Zeitaufgelöste Charakterisierung struktureller Änderungen von spezifisch modifizierter RNA Ribonukleinsäure (ribonucleic acid, RNA) wirkt bei der Proteinbiosynthese nicht nur als Informationsüberträger, sondern kann auch beispielsweise durch sogenannten Riboschalter (auch Riboswitches) regulatorische Funktionen übernehmen. Riboschalter sind komplett aus RNA aufgebaut und man kann sie sich als molekulare Schalter vorstellen, die die Genexpression kontrollieren. Konzeptionell besteht ein Riboswitch aus zwei Untereinheiten, dem Aptamer und der Expressionsplattform. Das Aptamer bindet, üblicherweise sehr spezifisch, kleine organische Moleküle, aber auch Ionen. Diese Ligandenbindung induziert Änderungen in der Struktur des Riboswitches, welche wiederum die Expressionsplattform beeinflussen. Je nach Riboswitch ermöglicht oder verhindert dies schließlich die Genexpression. Die vorliegende Doktorarbeit beschäftigt sich mit der Entwicklung und Etablierung von Methoden der optischen Spektroskopie zur Aufklärung von RNA-Dynamiken und -Strukturen im Allgemeinen und der Erforschung von Aptamerbindungsmechanismen im Besonderen. Eine der dazu verwendetet Methoden ist die FTIR-Spektroskopie. Hierfür wurden zunächst kritische Parameter wie verschiedenste Messeinstellungen oder die Probenpräparation ausgiebig an RNA-Modellsträngen getestet. Dabei war es möglich, eine kleine Spektrenbibliothek als internen Standard aufzubauen. Gleichzeitig konnte gezeigt werden, dass kleinere RNA-Oligonukleotide (< ca. 20 Nukleobasen) gut mittels FTIR-Methoden untersucht werden können. Anschließend wurde eine statische Bindungsstudie am adenosin- sowie am guanosinbindenden Aptamer vorgenommen. Die zweite hier vorgestellte Methode zur Untersuchung von RNA-Molekülen ist die Fluoreszenzspektroskopie. Im Gegensatz zur FTIR-Spektroskopie ist dazu allerdings eine Modifizierung der RNA durch ein Fluoreszenzlabel nötig. Deshalb beschäftigt sich der Hauptteil dieser Doktorarbeit mit der Charakterisierung und der Anwendung des quasi bifunktionellen RNA-Markers (auch RNA-Labels) Çmf. So wurden zunächst die photophysikalischen und photochemischen Eigenschaften des Markers untersucht. Dabei konnte gezeigt werden, dass Çmf sich als lokale Sonde eignet, da es empfindlich auf Änderungen der Mikroumgebung in Lösung reagiert. Durch direkten Vergleich der optischen Eigenschaften von Çmf mit den entsprechenden Eigenschaften des Spinlabels Çm war es möglich, den starken Fluoreszenzlöschungseffekt (sog. quenching) des Çm aufzuklären. So kann davon ausgegangen werden, dass die Fluoreszenz des Çm durch eine sehr schnelle interne Konversion (IC) in einen dunklen Dublettzustand (D1) gelöscht wird. Im nächsten Schritt wurde Çmf in RNA-Modellstränge eingebaut, um den Einfluss der RNA auf die Photochemie des Markers zu untersuchen. Dabei konnte gezeigt werden, dass sich dessen Fluoreszenzsignal abhängig von den direkten Nachbarbasen sowie abhängig vom Hybridisierungszustand signifikant ändert. Gleichzeitig konnte keine deutliche Veränderung der Stabilität der Modellstränge festgestellt werden. So konnte also nachgewiesen werden, dass sich Çmf sehr gut als lokale Sonde in RNA eignet. Im Speziellen wurde aus den Ergebnissen geschlossen, dass der Fluorophor für Ligandenbindungsstudien herangezogen werden kann. Deshalb wurde Çmf schließlich an mehreren verschiedenen Stellen in das neomycinbindende Aptamer (N1) eingebaut, um dessen Bindungskinetik zu untersuchen. Mittels Stopped-Flow-Messungen war es möglich, die Bindungsdynamik des Aptamers zu beobachten. Anhand dieser transienten Daten konnte ein Zweischrittbindungsmodell abgeleitet werden. Dabei bindet Neomycin zunächst unspezifisch an das weitgehend vorgeformte Aptamer. Anschließend kommt es durch die Ausbildung von Wasserstoffbrücken zu einer spezifischen Bindung des Liganden am Aptamer. Im dritten Teil dieser Arbeit geht es ebenfalls um die Entwicklung und Etablierung eines spektroskopischen Werkzeuges. Dabei stehen allerdings Rhodopsine im Mittelpunkt der Aufmerksamkeit. Hierbei handelt es sich um Membrantransportproteine, die nach optischer Anregung einen sehr schnellen Photozyklus mit mehreren Intermediaten durchlaufen. Es ist möglich, diese Intermediate dank transienter Absorptionsmessungen mit sehr guter zeitlicher und spektraler Auflösung zu beobachten. Allerdings besteht der Bedarf, diese Intermediate statisch zu präparieren, um sie näher charakterisieren und mit anderen Methoden, wie z.B. der Festkörper-NMR, vergleichen zu können. Ein spektroskopisches Werkzeug zum Präparieren von frühen Photointermediaten ist kryogenes Einfangen (sog. Cryotrapping) dieser Intermediate. Im Rahmen dieser Arbeit wurden das Cryotrapping und die anschließende statische UV/vis-Absorptionsspektroskopie der fixierten (getrappten) Zustände optimiert und an einer Reihe von Rhodopsinen (ChR2, GPR) demonstriert.