 · · · 0
...

...
...

...
bk−1,0 bk−1,1 · · · bk−1,n−k−1 0 0 · · · 1

 (2.20)

35

2 Introduction to Error Correction Codes

2.3 Reed-Solomon Code

Reed-Solomon code is a linear block code with code symbols from GF(q), where q is a
power of prime. Such codes are also called q-ary block codes, or block codes over GF(q).
A message for a q-ary (n, k) block code consists of k information symbols from GF(q).
A q-ary (n, k) block code has length n and contains qk codewords.

Definition 2.27 (q-ary linear block code) A q-ary (n, k) block code over GF(q) of
length n with qk codewords is called a q-ary (n, k) linear block code if and only if its qk
codewords form a k-dimensional subspace of the vector space of all the qn n-tuples over
GF(q).

The version of q-ary codes most widely used are classed of Reed-Solomon codes [95].

Definition 2.28 (Reed-Solomon Code - RS code) Let α be a primitive polynomial
of GF(q). For a positive integer t such that 2t < q, the generator polynomial of a
t-symbol-error-correcting RS code over GF(q) of length q− 1 is given by

g(X) = (X− α)(X− α2) · · · (X− α2t)
= g0 + g1X+ · · ·+ g2t−1X

2t−1 + X2t (2.21)

where gi ∈ GF(q).

Since α,α2, . . . , α2t are roots of Xq−1−1, generator polynomial g(X) creates a cyclic
RS code of length q− 1 with 2t parity symbols. The distance of RS code is determined
by the weight of the generator polynomial g(X). There are 2t + 1 non-zero terms in
g(X), which means that the minimum distance of RS code is equal to 2t+ 1, which is 1
greater than the number of parity symbols. This puts the RS codes in class of maximum-
distance-separable (MDS) codes. Table 2-5 summarises important characteristics of the
Reed-Solomon code.

Code property Value

Length q− 1
Number of parity symbols 2t
Dimension q− 2t− 1
Minimum distance 2t+ 1

Table 2-5: Summary of properties of the (n, k) Reed-Solomon code over GF(q)

36

2.3 Reed-Solomon Code

2.3.1 Vandermonde Reed-Solomon code

For use in data transmission over erasure channels a specialized form of Reed-Solomon
codes are devised. Erasure channel is a communication channel that either transmits an
information bit (or symbol) to the receiver or notifies the receiver that information is
lost. The encoding procedure assumes that n codewords of (n, k) RS code are sent over
the erasure channel. This class of RS codes uses Vandermonde matrix as the starting
generator matrix for the code.
Definition 2.29 (Vandermonde matrix over GF(q)) Let (a0, a1, . . . , an−1) be a n-tuple
of elements from GF(q). The Vandermonde matrix is defined as:

Vn =

1 a0 a2
0 · · · an−1

0

1 a1 a2
1 · · · an−1

1

1 a2 a2
2 · · · an−1

2
...

...
...

1 an−1 a2
n−1 · · · an−1

n−1

(2.22)

The direct formula for calculating the determinant of a square n× n Vandermonde
matrix is given by [73]:

det(Vn) =
∏

06i6j6n
(ai − aj) (2.23)

The inverse, V−1 = [b]n, of a square n× n Vandermonde matrix is specified as:

bi,j =

∑
06m0<...<mn−i6n
m0,...,mn−i 6=j

(−1)i−1am0 · · ·amn−i

aj
∏

06m6n
m 6=j

(
am − aj

) (2.24)

From Equation 2.23 and Equation 2.24 it follows that the square Vandermonde matrix is
invertible only if all elements ai of constructing n-tuple are distinct. This property is
exploited during the construction of the generator matrix for a (n, k) linear block code.

The n×k Vandermonde matrix A is constructed using an n-tuple of distinct elements
(0, 1, . . . , n− 1) over GF(q):

An×k =

00 01 02 · · · 0k−1

10 11 12 · · · 1k−1

20 21 22 · · · 2k−1

...
...

...
(n− 1)0 (n− 1)1 (n− 1)2 · · · (n− 1)k−1

(2.25)

37

2 Introduction to Error Correction Codes

The Reed-Solomon (n, k) code is defined as:

c = A · d (2.26)

where vector c represents the codeword symbols, vector d the information symbols, and
matrix A is the generator matrix of the code. Removing exactly n−k rows from matrix A,
we get a square k× k Vandermonde matrix. The resulting matrix is defined with k-tuple
of distinct elements and is thus guaranteed to be non-singular. The generator matrix
A has a non-systematic form, which makes the RS code defined by it not suitable for
erasure coding. Matrix A can be transformed into a desirable systematic form applying
a sequence of elementary matrix transformations until the upper part of the resulting
matrix is an k× k identity matrix [88], as follows:

1. Column Ci and column Cj can be swapped, i 6= j, i, j < k,
2. Column Ci can be multiplied with scalar c, c 6= 0, i < k,
3. Column Ci can be replaced by Ci + c ·Cj, c 6= 0, i 6= j, i, j < k.

The derived matrix A∗sys retains all properties of starting matrix A, and is the
generator matrix of systematic (n, k) Reed-Solomon code:

1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1
a∗k,0 a∗k,1 · · · a∗k,k−1
...

...
a∗n−1,0 a∗n−1,1 · · · a∗n−1,k−1

·

d0

d1
...

dk−1

 =

d0

d1
...

dk−1

r0

r1
...

rn−k−1

c = A∗sys · d =
[
d

r

]
(2.27)

where vector r = (r0, r1, . . . , rn−k−1) is the parity part (redundancy) of systematic
Reed-Solomon codeword.

Erasure decoding

In case of a symbol erasure in the message part of the codeword c of an (n, k) Vandermonde
Reed-Solomon code, the corresponding rows of the generator matrix A∗ and the codeword
vector c are deleted. In case the number of erasures is lower than n − k, additional
rows have to be deleted until the resulting square, k× k, matrix Ã, and vector c̃ with

38

2.3 Reed-Solomon Code

k elements, remain. The matrix Ã is guaranteed to be non-singular. By solving the
resulting system for d we reconstruct the message part d of the codeword.

Ã · d = c̃

d = Ã−1 · Ã · d

d = Ã−1 · c̃

(2.28)

2.3.2 Distributed Reed-Solomon code

The encoding and decoding process of the systematic (n, k) Reed-Solomon code, described
by Equation 2.27 and Equation 2.28 respectively, assumes that we have all codeword
symbols locally. When the erasure code is used in a distributed storage environment, it
is beneficial that the encoding/decoding scheme minimize network utilization. Figure 2-4
shows two common scenarios of erasure code usage in storage systems.

The system shown in Figure 2-4(a) is comprised of one processing element (CPU)
that can encode and decode the RS code as well as the locally attached storage (Disks)
that store the data. In this case, in order to perform encoding or decoding, the data has
to be read, transferred to the CPU, and finally, the result has to be written back to the
appropriate storage device. This is the typical organization of a RAID system. In case
of the scenario described in Figure 2-4(b), each of the storage elements, together with
a processing element, is connected to a network interconnect. This is a typical case of
a distributed storage system. It is obvious that transferring all data blocks to a single
processing element for encoding or decoding is inefficient. First, the network bandwidth
is used for transferring data blocks to a node which will perform code calculation. After

CPU

D0 D1 D2 D3 Dn

local bus

(a) Local attached storage

CPU0

D0

CPU1

D1

CPU2

D2

CPUn

Dn

network

(b) Network attached storage

Figure 2-4: Local and distributed storage systems

39

2 Introduction to Error Correction Codes

the calculation is finished, results have to be transferred back to the appropriate storage
device. Secondly, only one processing element is utilized in code calculation operation.

To better utilize resources and network bandwidth of distributed system the modified
Vandermonde encoding scheme is used. The new scheme minimizes data movement
by bringing the calculation to the processing elements where the data is stored. As a
base for this scheme, systematic Vandermonde Reed-Solomon (n, k) code is used, as in
Equation 2.27.

Each column of the code generator matrix Asys, denoted by Ai, is multiplied by the
corresponding element from the message data vector di, where 0 6 i < k, as follows:

ci = di ·Ai = di ·

a∗k,i

a∗k+1,i
...

a∗n−1,i

 =

di · a∗k,i
di · a∗k+1,i

...
di · a∗n−1,i

 (2.29)

Since the vectors ci are calculated at the local processing element, one that is closest
to the data, no network bandwidth is utilized. By leaving out the upper identity matrix
part of the Asys, the parity part of the codeword r is obtained by:

r =
k∑
i=0
ci (2.30)

Element of ci vectors are transmitted to the processing element of the storage
node that will store the corresponding parity block. Once k symbols is collected at the
destination processing element, they are added together to form a resulting parity symbol
rj, 0 6 j < n− k. The example of the distributed Reed-Solomon coding scheme is shown
in Figure 2-5.

The calculation of redundancy r, Equation 2.30, can be carried out in log k steps if
all data nodes participate in summation reduction. Thus, the amount of data transferred
through the network during the encoding operation of (n, k) the Reed-Solomon code is

(n− k)× SB × log k (2.31)

where SB is the size of each data block. The time complexity of this method is discussed
in [87]. Let R+ be the rate of performing addition in GF(q), R∗ be the rate of performing
multiplication in the same field, and RNET be the bandwidth of the network. The time
complexity then can be expressed as follows:

(n− k)× SB ×
(

logn
R∗

+ logn
R+

+ 1
RNET

)
(2.32)

40

2.4 Algebraic signatures

+

r1

*

d0

*

d1

*

d2

*

d3

+

r0

a0,0
a1,0

a0,1
a1,1

a0,2
a1,2

a0,3
a1,3

d1a0,1 d2a0,2 d3a0,3d0a0,0 d1a1,1 d2a1,2 d3a1,3d0a1,0

network

Figure 2-5: Example of distributed (6, 4) Reed-Solomon code

2.4 Algebraic signatures

An erasure coding scheme, such as the Reed-Solomon erasure code, enables reconstruction
of missing data or data that is known to be corrupted. However, a reliability coding
scheme should also be able to detect and correct silent data corruption. This type of error,
also known as data rot, is caused by the medium on which data is stored. Silent corruption
cannot be detected by a pure erasure coding scheme. Modern enterprise grade hard disks
claim an unrecoverable error rate of 1 bit per 1016 read bits. A study of data integrity
from CERN [79] states the error rate to be 1 in 107 read bits, but emphasizes different
origins and patterns of errors. Their investigation of storage and the rest of the system,
revealed a strong correlation between the errors of other components, the incompatibility
issues between RAID controller for example, and the hard disk firmware. Moreover, the
RAID controllers do not check for data corruption during data read. Instead, to check
for data rot, RAID controllers implement a special verify command, which reads all data,
compare the parity data, and correct the errors found. The verify command stresses the
disks much more than a usual workload, which again can have a negative impact on read
error rate and component lifetime. In a distributed environment an additional component
of the system, such as network interconnect, can also introduce errors. Conclusion of the
CERN study is that serious measures need to be taken in order to ensure end-to-end
data reliability. One way to achieve this is by employing checksums.

The simplest form of checksum is the parity bit, or check bit. In this scheme, a
single bit is added to the block of data to indicate whether the number of bits set
to 1 is odd or even. Such a simple checksum scheme is very limited, and will detect

41

2 Introduction to Error Correction Codes

the error only if an odd number of bits have flipped. If an even number of bits in a
message have changed state; the resulting parity bit will stay the same. To achieve better
error-detection properties, more robust codes have been invented. Most widely used is the
cyclic redundancy check (CRC) code, proposed by William Wesley Peterson in this 1961
paper [85]. The CRC code calculates a short check value for a block of data based on
redundancy of a systematic cyclic code. Since their inception, CRC codes have been used
in almost all areas of digital transmission and communication systems. In storage, CRC
codes have been used in ANSI T10 standard [74] to provide end-to-end data reliability for
reads and writes. It should be noted that checksums do not protect against intentional
data modification, and thus should not be used for digital signature purposes.

Recently, a class of novel checksum functions called Algebraic signatures [66], based
on the Karp-Rabin modular fingerprinting functions [93], have been introduced. An
important property of algebraic signatures is their ability to guarantee the number of
detectable changes in data based on the length of the signature.

Definition 2.30 (Algebraic signatures) Let P = (p0, p1, . . . , pl−1) be a data vector of l
symbols (elements) in GF(2m), l < 2m − 1. Let α = (α0, α1, . . . , αn−1) be a vector of n
distinct, non-zero, elements in GF(2m), called the n-symbol signature base, or simply
the base. The n-symbol P signature, based on α, is a vector

sigα(P) =
(
sigα0(P), sigα1(P), . . . , sigαn−1(P)

)
(2.33)

where each element of the vector is calculated as:

sigαi(P) =
l−1∑
j=0

pj · αji (2.34)

for 0 6 i < n.

Definition 2.31 (Signature collision) Let P and Q be two different data vectors of l
symbols, and α a signature base of the algebraic signature. Signature collision occurs
when sigα(P) = sigα(Q).

When the signature base α is derived using powers of a primitive element α from
GF(2m) as

α = (α,α1, α2, . . . , αn−1) (2.35)

the probability of a signature collision with two pages of length l is 2−nm, for l < 2m.
Table 2-6 gives an overview of collision probability for common combinations of the finite
field and signature length selection. For small symbol sizes, e.g. symbols of GF(28), in
order to keep collision probability sufficiently small, a larger number of concatenated
signatures is needed.

Another significant advantage of algebraic signatures over other checksums is that
they are based on the finite field arithmetic over GF(q). This allows for the interesting

42

2.4 Algebraic signatures

Collision probability of n-component signature
Finite field GF(2m), Message length l

m=8 m=16 m=32
n l=255B l=64KiB l=4MiB

1 3.906× 10−3 1.526× 10−5 2.328× 10−10
2 1.526× 10−5 2.328× 10−10 5.421× 10−20
4 2.328× 10−10 5.421× 10−20 2.939× 10−39
8 5.421× 10−20 2.939× 10−39 8.636× 10−78

Table 2-6: Collision probability of n-component Algebraic signatures over GF(2m)

possibility of coupling algebraic signatures with linear block erasure code. This property
is presented in [101]. Algebraic signatures are a linear combination of a data symbol
vector. As a consequence of linearity, the following equalities are satisfied:

sigα(X+ Y) = sigα(X) + sigα(Y)
sigα(c · X) = c · sigα(X), c ∈ GF(2p)

(2.36)

where addition and multiplication are operations over GF(2m). Because of linearity
properties (2.36) the following equation holds:

RS (sigα(d)) = sigα (RS(d)) (2.37)

RS (sigα(d0), sigα(d1), . . . , sigα(dk−1))) = (sigα(c0), sigα(c1), . . . , sigα(cn−k−1))

where vector c represents parity symbols calculated from the data vector d using system-
atic (n, k) Reed-Solomon erasure code is denoted as c = RS(d).

The property Equation 2.37 is useful in the data verification process, especially in
a distributed environment where each element of Reed-Solomon codeword is located
on a separate server. Each of the storage nodes only has to calculate and transmit
the signature of a stored codeword element. This speeds up the verification process
significantly, as compared to the traditional approach where one node would have to
collect all data blocks and perform full computation in order to verify consistency.

43

CHAPTER 3
On Implementing

Reed-Solomon Codes

This chapter discusses implementation of the error correction codes and algebraic signa-
tures used in the reliability middleware presented in this thesis. The implemented error
correction codes are based on the Reed Solomon erasure code. This is a linear, block
based, erasure coding scheme over a finite field. Described erasure codes use systematic
Vandermonde formulation of a generator matrix. The generator matrices are dynamically
crafted to provide desired erasure resiliency.

The main challenge in implementing fast and efficient Reed-Solomon error correction
code is posed by the fact that all operations have to be carried out in a Galois Field.
This problem has been previously addressed in [56] and [55]. Since the calculating of
Reed-Solomon ECC can be represented by a matrix-vector multiplication, it is crucial that
addition and multiplication operations in the Galois Field are implemented efficiently.

45

3 On Implementing Reed-Solomon Codes

3.1 Galois Field multiplication

Multiplication of two elements of a binary finite field GF(2l) is defined as:

a ◦ b = (a× b) mod p (3.1)

The cross product “×” is the carry-less multiplication of polynomial representations
of elements in GF(2l). To obtain a result, polynomial reduction (modulo) operation
is performed using a primitive field generator p of the Galois field. Since neither the
carry-less multiplication nor the modulo operation is implemented in hardware, we need
an efficient algorithm for both operations.

3.1.1 Carry-less multiplication

Carry-less multiplication is the operation of multiplying two elements without propagating
carries. It is defined on elements in GF(2l) as follows:

Definition 3.1 (Carry-less multiplication) Let a(X) = a0 + a1X+ · · ·+ al−1X
l−1 and

b(X) = b0 + b1X + · · · + bl−1X
l−1 be elements in GF(2l). Let c(X) = c0 + c1 + · · · +

c2l−2X
2l−1 be a polynomial of degree 2l− 1 with coefficients in GF(2). The carry-less

multiplication is defined as follows:

ci =
i∑
j=0

ajbi−j when 0 6 i 6 l− 1 (3.2)

ci =
l−1∑

j=i−l+1
ajbi−j when l 6 i 6 2l− 1 (3.3)

where summation and multiplication are performed in the GF(2).

Since the multiplication operation in GF(2) equates to logical AND operation (
⊙

),
and addition to logical XOR (

⊗
), equations (3.2) and (3.3) can be written as:

ci =
i⊕
j=0

aj � bi−j when 0 6 i 6 l− 1 (3.4)

ci =
l−1⊕

j=i−l+1
aj � bi−j when l 6 i 6 2l− 1 (3.5)

Hereafter, the carry-less multiplication will be denoted by the “×” symbol.

46

3.1 Galois Field multiplication

Algorithm 3-1 Carry-less multiplication of Galois Field elements. Inputs, a and b, are
elements of GF(2l). The largest possible length of a result is 2l. Additional modulo
operation is needed to obtain a proper GF(2l) value.
1: function carry_less_multiplication(a, b)
2: r[2l− 1 : 0]← 0 . Initialize accumulator
3: for i← 0; i < l; i← i+ 1 do
4: if IsBitSet(a, i) then . test i-th bit in a
5: r← r⊕ LeftShift(b, i)
6: end if
7: end for
8: return r
9: end function

Pseudo code that describes carry-less multiplication of two Galois field elements is
described by Algorithm 3-1. Elements of GF(2l) have at most l components in the vector
representation.

Carry-less multiplication is somewhat similar to integer multiplication. In both
operations, the second element is shifted as many times as the number of bits equal to 1
in the first elements. The difference is, that the carry-less multiplication uses carry-less
addition (XOR operation), whereas the integer multiplication is using addition that
generates and propagates carry.

3.1.2 Modulo operation

The result of the carry-less multiplication c(X), described by equations (3.4) and (3.5),
has at most 2l coefficients in GF(2), or 2l bits in the vector representation. In order to
obtain a valid element of GF(2l) after carry-less multiplication, modulo operation has
to be performed using field generating polynomial p(X). An efficient modulo reduction
algorithm, based on the Barrett reduction algorithm [4] is described in [37]. From equation
in polynomial representation:

a(X)× b(X) =c(X)
=c0 + c1X+ · · ·+ cl−1X

l−1+
clX

l + cl+1X
l+1 + · · ·+ c2l−1X

2l−1
(3.6)

it follows that:

a(X) ◦ b(X) = (a(X)× b(X)) mod p(X)
= (c0 + c1X+ · · ·+ cl−1X

l−1) mod p(X) +
(clXl + cl+1X

l+1 + · · ·+ c2l−1X
2l−1) mod p(X)

=c∗(X) + (clXl + cl+1X
l+1 + · · ·+ c2l−1X

2l−1) mod p(X)
=c∗(X) + (c†(X)× Xl) mod p(X)

(3.7)

47

3 On Implementing Reed-Solomon Codes

where c∗(X) = c(X) mod Xl, and c†(X) is the quotient from the division of c(X) with Xl.
From equation (3.7) it follows that only modulo reduction of upper l elements is necessary,
since the result can be obtained by XOR-ing of the lower part with the reduction of
the upper part. Let u(X) be the reduction of upper part of the carry-less multiplication
result:

u(X) = (c†(X)× Xl) mod p(X) (3.8)

Let the polynomial q(X) be the quotient from the division of c†(X)× Xl with p(X).
Then, equation (3.8) can be expressed as:

c†(X)× Xl = p(X)× q(X) + u(X) (3.9)

As the l least significant terms of the polynomial c†(X)× Xl are zero, that means that
the l least significant terms of polynomials p(X)×q(X) and u(X) must be equal (addition
of the polynomial terms is performed in GF(2)). Using this fact, and the equation (3.9),
we obtain following equality:

u(X) = p(X)× q(X) mod Xl (3.10)

The module Xl is used to obtain only the l least significant terms, since the polynomial
u(X) is of degree l− 1.

Let Lk(a) denote the coefficients of the k least significant terms of the polynomial a,
and Mk(a) denote k most significant terms of a. Now, the (3.10) can be expressed as:

u(X) = p(X)× q(X) mod Xl = Ll(p(X)× q(X)) (3.11)

Further, we define polynomial p?(X) as the l least significant terms of p(X) (primitive
irreducible polynomial p(X) of GF(2l) is of degree l):

p(X) = p?(X) + Xl

p?(X) = p(X) + Xl
(3.12)

Substituting the (3.12) into the equation (3.11) we have:

u(X) =Ll(p?(X)× q(X) + Xl × q(X))
=Ll(p?(X)× q(X)) + Ll(Xl × q(X))

(3.13)

Since the l least significant terms of Xl × q(X) are zero, equation (3.13) is therefore:

u(X) = Ll(p?(X)× q(X)) (3.14)

48

3.1 Galois Field multiplication

From this result it follows that in order to obtain u(X) we need to calculate quotient
polynomial q(X). This can be performed using the Barrett reduction algorithm. We start
by multiplying the equation (3.9) by Xl.

c†(X)× X2l = p(X)× q(X)× Xl + u(X)× Xl (3.15)

Let q+(X) polynomial be the quotient of the division of X2l with the polynomial
p(X):

X2l = q+(X)× p(X) + r(X) (3.16)

Substituting in (3.15) and applying the Ml function on the resulting equation we have:

Ml(c†(X)× q+(X)× p(X)) +Ml(c†(X)× r(X))
= Ml(p(X)× q(X)× Xl) +Ml(u(X)× Xl)

(3.17)

First terms on both sides of the last equations are polynomials of degree 3l− 1 while the
second terms are of degree 2l−1. Thus, the equation (3.17) is not affected by polynomials
c†(X)× r(X) and u(X)× Xl:

Ml(c†(X)× q+(X)× p(X)) = Ml(p(X)× q(X)× Xl) (3.18)

Since we are only interested in the l most significant terms, we can introduce following
substitution in the left side:

Ml(Ml(c†(X)× q+(X))× Xl × p(X)) = Ml(p(X)× q(X)× Xl) (3.19)

The equation is now satisfied when the quotient polynomial q is

q(X) = Ml(c†(X)× q+(X)) (3.20)

Now, the polynomial u(X) is defined [37] as:

u(X) = Ll(p?(X)×Ml(c†(X)× q+(X))) (3.21)

Modulo reduction algorithm, described by equations (3.21) and (3.7), can be
summarised in the following steps:

Preprocessing Given the primitive irreducible polynomial p(X) that generates GF(2l),
we calculate polynomials p?(X) and q+(X) as described by (3.12) and (3.16),
respectively. The polynomial p?(X) is at most a degree of l− 1 consisting of the
least l significant coefficients of p(X). The polynomial q+(X) is of degree l and
equals the quotient of the division of X2l with the polynomial p(X).

Calculation of the reminder polynomial The algorithm consists of three steps:

49

3 On Implementing Reed-Solomon Codes

Step 1 Most significant l bits of the input, c†(X), are multiplied with q+(X), yield-
ing a polynomial of degree 2l− 1, or at most 2l bits in a vector representation.

Step 2 The l most significant bits of the polynomial resulting from Step 1 are
multiplied with p?(X). The result is a polynomial of degree 2l− 2.

Step 3 Result of the algorithm is the polynomial containing the l least significant
coefficients of the polynomial resulting from Step 2.

The preprocessing step of the modulo reduction algorithm depends on the selection
of irreducible polynomial p(X) used to generate GF(2l). Algorithm 3-2 demonstrates
modulo reduction algorithm for GF(2128) generated with the polynomial p(X) = 1 + X+
X2 + X7 + X128. In this example, l = 128, p?(X) = 1 + X+ X2 + X7, and q+(X) = p(X).

Algorithm 3-2 Modulo reduction operation for GF(2128) generated with polynomial
p(X) = 1 + X+ X2 + X7 + X128

1: function reduction_modulo([X3 : X2 : X1 : X0])
2: A← RightShift(X3, 63)
3: B← RightShift(X3, 62)
4: C← RightShift(X3, 57)
5:
6: D← X2 ⊕A⊕ B⊕ C
7:
8: [E1 : E0]← LeftShift([X3 : D], 1)
9: [F1 : F0]← LeftShift([X3 : D], 2)

10: [G1 : G0]← LeftShift([X3 : D], 7)
11:
12: [H1 : H0]← [X3 ⊕ E1 ⊕ F1 ⊕G1 : D⊕ E0 ⊕ F0 ⊕G0]
13:
14: [R1 : R0]← [X1 ⊕H1 : X0 ⊕H0]
15:
16: return [R1 : R0]
17: end function

The input operand of reduction_modulo() function is represented in vector form
as a concatenation of four vectors Xi. Each of Xi vectors are 64 bit long, amounting to
256 bit in total, which is the expected length of the carry-less multiplication result of
elements in GF(2128).

3.2 Reed-Solomon Encoding

Because we use a systematic version of RS code, for data buffers Di (0 6 i < k) we only
produce the parity-check part of the codeword, denoted as Cj (0 6 j < m, m = n− k).
SB represents the size of the buffers in bytes, and it must contain a whole number of

50

3.2 Reed-Solomon Encoding

symbols from GF(2l). In following, we will present implementation of Reed-Solomon
codes with different sizes of symbols. For this reason, buffer size will be at least 512B
long.

D0 D1 D2 Dk-1 C0 C1 Cm-1D C SB

Figure 3-1: Buffer-based encoding and decoding with (n, k) Reed-Solomon code (m = n− k)

To implement an efficient algorithm for systematic (n, k) Reed-Solomon encoder we
use Equation 2.27.

Let vector c of length m denote the parity-check (redundancy) part of the codeword,
and m× k matrix A the lower part of the Vandermonde-based generator matrix of the
code. Using the properties of GF(2l) multiplication given by Equation 3.1 we have:

A · d = c (3.22)

a0,0 a0,1 · · · a0,k−1

a1,0 a1,1 · · · a1,k−1
...

...
am−1,0 am−1,1 · · · am−1,k−1

 ·

d0

d1
...

dk−1

 =

c0

c1
...

cm−1

 (3.23)

c0

c1
...

cm−1

 =

a0,0 · d0 + a0,1 · d1 + · · · + a0,k−1 · dk−1

a1,0 · d0 + a1,1 · d1 + · · · + a1,k−1 · dk−1
...

am−1,0 · d0 + am−1,1 · d1 + · · · + am−1,k−1 · dk−1

 (3.24)

Operation “·” is multiplication in GF(2l), so we can apply equation (3.1) on each of
the ai,j · dj pairs as follows:

c0

c1
...

cm−1

 =

(a0,0 × d0) mod p + · · · + (a0,k−1 × dk−1) mod p
(a1,0 × d0) mod p + · · · + (a1,k−1 × dk−1) mod p

...
(am−1,0 × d0) mod p + · · · + (am−1,k−1 × dk−1) mod p

51

3 On Implementing Reed-Solomon Codes

Finally, because the reduction modulo operation is distributive over addition in
GF(2l), we obtain:

c0

c1
...

cm−1

 =

(a0,0 × d0 + · · · + a0,k−1 × dk−1) mod p
(a1,0 × d0 + · · · + a1,k−1 × dk−1) mod p

...
(am−1,0 × d0 + · · · + am−1,k−1 × dk−1) mod p

 (3.25)

Equation 3.25 reduces the overhead of the vector-matrix multiplication operation.
The reduction modulo operation is required only once per parity-check symbol, instead
of k times. The only overhead is that intermediate results of carry-less operation “×”
now require 2l bits for storage, instead of l bits for elements of GF(2l). Since we will
choose the value of l that fits in a register of a CPU, storing the result in two registers is
not much overhead and can be easily mitigated. A flowchart diagram of the buffer block
Reed-Solomon erasure encoding procedure is shown in Figure 3-2.

RS Buffer Encoding

Initialization

Start

Read
n, k, l, SB

i == SB?

Create
Gen. Matrix A

Read Data
k Buffers

i = 0

ci = A di

i = i + 1

Store Parity
(n-k) Buffers

End

Yes

No

Figure 3-2: Flowchart of Reed-Solomon buffer-based encoding algorithm. Initialization step is
performed once for desired configuration. The RS Encoding part can be repeated for
multiple buffers by reusing the same RS generator matrix.

52

3.3 Summary

The algorithm is initialized by reading the parameters of the Reed-Solomon block, n,
k, and l. In many applications, the block size is selected to match the underlying block
size. For legacy hard drives, block size is usually 512B, whereas modern hard drives use
the Advanced Format which extends block size to 4 kB. If intended application of the
Reed-Solomon code is in parallel file systems, usually the minimum block size is 1MB.
The first step is the preprocessing step in which the code generator matrix is created
according to selected parameters as described by Equation 3.25. Next, total of n buffers
of required size (SB) are allocated, and the data is read into the first k buffers. The
code-generating phase is performed in the loop. Each loop iteration consumes at most l
bits, where l corresponds to the bit-width of the native register size of the CPU (multiple
of RS symbol size). Calculated parity symbols are stored in the dedicated m buffers at
offset il/8B. When the loop finishes, parity buffers can be stored at the dedicated parity
location. Parity storage location is chosen in such way that a single erasure only affects
one block, either the data block or the redundancy block.

In the following, several practical implementations of efficient, buffer-based, Reed-
Solomon erasure codes are presented. Different application conditions allow for different
kinds of optimizations. During this thesis the following implementation approaches have
been explored:

Vectorization This approach exploits SIMD units of modern CPUs. By performing the
described Galois Field operations on multiple elements in parallel, a significant
speedup can be achieved. The main contribution of this thesis is in exploring
the possible uses of supported SIMD operations on x86 and ARM platforms. A
practical implementation of this work has contributed to the open source ZFS file
system.

Just-in-Time compilation (JIT) The described methods for Reed-Solomon erasure codes
computation contain intrinsically redundant operations that cannot be optimized
with traditional coding methods. Here we use the JIT method for specifying,
assembling and executing the code. We utilized LLVM [63] infrastructure which
enables us to produce and run highly optimized and vectorized code for x86 and
ARM platforms.

3.3 Summary

Reed-Solomon codes are ubiquitous in all areas of digital data storage and transmission.
They are a class of non-binary cyclic linear error-correcting codes based on polynomials
over finite fields. A systematic version of Reed-Solomon erasure codes is widely used
for data reliability in a RAID-like storage solution. Data blocks are stored unmodified,
avoiding read/write operations without computational overhead. Implementation of
efficient Reed-Solomon codes hinges on ability to perform fast Galois field operations.

53

3 On Implementing Reed-Solomon Codes

Addition operation is equivalent to exclusive-or (carry-less addition), and therefore can
be efficiently performed. But, CPUs do not have Galois field multiplication realized in
hardware, so this operation has to be emulated. A method that uses polynomial carry-less
multiplication and reduction to obtain a multiplication result is presented. Galois field
operations are then combined with a Vandermonde-based systematic Reed-Solomon
generator matrix formulation to form the basis of codes discussed in the rest of the thesis.
Lastly, a concept of buffer based erasure encoder, suitable for storage applications, is
presented.

54

CHAPTER 4
Micro Benchmarks

In the previous chapter, we discussed requirements for the implementation of Reed-
Solomon erasure codes. Practically, all necessary operations can be implemented using
a limited set of arithmetic and logic operations. In this chapter we assess the relative
performance of these operations through series of synthetic CPU micro-benchmarks. To
implement a vectorized version of carry-less multiplication Algorithm 3-1 and polynomial
module reduction Algorithm 3-2, only logical SHIFT, exclusive or (XOR), data LOAD
and STORE operations are needed. In addition, the impact of CPU caching on memory
throughput is investigated through a micro-benchmark designed to mimic erasure code
requirements.

In the following chapter, we compare the performance of a server grade x86 CPU and
a low-power ARM CPU, since the codes are constructed using a retargetable compiler.
Both CPUs support vector instructions needed for vectorization of the erasure code.
On a x86 platform, they are part of the SSE and AVX2 instruction set [51]. Similarly,
on the ARM platform all required instructions are found in the NEON instruction set,
introduced with ARMv6 architecture [14].

55

4 Micro Benchmarks

4.1 Arithmetic and logic operations

Figure 4-1 shows throughput of arithmetic and logic operations on our test-bed, Intel- and
ARM-based, platforms1. The performed operations have no memory dependency, as they
are performed only with one or two CPU registers. Throughput is a measure of processed
data on a single CPU core. Obtained measurements show that vector instructions, when
running on the same clock speed as scalar, are able to process multiples of scalar registers.
The length of the scalar register of the Intel platform is 64 bit and the vector SSE register
128 bit, which corresponds to a twofold speedup for vector instructions. The ARM
platform is a 32 bit ARMv7 CPU with NEON vector registers of 128 bit. Observed
speedup is less than expected due to weaker instruction decoding and a scheduler unit of
the low-powered CPU.

100

2800

4300

12 100

36 500
45 600

72 900
91 200

Intel CPU ARM CPU

Platform

T
hr

ou
gh

pu
t
[MiB s

]

XOR scalar
XOR vector
LSH scalar
LSH vector
PCLMULQDQ vector

Figure 4-1: Throughput of arithmetic and logic operations used for Reed-Solomon implementation
on Intel and arm systems

4.2 Memory load throughput

In order to efficiently fetch data from memory to CPU we first performed load micro-
benchmarks. There are lot of factors that affect how fast data in RAM can be accessed,
such as data alignment and allocation of memory in Non-Uniform Memory (NUMA)

1Detailed description of test-bed can be found in section A

56

4.2 Memory load throughput

systems. Also, several optimization techniques can be used to improve the throughput.
We explored unrolling of the load instructions, as shown by Algorithm 4-1, and implicit
data-prefetching techniques. With grouping of several load instructions of consecutive
memory addresses we can consume the whole cache line, making sure all data elements
of the cache line are used before the line is evicted from the cache. Since the data access
pattern of the buffer based Reed-Solomon code is simple and known in advance, we can
issue an explicit prefetching instruction to make sure the needed cache line is loaded into
the L1 data cache just before it is needed.

Algorithm 4-1 Load benchmark, single and unrolled methods. B[] is the pre-allocated
buffer. SB is the size of the buffer, and SV is the size of CPU vector registers.
1: function load_benchmark_1x(B[], SB, SV)
2: for i← 0; i < SB; i← i+ SV do
3: vector_load(B[i])
4: end for
5: end function
6:
7: function load_benchmark_4x(B[], SB, SV)
8: for i← 0; i < SB; i← i+ 4 ∗ SV do
9: vector_load(B[i+ 0 ∗ SV]) . Consume whole cache line (64B)
10: vector_load(B[i+ 1 ∗ SV])
11: vector_load(B[i+ 2 ∗ SV])
12: vector_load(B[i+ 3 ∗ SV])
13: end for
14: end function

Figure 4-2 shows the results of load micro benchmarks for Intel and ARM platforms.
The objective of this test is to measure memory load throughput from all CPU cache
level as well as from the main memory. Tests were performed on a single CPU core.
Results for our Intel platform showed good results for cached loads, up until the 25MB
mark which is the size of the L3 cache of the CPU. Since this is a NUMA system, we
noted a significant difference in throughput when data was loaded from a remote NUMA
node. Traditionally, desktop and server grade CPUs have good hardware prefetching
logic that is able to recognize simple access patterns and preload needed data in a cache
[71]. This eliminated the need for explicit prefetching instructions on this platform. To
test this hypothesis, we performed the same measurement after disabling the automation
prefetcher functionality. As predicted, results showed decreased throughput when reading
from L3 and RAM.

However, obtaining optimal throughput on the ARM platform required manually
employing several of the techniques described. Using just single vector load instruction
to fetch data showed unexpectedly low throughput, around 400MiB s−1. Unrolling the
load instructions brought improvement only for L1 cache accesses, in fact doubling the
throughput in the L1 cache region (blue line). The NEON pipeline of ARM CPU is located

57

4 Micro Benchmarks

200

320

400

500

630

790

1000

1300

1600

2000

2500

3200

4000

5000

6300

7900

10 000

20 000

25 000

32 000

40 000

1Ki 4Ki 16Ki 64Ki 256Ki 1Mi 4Mi 16Mi 64Mi 256Mi 1Gi

Load Buffer size [B]

T
hr

ou
gh

pu
t
[MiB s

]
ARM
ARM (4x)
ARM (1x, prefetch)
ARM (4x, prefetch)
Intel (NUMA local)
Intel (NUMA remote)
Intel (no PREFETCH)

Figure 4-2: Throughput of the LOAD operation on Intel and ARM systems

behind the scalar integer pipeline, which introduces long stalls if vectorized and scalar code
is mixed together. By unrolling load instructions, a group of load instructions is performed
with less pipeline stalls, and thus the CPU is able to dispatch 2 load instructions per clock
cycle. With the addition of explicit prefetch instruction2, throughput from L2 and RAM
significantly increased, while access to L1 showed worse performance. This indicated that
CPU’s hardware prefetching logic is not recognizing the access pattern correctly, and
that no automatic prefetching has been performed. Upon more detailed investigation, we
found that our specific CPU has a known errata [27] stating that the hardware prefetcher,
if enabled, can corrupt data under some circumstances. As a consequence the hardware
prefetcher has been disabled by the operating system, leading to the poor performance
we observed. Finally, by combining the unrolled access and implicit prefetching we were
able to obtain the best results on the ARM platform (purple line).

4.2.1 Multi stream memory throughput

The memory access pattern of the buffer-based block codes is known in advance. In each
computation step, data is loaded from k data buffers, and after computing, the resulting
parity symbols are stored in m code buffers. Since, in a typical erasure application
the ECC k is several times larger than m, the algorithm will require much more LOAD
than STORE bandwidth. An example of this benchmark is shown in Algorithm 4-2. The

2PLD instruction, ARM NEON instruction set

58

4.2 Memory load throughput

Algorithm 4-2 Multi stream memory benchmark method with 4 input and 2 output
streams. Bin[] and Bout[] are vectors of pointers to pre-allocated input and output buffers.
SB is the size of each buffer, and SV is the size of CPU vector registers.
1: function stream_benchmark_4in_2out(Bin[4][],Bout[2][], SB, SV)
2: for i← 0; i < SB; i← i+ SV do
3: vector_load(Bin[0][i]) . Input stream 0

4: vector_load(Bin[1][i]) . Input stream 1

5: vector_load(Bin[2][i]) . Input stream 2

6: vector_load(Bin[3][i]) . Input stream 3

7: vector_store(Bout[0][i]) . Output stream 0

8: vector_store(Bout[1][i]) . Output stream 1

9: end for
10: end function

algorithm shows a method used to benchmark a case with 4 input and 2 output stream
buffers. This micro-benchmark measures only memory throughput, without any code
(redundancy) computing overhead.

Figure 4-3 shows bi-directional bandwidth of a CPU memory bus on our Intel
platform. From the Figure 4-3(a) it is evident that a single core cannot utilize full

0 Output streams 1 Output stream 2 Output streams 4 Output streams

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 000

11 000

Input streams

T
h
ro
u
gh

p
u
t
[MiB s

]

Input
Output

(a) Single thread

0 Output streams 1 Output stream 2 Output streams 4 Output streams

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16

0

5000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

Input streams

T
h
ro
u
gh

p
u
t
[MiB s

]

Input
Output

(b) 4 threads

Figure 4-3: Streaming LOAD/STORE performance of Intel Haswell CPU

available bandwidth of the memory bus [112][20]. With the increase of the number of
streams the decrease of load throughput occurs, while the bi-directional throughput
remains at the same level. This is caused by exhaustion of Line-fill Buffers of the CPU
code. Line-fill buffers are a limited physical resource used to track outstanding cache line
transfers by the CPU core. Our test CPU has 10 line-fill buffers per core. If all line-fill
buffers are used, all memory requests are sent directly to a unified L3 cache. Also, by
accessing a multitude of memory addresses, hardware prefetcher is not providing full
efficiency as with a simple linear access pattern. Throughput of multi-threaded tests is
shown in Figure 4-3(b).

59

4 Micro Benchmarks

Figure 4-4 shows the result of the described test on the ARM platform. As expected,
achieved throughput is much lower than on the Intel platform. In a single threaded test,
Figure 4-4(a), the pipeline stall issue is noticeable once again. Good load performance
is only achieved when issuing several load instructions at once, i.e. when using multiple
streams. Also, a decrease in multi-threaded performance is noticeable with the increase
of output streams, as shown in Figure 4-4(b).

0 Output streams 1 Output stream 2 Output streams 4 Output streams

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16

0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

Input streams

T
h
ro
u
gh

p
u
t
[MiB s

]

Input
Output

(a) Single thread

0 Output streams 1 Output stream 2 Output streams 4 Output streams

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

Input streams
T
h
ro
u
gh

p
u
t
[MiB s

]

Input
Output

(b) 4 threads

Figure 4-4: Streaming LOAD/STORE performance of ARM CPU

4.2.2 Memory load latency

CPU is able to hide RAM access latency with the help of automatic or manual data
prefetching. To measure this effect, we utilized lmbench3 [68] micro-benchmark suite.
The micro-benchmark makes one single allocation of 256MiB, so the entire data set does
not fit into the CPU caches. Next, the test reads array elements from the end towards
the beginning of the array, while creating data dependencies that cannot be resolved
until the load has fully been performed. This serializes the access and prevents any data
dependency optimization that the CPU might apply. Finally, the working set, array size,
is varied so it fits into all cache levels, until it gets too big. By doing the serialized access
and array size variation, it is guaranteed that memory access time is caused by maximum
latency of the closest cache from which data is served. Micro-benchmark was repeated
with changed access stride. This parameter controls the distance between accessed array
members. By changing the stride, we investigate impact of prefetchers and TLB3 misses
on read latency. When a larger stride is used prefetchers are more likely to fail to get the
data in time for when it is needed. Also, with a larger stride the benchmark performs less
accesses per page and causing more TLB reloads which additionally decrease performance.
Results of latency micro-benchmark for Intel Haswell CPU are shown in Figure 4-5.

The Figure shows the results of running lat_mem_rd4 program from lmbench3 [68]
suite. Left y-axis shows latency in ns, while the CPU clock cycle count is shown on

3Translation Lookaside Buffer stores recent virtual to physical memory translations
4command: lat_mem_rd 256m 64 128 256 512 1024

60

4.2 Memory load throughput

L1D Cache

L2 Cache

L3 Cache

RAM

Prefetcher active

1.2

1.5

3.8

5.0

6.2

8.1

10.0

13.1

16.2

20.0

25.0

31.9

40.0

50.0

63.1

78.8

100.0

130.0

512 2Ki 8Ki 32Ki 128Ki 512Ki 2Mi 8Mi 32Mi 128Mi

Array size
[
B
]

R
ea
d
la
te
n
cy

[n
s]

stride 64B

stride 128B

stride 256B

stride 512B

stride 1024B

3

4

10

13

16

21

26

34

42

52

65

83

104

130

164

205

260

338

C
lo
ck

cy
cl
es

Figure 4-5: Read latency of Intel Haswell CPU with hardware prefetching

y-axis on the right. The graph shows several plateaus, each representative of a cache
level. The L1 data cache is shown to have the fastest access latency, just 4 clock cycles.
With an array size of 32KiB, L2 cache shows minimal latency of 11 cycles. Variability
in measured latencies around the 256KiB array is likely due to the limited size of L1
TLB, which can only hold 64 entries for 4KiB pages. The L2 cache TLB has 1024 entries
shared for 4KiB and 2MiB pages, and its effects are not visible in the test. After the
288KiB (L1 + L2 data cache) mark we expect to see L3 cache latency, which, for Haswell
micro-architecture, is listed to be 34 clock cycles5. However, the graph shows 3 plateaus
for different stride sizes. For the smallest stride size, 64B, the read latency stays at L2
cache level, until the array size gets larger than L3 cache size. This is an indication
that prefetchers are able to identify the access patterns of smaller strides correctly and
preload required data. Haswell micro-architecture contains several hardware prefetchers
[50], each dedicated to specific purpose:

The Data Cache Unit prefetcher (DCU) is responsible for loading the next line into
the L1 data cache. It is triggered on ascending load memory accesses to recently
accessed data.

The Spatial prefetcher monitor requests from L1 cache and prefetches another cache
line to form a 128B aligned chunk. Depending on which cache line is requested by
the L1 cache, this prefetcher also requests the preceding or the following line.

5Actual latency will vary due to clock ratios between CPU core and uncore [50]

61

4 Micro Benchmarks

The Streamer prefetcher detects read requests for ascending and descending addresses.
The streamer of Haswell architecture can detect up to 32 data load or store streams
and prefetches next cache lines from memory. If there are not many outstanding
memory requests per core, data is also prefetched to the L2 data cache. In
case prefetched lines are far ahead, data is stored in the L3 cache only to avoid
replacement of useful cache lines in L2.

Figure 4-5 does not show anything in the L1 cache region that would indicate that
the DCU prefetcher is active. This is because the micro-benchmark traverses the array
in descending order, thus avoiding a triggering of the DCU prefetcher. However, the
spatial and streaming prefetcher are able to successfully recognize the access pattern and
hide latency for smaller stride lengths. But for stride size 256B, and larger, this is not
the case. Actually, the spatial prefetcher in this case is contra-productive, since element
access does not happen in 128B blocks for larger stride sizes.

Figure 4-6 shows the results of repeated load latency micro-benchmark after disabling
the CPU prefetchers6. The repeated results do not show any latency hiding performed
by the prefetcher. After the array size increases beyond the L3 cache, around 25MiB,
the read latency increases to 120ns.

L1D Cache

L2 Cache

L3 Cache

RAM

1.2

1.5

3.8

5.0

6.2

8.1

10.0

13.1

16.2

20.0

25.0

31.9

40.0

50.0

63.1

78.8

100.0

130.0

512 2Ki 8Ki 32Ki 128Ki 512Ki 2Mi 8Mi 32Mi 128Mi

Array size
[
B
]

R
ea
d
la
te
n
cy

[n
s]

stride 64B

stride 128B

stride 256B

stride 512B

stride 1024B

3

4

10

13

16

21

26

34

42

52

65

83

104

130

164

205

260

338

C
lo
ck

cy
cl
es

Figure 4-6: Read latency of an Intel Haswell CPU without hardware prefetching

Saturating a memory system with requests, as shown by graph, has an adverse
effect on latency. Figure 4-6 illustrates the importance of prefetching. The same test is

6In runtime, using Model-Specific Registers

62

4.3 Conclusion

performed on the ARM platform, with results shown in Figure 4-7. The L1 data cache
size of the ARM CPU core is 32KiB and can be accessed in 4 clock cycles. The unified
L2 cache is 1MiB and is shared by all 4 CPU cores.

L1D Cache

L2 Cache

RAM

3.0

4.0

5.0

6.0

8.0

10.0

13.0

16.0

20.0

25.0

32.0

40.0

50.0

63.0

79.0

100.0

130.0

512 2Ki 8Ki 32Ki 128Ki 512Ki 2Mi 8Mi 32Mi 128Mi

Array size
[
B
]

R
ea
d
la
te
n
cy

[n
s]

stride 64B

stride 128B

stride 256B

stride 512B

stride 1024B

4

5

6

8

10

13

16

20

25

32

40

50

63

79

100

130

C
lo
ck

cy
cl
es

Figure 4-7: Read latency of ARM CPU

The graph shows the Latency of the L1 data cache to be 4ns, or 4 clock cycles7.
The L2 cache of the ARM platform has a much larger access latency than Intel CPU. We
measured this to be 32 clock cycles. however, RAM access latency is comparable to Intel
system, at around 130ns. As discussed before, our platform has no automatic prefetcher
logic that allow for more predictable latencies.

4.3 Conclusion

Even though DDR4 memory on the Intel platform operates at 2133MHz and has peak
bandwidth of 68GiB s−1, the load to use latency is still governed by underlying technology
of DRAM. Latency of random DRAM read is dominated by the time it takes to access the
desired row of storage cells and Column Address Strobe (CAS) latency to read data from
it. Peak memory bandwidth has been increasing with every new generation of DIMMs8,
as the CAS latency has also increased. This can be explained by Moore’s Law[80],
which predicts a doubling of transistors per chip every 22-24 months approximately

7ARM CPU core clock operates at 1GHz
8Dual In-line Memory Module (DIMM)

63

4 Micro Benchmarks

[97]. Bandwidth is improved with more transistors operating in parallel, but ultimately,
the latency of DRAM memory is limited by the read and write access times of DRAM
cells. Additionally, to be able to support high densities the Registered memory modules,
RDIMM, are using a register in between the memory controller and the DRAM modules.
This reduces electrical load on the memory controller, allowing stable operation with
high DRAM densities. This in turn introduces higher latencies due to added components
and longer signal propagation paths. In contrast, ARM platform has 2GiB of unbuffered
DDR3 memory, operating at 1066MHz. While this configuration provides significantly
lower peak memory bandwidth, latencies are comparable to the Intel system, as shown
by Figure 4-7.

From the results of micro-benchmarks it is obvious that our algorithm must be de-
signed with the memory hierarchy in mind. If a program has a pathological access pattern
that defeats the purpose of the caches, we forego substantial performance improvements.
Using wider registers, by means of SIMD CPU units, enables higher compute throughput
and improves instruction-per-clock ratio. Similarly, caching mechanisms of the CPU can
hide latency under certain conditions. Generally, a sequential access to memory, coupled
with enough instruction in between enables prefetchers to effectively hide load-to-use
latency completely.

64

CHAPTER 5
JIT Generation of

Reed-Solomon
Erasure Codes

This chapter presents methods for the implementation of the versatile Reed-Solomon
erasure coding scheme targeted for modern CPUs. First, we discuss an implementation
utilizing a specialized carry-less multiplication vector instruction. The second approach
uses the JIT compiler technique to produce optimized erasure codes suitable for multiple
CPU platforms. This approach allows construction of codes over arbitrary binary extended
fields GF(2l). Since only a small set of CPU instructions is utilized in the code realization,
the algorithm is naturally suitable for execution on the SIMD unit of a CPU. Code
of erasure coding methods is produced in run-time, when all parameters of the coding
scheme are known. This yields efficient, dense vectorized code free of control sequences.
Throughput of vectorized erasure code configurations is compared when running on x86
and ARM platforms. In conclusion, we give an outlook for further research using low
power data processing platforms, operating as fast, low power, erasure code computing
offload engines.

65

5 JIT Generation of Reed-Solomon Erasure Codes

5.1 Vectorization

Many modern processors support vector instructions as a means to improve data-intensive
applications. In fact, according to Flynn’s taxonomy [23], modern processors are Single
Instruction Multiple Data (SIMD) multiprocessors. This data level parallelism is achieved
using a vector arithmetic logic unit (vector ALU). Figure 5-1 illustrates a 128 bit vector
arithmetic logic unit. The ALU depicted is able to perform operations simultaneously
on two 64 bit, four 32 bit, or eight 16 bit operands. Operations are performed on all
vector elements in parallel. Other than arithmetic and logic operations, CPU supports
optimized instructions for loading and storing data into vector registers.

64b 64b
32b 32b 32b 32b

16b 16b 16b 16b 16b 16b 16b 16b

64b 64b
32b 32b 32b 32b

16b 16b 16b 16b 16b 16b 16b 16b

Vector ALU (128 bit)

64b 64b
32b 32b 32b 32b

16b 16b 16b 16b 16b 16b 16b 16b

2…8

2…8 2…8

Figure 5-1: Illustration of a 128-bit Vector arithmetic logic unit

An algorithm can take best advantage of vector instruction if the same operation
is performed on multiple data elements in sequence. There is usually no mechanism for
flow control based on the value of vector register element. If such conditional execution
is required, it can be achieved using masking of the results of operations. The mask
vector is calculated based on vector elements and applied to selectively propagate the
vector element. However, in the worst case this can lead to complete serialization of
the execution if all vector elements diverge. Such algorithms that depend on masking
operation, typically benefit less than straight-forward data-parallel algorithms.

To generate programs that exploit SIMD capabilities of processors, several different
programming choices exist. The following approaches are most common:

Inline assembly This approach, when supported by high-level programming languages,
is the most direct way to use vector instructions. However, developing larger
algorithms using this approach is complex and error-prone, and should be avoided.
The resulting source code is not portable, since compiler directives used for inlining
assembly code are not part of high-level languages, such as C or C++.

66

5.1 Vectorization

Intrinsics Some compilers provide special functions that are used to explicitly implement
vector instructions for high-level language that do not support vectorization na-
tively. Vector intrinsic functions in C language have a form of typical C function,
which operates on special vector types. The compiler maps intrinsic function to
corresponding vector operation and parameters to vector registers. Use of intrinsic
functions of one CPU with specific vector ALU, creates the code optimized only for
that vector unit, which significantly increases porting efforts to the new vector unit.

Vector libraries In order to exploit benefits of vectorization using high-level programming
languages, such as C++, libraries for explicit vectorization are needed. One example
is the Vc library [59], which provides intuitive API and ensures portability across
different compilers and vector unit architectures.

Auto-vectorization Modern compilers support an auto-vectorization feature, which
means they are able to automatically exploit vector data-parallelism. The success
of auto-vectorization is conditioned on data dependencies of the algorithm. Most
basic techniques employed by compilers to vectorize scalar code are loop-level
vectorization and block-level vectorization.

Support for special data annotations and native vector data types is another kind
of compiler-assisted vectorization. Some C/C++ compilers support special attributes
to data types, which should be vectorized. More recent compilers, such as LLVM clang
[62], support vector literals natively. Clang adds support vector literals in C/C++ code,
at the cost of portability. Internally, LLVM has vector types and permits almost all
arithmetic operations. This will be the basis for implementing Reed-Solomon codes using
the Just-In-Time (JIT) compilation technique.

The Block Reed-Solomon algorithm has no inter-data dependencies, so an efficient
vectorized implementation is expected to bring significant performance over the scalar
version. Because we use a buffer-based encoding algorithm, it is easy to employ horizontal
vectorization in developing the algorithms. This technique combines several independent
data symbols, processed in the same way, into a single vector register. After applying
algorithm operations on vectors of sequential data symbols, resulting vector will contain
the same number of parity-check symbols.

5.1.1 Carry-less multiplication

The need for efficient carry-less multiplication has long been recognized. It is also being
used in the computations of several cryptographic systems and standards, such as Elliptic
Curve Cryptography over binary fields [58], Galois Counter Mode [67], and Advanced
Encryption Standard [16] algorithms. One of the best known algorithms, found in the
OpenSSL library [76] [15], is able to emulate the 64 bit carry-less product in 100 cycles
[67]. For this reason, Intel has introduced a new PCLMULQDQ vector instruction as a part

67

5 JIT Generation of Reed-Solomon Erasure Codes

Listing 5-1 PCLMULQDQ instruction intrinsic
1 #include "wmmintrin.h"
2 __m128i _mm_clmulepi64_si128(__m128i a, __m128i b, const int sel);

of the AES-NI [98] instruction set. Intrinsic function of the PCLMULQDQ instruction is
shown in Listing 5-1.

Operands a and b are standard 128 bit SSE vector registers. The PCLMULQDQ instruc-
tion multiplies one quadword (64 bit values) of a by one quadword of b. The value of
the immediate parameter sel is used to determine which quadwords of a and b are used.
The result of carry-less multiplication is returned as a double quadword value (128 bit).
The pseudocode in Algorithm 5-1 shows operation of PCLMULQDQ instruction. The return
value at line 14 is defined by Algorithm 3-1.

Algorithm 5-1 Pseudo code of the PCLMULQDQ instruction
1: function PCLMULQDQ(a[127 : 0], b[127 : 0], sel[7 : 0])
2: aTemp[63 : 0]← 0
3: bTemp[63 : 0]← 0
4: if IsBitSet(sel, 0) then . select quadword from a
5: aTemp[63 : 0]← a[127 : 64]
6: else
7: aTemp[63 : 0]← a[63 : 0]
8: end if
9: if IsBitSet(sel, 4) then . select quadword from b

10: bTemp[63 : 0]← b[127 : 64]
11: else
12: bTemp[63 : 0]← b[63 : 0]
13: end if
14: return carry_less_multiplication(aTemp, bTemp)
15: end function

The PCLMULQDQ instruction works natively with 64 bit operands, in other words, it
operates on elements of GF(264). Performance of this instruction is significantly lower
than performance of other arithmetic instructions, as shown in Figure 4-1. This is caused
by large latency and a high reciprocal throughput measure associated with the instruction.
On Intel Haswell platform, PCLMULQDQ instruction has minimal latency of 7 clock cycles,
and reciprocal throughput of 2 [24]. This means that new instruction can start to execute
2 cycles after a previous PCLMULQDQ instruction, but only if the operands of the new
instruction are independent of previous instruction.

If smaller binary fields are required, e.g. GF(232), input operands have to be shuffled
into lower parts of input registers. The implementation is trivial but effective throughput
of the operation will be reduced. If, however, larger binary fields are required, the result

68

5.1 Vectorization

Listing 5-2 Carry-less multiplication of elements in GF(2128) using PCLMULQDQ intrinsics
1 void clmul_128(__m128i a, __m128i b, __m128i *resU, __m128i *resL)
2 {
3 __m128i c, d, e, f, ef, ef_l, ef_u;
4 c = _mm_clmulepi64_si128(a, b, 0x00);
5 d = _mm_clmulepi64_si128(a, b, 0x11);
6 e = _mm_clmulepi64_si128(a, b, 0x10);
7 f = _mm_clmulepi64_si128(a, b, 0x01);
8 ef = _mm_xor_si128(e, f);
9 ef_l = _mm_slli_si128(ef, 8);

10 ef_u = _mm_srli_si128(ef, 8);
11 *resU = _mm_xor_si128(ef_l, c);
12 *resL = _mm_xor_si128(ef_u, d);
13 }

can be obtained by combining several carry-less multiplications and additions (XOR
operations). This approach, for elements of GF(2128) is shown in Listing 5-2. Larger
binary fields are used more broadly in cryptography, whereas, specifically in storage
applications, smaller binary fields are more commonly used. Both hardware and software
RAID implementations, as well as the ZFS RAID-Z erasure scheme, use GF(28) as the
base field. Because of this reason, PCLMULQDQ is not very well suited for use in storage
applications. In the remainder of the thesis, we will describe other vectorized methods,
suitable for specific implementations.

The SSE instruction set contains a collection of logic and arithmetic instructions
that can be used for implementing carry-less multiplication on small fields like GF(28).
Unfortunately, the SSE instruction set is not fully orthogonal. Instructions that operate
on packed 8 bit integers are not supported, but the 16 bit instructions described in
Listing 5-3 can be used. The result of the carry-less multiplication of GF(2l) requires 2l
bits for storage. To accommodate this, we split the result into 2 registers.

Listing 5-3 VEX encoded SSE instructions used for implementing GF(28) operations
1 vmovdqa m128, xmm ; load 128 bit of data into xmm
2 vmovdqa xmm, m128 ; store 128 bit of data to memory
3 vpsllw xmm, xmm, imm8 ; shift 16-bit integers left by imm8
4 vpsrlw xmm, xmm, imm8 ; logically shift 16 bit integers right
5 vpand xmm, xmm, xmm ; compute bitwise AND
6 vpxor xmm, xmm, xmm ; compute bitwise XOR

Listing 5-4 shows an example of vectorized carry-less multiplication in GF(28). The
lower part of the result is stored in xmm0, while the upper part is in xmm1. Following
the carry-less algorithm described in Algorithm 3-1, we obtain the result by shifting the

69

5 JIT Generation of Reed-Solomon Erasure Codes

input and adding these intermediate values to the resulting register. With the omission
of the 8 bit shift instructions, we have to ensure that upper bits of the 8 bit operands
do not cross over into the adjacent data location when using 16 bit SHIFT instructions.
This is accomplished by applying AND-masks that clear upper or lower bits in the 8 bit
operands.

Listing 5-4 Vectorized carry-less multiplication by X2 + 1 using SSE vector instructions
1 vmovdqa ([src]), xmm2 ; load source into lower result reg.
2 vpand ([mask1]), xmm2, xmm0 ; mask1 = 0x3F (vector)
3 vpsllw $2, xmm0, xmm0 ; shift left by 2 bits
4 vpxor xmm2, xmm0, xmm0 ; accumulate into lower result reg.
5 vpand ([mask2]), xmm2, xmm1 ; mask2 = 0xC0 (vector)
6 vpsrlw $6, xmm1, xmm1 ; logically shift right by 6 bits

The execution speed of the carry-less multiplication described here depends upon
the number of non-zero polynomial coefficients of the multiplier. The total and maximal
number of required CPU instructions is given in Table 5-1. It is obvious that the number

Instruction Count Maximum count

vmovdqa 4ω(b) 32
vpsllw ω(b) 8
vpsrlw ω(b) 8
vpand 2ω(b) 16
vpxor 2ω(b) 16

Total 10ω(b) 80

Table 5-1: Number of assembler instructions needed to perform carry-less multiplication a× b in
GF(28), where ω(b) is Hamming weight of multiplier b.

of instructions depends strictly on the Hamming weight of the multiplier. Since the
carry-less multiplication has to be performed for each element of the Reed-Solomon
encoding matrix, it would be beneficial to precondition the encoding matrix in such a
way that the sum of the Hamming weights of all elements is minimal. That is, minimize
the criterium given by Equation 5.1.

arg min
A is RS matrix

∑
i,j

ω(ai,j) (5.1)

Strategies for finding the optimal Reed-Solomon generator matrices were described in
[55]. Generally, these strategies work only for parity generation, where the preconditioned

70

5.1 Vectorization

generator matrix can be used to reduce the number of instructions. When reconstructing
the missing data block, an inverse of the generator matrix is usually calculated as
in Equation 2.28. The inversion operation undoes all optimization effort put into
preconditioning of generator matrix.

5.1.2 Modulo operation

Vectorized modulo operation can be realized directly from the algorithm described in
subsection 3.1.2. Let p(X) = X8 + X4 + X3 + X2 + 1 be the primitive polynomial that
generates a field GF(28), and let a be a carry-less multiplication result that needs
reduction. Following the modulo reduction algorithm, we have:

p?(X) = X4 + X3 + X2 + 1
q+(X) = X8 + X4 + X3 + X2 (5.2)

The upper part of the carry-less multiplication, c†(a) is then multiplied by q+(X)
the polynomial. Since we are only interested in the upper 8 bit of the result, we can
simplify the procedure. Let t1(X) be:

t1(X) = Ml(c†(a) × q+(X)) = Ml(c†(a) × {X8 + X4 + X3 + X2}) (5.3)

Then, we define the polynomial t2(X) as follows:

t2(X) = Ll(t1(X) × p?(X)) = Ll(t1(X) × {X4 + X3 + X2 + 1}) (5.4)

To obtain the modulo reduction, we are only interested in the lower 8 bit of the
t2(X) polynomial.

Listing 5-5 shows implementation of the module reduction algorithm using SSE
vector instructions. Algorithm depends strictly on the field generator polynomial p(X),
and thus has a constant runtime. The polynomial t1(X), as shown in Equation 5.3, is
calculated in lines 2 through 11. From line 12 to 20, polynomial t2(X) is derived and
added to the lower part of the carry-less multiplication result. This procedure yields the
result in register xmm0.

71

5 JIT Generation of Reed-Solomon Erasure Codes

Listing 5-5 Vectorized modulo reduction operation for GF(28) generated with p(X) =
X8 + X4 + X3 + X2 + 1

1 vmovdqa ([a_low]), xmm0 ; load upper part of clmul result
2 vmovdqa ([a_up]), xmm1 ; init t1 accumulator
3 vpand ([mask1]), xmm1, xmm2 ; mask1 = 16(0xF0)
4 vpsrlw xmm2, xmm2, $4 ; logically shift right by 4 bits
5 vpxor xmm2, xmm1, xmm1 ; accumulate into t1 result acc.
6 vpand ([mask2]), xmm2, xmm2 ; mask2 = 16(0xFE)
7 vpsrlw xmm2, xmm2, $1 ; logically shift right by 1 bits
8 vpxor xmm2, xmm1, xmm1 ; accumulate into t1 result acc.
9 vpand ([mask2]), xmm2, xmm2 ; mask2 = 16(0xFE)

10 vpsrlw xmm2, xmm2, $1 ; logically shift right by 1 bits
11 vpxor xmm2, xmm1, xmm1 ; accumulate into t1 result acc.
12 vpand ([mask3]), xmm1, xmm2 ; mask3 = 16(0xFC)
13 vpsllw xmm2, xmm2, $2 ; shift left by 2 bits
14 vpxor xmm2, xmm0, xmm0 ; accumulate into result register
15 vpand ([mask2]), xmm2, xmm2 ; mask2 = 16(0xFE)
16 vpsllw xmm2, xmm2, $1 ; logically shift right by 1 bits
17 vpxor xmm2, xmm0, xmm0 ; accumulate into result register
18 vpand ([mask2]), xmm2, xmm2 ; mask2 = 16(0xFE)
19 vpsllw xmm2, xmm2, $1 ; logically shift right by 1 bits
20 vpxor xmm2, xmm0, xmm0 ; accumulate into result register

Algorithm Throughput [MiBs]

SSE AVX2

clmul 2769.55 4806.23

mod 2812.40 4912.33

mul 1541.30 2863.98

row mul naïve 441.68 802.53

row mul combined 1025.59 1945.12

Table 5-2: Throughput of vectorized algorithms for carry-less multiplication and modulo reduction
for GF(28) using SSE and AVX2 instruction set.

5.1.3 Evaluation

The described algorithms are implemented by writing the assembly code by hand. The
evaluation is performed on the Intel Haswell platform (Table A-1), using a single CPU
core. Table 5-2 summarizes throughput performance of the implemented carry-less
multiplication, in Listing 5-4, and module reduction, in Listing 5-5.

72

5.2 Just-In-Time compilation of Reed-Solomon codes

Results represent throughput in MiBs−1 for carry-less multiplication (clmul), mod-
ulo operation (mod), and complete GF(28) multiplication (mul). Additionally, multiplica-
tion of 4 row elements of encoding matrix are performed, row mul. The naïve approach
performs full multiplication of each individual element. However, when constructing the
Reed-Solomon code, modulo reduction does not have to be performed for each element of
the generator matrix, as shown by Equation 3.25. This fact greatly improves throughput
of matrix row operations in Reed-Solomon block codes.

AVX2 results are obtained by rewriting the methods using an AVX2 instruction
set. With doubling of the register width, from 16B in SSE, to 32B in AVX2, we can
achieve close to twice as much throughput. One of the reasons we don not reach doubled
performance of the SSE methods is the fact that current CPUs run AVX instructions
at a lower clock frequency [52]. This is a necessary measure to maintain the thermal
design power (TDP) of current CPU architectures. Also, reciprocal throughout of AVX2
instruction is usually lower when compared with the corresponding SSE instruction. E.g.,
our test CPU can retire 3 XOR vector instructions in a single clock cycle, but is only
capable of performing 2 AVX2 XOR operations.

5.2 Just-In-Time compilation of Reed-Solomon codes

Just-In-Time (JIT) compilation is a technique used for compiling executable code during
program runtime, often just before execution. This technique has found its use in various
scenarios. One of the most used applications is in the translation of byte-code (virtual
machine code) to native machine code. In this instance, JIT compilation is used to
significantly speed up the execution of such programs (Java or .NET), because execution
of native code is more efficient than interpretation of the byte-code. There are also
situations where the required information to perform compilation before runtime is not
present ahead of runtime. E.g., advanced regular expressions (regexp) implementation
can utilize JIT compilation to translate a user-specified matching rule into native machine
code and potentially increase string matching performance.

To perform the actual JIT compilation, many projects depend on optimizing compiler
infrastructures, such as LLVM [63] and GCC [30], called JIT Compilers. By using the
well-established codebases of these compilers, it is also possible to utilize their extensive
optimization frameworks to generate faster and more efficient machine code. One of the
important benefits is that the translated code will be able to run on many different CPU
architectures supported by JIT compilers. If a compiler backend, traditionally called an
Assembler, can output machine code for different CPU architectures, it is referred to as a
retargetable assembler. This is a desired feature because it enables use of different CPU
instruction set architectures, both currently existing and upcoming ones.

One of the drawbacks of JIT compilation is latency in execution of generated code.
The more optimization passes the JIT compiler performs the more time it will take to

73

5 JIT Generation of Reed-Solomon Erasure Codes

generate the machine code. If the generated code can be saved (memoized) and reused
later it is worth spending more time on optimization to obtain more efficient machine
code. Otherwise, a JIT compiler can make trade-offs between the compilation time and
the quality of generated code.

A very similar technique to JIT compilation, is runtime code generation. The
important distinction here is that, with code generation, there is no starting code
representation. Instead, the running program (host program) outputs the machine code
directly according to an algorithm. This is suitable for problems where starting code is
not available at runtime (e.g. in case of regexp), or when the problem is well defined and
the generated code would not benefit from further optimizations. An implementation of
XOR- and ADD-only codes, based on Cauchy-Reed-Solomon codes, is described in [96],
and available as QEnc library.

In the following, an implementation of Reed-Solomon block codes using the JIT com-
pilation technique is presented. The presented implementation is able to produce highly
optimized Reed-Solomon generating/reconstruction routines over a desired extended field
GF(2l), for l = {8, 16, 32, 64}. For the actual JIT compilation the LLVM compiler is used,
which provides us with the following benefits:

• Runtime code generation without having to provide initial algorithm representation
(byte-code)

• Retargetability – support for different CPU platforms

• Performance improvements achieved through extensive optimization framework of
LLVM

• Seamless support for SIMD code generation

The resulting, scalar and vectorized, code is evaluated on x86 and ARM platforms.

5.2.1 LLVM as a JIT compiler

The LLVM project started as a collection of toolchain components, including compilers,
assemblers, debuggers, etc. One of the main design goals was that it be modular, reusable
and extendable. The LLVM compiler infrastructure is shown in Figure 5-2. LLVM is
designed as a three-phase compiler, consisting of frontend, optimizer, and backend phase.

The frontend parses and processes source code and builds a language agnostic code
representation, called LLVM IR (Intermediate Representation). This design simplifies
support for high-level programming languages (such as C/C++ or Fortran), as only a
dedicated frontend is needed. LLVM IR can also be generated by an interpreter or a
virtual machine aiming to optimize a suitable part of the interpreted program. This
technique is commonly known as Just-In-Time (JIT) compilation. The optimizer is
responsible for applying a variety of transformations and optimizations, with the goal of

74

5.2 Just-In-Time compilation of Reed-Solomon codes

LLVM IR

Optimizer

LLVM IR
(.ll)

Machine code

Backend

Program source code

Frontend

Clang C/C++/ObjC
Frontend

llvm-gcc
Frontend

x86
Backend

ARM
Backend

PowerPC
Backend

C/C++

Fortran
Native

Executable
(Library)

LLVM Optimizer

JIT compiler
(generator)

Figure 5-2: LLVM compiler infrastructure

improving program run-time. Most optimizations done by LLVM are independent of the
language and target platform. This is accomplished by performing the optimization passes
on a well-defined LLVM IR code. Only a small portion of optimization is performed during
IR lowering to machine code. The backend is responsible for producing target machine
code based on the optimized IR code. Common backend procedures are instruction
selection, register allocation, and instruction scheduling. LLVM can run optimizations
and produce scalars and vectors on both x86 and ARM CPU architectures.

LLVM IR representation

LLVM IR, sometimes also referred as LLVM assembly language, is an intermediate
representation used in all phases of LLVM compilation. It provides type safety, flexibility,
vector types, and is capable to represent programs written high-level languages. The
Strict Static Single Assignment (SSA) form of the LLVM IR require all variables to be
statically defined and assigned value only once. The SSA form simplifies and improves
the results of compiler optimizations.

A minimal translation unit of the input program is called a Module. A module
contains functions, global variables and symbol table entries, expressed in LLVM IR
representation. Modules can be combined together by the LLVM linker. This process
merges functions and global variables and resolves symbol table entries. It also enables
the Link Time Optimization (LTO) passes to reduce and simplify program code. Minimal
LLVM Function consists of a well-defined function interface, and contains at least single
Basic Block. A basic block is a sequence of IR instructions, preceded and identified by
a label. Basic blocks are useful for representing a typical sequence of instructions like
loop body.

An excerpt from an LLVM Module is shown in Listing 5-6. The module contains a
single function, rs_gen, which takes 3 strongly typed parameters. Parameters d_ptrs

75

5 JIT Generation of Reed-Solomon Erasure Codes

and c_ptrs are addresses of data and parity buffers. On line 4, a local variable of the
vector type is allocated on a function stack using the alloca instruction, followed by
initialization with zero on the next line. The pointer to the first data buffer is loaded on
line 7, followed by address offset calculation performed by getelementptr instruction.
This instruction is used to calculate offset of a data element inside a structure of an array.
Data symbols are finally loaded using the load instruction annotated with vector type
on the line 9. Examples of vector arithmetic and logic instructions are given on lines 11
trough 15.

Listing 5-6 Example of LLVM IR code illustrating vector operations
1 ; ModuleID = 'rs_jit_module_0'
2 define i32 @rs_gen(<16 x i8>** %d_ptrs, <16 x i8>** %c_ptrs, i64 %len) {
3 entrypoint:
4 %C0 = alloca <16 x i8>
5 store <16 x i8> zeroinitializer, <16 x i8>* %C0, align 16
6 ...
7 %D0_ptr = load <16 x i8>** %d_ptrs, align 8
8 %D0_ptr_off = getelementptr <16 x i8>* %D0_ptr, i64 %off
9 %D0 = load <16 x i8>* %D0_ptr_off, align 16

10 ...
11 %C0.1 = xor <16 x i8> %D0, %C0
12 %D0.l2 = shl <16 x i8> %D0, <i8 2,i8 2,i8 2,i8 2,i8 2,i8 2,i8 2,i8 2,
13 i8 2,i8 2,i8 2,i8 2,i8 2,i8 2,i8 2,i8 2>
14 %D0.r6 = lshr <16 x i8> %D0, <i8 6,i8 6,i8 6,i8 6,i8 6,i8 6,i8 6,i8 6,
15 i8 6,i8 6,i8 6,i8 6,i8 6,i8 6,i8 6,i8 6>
16 ...
17 ret i32 0
18 }

Instead of using the frontend binaries, we are utilizing the JIT helper libraries
provided by LLVM. A class diagram of LLVM JIT library is shown in Figure 5-3. To
achieve this, our host program links against parts of the LLVM toolchain. The IR Builder
API of the JIT helper libraries is provided as a set of C++ classes. The top-level entity
is an LLVMContext class that owns all modules, constant tables, etc. Upon instantiation
of a Module object, which represents a compilation unit of our JIT code, we instantiate
a new Function object. Finally, an instance of IRBuilder object is used to insert IR
instructions of the function.

Most of the LLVM IR instructions are orthogonal with respect to scalar and vector
types. The IRBuilder class provides additional operations for use with vector data types,
such as element insertion/extraction, splat and shuffle operations. When all instructions
and the function epilogue has been written, the JIT helper is used to optimize and create
the machine instruction code. The first step in this process is selecting analysis and
optimization passes to be run on the new IR module. As mentioned above, we depend
heavily upon the compiler to optimize our code, since we have intentionally written
redundant operations in the function body. Here we perform aliasing analysis, promoting

76

5.2 Just-In-Time compilation of Reed-Solomon codes

+ SetInsertPoint()
+ getTrue()
+ getFalse()
+ getInt32()
+ getInt64()
+ getInt32Ty()
+ getInt64Ty()
+ getVoidTy()
+ CreateMemSet()
+ CreateMemCpy()

BB : BasicBlock
Context : LLVMContext

IRBuilderBase

+ CreateAlloca()
+ CreateLoad()
+ CreateStore()
+ CreateGEP()
+ CreateCast()
+ CreateStructGEP()
+ CreateCall()
+ CreateIsNull()
+ CreateBr()
+ CreateCondBr()
+ CreateAdd()
+ CreateSub()
+ CreateMul()
+ CreateDiv()
+ CreateShl()
+ CreateLShr()
+ CreateAnd()
+ CreateOr()
+ CreateXor()
+ CreateExtractElement()
+ CreateInsertElement()
+ CreateShuffleVector()
+ CreateVectorSplat()

IRBuilder

/ OwnedModules : list<Module>

LLVMContext

+ getContext()
+ getFunctionList()
+ getFunction()

- Context : LLVMContext
- ModuleID : string
- TargetTriple : string
- FunctionList : list<Function>

Module

_ Create(Type, Name, Module)
+ setDoesNotAccessMemory()
+ setOnlyReadsMemory()
+ setDoesNotAlias()

- BasicBlock
- ArgumentList : list
- AttributeSet : set
- SymbolTable

Function

_ Create(Context, Name, Function)

- InstructionList : list
- Parent : Function

BasicBlock

«use»

«use»

«use»

«use»

«use»

Figure 5-3: Class diagram of LLVM infrastructure for building JIT compiler

memory to registers, instruction combining, dead store elimination, and dead instruction
elimination passes. Afterwards, the transformed module IR is finalized and the native
machine code is written. Finally, we are given a pointer to the created function that can
be called from the host program.

5.2.2 Reed-Solomon Encoding

Buffer-based Reed-Solomon parity generation is described by pseudocode in Algorithm 5-2.
The algorithm starts with the creation of the generator matrix for systematic Reed-
Solomon code, as described by Equation 2.27. The outer-most loop, at line 3, is used to
keep track of current symbol offset in the codeword buffers. Next, local parity variables
are cleared and algorithm proceeds to loading of the k data symbols, performed in the
loop on line 8. For each data symbol Dki , partial parity symbols are calculated and
updated (line 10.) Once all parity symbols of the current block are calculated, the parity
symbols, computed in Cm, are stored into parity buffers (line 14.)

The described algorithm takes several parameters. Parameters m and k are used
to parametrize the RS(n, k) code, where n = m+ k. These parameters directly govern
computational complexity of the solution. Parameters SB (size of data and code buffers),

77

5 JIT Generation of Reed-Solomon Erasure Codes

Algorithm 5-2 Pseudo code of Reed-Solomon buffer based parity generation algorithm.
1: function RS_parity_generation(m,k, SB,d, c)
2: A← RS_create_generator_matrix(m,k) . Initialize gen. matrix
3: for off← 0;off < SB;off← off+ 1 do
4: for all Cm do
5: Cm ← 0 . Initialize parity accumulators
6: end for
7: for ki ← 0;ki < k;ki ← ki + 1 do
8: Dki ← d[ki][off] . Load data symbol
9: for mi ← 0;mi < m;mi ← mi + 1 do

10: Cmi
← Cmi

⊕Dki ·A[mi][ki] . Accumulate parity
11: end for
12: end for
13: for all Cm do
14: c[m][off]← Cm . Store parity symbols
15: end for
16: end for
17: end function

d (data symbol buffers), and c (parity symbol buffers) do not contribute to algorithm
complexity.

To achieve best performance when using JIT compilation, we have to make sure
the generated code size is not too large. Generated machine code for the method in
Algorithm 5-2 should fit in the CPU instruction cache. This is likely to be expected for
reasonably small m+ k, which are commonly used in storage applications.

By employing JIT compilation, we expect to benefit from the following:

Loop overhead reduction Every loop introduces the overhead by adding loop control
instructions. These instructions are especially undesirable in the short loops bodies.
Many optimizing compilers perform loop unrolling, where the loop is effectively
replaced by repetition of loop body sequences. However, this is only possible when
the loop count is known in advance, which is not the case in RS algorithm. All
inner loops are parametrized exclusively by the m and k parameters, which are
known at runtime. In our JIT implementation we completely unroll all inner loops,
lines 4-15. Only the outer loop, which iterates over elements of buffers, is kept.

Code optimization By unrolling the inner loops the compiler is able to better optimize
the procedure. After the LLVM optimization pass, we expect to see a large number
of eliminated subexpressions. Most of eliminations should come from the carry-less
multiplication procedure.

Vectorization Internal representation of LLVM supports vector instruction types. More-
over, LLVM allows usage of such types with most arithmetic and logic instructions.

78

5.2 Just-In-Time compilation of Reed-Solomon codes

Since we only depend on a limited set of instructions, we can simply select the de-
sired vector type, and have LLVM generate SIMD instruction code for the targeted
platform.

5.2.3 Carry-less multiplication

The number of SHIFT instructions executed by the CPU depends on the number of
bits set to 1 in the first operand of the carry-less multiplication method, as described
by Algorithm 3-1. The first operand is the element of the Reed-Solomon generator
matrix. By choosing the elements of the Vandermonde matrix, we can minimize the
number of operations while performing carry-less multiplication. Still, the algorithm, as
described in Algorithm 3-1, contains a condition, on line 4. Branching instruction can
reduce performance by introducing stalls in the CPU pipeline in case of a wrong branch
prediction. Branch instructions can be replaced by masking operations in vectorized
code, but they also contribute to slower throughput by increasing the total number of
instructions.

The conditional instruction is performed on the first parameter of the carry-less
multiplication method, which is an element of the generator matrix. This means, if we
would unroll the loop between lines 3 and 7 in Algorithm 3-1, we would have a specialized
carry-less multiplication method for each unique element of the generator matrix. An
example of a specialized carry-less multiplication method by elements X2 +1 and X2 +X+1
(decimal 5 and 7) is shown by Algorithm 5-3. Here, the LeftShift instruction by 0 and
2 are performed by both specialized multiplication functions.

Algorithm 5-3 Specialization of carry-less multiplication of Galois Field elements
1: function carry_less_multiplication_by_5(a)
2: r← 0 . Initialize accumulator
3: r← r⊕ LeftShift(a, 0) . 0101
4: r← r⊕ LeftShift(a, 2) . 0101
5: return r
6: end function
7: function carry_less_multiplication_by_7(a)
8: r← 0 . Initialize accumulator
9: r← r⊕ LeftShift(a, 0) . 0111
10: r← r⊕ LeftShift(a, 1) . 0111
11: r← r⊕ LeftShift(a, 2) . 0111
12: return r
13: end function

Every data symbol is multiplied by elements of column i of the generator matrix.
Since the elements of the generator matrix are constant, we directly output the code
for carry-less multiplication into the LLVM IR function body. In this process we will

79

5 JIT Generation of Reed-Solomon Erasure Codes

potentially issue more than one SHIFT instruction with the same operands, because they
are required by multiple multiplication steps. If these elements of the generator matrix
share the subset of bits set to 1, the LLVM optimization pass can eliminate redundant
SHIFT operations. In that case, we expect the optimizing compiler to reuse the result of
the first SHIFT operation for all subsequent instances. This means that in the worst case
scenario, there will be l− 1 shift operations, performed per each data symbol, in GF(2l).
Furthermore, we can define a more relaxed optimization criterion for finding optimal
generator matrices, than the one previously given by Equation 5.1. A new criterion for
finding optimal generator matrices is given by Equation 5.5.

arg min
06i<(n−k)

dmax(coli(a)) (5.5)

The objective is to minimize column-wise Hamming distances of the generator matrix.
The more elements share a non-zero bit position the less total SHIFT instruction will be
needed per a single data element. The maximum number of SHIFT instructions needed to
generate parity-check symbols of RS(n, k), defined over GF(2l), using JIT compilation is
l(n−k). In comparison, the worst case bound for traditional implementation is lk(n−k).

5.3 Evaluation

The described method of JIT code allows for implementation of vectorized code with a
different vector length, as well as different lengths of the Galois field elements. Multiple
data symbols are simply packed into the vector data type of LLVM, which permits
effortless horizontal vectorization. SIMD instructions operate on vectors of fixed length.
To achieve the best results in our evaluation, we matched the bit size of the element of
the Galois field with a length of the vector element. If the specified vector length is larger
than the vector register width of the CPU, LLVM will generate code using a technique
similar to that of loop unrolling. That is, a single IR vector variable will be represented
by two native vector registers.

Not all instructions can be performed at an equal rate by the CPU. Complex, modern,
CPU architectures are built to maximize instruction throughput by employing techniques
like out-of-order execution, branch prediction, register renaming, data prefetching, etc.
AVX (Advanced Vector Extensions) introduce several changes to existing 128 bit SSE
programming environment. The width of vector registers is doubled, from 128 bit to
256 bit. New registers are renamed from XMM[0-15] to YMM[0-15]. Vector instructions
can be encoded in the new VEX coding scheme to allow new operands and wider registers.
VEX encoding also enables instructions to have three operand formats, where the
destination register is different from the source registers. This new format produces more
compact code, but the CPU still can perform various optimizations during execution.

80

5.3 Evaluation

Modern CPUs contain larger number of available registers, Register File, than it is
specified by the architecture. The instruction scheduler is able to detect false data
dependencies, arising from reusing the same registers, and exploit superscalar and out-
of-order execution to improve performance. This technique is called register renaming,
since the CPU actually uses different physical registers. A register allocation technique
is used to eliminate register-to-register moves, or register initialization instructions. An
example of this technique are an XOR operation with two identical registers, or an SHIFT
operation by 0 places.

Table 5-3 summarizes latency and reciprocal throughput of some vector instructions
most commonly used by JIT-compiled code. The reciprocal throughput is the reciprocal
of the maximum instruction throughput when no data dependencies are present. The
values are given for Intel Haswell CPU micro architecture. Each Haswell CPU core is
designed for throughput of 4 instructions per cycle and contains a register file with 168
integer registers and 168 vector registers. It has 4 instruction decoders, each capable
of generating up to 4 micro-operations1 (µops) per clock cycle. After instructions have
been decoded to their ops form, CPU executed them in a number of execution units.
Haswell CPU has 8 execution ports, yielding a theoretical maximal throughput of 8 µops.
Some execution units are duplicated, like the 4 integer/vector arithmetic, logic, and
shift execution units. The latency of vector arithmetic operations is equal to the same
operations on general purpose registers.

Instruction Latency Reciprocal throughput

movdqa x, m128 3 0.5

movdqa m128, x 3 1

vmovdqa y, m256 3 0.5

vmovdqa m256, y 4 1

vpsllw y, y, i 1 1

vpxor y, y, y 1 0.33

vpxor y, y, m 2 0.5

Table 5-3: Latency and reciprocal throughput of instructions on Intel Haswell micro architecture

A Haswell CPU core contains two memory ports for reading and one for writing. All
memory ports are 256 bit wide. This means that the CPU can perform two full vector
loads per clock cycle and one vector store, like indicated by vmovdqa entries in Table 5-3.

Internally, all vector execution units have 256 bit throughput, but data paths are
divided into two lanes of 128 bit. All vector instructions that move data between these
two lanes have a latency of 3 clock cycles, instead of 1. Another, more severe penalty,
comes with mixing 256 bit VEX code with legacy, non-VEC encoded 128 bit code. The

1Low-level instruction used by the CPU to implement complex instructions

81

5 JIT Generation of Reed-Solomon Erasure Codes

penalty is 70 clock cycles, but compilers are aware of this issue and are capable of avoiding
it.

To evaluate the desired effect of JIT compilation, we first looked into generated
code. Results of optimizations performed by the compiler can be seen while inspecting
instructions of both LLVM IR and generated machine code. We expect to see elimination
of the SHIFT instructions used in carry-less multiplication. The quality of JIT-generated
code is confirmed by examining the LLVM IR produced and the machine code, for a
range of Reed-Solomon block code configurations. We counted a number of XOR and
SHIFT instructions. The results are shown in Figure 5-4.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

n (k= 3n/4)

N
u
m
be

r
of

in
st
ru

ct
io
ns

XOR XOR limit [nkl]
SHIFT (without optimizations) SHIFT average [nk l

2] (without optimizations)
SHIFT (with optimizations) SHIFT upper limit [nl] (with optimizations)

Figure 5-4: Number of instructions needed to implement Reed-Solomon(n,k) block codes over
GF(28).

The Figure shows the number of instructions executed to produce RS(n, k) block
code2, for 4 6 n 6 64, where k = 3/4 n. Our first observation is that the number of
XOR operations does not change significantly with enabling the JIT optimizations. In
fact, the number of XOR operations matches the predicted limit (dashed red line). This
is because the XOR operation is used to accumulate the results in output registers, thus
they cannot be removed. On the other side, we see a significant reduction in the number
of SHIFT instructions used to implement carry-less multiplication. The number of SHIFT
instructions we initially generated into unoptimized LLVM IR directly corresponds to
number of set bits in elements of the generator matrix of the code. Upon examination of
the generator matrices, over GF(2l), we found that one element of the generator matrix

2The code adds 25% redundancy overhead

82

5.3 Evaluation

has l/2 bits set to 1 on average. This means that an unoptimized RS(n, k) code, will
need to execute (nkl/2) SHIFT operations, (dashed blue line). We confirm this also by
counting SHIFT instructions in the unoptimized LLVM IR representation of the code.

Finally, we counted SHIFT operations after applying instruction combining and other
optimizations using the LLVM compiler. Ideally, we should see less than n(l− 1) SHIFT
operations because one is not needed for multiplying by 1 in GF(2l). Our generated
code also implements the modulo reduction algorithm, described in Listing 5-5, which
introduces a number of SHIFT operations that increases linearly with the code size. Thus,
the number of actual SHIFT instructions is ≈ 7.7n for GF(28).

After confirming that the LLVM compiler can correctly identify and remove re-
dundant operations, we can measure the real throughput of the generated code. The
reduction of complexity, for required instructions, must directly translate to increased
code performance. To establish a baseline, we first measured parity-symbol generation
throughput of unoptimized Reed-Solomon codes constructed over two Galois fields, over
range of block code configurations, and using code generated for scalar, SSE and AVX2
instruction sets. The results are shown in Figure 5-5.

25

33

44

59

79

100

140

190

250

330

440

590

790

1100

1400

1900

2500

3300

4400

5900

7900

11000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

n (k= 3n/4)

T
hr
ou

gh
p
u
t
[MiB s

]

scalar RS(28) SSE RS(28) AVX2 RS(28)

scalar RS(216) SSE RS(216) AVX2 RS(216)

Figure 5-5: Throughput of unoptimized Reed-Solomon(n,k) block codes over GF(28) and GF(216),
on the Intel Haswell platform

All generated codes are measured on a single CPU core of an Intel Haswell CPU
(Xeon E5-2660v3). The plot shows the degradation of performance due to matrix-vector
multiplication that is the basis of all Reed-Solomon codes. The LLVM is used to produce

83

5 JIT Generation of Reed-Solomon Erasure Codes

the code for scalar, SSE and AVX2 instruction sets. Since the underlying algorithm is
exactly the same, the throughput curve behaves the same for all instruction sets. For
small code configurations the encoding performance is limited by memory bandwidth,
with encoding throughput approaching the streaming capabilities of the CPU shown in
Figure 4-3 and Figure 4-4. For larger n, computational complexity is the limiting factor
for throughput. The size of the code produced is also a limiting factor, since we execute
a completely unrolled version of the generator matrix multiplication. The Haswell CPU
has a 32KiB Level 1 instruction cache, which is not large enough to hold the unoptimized
code for n larger than 48. At this point, instructions in the encoding loop can no longer
fit into the L1 instruction cache, causing a further performance decrease.

The results of codes produced by the optimizing JIT compiler are shown in Figure 5-6.
The LLVM compiler was run with optimizations equivalent to O3 optimization level on
the generated LLVM IR. The figure shows throughput of identical Reed-Solomon code
configurations as in Figure 5-5.

25

33

44

59

79

100

140

190

250

330

440

590

790

1100

1400

1900

2500

3300

4400

5900

7900

11000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

n (k= 3n/4)

T
hr
ou

gh
p
u
t
[MiB s

]

scalar RS(28) SSE RS(28) AVX2 RS(28)

scalar RS(216) SSE RS(216) AVX2 RS(216)

Figure 5-6: Throughput of optimized, JIT generated, Reed-Solomon(n,k) block codes over GF(28)
and GF(216), on Intel Haswell platform.

The Figure shows two regimes, one for n smaller than 20 and other for code
configurations with larger n. For smaller n and k the generator matrix has less rows,
which means that less then l SHIFT operation are needed per data symbol. However, the
number of SHIFT operations for each generator matrix row approaches l around n = 20.
At that point, every increase of generator matrix (n) only adds a constant number
of SHIFT instructions. This linear increase results in a less steep performance decline.

84

5.3 Evaluation

With the elimination of SHIFT instructions the complete encoding loop fits into the L1
instruction cache, avoiding an instruction decoding bottleneck. Codes implemented over
GF(216), (dashed line) show lower performance because of larger upper bound of SHIFT
instructions nl. However, GF(28) codes are more widely used in typical storage systems
applications. LLVM is able to produce scalar code that uses 64 bit general purpose
registers as vector registers in < 8x8 bit > configurations (shown by red line). For this
reason, we observe doubling of the effective throughput when vectorized code is generated
instead of scalar.

The NEON instruction set, general purpose SIMD extension available on ARM
Cortex-A processors, offers a register file of 32 64 bit vector registers and dedicated
execution pipeline. The same register file can be accessed as 16 128 bit vector registers.
The LLVM ARM backend fully supports the NEON instruction set, thus we have evaluated
the same Reed-Solomon code configurations on our ARM platform. Throughput of
optimized codes compiled for ARM, scalar and NEON versions, is shown in Figure 5-7.

15

18

22

28

35

45

56

71

89

110

140

180

220

280

350

450

560

710

890

1100

1300

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

n (k= 3n/4)

T
hr
ou

gh
p
u
t
[MiB s

]

scalar RS(28) NEON RS(28)

scalar RS(216) NEON RS(216)

Figure 5-7: Throughput of optimized, JIT generated, Reed-Solomon(n,k) block codes over GF(28)
and GF(216), on ARM platform.

The graph shows similar behavior to the one observed on the Intel platform. Since
both codes are using exactly the same starting LLVM IR (and code generator matrices),
the slope of the curve can be explained in the same way. For low computational complexity
configurations, n < 8, code throughput approaches the memory bandwidth of the CPU,
as shown by the multi-stream memory benchmark in Figure 4-4. For larger n and k,

85

5 JIT Generation of Reed-Solomon Erasure Codes

code computational complexity becomes a limiting factor. Still, the results demonstrate
the effectiveness of the CPU SIMD unit of the low power ARM platform.

5.4 Summary

Performance of symbol multiplication in the Galois field is a dominant factor in con-
struction of fast Reed-Solomon erasure codes. We described a constant time vectorized
multiplication algorithm in GF(264), which utilizes specialized SIMD instructions. The
limitation of the filed length makes this approach unsuitable for some use cases, where
other field lengths are required. To overcome these limitations, the use of JIT code
generation was investigated. The proposed Reed-Solomon erasure codes use Vandermonde
construction of arbitrary generator matrix sizes. Galois field operations are represented
as simple, integer based, operations using LLVM IR language. This formulation allows
for arbitrary Galois field lengths, supported by the arbitrary integer precision of LLVM
IR. The Reed-Solomon encoder is constructed by emitting all IR methods necessary for
performing generator matrix multiplication with the data symbol vector. Intrinsic redun-
dancy in amalgamated operations for the matrix multiplication procedure is removed
automatically by optimizing the compiler to produce codes with a lower instruction count
per symbol. The data-level parallelism of Reed-Solomon codes is exploited by substituting
LLVM IR integer types with vector types suitable for individual test platforms. This
enabled seamless generation of efficient, high throughout, vectorized machine codes for
both Intel and ARM platforms. The LLVM is able to generate code for SSE and AVX2
instruction sets for x86, and the NEON instruction set of the ARM CPU-based platform.
Data-level parallelization reduces the number of instructions per code symbol to ≈ 2.2.

Evaluation shows maximum encoding throughput for small number of data and
code symbols to be close to the memory bandwidth of the test platforms. However,
the computational complexity of larger matrix multiplications is the dominant factor
for large codes. The upcoming AVX-512 instruction set offers more parallelism and
expanded register space. Equivalent code realized for this instruction set should have a
factor of 2 larger throughput than AVX2 code and 4 times of SSE, for the same clock
speed. Unfortunately, while the LLVM already supports the AVX-512 instruction set,
Intel Skylake CPUs are not yet available.

Simplicity of operations involved in the realization of Reed-Solomon codes makes
them suitable for DSP3 class of hardware. The LLVM already supports Hexagon DSP
[12] natively, which enables us to retarget the JIT generated Reed-Solomon routines for
this special-purpose platform. The DSP supports vector instructions, and can execute
instructions grouped in VLIW4 packets. Packets can contain up to 4 instructions executing

3Digital Signal Processors
4Very Long Instruction Word

86

5.4 Summary

in parallel. An example of instruction packets, generated from a Reed-Solomon code
method, is shown in the Appendix, section B. The example shows the grouping of
LOAD, STORE, SHIFT, and XOR operations into a single, concurrently executed, wide
instruction. By offloading erasure coding tasks from the CPU to a low power platform,
such as DSP, significant power savings could be achieved.

87

CHAPTER 6
Vectorization of

Reed-Solomon Codes used
in ZFS File System

The ZFS filesystem has its roots in the Sun Solaris operating system. It started as a
proprietary, closed-source project in 2001, which was finally released under a CDDL1

open source license in 2005. After acquiring Sun Microsystems in 2010, Oracle has
stopped contributing to open-source ZFS development, prompting the creation of the
OpenZFS project. Open source ZFS quickly found adoption in many major operating
systems, including Linux, FreeBSD, and OS X. A license disagreement between Linux
kernel, licensed under GNU General Public License (GPL), and ZFS CDDL prohibits
distribution of single derived work of both projects. However, it is possible to expose
necessary Linux facilities trough a separate, GPL licensed kernel module. A stable version
of a native Linux ZFS port, known under the name ZFS on Linux2, was released in
2013 by Lawrence Livermore National Laboratory. It runs natively in a kernel-mode and

1Common Development and Distribution License
2http://zfsonlinux.org

89

http://zfsonlinux.org

6 Vectorization of ZFS Erasure Codes

uses and additional kernel module, called Solaris Porting Layer (SPL), that implements
Solaris APIs on top of the Linux kernel. With the release of the Lustre version 2.4,
ZFS on Linux was used as a backing filesystem on Object Storage Targets (OST). An
OST is a filesystem that provides an object interface for the Lustre filesystem. With
the capabilities of logical volume management and software-defined reliability (RAID-Z),
ZFS was adopted for providing resiliency of large, multi-petabyte, file systems.

ZFS uses RAID-Z technology to implement data protection. In essence, this is a
software scheme that utilizes error-correction erasure coding to minimize the cost of
mirroring in terms of required disks. This is accomplished by joining several disks into a
single N-disk RAID-Z volume. Depending on the selected scheme, RAID-Z1, RAID-Z2
or RAID-Z3, such volume is able to recover from 1, 2 or 3 failed disks. RAID-Z1 is
equivalent to traditional RAID5, where parity is calculated and distributed together with
data over all available disks. In the RAID-Z2 scheme, the same procedure is carried out
but with the addition of another parity block, similar to RAID6. Finally, in RAID-Z3,
yet another additional error correction block is added to the data. By choosing the
number of disks and the level of protection it is possible to mitigate the cost of overhead
disks that are used for storing parity instead of contributing to combined usable storage
space. On the other side, a higher level of protection and larger RAID-Z volumes increase
the computational complexity of erasure codes. Similarly, restoring from failed disks is
more computationally intensive than parity generation. Because of this, we implemented
efficient scalar and SIMD vectorized versions of the RAID-Z methods.

6.1 RAID-Z theoretical background

The RAID-Z is built upon systematic Reed-Solomon error-correction code, constructed
using the Vandermonde method as described in subsection 2.3.1. RAID-Z uses elements of
extended field GF(28) constructed using primitive polynomial p(X) = X8 +X4 +X3 +X2 +1
over GF(2). All elements of this field are listed in Appendix, section C. Generator matrix
ARAID-Z is obtained by concatenating the identity matrix Ik and code generating matrix
A∗RAID-Z

ARAID-Z · d = cRAID-Z (6.1)

[
Ik

A∗RAID-Z

]
·
[
d
]

=

 d

c∗RAID-Z

A∗RAID-Z =

aP

aQ

aR

 =

1 1 · · · 1 1

αk−1 αk−2 · · · α 1
(α2)k−1 (α2)k−2 · · · (α2) 1

 (6.2)

90

6.1 RAID-Z theoretical background

c∗RAID-Z =

 d0 + d1 + · · ·+ dk−2 + dk−1

(((d0α+ d1)α+ · · ·)α+ dk−2)α+ dk−1

(((d0α
2 + d1)α2 + · · ·)α2 + dk−2)α2 + dk−1

 =

cP

cQ

cR

 (6.3)

where A∗RAID-Z is a Vandermonde-type generator matrix of the code, and the polyno-
mial α = X. Code cP is used when the RAID-Z1 scheme is in effect. From (6.2) it follows
that cP is equivalent to the parity code of RAID5, described in [87]. When RAID-Z2 is
used, two code symbols are calculated, i.e. cP and cQ. Similarly, the calculation also uses
the same principles as the RAID6 scheme [87]. For the highest level of protection offered
by ZFS, RAID-Z3, a third code symbol cR is calculated. There is no corresponding
traditional RAID level with 3 code symbols.

The Generator matrix, A∗RAID-Z, of RAID-Z is constructed using a method described
in [87]. The author of the original paper later issued a correction [88] to this method,
stating that the generated matrices in some cases do not produce a maximum distance
separable (MDS) code. Since the RAID-Z1 and RAID-Z2 schemes are equivalent to the
standard RAID levels, they are already known to possess the MDS property. In the
following, we give a proof that the RAID-Z3 code is also a MDS code.

Let x, y, and z, 0 6 x < y < z < k, signify an index of the missing data disk (erasure).
Let dx, dy, and dz be the data symbol of the corresponding missing data disk. Let c′P,
c′Q and c′R signify partial codes in the presence of erasures, i.e. the codes calculated with
the 0 symbol used instead of the missing data symbols. Using this nomenclature, the
Equation 6.3 can be written as:

cP = c′P + dx + dy + dz
cQ = c′Q + αk−1−x · dx + αk−1−y · dy + αk−1−z · dz
cR = c′R + (α2)k−1−x · dx + (α2)k−1−y · dy + (α2)k−1−z · dz

(6.4)

For simplicity, we will introduce the following substitutions:

a = k− 1 − x

b = k− 1 − y

c = k− 1 − z

(6.5)

After substitutions, the equation (6.4) becomes:

cP = c′P + dx + dy + dz
cQ = c′Q + αa · dx + αb · dy + αc · dz
cR = c′R + α2a · dx + α2b · dy + α2c · dz

(6.6)

91

6 Vectorization of ZFS Erasure Codes

Solving the system in (6.6) for dx, dy, and dz we obtain the following:

dx = (α2b+c + αb+2c) · (cP + c′P) + (α2b + α2c) · (cQ + c′Q) + (αb + αc) · (cR + c′R)
(αa + αb) · (αa + αc) · (αb + αc)

dy = (α2a+c + αa+2c) · (cP + c′P) + (α2a + α2c) · (cQ + c′Q) + (αa + αc) · (cR + c′R)
(αa + αb) · (αa + αc) · (αb + αc)

dz = (α2a+b + αa+2b) · (cP + c′P) + (α2a + α2b) · (cQ + c′Q) + (αa + αb) · (cR + c′R)
(αa + αb) · (αa + αc) · (αb + αc)

(6.7)

In order to obtain a single unique solution from (6.7), it is necessary to satisfy the
following:

α2b+c + αb+2c 6= 0
α2a+c + αa+2c 6= 0
α2a+b + αa+2b 6= 0
α2b + α2c 6= 0
(αa + αb) · (αa + αc) · (αb + αc) 6= 0

(6.8)

For a result of the addition in GF(28) to be a zero element, operands have to be
equal. After substitution (6.5), we have a unique a, b and c, such that 0 6 c < b < a 6 k.
Since α is a primitive element of the extended field GF(28), any expression of form αi,
where i is 0 6 i < 28, will yield a unique, non zero element of the said field. Factoring
the equations from condition (6.8) we obtain:

αb+c 6= 0 ∧ αb + αc 6= 0
αa+c 6= 0 ∧ αa + αc 6= 0
αa+b 6= 0 ∧ αa + αb 6= 0
α2b + α2c 6= 0
αa + αb 6= 0 ∧ αa + αc 6= 0 ∧ αb + αc 6= 0

(6.9)

Since all factors are guaranteed to be non-zero, we conclude that set of equations
(6.4) has unique solutions for dx, dy, and dz.

6.2 Implementation

The RAID-Z originally used a look-up table method for Galois Field multiplication. All
erasure coding is implemented over the GF28 binary extended field. An exponentiation
table, Exp[], and a logarithm table, Log[], are constructed using the field generator

92

6.2 Implementation

p(X) = X8 + X4 + X3 + X2 + 1. Multiplication of two symbols, method mul(a,b), can be
carried out as:

mul(a, b) = Exp[(Log[a] + Log[b]) % 255] (6.10)

and inverse, inv(a), is obtained using the equation:

inv(a) = Exp[255 − Log[a]] (6.11)

This approach has several disadvantages. Each of the tables has 2l elements, and
combined they require 2 · 2l · l8 B of memory. Accessing these large tables frequently,
within the inner loop of the block code calculation code, can impact performance severely.
The growing disparity between the execution speed of CPU and the bandwidth of random
access memory (RAM) means that CPU can execute hundreds of instructions during
a data fetch from RAM. This effect is called memory wall [112], and to minimize its
effects on scalability, we should eliminate access to large memory structures within the
code. The multiplication is performed with 3 table lookup operations, each requiring an,
essentially random, memory access. I.e., only 40% of total memory bandwidth is available
for application encoding throughput. Another disadvantage of this method is in the
intrinsic serialization of the computation. The lookup tables only support computation
of one individual symbol at a time, in this case a single byte. Considering that current
processors natively operate with 64 bit-wide registers this means that the algorithm is
effectively utilizing only 1/8 of the theoretical scalar operation throughput. For the
RAID-Z parity generation, only multiplication by an α = X (decimal {02}) element is
required, since the generator matrix is evaluated using a method given by Equation 6.3.
This method eliminated the need for multiplication by all powers of α. Since the value
for α has only one bit set to 1, the multiplication can be performed without the help of
lookup tables. An efficient method for scalar and vector implementation is given in [1].
Listing 6-1 shows implementation of multiply-by {02} methods for a single element and
parallel, on 8 elements.

Listing 6-1 Optimized multiplication by 2 in GF(28) used in RAID-Z parity generation
[114]

1 uint8_t VDEV_RAID-Z_MUL_2(uint8_t x) {
2 return (x << 1) ^ ((x & 0x80) ? 0x1d : 0);
3 }
4

5 uint64_t VDEV_RAID-Z_64MUL_2(uint64_t x) {
6 uint64_t mask = x & 0x8080808080808080ULL;
7 mask = (mask << 1) - (mask >> 7);
8 x = (x << 1) & 0xfefefefefefefefeULL;
9 return x ^ (mask & 0x1d1d1d1d1d1d1d1dULL);

10 }

93

6 Vectorization of ZFS Erasure Codes

The constant {80} is used to check for the overflow bit on data symbols. In case the
most significant bit of a symbol is 1, the result of carry-less multiplication, obtained by
left shift operation (x� 1), needs to be reduced using a xor operation with the constant
{1d} = X4 + X3 + X2 + 1. The second method calculates the multiplication by {02} in
parallel on 8 elements packed in the scalar 64 bit register. Variable mask is used to mark
the symbols with overflow bit. The corresponding value of these elements will save the
{FF} value in the mask variable. On line 8, carry-less multiplication is performed, followed
by clearing the least significant bit of the result. This is necessary because the scalar
shift operation does not respect byte boundaries of packed elements. Also, since each
element has only shifted left by 1, it is expected that each byte symbol will have 0 at its
lowest position. Finally, a modulo reduction is applied to the result using a mask variable
to select elements with overflow bit only.

The method described does not require any additional memory bandwidth and is able
to perform packed element multiplication by {02} efficiently. To generate the last parity
symbol of RAID-Z3, cR, multiplication by the {02}2 = {04} element is required. This can
be achieved by simply repeating the multiplication by {02}, as described previously. An
approach for vectorization of this algorithm is described in [1].

6.2.1 RAID-Z parity generation

Since the erasure code used in the RAID-Z data/parity scheme is a fixed, (n, k) linear block
code (where n− 3 6 k < n), we can provide specialized methods for all parity generation
cases. That is, a parity generation method for each of RAID-Z1, RAID-Z2, and RAID-Z3.
Also, the new code should support scalar, as well as vector SIMD implementations, such
as SSE, AVX2, and ARM NEON instruction sets. Lastly, the implementation should
minimize code duplication as much as possible. The underlying algorithm for all methods
is the same, so the code should support addition of new architecture implementation
with as little effort as possible.

Another consideration is the execution environment of the code. Since our new
implementation is contributed to ZFS on Linux project, the code will execute inside the
Linux kernel context (kernel mode). The consequences of this fact are as follows:

No memory protection The kernel mode code executes with no memory protection.
This means that error in the code can corrupt and crash the whole system.

Explicit SIMD code Most of the Linux kernel does not use any floating point or SIMD
instructions. Thus, to save time on kernel threads´ context switches, the kernel
does not save values of floating point and vector registers. However, if execution of
such code is desirable, the code must be enclosed between kernel_fpu_begin()
and kernel_fpu_end() functions.

94

6.2 Implementation

Stack limit Kernel threads usually execute within limited stacks, usually 8KiB or 16KiB
on an x86_64 platform. This means that the code should use stack space conserva-
tively, and avoid deep or unbounded recursions.

Portability The code must compile and run on all x86 32 bit and 64 bit platforms. This
also means that we have to adhere to strict coding guidelines and the C89 standard.
Also, the use of the advanced JIT techniques described in the previous chapter is
not possible.

Having considered all of the limitations and requirements listed, final code is imple-
mented in the C programming language and is organized as follows:
Algorithm The Algorithm file contains all specialized methods for parity generation and

data reconstruction. These methods depend on a set of data types and macros that
are implemented by each specific implementation separately.

Implementation Each new implementation will define the required data-type structures
to match native register sizes and implement a set of basic operations on these types.
Each implementation is contained in a separate translation unit. An implementation
file will then include an algorithm file, completing the specialization of the algorithm
methods. Specialized methods are exported through a collection of function pointers.

Selection Each implementation has to provide a method of testing whether it is supported
on a currently executing CPU. All supported implementations are benchmarked
when the ZFS filesystem is initialized, and the fastest one is selected to be used in
the runtime. The user is given an option to change the used implementation using
kernel module parameters.

An example of the algorithm method for RAID-Z3 parity generation is shown by
Algorithm 6-1. The method GEN_PQR_PARITY() takes an array of input data buffers
(d[][]) and the size of buffers (SB) and produces parity codes in buffers cP[], cQ[] and
cR[].

The method described is only provided as a template. An implementation must
provide all macros and variables underlined in Algorithm 6-1 to fully specialize the
algorithm method. Macro DECLARE_LOCAL_VAR() is used to declare all variables that
will be used by this method. In the case of vectorized implementation this declaration is
unnecessary since architecture registers are used explicitly, but it is required for the scalar
implementation. An implementation must also provide a method for loading data from
memory into a designated variable or register. This is accomplished by providing a LOAD()
macro that performs a suitable memory load. The specialized macros MUL2() and MUL4()
are used because special cases of multiplication by {02} and {04} in the Galois Field are
usually much faster and easier to implement than generalized multiplication. Finally,
XOR() and STORE() macros are used to perform addition and to store calculated parity
symbols to the memory. All described macros can be implemented as variadic macros
in the C programming language, enabling an implementation to fully utilize available
registers. E.g., SSE and AVX2 implementations are computing each of the parity using 4
registers at once, thus reducing the loop count to 1/4.

95

6 Vectorization of ZFS Erasure Codes

Algorithm 6-1 Method for generating RAID-Z3 parity
1: function gen_pqr_parity(d[][], cP[], cQ[], cR[], SB)
2: declare_local_var(D,P,Q, R) . Declare local variables
3: for off← 0;off < SB;off← off+ 1 do
4: P ← Q← R← load(d[0][off]) . Load first data symbol
5: for b← 1;b < |d|;b← b+ 1 do
6: Q← mul2(Q) . Multiply by {02}
7: R← mul4(R) . Multiply by {04}
8: D← load(d[b][off]) . Load current data symbol
9: P ← xor(P,D) . Add data symbol to P

10: Q← xor(Q,D) . Add data symbol to Q
11: R← xor(R,D) . Add data symbol to R
12: end for
13: store(cP[off], P) . Store cP parity
14: store(cQ[off], Q) . Store cQ parity
15: store(cR[off], R) . Store cR parity
16: end for
17: end function

6.2.2 RAID-Z data reconstruction

Reconstruction of erasures in the complete RAID-Z scheme can be implemented in seven
specialized methods. The same considerations as with parity generation apply. The only
substantial difference is that now we need an efficient way to perform multiplication in
the Galois Field by an arbitrary constant. The original code used a Log/Exp lookup table
method, described by Equation 6.10. As the multiplier, b is always known in advance if
the logarithm is provided directly, which saves one lookup Log[b] operation in runtime.
Still, both Log[] and Exp[] lookup tables are used in a random access pattern. This
method requires 2 lookup table operations per symbol to perform multiplication by a
constant. For a 64 bit scalar implementation, this amounts to 16 lookup operations in
order to multiply all elements packed in a scalar register, not counting byte extracting
operations for each byte element.

In order to perform erasure reconstruction, each method computes the respective
syndromes first, and then reconstructs the missing data, as described by Equation 6.7.
As it turns out, only a few multiplication factors are actually used by each reconstruction
method, as shown in Table 6-1.

With this observation, we can make a space-time trade-off by providing specialized
lookup tables for each multiplicative element (Mul[][]). This strategy increases total
lookup tables to 64KiB, but the access pattern is limited to only a few of 256B long
tables at once. Numbers of operations and size of accessed lookup tables for two scalar
multiplication methods is shown in Table 6-1. The table shows that the number of
operations is halved with the new approach and that the total table size only increased in

96

6.2 Implementation

Method Log[]/Exp[] Mul[][] AVX2 shuffle

#ops size #ops size #ops size

Reconstruct using P 0 0B 0 0B 0 0B

Reconstruct using Q 2 512B 1 256B 0.125 64B

Reconstruct using PQ 4 512B 2 512B 0.25 128B

Reconstruct using R 2 512B 1 256B 0.125 64B

Reconstruct using PR 4 512B 2 512B 0.25 128B

Reconstruct using QR 8 512B 4 1024B 0.5 256B

Reconstruct using PQR 12 512B 6 1536B 0.75 384B

Table 6-1: Number of lookup table operations per symbol and total size of lookup tables required
by each of erasure reconstruction methods of RAID-Z scheme.

two of the reconstruction methods (QR and PQR). Furthermore, for reconstructing only a
single erasure, which is a common real-world scenario, the size of lookup tables required
to perform reconstruction is halved, when compared to the original implementation. This
brings speedup of 2.4 times over the original implementation.

A vectorized multiplication algorithm suited for the GF(28) Galois Field is described
in [89]. The described algorithm calculates full SIMD vector multiplication in constant
time using precomputed multiplication tables and the vector element’s shuffle instructions.
This is accomplished by computing two lookup tables, called “right-left” tables as described
in [34]. Authors have provided an implementation library, GF-Complete [90], implementing
the methods. Unfortunately, a company has made claims that the method infringes on its
patented technology3. Authors have subsequently removed the implementation library.

Thus, the multiplication method we used here relies on methods described in previous
chapters. To improve the throughput of our method, we employed techniques that are
based on composite field methods [34] [77] [78]. The Galois Field GF(28) is an isomorphic
to field GF((24)2) generated with an irreducible polynomial p(X) with a degree of 4
with coefficients in GF(24). This property enables us to rewrite the starting carry-less
multiplication in Galois Field given by Equation 3.2 andEquation 3.3 in the following
way.

Let bu be the quotient and br be the remainder from the polynomial division of
b(X)/X4, that is b(X) = bu × X4 + br. Then:

a× b = a× (bu × X4 + br)
= [a× br] + [X4 × a× bu]

(6.12)

3StreamScale Inc, Accelerated erasure coding system and method - United States Patent No. 8,683,296

97

6 Vectorization of ZFS Erasure Codes

Since both bu and br are polynomials of degree 4, the previous equation can be
implemented using vector shuffle instruction. The instruction is part of the SSSE3 and
the AVX2 instruction sets [42] on x86 platform, PSHUFB and VPSHUFB. On the ARM
platform, similar instruction, VTBL, is available in NEON instruction set [31]. The vector
shuffle instruction is capable of performing 16 parallel, byte-wise, table lookups in vector
registers. From the last equation it follows that the result of carry-less multiplication
for a fixed b can be obtained as a sum of two table lookups, by bu and br. Since the
result of carry-less multiplication is 2l bits long (16 in this case), the upper bits will be
implicitly calculated in the modulo reduction step.

Let u(X) be a polynomial of a degree up to 16; we define a polynomial M8[u(X)]
as a quotient, and L8[u(X)] as the remainder of the polynomial division u(X)/X8. Then,
Equation 6.12 can be rewritten as follows:

a× b =L8
[
a× br

]
+ L8

[
X4 × a× bu

]
+ X8 ×M8

[
a× br

]
+ X8 ×M8

[
X4 × a× bu

] (6.13)

Terms with L8[] describe a formula to calculate carry-less multiplication using 16 bit-
wise vector lookup operations. Terms with M8[] are the upper 8 bit results of carry-less
multiplication, denoted by c†(X) in Equation 3.8.

To obtain the modulo reduction component, we follow the algorithm described
in [36] as outlined in the subsection 3.1.2. Using the RAID-Z field Galois Field generator
polynomial p(X) = X8 + X4 + X3 + X2 + 1, using the Barrett reduction algorithm, we
obtain the polynomials p?(X) and q+(X) as follows:

p?(X) = X4 + X3 + X2 + 1
q+(X) = X8 + X4 + X3 + X2 (6.14)

Using Equation 3.21, we get the expression for the module reduction of the upper
part of the carry-less multiplication u(X), as follows:

u(X) = L8

[
p?(X)×M8

[
c†(X)× q+(X)

]]

= L8

[
p?(X)×M8

[(
X4 ×M4[c†(X)] + L4[c†(X)]

)
× q+(X)

]]

= L8

[
p?(X)×M8

[
X4 × q+(X)×M4[c†(X)] + q+(X)× L4[c†(X)]

]]

98

6.2 Implementation

Finally, we obtain a formula for the modulo operation that is compatible with the
vector shuffle operation:

u(X) = L8

[
p?(X)×M8

[
X4 × q+(X)×M4[c†(X)]

]]

+ L8

[
p?(X) +M8

[
q+(X)× L4[c†(X)]

]] (6.15)

where c†(X) follows from the Equation 6.13:

c†(X) = M8
[
a× br

]
+M8

[
X4 × a× bu

]
(6.16)

In order to implement the vectorized multiplication algorithm, the necessary shuffle
lookup tables are precomputed as shown by Equation 6.12 and Equation 6.15. Algo-
rithm 6-2 shows this procedure. Operation “×” is carry-less multiplication as defined by
Algorithm 3-1.

Algorithm 6-2 Calculation of carry-less multiplication and modulo reduction lookup
tables for parallel, 16 byte-wise, multiplication using vector shuffle operation.
1: lt_clmul_upper[256][16]← {0}
2: lt_clmul_lower[256][16]← {0}
3: lt_mod_upper[256][16]← {0}
4: lt_mod_lower[256][16]← {0}
5:
6: function gen_simd_mul_tables()
7: for b← 0;b < 256;b← b+ 1 do
8: for k← 0;k < 16;k← k+ 1 do
9: lt_clmul_upper[b][k]← L8[X4 × k× b]

10: lt_clmul_lower[b][k]← L8[k× b]
11: lt_mod_upper[b][k]← L8[p?(X)×M8[M8[X4 × k× b]]]
12: lt_mod_lower[b][k]← L8[p?(X)×M8[M8[k× b]]]
13: end for
14: end for
15: end function

Even though the complete set of shuffle lookup tables takes 16KiB of memory
space, only 64B of the lookup tables are required to perform parallel multiplication
by a constant. Using the SSSE3 vector shuffle instruction, the vector multiplication
algorithm can perform 16 parallel multiplications by a constant, while the AVX2 version
can perform the same operation on 32 elements at once. Precomputed shuffle lookup

99

6 Vectorization of ZFS Erasure Codes

Algorithm 6-3 Parallel multiplication method using SIMD shuffle instruction and
precomputed lookup tables.
1: function simd_gf_mul(〈a〉, b)
2: 〈al〉 ← 〈a〉 AND <0x0f>
3: 〈au〉 ← 〈a〉 � 4
4: 〈r〉 ← shuffle(〈au〉, LT_CLMUL_UPPER[b])
5: 〈r〉 ← 〈r〉 XOR shuffle(〈al〉, LT_CLMUL_LOWER[b])
6: 〈r〉 ← 〈r〉 XOR shuffle(〈au〉, LT_MOD_UPPER[b])
7: 〈r〉 ← 〈r〉 XOR shuffle(〈al〉, LT_MOD_LOWER[b])
8: return 〈r〉
9: end function

tables are not accessed randomly, but instead only 4 16B values are used for parallel
multiplication function, as shown by Algorithm 6-3.

Naïve construction of lookup tables places each 16B segment in separate arrays
which wastes memory bandwidth, because CPU performs memory transfers in cache line
chunks. The actual implementation interleaves 4 lookup tables so that all elements, used
by a single multiplication method, are placed in consecutive memory locations. Also, the
whole lookup table is aligned to the CPU cache line size. As the typical cache line size of
a cache line is 64B [20], a multiplication method is guaranteed to use only a single cache
line for lookup table entries. This optimization allows greater throughput by reducing
memory fetches from 4 cache lines to just one. Table 6-1 shows the number of operations
and lookup table size per reconstructed symbol using original, and new scalar and vector
implementations. A parallel multiplier, using an SIMD AVX2 instruction set, is capable
of greatly reducing the number of lookup instructions when compared to the best scalar
method. Besides an 8 fold increase in throughput performance, the SIMD implementation
reduces lookup table size to 1/4 that of the scalar implementation.

6.3 Evaluation

To aid the process of evaluation of the RAID-Z erasure coding methods, we implemented
a user-space tool to benchmark the code. The benchmark tool is capable of executing
methods of the new implementation as well as the original RAID-Z code. All benchmarks
are performed on an Intel Haswell based test platform that supports both SSE and AVX2
instruction sets.

To determine the code throughput limitations, we first performed measurements of
RAID-Z2 methods using 8 data disks, i.e. using linear block code configuration RS(10, 8).
Throughput of RAID-Z2 parity generation and data reconstruction methods, running on
a single CPU core, is shown in Figure 6-1.

100

6.3 Evaluation

0

650

1400

2320

3380

4560

5860

7260

8760

10 400

12 000

13 800

15 600

17 500

19 500

21 600

23 700

25 900

35 200

37 700

42 900

16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi 4Mi 8Mi 16Mi 32Mi 64Mi

RAID-Z2 block size [B]

T
hr

ou
gh

pu
t
[MiB s

]
original gen PQ original rec PQ
scalar gen PQ scalar rec PQ
SSE gen PQ SSE rec PQ
AVX2 gen PQ AVX2 rec PQ

Figure 6-1: Combined throughput of RAID-Z2 parity operations on a pool consisting of 8 data
and 2 parity disks

RAID-Z block size takes values between 16KiB and 64MiB4 so that data does not
fit into the CPU caches. The plot shows original and newly implemented scalar, SSE and
AVX2 RAID-Z methods. Effects of CPU data caching are immediately noticeable, which
suggest that the throughput is limited by a memory wall rather than by computational
complexity. This effect is more pronounced with less computationally intensive parity
generation methods, and with wider register sizes. CPU of the test platform has 32KiB
L1 and 256KiB L2 data cache per CPU core, and 25MiB of unified L3 data cache, shared
between all CPU cores. Measured methods show drops in throughput exactly when block
data becomes larger than the L1 and L2 cache, but throughput of large block remains
on the level of L3 cache, around 23 000MiB s−1, as seen on Figure 4-2. For this to be
true, accessed data has to be prefetched ahead of time by a CPU automatic hardware
prefetcher.

The effectiveness of these prefetchers in this case is confirmed by utilizing Linux
perf utility to monitor CPU performance counters. The L3 cache miss rate is only 3.67%
for RAID-Z blocks larger than 4MiB. We also repeated the same test after disabling
automatic prefetchers of the CPU. Results are shown in Figure 6-2.

The new graph shows a similar performance curve as the previous measurement,
until data becomes larger than the L3 cache. At that point, each new memory access

4Default value of RAID-Z block size is 128KiB, and has only recently been expanded to 1MiB. Maximal
supported size is 16MiB.

101

6 Vectorization of ZFS Erasure Codes

0

650

1400

2320

3380

4560

5860

7260

8760

10 400

12 000

13 800

15 600

17 500

19 500

21 600

23 700

32 800

35 200

37 700

42 900

16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi 4Mi 8Mi 16Mi 32Mi 64Mi

RAID-Z2 block size [B]

T
hr

ou
gh

pu
t
[MiB s

]
original gen PQ original rec PQ
scalar gen PQ scalar rec PQ
SSE gen PQ SSE rec PQ
AVX2 gen PQ AVX2 rec PQ

Figure 6-2: Combined throughput of RAID-Z2 parity operations running on Intel Haswell CPU
with disabled hardware prefetching.

has to be served from RAM, thus incurring full transfer latency, as seen in Figure 4-6.
This confirms that automatic prefetcher is able to hide RAM latency by prefetching data
before it is needed. Our re-implementation of scalar methods for RAID-Z2 shows better
throughput mainly because of new scalar multiplication table method. Table 6-2 shows
speedup of new RAID-Z implementations relative to the original.

RAID-Z operation scalar SSE AVX2
Generate P 2.2 2.4 2.6
Reconstruct using P 1.4 2.0 2.2

Generate PQ 1.5 4.1 4.3
Reconstruct using Q 1.5 7.2 8.8
Reconstruct using PQ 1.6 4.7 7.1

Generate PQR 1.4 5.6 8.8
Reconstruct using R 4.8 20.7 32.3
Reconstruct using PR 8.5 43.0 69.1
Reconstruct using QR 8.7 35.5 60.2
Reconstruct using PQR 9.4 55.1 95.8

Table 6-2: RAID-Z operation speed-up relative to the original RAID-Z methods

102

6.3 Evaluation

0
11
32
58
89

120
160

210
250
300
350

590
650
720
780
850
930
1000

1100

1200

1500

1600

1800
1900

16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi 4Mi 8Mi 16Mi 32Mi 64Mi

RAID-Z3 block size
[
B
]

D
isk

th
ro

ug
hp

ut
[MiB s

]
original gen PQR original rec PQR
scalar gen PQR scalar rec PQR
SSE gen PQR SSE rec PQR
AVX2 gen PQR AVX2 rec PQR

Figure 6-3: Per disk throughput in RAID-Z3 pool with 8 data and 3 code disks with data already
present in CPU caches

For RAID-Z2, methods including cQ parity, we observe a significant increase in
throughput, especially for vectorized reconstruction methods. This is a consequence of
the ability to perform parallel Galois Field multiplication, as opposed to byte-wise serial
access of scalar multiplication. Similarly, Figure 6-3 shows performance of RAID-Z3
methods, with 8 data and 3 parity disks, i.e. in RS(11, 8) erasure code configuration.

The log-log plot shows per disk throughput of original, and new scalar, SSE and
AVX2 methods of RAID-Z3. This per-disk metric shows an important aspect of the code
efficiency. Being able to saturate available bandwidth of all HDD in the RAID-Z pool
using just a single CPU core brings significant increase in scalability and efficiency of
the storage system. With a more computationally complex RAID-Z3 algorithm, we see
greater disparity between original and new scalar erasure reconstruct methods. Primarily,
this is caused by lack of specialized reconstruction methods that utilize cR parity in the
original implementation. The AVX2 implementation shows throughput of 1000MiB s−1
per disk for computing 3 parity symbols (AVX2 gen PQR line), resulting in total encoding
throughput of 11GiB s−1. This is the memory bandwidth limit of the single CPU core.
The last section in Table 6-2 shows relative speedup of new RAID-Z3 implementations,
compared to original code.

103

6 Vectorization of ZFS Erasure Codes

6.4 Summary

The ZFS file system is being increasingly used in high performance storage environments
for its software-defined reliability features. Recent versions of the Lustre parallel system
use ZFS for object storage targets, to provide resiliency for multi-petabyte file systems.
Having no dependencies on hardware RAID solutions, ZFS simplifies hardware infras-
tructure, while relying on CPU for data redundancy and integrity calculations. Typically,
a single server controls several ZFS pools, putting even greater stress on the CPU and
I/O sub-system for parity operations.

ZFS supports the erasure coding scheme for the storage pool, RAID-Z, which can
add resiliency for up to 3 failures. Fast recovery from disk failures is a major concern
for data resiliency of RAID-like storage systems, as shown by reliability models in the
chapter 1. Original RAID-Z parity computation code provides specialized scalar methods
only for 2 parity modes, RAID-Z1 and RAID-Z2. Recovering form failures using third
parity block, in RAID-Z3 scheme, was not handled as efficiently. Throughput of parity
operations can be greatly improved by implementing specialized methods for all parity
operations, and by performing computationally intensive parity operations using SIMD
units of modern CPUs.

We provided a proof that systematic code used to construct RAID-Z3 is indeed an
MDS erasure code. Next, we described a generic framework for RAID-Z parity operations,
which supports implementation for multiple instruction sets with minimal overhead. Using
this foundation, we describe how new implementations, using scalar, SSE, and AVX2
instruction sets, are realized. Finally we discuss benchmark results, showing significant
improvement in parity generation and data reconstruction throughput. Implemented
routines were made available, and are now part of ZFS on Linux project.

104

CHAPTER 7
ECCFS:

A Middleware for
Parallel File System

Reliability

The traditional way of providing reliability in a data center is by using replication of
data. However, ever increasing data volumes has motivated research in using more
storage-efficient alternatives, such as using erasure codes. We propose a new erasure
code strategy that is both performance and storage-efficient, while enabling flexibility in
configuration and operation. The erasure codes are calculated on a per-file basis, and
stored in specifically created files within the same Parallel File System (PFS). This chapter
describes a generic middleware for data reliability for use with High Performance PFS,
called ECCFS. Our solution imposes no changes to existing PFS source code (e.g. Lustre),
nor does it require special deployment considerations. The following section describes
the motivation behind this work.

105

7 ECCFS Middleware

7.1 Motivation

Parallel file systems are complex distributed systems, comprised of many components.
To support the ever increasing demand for capacity and throughput, the number of
individual components must also increase. As a result, the storage systems must be able
to cope with more frequent failures, while still providing guaranties of data reliability
and durability. This implies that no data is lost or silently corrupted, regardless of the
size and the nature of the failure. Given the complexity of individual PFS components,
failures of differing natures are to be expected. The object storage server (OSS) is
typically comprised of a computer node equipped with high capacity storage solutions.
The storage backend exposes an object-based interface to the upper layers of the PFS,
hence they are called Object Storage Target (OST). Failure of any OSS component
usually renders the entire OSS unavailable, and possibly causes an unrecoverable loss
of data. Another potential source of failures of PFS is the network interconnect. To
accommodate increasing amount of data, PFSs are designed to scale horizontally. That
means, instead of making the individual OSTs larger, the systems provide increase of
storage by adding additional OSTs. This also entails adding more interconnect and server
equipment, shifting the reliability concerns from OSTs storage technologies to the other
components of the system. In this work, we present an application of erasure codes aimed
to solve the problem of reliability of OSS, OST and interconnect of a typical PFS.

Usually, it is accepted for file access performance to be degraded during presence
or recovery from a failure. Storage targets are built using a hardware or software type
of RAID systems, where a fraction of available bandwidth is used for rebuilding. But
without the presence of failures, performance must not suffer.

To design a failure-proof reliability system, we first need to understand underlying
system characteristics and classify the failure domains of the whole system. In following,
we use a typical Lustre installation as a prototype of a PFS. An overview of a typical Lustre
installation is shown on Figure 1-7. Lustre stores files in a striped manner over OSTs,
similar to RAID0 scheme. When files are created, the Metadata Server (MDS) creates a
new file layout, consisting of: stripe count, stripe size, and list of pairs <OST:OBJID>1.
The stripe count tells over how many OSTs the file will be distributed, and the stripe
size indicates the distribution block size granularity. The client can now perform file
I/O operations with assigned OSTs, but they must do so through OSS servers. This
interaction pattern defines failure domains of the system:

Object Storage Target Even though they are built with reliability in mind, in this
scheme, they are the single point of failure where data durability is concerned. Due
to file striping, downtimes caused by component failures can leave a large number
of user files unavailable.

1This map uniquely identifies a physical data location

106

7.1 Motivation

Object Storage Server OSS typically controls multiple storage targets, it defines a
larger failure domain. But, since OSS does not store data, it is only important for
availability consideration.

Metadata Server Data integrity of Metadata Target (MTD) is of utmost importance.
The size of PFS metadata allows for snapshot backup strategies, so that even in
case of catastrophic failure, the system can be restored to some previously working
state.

With this in mind, we propose a distributed, erasure-code based, redundancy distri-
bution scheme, as illustrated by Figure 7-1. For each file, signified by different colors on
multiple OSTs, we produced the desired amount of redundancy (striped blocks) using
Reed-Solomon erasure coding. To satisfy reliability and availability constraints, we placed
the redundancy block in isolated failure domains. I.e., sets of OSTs used for file data
and redundancy must be disjoint. Furthermore, to improve scalability and decrease
performance impact on primary MDS, reliability blocks can be stored on OSTs of a
completely separate file system.

Main FS Redundancy FS

Data block Redundancy block

Figure 7-1: Desclustered redundancy placement

In the following, we discuss motivation and requirements for the proposed reliability
scheme:

Optimal storage utilization Simple data replication requires much higher costs in storage
as compared to same reliability erasure coding. Most parallel file systems utilize
multiple storage servers to store data for a single file, thus reducing the reliability
of the replication scheme in case of multiple failures. Using maximum distance
separable (MDS) codes, like the Reed-Solomon erasure code, we ensure minimum
storage utilization while providing optimal reliability, even in the case of the multiple
simultaneous OST failures.

Minimizing ECC calculation overheads Newly produced data in a data center is likely
to be accessed, changed and even deleted in the near future. Examples of this

107

7 ECCFS Middleware

are: intermediate data in batch analysis jobs, process logs, compilation auxiliary
files, etc. With that in mind, we propose the introduction of an adjustable period,
during which we delay calculation of ECC blocks for newly introduced files. This
prevents wasting time, power and bandwidth on ECC computation for short-lived
and frequently updated files.

Flexible and automatic management An important aspect of data center operation is
the flexibility of the data reliability solution. With typical RAID systems, the
number of parity disks is fixed which ensures the same reliability for all data.
However, not all data is equally important, e.g. data produced by an experiment
is more important than simulation results which can be recomputed. Thus, the
ability to specify a desired level of redundancy brings added value. This process
must be automated, while allowing user to specify redundancy policies for different
criteria, such as: file name, file type, file owner, etc. Once in place, the automatic
redundancy management system shall continuously provide the desired level of
redundancy.

7.2 Design of ECCFS

In this section we describe the design of the proposed ECC distribution scheme for parallel
file systems (ECCFS middleware). To minimize code calculation overhead and decrease
impact on performance, we employ a delayed asynchronous method for ECC calculation.
The advantages of this method are:

Temporal locality ECC calculation does not need to happen every time a new file is
created or when the existing file is modified. If application overwrites the same
area of the file multiple times in a short amount of time, or, if the file is temporary,
ECC calculation is not performed at all.

Spatial locality We do not calculate ECC calculation on the client side, so that user
application performance does not suffer. Once a file is not changed for a predefined
amount of time, the ECCFS middleware calculates ECC only for the modified
stripes of the file. With the knowledge of file’s layout, the ECCFS can utilize only
object servers that are actually holding data.

For the storage of redundancy we reuse the existing PFS. For each stripe of data
file we calculate redundancy blocks using Reed-Solomon(n,k) block erasure coding.
Corresponding redundancy blocks are then stored as separate files, in a predefined
location, as shown in Figure 7-9. Layout and placement of redundancy files have to
satisfy following criteria:

1. Redundancy files must have a stripe count equal to 1 to ensure that each one will
be placed exactly on a single OST.

108

7.2 Design of ECCFS

st
rip

es
 (l

)

stripe count (k)

st
rip

e
siz

e
(s

)

Data File Layout

OST
…

OST
r2

OST
rm

Redundancy Files Layout

OST
d1

OST
d2

OST
d3

OST
d4

OST
dk

OST
r1

Figure 7-2: Layouts of data and redundancy files in ECCFS

2. Stripe size of the redundancy file must match that of the data file. This ensures
best storage utilization.

3. Selection of OSTs for redundancy files should be on different failure domains from
data file: {d1, d2, d3, . . . , dk} ∩ {r1, r2, . . . , rm} = ∅

By doing so, we do not have to keep any long-term metadata for stable and consistent
data to redundancy mappings. We achieve this by implicit name mapping between data
file names and redundancy file names.

Let “/pfs/example/data.file” be the absolute path of a data file, where “/pfs/”
is the mount point of PFS, and “example/data.file” the relative path of a file in
PFS global namespace. We define a directory in the top-level of PFS’s namespace,
“/pfs/.eccfs/”, where only redundancy data will be stored, called global redundancy
repository. This is enough to create bijective mapping, DataToRedundancy(), defined as
follows:

RedundancyFile(relative_filename, i) =
PathConcatenate(eccfs_mount_point,

global_eccfs_repository,
relative_filename, “eccfs.“, i)

(7.1)

In other words, we define a namespace which will have a shadow directory for each data
file. Inside this directory, we place files with redundancy blocks. In the example above,
directory “/pfs/.eccfs/example/data.file/” will host m, m = n − k, redundancy
files: “eccfs.1”, ..., “eccfs.m”.

109

7 ECCFS Middleware

This mapping enables a great level of deployment and operational flexibility. Com-
ponent eccfs_mount_point can be set to point to an entirely different PFS installation,
enabling storage of redundancy on separate hardware from original data. Storing each
redundancy block in separate files allows complete flexibility in reliability throughout the
lifetime of the data file. The number of redundancy files can be increased, providing a
greater level of reliability, or decreased, e.g., in case storage capacity is needed for data
files.

Overview of the ECCFS middleware and underlying PFS (Lustre) is shown in
Figure 7-3. For clarity, interactions between PFS components are omitted. The ECCFS

Lustre MDS

Lustre Clients &
ECCFS Monitor

ECCFS MD Worker

ECCFS ECC Workers

Lustre OSSs

ECCFS Changelog

Figure 7-3: Components of ECCFS middleware in relation to Lustre file system components

middleware consists of following components: Monitor, Changelog, MD Worker, and ECC
Worker. Components encapsulate specific functionality according to the separation of
concerns principle [61][18]. Except for the MD Worker component, the entire ECCFS
middleware is independent of underlying PFS, allowing simultaneous coupling with other
parallel file systems that support minimum of requirements. Component separation
enables greater scalability, since performance-critical components can be deployed in
more than one instance. The high level of horizontal scalability of the system maximizes
utilization of computation and bandwidth resources. In the following, responsibility of
each component is described.

7.2.1 ECCFS Monitor

The main challenge of this ECCFS is in ensuring consistency between data and corre-
sponding redundancy blocks. To maintain this consistency in the most efficient way,

110

7.2 Design of ECCFS

the ECCFS middleware requires information about created and changed files. Since the
variance in file sizes is large, for efficiency, we define minimum granularity to be equal to
file’s stripe size of the PFS. Using modern OST storage systems and fast interconnects,
stripe size is usually between 1MiB and 4MiB. Obviously, maximal granularity is equal
to file size.

The ECCFS Monitor component is responsible for collecting information about
changed or created data within the PFS, using minimal update granularity. The modify
update is represented by a tuple (file_name, offset, length), which uniquely represents
the position of every change the user makes during the creation or modification of a file.
For the purpose of ensuring consistency between data and redundancy namespace, the
ECCFS monitors the file path-modifying operations, such as rename, move and delete.
All updates are sent to the ECCFS Changelog component.

7.2.2 ECCFS Changelog

The ECCFS Changelog component serves as central database for collecting file modify
and metadata updates sent from the ECCFS Monitor. This information is kept until
redundancy for modified data is recalculated, or until all operations concerning redundancy
repository namespace are performed. Once the system is back in a consistent state, the
Changelog will be empty again. Information is kept indexed by a data file name. To reduce
the data memory requirement, the Changelog component can perform compactization of
information received from ECCFS Monitor if overlapping intervals are present. Also, if
an update sequence for a file ends with a delete operation, all previous updates can be
ignored.

7.2.3 ECCFS MD Worker

ECCFS MD Worker is in charge of metadata operations and redundancy calculation
scheduling. The design of the ECCFS enables multiple instances of the MD Worker to
operate simultaneously, providing higher scalability of metadata operations. The MD
Worker component has the following responsibilities:

Redundancy placement The ECCFS middleware is designed to reuse the existing PFS
for storage of redundancy. MD Worker must choose an adequate location for storing
redundancy files, according to the set of rules we outlined previously. Each new
ECC block is stored as a separate file, and it is the MD Worker’s responsibility to
place this file on a suitable OSS. This is needed in order to keep optimal redundancy
guaranties of the erasure encoding scheme.

111

7 ECCFS Middleware

PFS interface In order to support multiple parallel file systems without changing their
source code, the MD Worker relies on already provided facilities for low-level
file manipulation. Minimum functionality needed for operation of the ECCFS
middleware is retrieval of the file’s layout information and ability to create a new
file with specified layout information on desired OST. Additionally, information
about the failed components of the PFS can be used for automation of restore
operation. This is the only non-generic part of the ECCFS middleware.

ECC calculation Once a predefined amount of time since modification of a file has passed,
MD Worker starts ECC calculation jobs for the file. It first retrieves data file layout
from the PFS Metadata server. Next, it ensures that required redundancy files are
created, and then issues the ECC calculation jobs for changed regions of the file.
Since erasure code is a block code, the ECC block is mapped to full stripe of the
data file. This entails that, for single data change anywhere within a file stripe, the
ECC is going to be recalculated for the whole stripe. Each ECC calculation job
runs either on a single, or on multiple consecutive stripes.

Housekeeping of Data-Redundancy namespace Once a data file is deleted, the MD
Worker must delete all redundancy files used for the file. Similarly, when a data file
is moved, all redundancy files are moved to a new location to reflect this change.

7.2.4 ECCFS ECC Worker

The ECCFS ECC Worker listens on job queue and performs the actual calculation of the
error correction codes. The ECC calculation job, created by the MD Worker instance,
contains file layout, desired redundancy policy, index of start stripe and number of stripes
to calculate ECCs. Using this information, the ECC Worker maps the file’s data to
erasure block and performs the ECC calculation. Once calculated, redundancy blocks are
stored into previously created redundancy files. Multiple instances of the ECC Worker
component can run simultaneously, sharing code calculation jobs between them. This
provides high scalability, enabling the ECCFS middleware to reach the consistent state
between data and ECCs faster. Restoring files based on ECCs is also done by the ECC
Worker component, in which case reconstructed data is written to a specified file. The
ECC Worker instance must request only data that is known to be available during the
reconstruction process. The reconstruction job, besides the file layout, also contains a
map of failed OSTs, which is used to request only file stripe blocks that are available. To
enable this, PFS must continue to deliver data from the OSTs not affected by the failure.

7.3 Implementation

During the process of design and implementation of the ECCFS middleware we had to
honor multiple constraints that come from the fact that we do not have control over

112

7.3 Implementation

pre-existing components of the data center. ECCFS can be added to already deployed
PFS, without any modification of software or hardware infrastructure that was already
deployed. Another important consideration is that the ECCFS middleware must add
as little overhead as possible. Here, we have to consider the amount of computational
and network bandwidth resources used, as well as the impact on the data and metadata
performance of PFS. The following section describes implementation of each component
of the ECCFS middleware.

7.3.1 ECCFS Monitor

ECCFS Monitor is the only component that needs to be installed on each client of the
PFS. As such, it is the most performance-critical component of the ECCFS middleware.
The ECCFS Monitor has to intercept file system calls that applications make, and extract
the changelog information. It is important not to impose any new software libraries or
changes to the user application code. This means that monitoring has to happen between
the application and the PFS client module. Several approaches to interpose on system
calls between application and kernel exist [53][38][29], but all of them require modification
of the application environment. Furthermore, enforcing the use of such a solution is a
problem, because if an application circumvents the interposing solution and accesses the
PFS directly, it will cause inconsistent data-redundancy mappings.

Because of this, we explored options to place the ECCFS Monitor inside the kernel,
preventing undetectable access to the PFS data. This can be accomplished in two ways:
by implementing the file system in user space using the FUSE [106] infrastructure, or by
implementing an overlay file system layer inside the Linux kernel, similar to eCryptfs [41]
or WrapFS [113]. Both approaches are shown in Figure 7-4. The benefit of the FUSE

kernel

userspace

Virtual File System

glibc

Application

FUSE

Lustre client

Data path Metadata path

FUSE File System

ECCFS File System

libfuse

(a) ECCFS Monitor as FUSE file system

kernel

userspace

Virtual File System

glibc

ECCFS Monitor
daemon

Application

ECCFS Monitor

Lustre client

Data path Metadata path Change update

(b) ECCFS Monitor as overlay VFS

Figure 7-4: Implementation option for ECCFS Monitor component

filesystem approach, shown in Figure 7-4(a), is that no new code is added to the Linux
kernel. Instead, a file system mimicking functionality is implemented in the userspace
application which, in conjunction with the FUSE kernel module, presents a virtual file

113

7 ECCFS Middleware

system. However, this approach involves significant performance overhead due to the
required kernel/userspace context switching and data copying, as noted in [7]. Since all
data and metadata operations have to be performed by a Lustre kernel client module, data
is copied multiple times between the application, the fuse kernel module, fuse userspace
application, and the Lustre kernel module. Thus, we decided to implement the ECCFS
Monitor as an overlay file system within the Linux kernel itself, as shown in Figure 7-4(b).
To add as little modifications to the kernel as possible, we split the ECCFS Monitor
component into two parts: a kernel file system interposing module, and a userspace
daemon2. The kernel module inspects metadata operations and transmits them to the
daemon via the character device interface “/dev/eccfs”. The functionality is performed
asynchronously, so that application system calls are not stalled while the update is
propagated to the userspace daemon. All I/O-intensive operations are performed directly
by the Lustre client module, without any overhead. The userspace daemon collects
updates and transmits them periodically to Changelog. This implementation enables
us to offer an unaltered file system interface with the least performance overhead. In
following, we describe handling of file system operations relevant for operation of the
ECCFS middleware:

write() This operation modifies data, and the ECCFS middleware has to intercept
every invocation of this operation in the PFS. During the time PFS services a
write() call, the ECCFS Monitor sends a modify update to the ECCFS Changelog
component. The modify update contains a file name, start position, and length of
the modified data. This process is shown in Figure 7-5. Operations of the ECCFS
middleware are prefixed with ECCFS, while other operations are performed by the
PFS.

:User :PFS Client
:ECCFS Monitor

:ECCFS Changelog :PFS OST{0, . . . ,n}

write(file, off, len) PFS.write(objects)

ECCFS.modify update(file, off, len)

File ModificationFile Modification

delete(file) PFS.delete(objects)

ECCFS.metadata update(file)

File DeletionFile Deletion

Figure 7-5: Sequence diagram of ECCFS Monitor component

2Background process

114

7.3 Implementation

move()/delete() Moving files within the PFS namespace does not involve copying
data, so the ECCFS middleware has to intercept these operations in order to ensure
consistent mapping between data and the ECC files. We call these metadata updates.
Using them, the MD Worker instance can perform housekeeping operations in the
redundancy repository, and ensure consistency without having to recalculate ECC
blocks.

7.3.2 ECCFS Changelog

The main goal of the ECCFS Changelog component is to keep updates sent from the
ECCFS Monitor, until other components finish required operations in the redundancy
repository. During the implementation phase, we decided to use the component to also
store configuration and redundancy policies for the system. Since the main functionality
is to store change logs, a database solution, with enough scalability, can be used. We
considered multiple solutions, including several SQL databases, MySQL [72], PostgreSQL
[91]; and NoSQL3 databases, like: Redis [44] and MongoDB [8].

We chose the Redis NoSQL database for the following reasons:
1. Support for a high number of simultaneous client connections [11], over 100 000,

ensures scalability. The Changelog accepts a connection from every compute node
that mounts a PFS and an ECCFS Monitor, and all other instances of MD Worker,
and ECC Worker components.

2. Efficiency and versatility of data handling. Redis keeps its entire data set in the
main memory, where each key can be an instance of: list, set, hash, or other
supported data structure. This enables efficient data queries and modifications
to take place on the server itself. Figure 7-6(a) shows throughput of basic Redis
database operations.

3. Durability of the data set is maintained by saving snapshots of a data set to the
disk, or alternatively, by master-slave replication.

4. Scripting support. Redis functionality can be extended by embedding key-values
modifying procedures written in Lua programming language [49]. Scripts are
compiled to native code using JIT compilation methods. This functionality en-
ables creation of more complicated data manipulation procedures, which execute
atomically on the server.

Scripting support is used extensively during implementation of the middleware,
providing functionality of the remote procedure call (RPC) communication model. Each
component of the ECCFS middleware executes procedures atomically, greatly simplifying
the design of the system. Performance of the redis script procedures is shown in Figure 7-
6(b). All messages are exchanged in the JSON 4 format. Besides the main functionality,
the Changelog also implements synchronization and job queue functionality for ECCFS
MD Worker and ECC Worker instances.

3A non-relational database engine
4JavaScript Object Notation

115

7 ECCFS Middleware

0

311 300

456 600

510 200

598 100

653 600

711 100

781 200

K
EY

SE
T

K
EY

G
ET

LI
ST

PU
SH

LI
ST

PO
P

SE
T
PU

T

SE
T
G
ET

R
A
N
G
E

Operation

O
p
er
a
ti
o
n
s
p
er

se
co
n
d

(a) Throughput of Redis operations

0

94 300

151 300

238 000

283 500

A
D
D
C
H
A
N
G
E

PU
T
LA
Y
O
U
T

N
EW

EC
C
JO
B

PO
LI
C
Y
G
ET

Operation

O
p
er
at
io
n
s
p
er

se
co
n
d

(b) Throughput of MD Worker opera-
tions

Figure 7-6: Performance of individual Redis operations and MD Worker operations

7.3.3 ECCFS MD Worker

Implementation of the ECCFS MD Worker component is straightforward. Following the
responsibility-encapsulation approach, the MD Worker is responsible solely for metadata
operations within the ECCFS middleware. Since there are no standard methods for
querying and setting file layouts in PFS, the MD Worker must adapt to each underlying
PFS. In our implementation, which is targeted for use with the Lustre file system, all
required PFS operations can be performed using lfs5 command. The MD Worker
component performs two main functions:

Ensuring consistency Modify and delete updates are processed after a predefined timeout.
A sequence diagram of the processing delete metadata update is shown in Figure 7-7.
After an MD Worker instance receives a delete update from the ECCFS Changelog,
the information is confirmed with the PFS. This usually only entails contacting
the metadata server of the PFS. After confirmation, the MD Worker removes all
redundancy files previously associated with the deleted data file.

Starting ECC calculations Once a predefined amount of time passes, the MD Worker
component starts the process of ECC calculation for modified files. As the ECCFS

5Specifically, getstripe and setstripe subcommands

116

7.3 Implementation

middleware uses a linear block erasure scheme, modify updates from Changelog
have to be transformed into the information needed for ECC calculation. To do
this, the MD Worker gets the file layout information from the PFS Metadata server.
Once the layout of the file is known, the MD Worker ensures that appropriate
redundancy files exist, or creates them if needed.

:ECCFS MD Worker :ECCFS Changelog :PFS Metadata Server :PFS OST{1, . . . ,m} (ecc)

ECCFS.get delete update()
[file]

ECCFS.file exist(file)
[no]

ECCFS.delete ecc file(file, 1)
PFS.delete object(1)

ECCFS.delete ecc file(file, 2)
PFS.delete object(2)

ECCFS.delete ecc file(file, m)
PFS.delete object(m)

Delete update (redundancy repository housekeeping)Delete update (redundancy repository housekeeping)

Figure 7-7: Cleaning of redundancy files performed by the ECCFS MD Worker component during
processing of delete update.

7.3.4 ECCFS ECC Worker

The job of this component is to perform erasure coding operations. Once an instance of
MD Worker posts a redundancy job, an idle instance of ECC Worker is notified. In order
to achieve better I/O throughput, a single ECC job can be defined on a single or multiple
consecutive file stripes. To allow parallel ECC operations on large files, a maximum
limit of stripes can be configured. The ECCFS middleware does not dictate the usage of
specific erasure code implementation. Instead, we defined a simple interface that allows
different erasure code implementations to be used. The only requirement is that used
code is an MDS block-based linear erasure code. ECC calculation is not implemented
within the ECC Worker itself, but rather as a standalone application. Calculation of
redundancy, for a single stripe of modified file is shown in Figure 7-8.

Once the MD Worker queries all necessary information from PFS, it posts a new
ECC job, using functionality implemented in the Changelog. An idle ECC Worker
instance receives information about the file layout, region of the file for which ECC is
calculated, and parameters of the erasure scheme. To produce ECC, required file data is
read using standard POSIX file system interface, and ECC is calculated. Finally, each

117

7 ECCFS Middleware

:ECCFS MD Worker :ECCFS Changelog :PFS Metadata Server :ECCFS ECC Worker
:PFS OST{1, . . . , k}

(data)
:PFS OST{1, . . . ,m}

(ecc)

ECCFS.handle modify update()

ECCFS.get modify update()

[file, off, len]

ECCFS.get file layout(file)

[file layout]

ECCFS.new ecc job
(file, layout, stripe index)

ECCFS.get ecc job()

[file, stripe index] ECCFS.ecc job begin()

ECCFS.read stripe(file, stripe index)

[stripe data]

ECCFS.calculate ecc([stripe data])

ECCFS.save ecc file(file, 1)

ECCFS.save ecc file(file, 2)

ECCFS.save ecc file(file, k)
ECCFS.delete modify update(file, stripe index)

ECCFS.ecc job end()

Redundancy calculationRedundancy calculation

Figure 7-8: ECC calculation performed by the ECCFS ECC Worker component

of the redundancy files is updated, and the job is deleted in the Changelog, marking
completion of the operation. The ECCFS allows flexible redundancies policies to be
defined by the file system administrators and ordinary users. An redundancy policy
defines the number of redundancy blocks and priority, and can be applied per user or
by matching against the file path. Also, the time before parity calculation starts after
modification is performed can be configured separately, adapting to the use-case scenario.

To provide additional data protection, the ECC Worker also calculates and stores
algebraic signatures for data and redundancy blocks. The benefits of this kind of
checksumming are described in section 2.4. Signatures for all data blocks and a signature
of the ECC block are saved to all corresponding ECC files. The structure of the
redundancy files is shown in Figure 7-9. The header of each file is updated on each new
redundancy update job. Information stored in headers is used during reconstruction
of data allowing original file information to be correctly restored. Algebraic signatures
can be used to verify a file´s reconstructed data, but also to check whether available
redundancy is consistent with data, using the property given by Equation 2.37. This
prevents redundancy-consistency errors, commonly known as RAID write hole, from
causing invalid data on reconstruction.

118

7.3 Implementation

Header

ECC block (stripe 0)

ECC block (stripe …)

ECC block

Data Block 1 signature

Data Block 2 signature

Data Block k signature

ECC Block signature

ECC data

Data Size

File Protection Mode

User ID

Data Stripe Count

Data Stripe Size

Group ID

Figure 7-9: Structure of ECC files

7.3.5 Deployment and Administration

Noncommercial data centers, as the ones found in academia and research environments,
usually operate several generations of compute and storage clusters. The ECCFS middle-
ware was designed with deployment and operation in such complex environments in mind.
As previously noted, ECCFS can be deployed on already existing PFS. Redundancy is
first calculated for pre-existing files, after which time ECCFS starts its normal operation.
A single ECCFS deployment infrastructure can be virtualized to service multiple parallel
filesystems. This feature decreases capital and operational costs for system deployment
and administration. Each of the sub-instances have separate configuration and reliability
parameters. Finally, a deployment using two or more file systems is possible, where a
parity distribution scheme is applied over all available OSTs. This scheme can be useful
in environments with storage systems of different generations, reliability features, and
failure domains. E.g., a file system with older and less reliable hardware can be used for
redundancy repository of other file systems. Even though reliability of individual OSTs is
lower, appropriately configured erasure code can still provide an additional level of data
durability to a combined system.

ECCFS middleware provides an administration tool for performing various operations.
The tool can be used to recalculate file redundancy or restore a file that has been affected
by a failure. Additionally, the administrator can schedule a data scrub operation, during
which ECCFS uses checksums and redundancy blocks to check for and repair silent data
corruption. An administrator command is required to perform rebuilding of all affected
files in case of failure or prolonged unavailability of an OST, as this operation can lead to
excessive storage and computing resource utilization. The rate at which the ECC Worker
consumes I/O bandwidth can be adjusted so that application throughput is not affected.

119

7 ECCFS Middleware

Redundancy policies can be adjusted at a later time, either to increase or decrease
the level of reliability. This can be beneficial if reliability criteria change or if more free
space is required in the PFS. In case of decreasing, redundancy files with the highest index
are deleted, while the remaining files still make a valid erasure scheme. The redundancy
policy can specify any number of ECC files, including 0, in which case all matching files
are ignored by the ECCFS. If a data file is not striped over multiple OSTs, i.e. its stripe
count is 1, ECCFS will use the replication strategy, since the erasure coding scheme
requires at least two data blocks.

7.4 Summary

Parallel file systems, commonly used in high performance computing environments, lack
flexibility in defining data resiliency. Individual object storage targets, created using
hardware or software RAID solutions, define rigid reliability domains. File striping
patterns, used by PFS to provide better I/O performance, significantly decrease data
reliability while expanding the magnitude of data loss caused by a failure of a single
storage OST. In this chapter, we described the design and prototype implementation of an
adaptable erasure scheme, tailored for use in conjunction with existing parallel file systems.
The proposed method, the ECCFS middleware, is designed with complex deployment
and operational environments in mind. The middleware imposes no requirements or
modifications to existing applications or infrastructure, allowing for the highest level of
compatibility. The utilized block erasure code scheme maps to the PFS striping pattern,
offering optimal storage, computation, and network resource utilization, while providing
a high level of reliability.

The distributed nature of ECCFS middleware enables a high level of scalability and
performance. Erasure code operations are orchestrated and performed concurrently by the
desired number of worker components. The erasure code implementation, implemented
for SIMD execution units of modern CPUs, described in chapter 5 is capable of producing
redundancy at a high data rate. Upon installation of the ECCFS middleware on a file
system, redundancy calculation of pre-existing files is shared between all instances of the
ECC Worker component, maximizing available I/O bandwidth. Similarly, reconstructing
all files that are affected by an OST failure is performed in parallel, improving availability
of files.

Erasure coding, in some form, is supported by several parallel filesystems. GlusterFS
[45] supports a non-systematic form of erasure codes to build storage volumes. Ceph
[109] supports erasure coding for pool resiliency, but a default method is replication. It
allows creation of fixed erasure code during storage pool creation, and does not support
changing the configuration afterwards. Recently, RozoFS [84] parallel filesystems was
introduced, utilizing a new class of non-MDS erasure codes built upon Mojette transform
[35]. However, all of these implementations lack flexibility in data resiliency policies.

120

7.4 Summary

Once the number of redundancy blocks is set, all data is encoded with the same policy.
In contrast, the ECCFS support flexible redundancy policies adaptable to different user
or application use-cases.

We envision many possibilities for further enhancements of the presented middleware.
Many scientific data environments operate on the so-called, “write once read many”
datasets. The ECCFS can be extended to handle such files more efficiently, since they
are guaranteed not to change in the future. For this purpose, we could provide an special
class of resiliency policy, one that would perform more frequent data scrubs. Another
approach would be to check if files are marked “read-only” or “immutable”. In a multi-user
data center environment, there is always a possibility that some data will be duplicated,
intentionally or not. ECCFS cannot perform de-duplication of data files, but it can detect
it and store the redundancy of such files only once. To achieve this, a database of all
data blocks would have to be maintained. However, savings on storage space might not
be significant in general cases.

After the file modification has been made, the ECCFS delays computation of
redundancy for a configurable amount of time. Accessing modified data at the same time
as the application is not advisable due to cache coherency and access serialization models
of the underlying PFS. If the PFS does not provide consistent, POSIX like, read/write
serialization and coherent caching across all clients, an ECC Worker instance could read
stale data. An example of such a PFS is the BeeGFS6 [6] file system. On the other
side, if PFS does provide full cache coherency, concurrent access would cause significant
performance degradation, due to locking and forced cache flushing overheads. However,
by integrating more deeply with the PFS Metadata server, the ECCFS could receive
more timely information when a client releases file locks and performs a cache write-back
operation. This would shorten the vulnerable time, during which data and redundancy
blocks are inconsistent. Also, the possibility to update, or rewrite, file layouts would
greatly benefit file reconstruction speed and efficiency. Presently, to reconstruct a file
using an erasure (n, k) configuration, ECCFS has to read k blocks, reconstruct missing
data parts, and write the k data block into a new file. This is suboptimal, because only
failed stripe sections need to be saved, since other stripe blocks are not affected. To
support this, MDS would need to allocate a new object on available OST, and update the
file layout replacing the failed OST. Then, the ECCFS would only need to populate the
missing stripe block during the reconstruction process, greatly reducing write bandwidth
utilization to the rest of PFS.

To provide an even greater level of data integrity and availability, the ECCFS
middleware could be integrated with job scheduling platforms. In operation without
failures, before a new job is scheduled, the ECCFS could perform a data integrity check on
all files required by a job execution. Otherwise, all unavailable files could be reconstructed
in time for job execution. Finally, more options for reliability repository could be added

6Formerly known as Fraunhofer GFS (FhGFS)

121

7 ECCFS Middleware

to enable an even greater level of customization. Currently, the ECCFS framework stores
redundancy in ordinary files of PFS, with implicit naming scheme. This functionality
could be expanded to support object storage, such as OpenStack swift [105]. Also, storing
redundancy of read-only files on the MAID7 type of nearline storage would enable greater
storage density and lower power and cooling requirements.

7Massive Array of Idle Drives

122

CHAPTER 8
Summary

Reliability aspects of individual components are important factors when estimating
reliability of a complex system. High capacity storage components, mainly hard disk
drives, exhibit a set of failure modes which have to be well understood. Disparity between
capacity and reliability of hard disk drives is making standard RAID levels unsuitable
for modern high capacity storage solutions. This prompted the use of more resilient
erasure coding. Furthermore, in order to prevent data corruption, checksumming and
online data integrity verification is required. Software-defined reliability requires less
capital and operational costs, when compared to specialized hardware reliability solutions.
Parallel distributed file systems, used for efficient data handling at petabyte scales, lack
fine-grained and user defined reliability. These problems provided motivation for an
efficient, flexible and retargetable Reed-Solomon erasure scheme.

Reed-Solomon codes are ubiquitous for all areas of digital data storage and transmis-
sion. Implementation of efficient Reed-Solomon codes hinges on the ability to perform fast
Galois field operations. The Addition operation is equivalent to exclusive-or (carry-less
addition), and therefore can be performed efficiently. But CPUs do not have Galois field
multiplication realized in hardware, so this operation has to be emulated. A method
that uses polynomial multiplication and reduction to obtain a multiplication result is pre-
sented. Galois field operations are then combined with a Vandermonde-based, systematic

123

8 Summary

Reed-Solomon generator matrix formulation to form the basis of codes discussed in the
rest of this thesis. The proposed implementation of Reed-Solomon erasure codes utilizes
the JIT code generation technique.

Galois field operations are represented as simple, integer based, operations using
LLVM IR language. This formulation allows for arbitrary Galois field lengths, supported
by arbitrary integer precision of LLVM IR. Reed-Solomon is constructed by emitting all
operations of matrix multiplication to a single, control-sequence free, block of instructions.
Intrinsic redundancy in amalgamated operations is removed automatically by an optimiz-
ing compiler. Data level parallelism of Reed-Solomon codes is exploited by substituting
LLVM IR integer types with vector types suitable for an individual test platform. This
enabled seamless generation of efficient, high throughput, vectorized machine codes for
both x86 and ARM platforms. The LLVM is able to generate code for SSE and AVX2
instruction sets for x86, and the NEON instruction set of the ARM CPU-based platform.
Evaluation shows maximum encoding throughput, for a smaller number of data and code
symbols, to be close to the memory bandwidth of test platforms. However, computational
complexity of larger matrix multiplication is a dominant factor for large codes.

The ZFS file system is being increasingly used in high performance storage environ-
ments for its software-defined reliability features. Having no dependencies on hardware
RAID solutions, ZFS simplifies hardware infrastructure, while relying on CPU for data
redundancy and integrity calculations. Typically, a single server controls several ZFS
pools, putting even greater stress on the CPU and I/O sub-system for parity operations.
ZFS supports the erasure coding scheme for the storage pool, RAID-Z, which can add
resiliency for up to 3 failures. Throughput of parity operations can be greatly improved
by implementing specialized methods for all parity operations, and by performing com-
putationally intensive parity operations using SIMD units of modern CPUs. A generic
framework for RAID-Z parity operations, which supports implementation for multiple
instruction sets with minimal overhead, is presented. Using this foundation, the new
RAID-Z implementations using scalar, SSE, and AVX2 instruction sets, are realized.
Optimized SIMD code is showing significant improvement in parity generation and data
reconstruction throughput (up to 95x). Implemented routines were made available, and
are now part of the ZFS on Linux project.

Parallel file systems, commonly used in high performance computing environments,
lack flexibility in defining data resiliency. Individual object storage targets, created
using hardware or software RAID solutions, define rigid reliability domains. Erasure
coding, in some form, is supported by several parallel filesystems. However, all of these
implementations lack flexibility in data resiliency policies.

This thesis presents a design and prototype implementation of an adaptable erasure
scheme tailored for use in conjunction with existing parallel file systems. The proposed
system, the ECCFS middleware, is designed with complex deployment and operational
environments in mind, imposing no changes or requirements to the hardware or software

124

stacks. The block erasure code scheme enables optimal storage, computation, and network
resource utilization, while providing a high-level of data resiliency. The distributed nature
of ECCFS middleware enables a high level of scalability. Erasure code operations
are orchestrated and performed concurrently, efficiently utilizing available computation
resources and I/O bandwidth. Randomization of redundancy block placement allows
parallel reconstruction of all files that are affected by a storage target failure. The ECCFS
support flexible redundancy policies, adaptable to different users or application use-cases.

We envision many possibilities for further enhancements of the middleware presented.
ECCFS can be extended to handle “write once read many” datasets more efficiently, and
to provide stronger assurance against silent data corruption. To avoid a decrease in client
I/O and metadata performance, due to distributed file locking and cache coherency of
PFS, the ECCFS implements delayed parity synchronization. In order to decrease the
time where modified files are vulnerable to failures, we would need to integrate deeper
with PFS. Additionally, ability to update, or rewrite, file layouts would greatly benefit
file reconstruction speed and efficiency. The Metadata server of PFS would only have
to allocate a new object on the available OST, and update the file layout replacing the
failed OST. Then, ECCFS would only need to populate the missing stripe block during
the reconstruction process, greatly reducing write bandwidth utilization. To provide an
even greater level of data integrity and availability, the ECCFS middleware could be
integrated with job scheduling platforms. In operation without failures, before a new
job is scheduled, ECCFS could perform a data integrity check on all files required by
a job execution. Otherwise, all unavailable files could be reconstructed in time for job
execution, or alternatively, the job scheduler would be notified about unavailable files
so that a new execution plan can be generated. Finally, more options for reliability
repository could be added to enable an even greater level of customization. The latest
roadmap [19] for the Lustre1 parallel file system indicates that a set of reliability features,
similar to the ECCFS middleware, is being investigated.

1Lustre version 2.11+

125

References

[1] H Peter Anvin. The mathematics of RAID-6. 2007.

[2] Raja Appuswamy, David C van Moolenbroek, and Andrew S Tanenbaum. “Block-
level RAID Is Dead.” In: HotStorage. 2010.

[3] Lakshmi N Bairavasundaram et al. “An analysis of data corruption in the storage
stack.” In: ACM Transactions on Storage (TOS) 4.3 (2008), p. 8.

[4] Paul Barrett. “Implementing the Rivest Shamir and Adleman Public Key En-
cryption Algorithm on a Standard Digital Signal Processor.” In: Crypto. Vol. 86.
Springer. 1986, pp. 311–323.

[5] Kenneth G Beauchamp. Applications of Walsh and related functions, with an
introduction to sequency theory. Vol. 2. Academic Pr, 1984.

[6] BeeGFS, The Parallel Cluster File System. 2016. url: http://www.beegfs.com.

[7] John Bent et al. “PLFS: a checkpoint filesystem for parallel applications.” In: Pro-
ceedings of the Conference on High Performance Computing Networking, Storage
and Analysis. ACM. 2009, p. 21.

[8] Alexandru Boicea, Florin Radulescu, and Laura Ioana Agapin. “MongoDB vs
Oracle-Database Comparison.” In: EIDWT. 2012, pp. 330–335.

[9] R.C. Bose and D.K. Ray-Chaudhuri. On A Class of Error Correcting Binary
Group Codes. 1960. doi: 10.1016/S0019-9958(60)90870-6.

[10] Peter J Braam et al. “The Lustre storage architecture.” In: (2004).

[11] Rick Cattell. “Scalable SQL and NoSQL data stores.” In: Acm Sigmod Record 39.4
(2011), pp. 12–27.

[12] Lucian Codrescu et al. “Qualcomm Hexagon DSP: An architecture optimized for
mobile multimedia and communications.” In: Hot Chips. Vol. 25. 2013.

[13] John Cook, Robert Primmer, and Ab de Kwant. “Comparing cost and performance
of replication and erasure coding.” In: arXiv preprint arXiv:1308.1887 (2013).

[14] ARM Cortex. “A8 technical reference manual.” In: Revision: r3p2, May (2010).

[15] Mark Cox et al. The openssl project. 2002.

127

http://www.beegfs.com
https://doi.org/10.1016/S0019-9958(60)90870-6

References

[16] Joan Daemen and Vincent Rijmen. “AES proposal: Rijndael.” In: (1999).
[17] Veera Deenadhayalan et al. “Matrix methods for lost data reconstruction in erasure

codes.” In: Proceedings of the Fourth USENIX Conference on File and Storage
Technologies. 2005, pp. 183–196.

[18] Edsger W Dijkstra. “On the role of scientific thought.” In: Selected writings on
computing: a personal perspective. Springer, 1982, pp. 60–66.

[19] Andreas Dilger. “Lustre 2.9 and Beyond.” 2016.
[20] Ulrich Drepper. “What every programmer should know about memory.” In: Red

Hat, Inc 11 (2007), p. 2007.
[21] Dell Storage Engineering. Dell PS Series Storage: Choosing a Member RAID

Policy. Tech. rep. Jan. 2016. url: http://en.community.dell.com/dell-
groups/dtcmedia/m/mediagallery/19861480/download.aspx.

[22] David Fiala et al. “Detection and correction of silent data corruption for large-scale
high-performance computing.” In: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. IEEE Computer
Society Press. 2012, p. 78.

[23] Michael J Flynn. “Some computer organizations and their effectiveness.” In:
Computers, IEEE Transactions on 100.9 (1972), pp. 948–960.

[24] Agner Fog. “Instruction tables: Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs.” In: Copenhagen
University College of Engineering (2016).

[25] Daniel Ford et al. “Availability in Globally Distributed Storage Systems.” In: OSDI.
2010, pp. 61–74.

[26] G David Forney and G David Forney. Concatenated codes. Vol. 11. Citeseer, 1966.
[27] Inc. Freescale Semiconductor. “Chip Errata for the i.MX 6Dual/6Quad and i.MX

6DualPlus/6QuadPlus.” In: (2014).
[28] Robert G Gallager. “Low-density parity-check codes.” In: Information Theory,

IRE Transactions on 8.1 (1962), pp. 21–28.
[29] Tal Garfinkel, Ben Pfaff, Mendel Rosenblum, et al. “Ostia: A Delegating Architec-

ture for Secure System Call Interposition.” In: NDSS. 2004.
[30] GCC:GNU Compiler Collection. 2016. url: https://gcc.gnu.org.
[31] John Goodacre and Andrew N Sloss. “Parallelism and the ARM instruction set

architecture.” In: Computer 38.7 (2005), pp. 42–50.
[32] Jim Gray and Catharine Van Ingen. “Empirical measurements of disk failure rates

and error rates.” In: arXiv preprint cs/0701166 (2007).
[33] Kevin M Greenan. Reliability and power-efficiency in erasure-coded storage systems.

Citeseer, 2011.

128

http://en.community.dell.com/dell-groups/dtcmedia/m/mediagallery/19861480/download.aspx
http://en.community.dell.com/dell-groups/dtcmedia/m/mediagallery/19861480/download.aspx
https://gcc.gnu.org

[34] Kevin M Greenan, Ethan L Miller, and Thomas JE Schwarz. “Optimizing Galois
Field arithmetic for diverse processor architectures and applications.” In: Modeling,
Analysis and Simulation of Computers and Telecommunication Systems, 2008.
MASCOTS 2008. IEEE International Symposium on. IEEE. 2008, pp. 1–10.

[35] Jeanpierre V Guedon and Nicolas Normand. “Mojette transform: applications for
image analysis and coding.” In: Electronic Imaging’97. International Society for
Optics and Photonics. 1997, pp. 873–884.

[36] Michael E. Kounavis(Intel) Gueron, Shay(Intel). Intel ® Carry-Less Multiplication
Instruction and its Usage for Computing the GCM Mode. Tech. rep. Intel, 2010,
pp. 1–72.

[37] Shay Gueron and Michael E Kounavis. “Intel® Carry-Less Multiplication In-
struction and its Usage for Computing the GCM Mode.” In: Intel white paper
(September 2012) (2010).

[38] Philip J Guo and Dawson R Engler. “CDE: Using System Call Interposition to
Automatically Create Portable Software Packages.” In: USENIX Annual Technical
Conference. 2011.

[39] Preeti Gupta et al. “An economic perspective of disk vs. flash media in archival
storage.” In:Modelling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2014 IEEE 22nd International Symposium on. IEEE. 2014,
pp. 249–254.

[40] James Lee Hafner and K Rao. “Notes on reliability models for non-MDS erasure
codes.” In: IBM Res. rep. RJ10391 (2006).

[41] Michael Austin Halcrow. “eCryptfs: An enterprise-class encrypted filesystem for
linux.” In: Proceedings of the 2005 Linux Symposium. Vol. 1. 2005, pp. 201–218.

[42] Per Hammarlund et al. “Haswell: The fourth-generation intel core processor.” In:
IEEE Micro 2 (2014), pp. 6–20.

[43] Richard W Hamming. “Error detecting and error correcting codes.” In: Bell System
technical journal 29.2 (1950), pp. 147–160.

[44] Jing Han et al. “Survey on NoSQL database.” In: Pervasive computing and
applications (ICPCA), 2011 6th international conference on. IEEE. 2011, pp. 363–
366.

[45] Red Hat. GlusterFS. 2012.
[46] HGST Hard Drives. 2016. url: https://www.hgst.com/products/hard-drives.
[47] Martin Hilbert and Priscila López. “The world’s technological capacity to store,

communicate, and compute information.” In: science 332.6025 (2011), pp. 60–65.
[48] Cheng Huang et al. “Erasure coding in windows azure storage.” In: Presented as

part of the 2012 USENIX Annual Technical Conference (USENIX ATC 12). 2012,
pp. 15–26.

129

https://www.hgst.com/products/hard-drives

References

[49] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Celes Filho.
“Lua-an extensible extension language.” In: Softw., Pract. Exper. 26.6 (1996),
pp. 635–652.

[50] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference
Manual. 248966-032. Jan. 2016.

[51] Intel Intel. “and IA-32 Architectures Software Developer’s Manual.” In: Volume
3A: System Programming Guide, Part 1 (2010).

[52] Intel Intel. “Optimizing Performance with Intel® Advanced Vector Extensions.”
In: (2014).

[53] Kapil Jain and R Sekar. “User-Level Infrastructure for System Call Interposition:
A Platform for Intrusion Detection and Confinement.” In: NDSS. 2000.

[54] Weihang Jiang et al. “Are disks the dominant contributor for storage failures?:
A comprehensive study of storage subsystem failure characteristics.” In: ACM
Transactions on Storage (TOS) 4.3 (2008), p. 7.

[55] Sebastian Kalcher. “An erasure-resilient and compute-efficient coding scheme
for storage applications.” PhD thesis. Goethe University Frankfurt am Main,
2013. url: http://publikationen.ub.uni-frankfurt.de/frontdoor/index/
index/docId/32295.

[56] Sebastian Kalcher and Volker Lindenstruth. “Accelerating Galois Field Arithmetic
for Reed-Solomon Erasure Codes in Storage Applications.” In: 2011 IEEE In-
ternational Conference on Cluster Computing (CLUSTER), Austin, TX, USA,
September 26-30, 2011. 2011, pp. 290–298. doi: 10.1109/CLUSTER.2011.40. url:
http://dx.doi.org/10.1109/CLUSTER.2011.40.

[57] Sooyong Kang et al. “Performance trade-offs in using nvram write buffer for flash
memory-based storage devices.” In: Computers, IEEE Transactions on 58.6 (2009),
pp. 744–758.

[58] Neal Koblitz. “Elliptic curve cryptosystems.” In: Mathematics of computation
48.177 (1987), pp. 203–209.

[59] Matthias Kretz and Volker Lindenstruth. “Vc: A C++ library for explicit vector-
ization.” In: Softw., Pract. Exper. 42.11 (2012), pp. 1409–1430. doi: 10.1002/spe.
1149. url: http://dx.doi.org/10.1002/spe.1149.

[60] Andrew Krioukov et al. “Parity Lost and Parity Regained.” In: FAST. Vol. 8.
2008, pp. 127–141.

[61] Philip A Laplante. What every engineer should know about software engineering.
CRC Press, 2007.

[62] Chris Lattner. “LLVM and Clang: Next generation compiler technology.” In: The
BSD Conference. 2008, pp. 1–2.

130

http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/32295
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/32295
https://doi.org/10.1109/CLUSTER.2011.40
http://dx.doi.org/10.1109/CLUSTER.2011.40
https://doi.org/10.1002/spe.1149
https://doi.org/10.1002/spe.1149
http://dx.doi.org/10.1002/spe.1149

[63] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong
program analysis & transformation.” In: Code Generation and Optimization, 2004.
CGO 2004. International Symposium on. IEEE. 2004, pp. 75–86.

[64] Adam Leventhal. “Flash storage memory.” In: Communications of the ACM 51.7
(2008), pp. 47–51.

[65] Adam Leventhal. “Triple-parity RAID and beyond.” In: Queue 7.11 (2009), p. 30.

[66] Witold Litwin and Thomas Schwarz. “Algebraic signatures for scalable distributed
data structures.” In: Data Engineering, 2004. Proceedings. 20th International
Conference on. IEEE. 2004, pp. 412–423.

[67] David McGrew and John Viega. “The Galois/counter mode of operation (GCM).”
In: Submission to NIST (2004).

[68] Larry W McVoy, Carl Staelin, et al. “lmbench: Portable Tools for Performance
Analysis.” In: USENIX annual technical conference. San Diego, CA, USA. 1996,
pp. 279–294.

[69] Ralph C Merkle. “A digital signature based on a conventional encryption function.”
In: Advances in Cryptology—CRYPTO’87. Springer. 1987, pp. 369–378.

[70] Ralph C Merkle. Method of providing digital signatures. US Patent 4,309,569. Jan.
1982.

[71] Daniel Molka et al. “Memory performance and cache coherency effects on an
intel nehalem multiprocessor system.” In: Parallel Architectures and Compila-
tion Techniques, 2009. PACT’09. 18th International Conference on. IEEE. 2009,
pp. 261–270.

[72] MySQL Satabase Server. 2016. url: http://www.mysql.com.

[73] A. Spitzbart N. Macon. “Inverses of Vandermonde Matrices.” In: The American
Mathematical Monthly 65.2 (1958), pp. 95–100. issn: 00029890, 19300972. url:
http://www.jstor.org/stable/2308881.

[74] David Nagle et al. “The ANSI T10 object-based storage standard and current
implementations.” In: IBM Journal of Research and Development 52.4.5 (2008),
pp. 401–411.

[75] One Billion Drive Hours and Counting: Q1 2016 Hard Drive Stats. 2016. url:
www.backblaze.com/blog/hard-drive-reliability-stats-q1-2016/.

[76] OpenSSL:Cryptography and SSL/TLS Toolkit. 2016. url: https://www.openssl.
org.

[77] Christof Paar. “A new architecture for a parallel finite field multiplier with low
complexity based on composite fields.” In: Computers, IEEE Transactions on 45.7
(1996), pp. 856–861.

131

http://www.mysql.com
http://www.jstor.org/stable/2308881
www.backblaze.com/blog/hard-drive-reliability-stats-q1-2016/
https://www.openssl.org
https://www.openssl.org

References

[78] Christof Paar, Peter Fleischmann, and P Roeise. “Efficient multiplier architectures
for Galois Fields GF (2 4n).” In: Computers, IEEE Transactions on 47.2 (1998),
pp. 162–170.

[79] Bernd Panzer-Steindel. “Data integrity.” In: CERN/IT (2007).
[80] David A Patterson. “Latency lags bandwith.” In: Communications of the ACM

47.10 (2004), pp. 71–75.
[81] David A Patterson et al. “A Simple Way to Estimate the Cost of Downtime.” In:

LISA. Vol. 2. 2002, pp. 185–188.
[82] David A Patterson, Garth Gibson, and Randy H Katz. A case for redundant

arrays of inexpensive disks (RAID). Vol. 17. 3. ACM, 1988.
[83] Tony Pearson. “Correct use of the term Nearline.” In: IBM Developerworks, Inside

System Storage (Oct. 2010).
[84] Dimitri Pertin et al. “Distributed File System Based on Erasure Coding for

I/O-Intensive Applications.” In: CLOSER. 2014, pp. 451–456.
[85] William Wesley Peterson and Daniel T Brown. “Cyclic codes for error detection.”

In: Proceedings of the IRE 49.1 (1961), pp. 228–235.
[86] Eduardo Pinheiro, Wolf-dietrich Weber, and Luiz Andr. “Failure Trends in a Large

Disk Drive Population.” In: February (2007).
[87] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like

Systems. Tech. rep. CS-96-332. University of Tennessee, July 1996.
[88] J. S. Plank and Y. Ding. Note: Correction to the 1997 Tutorial on Reed-Solomon

Coding. Tech. rep. CS-03-504. University of Tennessee, Apr. 2003.
[89] James Plank, Kevin Greenan, and Ethan L. Miller. “Screaming Fast Galois Field

Arithmetic Using Intel SIMD Extensions.” In: Proceedings of the 11th Conference
on File and Storage Systems (FAST 2013). Feb. 2013.

[90] JS Plank et al. “GF-Complete: A comprehensive open source library for Galois
Field arithmetic.” In: University of Tennessee, Tech. Rep. UT-CS-13-703 (2013).

[91] PostgreSQL. 2016. url: http://www.postgresql.org.
[92] Vijayan Prabhakaran et al. IRON file systems. Vol. 39. 5. ACM, 2005.
[93] Michael O Rabin et al. Fingerprinting by random polynomials. Center for Research

in Computing Techn., Aiken Computation Laboratory, Univ., 1981.
[94] KK Rao, James Lee Hafner, and Richard A Golding. “Reliability for networked stor-

age nodes.” In: Dependable Systems and Networks, 2006. DSN 2006. International
Conference on. IEEE. 2006, pp. 237–248.

[95] Irving S Reed and Gustave Solomon. “Polynomial codes over certain finite fields.”
In: Journal of the society for industrial and applied mathematics 8.2 (1960),
pp. 300–304.

132

http://www.postgresql.org

[96] David Rohr. “On development, feasibility, and limits of highly efficient CPU and
GPU programs in several fields - fast parallel SIMDized GPU-accelerated reed-
solomon encoding, heterogeneous linpack benchmark, and event reconstruction
for the ALICE experiment.” PhD thesis. Universität Frankfurt a. M., 2013. url:
http://publikationen.ub.uni-frankfurt.de/files/34377/dissertation_
david_rohr.pdf.

[97] Philip E Ross. “5 Commandments [technology laws and rules of thumb].” In:
Spectrum, IEEE 40.12 (2003), pp. 30–35.

[98] Jeffrey Rott. Intel advanced encryption standard instructions (aes-ni). Tech. rep.
Technical report, Intel, 2010.

[99] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
7.2.0). http://www.sagemath.org. 2016.

[100] B. Schroeder and G.A. Gibson. “A Large-Scale Study of Failures in High-Performance
Computing Systems.” In: IEEE Trans. Dependable Secur. Comput. 7 (2010). issn:
1545-5971. doi: 10.1109/TDSC.2009.4.

[101] Thomas JE Schwarz. “Verification of Parity Data in Large Scale Storage Systems.”
In: PDPTA. 2004, pp. 508–514.

[102] Seagate Internal Drives. 2016. url: http://www.seagate.com/internal-hard-
drives/.

[103] Sandeep Shah and Jon G Elerath. “Reliability analysis of disk drive failure mecha-
nisms.” In: Proceedings of the Annual Symposium on Reliability and Maintainability.
Citeseer. 2005, pp. 226–231.

[104] Claude Elwood Shannon. “A mathematical theory of communication.” In: ACM
SIGMOBILE Mobile Computing and Communications Review 5.1 (2001), pp. 3–55.

[105] SWIFT Object Storage. 2016. url: https://www.openstack.org.
[106] Miklos Szeredi et al. “Fuse: Filesystem in userspace.” In: Accessed on (2010).
[107] Feiyi Wang et al. “Understanding lustre filesystem internals.” In: Oak Ridge

National Laboratory, National Center for Computational Sciences, Tech. Rep
(2009).

[108] WD Internal Hard Drive Overview. 2016. url: http : / / www . wdc . com / en /
products/internal/.

[109] Sage A Weil et al. “Ceph: A scalable, high-performance distributed file system.” In:
Proceedings of the 7th symposium on Operating systems design and implementation.
USENIX Association. 2006, pp. 307–320.

[110] Willis Whittington. Desktop, nearline and enterprise disk drives,-delta by design.
2007.

[111] Ryan William and Lin Shu. Channel Codes: classical and modern. Cambridge
University Press, 2009, p. 708. isbn: 978-0-521-84868-8.

133

http://publikationen.ub.uni-frankfurt.de/files/34377/dissertation_david_rohr.pdf
http://publikationen.ub.uni-frankfurt.de/files/34377/dissertation_david_rohr.pdf
https://doi.org/10.1109/TDSC.2009.4
http://www.seagate.com/internal-hard-drives/
http://www.seagate.com/internal-hard-drives/
https://www.openstack.org
http://www.wdc.com/en/products/internal/
http://www.wdc.com/en/products/internal/

References

[112] Wm A Wulf and Sally A McKee. “Hitting the memory wall: implications of the
obvious.” In: ACM SIGARCH computer architecture news 23.1 (1995), pp. 20–24.

[113] Erez Zadok and Ion Badulescu. “A stackable file system interface for Linux.” In:
LinuxExpo Conference Proceedings. Vol. 94. 1999, p. 10.

[114] ZFS on Linux. ZFS on Linux. Version 0.6.5. Apr. 19, 2016. url: https://github.
com/zfsonlinux/zfs.

134

https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs

CHAPTER A
Appendix

135

A Appendix

A Test-bed platforms

Component Specification
CPU

Xeon E5-2660v3

micro architecture Haswell
clock speed 2.6GHz
of cores 10
of threads 20
L1 data cache 32KiB
L2 data cache 256KiB
L3 shared cache 25MiB
Max Memory Bandwidth 68GiB s−1

instruction sets x86_64, SSE, AVX2
TDP 105W

Main memory

16×
SAMSUNG

M386A4G40DM0-CPB

type DDR4 + ECC
capacity 512GiB
clock speed 2133MHz
bus width 64B
CAS latency 15

Software
Linux Kernel 3.16.7
gcc 4.8.3
LLVM 3.4
go 1.6
redis 3.0

Table A-1: Intel CPU platform testbed

Component Specification
CPU

NXP i.MX6 Quad

micro architecture Cortex-A9
clock speed 1GHz
of cores 4
L1 data cache 32KiB
L2 shared cache 1MiB
instruction sets 32 bit arm, NEON
TDP 3W

Main memory
type DDR3
capacity 2GiB
clock speed 1066MHz
bus width 64B

Software
Linux Kernel 3.10.17
gcc 4.6.1
LLVM 3.4

Table A-2: ARM CPU platform testbed

136

B Example of Hexagon DSP VLIW code

B Example of Hexagon DSP VLIW code

Listing A-1 Example of VLIW packets of Hexagon DSP generated from JIT real-
ized Reed-Solomon erasure codes, using LLVM compiler. Instructions of each packet,
surrounded by curly braces, execute in parallel on 4 execution units of the DSP.

1 {
2 r5 ^= lsr(r26, #8)
3 r2 ^= lsr(r27, #8)
4 }
5 {
6 r6 ^= lsr(r25, #8)
7 r4 ^= lsr(r17, #8)
8 }
9 {

10 r5 ^= lsr(r26, #7)
11 r4 ^= lsr(r17, #7)
12 }
13 {
14 r19 ^= lsr(r4, #1)
15 r18 ^= lsr(r9, #1)
16 r24 = r9
17 }
18 {
19 r16 ^= asl(r0, #5)
20 memh(r5+#4) = r28
21 r9 ^= asl(r23, #12)
22 memh(r5+#0) = r1
23 }
24 {
25 memh(r0+#6) = r16
26 r16 ^= lsr(r17, #11)
27 r5 ^= lsr(r15, #13)
28 r17 = and(r18, r7)
29 }

137

A Appendix

C Galois Field used in RAID-Z

Table A-3: Binary extended binary field GF(28), generated with p(X) = X8 + X4 + X3 + X2 + 1,
used in ZFS RAID-Z erasure coding.

Representations of binary Galois Field elements

Power Polynomial Decimal Vector

α0 1 {1} (00000001)
α1 X1 {2} (00000010)
α2 X2 {4} (00000100)
α3 X3 {8} (00001000)
α4 X4 {16} (00010000)
α5 X5 {32} (00100000)
α6 X6 {64} (01000000)
α7 X7 {128} (10000000)
α8 X4 +X3 +X2 + 1 {29} (00011101)
α9 X5 +X4 +X3 +X1 {58} (00111010)
α10 X6 +X5 +X4 +X2 {116} (01110100)
α11 X7 +X6 +X5 +X3 {232} (11101000)
α12 X7 +X6 +X3 +X2 + 1 {205} (11001101)
α13 X7 +X2 +X1 + 1 {135} (10000111)
α14 X4 +X1 + 1 {19} (00010011)
α15 X5 +X2 +X1 {38} (00100110)
α16 X6 +X3 +X2 {76} (01001100)
α17 X7 +X4 +X3 {152} (10011000)
α18 X5 +X3 +X2 + 1 {45} (00101101)
α19 X6 +X4 +X3 +X1 {90} (01011010)
α20 X7 +X5 +X4 +X2 {180} (10110100)
α21 X6 +X5 +X4 +X2 + 1 {117} (01110101)
α22 X7 +X6 +X5 +X3 +X1 {234} (11101010)
α23 X7 +X6 +X3 + 1 {201} (11001001)
α24 X7 +X3 +X2 +X1 + 1 {143} (10001111)
α25 X1 + 1 {3} (00000011)
α26 X2 +X1 {6} (00000110)
α27 X3 +X2 {12} (00001100)
α28 X4 +X3 {24} (00011000)
α29 X5 +X4 {48} (00110000)
α30 X6 +X5 {96} (01100000)
α31 X7 +X6 {192} (11000000)
α32 X7 +X4 +X3 +X2 + 1 {157} (10011101)
α33 X5 +X2 +X1 + 1 {39} (00100111)
α34 X6 +X3 +X2 +X1 {78} (01001110)
α35 X7 +X4 +X3 +X2 {156} (10011100)
α36 X5 +X2 + 1 {37} (00100101)
α37 X6 +X3 +X1 {74} (01001010)
α38 X7 +X4 +X2 {148} (10010100)
α39 X5 +X4 +X2 + 1 {53} (00110101)
α40 X6 +X5 +X3 +X1 {106} (01101010)
α41 X7 +X6 +X4 +X2 {212} (11010100)
α42 X7 +X5 +X4 +X2 + 1 {181} (10110101)
α43 X6 +X5 +X4 +X2 +X1 + 1 {119} (01110111)
α44 X7 +X6 +X5 +X3 +X2 +X1 {238} (11101110)
α45 X7 +X6 + 1 {193} (11000001)
α46 X7 +X4 +X3 +X2 +X1 + 1 {159} (10011111)
α47 X5 +X1 + 1 {35} (00100011)
α48 X6 +X2 +X1 {70} (01000110)
α49 X7 +X3 +X2 {140} (10001100)
α50 X2 + 1 {5} (00000101)
α51 X3 +X1 {10} (00001010)
α52 X4 +X2 {20} (00010100)
α53 X5 +X3 {40} (00101000)
α54 X6 +X4 {80} (01010000)
α55 X7 +X5 {160} (10100000)
α56 X6 +X4 +X3 +X2 + 1 {93} (01011101)
α57 X7 +X5 +X4 +X3 +X1 {186} (10111010)
α58 X6 +X5 +X3 + 1 {105} (01101001)
α59 X7 +X6 +X4 +X1 {210} (11010010)
α60 X7 +X5 +X4 +X3 + 1 {185} (10111001)
α61 X6 +X5 +X3 +X2 +X1 + 1 {111} (01101111)
α62 X7 +X6 +X4 +X3 +X2 +X1 {222} (11011110)
α63 X7 +X5 + 1 {161} (10100001)
α64 X6 +X4 +X3 +X2 +X1 + 1 {95} (01011111)
α65 X7 +X5 +X4 +X3 +X2 +X1 {190} (10111110)

138

C Galois Field used in RAID-Z

α66 X6 +X5 + 1 {97} (01100001)
α67 X7 +X6 +X1 {194} (11000010)
α68 X7 +X4 +X3 + 1 {153} (10011001)
α69 X5 +X3 +X2 +X1 + 1 {47} (00101111)
α70 X6 +X4 +X3 +X2 +X1 {94} (01011110)
α71 X7 +X5 +X4 +X3 +X2 {188} (10111100)
α72 X6 +X5 +X2 + 1 {101} (01100101)
α73 X7 +X6 +X3 +X1 {202} (11001010)
α74 X7 +X3 + 1 {137} (10001001)
α75 X3 +X2 +X1 + 1 {15} (00001111)
α76 X4 +X3 +X2 +X1 {30} (00011110)
α77 X5 +X4 +X3 +X2 {60} (00111100)
α78 X6 +X5 +X4 +X3 {120} (01111000)
α79 X7 +X6 +X5 +X4 {240} (11110000)
α80 X7 +X6 +X5 +X4 +X3 +X2 + 1 {253} (11111101)
α81 X7 +X6 +X5 +X2 +X1 + 1 {231} (11100111)
α82 X7 +X6 +X4 +X1 + 1 {211} (11010011)
α83 X7 +X5 +X4 +X3 +X1 + 1 {187} (10111011)
α84 X6 +X5 +X3 +X1 + 1 {107} (01101011)
α85 X7 +X6 +X4 +X2 +X1 {214} (11010110)
α86 X7 +X5 +X4 + 1 {177} (10110001)
α87 X6 +X5 +X4 +X3 +X2 +X1 + 1 {127} (01111111)
α88 X7 +X6 +X5 +X4 +X3 +X2 +X1 {254} (11111110)
α89 X7 +X6 +X5 + 1 {225} (11100001)
α90 X7 +X6 +X4 +X3 +X2 +X1 + 1 {223} (11011111)
α91 X7 +X5 +X1 + 1 {163} (10100011)
α92 X6 +X4 +X3 +X1 + 1 {91} (01011011)
α93 X7 +X5 +X4 +X2 +X1 {182} (10110110)
α94 X6 +X5 +X4 + 1 {113} (01110001)
α95 X7 +X6 +X5 +X1 {226} (11100010)
α96 X7 +X6 +X4 +X3 + 1 {217} (11011001)
α97 X7 +X5 +X3 +X2 +X1 + 1 {175} (10101111)
α98 X6 +X1 + 1 {67} (01000011)
α99 X7 +X2 +X1 {134} (10000110)
α100 X4 + 1 {17} (00010001)
α101 X5 +X1 {34} (00100010)
α102 X6 +X2 {68} (01000100)
α103 X7 +X3 {136} (10001000)
α104 X3 +X2 + 1 {13} (00001101)
α105 X4 +X3 +X1 {26} (00011010)
α106 X5 +X4 +X2 {52} (00110100)
α107 X6 +X5 +X3 {104} (01101000)
α108 X7 +X6 +X4 {208} (11010000)
α109 X7 +X5 +X4 +X3 +X2 + 1 {189} (10111101)
α110 X6 +X5 +X2 +X1 + 1 {103} (01100111)
α111 X7 +X6 +X3 +X2 +X1 {206} (11001110)
α112 X7 + 1 {129} (10000001)
α113 X4 +X3 +X2 +X1 + 1 {31} (00011111)
α114 X5 +X4 +X3 +X2 +X1 {62} (00111110)
α115 X6 +X5 +X4 +X3 +X2 {124} (01111100)
α116 X7 +X6 +X5 +X4 +X3 {248} (11111000)
α117 X7 +X6 +X5 +X3 +X2 + 1 {237} (11101101)
α118 X7 +X6 +X2 +X1 + 1 {199} (11000111)
α119 X7 +X4 +X1 + 1 {147} (10010011)
α120 X5 +X4 +X3 +X1 + 1 {59} (00111011)
α121 X6 +X5 +X4 +X2 +X1 {118} (01110110)
α122 X7 +X6 +X5 +X3 +X2 {236} (11101100)
α123 X7 +X6 +X2 + 1 {197} (11000101)
α124 X7 +X4 +X2 +X1 + 1 {151} (10010111)
α125 X5 +X4 +X1 + 1 {51} (00110011)
α126 X6 +X5 +X2 +X1 {102} (01100110)
α127 X7 +X6 +X3 +X2 {204} (11001100)
α128 X7 +X2 + 1 {133} (10000101)
α129 X4 +X2 +X1 + 1 {23} (00010111)
α130 X5 +X3 +X2 +X1 {46} (00101110)
α131 X6 +X4 +X3 +X2 {92} (01011100)
α132 X7 +X5 +X4 +X3 {184} (10111000)
α133 X6 +X5 +X3 +X2 + 1 {109} (01101101)
α134 X7 +X6 +X4 +X3 +X1 {218} (11011010)
α135 X7 +X5 +X3 + 1 {169} (10101001)
α136 X6 +X3 +X2 +X1 + 1 {79} (01001111)
α137 X7 +X4 +X3 +X2 +X1 {158} (10011110)
α138 X5 + 1 {33} (00100001)
α139 X6 +X1 {66} (01000010)
α140 X7 +X2 {132} (10000100)
α141 X4 +X2 + 1 {21} (00010101)
α142 X5 +X3 +X1 {42} (00101010)

139

A Appendix

α143 X6 +X4 +X2 {84} (01010100)
α144 X7 +X5 +X3 {168} (10101000)
α145 X6 +X3 +X2 + 1 {77} (01001101)
α146 X7 +X4 +X3 +X1 {154} (10011010)
α147 X5 +X3 + 1 {41} (00101001)
α148 X6 +X4 +X1 {82} (01010010)
α149 X7 +X5 +X2 {164} (10100100)
α150 X6 +X4 +X2 + 1 {85} (01010101)
α151 X7 +X5 +X3 +X1 {170} (10101010)
α152 X6 +X3 + 1 {73} (01001001)
α153 X7 +X4 +X1 {146} (10010010)
α154 X5 +X4 +X3 + 1 {57} (00111001)
α155 X6 +X5 +X4 +X1 {114} (01110010)
α156 X7 +X6 +X5 +X2 {228} (11100100)
α157 X7 +X6 +X4 +X2 + 1 {213} (11010101)
α158 X7 +X5 +X4 +X2 +X1 + 1 {183} (10110111)
α159 X6 +X5 +X4 +X1 + 1 {115} (01110011)
α160 X7 +X6 +X5 +X2 +X1 {230} (11100110)
α161 X7 +X6 +X4 + 1 {209} (11010001)
α162 X7 +X5 +X4 +X3 +X2 +X1 + 1 {191} (10111111)
α163 X6 +X5 +X1 + 1 {99} (01100011)
α164 X7 +X6 +X2 +X1 {198} (11000110)
α165 X7 +X4 + 1 {145} (10010001)
α166 X5 +X4 +X3 +X2 +X1 + 1 {63} (00111111)
α167 X6 +X5 +X4 +X3 +X2 +X1 {126} (01111110)
α168 X7 +X6 +X5 +X4 +X3 +X2 {252} (11111100)
α169 X7 +X6 +X5 +X2 + 1 {229} (11100101)
α170 X7 +X6 +X4 +X2 +X1 + 1 {215} (11010111)
α171 X7 +X5 +X4 +X1 + 1 {179} (10110011)
α172 X6 +X5 +X4 +X3 +X1 + 1 {123} (01111011)
α173 X7 +X6 +X5 +X4 +X2 +X1 {246} (11110110)
α174 X7 +X6 +X5 +X4 + 1 {241} (11110001)
α175 X7 +X6 +X5 +X4 +X3 +X2 +X1 + 1 {255} (11111111)
α176 X7 +X6 +X5 +X1 + 1 {227} (11100011)
α177 X7 +X6 +X4 +X3 +X1 + 1 {219} (11011011)
α178 X7 +X5 +X3 +X1 + 1 {171} (10101011)
α179 X6 +X3 +X1 + 1 {75} (01001011)
α180 X7 +X4 +X2 +X1 {150} (10010110)
α181 X5 +X4 + 1 {49} (00110001)
α182 X6 +X5 +X1 {98} (01100010)
α183 X7 +X6 +X2 {196} (11000100)
α184 X7 +X4 +X2 + 1 {149} (10010101)
α185 X5 +X4 +X2 +X1 + 1 {55} (00110111)
α186 X6 +X5 +X3 +X2 +X1 {110} (01101110)
α187 X7 +X6 +X4 +X3 +X2 {220} (11011100)
α188 X7 +X5 +X2 + 1 {165} (10100101)
α189 X6 +X4 +X2 +X1 + 1 {87} (01010111)
α190 X7 +X5 +X3 +X2 +X1 {174} (10101110)
α191 X6 + 1 {65} (01000001)
α192 X7 +X1 {130} (10000010)
α193 X4 +X3 + 1 {25} (00011001)
α194 X5 +X4 +X1 {50} (00110010)
α195 X6 +X5 +X2 {100} (01100100)
α196 X7 +X6 +X3 {200} (11001000)
α197 X7 +X3 +X2 + 1 {141} (10001101)
α198 X2 +X1 + 1 {7} (00000111)
α199 X3 +X2 +X1 {14} (00001110)
α200 X4 +X3 +X2 {28} (00011100)
α201 X5 +X4 +X3 {56} (00111000)
α202 X6 +X5 +X4 {112} (01110000)
α203 X7 +X6 +X5 {224} (11100000)
α204 X7 +X6 +X4 +X3 +X2 + 1 {221} (11011101)
α205 X7 +X5 +X2 +X1 + 1 {167} (10100111)
α206 X6 +X4 +X1 + 1 {83} (01010011)
α207 X7 +X5 +X2 +X1 {166} (10100110)
α208 X6 +X4 + 1 {81} (01010001)
α209 X7 +X5 +X1 {162} (10100010)
α210 X6 +X4 +X3 + 1 {89} (01011001)
α211 X7 +X5 +X4 +X1 {178} (10110010)
α212 X6 +X5 +X4 +X3 + 1 {121} (01111001)
α213 X7 +X6 +X5 +X4 +X1 {242} (11110010)
α214 X7 +X6 +X5 +X4 +X3 + 1 {249} (11111001)
α215 X7 +X6 +X5 +X3 +X2 +X1 + 1 {239} (11101111)
α216 X7 +X6 +X1 + 1 {195} (11000011)
α217 X7 +X4 +X3 +X1 + 1 {155} (10011011)
α218 X5 +X3 +X1 + 1 {43} (00101011)
α219 X6 +X4 +X2 +X1 {86} (01010110)

140

C Galois Field used in RAID-Z

α220 X7 +X5 +X3 +X2 {172} (10101100)
α221 X6 +X2 + 1 {69} (01000101)
α222 X7 +X3 +X1 {138} (10001010)
α223 X3 + 1 {9} (00001001)
α224 X4 +X1 {18} (00010010)
α225 X5 +X2 {36} (00100100)
α226 X6 +X3 {72} (01001000)
α227 X7 +X4 {144} (10010000)
α228 X5 +X4 +X3 +X2 + 1 {61} (00111101)
α229 X6 +X5 +X4 +X3 +X1 {122} (01111010)
α230 X7 +X6 +X5 +X4 +X2 {244} (11110100)
α231 X7 +X6 +X5 +X4 +X2 + 1 {245} (11110101)
α232 X7 +X6 +X5 +X4 +X2 +X1 + 1 {247} (11110111)
α233 X7 +X6 +X5 +X4 +X1 + 1 {243} (11110011)
α234 X7 +X6 +X5 +X4 +X3 +X1 + 1 {251} (11111011)
α235 X7 +X6 +X5 +X3 +X1 + 1 {235} (11101011)
α236 X7 +X6 +X3 +X1 + 1 {203} (11001011)
α237 X7 +X3 +X1 + 1 {139} (10001011)
α238 X3 +X1 + 1 {11} (00001011)
α239 X4 +X2 +X1 {22} (00010110)
α240 X5 +X3 +X2 {44} (00101100)
α241 X6 +X4 +X3 {88} (01011000)
α242 X7 +X5 +X4 {176} (10110000)
α243 X6 +X5 +X4 +X3 +X2 + 1 {125} (01111101)
α244 X7 +X6 +X5 +X4 +X3 +X1 {250} (11111010)
α245 X7 +X6 +X5 +X3 + 1 {233} (11101001)
α246 X7 +X6 +X3 +X2 +X1 + 1 {207} (11001111)
α247 X7 +X1 + 1 {131} (10000011)
α248 X4 +X3 +X1 + 1 {27} (00011011)
α249 X5 +X4 +X2 +X1 {54} (00110110)
α250 X6 +X5 +X3 +X2 {108} (01101100)
α251 X7 +X6 +X4 +X3 {216} (11011000)
α252 X7 +X5 +X3 +X2 + 1 {173} (10101101)
α253 X6 +X2 +X1 + 1 {71} (01000111)
α254 X7 +X3 +X2 +X1 {142} (10001110)

α255 = α0 1 {1} (00000001)

141

List of Tables

1-1 Comparison of hard disks (mid 2016) [110][108][102][46] 3
1-2 Parameters of the δ-erasure resilient Markov models 6

2-1 Summary of field axioms . 21
2-2 Modulo-2 addition . 27
2-3 Modulo-2 multiplication . 27
2-4 Example of extended field GF(25) . 28
2-5 Summary of properties of the (n, k) Reed-Solomon code over GF(q) . . . 36
2-6 Collision probability of n-component Algebraic signatures over GF(2m) . 43

5-1 Number of assembler instructions needed to perform carry-less multipli-
cation a × b in GF(28), where ω(b) is Hamming weight of multiplier
b. 70

5-2 Throughput of vectorized algorithms for carry-less multiplication and
modulo reduction for GF(28) using SSE and AVX2 instruction set. 72

5-3 Latency and reciprocal throughput of instructions on Intel Haswell micro
architecture . 81

6-1 Number of lookup table operations per symbol and total size of lookup
tables required by each of erasure reconstruction methods of RAID-Z scheme. 97

6-2 RAID-Z operation speed-up relative to the original RAID-Z methods . . . 102

A-1 Intel CPU platform testbed . 136
A-2 ARM CPU platform testbed . 136
A-3 Binary extended binary field GF(28), generated with p(X) = X8 + X4 +

X3 + X2 + 1, used in ZFS RAID-Z erasure coding. 138

143

List of Figures

1-1 Transition rate diagram of parallel rebuilding of δ-erasure tolerant code
without data checksum validation. 4

1-2 A revised transition rate diagram of the parallel rebuilding of an δ-erasure
tolerant code with data integrity validation 6

1-3 Mean Time To Data Corruption of δ-erasure resilient code; with and
without checksumming during reconstruction 7

1-4 MTTDC as a function of redundancy overhead for replication and δ-resilient
erasure codes . 8

1-5 Standard RAID configurations . 9
1-6 RAID-Z dynamic block layout . 11
1-7 Components of Lustre file system installation 12

2-1 Communication system with a noisy channel 16
2-2 Block diagram of concatenated code . 29
2-3 Systematic format of a codeword . 32
2-4 Local and distributed storage systems . 39
2-5 Example of distributed (6, 4) Reed-Solomon code 41

3-1 Buffer-based encoding and decoding with (n, k) Reed-Solomon code (m =
n− k) . 51

3-2 Flowchart of Reed-Solomon buffer-based encoding algorithm. Initialization
step is performed once for desired configuration. The RS Encoding part
can be repeated for multiple buffers by reusing the same RS generator
matrix. 52

4-1 Throughput of arithmetic and logic operations used for Reed-Solomon
implementation on Intel and arm systems 56

4-2 Throughput of the LOAD operation on Intel and ARM systems 58
4-3 Streaming LOAD/STORE performance of Intel Haswell CPU 59
4-4 Streaming LOAD/STORE performance of ARM CPU 60
4-5 Read latency of Intel Haswell CPU with hardware prefetching 61
4-6 Read latency of an Intel Haswell CPU without hardware prefetching . . . 62

145

List of Figures

4-7 Read latency of ARM CPU . 63

5-1 Illustration of a 128-bit Vector arithmetic logic unit 66
5-2 LLVM compiler infrastructure . 75
5-3 Class diagram of LLVM infrastructure for building JIT compiler 77
5-4 Number of instructions needed to implement Reed-Solomon(n,k) block

codes over GF(28). 82
5-5 Throughput of unoptimized Reed-Solomon(n,k) block codes over GF(28)

and GF(216), on the Intel Haswell platform 83
5-6 Throughput of optimized, JIT generated, Reed-Solomon(n,k) block codes

over GF(28) and GF(216), on Intel Haswell platform. 84
5-7 Throughput of optimized, JIT generated, Reed-Solomon(n,k) block codes

over GF(28) and GF(216), on ARM platform. 85

6-1 Combined throughput of RAID-Z2 parity operations on a pool consisting
of 8 data and 2 parity disks . 101

6-2 Combined throughput of RAID-Z2 parity operations running on Intel
Haswell CPU with disabled hardware prefetching. 102

6-3 Per disk throughput in RAID-Z3 pool with 8 data and 3 code disks with
data already present in CPU caches . 103

7-1 Desclustered redundancy placement . 107
7-2 Layouts of data and redundancy files in ECCFS 109
7-3 Components of ECCFS middleware in relation to Lustre file system com-

ponents . 110
7-4 Implementation option for ECCFS Monitor component 113
7-5 Sequence diagram of ECCFS Monitor component 114
7-6 Performance of individual Redis operations and MD Worker operations . 116
7-7 Cleaning of redundancy files performed by the ECCFS MD Worker com-

ponent during processing of delete update. 117
7-8 ECC calculation performed by the ECCFS ECC Worker component . . . 118
7-9 Structure of ECC files . 119

146

List of Algorithms

3-1 Carry-less multiplication of Galois Field elements. Inputs, a and b, are
elements of GF(2l). The largest possible length of a result is 2l. Additional
modulo operation is needed to obtain a proper GF(2l) value. 47

3-2 Modulo reduction operation for GF(2128) generated with polynomial
p(X) = 1 + X+ X2 + X7 + X128 . 50

4-1 Load benchmark, single and unrolled methods. B[] is the pre-allocated
buffer. SB is the size of the buffer, and SV is the size of CPU vector registers. 57

4-2 Multi stream memory benchmark method with 4 input and 2 output
streams. Bin[] and Bout[] are vectors of pointers to pre-allocated input and
output buffers. SB is the size of each buffer, and SV is the size of CPU
vector registers. 59

5-1 Pseudo code of the PCLMULQDQ instruction 68
5-2 Pseudo code of Reed-Solomon buffer based parity generation algorithm. . 78
5-3 Specialization of carry-less multiplication of Galois Field elements 79
6-1 Method for generating RAID-Z3 parity . 96
6-2 Calculation of carry-less multiplication and modulo reduction lookup tables

for parallel, 16 byte-wise, multiplication using vector shuffle operation. . . 99
6-3 Parallel multiplication method using SIMD shuffle instruction and pre-

computed lookup tables. 100

147

List of Listings

5-1 PCLMULQDQ instruction intrinsic . 68
5-2 Carry-less multiplication of elements in GF(2128) using PCLMULQDQ intrinsics 69
5-3 VEX encoded SSE instructions used for implementing GF(28) operations 69
5-4 Vectorized carry-less multiplication by X2 + 1 using SSE vector instructions 70
5-5 Vectorized modulo reduction operation for GF(28) generated with p(X) =

X8 + X4 + X3 + X2 + 1 . 72
5-6 Example of LLVM IR code illustrating vector operations 76

6-1 Optimized multiplication by 2 in GF(28) used in RAID-Z parity generation
[114] . 93

A-1 Hexagon DSP VLIW packets . 137

149

Zusammenfassung

Wir leben im Zeitalter des Datenüberflusses. Selbst konservative Schätzungen pro-
gnostizieren ein exponentielles Wachstum an produzierten, übermittelten und ge-
speicherten Daten. Im Rahmen der Optimierung von Geschäftsprozessen sowie
der wissenschaftlichen Forschung ist das Durchforsten und Verabeiten massiver Da-
tenmengen, deren explosionsartiger Anstieg meist die Fähigkeiten konventioneller
digitaler Speichersysteme übersteigt, von zunehmender Bedeutung. Wissenschaftli-
ches Hochleistungsrechnen setzt zur Bewältigung dieses Problems auf große, verteilte
Speichersysteme, die mittels Datenredundanz hohe Zuverlässigkeit und Langlebig-
keit garantieren. Die einfachste Art und Weise Datenredundanz zu erreichen, ist
das Replizieren der Daten auf mehreren physikalischen Geräten. Allerdings können
modernere Ansätze, wie z.B. Löschcodierungsverfahren eine im Vergleich höhere Da-
tensicherheit bei weniger eingesetztem Speicherplatz gewährleisten. In jüngster Zeit
werden traditionelle, hardware-basierte Lösungen zur Ausfallsicherheit immer stärker
von Software-Lösungen verdrängt. Komplexe Ausfallmodi von Speichersystemkompo-
nenten erfordern Prüfsummen, um eine langfristige Datenintegrität zu gewährleisten.
Um mit ständig wachsenden Datenmengen umzugehen, ist eine flexible und effiziente
Softwareimplementierung von Fehlerkorrekturverfahren von großer Bedeutung.

Diese Arbeit stellt eine Methode zur Realisierung eines flexiblen Reed-Solomon-
Fehlerkorrekturverfahrens unter Verwendung der Just-in-time-Kompilierungstechnik
vor. Durch das Entfernen arithmetischer Redundanz im Algorithmus und die Nutzung
moderner Optimierungs-Compiler erhalten wir eine durchsatzeffiziente Löschcodierungs-
Implementierung. Zusätzlich wird die Datenparallelität ausgenutzt, indem der Com-
piler angewiesen wird, einen SIMD-Code für die gewünschte Ausführungsplattform
zu erzeugen Wir zeigen die Ergebnisse von Codes, die mit SSE- und AVX2-SIMD-
Befehlssätzen für x86- und NEON-Befehlssatz für ARM-Plattformen implementiert
wurden. Als nächstes stellen wir ein Framework für effiziente, vektorisierte RAID-
Z-Redundanzoperationen des ZFS-Dateisystems vor. Traditionelle, tabellenbasierte
Galoiskörper-Multiplikationsalgorithmen werden durch spezialisierte SSE- und AVX2-
Parallelmethoden ersetzt, die wesentlich schnellere und effizientere Paritätsoperationen

151

Zusammenfassung

ermöglichen. Schließlich stellen wir ein neues Löschcodierungs-Schema vor, das auf
bestehenden, leistungsstarken, parallelen Dateisystemen verwendet werden kann. Die
beschriebene Middleware (ECCFS) ermöglicht die Definition von flexiblen, dateibasier-
ten Zuverlässigkeitsrichtlinien und die Anpassung an spezifische Benutzerbedürfnisse.
Durch die Verwendung des Blocklöschcodeverfahrens erreicht ECCFS eine optimale
Speicher-, Berechnungs- und Netzwerkressourcenauslastung und bietet gleichzeitig ein
hohes Maß an Zuverlässigkeit. Die verteilte Struktur der Middleware ermöglicht eine
größere Skalierbarkeit und effizientere Nutzung von Speicher- und Netzwerkressourcen,
um die Verfügbarkeit des Systems zu verbessern.

Zuverlässigkeit von Massenspeichern

Während die Festplatten-Kapazität ungebremst wächst können andere Merkmale
nicht Schritt halten. Der lineare Lese-/Schreibdurchsatz wird durch die physikalische
Drehzahl der Platten begrenzt. Auch die Zuverlässigkeit hat sich, wenn überhaupt,
nicht wesentlich verbessert. Aktuelle Festplatten der Server-Klasse1 bieten Kapazitäten
von 1 TB bis 8 TB mit einer anhaltenden Datenübertragungsrate von 200MBs−1.
Solche Festplatten haben laut Angaben eine mittlere Btreibsdauer zwischen Ausfällen2

(MTBF) von 2 000 000h und eine Bitfehlerrate (nicht behebbare Lesefehler) von 10−15.
Allerdings belegen Zuverlässigkeitsstudien [75], dass realistische Zahlen in der Regel
deutlich schlechter sind.

Von großem Interesse in Verbindung mit der Erhöhung der Festplatten-Kapazitäten
sind nicht behebbare Lesefehler (URE). Diese Fehler können transient, verursacht
durch Fehler in der magnetischen Flussdichte-Decodierung, oder dauerhaft, basierend
auf physikalischen Fehlern des magnetischen Mediums, sein. Dies stellt vor allem bei
herkömmlichen RAID-Systemen Probleme dar, da hier die Daten-Integrität nicht mit
Prüfsummen sichergestellt wird. Mit steigenden HDD-Kapazitäten erhöht sich die
Wahrscheinlichkeit für einen URE während eines RAID-Wiederherstellungs-Vorgangs
deutlich. Ohne spezifischen Schutz wird der auftretende Fehler in die rekonstruierten
Blöcke übertragen[17].

Herkömmliche Dateisysteme bieten keinen Schutz der Daten. Die Integrität der
Daten kann allerdings in vielerlei Hinsicht aufgrund schwer zu erfassender Fehler,
die überall in der Speicher-Hardware oder in den Software Ebenen auftreten können
beeinträchtigt werden Solche Fehler beinhalten z.B. stille Datenverfälschung[79][3][22],
Festplatten-Firmware-Fehler[103], verschiedene Software- und Treiberfehler[92] sowie

1Basierend auf WD GoldTM Festplatten Spezifikation (Modell WD6002FRYZ, 2016)
2Da HDDs typischerweise nicht reparierbar sind, ist dies gleichzeitig ein Maß für die mittlere
Lebensdauer (MTTF)

152

Netzwerkfehler. Es wurde bereits gezeigt, dass traditionelle paritätsbasierte RAID-
Techniken nicht genügend Schutz gegen zunehmend komplexe Fehler in Hardware-
und Softwarekomponenten bieten[60].

ZFS und Lustre

ZFS ist ein Festplatten-Dateisystem, das mehrere Management-Technologien inte-
griert, die traditionell nicht Teil eines Dateisystems sind. Der Logical Volume Manager
(LVM) ist eine Basis-Infrastruktur von ZFS, die Software-RAID- und Datenintegritäts-
funktionen bereitstellt. Der ZFS-LVM unterstützt das Zusammenfassen des zugrunde
liegenden Speichers in Spiegelungen oder RAID-Z Daten-Paritäts-Verteilungsschemata,
genannt vdev3. RAID-Z ist ein fortschrittliches Paritätsverteilungsschema, das eine
softwaredefinierte RAID-ähnliche Redundanz bietet (Abbildung 1(a)). Das RAID-
Z3-Löschschema unterstützt die Wiederherstellung von drei Festplattenfehlern. Da
die kombinierte Zuverlässigkeit eines redundanten Arrays letztlich vom der schnellen
Wiederherstellung abhängt, beschreiben wir in dieser Arbeit eine Implementierung
von vektorisierten Methoden zur Paritätserzeugung und Datenrekonstruktion für das
ZFS-Dateisystem.

P D0 D1 D2 D3

P D0 D1 D2 P

D0 D1 P D0

L
B
A

DISK

D0 D2 D4 D6

D1 D3 D5P1

P0

Q

Q

Q0

Q1

Q

Q

(a) RAID-Z dynamisches Blocklay-
out

Lustre Clients
Object Storage

Servers

Metadata Server Metadata
Target

Lustre
Networking

(LNET)

(b) Komponenten der Lustre-Dateisysteminstallation

Abbildung 1: Komponenten der ZFS und Lustre-Dateisysteminstallation

Mit der Popularität von Cluster-Computern ging die Notwendigkeit für verteilte
Dateisysteme einher. Skalierbarkeit und Kapazität von NAS-Systemen (Network
Attached Storage) erwiesen sich rasch als limitierende Faktoren. Durch Fortschritte in
Netzwerk-Technologie wurde zudem ein paralleler Zugriff auf mehrere Speichersys-
teme wünschenswert. Ein Beispiel eines parallelen, POSIX-kompatiblen, verteilten

3Virtual Devices

153

Zusammenfassung

Dateisystem[10], das viele Anforderungen an Hochleistungsrechner (HPC) erfüllt
ist Lustre. Es ist derzeit das beliebteste Open-Source-Dateisystem in HPC- und
Rechenzentrumsumgebungen.

Die Hauptkomponenten einer typischen Lustre-Installation bestehen aus einem
Metadaten-Server (MDS), einem Objekt-Storage-Server (OSS) und Lustre-Klienten
(Abbildung 1(b)). Jeder OSS ist mit einem oder mehreren Object-Storage-Targets
(OST) verbunden, die den Datenspeicher für das Dateisystem bereitstellen. Die
Datenzuverlässigkeit wird an die OSTs delegiert. Der Verlust eines OST führt daher
zu einem unwiederbringlichen Datenverlust. Da ein OST Teilstücke vieler Dateien
speichert ist im Falle eines Fehlers die Nichtverfügbarkeit und der Datenverlust deutlich
größer als die Speicherkapazität des OST selbst. Im Folgenden beschreiben wir ein
flexibles, auf Dateiebene ansetzendes, Multi-OST-Löschschema zur Lösung dieses
Problems

Fehlerkorrekturverfahren

Fehlerkorrekturverfahren (englisch Error Correction Codes, ECC) sind ein integraler
Bestandteil der digitalen Datenübertragung und -speicherung, die z.B. in Mobilfunknet-
zen, paketbasierter Kommunikation wie dem Internet, digitalen Videoübertragungen,
Weltraumkommunikation, usw. verwendet werden. Ein allgemeines Kommunikations-
modell für Nachrichtenübertragung über einen nicht rauschfreien Kanal, das erstmals
formal durch C. Shannon in [104] eingeführt wurde ist in Abbildung 2 dargestellt.

Sender

Encoder Channel Decoder

Receiver

original
message

codeword
received

vector

decoded
message

NOISE

Abbildung 2: Kommunikationssystem mit einem verrauschten Kanal

Um eine Nachricht während der Übertragung über einen verlustbehafteten Kanal
vor Datenverlust zu schützen kann sie codiert werden. Ein Kanal-Codierer wandelt

154

dazu die ursprünglichen Nachricht in eine neue Sequenz mit Redundanz um, die im
Fehlerfall verwendet werden kann um die ursprüngliche Nachricht wieder herzustellen.
Das Verhältnis von Eingangs- und Ausgangs-datenbits des Kanal-Codierers wird als
Coderate bezeichnet. Der Kanal ist das Übertragungs- oder Speichermedium, das zur
Übermittlung der Nachricht verwendet wird. Die Rolle des Kanal-Decodierers besteht
darin, die vom Kanal empfangenen Daten zu übernehmen und die ursprünglichen
Nachrichtendaten wiederherzustellen.

Fehlerkorrigierende Block-Codierung

In Kommunikations- und Speichersystemen sind zwei strukturell unterschiedliche
Arten von Kanalcodierungen weit verbreitet. Dies sind Block- und Faltungscodes.
Blockcodes verarbeiten Informationsbits in festen Blockgrößen und erzeugen daraus die
Redundanzbits. Beispiele für Blockcodes sind Reed-Solomon-Codes, Hamming-Codes
[43] und Walsh-Hadamard-Codes [5]. Blockcodes eignen sich insbesondere, wenn ein
Kanal die Form eines physikalischen Mediums für die Datenspeicherung hat. Ein
weiteres wichtiges Merkmal von Blockcodes ist, dass sie für Löschcodierungsverfahren
verwendet werden können. Eine Löschung bezeichnet in diesem Fall ein Fehler,
dessen Position im Codewort im Voraus bekannt ist. Im Kontext von Datenspeichen
kann dies z.B. ein ausgefallenes Speichermedium oder ein Verbindungsverlust eines
angeschlossenen Netzwerkspeichers sein.

Reed-Solomon-Code

Ein Reed-Solomon-Code ist ein linearer Blockcode mit Codesymbolen aus dem Körper
GF(q), wobei q eine Potenz einer Primzahl ist. Solche Codes werden auch q-ary
Blockcode oder Blockcode über GF(q) genannt. Ein q-ary (n, k) Blockcode hat die
Länge n und enthält qk Codeworte. Nachrichten eines solchen Blockcodes besteht aus
k Informationssymbolen aus GF(q).

Für die Verwendung in der Datenübertragung über Löschkanäle wurde eine
spezielle Form von Reed-Solomon-Codes entwickelt. Ein Löschkanal ist ein Kommu-
nikationskanal, der entweder ein Informationsbit (oder Symbol) an den Empfänger
überträgt oder dem Empfänger mitteilt, dass Informationen verloren gegangen sind.
Die Codierungsprozedur geht davon aus, dass n Codewörter eines (n, k) Reed-Solomon-
Codes über den Löschkanal gesendet werden. Diese Klasse von Reed-Solomon-Codes
verwendet die Vandermonde-Matrix als Startgeneratormatrix für den Code.

Da wir eine systematische Version des Reed-Solomon-Codes verwenden produzie-
ren wir für die Datenpuffer Di (0 6 i < k) wie in Abbildung 3 gezeigt nur die mit

155

Zusammenfassung

Cj (0 6 j < m, m = n − k) bezeichneten Paritäts-Teile des Codewortes. SB stellt
die Größe der Puffer in Bytes dar und muss eine ganze Zahl an Symbolen aus GF(2l)
enthalten. In dieser Arbeit präsentieren wir die Umsetzung von Reed-Solomon-Codes
mit unterschiedlichen Symbolgrößen. Aus diesem Grund wird die Puffergröße als
mindestens 512B lang angenommen.

D0 D1 D2 Dk-1 C0 C1 Cm-1D C SB

Abbildung 3: Puffer-basierte Codierung und Decodierung mit (n, k) Reed-Solomon-Code
(m = n− k)

Die größte Herausforderung bei der Implementierung eines schnellen und effizien-
ten Reed-Solomon-Fehlerkorrekturverfahrens ist die Tatsache, dass alle Operationen
in einem Galoiskörper durchgeführt werden müssen. Da die Berechnung des Reed-
Solomon-Codes durch eine Matrix-Vektor-Multiplikation repräsentiert werden kann,
ist es entscheidend, dass Additions- und Multiplikationsoperationen im Galoiskörper
effizient umgesetzt werden.

Die Multiplikation von zwei Elementen eines binären endlichen Körpers GF(2l)
ist definiert als:

a ◦ b = (a× b) mod p

Das Kreuzprodukt “×” ist die übertragsfreie Multiplikation der Polynomdarstellungen
von Elementen in GF(2l). Das Endergebnis erhält man durch eine Polynomreduktion
(Modulo) unter Verwendung eines primitiven Körpergenerators p des Galoiskörpers.
Da weder die übertragsfreie Multiplikation noch die Modulo-Operation in Hardware
implementiert sind, benötigen wir einen effizienten Algorithmus für beide Operationen.
Die übertragsfreie Multiplikation ähnelt der Ganzzahl-Multiplikation. In beiden
Operationen wird das zweite Element entsprechend der Anzahl an gesetzten Bits im
ersten Element verschoben. Der Unterschied besteht darin, dass die übertragsfreie
Multiplikation eine übertragsfreie Addition (XOR-Operation) verwendet, während die
Ganzzahl-Multiplikation eine gewöhnliche Addition verwendet, die einen Übertrag
erzeugt und propagiert. Ein effizienter Modulo-Reduktionsalgorithmus, basierend auf
dem Barrett-Reduktionsalgorithmus [4] ist im [37] beschrieben.

Wir präsentieren mehrere praktische Implementierungen von effizienten, pufferba-
sierten Reed-Solomon-Löschcodierungsverfahren. Unterschiedliche Anwendungsbedin-
gungen erlauben verschiedene Arten von Optimierungen. In dieser Arbeit zeigen wir
Implementierungen mit SIMD-Anweisungen und Just-in-time-Kompilierungstechnik.

156

Reed-Solomon-Code Vektorisierung

Die SIMD-Implementierung nutzt die SIMD-Einheiten moderner CPUs. Durch die
parallele Ausführung der beschriebenen Galoiskörper-Operationen auf mehreren Ele-
menten kann eine signifikante Beschleunigung erreichet werden. Der Hauptbeitrag
dieser Arbeit ist die Erforschung der Einsatzmöglichkeiten zur Verfügung stehender
SIMD-Operationen auf x86- und ARM-Plattformen. Eine praktische Umsetzung
dieser Arbeit hat bereits zum quelloffenen Dateisystem ZFS beigetragen. Die be-
schriebenen Methoden für Reed-Solomon-Codeberechnungen enthalten intrinsisch
redundante Operationen, die nicht mit herkömmlichen Software-Erstellungsmethoden
optimiert werden können. Um dieses Problem zu lösen, verwenden wir die Just-in-
time-Kompilierungstechnik zum Spezifizieren, Zusammensetzen und Ausführen des
Codes. Wir haben dabei die LLVM-Infrastruktur [63] verwendet, die es ermöglicht,
hoch optimierte und vektorisierte Code für x86- und ARM-Plattformen zu erstellen
und auszuführen.

Viele moderne Prozessoren unterstützen Vektoranweisungen zur Verbesserung
datenintensiver Anwendungen. Diese Parallelität auf Datenebene wird durch Ver-
wendung einer vektorisierte arithmetisch-logischen Einheit (englisch Arithmetic Logic
Unit, ALU) erreicht. Abbildung 4 veranschaulicht eine 128-Bit Vektor-ALU. Die
dargestellte ALU ist in der Lage, Operationen auf zwei 64-Bit-, vier 32-Bit- oder
acht 16-Bit-Operanden gleichzeitig auszuführen. Die Operationen werden auf allen
Vektorelementen parallel durchgeführt.

64b 64b
32b 32b 32b 32b

16b 16b 16b 16b 16b 16b 16b 16b

64b 64b
32b 32b 32b 32b

16b 16b 16b 16b 16b 16b 16b 16b

Vector ALU (128 bit)

64b 64b
32b 32b 32b 32b

16b 16b 16b 16b 16b 16b 16b 16b

2…8

2…8 2…8

Abbildung 4: Illustration eines 128-Bit-Vektor-Arithmetisch-logische Einheit

Der Block-Reed-Solomon-Algorithmus hat keine Inter-Data-Abhängigkeiten, wes-
halb für eine effiziente vektorisierte Implementierung eine signifikante Leistungssteige-
rung gegenüber der skalaren Version zu erwarten ist. Weil wir einen Puffer-basierten
Codierungsalgorithmus verwenden, lässt sich recht einfach eine horizontale Vektori-
sierung bei der Entwicklung der Algorithmen verwenden. Diese Technik kombiniert

157

Zusammenfassung

mehrere unabhängige Datensymbole, die in gleicher Weise verarbeitet werden, in
ein einziges Vektorregister. Nach dem Anwenden der Algorithmusoperationen auf
Vektoren sequentieller Datensymbolen enthält der resultierende Vektor dieselbe Anzahl
an Paritätsprüfsymbolen.

25

33

44

59

79

100

140

190

250

330

440

590

790

1100

1400

1900

2500

3300

4400

5900

7900

11000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

n (k= 3n/4)

T
hr
ou

gh
p
u
t
[MiB s

]

scalar RS(28) SSE RS(28) AVX2 RS(28)

scalar RS(216) SSE RS(216) AVX2 RS(216)

Abbildung 5: Durchsatz von optimierten, JIT generierten Reed-Solomon (n, k) Blockcodes
über GF(28) und GF(216), auf Intel Haswell CPU.

Um die besten Ergebnisse zu erzielen, haben wir die Bitgröße des Elements des
Galoiskörper auf die Länge der Vektorelemente angepasst. Die Auswertung (Abbil-
dung 5) zeigt, dass der maximalen Codierungsdurchsatz für eine kleine Anzahl von
Daten und Codesymbolen nahezu der Speicherbandbreite der Testplattformen ent-
spricht. Allerdings ist die rechnerische Komplexität größerer Matrixmultiplikationen
der dominierende Faktor für große Codes.

ZFS: RAID-Z Vektorisierung

Das RAID-Z-Schema des ZFS-Dateisystems basiert auf einem systematischen Reed-
Solomon-Code, der nach der Vandermonde-Methode konstruiert wird. RAID-Z verwen-
det Elemente des erweiterten Körpers GF(28), die unter Verwendung des primitiven
Polynoms p(X) = X8 + X4 + X3 + X2 + 1 über GF(2) kostruiert werden. Die Gene-
ratormatrix ARAID-Z erhält man durch Verkettung der Identitätsmatrix Ik und der
Code generierenden Matrix A∗RAID-Z

ARAID-Z · d = cRAID-Z

158

[
Ik

A∗RAID-Z

]
· d =

 d

c∗RAID-Z

Die ursprüngliche RAID-Z-Implementierung verwendet Umsetzungstabellen für

die Galoiskörper-Multiplikation, wobei die Exponetialtafel und die Logarithmentafel
zum Einsatz kommen. Dieser Ansatz hat mehrere Nachteile. Der häufige Zugriff auf
diese großen Tabellen innerhalb der inneren Schleife der Blockcode-Berechnungsroutine,
kann die Leistung stark negativ beeinträchtigen. Die Multiplikation erfordert 3
Tabellen-Nachschlage-Operationen, die jeweils einen, im wesentlichen zufälligen Spei-
cherzugriff erfordern. Ein weiterer Nachteil dieser Methode ist die intrinsische Seriali-
sierung der Berechnung. Die Umsetzungstabellen unterstützen nur die Berechnung
eines einzelnen Symbols zu einer Zeit, in diesem Fall eines einzelnen Bytes. In
Anbetracht der Tatsache, dass die derzeitigen Prozessoren nativ mit 64 bit breiten
Registern arbeiten, nutzt der Algorithmus effektiv nur 1/8 des theoretischen skalaren
Operationsdurchsatzes.

0

650

1400

2320

3380

4560

5860

7260

8760

10 400

12 000

13 800

15 600

17 500

19 500

21 600

23 700

25 900

35 200

37 700

42 900

16Ki 32Ki 64Ki 128Ki 256Ki 512Ki 1Mi 2Mi 4Mi 8Mi 16Mi 32Mi 64Mi

RAID-Z2 block size [B]

T
hr

ou
gh

pu
t
[MiB s

]

original gen PQ original rec PQ
scalar gen PQ scalar rec PQ
SSE gen PQ SSE rec PQ
AVX2 gen PQ AVX2 rec PQ

Abbildung 6: Kombinierter Durchsatz von der RAID-Z Paritätsoperationen auf einem Pool
bestehend aus 8 Daten und 2 Paritätsplatten

Wir haben vektorisierte Methoden für die RAID-Z-Codierung und Decodierung
angewandt. Die Ergebnisse sind in Abbildung 6 dargestellt. Die RAID-Z-Blockgröße
umfasst Werte zwischen 16KiB und 64MiB. Die unterstützte Maximalgröße ist
16MiB, so dass Daten nicht in die CPU-Caches passen. Die Auswirkungen des
CPU-Daten-Caches sind deutlich erkennbar, was nahelegt, dass der Durchsatz durch

159

Zusammenfassung

die Speicherbandbreite und nicht aufgrund der Rechenkomplexität limitiert ist. Dieser
Effekt ist mit weniger rechenintensiven Paritätserzeugungsmethoden und mit breiteren
Registergrößen stärker ausgeprägt. Die CPU der Testplattform hat 32KiB L1- und
256KiB L2-Daten-Cache pro CPU-Kern sowie 25MiB gemeinsamen L3-Daten-Cache,
der zwischen allen CPU-Kernen geteilt wird. Die Messungen zeigen einen Rückgang
im Durchsatz exakt dann, wenn die Blockdaten nicht mehr vollständig in die Caches
passen. Der Durchsatz größerer Blocks bleibt mit etwa 23 000MiB s−1 auf hohem
Niveau.

ECCFS-Middleware

In dieser Arbeit stellen wir eine Anwendung von Löschcodierungsverfahren (ECCFS-
Middleware) vor, die darauf abzielen, das Problem der Zuverlässigkeit von OSS,
OST und der Kommunikationsverbindung eines typischen parallelen Dateisystems
(PFS) zu lösen. Die Motivation und die Anforderungen an das vorgeschlagene Zuver-
lässigkeitsschema beinhalten: Optimale Festspeicher-Ausnutzung, Minimierung des
ECC-Berechnungs-Mehraufwands und ein flexibles und automatisches Management.
Eine einfache Datenreplikation erfordert viel höhere Speicher-Kosten im Vergleich zu
Löschcodierungen mit gleichen Zuverlässigkeit. Die meisten parallelen Dateisysteme
nutzen mehrere Speicherserver, um Daten einer einzelnen Datei zu speichern, wodurch
die Zuverlässigkeit des Replikationsschemas bei mehreren Ausfällen verringert wird.
Mit Hilfe von Maximum-Distanz-Codes, wie dem Reed-Solomon-Löschcode, sorgen
wir für eine minimale Festspeicher-Bedarf bei gleichzeitiger optimaler Zuverlässigkeit,
selbst im Falle mehrfacher gleichzeitiger OST-Ausfälle.

Um den ECC-Berechnungs-Mehraufwand zu minimieren, verschieben wir die
Berechnung von ECC-Bausteinen für neu eingeführte Dateien. Dies verhindert das
Verschwenden von Rechenleistung und Bandbreite bei der ECC-Berechnung für kurzle-
bige und häufig aktualisierte Dateien. Bei typischen RAID-Systemen ist die Anzahl der
Paritätsdatenträger festgelegt, was gleiche Zuverlässigkeit für alle Daten gewährleistet.
Jedoch sind nicht alle Daten gleichermaßen wichtig, z.B. Daten, die durch ein Experi-
ment produziert werden, sind wichtiger als Simulationsergebnisse, die neu berechnet
werden können. Die Möglichkeit, ein gewünschtes Redundanzniveau festzulegen, bringt
also einen Mehrwert.

Eine Übersicht über die ECCFS-Middleware und das zugrundeliegende PFS
(Lustre) ist in Abbildung 7 dargestellt.

Die ECCFS-Middleware besteht aus folgenden Komponenten: Monitor (Än-
derungsüberwachung), Changelog (Änderungsprotokoll), MD-Worker (Metadaten-
Arbeiter), und ECC-Worker (ECC-Arbeiter). Die ECCFS-Monitor-Komponente ist

160

Lustre MDS

Lustre Clients &
ECCFS Monitor

ECCFS MD Worker

ECCFS ECC Workers

Lustre OSSs

ECCFS Changelog

Abbildung 7: Komponenten der ECCFS-Middleware in Bezug auf Lustre-
Dateisystemkomponenten

für das Sammeln von Informationen über geänderte oder erstellte Daten innerhalb
des PFS verantwortlich. Ein Änderungsupdate wird durch das Tupel (file_name,
offset, length) dargestellt, das die Position jeder Veränderung, die der Benutzer
macht, eindeutig darstellt. Die ECCFS-Changelog-Komponente dient als zentrale Da-
tenbank zum Sammeln von Datei- und Metadaten-Updates, die vom ECCFS-Monitor
gesendet werden.

Diese Informationen werden beibehalten, bis die Redundanz für geänderte Da-
ten neu berechnet wurde oder bis alle Operationen, die den Redundanz-Repository
betreffen durchgeführt wurden. Der ECCFS-MD-Worker ist verantwortlich für Me-
tadatenoperationen und Redundanzberechnungsplanung. Das Design des ECCFS
ermöglicht es, mehrere Instanzen des MD-Worker gleichzeitig zu betreiben, was eine hö-
here Skalierbarkeit von Metadatenoperationen ermöglicht. Der ECCFS-ECC-Worker
bedient die Arbeits-Warteschlange und führt die eigentlichen Berechnungen zur Feh-
lerkorrektur durch. Einmal berechnet werden die Redundanzblocks in zuvor erstellten
Redundanz-Dateien gespeichert.

Mit Ausnahme der MD-Worker-Komponente ist die gesamte ECCFS-Middleware
unabhängig vom zugrunde liegenden PFS und ermöglicht die gleichzeitige Kopplung
mit anderen PFSs, die ein Minimum an Anforderungen unterstützen. Die Tren-
nung der Komponenten ermöglicht eine größere Skalierbarkeit, da leistungskritische
Komponenten in mehr als einer Instanz eingesetzt werden können. Die hohe hori-
zontale Skalierbarkeit des Systems maximiert die Nutzung von Berechnungs- und
Bandbreitenressourcen.

In den Redundanzrichtlinie kann eine beliebige Anzahl von ECC-Dateien spezifi-
ziert werden, einschließlich 0, wobei in diesem Fall alle übereinstimmenden Dateien

161

Zusammenfassung

vom ECCFS ignoriert werden. Die Redundanzrichtlinien können jederzeit angepasst
werden, um die Zuverlässigkeit zu erhöhen oder zu verringern. Dies kann von Vor-
teil sein, wenn sich die Zuverlässigkeitskriterien ändern oder auf dem PFS mehr
Platz benötigt wird. Im Falle einer Reduzierung werden die Redundanzdateien mit
dem höchsten Index gelöscht, während die verbleibenden Dateien weiter ein gültiges
Löschschema darstellen.

Um eine noch höhere Datenintegrität und Verfügbarkeit zu gewährleisten, könnte
die ECCFS-Middleware in die eingesetzten Resourcenmanager integriert werden.
Bevor ein neuer Auftrag ausgeführt wird könnte ECCFS im laufenden Betrieb eine
Datenintegritätsprüfung aller vom Auftrag benötigten Dateien durchführen. Im
Fehlerfalle könnten alle nicht verfügbaren Dateien rechtzeitig zur Auftrags-Ausführung
rekonstruiert werden.

Fazit

Reed-Solomon-Codes sind im Bereiche der digitalen Datenverarbeitung und Speiche-
rung allgegenwärtig. Die Implementierung effizienter Reed-Solomon-Fehlerkorrektur-
verfahren hängt maßgeblich von der Fähigkeit ab schnelle Multiplikationen in Galois-
Körpern durchführen zu können. Diese Multiplikation steht in den meisten gewöhn-
lichen CPUs jedoch nicht als Hardware-Operation zur Verfügung und muss daher
emuliert werden. Zur Lösung dieses Problems haben wir eine Methode präsentiert,
die die nötige Multiplikation mittels Polynommultiplikation und -Reduktion löst. Wir
haben gezeigt, dass sich die dafür benötigten Berechnungen durch die Anwendung von
Just-in-time-Kompilierungstechniken entscheidend optimiert lassen. Die vorgestellte
Implementation dieses Verfahrens bietet eine erhebliche Verbesserung der Galois-
Körper-Emulation für Reed-Solomon-Codes. Darüber hinaus wurde dargestellt wie
sich existierende Compiler-Infrastruktur nutzen lässt, um Code automatisch für x86
und ARM Plattformen zu vektorisieren.

Das ZFS-Dateisystem erfreut sich im Umfeld von Hochleistungs-Speichersystemen
aufgrund seiner software-basierten Ausfallsicherheistmechanismen an wachsender Be-
liebtheit. Anstelle von hardware-basierten RAID-Lösungen setzt ZFS auf die CPU
zum berechnen von Redundanz- und Integritätsinformationen und vereinfacht so die
Hardware Infrastruktur. ZFS unterstützt RAID-Z, eine Löschcodierungsverfahren für
Massenspeicher-Pools, welches Ausfallsicherheit bei bis zu 3 Fehlern bietet. Der Durch-
satz der benötigten Paritäts-Operationen kann durch den Einsatz von SIMD-Einheiten
moderner CPUs erheblich gesteigert werden. Wir haben die Implementierung eines
generischen Frameworks zur Berechnung von RAID-Z-Paritäts-Operationen vorge-
stellt, welches eine Vielzahl an SIMD-Befehlssätzen unterstützt. Mit Hilfe dieses

162

Frameworks wurden RAID-Z-Implementierungen für den Skalaren-, SSE- und AVX2-
Befehlssatz erstellt. Die optimierte SIMD-Implementation weist eine bis zu 95-fache
Durchsatz-Verbesserungen bei der Berechnung von RAID-Z-Paritätsinformationen
und der Rekonstruktion von Daten auf. Die implementierten Routinen wurden erfolg-
reich ins ZFS on Linux Projekt integriert und finden dort seit Version 0.70 aktive
Verwendung.

163

	Introduction
	Storage technologies
	Storage reliability
	RAID
	ZFS
	Lustre
	Summary

	Introduction to Error Correction Codes
	Mathematical concepts
	Groups
	Finite Groups

	Fields
	Finite Fields
	Vector Spaces over Finite Fields
	Construction of Galois Fields

	Linear Block Codes
	Introduction to block codes
	Generator matrix
	Bounds of linear block codes
	Cyclic block codes

	Reed-Solomon Code
	Vandermonde Reed-Solomon code
	Erasure decoding

	Distributed Reed-Solomon code

	Algebraic signatures

	On Implementing Reed-Solomon Codes
	Galois Field multiplication
	Carry-less multiplication
	Modulo operation

	Reed-Solomon Encoding
	Summary

	Micro Benchmarks
	Arithmetic and logic operations
	Memory load throughput
	Multi stream memory throughput
	Memory load latency

	Conclusion

	JIT Generation of Reed-Solomon Erasure Codes
	Vectorization
	Carry-less multiplication
	Modulo operation
	Evaluation

	Just-In-Time compilation of Reed-Solomon codes
	LLVM as a JIT compiler
	LLVM IR representation

	Reed-Solomon Encoding
	Carry-less multiplication

	Evaluation
	Summary

	Vectorization of ZFS Erasure Codes
	RAID-Z theoretical background
	Implementation
	RAID-Z parity generation
	RAID-Z data reconstruction

	Evaluation
	Summary

	ECCFS Middleware
	Motivation
	Design of ECCFS
	ECCFS Monitor
	ECCFS Changelog
	ECCFS MD Worker
	ECCFS ECC Worker

	Implementation
	ECCFS Monitor
	ECCFS Changelog
	ECCFS MD Worker
	ECCFS ECC Worker
	Deployment and Administration

	Summary

	Summary
	References
	Appendix
	Test-bed platforms
	Example of Hexagon DSP VLIW code
	Galois Field used in RAID-Z

	List of Tables
	List of Figures
	List of Algorithms
	List of Listings
	Zusammenfassung

