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Climate forcing data: Supplementary Figures 1 –3  

 

Supplementary Figure 1 Daily temperature (in °C, red/blue shading) and precipitation (in mm/day, turquoise/brown) 
averaged over the “Central” European region (0°-20°E, 42°-53°N). Thick lines show the 1961-1990 climatology, thin lines 
show the 2003 values. Red and brown shading means that 2003 was hotter and drier than average, respectively, on a given 
day of year. In the top panel, the WFDEI data set has been extended by the WATCH forcing data set (1) for the period 1961-
1978. WATCH uses the same methodology as WFDEI (2) but is based on ERA-40, rather than ERA-Interim, reanalysis data. 
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Supplementary Figure 2 Summer (June–August average) climate anomalies in 2003 (with respect to the 1961-1990 
average) in the three climate forcing data sets. Top left: Surface air temperature (in °C); only shown for WATCH/WFDEI (2) 
since monthly temperatures have been bias-corrected using Climate Research Unit (CRU) observational data in all three 
data sets, and thus are identical. Thick and thin box indicate the “Central” and “West” regions, respectively, used for 
averaging in the main paper and in Supplementary Figures 1, 10, and 22. Top right to bottom: Precipitation (in mm/day) in 
WATCH/WFDEI, GSWP3  (3), and PGFv2  (4).  

 

Supplementary Figure 3 As Supplementary Figure 2 (top right) but for the annual average.  
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Model ensemble: Supplementary Table 1 
 

Supplementary Table 1 Impact models used in this study, including main references  

# (as in 
figures) 

Model name (Model version) Main 
reference(s) 

Code availability 

 Agriculture   
1 CGMS-WOFOST (WOFOST 

7.1/PCSE 5.1) 
(5, 6) https://github.com/ajwdewit/pcse, 

https://github.com/ajwdewit/ggcmi  
2 CLM-Crop (modified CLM 

4.5) 
(7) http://www.cesm.ucar.edu/models/cesm1

.2/clm/ 
3 EPIC-Boku (EPIC0810) (8) EPICv0810 field-scale core model: 

https://epicapex.tamu.edu/epic/. 
Extensions available from model 
developers upon request 

4 EPIC-IIASA (EPIC0810) (9) 
5 GEPIC (EPIC0810; partly 

modified at EAWAG) 
(10, 11) 

6 LPJ-GUESS (Version 2.1 with 
crop module) 

(12) upon request 

7 LPJmL () (13) Most recent version: 
https://github.com/PIK-LPJmL/LPJmL. 
Version used here available upon request  

8 ORCHIDEE-CROP (V1.1) (14) upon request 
9 pAPSIM1.0 (APSIM V7.5) (15) https://github.com/RDCEP/psims  
10 pDSSAT2.0 (DSSAT4.6) (15) 
11 PEGASUS (V1.1) (16) upon request 
12 PRYSBI2 (17) upon request 
 Terrestrial Ecosystems   
1 CARAIB () (18) upon request 
2 DLEM (Dynamic Land 

Ecosystem Model) (v2.0) 
(19, 20) upon request 

3 JULES-B1 (JULES v4.4) (21) https://jules.jchmr.org/  
4 LPJ-GUESS (3.1) (22) upon request 
5 LPJmL () (13, 23) Most recent version: 

https://github.com/PIK-LPJmL/LPJmL. 
Version used here available upon request  

6 ORCHIDEE (rev3013) (24, 25) upon request 
7 VEGAS (v2.3) (26) upon request for collaboration 
8 VISIT (VISITa) (27) upon request 
 Water    
1 DBH () (28) http://hydro.iis.u-tokyo.ac.jp/DBH/  
2 H08 (H08) (29) http://h08.nies.go.jp 
3 LPJmL () (30) Most recent version: 

https://github.com/PIK-LPJmL/LPJmL. 
Version used here available upon request 

4 MATSIRO (HiGW-MAT) (31) not available 
5 MPI-HM (R44) (32) upon request 
6 PCR-GLOBWB (version 2) (33) github link at https://www.geosci-model-

dev.net/11/2429/2018/ 
7 WaterGAP2 (WaterGAP 2.2 

(ISIMIP2a)) 
(34) not available 

 Marine Ecosystems    
 BOATS (v1.0) (35) https://doi.org/10.5281/zenodo.27700  

https://github.com/ajwdewit/pcse
https://github.com/ajwdewit/ggcmi
http://www.cesm.ucar.edu/models/cesm1.2/clm/
http://www.cesm.ucar.edu/models/cesm1.2/clm/
https://epicapex.tamu.edu/epic/
https://github.com/PIK-LPJmL/LPJmL
https://github.com/RDCEP/psims
https://jules.jchmr.org/
https://github.com/PIK-LPJmL/LPJmL
http://hydro.iis.u-tokyo.ac.jp/DBH/
http://h08.nies.go.jp/
https://github.com/PIK-LPJmL/LPJmL
https://www.geosci-model-dev.net/11/2429/2018/
https://www.geosci-model-dev.net/11/2429/2018/
https://doi.org/10.5281/zenodo.27700
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 EcoOcean () (36) EwE core model: http://ecopath.org 
 Macroecological model 

(v1.0) 
(37) upon request 

 EwE  (36, 38–40) http://ecopath.org 
 Energy   
 VIC-HydroP (41) upon request 
 Heat-related mortality   
 City-specific ERFs (42, 43) upon request 
 

Water resources: Supplementary Figures 4 –7 
 

 

Supplementary Figure 4 As Fig. 2 in the main paper but for simulations ignoring human interventions with the water cycle, 
such as land use, reservoirs, and water withdrawals. Six models are included here, rather than five for the simulations 
including human interventions.  

 

http://ecopath.org/
http://ecopath.org/
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Supplementary Figure 5 Water balance components in the WaterGAP model, driven by WFDEI climate forcing, in the Weser 
catchment (station Intschede) during three years centered on 2003. Precipitation (Precip), potential evapotranspiration 
(PET), and discharge (QHI: simulation including human interventions; Qnat: naturalized simulation) range in the order of 
several km3/month, while the human water use components are much smaller and cluster at the bottom of the figure 
(WUirr: consumptive irrigation water demand; NAs: net consumptive demand from surface water sources; Nag: net 
consumptive demand from groundwater resources; AUsw: actual water consumption from surface water). While irrigation 
demand is larger in 2003 than in 2002 and 2004 (small bulge at the bottom center), actual water consumption remains near 
zero (straight purple line) due to a lack of sufficient surface water resources to satisfy the demand. The difference between 
QHI and Qnat is therefore small.  
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Supplementary Figure 6 As Fig. 2 in main paper (left) and Supplementary Figure 4 (right) but for June and July. The “varsoc” 
(time-varying societal impacts) scenario includes human interventions, while “nosoc” (no societal impacts) refers to the 
simulations without human interventions.  
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Supplementary Figure 7 As Fig. 2  in the main paper (top) and Supplementary Figure 4 (bottom), but with climate forcing 
from the GSWP3 dataset. The model ensemble includes 5 models for “varsoc”, and 7 models for “nosoc”; individual models 
are identified by the same numbers as in the main paper.   
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Agriculture: Supplementary Figures 8 – 9, Supplementary Table 2 

 

Supplementary Figure 8 As Fig. 3 in the main paper but with PGFv2 climate forcing.  
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Supplementary Figure 9 As Fig. 3 in the main paper, but in absolute terms (t/ha), and separately for irrigated (top) and 
rainfed (middle) yields, as well as total yields (bottom). Only 11 crop models are included here because one model (no. 12) 
does not separate between irrigated and rainfed yields. The percentage of total growing area equipped for irrigation is 
listed in brackets. 

Supplementary Table 2 Comparison of yield changes reported by FAOSTAT (obtained from 
http://faostat.fao.org/site/567/default.aspx on August 30th, 2016) and COPA-COGECA (44) for those countries which are 
mentioned in the COPA-COGECA report. COPA-COGECA only reports percentage changes between 2002 and 2003 annual 
yields, without comparison to longer-term yields.  

 Maize 
% change from 2002 to 2003 

Wheat 
% change from 2002 to 2003 

 FAOSTAT COPA-COGECA FAOSTAT COPA-COGECA 
Austria 1.8 -9.7 -11.8 -10.4 
France -20.7 -20.0 -16.1 -16.1 
Germany -21.2 -23.0 -5.9 -5.9 
Greece   -14.3 -12.6 
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Italy -21.2 -26.0 -12.0 -4.7 
Portugal   -52.1 -37.0 
Spain -5.0 -13.3   
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Terrestrial Ecosystems: Supplementary Figures 10 – 13 
 

 

Supplementary Figure 10 Summer (June-August) anomalies in gross primary production (GPP, in gC m-2 month-2) in the year 
2003, relative to the average over 2000-2011, according to MODIS remote-sensing based estimates. Thick and thin black 
rectangles outline the “Central” and “West” regions, respectively, used for averaging.  
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Supplementary Figure 11 As Fig. 4 (a) in main paper but using GSWP3 (top) and PGFv2 (bottom) climate forcing, with 
simulations starting in 1971.  
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Supplementary Figure 12 Anomalies in summer (June-August) total GPP over the two European regions (see 
Supplementary Figure 10), relative to the linear trend over the entire period (1979-2010 for the biomes models, 2000-2011 
for MODIS data), for simulations using WFDEI climate forcing. Models are shown in color, MODIS data in black. Some model 
simulations (“varsoc”) include time-varying human interventions – most relevant, land-use change – while others (“nosoc”) 
don’t.  
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Supplementary Figure 13 As Supplementary Figure 12 but for simulations using GSWP3 climate forcing.  
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Energy: Wind and solar power, Supplementary Figure 14  
 

 

Supplementary Figure 14 As Fig. 5 (blue bars) in main paper but for summer (June-August).  

 

Human health: Supplementary Table 3 
  

Supplementary Table 3 Previous estimates of excess mortality due to the 2003 EHWD in different European cities. 
Reported numbers of excess deaths are displayed in Fig. 6 (main paper), after normalization by their respective population 
baseline. In cases where the population baseline is not directly reported in the cited studies, we use official population 
statistics for 2003 (URLs given in the table), and display the resulting mortality rate as a diamond symbol in Fig. 6 (main 
paper).  

Study City Number 
excess 
deaths 

City population baseline  Time 
period 
2003 

Baseline 

Michelozzi et 
al. 2005 (52) 
 

Rome1 944 2 546 804 * Jun-Aug 
 

Smoothed daily 
mortality 1995-
2002 

Turin1 577 865 263 * 1998-2002 
Milan1 559 1 256 211 * 1995-2002 

Le Tertre et al. 
2006 (57) 

Paris 2085 6,164,418 (baseline 1996-
2003) 

22 Jul to 2 
Sep 

Poisson regression 
models – seasonal 
predictions as 

                                                             
1 city population baseline reported in Michelozzi et al., 2006 
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baseline  
Johnson et al. 
2005 (58) 

London 616 7,394,817 
(https://data.london.gov.uk
/dataset/office-national-
statistics-ons-population-
estimates-borough, 
08.08.2017) 

4-13 Aug 1998-2002 average 

Mitchell et al. 
2016 (49) 

Paris 
(Central) 

723  2 126 000 Jun-Aug Baccini et al. 
models but 
observed mortality 
and weather from 
2003 

London 322  7 154 000 Jun-Aug 

Borrell et al. 
2006 (51) 

Barcelona 411 1,582,738  Jun-Aug Age-group specific 
model 1998-2002  

Tobias et al. 
2010 (56) 

Barcelona 537 1,582,738 
(http://www.ine.es/dynt3/i
nebase/en/index.htm?padre
=527, 08.08.2017) 

Jun-Aug Poisson regression 
1999-2003 

Martinez-
Navarro et al. 
2004 (55) 

Barcelona 665 1,582,738 
(http://www.ine.es/dynt3/i
nebase/en/index.htm?padre
=527, 08.08.2017) 

Jun-Aug 
 

Poisson regression 
1990-2002 
(account for age 
groups, month, 
year) Valencia 244 780,653 

(http://www.ine.es/dynt3/i
nebase/en/index.htm?padre
=527, 08.08.2017) 

Grize et al. 
2005 (54) 

Zürich 47 342 116 
(https://www.bfs.admin.ch/
bfs/de/home/statistiken/be
voelkerung.html, 
08.08.2017) 

Jun-Aug Poisson regression 
1990-2002 

* as reported in ref. (53) 

 

Marine Ecosystems: Supplementary Figures 15 – 19 
 

https://data.london.gov.uk/dataset/office-national-statistics-ons-population-estimates-borough
https://data.london.gov.uk/dataset/office-national-statistics-ons-population-estimates-borough
https://data.london.gov.uk/dataset/office-national-statistics-ons-population-estimates-borough
https://data.london.gov.uk/dataset/office-national-statistics-ons-population-estimates-borough
http://www.ine.es/dynt3/inebase/en/index.htm?padre=527
http://www.ine.es/dynt3/inebase/en/index.htm?padre=527
http://www.ine.es/dynt3/inebase/en/index.htm?padre=527
http://www.ine.es/dynt3/inebase/en/index.htm?padre=527
http://www.ine.es/dynt3/inebase/en/index.htm?padre=527
http://www.ine.es/dynt3/inebase/en/index.htm?padre=527
http://www.ine.es/dynt3/inebase/en/index.htm?padre=527
http://www.ine.es/dynt3/inebase/en/index.htm?padre=527
http://www.ine.es/dynt3/inebase/en/index.htm?padre=527
https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung.html
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Supplementary Figure 15 Effect of the 2003 heat wave on European sea surface temperatures (SST): Timeseries (top left, 
average over the region shown on the right) and difference between 2003 and the 1982-2015 average (right, in degree C), 
both for the summer months June-August (JJA). Bottom four panels show the individual timeseries for the four sub-basins 
analyzed in the following figures. Source: Observational data from NOAA 
(http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html).  
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Supplementary Figure 16 Annual mean total consumer biomass (tcb) in three global marine ecosystem models 
(MACROECOLOGICAL, BOATS, and EcoOcean), one regional model (basin-specific versions of EwE), and observational 
estimates (Sea Around Us Project (66, 67), black) in four European (sub-)basins. To remove differences in mean levels, 
deviations from the 1995-2004 average are shown.  
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Supplementary Figure 17 Summer (JJA) sea surface temperatures (SST) in the GFDL_reanalysis forcing dataset, for the 
Adriatic and Northwestern Mediterranean subbasins and the North Sea and Baltic Sea. The year 2003 is marked with a 
small circle.  

 

Supplementary Figure 18 Phytoplankton abundance in the English Channel in the GFDL_reanalysis forcing dataset. The year 
2003 is marked with a small circle.  
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Supplementary Figure 19 Summer (JJA) depth-integrated net primary productivity (NPP) in the GFDL_reanalysis forcing 
dataset, for the Adriatic and Northwestern Mediterranean subbasins and the North Sea and Baltic Sea. The year 2003 is 
marked with a small circle.  

 

Methods: Shifted crop yield series, Supplementary Figures 20 – 22 

Time-shifts in wheat yields 
Depending on whether winter or spring wheat is simulated, sowing and harvest may occur in the 
same year or in subsequent years; and because different crop models may simulate the one or the 
other variety, and only report a sequence of harvests, it cannot always be determined whether the 
first wheat harvest in the 1979-2008 simulation occurred in 1979 or in 1980. Ref. (68) discusses this 
ambiguity in assigning harvests to calendar years – which is also present in FAOSTAT data – and 
reports that shifting the country-level simulated yield time series by one year can improve 
correlation with reported yields for some models and some countries. We also find a few model-
country combinations where the time series correlation coefficient improves by more than 0.3 when 
simulated wheat yields are shifted forwards or backwards by one year. However, applying these time 
shifts leads only to a marginal improvement of the multi-model median match with the reported 
yields anomaly in 2003, in Germany, Bulgaria, Romania, Hungary, Poland, Spain, and Austria 
(Supplementary Figure 22).  
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Supplementary Figure 20 As Fig. 3 in the main paper, but with a linear trend removed instead of a moving average.  
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Supplementary Figure 21 As Fig. 4 (a) in the main paper but with the standard deviation of the model GPP anomaly 
calculated over the entire period 1979-2010, rather than just 2000-2010.  

 

Supplementary Figure 22 As Fig. 3 (b) in the main paper but with the simulated country-level yield time series shifted by 
one year forwards or backwards in cases where such a shift improves the correlation coefficient between the simulated and 
the reported yield time series by more than 0.3. 

 

References 
1.  Weedon GP, et al. (2011) Creation of the WATCH Forcing Data and Its Use to Assess Global 

and Regional Reference Crop Evaporation over Land during the Twentieth Century. J 
Hydrometeorol 12(5):823–848. 

2.  Weedon GP, et al. (2014) The WFDEI meteorological forcing data set: WATCH Forcing Data 



24 
 

methodology applied to ERA-Interim reanalysis data. Water Resour Res 50(9):7505–7514. 

3.  van den Hurk B, et al. (2016) LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow 
and Soil moisture Model Intercomparison Project – aims, setup and expected outcome. Geosci 
Model Dev 9(8):2809–2832. 

4.  Sheffield J, Goteti G, Wood EF (2006) Development of a 50-Year High-Resolution Global 
Dataset of Meteorological Forcings for Land Surface Modeling. J Clim 19(13):3088–3111. 

5.  Diepen CA, Wolf J, Keulen H, Rappoldt C (1989) WOFOST: a simulation model of crop 
production. Soil Use Manag 5(1):16–24. 

6.  Boogaard HL, De Wit AJW, te Roller JA, Van Diepen CA (2014) WOFOST Control Centre 2.1; 
User’s Guide for the WOFOST Control Centre 2.1 and the Crop Growth Simulation Model 
WOFOST 7.1. 7. Wageningen, The Netherlands: Alterra. 

7.  Drewniak B, Song J, Prell J, Kotamarthi VR, Jacob R (2013) Modeling agriculture in the 
Community Land Model. Geosci Model Dev 6(2):495–515. 

8.  Izaurralde RC, Williams JR, McGill WB, Rosenberg NJ, Jakas MCQ (2006) Simulating soil C 
dynamics with EPIC: Model description and testing against long-term data. Ecol Modell 192(3–
4):362–384. 

9.  Balkovič J, et al. (2014) Global wheat production potentials and management flexibility under 
the representative concentration pathways. Glob Planet Change 122:107–121. 

10.  Liu J, Williams JR, Zehnder AJB, Yang H (2007) GEPIC - modelling wheat yield and crop water 
productivity with high resolution on a global scale. Agric Syst 94(2):478–493. 

11.  Folberth C, Gaiser T, Abbaspour KC, Schulin R, Yang H (2012) Regionalization of a large-scale 
crop growth model for sub-Saharan Africa: Model setup, evaluation, and estimation of maize 
yields. Agric Ecosyst Environ 151:21–33. 

12.  Lindeskog M, et al. (2013) Implications of accounting for land use in simulations of ecosystem 
carbon cycling in Africa. Earth Syst Dyn 4(2):385–407. 

13.  BONDEAU A, et al. (2007) Modelling the role of agriculture for the 20th century global 
terrestrial carbon balance. Glob Chang Biol 13(3):679–706. 

14.  Wu X, et al. (2016) ORCHIDEE-CROP (v0), a new process-based agro-land surface model: 
model description and evaluation over Europe. Geosci Model Dev 9(2):857–873. 

15.  Elliott J, et al. (2014) The parallel system for integrating impact models and sectors (pSIMS). 
Environ Model Softw 62:509–516. 

16.  Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield response to 
extreme heat stress under multiple climate change futures. Environ Res Lett 9(3):034011. 

17.  Sakurai G, Iizumi T, Nishimori M, Yokozawa M (2015) How much has the increase in 
atmospheric CO2 directly affected past soybean production? Sci Rep 4(1):4978. 

18.  Dury M, et al. (2011) Responses of European forest ecosystems to 21 st century climate: 
assessing changes in interannual variability and fire intensity. iForest - Biogeosciences For 
4(2):82–99. 

19.  Tian H, et al. (2015) North American terrestrial CO2 uptake largely offset by CH4 and N2O 
emissions: toward a full accounting of the greenhouse gas budget. Clim Change 129(3–



25 
 

4):413–426. 

20.  Pan S, et al. (2015) Impacts of climate variability and extremes on global net primary 
production in the first decade of the 21st century. J Geogr Sci 25(9):1027–1044. 

21.  Harper A, et al. (2016) Improved representation of plant functional types and physiology in 
the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geosci 
Model Dev Discuss:1–64. 

22.  Smith B, et al. (2014) Implications of incorporating N cycling and N limitations on primary 
production in an individual-based dynamic vegetation model. Biogeosciences 11(7):2027–
2054. 

23.  Sitch S, et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial 
carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9(2):161–185. 

24.  Krinner G (2005) A dynamic global vegetation model for studies of the coupled atmosphere-
biosphere system. Global Biogeochem Cycles 19(1):GB1015. 

25.  Chang J, et al. (2017) Benchmarking carbon fluxes of the ISIMIP2a biome models. Environ Res 
Lett 12(4):045002. 

26.  Zeng N, Mariotti A, Wetzel P (2005) Terrestrial mechanisms of interannual CO 2 variability. 
Global Biogeochem Cycles 19(1). doi:10.1029/2004GB002273. 

27.  Ito A, Inatomi M (2012) Water-Use Efficiency of the Terrestrial Biosphere: A Model Analysis 
Focusing on Interactions between the Global Carbon and Water Cycles. J Hydrometeorol 
13(2):681–694. 

28.  Tang Q, Oki T, Kanae S, Hu H (2007) The Influence of Precipitation Variability and Partial 
Irrigation within Grid Cells on a Hydrological Simulation. J Hydrometeorol 8(3):499–512. 

29.  Hanasaki N, et al. (2008) An integrated model for the assessment of global water resources – 
Part 2: Applications and assessments. Hydrol Earth Syst Sci 12(4):1027–1037. 

30.  Rost S, et al. (2008) Agricultural green and blue water consumption and its influence on the 
global water system. Water Resour Res 44(9):1–17. 

31.  Pokhrel YN, et al. (2015) Incorporation of groundwater pumping in a global Land Surface 
Model with the representation of human impacts. Water Resour Res 51(1):78–96. 

32.  Stacke T, Hagemann S (2012) Development and evaluation of a global dynamical wetlands 
extent scheme. Hydrol Earth Syst Sci 16(8):2915–2933. 

33.  Wada Y, Wisser D, Bierkens MFP (2014) Global modeling of withdrawal, allocation and 
consumptive use of surface water and groundwater resources. Earth Syst Dyn 5(1):15–40. 

34.  Müller Schmied H, et al. (2016) Variations of global and continental water balance 
components as impacted by climate forcing uncertainty and human water use. Hydrol Earth 
Syst Sci 20(7):2877–2898. 

35.  Galbraith ED, Carozza DA, Bianchi D (2017) A coupled human-Earth model perspective on 
long-term trends in the global marine fishery. Nat Commun 8:14884. 

36.  Christensen V, et al. (2015) The global ocean is an ecosystem: simulating marine life and 
fisheries. Glob Ecol Biogeogr 24(5):507–517. 



26 
 

37.  Jennings S, Collingridge K (2015) Predicting Consumer Biomass, Size-Structure, Production, 
Catch Potential, Responses to Fishing and Associated Uncertainties in the World’s Marine 
Ecosystems. PLoS One 10(7):e0133794. 

38.  Coll M, Santojanni A, Palomera I, Tudela S, Arneri E (2007) An ecological model of the 
Northern and Central Adriatic Sea: Analysis of ecosystem structure and fishing impacts. J Mar 
Syst 67(1):119–154. 

39.  Niiranen S, et al. (2013) Combined effects of global climate change and regional ecosystem 
drivers on an exploited marine food web. Glob Chang Biol:n/a-n/a. 

40.  Christensen V, Walters CJ (2004) Ecopath with Ecosim: methods, capabilities and limitations. 
Ecol Modell 172(2–4):109–139. 

41.  van Vliet MTH, Wiberg D, Leduc S, Riahi K (2016) Power-generation system vulnerability and 
adaptation to changes in climate and water resources. Nat Clim Chang 6(4):375–380. 

42.  Baccini M, et al. (2008) Heat Effects on Mortality in 15 European Cities. Epidemiology 
19(5):711–719. 

43.  Gosling SN, et al. (2017) Adaptation to Climate Change: A Comparative Analysis of Modeling 
Methods for Heat-Related Mortality. Environ Health Perspect 125(8):1–45. 

44.  Copa-Cogeca (2004) Assessment of the impact of the heat wave and drought of the summer 
2003 on agriculture and forestry Available at: http://docs.gip-
ecofor.org/libre/COPA_COGECA_2004.pdf. 

45.  Running SW, Zhao M (2015) Daily GPP and annual NPP (MOD17A2/A3) products NASA Earth 
Observing System MODIS land algorithm. MOD17 User’s Guid. Available at: 
https://www.ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf. 

46.  Reichstein M, et al. (2007) Reduction of ecosystem productivity and respiration during the 
European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling 
analysis. Glob Chang Biol 13(3):634–651. 

47.  Tobin I, et al. (2015) Assessing climate change impacts on European wind energy from 
ENSEMBLES high-resolution climate projections. Clim Change 128(1–2):99–112. 

48.  Gasparrini A, Leone M (2014) Attributable risk from distributed lag models. BMC Med Res 
Methodol 14(1):55. 

49.  Mitchell D, et al. (2016) Attributing human mortality during extreme heat waves to 
anthropogenic climate change. Environ Res Lett 11(7):074006. 

50.  Monteith JL (John L, Unsworth M (2007) Principles of Environmental Physics. (Elsevier 
Science). 

51.  Borrell C, et al. (2006) Socioeconomic position and excess mortality during the heat wave of 
2003 in Barcelona. Eur J Epidemiol 21(9):633–640. 

52.  Michelozzi P, et al. (2005) The impact of the summer 2003 heat waves on mortality in four 
Italian cities. Euro Surveill 10(7):161–5. 

53.  Michelozzi P, et al. (2006) Temperature and summer mortality: geographical and temporal 
variations in four Italian cities. J Epidemiol Community Health 60:417–423. 

54.  Grize L, Huss A, Thommen O, Schindler C, Braun-Fahrländer C (2005) Heat wave 2003 and 



27 
 

mortality in Switzerland. Swiss Med Wkly 135(13–14):200–205. 

55.  Martínez Navarro F, Simón-Soria F, López-Abente G (2004) Valoración del impacto de la ola de 
calor del verano de 2003 sobre la mortalidad. Gac Sanit 18(Supl.1):250–258. 

56.  Tobías A, et al. (2010) Short-term effects of extreme hot summer temperatures on total daily 
mortality in Barcelona, Spain. Int J Biometeorol 54(2):115–117. 

57.  Le Tertre A, et al. (2006) Impact of the 2003 Heatwave on All-Cause Mortality in 9 French 
Cities. Epidemiology 17(1):75–79. 

58.  Johnson H, et al. (2005) The impact of the 2003 heat wave on mortality and hospital 
admissions in England. Heal Stat Q (25):6–11. 

59.  Hajat S, et al. (2006) Impact of High Temperatures on Mortality. Epidemiology 17(6):632–638. 

60.  Gasparrini A, Armstrong B (2011) The Impact of Heat Waves on Mortality. Epidemiology 
22(1):68–73. 

61.  Gosling SN, Lowe JA, McGregor GR, Pelling M, Malamud BD (2009) Associations between 
elevated atmospheric temperature and human mortality: a critical review of the literature. 
Clim Change 92(3–4):299–341. 

62.  Gosling SN, McGregor GR, Lowe JA (2012) The benefits of quantifying climate model 
uncertainty in climate change impacts assessment: an example with heat-related mortality 
change estimates. Clim Change 112(2):217–231. 

63.  Kingsley SL, Eliot MN, Gold J, Vanderslice RR, Wellenius GA (2015) Current and Projected 
Heat-Related Morbidity and Mortality in Rhode Island. Environ Health Perspect 124(4):460–7. 

64.  Smargiassi A, et al. (2009) Variation of daily warm season mortality as a function of micro-
urban heat islands. J Epidemiol Community Heal 63(8):659–664. 

65.  García-Herrera R, Díaz J, Trigo RM, Luterbacher J, Fischer EM (2010) A Review of the European 
Summer Heat Wave of 2003. Crit Rev Environ Sci Technol 40(4):267–306. 

66.  Pauly D, Zeller D (2016) Catch reconstructions reveal that global marine fisheries catches are 
higher than reported and declining. Nat Commun 7:10244. 

67.  Pauly D, Zeller D (2015) Catch Reconstruction: concepts, methods and data sources. Online 
Publ Sea Around Us (www.seaaroundus.org), Univ Br Columbia. 

68.  Müller C, et al. (2017) Global gridded crop model evaluation: benchmarking, skills, deficiencies 
and implications. Geosci Model Dev 10(4):1403–1422. 

 


	Supplementary Material for “State-of-the-art global models underestimate impacts from climate extremes” by Schewe et al.
	Climate forcing data: Supplementary Figures 1 –3
	Model ensemble: Supplementary Table 1
	Water resources: Supplementary Figures 4 –7
	Agriculture: Supplementary Figures 8 – 9, Supplementary Table 2
	Terrestrial Ecosystems: Supplementary Figures 10 – 13
	Energy: Wind and solar power, Supplementary Figure 14
	Human health: Supplementary Table 3
	Marine Ecosystems: Supplementary Figures 15 – 19
	Methods: Shifted crop yield series, Supplementary Figures 20 – 22
	Time-shifts in wheat yields

	References


