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Zusammenfassung

Die digitale Pathologie ist ein neues, aber stetig wachsendes, Feld in der Medizin. Die
kontinuierliche Entwicklung von verbesserten digitalen Scannern erlaubt heute das Ab-
scannen von kompletten Gewebeschnitten und Whole Slide Images gewinnen an Bedeu-
tung. Sie ermöglichen den Einsatz computergestützter Methoden. Ziel dieser Arbeit ist
die Methodenentwicklung zur Analyse von Whole Slide Images des klassischen Hodgkin
Lymphoms. Ein Datensatz von 35 Gewebeschnitten wurde bezüglich Zellpositionen und
Zellmorphologie graphentheoretisch ausgewertet.

Lymphknoten sind ein wichtiger Bestandteil der adaptiven Immunabwehr. Sie be-
sitzen eine feste Struktur, die es Immunzellen, wie zum Beispiel T-Lymphozyten, erlaubt
mit antigenpräsentierenden Zellen, den dendritischen Zellen und B-Lymphozyten, zu in-
teragieren.

Das Hodgkin-Lymphom, oder auch Morbus Hodgkin, ist eine Tumorerkrankung des
Lymphsystems, bei der die monoklonalen Tumorzellen in der Regel von B-Lymphozyten
im Vorläuferstadium abstammen. In einigen sehr seltenen Fällen stammen die Tu-
morzellen von T-Lymphozyten ab.

Etwas mehr als 9.000 Hodgkin-Lymphom-Fälle werden jährlich in den USA diagnos-
tiziert. Zwar ist die 5-Jahre-Überlebensrate für Hodgkin-Lymphome mit 85,3 % ver-
gleichsweise hoch, dennoch werden etwa 1.100 Todesfälle pro Jahr in den USA registri-
ert. Desweiteren ist das Risiko für Nachfolgeerkrankungen aufgrund von Chemo- und
Strahlentherapie stark erhöht.

Hodgkin-Lymphome lassen sich gemäß der Weltgesundheitsorganisation weiter un-
tergliedern. Die am häufigsten vorkommende Ausprägung ist das klassische Hodgkin-
Lymphom, welches wiederum in Subtypen unterteilt werden kann. Hier sind der Misch-
typ und die noduläre Sklerose zu nennen, welche den größten Anteil der klassischen
Hodgkin-Lymphomfälle darstellen. Auf mikroskopischer Ebene sind die Hodgkin-Reed-
Sternberg-Zellen (HRS-Zellen) typisch für das klassische Hodgkin-Lymphom. Hodgkin-
Zellen sind große, einkernige Zellen. Der Zellkern ist stark vergrößert, und weist eine
grobe Chromatinstruktur auf. Reed-Sternberg-Zellen besitzen ein vergleichbares Er-
scheinungsbild, haben aber zwei oder mehr Zellkerne. Immunhistologisch gibt es für
HRS-Zellen charakterisierende Marker, so sind HRS-Zellen positiv für den Aktivierungs-
marker CD30. Die Immunhistologie ist ein wichtiges Standbein der heutigen Pathologie
und wird routinemäßig zur Diagnose von Lymphomen eingesetzt.

Neben der konventionellen Mikroskopie, ermöglichen digitale Scanner das Digital-
isieren von ganzen Objektträgern (Whole Slide Image). Die digitale Pathologie gewinnt

IV



zunehmend an Bedeutung. Zum einen ermöglicht die Digitalisierung es, die Daten ein-
facher und platzsparender aufzubewahren, zum anderen bieten die Whole Slide Images
die Möglichkeit für eine computergestützte Auswertung. Ein weiterer Vorteil ist für
die Telepathologie zu erkennen. Dieser Begriff bezeichnet die Vorgänge der Pathologie,
welche über Fernkommunikationswege abgewickelt werden, wie z.B. Telefon oder Inter-
net. Digitale Bilder können schnell über das Netzwerk versendet werden und ermöglichen
so Ferndiagnosen oder die Konsultation weiterer Fachärzte bei komplizierten Krankheits-
bildern.

Trotz Fortschritten computergestützter Methoden, ist die digitale Pathologie erst
in den Anfängen. Whole Slide Images werden so gut wie nicht in der Routinediagnostik
eingesetzt, der Einsatz beschränkt sich hauptsächlich auf die Forschung und Lehre. Letz-
tere kann zum Beispiel durch den Einsatz von virtuellen Mikroskopen verbessert werden
und den Studenten so Krankheitsbilder veranschaulicht werden, ohne die Verwendung
der physischen Präparate.

Mit der Digitalisierung der Bilder gehen neue Anforderungen an die Bilddaten und die
computergestützten Analysemethoden einher. Hochauflösende digitale Aufnahmen, die
qualitativ nah an die manuelle Betrachtung der Bilder unterm Lichtmikroskop heranrei-
chen, besitzen eine entsprechende Datengröße. Ein großer Kritikpunkt an digitalisierten
histologischen Bildern ist die Tatsache, dass das Bild nur in einer Fokusebene betrachtet
werden kann. Das ist gegenüber der konventionellen Mikroskopie ein Nachteil. Hier
können Pathologen während der Betrachtung nachjustieren und so gegebenenfalls zu-
sätzliche Details sichtbar machen. Die Entwicklung moderner digitaler Scanner könnte
diese Nachteile allerdings in der näheren Zukunft beseitigen.

Für die herkömliche Diagnostik bringt die Digitalisierung bisher nur wenige Vorteile.
Die effizientere Lagerung der Bilder und die Möglichkeit Ferndiagnosen zu stellen wiegen
die zur Zeit noch vorhandenen Nachteile und die zusätzlichen Kosten sowie die damit
verbundene Umstellung für die Routineprozesse noch nicht vollständig auf.

Ein großer Vorteil von digitalisierten Gewebeschnitten bietet sich bei der compu-
tergestützten Analyse. Automatisierte Bildanalyseverfahren wie Zellerkennung können
Pathologen bei der Diagnose unterstützen, indem sie umfassende Statistiken zur Anzahl
und Verteilung von immungefärbten Zellen bereitstellen. Es ist außerdem möglich die
Diagnose zu beschleunigen, zum Beispiel durch die automatisierte Auswahl von Gewe-
beausschnitten und vereinfachter Handhabung, beispielsweise müssen Objektträger nicht
gewechselt und transportiert werden.

Ziel meiner Arbeit ist die Methodenentwicklung zur quantitativen, systematischen
Analyse von Whole Slide Images für klassische Hodgkinlymphomgewebeschnitte. Die
immunohistologischen Bilder wurden hierfür vom Dr. Senckenbergisches Institut für
Pathologie des Universitätsklinikums Frankfurt bereit gestellt. Die betrachteten Gewe-
beschnitte sind gegen CD30 immungefärbt, einem Membranrezeptor, welcher in HRS-
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Zellen und aktivierten Lymphozyten exprimiert wird. Dazu wurden die Gewebeschnitte
zunächst mit Hämatoxylin gefärbt, welches an die negativ geladenen Moleküle der Zelle
bindet und sich daher hauptächlich im Zellkern ansammelt, da sich hier das negativ
geladene Grundgerüst der DNS befindet. Der zweite Farbstoff, Fuchsin, ist an einen
Antikörper gekoppelt, der spezifisch an CD30 bindet. Die Gewebeschnitte wurden mit
einem Aperio ScanScope slide scanner digitalisiert und liegen mit einer hohen Auflösung
von 0,25 µm pro Pixel vor. Bei den vorliegenden Gewebeschnittgrößen ergeben sich Bilder
mit bis zu 90.000 x 90.000 Pixeln. Unkomprimiert ergeben sich damit Einzelbilder von
einer Größe bis zu 30 GB.

Der untersuchte Bilddatensatz umfasst 35 Bilder von Lymphknotengewebeschnitten
der drei Krankheitsbilder: Gemischtzelliges klassisches Hodgkinlymphom, noduläres klas-
sisches Hodgkinlymphom und Lymphadenitis. Letztere ist die Kontrollgruppe, die CD30-
positiven Zellen sind hier keine malignen Zellen, sondern aktivierte Lymphozyten, welche
aufgrund der Entzündungsantwort vom Lymphknoten gegen Krankheitskeime bei einer
viralen oder bakteriellen Infektion gebildet werden.

Für den Umgang mit dem Dateiformat und die Auswertung der Bilder wird die
eigens hierfür implementierte Software Impro verwendet. Einige Teile der Bildverar-
beitungspipeline wurden neu implementiert, so zum Beispiel die Bestimmung einer Re-
gion of Interest und die Dekonvolution der Farbkanäle. Für weitere Funktionen wie
das Festsetzen eines Schwellenwertes für die Segmentierung und die Berechnung von
Morphologiedeskriptoren sind etablierte Bilderkennungssoftware und -bibliotheken wie
CellProfiler und Java Advanced Imaging eingebunden.

Für die Bildverarbeitung werden die Bilder zunächst gekachtelt und in Standard TIF-
Dateien konvertiert. Anschließend wird die Region of Interest bestimmt. Es werden alle
Kacheln bestimmt, die eine größere Menge an Gewebe enthalten. Dazu wird ein Min-
imale Distanz zum Mittelwert-basiertes Clusterverfahren verwendet. Jedes Pixel wird
entweder der Klasse Gewebe oder der Klasse Hintergrund zugeordnet und alle Kacheln,
die nur einen sehr kleinen Prozentsatz an Gewebepixeln enthalten werden für die nach-
folgende Objekterkennung verworfen. Anschließend wird durch eine Dekonvolution der
Farbkanäle die relative Menge an Hämatoxylin und Fuchsin bestimmt. Für die Inten-
sität an Fuchsin wird ein Schwellenwert gesetzt, um das Bild in CD30-Pixel und Hin-
tergrundpixel zu segmentieren. Nachfolgend werden benachbarte CD30-Pixel zu poten-
tiellen CD30-positiven Objekten zusammengefasst, welche anschließend einen Größenfil-
ter durchlaufen, um kleine Zellfragmente und Färberückstände zu eliminieren. Für die
Segmentierung und das Erfassen der Zellobjekte kommt in unserer Bildverarbeitungs-
Pipeline CellProfiler zum Einsatz. Für alle CD30-positiven Zellobjekte werden neben
der globalen Position im Whole Slide Image weitere Morphologiedeskriptoren berechnet,
wie Fläche, Feret-Durchmesser, Exzentrität und Solidität.

Um die Qualität der automatischen Detektion von CD30-Zellen beurteilen zu können,
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gibt Impro die Möglichkeit Zellpositionen manuell zu annotieren. Dies wurde für einen
zufällig gezogenen Satz an Bildkacheln für sechs Whole Slide Images durchgeführt. Die
Methode zeigt mit 84 % eine hohe Präzision. Das heißt, ein großer Prozentsatz der sich im
Bild befindenden CD30-Zellen wurde erkannt. Die durchschnittlich erzielte Sensitivität
von 95 % zeigt zudem, dass es sich bei den von der Pipeline vorgeschlagenen Objekten
mit hoher Genauigkeit wirklich um CD30-positive Zellen handelt.

Die Anzahl der CD30-positiven Zellen in den Gewebeschnitten variieren von Fall
zu Fall. Es konnte allerdings gezeigt werden, dass in Lymphadenitisfällen im Schnitt
deutlich weniger CD30-positive Zellen präsent sind als in klassisches Hodgkinlymphom.
Während hier im Schnitt nur rund 3.000 Zellen gefunden wurden, lag der Durchschnitt
für das Mischtyp klassisches Hodgkinlymphom bei rund 19.000 CD30-positiven Zellen.
Für Subtypen vom klassischen Hodgkinlymphom wurden Gewebeschnitte ausgewertet,
die mehr als 50.000 Zellen enthielten. Von den Zellpositionen ableitend, lässt sich die
Zelldichteverteilung direkt auf den Gewebeschnitten als Heatmap darstellen. Während
die CD30-positiven Zellen in Lymphadenitisfällen relativ gleichmäßig verteilt sind, bilden
diese in klassischen Hodgkinlymphom-Fällen Zellcluster höherer Dichte. Gerade beim
nodulären klassischen Hodgkinlymphom ist die Ballung der CD30-positiven Zellen am
größten und tritt auch bei Gewebeschnitten auf, die nur eine geringe Anzahl CD30-
positiver Zellen aufweisen.

Die berechneten Morphologiedeskriptoren bieten die Möglichkeit die Gewebeschnitte
und den Krankheitsverlauf näher zu beschreiben. Zudem sind bisher Größe und Erschei-
nungsbild der HRS-Zellen hauptsächlich anhand manuell ausgewählter Zellen bestimmt
worden. Im Gegensatz dazu, beschreibt der hier vorgestellte Ansatz die Morphologie von
einem großem Datensatz und für ganze Gewebeschnitte. Hierbei ist zu beachten, dass
die automatisierte Zellerkennung weniger selektiv als die manuelle Auswahl von HRS-
Zellen ist. Die Bildverarbeitungspipeline unterscheidet nicht zwischen HRS-Zellen und
aktivierten Lymphozyten, die ebenfalls CD30-positiv sind. Die Zellprofile werden zwar
nach Größe gefiltert, jedoch nur mit dem Ziel sehr kleine Zellfragmente zu entfernen. Für
eine Unterscheidung der CD30-positiven Zellen sind komplexere Deskriptoren nötig, wie
zum Beispiel Anzahl, Form und Struktur der Zellkerne. Ein Maß für die Ausdehnung der
Zellen ist der maximale Feret-Durchmesser. Bei CD30-Zellen im klassischen Hodgkin-
lymphom liegt dieser im Durchschnitt bei 20 µm und ist somit deutlich größer als die
durchschnittlich gemessenen 15 µm in Lymphadenitis.

Neben der statistischen Auswertung der Zellerkennung ist ein Ziel der Arbeit die Mo-
dellierung des Lymphoms als komplexes System. Systembiologische Ansätze erlauben es,
Zellen und deren Beziehungen zueinander darzustellen. Es wurde ein graphentheoreti-
scher Ansatz gewählt, um die CD30-positiven Zellen und ihre räumliche Nachbarschaft zu
modellieren. Die entsprechenden CD30-Zellgraphen sind so definiert, dass jeder Knoten
im Graphen einer Zelle entspricht, und Kanten räumliche Nähe widerspiegeln. In CD30-
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Zellgraphen von klassischen Hodgkinlymphom-Gewebeschnitten ist der durchschnittliche
Knotengrad gegenüber den von Lymphadenitis-Bildern stark erhöht. Das heißt, dass
hier die Mikroumgebung stärker mit CD30-positiven Zellen durchsetzt ist. Auffallend im
Mischtyp klassischen Hodgkinlymphom war die hohe Varianz bei den durchschnittlich
beobachteten Knotengraden. In diesen Gewebeschnitten sind teilweise sehr hohe Knoten-
grade zu finden, es gibt aber auch Fälle, in denen nur wenige CD30-positive Zellen in der
Mikroumgebung vorkommen. Mischtyp klassisches Hodgkinlymphom ist also sehr vari-
abel in Bezug auf die Anzahl und Verteilung von CD30-positiven Zellen im Lymphknoten.
Neben den direkten Unterschieden zwischen den drei Diagnosen zeigt der Vergleich mit
Zufallsgraphen, dass die beobachteten Knotengradverteilungen nicht für eine zufällige
Verteilung der Zellen im Gewebeschnitt sprechen. Die gemessenen Knotengrade unter-
scheiden sich stark von einer theoretischen Poissonverteilung, welche bei einer zufälligen
Verteilung der CD30-positiven Zellen zu erwarten wäre. Die Knotengrade sind, verglichen
mit einem zufallsverteilten geometrischen Graphen, deutlich erhöht. Dies spricht für ein
Clustern der CD30-positiven Zellen im Lymphknotengewebe.

Um das Lymphom und das Zusammenwirken mit der Lymphknotenstruktur als Gan-
zes zu verstehen, sind nicht nur die einzelnen CD30-positiven Zellen und ihre direkten
Nachbarn wichtig, sondern auch die Verteilung, also zum Beispiel der Zusammenschluss
in größere Zellgruppen. Die Untersuchungen der Zelldichte zeigen bereits, dass es in
einigen Bereichen des Lymphknotens Ballungsgebiete mit besonders vielen CD30 posi-
tiven Zellen gibt. Graphentheoretisch werden diese Gruppen von in Beziehung stehen-
den Objekten auch als Communities bezeichnet. Cliquen-basierte Algorithmen erkennen
Communities in Zellgraphen aufgrund der hohen Konnektivität ihrer Knoten. Die so
erzielte Untergliederung der Zellen kann als Overlay über den Gewebeschnitt gelegt wer-
den. Eigenschaften und Verteilung der Communities können hinzugenommen werden,
um klassisches Hodgkinlymphom-Gewebeschnitte näher zu charakterisieren.

Diese Arbeit zeigt, dass die Auswertung von Whole Slide Image und die Nutzung
der daraus gewonnen zusätzlichen Informationen unterstützend zur Verbesserung der
Diagnose möglich ist. Eine speziell angepasste Pipeline wurde in Impro erstellt, um
CD30-positive Zellen zu erfassen. Es wurden 35 Whole Slide Images ausgewertet und
eine Zellerkennung auf höchster Auflösungsstufe durchgeführt. Die mehr als 400.000
CD30-positiven Zellobjekte wurden morphologisch beschrieben, und zusammen mit ihrer
Position im Gewebeschnitt ist die Betrachtung wichtiger Eigenschaften des klassischen
Hodgkinlymphoms, beispielsweise die Verteilung der malignen Zellen, realisierbar. Den-
noch ist die hier vorgestellte Implementierung eher als Prototyp zu verstehen. Für den
direkten Einsatz im pathologischen Alltag müsste die Bildverarbeitungspipeline effizien-
ter gestaltet werden, sodass die Ergebnisse in wenigen Minuten vorliegen.

Die Zellgraphen beschränken sich bisher auf CD30-positive Zellen. Die Methode
kann erweitert werden, um das komplexe Zusammenspiel in der Tumormikroumgebung
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zu modellieren. Weitere Zelltypen, wie zum Beispiel Lymphozyten, können in Zukunft
integriert werden und Wechselwirkungen zwischen Tumor und Zellen der Immunabwehr
untersucht werden. Das Konzept der Zellgraphen ist allgemein anwendbar und kann zur
Darstellung und Modellierung anderer Krankheitsbilder übertragen werden.
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Abstract

Digital pathology becomes more and more important nowadays. The field is grow-
ing, as continuous development of modern digital scanner allows the scanning of whole
slides in high resolution. The whole slide images enable the application of computer-
aided methods to support pathologists with additional quantitative information. This
work aims to develop methods for the analysis of whole slide images. 35 tissue sections
of classical Hodgkin lymphoma were analyzed regarding CD30 cell positions and their
morphology using graph-theoretical methods.

Lymph nodes are small, bean-shaped structures and a major part of the lymphatic
system of mammals. The human body contains about 500-700 lymph nodes of different
size. Foreign particles are transported via the lymph fluid to be filtered and recognized
efficiently in the lymph nodes. This enables a quick immune response in case of an
infection.

Hodgkin lymphoma (HL), also called Morbus Hodgkin, is a malignant tumor of the
lymphatic system. In general, the malignant cells in HL derive from B-cell pre-cursor
cells of the germinal center. In some exceptional cases, they have been found to originate
from T-Cells.

A little more than 9,000 new cases are diagnosed annually as Hodgkin lymphoma in
the United States of America. Despite the high 5-years survival rate of 85.3 %, HL is
still a severe disease and causes the death of about 1,100 people per year in the USA.
Additionally, the treatment with chemo- and radiotherapy can cause subsequent diseases.

According the World Health Organisation (WHO), HL can be differentiated in sub-
groups. The most frequent one is the classical Hodgkin lymphoma (cHL). Cases diagnosed
as cHL can be further characterized. The two most common types of cHL are nodular
sclerosis cHL and mixed cellularity cHL.

Histopathologically, Hodgkin lymphoma is characterized by the occurrence of Hodgkin
and Reed-Sternberg (HRS) cells. In microscopic images, these cells appear enlarged, and
have one or more large cell nuclei with a coarse-grained chromatin structure. HRS cells
are known to be positive for the activation marker CD30, and thus can be highlighted by
immunostaining. Immunohistological staining is a commonly used method in pathology
and is, in combination with microscopy, routinely used for diagnosis of lymphoma.

Beside traditional microscopy, digital scanners nowadays allow the digitization of
whole object slides to whole slide images (WSIs). The storage efficiency and the usability
in telepathology are the most distinguished advantages of WSIs. Nevertheless, WSIs are
currently not used in routine pathology. The effort and costs to change the established
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routine processes in pathology and to integrate digital object slides are still high.
Computer-aided analysis of tissue sections may lead to additional, more sophisticated,

information to describe the diseases’ progress. Statistical data gained from the whole
tissue section can support pathologists to characterize disease patterns in more detail
and may assist the diagnosis.

The aim of this work is the exemplary analysis of WSIs of tissue sections diagnosed as
cHL. The immunohistological images were provided by the Dr. Senckenberg Institute of
Pathology at the Goethe-University Frankfurt. The examined images are immunostained
against CD30. CD30 is a membrane receptor, which is expressed by HRS cells, and
therefore labels the malignant cells in cHL. A second staining, hematoxylin, is applied
to highlight the nuclei of all cells in the tissue section. The WSIs were captured with an
Aperio ScanScope slide scanner at a high resolution of 0.25 µm per pixel. The size of the
tissue sections resulted in images with up to 90,000 x 90,000 pixels. Without compression
the files can reach sizes of 30 GB.

The pre-selected image set consists of 35 WSIs with tissue sections diagnosed as
mixed cellularity cHL, nodular sclerosis cHL and lymphadenitis. The latter is examined
as a control group. Here, the CD30-positive cells are not tumor cells, but activated
lymphocytes. They are part of an immune response against a viral or bacterial infection.

To deal with the non-standard SVS file format of Aperio and for the analysis of the
images, we implemented an in-house software called Impro. The software is written in
Java. The required image processing methods were implemented from scratch. Examples
are the detection of a region of interest (ROI) and the color deconvolution to separate
the stains. Additional methods, like the thresholding for the image segmentation and the
computation of morphological cell descriptors, were integrated using established imaging
software and libraries like CellProfiler and the Java Advanced Imaging API (JAI).

The cell detection pipeline identified more than 400,000 cells in the 35 WSIs. The
number of CD30-positive cells varied among the 35 cases. Overall, the cell count is lowest
in lymphadenitis cases. While lymphadenitis tissue sections had on average 3,000 CD30-
positive cells, in mixed cellularity cHL tissue sections, the average count was 19,000.
A few cHL cases existed for which the number of HRS cells exceeded 50,000. The cell
density can be displayed in Impro as a heat map overlay on top of the tissue section.
In lymphadenitis, the CD30-positive cells were distributed evenly throughout the tissue
section. In contrast, the cells formed dense groups in cHL cases. Especially in nodular
sclerosis cHL, the CD30-positive cells formed dense clusters, even if the total number of
cells in the tissue section was low.

For each CD30-positive cell, the imaging pipeline computed morphological descriptors
like eccentricity, solidity and area size. The descriptors allow a more detailed view of
the disease pattern. Up to now, form and size of HRS cells have been only described
on single, manually selected HRS cells. The presented approach allows a statistical view
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on the cell shape. It is noteworthy that the cell detection pipeline does not differentiate
between HRS cells and CD30-positive cells in general. The Feret diameter describes the
extent of an object. CD30-positive cells in cHL cases have an average Feret diameter of
20 µm. The CD30-positive cell population in lymphadenitis has a diameter of 15 µm on
average.

Beside the statistical analysis of single cells, the aim of this work is to model the lym-
phoma as a complex system. We applied system biology methods to depict the relations
of neighboring cells. The cell positions are used to build up cell graphs. Neighborhood
relations are modeled according to the unit disk graph formalism. Typical graph prop-
erties can be computed to characterize the different tissue sections. The cHL cases show
an increased average vertex degree compared to lymphadenitis, meaning that the mi-
croenvironment consists of more CD30-positive cells. In mixed cellularity cHL, we also
see a high variability for the vertex degree distributions. Compared to random geomet-
ric graphs, the analyzed cell graphs have an increased average vertex degree. Even in
lymphadenitis, where the CD30-positive cells are more evenly distributed than in cHL
cases, the average degree is higher than one would expect from randomly distributed
cells. Lymphadenitis is a controlled immune response and may be limited to the parts
of the lymph node where the foreign particles were recognized.

Many graphs exhibit a hierarchical structure, in which highly connected vertex groups
exist. In graph theory, these groups with vertices sharing a high number of relations,
are called communities. Clique-based algorithms recognize communities in cell graphs.
The partitioning in cell groups can be displayed as overlay. The number and the size of
communities can be used to characterize cHL tissue sections.

The presented results illustrate that the analysis of WSIs and the additional infor-
mation gained from the image processing pipeline can be used to support the diagnosis
of lymphoma. 35 WSIs in total were examined, and a cell detection was performed on
the image layer with highest resolution. More than 400,000 CD30-positive cell objects
were morphologically described. In combination with their position in the tissue section,
important features of disease patterns, e.g. the distribution of malignant cells, becomes
possible. Nevertheless, the proposed imaging pipeline is more or less a prototype. The
application in routine pathology requires a response in a few minutes to be efficient.

Currently, the proposed cell graphs only consist of CD30-positive cells. The method
can be extended in the future and other cell types, e.g. cells that are part of an immune
response, can be integrated. This will allow to analyze the interaction of the tumor cells
and their microenvironment. The cell graph approach can be generalized and allows the
modeling of other disease patterns.
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Chapter 1

Motivation

In the United States about 185,000 people were diagnosed with Hodgkin lymphoma in

2011 and currently, more than 9,000 new cases are estimated per year. The probability

to be diagnosed with Hodgkin lymphoma (HL) for a single person during the life time is

0.2 %. The 5-year survival rates are, compared to other cancer types, high. After being

diagnosed with HL 85.3 % of the patients survive five years or more. Nevertheless 1,100

people die per year in the United States, because of HL∗. HL is still a severe disease.

Digital pathology [2] is an emerging field that evolved rapidly over the last years.

Improved optics allow a detailed visual exploration of diseased tissues and novel bio-

markers raise new possibilities for diagnosis. Since digital cameras are used to acquire

biopsy images, tissue sections can be digitally annotated by pathologists. The image

slides are also archived and shared among pathologists, allowing for online consultation

and revision by several experts, the process is also called telepathology [3]. Today, whole

slide images (WSIs) are routinely used for research purposes.

A lot of WSIs are produced during the standard diagnose procedure, but up to my

knowledge this is the first attempt to analyze complete WSIs of HL using image processing

approaches. The size of an uncompressed single image is up to 30 GB and numbers of

malignant cells differ from a few hundred up to 50,000. A computer-aided approach is

necessary to handle the huge data input.

∗[1] provides detailed statistics of the occurrence of HL and cancer in general in the US
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Computer-aided methods for diagnostics enter more and more the field of digital

pathology. For frequent cancer diseases like breast cancer or prostate cancer many ap-

proaches were developed to segment and classify tissue samples into healthy tissue and

cancerous areas [4] [5]. In final decision making for diagnosis and treatment the expert

knowledge of pathologists is indispensable, but image processing can provide helpful tools

to improve the efficiency. Especially simple, but time consuming tasks can be worked off

by computers. As an example only 20 % of the 1 billion breast biopsies taken annually

in the United States are identified as cancerous. Thus much time is spend to categorize

benign tissue samples. Counting cell nuclei and the quantification of the diseased tissue

are used to determine the grade of cancer, which plays an important role for the prog-

nosis of the outcome of the disease. Both can be measured by image segmentation and

classification.

In this cooperative project we aim to get a deeper understanding of the distribution

of Hodgkin and Reed-Sternberg cells in the lymph node. Therefore we analyze WSIs of

tissue sections to get objective measurements of cell distances, densities and cell shape

descriptors of patients diagnosed with classical Hodgkin lymphoma (cHL).

Our exhaustive image analysis aims to understand the development of HL. The

spreading of Hodgkin and Reed-Sternberg cells within the lymph node and the processes

which lead to different cell distributions in the different subtypes of cHL are not yet com-

pletely understood. This also includes interactions between Hodgkin and Reed-Sternberg

cells and their environment, including cells of the immune system. The complex, hete-

rogeneous micro-environment and its role for the development of the disease still needs

further investigation.

The first aim of this study was the creation of an imaging pipeline to handle and

process immuno-stained WSIs of cHL. We wanted to extract crucial information like po-

sitions and shape descriptors of the malignant cells. Therefore we created an automated

imaging pipeline adapted to the needs of this project. First of all the pipeline should be

able to handle big data so that we can employ it to sets of WSIs to get statistical relevant

results. This included the re-implementation of existing methods to deal with the image

format, to reduce the input data and to run on a computer cluster. Next, we wanted to
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recognize malignant cells, which is why we performed an object detection. The extracted

data should be accessible quickly for further analysis. Thus all information gathered

from the imaging pipeline were stored into a database.

The second aim was the statistical analysis of the collected data. As an efficient data

structure which reflects the local neighborhood of the cells we defined Cell Graphs [6].

Graph theoretical methods were used to measure typical properties of the distribution of

malignant cells.

Furthermore we were interested in getting more abstract information then single cell

positions and cell-cell communication. The Cell Graphs presented in this work, had

typical sizes of 2,000-12,000 vertices and 50,000-2,000,000 edges. They allowed a detailed

exploration of the neighborhood of detected single cells. More general structures like

formation of cell clusters and their location in the lymph node or their co-location to

specific lymph node structures may also lead to new insides for the diagnosis and the

subsequent treatment of cHL. We applied the concept of community structure to Cell

Graphs to find meaningful cell groups. Communities were used to describe and measure

cHL sub-types on a higher abstraction level. This enabled an analysis of cell clustering

and the formation of typical cell pattern within the lymph nodes.
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Chapter 2

Introduction

2.1 Lymph Node: Structure and Function

Lymph nodes are small, oval structures of the lymphatic system. Their size varies from

few millimeters up to two centimeters. The human body contains about 500 - 700 lymph

nodes, located particularly in the neck, breast and abdomen. Lymph nodes are connected

via lymph vessels. Lymph circulates through the network of lymph nodes and can be

seen as a second transportation system besides blood circulation. Foreign bodies, which

have infiltrated the body, are gathered by the lymph fluid and are directed into nearby

lymph nodes. Here, they are filtered and initiate the immune response. Thus, lymph

nodes are vital elements of the immune system.

Lymph nodes have a complex structure. Figure 2.1 schematically illustrates the

different components. One or multiple lobules separate the lymph node into multiple sub

units, one lobule for each afferent lymphatic vessel. The lymph enters through the afferent

lymphatic vessel and flows into the subcapsular sinus. It passes the lobules through lateral

transverse sinuses and exits the lymph node through medullary sinuses into the efferent

lymphatic vessel. During the passage, the lymph is filtered by two processes [7]. The

first barrier for potentially harmful particles is located in the subcapsular sinus. Various

cells of the innate immune system form a network and passing cells are recognized by

different combinations of pattern recognition receptors. Harmless molecules or cells can

pass and reenter the blood stream after surpassing multiple lymph nodes, while possibly
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Figure 2.1: Lymph node structure Lymph nodes are bean-like secondary lymphatic organs, located
throughout the human body. The general structure of a single lymph node is depicted. Lymph flows
from afferent lymphatic vessel to the efferent vessel and foreign particles are recognized and filtered
during its passage. The direction of flow is indicated by red arrows. Within the lymph node certain
sub-structures are present. The B and T cell zones play an important role for the immune response.

dangerous objects are held back. Second, a selective system allows only certain cells to

enter the lymph node parenchyma. Only small molecules, less then 70 kilodaltons of size

are allowed to enter the conduit system. Cells on the other side can only penetrate into

the parenchyma if specific receptors are present on their surface.

Lobules, the functional sub units of the lymph node, also have a clearly defined sub-

structure. The area next to the afferent lymphatic vessel is called superficial cortex, or

B cell zone. It includes one or multiple spheroid follicles and the surrounding tissue, the

interfollicular cortex. The paracortex (or: deep cortex, T cell zone) is located adjacent

to the superficial cortex. It encloses the deep cortical units (DCUs), which consists of

the central DCU and the peripheral DCUs. The modular composition of each lobule

supports the processing of different kinds of signals, i.e. the communication between

homing T- and B-cells and their corresponding antigene presenting cells. Therefore, the

lymph node structure has direct impact to the bodies immune response.

B cells, as well as T cells undergo a maturing process, before they can trigger an
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immune response. B cells can differentiate into plasma cells or memory cells. The

activation of B cells requires two signals. First, the naive B cell needs to bind to its

corresponding antigen. Second, the B cell passes the T cell zone and has to be activated

by a corresponding T helper cell, which in turn, also has been activated by the same

antigen. The activation of the T cells also takes place in the lymph node. Dendritic

cells present foreign antigens and cause the maturing of the T cells. Both, B cells and

regulatory T cells play a crucial role in the anti cancer cell immune response and thus,

influence the progression and the proliferation of diseases like Hodgkin lymphoma.

2.2 Hodgkin Lymphoma

Hodgkin lymphoma is a cancerous malignancy of the lymph node. The name originates

from Thomas Hodgkin, who described the disease in the 1832 published article ’On

Some Morbid Appearances of the Absorbent Glands and Spleen.’ [8]. About 11 %

of all malignant lymphomas are HL. Nowadays the disease is categorized into multiple

subgroups. The WHO classification differentiates Hodgkin lymphoma into two main

groups. Classical Hodgkin lymphoma (cHL), the most common type with about 95 %

of all cases and the less frequent nodular lymphocyte predominant type. In addition

classical Hodgkin lymphoma can be further subdivided into the following four types.

Nodular sclerosis type (NS cHL), where at least one nodule formed by sclerotic bands is

present which contains malignant tissue. It is the most common type with 60-70 % of all

cHL cases. With roughly 25 %, mixed cellularity cHL (MC cHL) is the second frequent

type of cHL. The two other subtypes are rare. They are called lymphocyte-depleted and

lymphocyte-rich cHL.

The occurence of the different subtypes correlates with the socioeconomic status

and the ethnic background of patients [9]. E.g. for the US, studies show an increased

incidence of NS cHL in young adults positively correlated to the socioeconomic status.

On the other hand mixed cellularity and lymphocyte depleted subtypes are known to be

predominant in developing regions or in general for people with low socioeconomic status.

They are also more often associated with Epstein bar virus. There is evidence that HL
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might at least partly be caused by a rare effect during the very common Epstein bar virus

infection. A two time period study in Boston found a highly increased risk for HL for

people who went to the same school for at least one year with other diagnosed HL cases.

But the results couldn’t be confirmed by other studies. A genetic predisposition for HL

might also be possible. First-degree relatives of HL patients show a threefold increased

risk for the disease. High concordance have been found for HL in monozygotic twins,

while no cases of concordance has been found for heterozygotic twins. Those findings are

still controversial, as the number of test cases were rather low and the selection process

of the participants (public advertising in the medias) might have caused bias.

On cellular level, Hodgkin lymphoma has some unusual characteristics compared to

other tumors. The malignant cells, also called Hodgkin and Reed-Sternberg (HRS) cells,

originate almost always from B-cell pre-cursor cells of the germinal center, but in rare

cases they originate from T cells. HRS cells make up about 1 % of the tumor tissue.

The majority of the tumor micro environment is build up by reactive cells of the immune

system, including lymphocytes, macrophages, eosinophiles, mast cells, plasma cells, and

stromal cells. In consequence no solid tumor is present, but an inflammatory hetero-

geneous micro-environment. HRS cells actively form their surrounding environment via

cytokines and chemokines [10].

2.3 State of the Art

The two main subjects of my thesis are cell detection and the subsequent graph-based

analysis of the data. The cell detection part includes multiple steps, beginning with

the conversion of the image format, image (pre-) processing, thresholding and object

detection. The analysis describes the creation of graphs using geometric properties,

the calculation of general graph properties like node degree, or cluster coefficient and

advanced properties, e.g. community structures.

Both fields, image processing and graph analysis developed over years. Multiple

methods and many different approaches exist. Here, I give a short overview of the

current state to illustrate the context of our work and its implementation.
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Figure 2.2: Medicinal image sources Imaging procedures that are commonly used in medical diag-
nosis and research. The methods differ in resolution and their applications. The resolution capability
increases from left to right (scale does not reflect real data). Typical, but not exclusive, applications are
depicted.

An exemplary list of image sources, which are important in medical research and

diagnosis is given in Figure 2.2.

The resolution and the resulting level of detail of the images differ for the proposed

methods. X-ray for general body structures like the skeleton. Ultra sound, magnetic reso-

nance imaging/tomography (MRI/MRT), computer tomography (CT), positron emission

tomography (PET), can be used to display inner organs, parts of organs, or tumor metas-

tasis. Conventional light microscopy enables the exploration of tissue on the cellular level.

An overview of the imaging related to cancer is given in [11].

Conventional light microscopy (CLM) is broadly used in primary diagnosis and is

routinely used in pathology. Charge-coupled device (CCD) based digital cameras rapidly

developed over the last decades and digital imaging became more and more important.

Yet, whole slide images (WSI) are rarely used in diagnostic work-flows. Digitizing tis-

sue section for diagnostics needs a costly computer infrastructure. It also requires to

automate the whole image retrieval process to avoid additional delays during the diag-
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nosis. Some studies targeting the inclusion of digital imaging into the standard routines

exist. [12] and [13] give an overview of the perspectives of digital imaging in diagnostic

work-flows. Some feasibility studies have been published to validate the application of

WSIs in diagnostics pointing out that diagnosis based on WSIs yield comparable good

results as CLM [14] [15]. Only few discrepancies were observed, only a few of which had

prognostic impact [15] [16]. Nevertheless, single cases have been reported where image

quality, e.g. the color rendering and false auto focus, are responsible for wrong diagnosis.

WSIs have been tested for primary diagnostics for gynecological pathology [17], breast

pathology [18], and teledermatopathology [19]. [20] notes, that even though there are

studies examining the assignment of WSIs in routine diagnostics, none of them is based

on a sufficient sample size to provide a statistically significant evaluation of the use of

WSIs in routine diagnostics. The College of American Pathologists Pathology and Labo-

ratory Quality Center reviewed various publications and provides a general guideline for

validation of WSIs for diagnostic purpose in [21]. Currently, WSIs are most prominently

used in research and teaching. WSIs can be examined using virtual microscopes [22] [23]

[24]. This allows to access the tissue slides from different locations, as it is needed in

telepathology [25]. Students can be trained by examining WSIs and tissue samples can

be presented to teach the features of a disease. Virtual microscopes simplify the naviga-

tion through tissue sections, allow the pathologist to label the images and overlays can

visualize additional information like patient data. For further information about digital

pathology in general I here refer to three reviews: [2], [26], and [27].

For image processing, that is pre-processing (e.g. color deconvolution, definition of a

region of interest, and normalization), pixel separation, and labeling of the images, many

algorithms exist. An exhaustive overview of image processing would go beyond the scope

of this work, therefore I refer to [28], [29], and [30] for further reading to get an overview

of image processing in general. Here, I will only point out recent studies closely related

to my thesis. This includes image processing of histological images and especially WSIs,

cancer diseases and cell detection including morphological descriptors.

Two crucial steps in object detection in histopathological images are color deconvo-

lution (also called color unmixing or color decomposition) [31] [32] and normalization.
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Color deconvolution is needed to convert the red, green, and blue values of a pixel into the

corresponding staining vector. A commonly used method is matrix inversion to transform

the colors into a new color space, where the major axes represent the staining dyes. Non

Negative Matrix Factorization has been applied as an unsupervised color decomposition

approach in [33]. In this work the two dyes hematoxylin and DAB were separated. An

evaluation of the usage of Non Negative Matrix Factorization and Non Negative Least

Squares to perform a color deconvolution has been made in [32]. The proposed method

is able to separate more than three different stains and can be applied to whole slide

images.

A fast method to gather information from an image is a quantitative pixel analysis.

Applied to histological images we can measure the amount of staining for the whole image

or within sub-areas of the imaged tissue section. A comparison between the computer-

aided quantification of immunohistochemical staining and the manual pathologist visual

scoring has been made in [34]. The authors have found a high correlation between the

manual annotation and the results from the digital image analysis. But in addition they

also report the need of further investigations to handle artifacts like tissue folds and the

presence of admixed tissue elements. The image analysis is also adapted to a specific

tissue type and immuno histological staining (IHC staining) meaning that it can not be

used in general, but has to be adapted.

A quantitative analysis of WSIs has been applied, as a case study, to kidney renal clear

cell carcinoma cases [35]. The authors propose a general concept adaptable to different

cancer endpoints and discuss the demands for the method when used in diagnostics,

e.g. the quality control of the images and the presence of public available reference

data bases. In an earlier work based on the diploma thesis of Alexander Schmitz, we

published results of the quantification of CD30 positive pixels in cHL WSIs [36]. The

tissue sections showed a high variability regarding the CD30 positive pixel count. The

variability was mainly caused by the different progression states within the observed

lymph node sections. Therefore classification based on pixel quantification was not able

to distinguish between the three disease types MCcHL, NScHL, and Lymphadenitis.

More advanced imaging methods are required to classify tissue sections and to recog-
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nize typical patterns of a disease. The approaches can be texture-based methods and/or

object-based methods.

Texture-based methods consider the local neighborhood. Common texture descrip-

tors are the gray scale co-occurrence matrix, the wavelet transformation, Fourier trans-

formation, see [37] for a detailed overview. Texture-based methods have been used to

classify malignant versus benign tissue in multiple studies, recently published studies are

[38] and [39]. Image texture analysis also has been applied to breast tissue images to

determine the region of interest for follow up microarray experiments [40]. Heterogeneity

assessment of tissue sections in WSIs has been used to label breast cancer histopatholo-

gical digital images [41]. The proposed method enabled displaying heterogeneity for the

tested image slides as false color maps and it has been shown that the three heterogeneity

measurements correlate with manual annotations made by pathologists.

Object-based methods are also widely used to perform computer-aided diagnosis.

Multiple studies have been targeted to segment cell nuclei in microscopic images [42], or

small structures in general [43], depending on the staining of the images small structures

can be cells or cell nuclei. Pixel-based and line-based descriptors have been combined

to gain a more ’efficient nucleus detector in histopathology images’ [44]. Cell nuclei and

their shape play an important role in detecting malignant tissue. Malignant cells undergo

a remodeling and the functionally different behavior also can be, at least partly, reflected

in the shape of the nucleus. The observed differences of nuclear structures in cancer

cells are reviewed in [45] and [46]. As reported in those reviews, the alterations of the

cell nucleus may include the number of nuclei per cell, the appearance of the nucleolus

and the appearance of chromatin. Cell shape descriptors have been used as a basis for

automated learning approaches and to classify malignant tissue. In [47] features from

multiple studies have been combined to detect and classify cancer in various tissues. In

the study, the k-nearest neighborhood classifier were found to perform best compared

to the four other tested classifiers. Accuracy and specificity were above 0.86 and 0.80

respectively. Fourier shape descriptors have been applied to histological images and have

been tested for their biological interpretation [48]. Combined with a directed acyclic

graph classifier the overall classification accuracy for renal tumor subtypes yielded 77 %.
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Graphs have been used for different applications. A general overview of graph theo-

retical methods is given in [49] and [50]. Unit disk graphs [51] are graphs with special

geometric constraints, that have been widely used to model wireless communication net-

works, e.g. in ad hoc networks [52]. Their properties and fast algorithms for typical graph

problems in unit disk graphs are well studied [53]. In graph theory graph partitioning

is a common problem, especially in biological and social networks [54]. Various methods

have been developed to find meaningful partitions, a comprehensive review of the topic

has been presented in [55]. One of most commonly used methods is k-clique percolation

[56], other, mostly clique based methods have been developed (see e.g. [57] and [58]).

Clique-based partitioning has been applied to unit disk graphs [59].

Graph partitioning plays also an important role in data visualization. Complex graphs

contain too much information to be displayed for human eyes. Therefore, reduced graphs,

which reflect the global structure of the original graph, have been used for visualization

[60]. For validation of different partitions and for optimization based partitioning meth-

ods, quality measurements are required. A very popular one is Q-modularity [61], an

additional score for the modularity is proposed by Lázár et al. [62].

Graph structures have been used for image segmentation in general [63], but also

graph-based approaches tailored for histopathological application exist. In multiple stud-

ies graphs have been applied to represent malignant tissue, see [64], [65], and [66]. Cell

objects have been extracted from small image sections, 384 × 384 pixels and 1024 × 1024

pixels respectively. Identified cells have been represented as vertices and edges have

been added according to the Waxman model. The authors report differences in the

graph metrics of malignant and benign cells [64] and use machine learning to perform a

computer-aided grading of the tissue samples with an overall accuracy of 98.5 %.

Although some graph-based applications to histopathological images exist, there are

very few studies which address cell recognition in WSIs at high resolution. Up to my

knowledge, no analysis of WSIs of lymph nodes, and HL in particular, have been made.

The extraction of objective data, like cell count, cell distribution, and cell co-localization

can provide valuable information for understanding and for modeling the lymph node as

a complex biological system.
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Chapter 3

Methods

The aim of this study is to statistically analyze the distribution of HRS cells in tissue

sections of human lymph nodes. Multiple steps are necessary to gather and process the

required information from the 2D image data we used as input. The following section will

give an overview of the methods and software tools we applied. The ordering of topics

in this section conforms to the chronological order in the imaging pipeline, depicted in

Figure 3.1.

As starting point for the analysis, WSIs of human lymph node sections were prepared

by pathologists from the Dr. Senckenbergisches Institute of Pathology of the Goethe

University in Frankfurt. A whole slide scanner digitized the glass slides to produce WSIs.

The preparation and WSI format is described in sections Immunohistological Images and

Image Digitization.

The imaging pipeline extracted cell positions from the digitized images. The detailed

Figure 3.1: Imaging pipeline Images are prepared and digitized by pathologists. Multiple pre-
processing steps are needed to enhance image quality and to deal with common image artifacts. Images
are segmented to identify and label objects.
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pre-processing steps are presented in the Sections 3.2.1 to 3.2.3. After the pre-processing,

the object detection takes place. We made use of the open source software CellProfiler

[67]. The tool provides many high level functions for image processing and for object

detection in biological images. To get information about the software, see section Third

Party Software.

For the representation of cells, their positions, and their neighborhood graphs were

used. Section 3.3 explains the graph theoretical background of this work.

3.1 Immunohistological Images

In pathology, microscopic sections are routinely used for the diagnosis. After the fixation

and dehydration, samples are embedded in paraffin. A microtome slices the paraffin block

into thin sections. Additional staining highlights specific cell components or proteins.

3.1.1 Preparation of Tissue Sections

The images processed in this study were stained twice. Hematoxylin, the standard stain,

binds rather unspecific to all negatively charged components of the cells. Since the

backbones of the DNA and RNA constitute the main fraction of negatively charged

biomolecules within the cell, cell nuclei are stained most, but also the cytosol appears

in bright blue. The hematoxylin staining increases the contrast of the image. Cell

nuclei can be distinguished, such that the cell density becomes visible. A second stain

was added to identify specific cell types. The second staining can be applied to target a

broad number of proteins, for example eosin binds to positively charged proteins, whereas

immunostaining targets specific proteins. In immunostained images the dye is attached

to an antibody, binding to the target protein. For samples embedded in paraphin, two

antibodies are required. The first antibody binds to the target protein and the second

antibody, which is targeted against the first antibody, is labeled with the dye (e.g new

fuchsine, DAB).

We used the magenta colored dye new fuchsine for the immunostaining. For diagnosis

of cHL, multiple marker proteins are commonly examined. For identification of Reed-
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Sternberg cells, CD30 and CD15 are typical marker proteins, they are part of the cluster

of differentiation (CD) protocol.

The cluster of differentiation protocol was proposed and founded at the 1st Interna-

tional Workshop and Conference on Human Leukocyte Differentiation Antigens (HLDA)

in 1982. The original goal of categorizing monoclonal antibodies targeted against surface

molecules of leukocytes was expanded. Now, the list of CD molecules consists of more

than 300 unique cell surface proteins that can be targeted by monoclonal antibodies.

The list of CD molecules is maintained and updated by the Human Cell Differentiation

Molecules group. The current CD nomenclature is published in [68].

The expression profile of CD molecules gives information of the cells function and

helps to distinguish between different cell types, also called immunophenotyping. In can-

cer therapy the CD protocol gives valuable information about the origin of the malignant

cells. The presence or absence of specific surface proteins allows a categorization of the

malignant cells and is important for diagnosis and treatment. The identification of cell

type specific surface proteins is an ongoing work. An example is the human cell-surface

immunome database [69], which contains cell types and their corresponding surface pro-

teins.

3.1.2 Image Digitization

Image data shifted from analogue media to digital representations recently. Digital im-

ages have multiple advantages. They are easier to store and can be shared and thus have

a better accessibility. Computer-aided methods can be applied to analyze whole tissue

sections. In the case of WSIs, there are also downsides. First, scanning the tissue slides

requires additional hardware. The prizes for whole slide scanner dropped over the last

years, but the purchase is still expensive. Second, the WSIs have a fix focus plane and

fine adjustments may be needed when fine structures, e.g. the chromatin in the nucleus,

are examined.

An Aperio Scanscope device digitized the tissue samples and created SVS files in

Aperio’s proprietary image format. The format is an altered large-tiff format, containing

multiple layers for versions of the image with different downsample rates. Figure 3.2
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Figure 3.2: Aperio SVS image format Each SVS file consists of multiple layers to store multiple
versions of the whole slide scan at different resolutions. The downsample rate increases by factor four
per layer. Only layer 3 is downsampled by two compared to layer 2. It is optional and only present in
images with a large base layer. The image of a single layer is stored in a tiled image format, which allows
quick access to image parts without loading the whole image.

depicts the pyramidal SVS format. The base layer called layer 0 provides a resolution of

0.25 µm per pixel. The image sizes of our samples vary from 10,000 x 10,000 pixels up to

90,000 x 90,000 pixels. The downsample rates for all four layers are presented in Table

3.1.

Table 3.1: Downsample rates of the SVS image layers

downsample µm per px
layer 0 1 0.25
layer 1 4 1.0
layer 2 16 4.0
layer 3 32 8.0

Figure 3.3 demonstrates the four layer resolutions stored in an SVS file. In the third

layer, which is the one with lowest resolution, a single pixel has the size of 8 µm. The

resolution is high enough to be able to identify the lymph node structure, i.e. sclerotic

bands or germinal B-cell centers, but single cells can not be detected. At layer 2 the

stained CD30+ cells can be identified, but close objects cannot be separated. Finer

structures like cell nuclei become visible at layer 1 with a resolution of 1 µm per pixel.

The cell shapes can be computed at this resolution. The base layer provides the highest

resolution and enables the observation of very fine structures, like the shape of the nuclei
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Figure 3.3: Resolution of the four SVS image layers The image depicts an exemplary section of
an NScHL WSI. The four sub-images demonstrate the level of detail in each layer. The white rectangles
mark the field of view shown in the next image.

or the nucleolus.

Each layer is stored as tiled image, allowing to load only parts of the images. The layer

image is separated into equally sized tiles, each of which can be loaded independently.

At highest resolution the uncompressed layer 0 reaches more than 20 GB and thus, can

not be loaded into the memory of current desktop computers. The image format also

includes a JPEG2000 compression. JPEG2000 is a lossless compression, resulting in SVS

files with a size of 0.5 - 4 GB for images in this work.
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3.2 Imaging Pipeline

3.2.1 Color Deconvolution

In immuno-histological images or digital images, the colors of pixels are commonly stored

in the RGB color space. The color value is composed of the three values for red (R), green

(G), and blue (B), reflecting the receptors of the human eye. The RGB color space does

not refer to the actual staining in the images. The tissue sections are immunostained.

Thus, the image captured by the scanner is mainly composed of the used dyes. Color

deconvolution can be applied to split the color information into the stains. Pixels are

then expressed as the relative amount of dye. For the RGB we get the following equation:

PRGB = MABS ∗ Pstainings. (3.1)

Pstainings is a vector containing the values of the amount of the dyes. MABS is the

absorption matrix, describing the relative absorption rates for red, green, and blue light

for the different dyes. Equation 3.1 can be transposed and the stain concentration can

be calculated by:

Pstainings = PRGB ∗M−1ABS . (3.2)

Most image processing programs provide default absorption vectors for the most

common dyes. Table 3.2 gives an example for an H&E staining, taken from the color

deconvolution tool implemented in Fiji [70].

Table 3.2: Default absorption matrix for a H&E staining from Fiji

R G B
hematoxylin 0.644 0.717 0.267
eosin 0.093 0.955 0.283
rest (orthogonal) 0.636 0.001 0.772

If only two dyes are present in the histochemical image, a third absorption vector

is chosen which is orthogonal to both vectors of the color stains. The third channel

represents everything within the image that does not originate from the staining process
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and mainly includes artifacts like air bubbles or damaged tissue sections.

Table 3.3 shows an example absorption matrix used in this work. In contrast to the

Fiji matrix, the second stain is new fuchsine. It is also a red dye, but compared to eosin,

the blue color component is lower. The absorption matrix for a dye can differ, depending

on the fabricator and the staining procedure in the laboratories. We decided to compute

the absorption matrix directly from sample images from the Dr. Senckenberg Institute of

Pathology. Manually selected image sections were taken as training data labeled either

as hematoxylin or new fuchsine. The ratio of the three color components red, green, and

blue were calculated and averaged for all pixels of the two dyes. A third, orthogonal

vector was added to determine the absorption matrix depicted in Table 3.3.

Table 3.3: An absorption matrix for the two dyes, new fuchsine and hematoxylin, and an orthogonal
rest vector

R G B
hematoxylin 0.632 0.623 0.461
new fuchsine 0.360 0.689 0.629
rest (orthogonal) 0.232 -0.72 0.655

3.2.2 Minimum Distance to Mean Clustering

Minimum distance to mean clustering is a supervised standard clustering method. As

first step, the cluster heads are calculated from pre-labeled test data. The cluster head

is represented by a p-dimensional vector. The entries of the p-dimensional vector are

calculated by averaging the value of a single property over all instances of the predefined

test class. On the contrary to k-means clustering, the cluster heads do not change during

the clustering iterations, since they are pre-calculated from the training data. For our

approach, we classify the pixels according to their properties, which are color-coded pixel

descriptors. Examples of descriptors are the intensity, the saturation and the brightness.

The test samples are assigned to the cluster head with the minimum distance. Figure

3.4 gives an overview of the whole process.
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Figure 3.4: Minimum distance to mean clustering The algorithm can be divided into three steps:
First an annotated set of training samples is chosen. They are used to calculate the cluster heads in the
second step. Third, test samples are classified, by choosing the cluster head with the minimum distance.
Here, two pixel descriptors are considered, the saturation and the brightness of the pixel.

3.2.3 Multi-Resolution Clustering

Multi-resolution clustering is an extension of the minimal distance to mean clustering.

The main idea is to take the level of detail in the image into account. WSIs may contain

multiple versions of a tissue section image at multiple resolutions. The segmentation of

tissue and background pixels does not need a high level of detail and can be performed at

low resolution. If we want to classify more detailed structures we would need to process

the image at a higher resolution. For example we can divide tissue pixels further into

nuclei, cytoplasm, artifact, and CD30+ pixels. Because of the hierarchical structure, we

need only to consider pixels within areas which contain tissue pixels in the above layer.

Thus, a region of interest can be defined by choosing a pixel class of interest. As a result,

we exclude regions without information and thus reduce the amount of input data.

3.2.4 Region of Interest

The region of interest (ROI) defines a filtered subset of samples within the data set that

is needed to answer a specific question. For image processing, this means to separate

the image into background and the area containing the relevant information. The ROI

can be expressed as a binary image or matrix. Entries with value 1 mark pixels or

areas which are of interest and need to be processed further, while entries with value 0

represent background. Multiple methods exist to define ROIs. In our investigation, we

are interested in the distribution of CD30+ cells in the lymph node. Therefore, we have

to separate the pixels into tissue and background. We use a minimum distance to mean
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clustering approach to identify pixel classes. For more detailed questions, the ROI can

be further limited. Because of the hierarchical composition of organs, i.e. different tissue

types composed by specific cell types, a hierarchical approach can be used to refine the

ROI stepwise. Tissue pixels classified in the low resolution image, e.g. layer 3, can be

separated further into sub-classes like cell nuclei, cytoplasm and CD30+ stained cells.

The sub-classes describe finer tissue structures, and the separation of the pixels requires

a higher resolution.

3.2.5 Third Party Software

CellProfiler CellProfiler [67] is an open-source image processing software focused on

cell detection and images with biological background. Since version 2.0, the core program

is written in Python. CellProfiler also makes use of Cyphon [71] and the Java/Python

bridge to allow the execution of algorithms in C/C++ or Java. The software is mo-

dular and extensible by CellProfiler or ImageJ plugins. The resulting flexibility and the

provided graphical user interface allows a quick creation, testing and adaption of imaging

pipelines. CellProfiler supports a majority of currently used image formats via the Bio-

formats library [72], which is provided by the Open Microscopy Environment (OME)

project [73].

CellProfiler is designed to perform image processing tasks on high throughput data.

Manually created pipelines can be applied to big data sets using the batch mode. Here,

multiple instances of CellProfiler are created to run on multiple CPU cores or cluster

nodes to gain a higher computing power.

For the cell detection, we use some pre-implemented methods in CellProfiler, therefor

we implemented an interface to run automatically generated CellProfiler pipeline files in

batch mode.

JAI and Fiji Impro has interfaces to other third party libraries and software. We use

the java advanced imaging API (JAI) for simple imaging operations, like loading and

saving in standard image file formats, rotation and cropping, and standard filters. Some

plugins also make use of the more sophisticated functions of Fiji [70], a derivative of
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ImageJ [74].

3.2.6 Segmentation

Image segmentation is a major step for object detection. The aim of a segmentation is

to separate the image’s pixels into separate, meaningful segments. Basic segmentation

approaches can be divided into three steps. First, all image pixels are divided into classes

during the pixel labeling. Second, a connected component analysis is performed to get

labeled connected regions. Third, during the post-processing the initial segmentation

gained from the connected component analysis is refined or corrected. The correction may

include further knowledge about the target objects. Touching objects in the image might

have been recognized as a single region and have to be split by the post-processing taking

information, like size and morphology of the objects, into account. In most cases, pixels

are labeled with two classes: the object class, containing the information of interest, and

the background class, which is rejected for further analysis steps. Multiple segmentation

methods exist, most of which are based on thresholding. In general, thresholding means

to binarize a grey-scale image given a certain threshold. All pixels equal or above the

threshold are converted to one, the rest is considered to be zero. For segmentation based

on thresholding, grey-scale images can represent intensity values of the original image,

but also more complex image properties are used for the pixel labeling. The image is

then converted into a grey-scale image based on the specific property. For texture-based

segmentation, the contrast, the brightness, or the co-occurrence of pixels within the locale

neighborhood can be considered.

3.2.7 Cell Shape Descriptors

Cell shape descriptors measure morphological cell features like roundness. They can be

used to classify different cell types or to gain further information about the state and

function of a cell.

Here, we will consider morphological features. A more detailed description and addi-

tional shape descriptors can be found in the CellProfiler manual [75].

Table 3.4 gives a short explanation of common cell shape descriptors.
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Table 3.4: Common cell shape descriptors

Shape descriptor Explanation
area number of pixels of the object
solidity the object area divided by the convex hull of the object
eccentricity the distance of the two foci divided by the major axis

length of a fitted ellipse
mean radius mean distance of all object pixels to their closest non-

object pixel
minimum Feret diameter minimal possible distance between two parallel tangents

placed on opposite sides of the object
maximum Feret diameter maximal possible distance between two parallel tangents

placed on opposite sides of the object

3.2.8 Validation: Precision and Sensitivity

The validation of an automated imaging pipeline requires some sort of scoring. Two

commonly used scores are the precision, or recall, and the sensitivity, or true positive

rate. They are calculated according to Equation 3.3 and Equation 3.4, respectively. Both

equations are based on the number of true positives (TP), false positives (FP), and false

negatives (FN). TPs are objects correctly detected by the pipeline. FPs are detected

as objects by the pipeline, but are wrongly classified as an object. FNs are existing

objects in the image that were missed by the pipeline. The precision and sensitivity

range between zero and one. Values close to one mean we have a high precision or

sensitivity respectively. The precision and sensitivity are defined as:

Precision =
TP

TP + FP
(3.3)

and

Sensitivity =
TP

TP + FN
(3.4)

.

For cell detection, the two values can be interpreted as follows: The precision is the

probability to draw a real cell when randomly picking one of the detected objects from the
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automated imaging pipeline. The sensitivity is the percentage of identified cell objects

by the automated pipeline compared to the actual number of real cells within the image.

3.3 Graph Theory

Graphs are widely used data structures and are applied to issues in multiple research areas

like mathematics, computer science, and sociology. The terminology differs between the

different areas, but as a common description we can say: a graph consists of a set of

entities and a set of links. A link represents the relation between two entities. Here we

use the mathematical terminology, according to which entities are called vertices and the

links edges.

We apply graphs to model the spatial distribution of CD30+ cells in tissue sections

of Hodgkin lymphoma. Vertices represent CD30+ cells and edges the spatial proximity

between cell pairs. The cell graphs were generated as unit disk graphs.

The implemented software, Impro, supports multiple graph file formats as input and

output formats, see Section 3.3.1.

The generated cell graphs consist of 500 to 50,000 vertices and can have 1,000,000

edges and more. Communities are sub-graphs with a high inter-connectivity. They allow

a more generalized view and can be used to reduce the graph structure by merging cells

into biologically meaningful cell groups. Graph partitioning methods and community

detection are two commonly used methods to analyze the graph structure. Both can

reveal highly connected sub graphs. In cell graphs a highly connected sub-graph might

be a cluster of cells. The two methods will be discussed in Section Graph Partitioning

and the following sections.

3.3.1 Graph File Formats

Graphs have many different applications and numerous implementations are available.

For storage purposes and data exchange multiple file formats have been established. We

discuss four common formats that are also supported by Impro. All presented file formats

are plain text file formats (ASCII).
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1. Edge list format The edge list format is a very common graph file format, which

is supported by many graph-related programs. Graphs are represented as a list of edges.

The format is often used to import data from external resources, e.g. experimental

data, that can be interpreted as relationships. This includes tabular files like Excels

XLS format or comma separated values (CSV) files. Listing 3.1 demonstrates a small

sample in CSV format. The example shows a small part of a geometric graph, each line

represents one edge. The first two columns are the indices of the connected vertices. The

third column is the edge weight, i.e. the Euclidean distance between the two vertices.

The following columns are specific for the graphs introduced in this work and contain

additional information, such as the global x and y coordinates of the two vertices and

their morphological classification.

Listing 3.1: Edge list format CSV example

...

5 ,1 ,253.0 ,12473 ,25819 ,12613 ,25608 , Small_Cut ,Small_Cut

5 ,3 ,301.0 ,12473 ,25819 ,12767 ,25751 , Large_Cut ,Small_Cut

6 ,7 ,481.0 ,5385 ,17162 ,5866 ,17134 , Small_Round ,Small_Cut

6 ,9 ,638.0 ,5385 ,17162 ,6023 ,17188 , Large_Round ,Small_Round

7 ,10 ,168.0 ,2907 ,19456 ,2781 ,19568 , Small_Cut ,Small_Cut

8,null ,infinity ,15232 ,14734 ,null ,null ,Small_Cut ,null

9 ,12 ,672.0 ,16252 ,13264 ,15360 ,14394 , Small_Cut ,Large_Cut

...

In Impro we additionally allow null pointer edges to support isolated vertices, so we

can add an edge where only the first vertex is defined. They are normally not part of an

edge. In the null pointer edge, all values, referring to the second vertex, are set to ’null’,

see row 7 in Listing 3.1.

2. Graph Modelling Language - GML The Graph Modelling Language [76] was

first introduced by the consortium of the GD ’95, the Symposium on Graph Drawing.

The file format follows a simple grammar, and mainly consist of a list of entries, each

of which has a key and a value. Values can be numbers, strings or a list of entries, the

latter allows nested structures. In principle, the grammar is capable to encode arbitrary
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structures, but the GML format has mainly been developed for graphs. A new format

based on GML is the Graph Markup Language (GraphML).

Listing 3.2 presents a simple graph consisting of two vertices, connected by one di-

rected edge. Additional properties, for example edge weights, can be added as entries.

Listing 3.2: Graph Markup Language example graph

graph [

comment "GML format sample graph"

directed 1

node [

id 1

label "Node1"

]

node [

id 2

label "Node2"

]

edge [

source 1

target 2

weight 72

]

]

3. Trivial Graph Format - TGF The Trivial Graph Format is similar to the edge

list format. The file contains a list of all vertices, followed by a list of the edges, see

Listing 3.3.

Listing 3.3: Trivial Graph Format - TGF

1 "Node1"

2 "Node2"

#

1 2 72
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The rows after the ’#’ are interpreted as edges. In the example only one edge with

an edge weight of 72 exists between vertex 1 and vertex 2.

4. KAVOSH The KAVOSH format is a very simple edge list format. Each row

represents one edge defined by the two vertex indices separated by a blank character.

Isolated vertices are not supported.

3.3.2 Unit Disk Graph

Unit disk graphs are both, geometric graphs and intersection graphs [51]. In geometric

graphs, vertices and/or edges are associated with geometric objects. In unit disk graphs

each vertex is linked to a circle in the plane, the unit disk, defining a threshold. The size of

the circles within in a single graph is fixed for all vertices, given by a radius r. The edges

are set according the intersection graph definition. Vertices are pairwise connected with

an edge if their circles intersect and we call the corresponding set of circles the intersection

model. The edge constraint can also be formulated as a dependency of the Euclidean

distance of two vertices. For a given disk radius r, all pairs of vertices (u, v)|u 6= v are

connected by an edge, if the Euclidean distance between u and v is below 2×r. This can

be modeled as containment model by circles with a radius r2. Edges connect vertices, if

the corresponding circle of a vertex contains the center of the circle of the other vertex.

Here, we measure cell positions and geometric distances between cell objects. Therefore,

we refer to the containment model, when we use the terms radius or disk.

A typical application of unit disk graphs is modeling of broad cast networks [77]

and mobile phone systems. The vertices are transmitter and receiver of signals and the

network models a communication network.

3.3.3 Random Geometric Graph

A geometric graph is a graph G = (V,E) where each v ∈ V is assigned to a geometric

object. According to cell graphs, which are defined as unit disk graphs, this geometric

object is a disk. The disk can be described by the x and y coordinate of its center and a

fixed radius r. A random geometric graph Grnd(n) is generated by placing n vertices in
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Figure 3.5: Random geometric graph The vertex positions of the random geometric graph are
randomly distributed. Edges are defined by a distance threshold r. The cell density and distance
threshold are chosen to match the real data obtained from a cHL tissue section.

a 1×1 plane. The center coordinates are chosen randomly. Vertices are defined by the

containment model.

In this work, random geometric graphs are used as null model to compared cell graphs

computed from WSIs to randomly distributed cells. The n and r parameter are fitted to

match the corresponding cell graph. n equals the vertex count in the original cell graph.

The disk radius r equals t, the distance threshold of the cell graph, scaled by the tissue

area A of the image the cell graph is computed from, see Equation 3.5.

r =
t√
A

(3.5)

Figure 3.5 presents a example section of a random geometric graph. Typically the

graph does not contain highly connected areas and the vertices are evenly distributed

over the 2D-plane.
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3.3.4 Graph Partitioning

Multiple methods for graph partitioning exist. Many of them are based on cliques,

which represent complete subgraphs and thus have the highest possible connectivity.

One commonly used method is the community detection by k-clique percolation. The

basic idea is to start with a k-clique as seed and then merge neighboring k-cliques into

the community if they have a sufficient overlap. The method is discussed in Section

k-clique Percolation .

Another possible way to generalize the graph is to merge vertices. In graph theory,

this process is called edge contraction. The resulting graph has a lower amount of vertices

and edges and it is called the minor of the original graph. This method can be applied

similar as community detection. The method and its application to geometric graphs is

explained in Section Graph Reduction by k-Clique Contraction.

Community detection and edge contraction reduce the graph and enable a higher

abstraction level. Cells are clustered or merged based on a similarity measurement. In

this study the reciprocal distances within the tissue were used. The method can be

adapted by applying different distance measurements as edge weight, e.g. the difference

between shape descriptors.

3.3.5 Communities

In network theory, the term community is synonymously used for a cluster or a group of

vertices. The definition of communities is mostly problem specific. The decision which

vertices build a community depends on the applied clustering algorithm. Fortunato et

al. provide an extensive description of the basic concept of communities and graph

clustering in general and discusses state of the art algorithms for community detection.

In this work, we use the terminology and definitions described by Fortunato et al. [55],

if not otherwise mentioned.

One goal of graph partition methods is to segment the vertices of a graph into groups,

in such a way that we get a high connectivity within such a group, but a lower connectivity

to vertices outside the group. A community has a high intra-cluster density, but a

low inter-cluster density compared to the overall edge density of the graph. In graphs,
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Figure 3.6: Overlapping community structure The depicted graph can be separated into two
highly connected subgroups. The red marked vertex has edges to both groups and thus is a part of both
communities. An example in social networks could be a person who shares two independent interests,
like soccer and dancing, the communities could be a club or association the person participates in.

where edges often refer to some sort of communication between the connected vertices, a

community means a group of vertices sharing more information to each other than they

share on average to other vertices in the graph.

The coverage of a graph by overlapping communities is an alternative concept. It

allows an overlap of communities, meaning that a single vertex in the graph can be part

of multiple communities. Those vertices may be seen as an intermediate link between

two communities. An example is depicted in Figure 3.6. The red bordered vertex is

highly connected to both vertex groups, while only a few edges are present between both

groups.

3.3.6 k-Clique Percolation

k-clique percolation is a common method to define communities within a graph. The

basic idea is to use a k-clique as seed for a community and then to iteratively percolate

into neighboring k-cliques, expanding the community. The criterion for two cliques to

percolate into each other is the adjacency. Two k-cliques are adjacent if they have k-1

vertices in common. As this criterion is very strict for high k values, we use a relaxed

definition for percolation:

Definition 1. Two k-cliques l-percolate into each other if they share at least k−l vertices.

Various implementations for clique percolation exist, an example is CFinder [56]

[78]. For the application to cell graphs, we adapted two different algorithms. The first

30



Figure 3.7: Clique graph creation From the original graph all k-cliques and all (k − 1)-cliques
are computed. They represent vertices in the clique graph. Edges connect k-cliques with all contained
(k − 1)-cliques.

algorithm enumerates the whole search space by computing all k-cliques in the graph.

Then, all (k− l)-cliques contained in each k-clique are enumerated. The two clique types

are used two build a bipartite graph, where cliques are the vertices and edges connect

k-cliques with all (k− l)-cliques which they contain. In the resulting graph, all neighbors

of a (k − l)-clique vertex are k-cliques which can l-percolate into each other, see Figure

3.7 for an example. To obtain the communities of the graph a breadth-first-algorithm is

performed to determine all connected components in the clique-graph. The union of the

vertices of all cliques within a connected component can be considered as community.

The second algorithm of clique percolation focuses on low memory usage. For large

and especially for dense graphs, the enumeration of all k- and (k − l)-cliques results in

memory usage, which exceeds the hardware specification of current desktop computers.

Thus, the second implementation performs a local search to find and expand communities.

It is noteworthy that communities, which are build up with k-clique percolation, always

contain at least one vertex, which is distinct to all other communities in the graph.

That is because detected communities are not further extensible. If a community is

completely contained in another community or in multiple other communities this means
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that it can percolate into those communities and thus is only a part of a community.

Therefore, the local search algorithm only remembers, which vertex is already part of a

community. For each vertex, which is not already part of a community, a random k-clique

is computed and considered as seed for a new community. The clique is than expanded

by l-percolation. As we do not remember any of the already computed k-cliques it is

necessary to test all k-cliques for all new member of the community. The k-cliques have

to be computed for each new added member and the overlap to the current community

has to be checked against all its member vertices. The test against the whole community

is computationally expensive, but on the other hand, the global search implementation

has to check the existence of (k − l)-cliques in the vertex list of the bipartite graph

to correctly set edges. While the maximum size of a community equals the number of

vertices of the original graph, the number of possible (k − l)-cliques is much higher.
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Chapter 4

Results

The following sections discuss the outcome of the image analysis applied to the set of

35 WSIs of lymphadenitis and cHL tissue sections. The results can be divided into two

major parts. The first Section, Imaging Pipeline, includes all results related to the image

processing. For some steps of the imaging pipeline, multiple approaches and multiple

parameters were tested. Therefore, the first sections presents the different, implemented

methods in Impro, followed by a comparison of their results and a discussion of the final

outcome. The pixel-based methods and results of the quantification of the CD30 and

hematoxylin staining are published in [36]. A statistical overview of the identified cell

objects is given.

The second part is the Graph Analysis. The section covers the creation of graphs as a

representation for the distribution of HRS cells in lymph node sections and the analysis of

standard graph properties. The application of CD30+ cell graphs to cHL tissue sections

is published in [6]

4.1 Imaging Pipeline

Object detection in digital images is a complex task that requires multiple steps. There-

fore, a pipeline is needed to perform and to automate the image processing steps. A

new software, Impro, was developed to combine and validate those steps. The software

is introduced in Section Impro Software. The image processing steps of the pipeline
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will be discussed in chronological order. They can be divided into three major subjects:

pre-processing, object detection, and validation.

The Section Pre-processing combines all tasks needed for the preparation of the image,

e.g. dealing with the file format, determining the regions of interest, eliminating artifacts,

and improving the quality of the image. The requirements for the pre-processing depend

on the image data and also on the question. The study aimed to analyze WSIs of lymph

node sections to gain information on the distribution of CD30+ cells in cHL. For this

application, we faced multiple challenges. First, the input images consisted of large tissue

sections of high resolution. One point of the pre-processing was to reduce the input data.

This was achieved by the identification of image areas containing tissue. Other parts of

the image were skipped during the further processing. Second, the histological images

were double stained with hematoxylin and fuchsine. To identify the CD30+ cells, the

stains needed to be separated. This was achieved by color deconvolution. A side effect

is that the processed images only contain a single color channel, resulting in a reduction

of data before the computationally expensive object detection takes place. The third

challenge was the quality of the staining. Even though images with high quality were

preselected for the study, image quality varied within the image set. In most images,

we also found small staining artifacts. Moreover, the intensity of the staining was not

consistently good in all areas of the image.

The Object Detection requires the segmentation of the image and the labeling of the

segments. Morphological properties of each detected object were computed. The thre-

sholds for the segmentation were adapted for each image separately due to the different

intensities of the staining. As the result of the object detection, CD30+ cell positions

were extracted from the images. We will give a statistical overview of cell numbers and

densities for the three disease types lymphadenitis, MCcHL, and NScHL. The measured

cell objects were used to build a database for a set of 35 WSIs.

The last step of the imaging pipeline is the Validation of the detected cell objects.

The outcome of the automated cell detection was compared with manually annotated cell

positions to verify the overall accuracy. A graphical user interface (GUI) was implemented

to allow the direct annotation of cell positions. Compared to manual cell positions, the
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pipeline achieved a high precision and sensitivity.

4.1.1 Impro Software

For the cell detection, a new software, Impro, was implemented. The aim was to create

a tool to perform the complete image processing. Impro focuses on two points. First,

the software should be independent of the input image format. Figure 4.1 schematically

depicts the structure of Impro. We have the core software (impro.jar), which enables the

loading and managing of multiple WSIs. Besides, the jar file contains Java classes for

basic functionality like import of WSI formats and their conversion to standard TIF files.

Thus, all following image processing steps are independent of the input file format. The

core software and its main components are described in more detail in paragraph Impro

core components.

Second, the imaging pipeline should be adaptable, e.g. for a different staining or

other cell types. To be more flexible and to allow the inclusion of additional features,

Impro can be extended by plugins. Plugins are accessed via the graphical user interface

of the core software. Extensive features, e.g. the pre-processing of the images and the

cell detection, were implemented as plugins. An overview of the already existing plugins

is listed in paragraph Plugins overview, including an overview of the provided functions.

In this project, the focus was on the identification of HRS cells in cHL tissue. Thus,

the cell detection is tweaked for double stained histological WSIs with a fuchsine immuno

staining targeted against CD30. For the purpose of clarity we will use the term CD30

pipeline to refer to this specific pipeline.

Impro core components The core program of Impro is impro.jar. The software is im-

plemented in Java 1.8. Thus, it is platform independent and can be run on Desktop-PCs

as well as on a computer cluster. General functions and data structures are implemented.

The first core function is loading and managing of WSIs in different file formats. Impro

makes use of the third party library bioformats [79], which is part of the open microscopy

environment project [73] (OME). Bioformats allows read-access to established WSI for-

mats of multiple scanner vendors like Aperio, Hamamatsu, Leica, and Zeiss. For further
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Figure 4.1: General structure of Impro The main program contains some core functionality to
load images and set program properties. It loads and manages plugins, which can extend Impro. The
additional functions for the image processing are provided by the separately implemented plugins. Plug-
ins can easy exchanged or added, allowing an adaptation of the pipeline and the implementation of new
features. All plugins with graphical user interface can be accessed via the menu bar in Impro.

processing, the software deflates the images and exports image tiles as single image files

in standard TIF format. The conversion to a standard format makes it possible to share

and process the images in multiple third party programs. The management of the sepa-

rated image tiles is done by ImproImage, a core class of Impro. The ImproImage class

will be described in more detail in Section Image Format.

Impro provides a graphical user interface allowing the user to access single parts of

the pipeline. In addition, it is also possible to use a headless mode. In this case, the

complete pipeline runs without further actions of the user, e.g., for computations on a

computer cluster.

The graphical user interface of Impro has three main components, displayed in Figure

4.2. The menu bar (1), is at the top, left corner of the GUI. It enables core functions,

e.g., the loading of images. All installed plugins are listed in the menu bar and can

be executed. The second important GUI element is the image list (2). The image list

displays all loaded images and meta information, like the original file name, the image

ID, and the resolution in microns per pixel (mpp). The bottom panel is called the plugin

panel (3). Here, the active plugin is displayed. Multiple extensive features of Impro, e.g.,

processing images or performing a graph-based analysis can be accessed via this panel.

The view in Figure 4.2 shows the ImageViewerPlugin exemplarily.
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Figure 4.2: Graphical user interface (GUI) of Impro The main window contains three components
1) menu bar: configuration of Impro and access to plugins. 2) image list: displays loaded SVS images
and their properties 3) the plugin view: displays the GUI of the currently selected plugin, here the
ImproImageViewPlugin.

Beside the graphical mode, Impro and all its plugins can run in headless mode. The

non-graphical mode can be used by starting the program with the additional parameter

- - exec-commandfile <file> (or the shortcut -x <file>). In this mode, Impro performs

all tasks specified in the command file, which is given as <file>. Each line of the file

represents an operation. The general structure of a command is:

Listing 4.1: Example command in Impro pipeline.

ImproPluginName;TaskName:property1=strValue;property2= \\

intValue;property3=strValue2

First, the ImproPluginName specifies the plugin to be executed. Second, the TaskName

selects the corresponding task to perform. This is followed by a list of properties, which

is needed to run the task with specific settings. The latter depends on the requested task

and is different for each plugin and command. Most operations provided by Impro or
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as a plugin can also be executed using a corresponding text command. The command

file enables the definition of a complete pipeline run including specific settings for each

operation. The pipeline can run independently without further manual inputs of the

user. Considering the running time of single operations of a few minutes up to several

hours, most parts of the analysis have to be done on a computer cluster controlled by a

command file.

Plugins Overview

Table 4.1 and Table 4.2 list the plugins and their features. Each plugin will be described

in more detail in the following sections. For the sake of clarity, the plugins are divided

into two groups. The first group consists of all plugins that take part in the image

processing, see Table 4.1. The focus of the work is not the implementation, but rather

the evaluation of cell detection in cHL WSIs. Therefore, we restrict the description of

the implementation to a short discussion in the sections Pre-processing, Object Detection,

and Validation.

Table 4.1: Overview of the plugins related to image processing

Plugin name Feature description
ImageViewer Visualization of ImproImages and additional overlays for display-

ing pipeline results
SVSViewer Views images in Aperio’s SVS format
ImageMultiResClustering Image segmentation with minimal distance to mean clustering

approach - defines a ROI based on pixel classes
ColorDeconvolution Color deconvolution based on an absorption matrix or training

images for up to three stains
CellProfilerAdapter Interface for running CellProfiler pipelines
Registration Rigid registration of whole slide images
PipelineValidation Allows manual annotation of randomly sampled tissue section

and performs the comparison of pipeline results with manually
detected cells

The second group are plugins for the following analysis of the detected cell objects,

including plugins for the graph-based and the statistical analysis. Table 4.2 shows the

plugins of the second group with a short explanation of their function. The graph-

based analysis is described in the Sections CD30+ Cell Graphs and CD30+ Community
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Structures.

Table 4.2: Overview of the plugins for statistical analysis and graph-based methods

Plugin name Feature outline
CellCSVExporter Exports the results of the cell detection as CSV files
CellClassMap Creates heatmaps based on cell classes, which are provided by the cell

detection approach
Graph Computation of several graph properties for cell graphs
GraphReducer Finding community structures, using clique reduction or clique percola-

tion
Heatmap Creates 2D matrices, describing properties of the cell distribution, which

can be displayed as heatmaps
Statistics Provides descriptive statistics for distribution of cell graph properties (e.g.

node degree and cluster coefficient)
Quant Quantification of different pixel classes (e.g. the amount of CD30+ pixel)

Overview: Imaging Pipeline For CD30+ Cells

The identification of CD30+ cells in lymph node sections requires multiple steps. Here,

we introduce the specific pipeline, the CD30 pipeline, see Figure 4.3. In Impro, a pipeline

is defined as an ASCII file, each line schedules a command to be executed by Impro or by

one of the plugins. The parameters for each processing step are also defined by the Impro

command file. The input images are provided in the SVS format. The first step of the

pipeline is the conversion into standard TIF files. The tissue section is recognized, using

a pixel-wise minimum distance to mean classification, and defines the ROI for all further

processing steps. Tissue tiles of the image are exported with an overlapping border, to

avoid cutting of cell profiles. Color decomposition splits each image tile into two intensity

images of the two stains hematoxylin and the CD30-targeted fuchsine. A threshold is

applied to segment the CD30 intensity image into object and background pixels. The

thresholding and object detection are done by a small CellProfiler pipeline, containing

additional features like filtering of objects of small size and an intensity-based approach to

separate touching cell objects. A post-processing step is needed to remove duplicated cells

in the object detection result, because of the overlapping of the tissue tiles. Properties

of each detected cell object are calculated and stored into a MySQL database. Based

on cell positions, graphs are created that represent the spatial distribution of CD30 cells
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in the lymph node sections. The graphs are stored in an edge list format into ASCII

files. For a detailed overview of the specific parameter settings of the CD30 pipeline, see

Listing S1. The following sections discuss the image processing steps in more detail and

present intermediate results that are important to verify the performance and accuracy

of the CD30 pipeline. The processing steps are presented in chronological order of the

complete pipeline run.

4.1.2 Pre-Processing

Before the cell detection takes place, multiple pre-processing steps are required. First,

the WSIs image have to be read. The following pre-processing steps are dependent on

the image acquisition method. The color deconvolution splits the original RGB image

into the two stainings. The definition of a ROI reduces the input for the cell recognition

by separating the tissue tiles from background tiles.

Image Format

The image analysis should be mostly independent of the image format. The format of

the digitized tissue sections differs for multiple scanner devices. Some parts of the cell

recognition pipeline were implemented from scratch, but we also used third-party software

like CellProfiler, which did not support WSI formats, like Aperio’s SVS format, back in

2011 when the project started. Nowadays, software tools like CellProfiler and Fiji include

the Bio-Formats library [80] [79] to enable read-access to WSI formats. Nevertheless, this

direct import restricts the user to the pre-implemented methods of the software tools or

at least requires the implementation of new plugins for the corresponding software. Thus,

we kept the initial approach, to deflate and convert the WSIs. This was done by splitting

each image into multiple files. Each image layer was split into single tiles. The default

size of a tile is 3072 x 3072 for layer 0, the width and height of the low resolution layer

depend on the downsample rate of the layer. Each tile was saved as a separate TIF image

file. TIF is a standard image format, supported by most imaging software.

In Impro, the image is still treated as a single image. The class, which organizes the

single image tiles, is called ImproImage. It only buffers currently needed image tiles.
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Figure 4.3: CD30 pipeline The CD30 pipeline is an adapted imaging pipeline, aiming for the iden-
tification of CD30+ cells in WSIs of lymph node sections. All major intermediate steps are depicted.
Images are loaded in the SVS file format. Tissue areas in the image are determined and split into single,
overlapping image tiles. The following image processing tasks can be executed in parallel. The RGB
images are unmixed and separated into the CD30 and the hematoxylin stain. The CD30 stain image is
thresholded and cell profiles are determined. Small cell fragments and duplicated cells are filtered out
and cell properties are stored into a MySQL database. The recognized cell objects are used to build
graphs, which are stored in standard graph file formats.

.
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Figure 4.4: ImproImage: internal image format All image tiles are stored on hard disk in TIF
file format. The tiles are active if they contain parts of the currently requested sub area of the image.
The tiles are then buffered until the maximum tile number is achieved. The maximum can be altered in
the configuration file. When the buffer is full, image tiles, which have not been requested for the longest
time, are discarded.

Thus, if a sub-image is requested, only tiles containing parts of the requested area are

loaded. The size of the buffer can be set via the configuration file. On normal desktop

PCs, where only a small amount of memory is available, only a small number of tiles

are buffered, while on a computer cluster nearly the whole image can be loaded into the

RAM. ImproImage sorts loaded tiles in the order of their last requests. If the specified

maximum number of loaded tiles is exceeded, the tiles which were not requested for

the longest time are discarded. As a result, the memory usage remains on the same

level during the run time. Often requested tiles are kept in the memory, minimizing the

number of time-consuming I/O requests when working in local neighborhood of image

tiles.

The advantages of ImproImage are the constant memory load and the ability to work

with small parts of the WSI. On the other hand there is a higher number of I/O re-

quests. Two classes were implemented to allow the processing of the whole image and

to minimize the I/O for tile loading, called CompleteImproImageTask and CompleteIm-

proImageGridTask. Most image tasks do not only require the processed image part itself,
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but also additional surrounding pixels, e.g. filters like the Gaussian filter or the Sobel

operator. Therefore, ImproImage always loads four image tiles, see the yellow area in

Figure 4.4. The active area, which is currently processed, has the size of a single tile and

is within the loaded tiles (red square). This ensures that one can access the neighborhood

for each active pixel without loading tiles from the hard disk. The CompleteImproTask

shifts the active area through the whole image. This is done row by row, but it switches

the direction in each line. Each second line is parsed from the end to the start. As

we shift a 2 x 2 tile area through the image, each inner tile is requested at least twice.

By changing the read direction, the request tiles are always neighbored and thus most

requested tiles are already buffered.

CompleteImproImageGridTask is an extension of CompleteImproImageTask. The

tiles are parsed in the same way, but it allows to specify smaller tiles sizes. The image

tiles are then separated into smaller sub-regions, which can be processed independently.

A further advantage of splitting the image into small tiles is that it makes the image

processing task parallelizeable. The specific task, e.g., the color deconvolution, can be

executed by multiple processes, each of which handles another part of the image.

Image Viewer

In digital pathology, virtual microscopy has become more important in the last years.

Digital slides can be accessed by multiple expert pathologists, allowing additional consul-

tation and annotation by telepathology. Virtual microscopes read WSIs and mimic the

user experience of optical microscopes. For example, standard operations like navigation

through the image slides and zooming into specific image areas are supported. Visualiza-

tion of the virtual slides can help to validate and to tune an automated imaging pipeline

and to visualize the results directly on the tissue section. Currently, two visualization

plugins are included.

The first plugin, SVSViewer, allows the inspection of images in Aperio’s SVS format.

The user can navigate through the digitized tissue slide, continuously zoom in and out,

and select image regions (rectangular and free-hand), which can then be exported to

separate image files. The viewer uses the Openslide library to read the image files.
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Figure 4.5: Different image properties displayed in the ImageViewer plugin The original image
(colored) can be processed, resulting in different grey-scale images. Here, exemplary results from the
color deconvolution (fuchsine, hematoxylin) and intensity values for the two color descriptors, brightness
and saturation, are depicted.

The second viewer, ImageView, gives the user access to the exported image tiles

created from the ImproImage class. In addition to the navigation within the image, it

also provides features for the annotation of the tissue section. Different overlays can

be added to visualize multiple properties, e.g., results of the imaging pipeline. The

properties include different views of the histopathological image, like grey-scale versions of

the intensity of the different stains, or image properties, e.g. the saturation or brightness

of the pixel values. An overview can be seen in Fig. 4.5.

In addition, results gained by the cell recognition can be visualized. Cell positions

and properties can be added as an overlay, and a comparative view of the impro pipeline

cell detection and manually annotated cells for the validation is provided. Figure 4.6

demonstrates two available overlays. The cell overlay on the left visualizes the detected

cell positions and their morphology classes. Other properties, like the cell density, can be

displayed as heatmaps, see the right image in Figure 4.6. The density per tile is plotted.

The color ranges from black, low cell density, to red for the highest cell density values.

Zero values are not drawn.
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Figure 4.6: Results of the cell detection pipeline In the left image, the overlay displays cell
positions, and the coloring is based on cell classes computed from multiple shape descriptors. Heatmap
overlays, like the one shown in the right images, can be used to display general image properties. In this
example the cell density is plotted.

Region of Interest

The ROI is limited to the part of the image covered by tissue. Therefore, the first

step is the separation of the image pixels into background and tissue. The whole pro-

cedure, including the pixel classification and the definition of the ROI, is implemented

in the ImageMultiResClustering plugin. The used multi-resolution clustering approach

is described in Section 3.2.3. The plugin takes multiple parameters as input. First,

a training image set has to be specified. The separation into pixel classes is done for

each layer. Thus, training images and pixel classes have to be set separately for all

layers. Second, the user has to determine the pixel signature. The signature is a set

of descriptors, e.g., the BrightnessDescriptor, SaturationDescriptor, ContrastDescriptor,

and VarianceDescriptor. In the CD30 pipeline, we defined the ROI using the two pixel

classes Background and Tissue. The pixel class signature considered two descriptors, the

BrightnessDescriptor and the SaturationDescriptor. Figure 4.6 summarizes the result of

the training step. The mean signatures of the Background and the Tissue pixel classes

are plotted. The error bars illustrate the standard deviation within the training image

set. Background pixels are brighter than Tissue pixels, while Tissue pixels have a higher
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saturation. Both, the differences in brightness and saturation, are caused by the hema-

toxylin and fuchsine staining. The blue line in Figure 4.7 shows the class border for the

minimum distance to mean clustering approach used in this study. New test samples

were either classified as Background if their pixel signature was located above, or as Tis-

sue, when the pixel signature was below the class border line. The background of the

plot also visualizes the occurrence of the combination of saturation and brightness values

for an exemplary WSI. The intensity value of a pixel in the plot represents the count

of pixels in the WSI in logarithmic scale. The plot shows a high and narrow peak near

the Background signature. A large fraction of pixels in the WSI have a similar signature

and can be considered to be unstained Background pixels. Tissue pixels have a higher

variation regarding saturation and brightness. Differences are reasoned by the two stains

and the diversity within the tissue area. In cell nuclei, there are more negatively charged

molecules and more hematoxylin can bind compared to cytoplasmic image areas. The

signature of a cell nuclei pixel is dark and highly saturated. In contrast, sclerotic bands

are barely stained, and the pixel signatures in such areas are rather unsaturated and

bright. The segmentation into the two pixel classes is depicted in the second step of

Figure 4.8.

After the assignment of a pixel class to each image pixel, the ImageMultiResClustering

plugin is able to define the ROI. Two additional parameters are needed. First, one of the

pixel classes has to be chosen as the class of interest (COI). That is the pixel class that

contains the information to be extracted from the image. Here, the COI is the Tissue

pixel class. The second parameter specifies a threshold. The image is processed in tiles

and only tiles whose amount of COI pixels is above the threshold are considered to be

part of the ROI. The tiling and the resulting ROI can be seen in the right image of Figure

4.8.

When dealing with WSI data, one faces multiple challenges. The tissue preparation

and staining process is very sensitive and often leads to artifacts in the image. Unspecific

staining can pollute the glass slide in some areas. The slicing of the tissue section stresses

the tissue and may result in tearing up fragments. In many cases, smaller fragments are

clinched or even folded. Cell positions in this area are displaced. To avoid such artifacts,
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Figure 4.7: Class signatures for the multi-resolution clustering Two pixel classes were consid-
ered: background pixels and Tissue pixels. The signatures include the brightness and saturation value.
Beside the cluster heads, which are the average vectors of the training data set, the standard deviation
for both parameters are plotted. Background pixel have high brightness values and a very low satura-
tion. Tissue pixels are more saturated and the variation of brightness and saturation values is much
higher within the class. The border between both pixel classes is drawn in blue. The intensity values
in the background of the plot represent the pixel signature distribution in one example NScHL WSI in
logarithmic scale.
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Figure 4.8: Multi-resolution clustering pipeline steps The original image (left) is segmented into
the two pixel classes Background pixels and Tissue pixels (middle). The segmented image is used to
create the ROI (right), only tiles are considered with a certain amount of Tissue pixels.

Figure 4.9: Artifacts in WSIs Slicing and staining of the tissue samples can produce artifacts in
WSIs. The red arrows mark a typical pollution of the glass slide caused by air bubbles and dried liquid.
The blue arrow marks a clinched and folded tissue fragment. Here, the displacement of the cells does
not allow to determine the cell distribution correctly. We defined the ROI in such a way that staining
artifacts and fragmented tissue were ignored in the following pipeline steps.

the ROI was additionally post-processed.

A region growing algorithm was applied to the detected ROI to identify large tissue

fragments within the WSI. Small fragments, which most likely are artifacts, are discarded.

The aim of the definition of the ROI is to reduce the input data. Image 4.10 depicts

the percentage of tissue tiles in the three image groups lymphadenitis, MCcHL, and

NScHL. Within the image sets, tissue covered 35 % to 80 % of the image area. In most

cases, 40 % or more of the initial data was identified as background and was discarded.
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Figure 4.10: Region of interest The relative amount of tissue tiles for the three diagnoses, lym-
phadentis, MCcHL, and NScHL are plotted. The images have at least 35 % tissue tiles, but most
commonly the amount of tissue tiles range between 50 and 60 %. The definition of the ROI reduces the
input data in those cases by 40 %.
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Color Deconvolution

For the color deconvolution, pre-selected image sections were used as training set to

define the absorption matrix for the two color dyes, hematoxylin and fuchsine. An

overview of the graphical user interface is given in Figure 4.11. Area 1 describes the

color dyes, including the name, a list of the training images for the computation of the

absorption vectors, and a gradient, which represents the dye in RGB color space for

different intensity values. On the right side, two dyes can be selected and displayed as

a gradient to demonstrate mixed pixel values. In our work, only two dyes are used:

hematoxylin and fuchsin (CD30 staining). The third absorption vector is calculated as

an orthogonal vector and represents the staining, which is not caused by the dyes.

The plugin allows processing of images in TIF file format and Aperio’s SVS format.

Properties for the input and output of the color deconvolution can be set by the user,

see area 2 and 4 in Figure 4.11.

The sections are manually chosen from the set of double stained images. The samples

chosen from the histological image are always a mixture of the dyes. To obtain the

absorption matrix for a single dye, it would be necessary to prepare mono-stained images.

Figure 4.12 depicts an exemplary result of the color deconvolution, for a small sub-region

of a WSI.

The dyes were not separated in all image regions. The test samples for the dye

fuchsine always contained a small amount of hematoxylin, shifting the absorption vector

slightly. Thus, the intensity of hematoxylin is zero in CD30+ areas. The cystoplasm

of CD30+ cells appears black in the hematoxylin image, see red arrows in Figure 4.12.

Here, the pixels were divided into CD30+ and CD30−. The exact amount of dye was not

of interest, thus the error during the stain separation did not affect the cell detection.

Normalization

WSIs of histopathological tissue slides can vary by multiple factors. Sources of variance

are the staining process, possible pollution of the slides, and changes in the illumina-

tion caused by the optical scanning device. Nowadays, we can overcome some of those

artifacts, e.g., modern scanning devices automatically post-process the captured images
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Figure 4.11: GUI of the ColorDeconvolutionPlugin 1) The calculated color vectors for different
intensity values and a list of the input sample files. 2) Selection of the input files for the color deconvolu-
tion step. 3) Normalization of the resulting grey scale images. 4) Output target directory and optional
output images.

Figure 4.12: Output of the color deconvolution step The separation of the color stain into the
two channels hematoxylin and fuchsine. The original image is processed, the resulting images show the
intensities of fuchsine (middle) and hematoxylin (right). The dyes are not completely separated, thus
areas that are CD30+-stained (see red arrow) have zero intensity in the hematoxylin channel.
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to eliminate illumination differences, caused by the optics of the scanner. But, color

nonstandardness [81] is still challenging when dealing with histopathological WSIs.

For the CD30 pipeline, two normalization approaches were tested and implemented.

They were provided by the ColorDeconvolution plugin and were executed directly after

the separation of the color stains. The first method, average intensity normalization,

scales all intensity values by a constant factor s. The user specifies the target average

intensity for the image. The factor s is then calculated according to Equation 4.1.

s =
intensitytarget
intensityobserved

(4.1)

Intensitytarget is the average intensity value that shall be reached in the image, the

intensityobserved is the measured average intensity in the image. The user can also specify

a minimum intensity value. Pixels below that value are excluded and are not taken into

account for the intensityobserved calculation. By default, this threshold is one, and only

zero valued pixels are excluded. The exclusion of low intensity values is intended to

specify a threshold separating pixels with unspecific staining from pixels with specific

staining, e.g., CD30+ pixels. The value has to be chosen manually because the quality of

the images differs, and intensity values for specific and unspecific staining vary from slide

to slide. We tested multiple automatic methods to determine the minimum threshold,

e.g., based on the intensity histogram, but due to the heterogeneous distribution of

CD30+ cells and the occurrence of staining artifacts within the images the minimum

threshold could not be determined automatically for the WSIs. An exemplary result of

the average intensity normalization with a minimum threshold of 0.059 and intensitytarget

set to 0.294 is depicted in Figure 4.13 C. The target intensity value was determined, using

manually selected sub-images with a staining of high quality, meaning a high intensity

of the CD30+ specific staining and nearly no unspecific staining.

The second normalization method provided by Impro is based on histogram equal-

ization. The algorithm gets one parameter as input, the target histogram. The intensity

value histogram of the image is then computed. The intensity values of the test image

histogram are shifted to match the intensity value distribution in the target histogram.

Each intensity value of the test image histogram is mapped to a new value. In contrast
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Figure 4.13: Normalization in Impro The columns represent six tissue samples taken from cHL
WSIs. The last two columns are printed with a lower magnification. The samples vary in the quality
of the CD30 staining. Row A depicts the original histopathological images in RGB color space. The
samples in column two and six have an overall lower CD30 staining intensity. For the sample in column
2, we can observe a high variance regarding the CD30 staining. Sample 3 has a high CD30 staining
intensity, but the surrounding area of the CD30+ cells is polluted by unspecific staining. Row B displays
the CD30 channel obtained by color deconvolution. In row C and D, intensity values are normalized.
The average intensity method is shown in C. The result of histogram normalization is depicted in row
D.

to the average intensity method, the factor applied to each pixel value is different for

each intensity value.

Figure 4.13 shows six tissue samples, four of which are close-up views, the last two tis-

sue sections are presented with a lower magnification. Row A presents the original tissue

samples directly cropped out from the histopathological image. The samples represent

typical conditions that can be found in WSIs of cHL. The sample in the first column has

a broad range of intensity values. The CD30+ cells have highly saturated red areas. The

cytosolic areas are brighter and less saturated. Column two and six are examples for low

intensity CD30+ staining. Column three, four, and five have high intensity values for

CD30 staining, but column three additionally shows a lot of unspecific staining.
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4.1.3 Object Detection

The last section focuses on the pre-processing. To extract information about the dis-

tribution of CD30+ cells in the tissue sections, cells have to be detected as objects. In

the current setup, three plugins provide functions for the cell detection. The first plu-

gin, CellProfilerAdapter, is an interface to CellProfiler. CellProfiler is used to perform

the image segmentation and the object detection. The second plugin, CellCSVExporter,

allows to export results from the CellProfilerAdapter to files in CSV format. The last

plugin, PipelineValidation, provides methods to validate the quality of the cell detection.

CD30+ Pixel Segmentation

The CellProfilerAdapter plugin is an adapter for CellProfiler. For the processing in

CellProfiler the images need some preparation. The first step is the adaptation of the

image format. The intially used CellProfiler version (svn:9661) did not support WSI

image formats like the SVS format. In newer versions the bioformats library is included

in CellProfiler, and all common WSI formats are supported. However, the managing of

the different image layers and image tiles is not done automatically. Thus, we decided

to keep our own image format to be more flexible and to have a better control regarding

memory usage. The handling of the WSIs and image tiles is described in detail in Section

4.1.2. We use a tile size of 1,024 x 1,024 pixels and all tiles are treated with a border of

100 pixels. The reason for the border is the cutting of cells profiles as shown in Figure

4.14.

The treatment of the WSI as separate tiles may result in splitting single cell objects

if they are located on tile borders. A measured cell profile touching the border of a tile

might be incomplete. To avoid detecting just parts of a cell, those objects are rejected.

The overlap of 200 px (100 px per border) makes it possible to detect cells within the

border area. The border area is handled multiple times resulting in a longer running

time because of the increased area, see Table 4.3. For small tile sizes, the influence of the

border is rather high. If a small running time is required and the memory resources are

high enough, the overall overlap can be reduced by expanding the tile sizes. For image

tiles with a size of 4,096 x 4,096 px and a border of 100 px, the running time is assumed
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Figure 4.14: Image border for cell detection The image shows two neighboring image tiles (thick
lines) and their extension of 100 pixels (thin line). The border ensures that cells at the border of two
tiles (see blue mark) can be detected by CellProfiler. The overlapping area is processed multiple times.
Thus, a single cell might be detected twice. To remove duplicates, the results have to be post-processed.

to be 1.078-fold.

Table 4.3: Relative size of an image for different tile sizes and a fixed border of 100 px

Tile size Relative image area
1,024 1.4288
2,048 1.2048
4,096 1.0781

Some cells might be detected multiple times. The marked cell in Figure 4.14 is

located within the overlapping part of two neighboring tiles. As the cell does not touch

the border, the cell profile is detected in both image tiles. To correctly handle duplicates,

the results of the CellProfiler pipeline are post-processed. The local cell positions detected

by CellProfiler in single image tiles are used to calculate the global cell positions. An

additional filtering step removes duplicates by comparing the centers of mass of each pair

of cell objects. If the distance of two centers of mass is below a threshold of five pixels,

one of the objects is discarded. The error margin of five pixels is necessary if adaptive

thresholds are used for the cell detection. The different thresholds in neighboring tiles

could lead to slightly changed cell profiles and thus to a shift of the center of mass.
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Figure 4.15: CellProfilerAdapter overview The diagram summarizes the pipeline steps done by
the CellprofilerAdapter plugin. The image is first pre-processed and converted into overlapping image
tiles. Then, the cell recognition is done using CellProfiler. The cell position and other properties, e.g.
cell morphology descriptors, are measured and saved into a MySQL database. Afterwards, the collected
data is analyzed and processed further in Impro.

The actual object detection step is done in CellProfiler. Therefore, Impro executes

CellProfiler as a new process in batch mode. Table 4.4 summarizes the CellProfiler

pipeline. We developed the customized CellProfiler pipeline for the detection of CD30+

cells. All modules are listed, and the used parameters are printed.

First, the LoadImages module is used to load single image tiles exported by the

CellProfilerAdapter plugin in Impro. The LoadImages module also reads meta data

from the file name. This includes the SVSID of the original image and the global X

and Y coordinates of the upper left corner of the processed image tile. The meta data

is needed to put the image tiles, which are treated separately, into the context of the

WSI images. The additional X and Y coordinates allow the calculation of the global cell

positions, using the local cell positions in the specific image tile. After loading, the images

are processed by the IdentifyPrimaryObjects module. The module provides multiple

thresholding methods including global and adaptive approaches. Global thresholds are
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Table 4.4: The CellProfiler modules and parameters used for the object detection

Module name Parameters
LoadImages Extract metadata from where? File name

Regular expression...: see below

IdentifyPrimaryObjects Typical diameter of objects: 60 to 150

Discard objects outside the diameter range? No

Discard objects touching the border of the image? Yes

Threshold strategy: Manual

Manual threshold: < dependent on the input image >

Method to distinguish clumped objects: Intensity

Fill holes in identified objects? Yes

MeasureObjectSizeShape Calculate the Zernike features? No

FilterObjects Select the filtering method: Limits

Select the measurement to filter by: AreaShape/Area

Filter using a minimum measurement value? Yes

Threshold strategy: Manual

Minimum value: 1750.0

Filter using a maximum measurement value? No

MeasureObjectSizeShape Calculate the Zernike features? No

ExportToDatabase Add a prefix to table names? Yes

Table prefix? %%%PREFIX%%%

CreateBatchFiles Store batch files in default output folder? Yes

applied equally for all pixels within an image, while adaptive approaches are locally

adapted, thus regions of one image are treated differently. In our current setup, we use

the Manual threshold option. The threshold is set by the user and is applied globally

to the complete image. In addition, the threshold is the same for all image tiles when

CellProfiler is used in batch mode. The global threshold allows no adaptation to local

differences in the staining quality, but the results turned out to be more consistent. The

adaptive thresholds, which are calculated for each single image tile separately, can also

generate wrong results.

The algorithms to automatically adjust the threshold rely on assumptions, e.g. the

percentage of objects pixels within an image. The expected percentage number of object
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pixels has to be set for the Mixture of Gaussian (MoG) thresholding method by the user

manually. Other thresholds like the Otsu threshold work best if 50 % of the image is

covered by foreground pixels. The fraction of foreground pixels can not be predefined for

our WSIs. The total CD30+ cell number within different tissue sections is highly variable.

The separate treatment of the image tiles causes additional issues, as the CD30+ cell

density is not even in the whole lymph node section. In some areas, cells cluster and

50 % or more of the areas are covered by foreground pixels. On the contrary, there are

also benign areas, which not have yet been infiltrated by any malignant cells. Besides, the

immuno staining quality can differ within a single image, resulting in unspecific staining

in some regions. The adaptive thresholds tend to misinterpret such unspecific staining

and set low intensity thresholds, meaning that the unspecific stained pixels are considered

to be foreground pixels.

Figure 4.16 shows example images for CD30 staining with different qualities (row

A) and the resulting segmentation for three different thresholding methods, provided by

CellProfiler (B-D). The colored outlines mark image pixels considered to be foreground

pixels, all other pixels are treated as background. The tested thresholding methods

are Maximum correlation thresholding (MCT), MoG, and RobustBackground ∗. Yellow

outlined objects also surpass the size threshold and are thus classified as cell objects, see

also Section CD30+ Objects. Green outlined objects are too small to be recognized as

whole cell profiles. They are probably cell fragments or caused by unspecific staining.

Figure 4.16 exemplarily depicts results for the adaptive thresholds. The thresholds for

specific staining with high intensity values results in correct segmentation. Here, MCT

and MoG perform best. The RobustBackground method computes a higher threshold,

and small cells with lower intensity are not detected. Even for lower intensity images

(second column in Figure 4.16), all three methods calculate the threshold correctly and

the segmentation is similar. Thus, for input images, where the majority of pixels are

actual foreground pixels, the adaptive thresholds perform well. Column three is an

example image containing a high amount of unspecific staining. Even though the intensity

of the specifically stained cells is much higher, the quality of the segmentation decreases.

∗http://www.cellprofiler.org/CPmanual/

58



Figure 4.16: Object detection with automatic thresholds provided by CellProfiler The image
shows different approaches to determine thresholds for the image segmentation. Each row depicts the
results for one method applied to four sample images. The first and second column represents images
with a very specific CD30 staining with high intensity and low intensity values. The third and fourth
column represent image regions which also include unspecific CD30 staining.
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Compared to the other methods, the MoG methods calculates a very small threshold.

Here, almost all image pixels are considered to be foreground pixels and cause a large

number of false positive objects. MCT calculates a more precise threshold, but still many

unspecifically stained pixels are above the threshold. Most of those pixels are discarded

during the object size filtering step. Nevertheless, multiple false positive cells remain.

Because of the high heterogeneity in the cHL image set, manual, global thresholds

were applied. The thresholds were manually set by HS and TS by inspecting low reso-

lution versions of the images. The results were validated. In some cases, mainly lym-

phadenitis cases with a low CD30 stain intensity, the results were refined to gain a higher

quality in the object detection.

After the thresholding, the images are binarized. Pixels are either classified as Fore-

ground or as Background pixels.

A similar approach was implemented by AS in the ImproQuant plugin. The clas-

sification was extended and both stainings, CD30 and hematoxylin, were used. Pixels

were assigned to either being CD30_positive, hematoxylin_positive or unstained. Fig-

ure S1 illustrates the quantification results for the three disease types lymphadenitis,

MCcHL, and NScHL. The pixel classes are distributed differently in the three diagnoses.

The amount of CD30_positive pixels were low in all lymphadenitis images. In cHL the

overall amount of CD30_positive pixels were higher. Single cases exist, where the rela-

tive occurrence of CD30 is comparably low as in lymphadenitis, but other cases contain

5 % and more CD30_positive pixels. The ratio of unstained and hematoxylin pixels

also differs in the three image sets. In lymphadenitis, the unstained pixels are slightly

more frequently found than hematoxylin pixels. The distribution of the two pixel classes

highly differs in NScHL. Here, a high amount of unstained pixels is typical. 70-90 %

of the pixels were classified as unstained. MCcHL shows a high variability. On the

one hand, unstained pixels are on average much more frequent than hematoxylin pixels,

which is similar to NScHL. On the other hand, some images had an increased fraction

of hematoxilin pixels. Overall, the two image sets lymphadenitis and NScHL have a

very small overlap according to the analyzed pixel class distributions. MCcHL has some

characteristics that are similar to NScHL, but the distribution of pixel classes can not
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be used to fully separate MCcHL from lymphadenitis cases. The results of the the pixel

quantification were published in [36].

CD30+ Objects

The last step of the object detection was the object labeling. From the thresholding we

obtained the foreground pixels. The labeling assigns each foreground pixel to one object.

In case of the CD30+ objects, we faced some requirements to precisely assign the fore-

ground pixels. Additional processing steps, also provided by the IdentifyPrimaryObjects

module in CellProfiler, were needed.

CD30, the target protein for the immuno staining, is located mainly in the membrane.

The staining only highlights the membrane and the cytoplasm of the cell, while no CD30 is

present in the cell’s nucleus. As a result, pixels representing the nucleus are not treated

as Foreground pixels. The Fill holes in identified objects? option in CellProfiler was

enabled to overcome the misclassification. The algorithm searches for pixels classified as

Background that are enclosed by Foreground pixels and reclassifies them as Foreground

pixels. In case of the malignant CD30+ HRS-cells, the method performs well. The

malignant cells are enlarged and large cytoplasmic areas surround the cell nuclei pixels.

In rare cases, the cell nuclei are located close to the border of the cell. It is possible

that not all membrane pixels are classified as foreground pixels and the nucleus is not

fully surrounded by Foreground pixels. Here, the correction step does not work and the

nucleus is not counted as part of the cell object. The effects of different thresholds and

the fill whole operation can be seen in Figure 4.17.

Touching Cell Objects Another issue for the labeling are touching or clumped ob-

jects. After the labeling, objects are treated differently depending on the classification

in single or clumped objects by CellProfiler. The latter are post-processed to separate

the touching cells into single cell objects. In the CD30 pipeline, clumped objects are

separated based on intensity. The second method, separation based on shape, works

best if the objects have a regular, e.g., circular, shape. Here, clumped objects tend to

have cleavages, where the single objects are touching each other. In cHL images the
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Figure 4.17: Thresholding and fill whole operation Column A shows a single CD30+ cell object in
the original RGB image and the corresponding fuchsine stain after the color deconvolution. The nucleus
of the cell is located near the upper right bond of the cell and the fuchsine staining has a relative low
intensity compared to the rest of the cell object. Column B and C demonstrate two intensity thresholds
in the upper images and the application of the fill whole operation in the bottom image. In B, the
nucleus is not enclosed by object pixels. As a result, the nucleus is not detected to be part of the CD30+

cell object. The slightly decreased threshold in C fills the gap and the cell nucleus is annotated correctly.
Such slight shifts in the intensity threshold can have a high impact to the morphology detected by the
imaging pipeline. The cell object in B has a decreased area and a lower solidity.

malignant cells can build large cell clusters. As the shape-based method just considers

the outline of such a cell cluster, there is no information about the cell borders within the

clumped object, leading to a relatively random separation. The intensity-based method

in CellProfiler uses local intensity maxima as seeds. The border line between the touch-

ing objects is detected by applying a watershed algorithm. While both methods showed

good results for small clumped objects with a cell count of two or three, the intensity-

based method yielded better results for large cell clusters. However, even though the

recognized cell objects approach better to manually fitted cell outlines, the detection

of fine structures like micro spikes, which are important for cell migration, cannot be

separated in clumped objects. In the case of very dense cell groups, such fine structures

also cannot be identified by human eye.

The accuracy of the results depends on the level of detail we are looking at. While

the general cell count in an image area does not require the accurate cell position of each

single cell, advanced analyses, e.g. the nearest neighbor distances, are more influenced by
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incorrectly determined cell positions. Within large cell clusters, the cell positions might

be slightly shifted, but even though the borders of the cells are not accurately determined,

distances between the cells’ centers of weight are only influenced by a few pixels, and

the overall error is small. However, detailed properties like the cell morphology might

be highly dependent on the correct cell outlines. The solidity for example is decreased

if fine structures like micro spikes are not detected. This issue is related to the coastline

paradox. Similar to coastlines, cell outlines can have a fractal-like structure and the

measured length depends on the used level of detail. Such properties might still be used

to classify the cell profiles in the image, but one needs to keep in mind that they might

be caused by the image processing method, and the morphological property does not

fully reflect the biological state of the cell.

Figure 4.18: Cell count The count of detected
CD30+ cell objects for the three image types lym-
phadenitis, MCcHL, and NScHL. The count ranges
between 470 and 57,033 cells.

Figure 4.19: Cell density per image tile The
cell density in the CD30+ image set. The density
corresponds to the area of a single ROI tile. The
count of cells per 0.59 mm2 tissue is depicted.

Filtering Of Small Cell Fragments A third factor for labeling the objects in the

cHL images set arises from the sectioning of the lymph node and the fact that we deal

with 2D image data. Each cell profile we recognize is a 2D profile gained by sectioning

a 3D object, the malignant cell. The cutting plane of the tissue determines the observed

cell profiles. Some objects might be cut through their center, but others might only

be cut at the border. As we are also interested in the cell morphology, we want to

exclude small CD30+ cell fragments obtained by the sectioning process. A filtering step
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is applied, excluding all CD30+ objects with a size below a certain threshold. The

MeasureObjectSizeShape module of CellProfiler is used to calculate the area size of the

potential cell objects. The Filter using a minimum measurement value? property in the

FilterObjects module is enabled to apply the filtering step, see Table 4.4. In the CD30

pipeline, the lower bound is set to an area size of 1,750 pixels. In the tissue section, this

corresponds to an area of about 110 µm2. For a perfect circular profile this would mean

a diameter of 5.917 µm. In comparison, an erythrocyte, one of the smallest cell types in

the human body, has a typical diameter of 7-8 µm. Smaller objects are considered to be

cell fragments, and the actual cell is not part of the 2D plane captured by the microscope.

CD30+ Cell Count Figure 4.18 depicts the cell counts for the CD30+ image set. We

found the lowest count of CD30+ cells in the lymphadenitis cases. Ten out of eleven

lymph node sections contain less than 5,000 cell objects. The average cell count for the

diagnosis lymphadentis is ∼3,034. Image 5161 has an untypical high cell count within

the lymphadenitis set, about 9,000 cells were detected.

In the two cHL image sets, which have a higher cell count compared to the lymph-

adenitis image set, we detected the most CD30+ cells in MCcHL with ∼ 19,000 cells on

average. The MCcHL lymph nodes had a broad range of different cell counts. While

the cell count ranges between 2,600 and 18,000 for eleven out of twelve NScHL cases, we

found four MCcHL cases with a cell count greater than 20,000. In both cHL image sets,

a single case is present showing a cell count greater than 50,000.

CD30+ Cell Density Figure 4.19 plots the cell density expressed as the cell count per

image tile. One tile corresponds to a tissue area of 0.59 µm2. If we compare the three

image sub sets, we get similar results compared to the cell count. Overall, the density

of CD30+ cells is increased in both cHL image sets. Except one case, the density values

range between 0.31 and 2.78 CD30+ cells per image tile. In contrast to the cell count,

the cell density is more symmetrically distributed. This might be due to the fact that

the total cell count is also influenced by the size of the lymph node section, while this

does not effect the cell density. Figure 4.20 depicts the correlation between cell count

and cell density. Here, the influence of the tissue section size becomes clearly visible.
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Figure 4.20: Correlation of cell count and cell density The plot depicts the three image sets,
the cell count, and cell density of each case. The plot visualizes the variation caused by the size of the
analyzed lymph node sections. In some cases, the cell count is threefold higher for cases with comparably
high cell density. For example, one MCcHL case with a cell density of ∼10 has about 10,000 cells, while
cases with a similar cell density exhibit a cell count of 28,000 and more.
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There is a high variance in the tissue section size, for example, observable for the two

MCcHL cases 2949 and 5822. Case 2949 had a cell density of 9.75, and ∼ 10,000 cell

objects were detected. Image 5822 had a decreased cell density of 9.16, but the detected

cell count, ∼ 26,500, was increased by a factor of 2.64. The high difference is caused

by the lymph node sizes of 0.68 cm2 and 1.90 cm2, respectively. The global structure of

a lymph node has a high variability due to anatomical location, age, diet, and antigen

exposure [82]. The lymphatic system adapts to and memorizes infections, which is also

partly reflected in the variability of the lymph node structure. In this study, lymph nodes

were not labeled according to their anatomical location. Nevertheless, we need to keep

this in mind as one factor for the variability in the data.

Figure 4.21 visualizes some typical density distributions for MCcHL cases (A) and

NScHL cases (B). The white lines mark the tissue sections detected by the CD30 pipeline.

For the calculation of the cell density, only the highlighted region is taken into account.

To be representative for the broad ranges of cell counts in the samples, the cases were

selected and ordered by the total cell count. The top tissue sections contain more than

15,000 CD30+ cells. The cell count decreases towards the bottom of the image. The

last two tissue sections have less than 5,000 CD30+ cells each. In NScHL, we observed

a clustering of cells, meaning that there are spots with a high CD30+ cell density, while

other areas in the tissue section are not populated by malignant cells. This is the case

for all four depicted tissue samples. Images three and four, both tissue sections with a

low cell count, show only a small number of densely packed cell clusters.

In MCcHL, the cell density distribution is more diverse. The first and the last image,

which depict tissue sections with the highest and with the lowest cell count, show a

density pattern similar to the NScHL cases. The CD30+ cells cluster in some regions,

and spots with a high density exist. Those spots of high cell density are missing in images

two and three. Here, the cells are distributed more evenly throughout the tissue section.

In image two, the cells are spread through the whole lymph node section, and only few

areas exist, where no CD30+ cells are present.

In the NScHL image set, ten out of twelve tissue sections contain cell clusters with

a high cell density, fully or partly separated by regions without malignant cells. From
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the MCcHL image set, only three tissue sections were identified to have a similar cell

density distribution. The other nine cases had either no regions with a high cell density,

or the cells were distributed evenly, lacking the separating areas without CD30+ cells,

or both. Two MCcHL cases had a very high overall cell density, but in contrast to

NScHL cases with similarly high densities, the malignant cells were spread through the

whole lymph node section. The differences of locale cell densities were relatively low.

One possible explanation are the sclerotic bands, present in all NScHL cases, but not

necessarily present in MCcHL. To directly show the correlation between the cell density

of CD30+ cells in the NScHL lymph node sections, the clustering of the cells and the

presence of sclerotic bands, an additional imaging pipeline would be required to identify

sclerotic regions. This could be done using a texture based method to separate regions

with a low cell nucleus density, which are likely sclerotic, and other regions representing

tissue.

Two figures, supporting the differences in the cell density distribution, are shown

in the supplement. Figure S2 depicts the fraction of high cell density image tiles with

neighboring high cell density image tiles for each image of the cHL image set. On average,

this fraction is higher for NScHL cases, but half of the images of the MCcHL image set

also have high values of about 80 % and more.

The MCcHL set contains six images with a low number of adjacent high cell density

image tiles. I.e., the high cell density image tiles are isolated, meaning that no, or at least

only small cell clusters exist. Figure S3 lists the average occurrence of one up to eight

adjacent high cell density image tiles for the two cHL sub-types NScHL and MCcHL.

In MCcHL, the 8-neighborhood mostly consisted of a single high cell density image tile.

The occurrence of multiple high cell density tiles is increased in NScHL compared to

MCcHL. In NScHL, we observe larger dense cell clusters compared to MCcHL.

CD30+ Cell Morphology The CD30 pipeline in Impro runs the MeasureObjectSize-

Shape module in CellProfiler for the labeled cell objects. The module calculates common

shape descriptors for the detected cell objects. Typical cell shape descriptors that are

important for this work are listed in Table 3.4. As the descriptors are calculated from
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2D image data, we will refer to cell morphology as the shape of the cell profile given by

the cutting plane of the tissue section.

The plot in Figure 4.23 describes the relative amount of different cell area sizes for the

three image sets lymphadentis, MCcHL, and NScHL. The area size is plotted in number

of pixels of the cell objects. 1,600 px correspond to 100 µm2. For comparison, a perfectly

circular cell profile with a diameter of 10 µm has an area of 78.54 µm2. According to

the literature Reed-Sternberg cells reach a diameter of 30 µm and more. A circular cell

object with such a diameter has an area of 706.86 µm2, or 11,309 px, respectively. The

two cHL images sets have a similar cell area distribution. All three curves have their

maximum at the range of 1,000-2,000 px. Compared to the 46 % in lymphadenitis, the

relative amount of cells in this range is low in cHL. A big fraction of cells lies in the

range of 4,000-15,000 px. Those rather large cells make up 40 % of the cells in MCcHL

and 44 % in NScHL. In lymphadenitis, cells with an area above 4,000 px are uncommon,

here we see 15 % of the cells in the same range. The observed cell area sizes comply with

literature data, for a detailed study of the cell morphology see [83]. The fraction of large

cells in cHL and the higher variability of the area sizes in both cHL images sets originate

from the malignant CD30+ HRS cells. Hodgkin cells are mononucleated and are slightly

enlarged with a diameter of 20-30 µm. Reed-Sternberg cells are multinucleated and with

a diameter of up to 100 µm they are enormously enlarged. We still observed the same

maximum in lymphadenitis and cHL cases for the cell area size. One suggestion would be,

that the control mechanisms for the cell size is still partly intact in HRS cells, leading to

a typical cell size. The enlarged multinucleated cells emerge from incomplete cytokinesis

events, resulting in re-fusion of the daughter cells [84]. Another possible explanation is

that active lymphocytes which are the CD30+ cells in lymphadenitis are also present

in cHL tissue sections. From the CD30 stained image data alone it is not possible to

conclude which mechanism leads to the observed cell area size distribution.

2 % of the cells had a cell area size of >20,000 px. While this is possible for HRS cells,

such a cell area size is untypically high for the activated lymphocytes in lymphadenitis.

The area size suggests, that those cell profiles are artifacts caused by wrong detection

by the CD30+ pipeline. Here, either the separation of multiple cell objects failed or
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Figure 4.21: Cell density in cHL Typical cell distributions in the two cHL subtypes, MCcHL A and
NScHL B. The depicted cases are sorted by the total cell count. Images in the top row had the highest
cell count (> 15,000 cells), images in the bottom had the lowest cell count (< 4,000 cells). The white
line marks the region of interest, i.e., the region of the image that is interpreted as tissue in the CD30
pipeline. In NScHL, the cells cluster in all images. Even in images with low cell count, we observed spots
with high cell density. In contrast, MCcHL had different patterns of cell density. The top image and
the bottom image show a cell density distribution similar to the NScHL cases. Cells cluster in certain
regions with a high cell density. The other two cases lacked regions with densely packed cells. Instead,
the CD30 cells were distributed more evenly throughout the lymph node section.

69



unspecific staining was falsely classified as a cell object.

Figure 4.24 depicts the distribution of the maximum Feret diameter averaged for the

three image sets. The distributions are similar to the cell area size distributions. Most of

the cells in cHL cases have a maximum Feret diameter of 80 px, or 20 µm, respectively. In

lymphadenitis the maximum is found at 60 px. In general, the maximum Feret diameter

is shifted to higher values in cHL. In lymphadenits 50 % of the cells have a maximum

Feret diameter above 80 px. This fraction is rather low compared to the 82 % in cHL.

The fact that for cHL cells the maximum in the Feret diameter distribution is shifted

compared to lymphadenitis, which is not the case for the area size, suggests that HRS cells

have a less even and less round shape than the activated lymphocytes in lymphadenitis.

To get additional information about the general shape of the cell profiles, two typical

morphology descriptors were included. The eccentricity is based on an oval that is fitted

to the cell outline. An eccentricity of 1.0 means that the object is narrow and elongated,

an eccentricity of 0.0 means that the cell is not stretched in any particular direction.

The solidity describes the ratio between the area of the object and the convex hull of the

object. If the outline of the cell profile is convexly shaped the solidity is 1. Concave cell

profiles result in low values close to 0. For both morphology descriptors, the distributions

of the two cHL image sets were closer to each other than to the lymphadenitis image

set. Figure 4.25 depicts the relative count of cells with a specific eccentricity. Most

cells have an eccentricity of 0.65 to 0.9. As the eccentricity value is relatively abstract,

Table 4.1.3 lists some ratios between the major axis and the minor axis of an oval with

a specific eccentricity. The examples in Figure 4.22 illustrate the shape of cells with a

given eccentricity. It is noteworthy that the ratio between the major axis of the object

and its minor axis is not linearly correlated to the eccentricity. Eccentricities within the

range of zero to 0.50 are found for objects that appear round and their major axis is

no more than 15 % elongated compared to the minor axis. Cells whose dimensions are

twofold increased towards the major axis have an eccentricity of > 0.85.
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Eccentricity major : minor

0.20 1.02

0.35 1.07

0.50 1.15

0.65 1.32

0.80 1.66̄

0.95 3.20

Table 4.5: The ratio of the major axis and
the minor axis depending on the eccentricity

Figure 4.22: Ovals with specified eccen-
trictiy Samples of ovals with different eccen-
tricities.

Compared to the cHL eccentricity distributions, the eccentricity in lymphadenitis is

shifted to lower values. Elongated cells are less frequent, while the occurrence of cells

with an eccentricity below 0.6 is increased. The cells tend to be slightly stretched in one

direction, but overall the difference between the major axis and the minor axis is not as

high as in cHL.

The solidity, see Figure 4.26, is higher in lymphadenitis. The distribution has one

narrow peak, with a maximum at 0.85. In MCcHL and NScHL the maxima can be found

at 0.8 and 0.75. Both distributions are also broader and solidity values between 0.45 and

0.75 are much more frequent in cHL than in lymphadenitis. CD30+ cells are solid and

convex in lymphadentis. The lower solidity in cHL indicates that cells are shaped less

regularly, meaning that the cell profiles have more recesses or outgrowths.

From the energetic point of view, irregular or stretched cell outlines are inefficient.

The cell consumes energy to organize the cytoskeleton, which enables the polarization of

the cell. The cells shape is highly influenced by cell adhesion and cell movement. While

those factors are no exclusive reasons for the cell morphology, they are possible cellular

functions for which stretched, irregular cell shapes might be indicators.

The correlation between cell movement and 2D cell morphology descriptors needs

further verification by time-lapse data. One possible way would be to relate the displace-

ment of cells with their average eccentricity, to check whether the eccentricity indicates
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Figure 4.23: Morphology descriptor area The
area computed by CellProfiler in relative numbers.

Figure 4.24: Morphology descriptor maxi-
mum Feret diameter The maximum Feret diam-
eter computed by CellProfiler in relative numbers.

cell movement and possibly the movement direction of the cell.

3D image data might be used to validate the effects of the sectioning and the use

of 2D image data. The cell profiles currently used in the study are 2D cross sections

of the original cell and the loss of information in Z-axis needs to be kept in mind. Cell

profiles with a low eccentricity value in our study might be stretched in Z direction. A

low solidity of the cells could indicate cell adhesion and possibly cell-cell contacts. To

further verify this relation to cell function, high resolution 3D images can be used. In

addition, markers for cell adhesion and for the formation of ion channels, which play an

important role in cell-cell communication, are required.

If the cell profiles of standard immuno histological 2D images are representative for

the dissected lymph node, the morphology distribution of CD30+ cell profiles can be

integrated in the standard diagnosis of cHL and can be used as an additional source of

information about the progression of the disease.

Neighborhood Analysis

In the last sections, cells were analyzed according to their spatial global positions and

the cell morphology. We also investigated the relationship between the relative cell

position and cell shape. Looking at the local neighborhood of a single cell, are there

any preferences regarding the cell morphology? To simplify the comparison of cells, we
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Figure 4.25: Morphology descriptor eccen-
tricity The eccentricity computed by CellProfiler
in relative numbers.

Figure 4.26: Morphology descriptor solidity
The solidity computed by CellProfiler in relative
numbers.

assigned cell classes, depending on morphology descriptors. Three values were taken into

account: area, solidity, and eccentricity. A certain threshold was determined for all three

descriptors. The thresholds were set whilst taking into account the overall distribution

of each morphology descriptor and were refined after consulting pathologists of the Dr.

Senckenberg Institute of Pathology. Cells were divided into small or large cells. Large

cells have an area of ≥500µm2 (∼ 8, 000 px). Cells with a high eccentricity are elongated

in one direction. All cells with an eccentricity above the threshold of 0.85 are labeled

as elongated. The solidity descriptor was used to determine if cells are frayed by setting

the threshold < 0.75. Cells that are neither classified as elongated, nor as frayed, are

labeled as round cells. Table 4.6 gives an overview of the eight cell classes. Comparing

the manually set thresholds for the three classes with the descriptor distributions visible

in Figures 4.23 - 4.26, it is obvious that the cell classes are not equally frequent in the

image set. Only a small fraction of cells are classified as large. Figure 4.27 depicts the

frequencies of the cell classes for the whole image set (A) and separately for the different

diagnoses (B-D). To be independent of the total number of cells in each image, the image

sets were averaged by calculating the cell class distribution for each image separately and

averaging afterwards. Otherwise, images with a high cell count would have been weighted

much higher than images with a low cell count.
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Table 4.6: The morphological cell profile classes defined by the three descriptors area, eccentricity, and
solidity. The attributes Large, Elongated, and Frayed are computed by setting a fixed threshold for each
morphology descriptor.

Symbol Index Name Large Elongated Frayed

0 small_round - - -

1 large_round + - -

2 small_elongated - + -

3 large_elongated + + -

4 small_frayed - - +

5 large_frayed + - +

6 small_elongated_frayed - + +

7 large_elongated_frayed + + +

Small cells are much more frequent than large cells. Most cells were classified as

small_round cells. Averaged over all images, 39 % of the cell profiles belong to this cell

class. Although small_round is the most frequent class in all three diagnose image sets,

it is most predominant in lymphadenitis. Large morphological cell classes (1, 3, 5, 7) are

rare in lymphadenitis and make up 8.1 % of all cells. In cHL, the percentage of large cells

is increased to 11.06 % in MCcHL and 17.36 % in NScHL. The relative amount of frayed

cells is slightly increased in cHL. It is on average 20.15 % higher than in lymphadenitis.

To investigate the relation of morphological cell features and the geometrical closeness

between cells, we investigated the occurrence of morphological cell classes in the local

neighborhood. Here, we defined the local neighborhood as nearest neighbor pairs. For

each image we computed the fractions of the eight morphological cell classes. We also
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determined the conditional property, P(NCP = j | CP = i), given that a cell CP has the

cell class i the probability to have a nearest neighbor NCP with cell class j.

Figure 4.27: Fractions cell classes Distribution of cell classes averaged for all images and for the
three diagnosis image sets.

To verify a correlation of the cell classes between nearest neighbor cells, we compared

the observed occurrences to reject the null hypothesis that the cell classes are random

and thus are uncorrelated. If the morphological cell classes of a pair of nearest neighbor

cells are random, the probability to get k nearest neighbor pairs of two certain morphol-

ogy classes can be modeled as a binomial distribution. From this we can compute the

prediction interval [klow, kup]:

max klow ∈ N :

klow∑
k=0

pk(1− p)n−k
(
n

k

)
≤ α/2 (4.2)

and
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min kup ∈ N :
n∑

k=kup

pk(1− p)n−k
(
n

k

)
≤ α/2. (4.3)

If the number of counted nearest neighbor pairs is measured to be above or below

the prediction interval, the null hypothesis can be rejected within a error tolerance of

α. In this study, α was set to 1 %. Morphological pairs counted above the prediction

interval are with high certainty over-represented in the data set under the assumption

of a random distribution of the morphological classes. Morphological pair counts below

the prediction interval are underrepresented. To compare the image sets, we counted for

each morphological class pair the number of cases showing an over- (NRhigh) or under-

representation (NRlow). The results are depicted in Figures 4.28 to 4.31. Preferences

of the neighborhood relations are symbolized as arrows, when the relation score, see

Equation 4.4, is ≥ 50 % of the maximal possible score.

relation score = |NR(CP,NCP )high −NR(CP,NCP )low| (4.4)

Grey dotted arrows represent favored relations of two morphology cell classes, black

solid arrows symbolize neighborhood relations that are avoided. The thickness of the line

correlates with the relation score. Thin lines depict a relation that equals 50 % of the

maximal relation score, thicker lines symbolize a relation that is present in more than

50 % of the cases. Figure 4.28 depicts the relations found in all 35 images independent

of the diagnosis. While the morphology classes 1 to 4 do not show significant preferences

regarding their nearest neighbor, morphology classes 0, 5, 6, and 7 are dependent on the

neighboring morphology class. Small_round, small_elongated_frayed, and large_frayed

cells have an increased chance to be neighbored by cell profiles having the same morphol-

ogy class. The relation score for two neighboring cells of the class small_round is found

to be the highest and it reaches 83 % to 92 % in all image sets. The diagram in Figure

4.28 also highlights that frayed morphology classes avoid nearest neighbor cells with the

attributes small and round.

Figure 4.29 summarizes the neighborhood relations of the lymphadenitis image set.

Compared to the two cHL image sets small_round cells are more isolated. The direct
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Figure 4.28: All diagnoses The neighborhood
relations of the whole image set.The three mor-
phology classes 0, 5, and 6 favor nearest neigh-
bors of the same morphology class. The two classes
small_round and small_frayed avoid the neighbor-
hood of each other.

Figure 4.29: Lymphadenitis The neighbor re-
lations in the lymphadenitis image set. The self-
preferences of the classes 0, 5, and 6 are also present
in most of the lymphadenitis images. In addition,
all frayed classes, except the small_frayed cells,
avoid the neighborhood of small_round cells.

Figure 4.30: MCcHL diagnosis In MCcHL, the
relation between small_round and other classes is
less strong. The morphology classes 4, 5, and 6
avoid the direct neighborhood of small_round cells,
but the percentage of cases is less.

Figure 4.31: NScHL diagnosis In NScHL,
only the two morphology classes small_round and
small_elongated_frayed avoid each other as a direct
neighbor. In contrast to lymphadenitis, the cHL
image sets show an attraction between the two mor-
phology classes large_elongated and large_frayed.
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neighborhood of small_round cells is avoided by the three morphology classes 5, 6, and

7. The preference of large_elongated_frayed to be in the neighborhood of large_frayed

cells is a relation that only can be found in cHL.

Figure 4.32: Nearest neighbor pairs small_round The distribution of the morphology class
small_round in a sample section of a MCcHL case. Red circles are all cells with a morphology class
other than small_round. Green circles mark cells with the attribute small and round. Small_round cells
with a nearest neighbor of the morphology class small_round are highlighted in a brighter green.

The neighborhood relation of the eight morphology classes can be visualized and

directly mapped on the tissue section. Figure 4.32 depicts the cell distribution in a MC-

cHL tissue section. The colors separate small_round cells, green, from other morphology

classes, shown in red. Surprisingly, although small_round cells showed a preference

to neighbor cells with the same morphology class, we found a higher average distance

between small_round - small_round nearest neighbor pairs than the overall average dis-

tance between nearest neighbor cells. The higher distances of the small_round cells

contradict the hypothesis that the nearest neighbor preferences between small_round

and other small_round cells originate from an attraction of this morphology class. In-

stead, we found the relative amount of small_round cells increased in areas with a lower

CD30+ cell density. Figure 4.32 depicts a tissue section supporting this observation. In
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high density regions of CD30+ cells the relative amount of small_round cells is low (green

circles) and only few of them are neighbored by another small_round cell (bright green

circles). In the center of the image and the upper left part, where the CD30+ cell density

is lower, we can observer more small_round - small_round nearest neighbor pairs.

The nearest neighbor analysis is based on the master thesis of JS.

Statistics

Impro has additional plugins that are focused on the statistical analysis and on visual-

ization of the results. The two plugins Quant and Heatmap are both implemented by AS.

Both plugins are accessible by GUI only. The Quant plugin performs a pixel quantifica-

tion on the low resolution layer of the WSIs. Pixels are classified by a minimum distance

to mean classifier. The training images and the background pixel class can be set by

the user. The plugin provides a statistical overview of the relative amount of each pixel

class. The method and results of the application to cHL tissue sections were published in

[36]. The Heatmap plugin can plot the results of the Quant plugin directly on the tissue

section. The results are plotted as heatmaps to visualize the relative amount of pixels

of a certain pixel class. Both plugins, the Quant and Heatmap plugin, are no longer

maintained and do not work in recent snapshots of Impro.

The CellClassMap plugin is similar to the Heatmap plugin, but it processes the results

of the cell detection from the CellProfilerAdapter plugin. It creates and stores heatmaps

for the complete ROI of all selected images. Heatmaps for the cell count are computed

for all cells of an image and for multiple morphological subsets. A heatmap for each

cell class and each meta class is created. For the computation of the heatmaps, first, a

grid is created. The default size of each grid tile is 512 x 512 pixels. All cells within

a distance of 700 pixels measured from the center of the grid tile are counted. The

computed heatmaps can be visualized as an overlay in the ImageViewer plugin. Two

examples of such overlays are shown in Figure 4.33, the average node degree heatmap is

created by the Graph plugin.

The Statistics plugins creates a statistical overview for each image. The plugin can

be accessed via GUI and with an Impro command. First, general properties of the image
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Figure 4.33: Cell class maps of the NScHL image 6286 The ImproViewer plugin displays
heatmaps, e.g. created by the CellClassMap plugin, as overlay on top of the original tissue section.
Here, two examples are visible. In A, the displayed property is the average node degree. Dark and
unsaturated values represent a low node degree, high node degrees are displayed bright and saturated.
Areas without a valid value, i.e. areas where no cells are found by the pipeline, appear transparent in the
heatmap overlay. Sub-image B plots the relative cell count for the two meta classes round cells (red) and
cut cells (green). Note, that the mixture of red and green values in RGB color space results in yellow,
thus yellow values can be interpreted as areas, where the relative cell count of both meta cell classes is
similar.
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and its CellGraph are created. Table 4.7 gives a short overview of the statistics and a

description of each property.

Table 4.7: Properties of CD30+ WSIs calculated by the Statistics plugin in Impro

Property Description
Image_EdgeNumAll Edge count in cell graph.
Image_IsolatedVerticeNumAll Number of vertices without neighbors.
Image_VerticeNumAll Vertex count in cell graph.
Image_TissuePercent Percentage of tiles that belong to the ROI.
Image_Diagnosis Integer value representing the disease type of the image.
ClusterCoeff_mean Average cluster coefficient in the cell graph.
ClusterCoeff_variance Variance in the distribution of cluster coefficients.

4.1.4 Validation

The PipelineValidation plugin can be accessed via the menu, see Plugins → View →

Pipeline Validation. The plugin provides an image viewer similar to the ImproImage-

Viewer plugin. The user can manually annotate images and mark all cell positions by

hand. A subset of image tiles is selected randomly as a sample. The image size and the

number of contained objects is too large to be annotated manually in a reasonable time.

The number of sampled tiles can be set in the configuration file of Impro. For our work,

values between 5-10 % suited best. This sample size is big enough to be representative

for the image, but still small enough to be annotated manually. To ensure that only

image tiles with relevant information are selected, the sample set is generated as a subset

of the ROI image tiles. Thus, all tiles used for the validation contain tissue.

The user can manually annotate cells in the randomly sampled image tiles. In addition

to single cell objects, which are represented only by their position, the plugin allows the

annotation of multi-cell objects. This allows a less strict annotation in densely packed

regions, where the separation of cells is not possible even by human eye. A multi-cell

object is defined by its area and a number range that specifies the upper and lower bound

of expected cell objects in the area. An example of a manual annotation is given in Figure

4.34 A.

For the validation, we compare the result of the automated pipeline with the manually
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Figure 4.34: Pipeline validation and manual annotation A: A part of a manually annotated
image tile is depicted. The surrounding tiles are not sampled for the validation and thus, are blended
out (dark blue area). White circles represent manual cell objects. Multi-cell objects are drawn with
their corresponding size and the range of the possible cell count, within the circle. B: The result of the
validation. Manual cells and pipeline cells are depicted in the overlay. All manual cells mapped to a
pipeline cell are colored green, they are true positives. Manual annotated cells, which were not detected
by the pipeline are colored dark red. They mark false negatives. If a cell is detected by the pipeline,
but is not manually annotated, the cell is considered to be false positive. Those cells are marked with
red cross-like symbols. C and D: Both images show a small validated region with higher resolution.
To show the mapping of manually annotated and pipeline cells, all possible cell pairs are connected by
green lines. The actual mapping is highlighted by bright green lines. Manual multi-cell objects can be
mapped to multiple pipeline cell objects.

annotated cells. For comparing both sets of cell objects, the first step is to map the results

of the automated pipeline to the corresponding manual cell objects. The mapping is

needed because cell objects are saved by their position, that is the center of the cell

object. As the outline of the detected cell object might differ and as the cells center can

not be precisely annotated manually, it is necessary to allow a margin between a pair

of cell objects. Therefore, for each cell object found by the pipeline, the neighboring

manually annotated cells within a specified threshold distance are determined. The

paired cell objects are added to a list and sorted by their Euclidean distance. The

cells are then mapped, beginning with the pair with lowest distance. All other pairs
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containing at least one of the two mapped cells, are removed from the list. The mapping

is iteratively continued until the list of paired cell objects is empty. For multi-cell objects,

the distance is not calculated as euclidean distance. Here, the distance is set to the

radius of the multi-cell object. Thus, single cell objects are always preferably mapped

compared to neighboring mulit-cell objects. The special treatment of multi-cell objects

is also necessary because no cell center positions are determined for the contained cells.

The distance to the center of the multi-cell object does not make sense if multiple cells

are present. Possible mapping pairs of a multi-cell are also not rejected from the pair list

until the upper bound of mapped pairs are reached.

Image 4.34 C and D show the mapping process. Manual cells as well as pipeline

cells are depicted. All potential cell pairs are visualized by green lines. The resulting

mapping is highlighted with bright green lines. Both images, C and D, contain one multi-

cell object. In C, it is mapped to only one pipeline cell. The multi-cell minimum cell

count property is set to two, meaning that at least two cells are present in the defined

area. Here, the mapped cell is treated as true positive, but the missing second cell counts

in as false negative. In image D, the multi-cell object is mapped to three pipeline cells.

The cell count is within the manually cell count range and all three cells are treated as

true positives. Image D also contains two false positive cells. The pipeline cells marked

with the red crosses could not be mapped to any of the manual cells. That means the

automated cell pipeline detected a cell object, which does not exist according the manual

annotation.

After mapping all pipeline cell objects to manual annotated cells, the automated de-

tection results can be classified as true positives, false positives and false negatives. True

positives are all cell objects found by the automated pipeline and the manual annota-

tion. All cells detected by the automated pipeline that can not be matched to a manual

cell objects are false positives. Unmatched manual cells are false negative cells in the

pipeline. For multi- cell objects we use the lower and the upper bound to calculate the

number of TPs, FPs and FNs. If the number of matching cells within the specified area

is below the minimum cell count, all missing pairs are counted as false negatives. The

existing pairs are true positives.
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To get a scoring for the imaging pipeline result for single images, we calculate the

precision and the sensitivity based on the TPs, FPs, and FNs (see Section 3.2.8). The

score is calculated for the whole image and for each single sampled tile. The latter is

useful to determine in which regions of the image the object detection was successful

and beside this we also can find regions with results of lower quality. This helps to find

the limits of the imaging pipeline and may reveal potential refinements for the image

processing.

The CD30 cell count in cHL tissue WSIs range from several hundred up to ten

thousand in most of the cases. If 10 % of the image is sampled for the validation, this

means about 100 up to 1000 cells need to be manually annotated. Depending on the cell

density and the size of the tissue section, the validation of a single image takes about

15 – 60 minutes.

Figure 4.35 depicts the FPs, TPs, and FNs for multiple sampled tiles for a WSI. The

overall fraction of TPs is 73.4 % meaning a high number of correctly detected cells. The

quality of the detection pipeline differs among the selected tiles. In the tiles 8:6, 9:4,

and 9:5, the cell detection pipeline struggled most and about 70 % of the cells were not

detected. The image tiles were manually inspected. The staining of the three tiles had a

much lower intensity compared to the other sampled image tiles. Here, a locally lowered

threshold might have increased the number of detected cells.

Table 4.8 summarizes the validation output of three WSIs. In total, 2,670 cells

were manually annotated. For all validated images, the cell detection pipeline achieved

a precision of 84 % and a sensitivity of 96 %. For all three diagnoses, the precision

exceeded 80 %. The sensitivity were also high for each diagnosis, in MCcHL and LA less

than 2 % of cells in the image were not detected.

4.2 Graph-Based Analysis

4.2.1 CD30+ Cell Graphs

Section CD30+ Objects discussed results of the detected CD30+ cell objects and their spa-

tial distribution in the tissue sections. In Section Neighborhood Analysis, nearest neighbor
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Figure 4.35: Pipeline validation for a single WSI The TPs, FPs, and FNs for a single WSI are
plotted. The results are depicted for single tiles and the total result for all tiles. Overall, most cell objects
were detected by the pipeline and the amount of FP cell objects is low. The precision and sensitivity are
higher than 80 %. But for single tiles the quality of the detection drops down. The three image tiles 8:6,
9:4, and 9:5 have a high amount of FNs. For the three tiles we also observed a low quality of staining.
The low intensity of the fuchsine stain is a likely explanation for the high FN-rate.

Table 4.8: Validation results of cell detection.

Cell #
Diagnosis TP FP FN Precision Sensitivity
MCcHL 952 189 12 0.83 0.99
NScHL 686 155 81 0.82 0.89
LA 921 137 18 0.87 0.98
all 2,559 481 111 0.84 0.96

pairs and their morphological properties were analyzed. Here we relax the neighborhood

definition, using unit disk graphs to model the local neighborhood of CD30+ cells.

The object detection, described in Section CD30+ Objects results in a set of cell po-

sitions and for each detected object an additional list of measured properties. The list

currently includes all descriptors provided by the MeasureObjectSizeShape CellProfiler

plugin. Additional properties can be added via the MeasureObjectNeighbors and the

MeasureObjectIntensity plugins. For a full list see Section Measurement of the CellPro-
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filer documentation†. For further analysis we use graph-based methods. The output data

of the CellProfilerAdapter plugin can be accessed from a MySQL database and is used

by the Graph plugin to create cell graphs, the major parts of the plugin are implemented

by TS.

Cell Graphs - Theoretical Background

Digital light microscopic images are a good source to gain detailed information about

biological processes on cellular level. Nowadays, accurate staining of specific proteins

can visualize cells, their compartments and further details like the expression of certain

proteins. However, depending on the information one wants to access, images can be a

rather inefficient representation. The data is stored pixel wise, by intensity values for one

or multiple color channels. Therefore, abstract objects, e.g. cells and cell nuclei, need to

be identified by segmentation and labeling. Another drawback regarding WSIs is that

among the object pixels containing the required information, also background pixels and

many unnecessarily detailed information are stored, leading to large files. Sizes of one

or multiple Giga-byte are common, even with high compression rates, e.g. provided by

JPEG2000 compression. In our work we focus on CD30+ cells and their distribution. To

model the spatial distribution we introduce cell graphs. The following paragraphs give a

theoretical definition of cell graphs and explain the construction from imaging data.

Definition 2 gives a formal description of a cell graph. The graphs vertices refer to

cells and their position in space. Depending on the image data, a position may be a 2D

or 3D coordinate, but in this thesis all cells objects are gathered from 2D histologically

stained images.

Definition 2. A cell graph is a graph G = {V,E}. Each vertex v ∈ V represents a

cell object having a position in space. Edges are defined according the containment model

of unit disk graphs. Two vertices u, v are connected by an edge only if the geometric

distance of v is below a given threshold t.

The resulting cell graphs have some defined properties and the geometric construction

of the graphs has a high impact. Some typical graph properties can be expressed depen-
†http://www.cellprofiler.org/CPmanual/
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dent on the local geometric distribution of cells. For example, the cell density influences

most local graph properties. The vertex degree of a single cell can be expressed as the

cell density within the unit disk of the specific cell. A local cell density of 6 in the unit

disk of one specific vertex x results in the vertex_degree(x) = 6 − 1 = 5. The vertex x

has edges to all vertices contained in its unit disk, except x itself.

In our work we focus on CD30+ cells and the resulting cell graphs are restricted to

cells expressing CD30. Thus, we call such a graph CD30+ cell graph. The constructed

graphs model the spatial distribution of reactive lymphocytes and/or HRS cells. In

lymphadenitis the population of CD30+ cells consists of reactive lymphocytes. In cHL

cases the tissue mainly consists of HRS cells, but the presence of reactive lymphocytes

is not excluded.

The distance threshold t was set to 700 px (175 µm). This is roughly the distance

of ten cell diameters and the value was chosen to define the local neighborhood. The

distance is low enough that neighboring cells are within a distance that makes cell-cell

communication possible. We need to keep in mind that long distance communication,

e.g. by some chemokines, are not taken into account. They are not represented as edges

in the CD30+ cell graphs. An exemplary tissue section and the corresponding CD30+

cell graph is depicted in Figure 4.36.

Graph Plugin

Here, the usage of the Graph plugin, including both, the graphical user interface and the

headless, text command based mode will be explained.

Figure 4.37 illustrates the graphical user interface of the graph plugin. Graphs can

be created from the raw cell positions, identified by the CellProfiler pipeline (see Section

Object Detection) and can be loaded from earlier stored graph files. Cell graphs can be

exported and imported in multiple file formats. The graph plugin supports CSV, TGF,

GML, and KAVOSH (for a detailed description of the file formats see Section 3.3.1).

For the initial cell graph generation from the MySQL database the user can specify

a maximum distance for the edge calculation. The maximum distance is equivalent to

the radius t specifying the size of the unit disks for the containment model. For a more
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Figure 4.36: CD30+ cell graph with distance threshold 175 µmA depicts the original histological
stained image. In B the cells are recognized and cell objects are marked. The coloring corresponds to
the morphological properties. To illustrate the distance threshold of 175 µm, a unit disk of one of the cell
objects is drawn. The final CD30+ cell graph is visible in C. Edges are added if the Euclidean distance
between the centers of two cell objects is below the distance threshold t.
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Figure 4.37: Graphical user interface of the Graph plugin Images can be selected in the image
list, which is part of the Impro core program. The bottom panel contains additional functionality,
provided by the Graph plugin. The GUI enables to export in multiple formats (CSV, TGF, GML, and
KAVOSH), the creation of cell class specific graphs, the creation of corresponding random graphs, and
further statistical analysis.

detailed description see Section Unit Disk Graph. Besides the complete cell graph the

user can generate specific subgraphs defined by the cell morphology, that are cell class

graphs and cell meta class graphs.

The user can also enable the generation of random graphs. An equivalent random

graph with the same number of vertices compared to the original cell graph, but with

new randomly chosen cell positions, is created. Random graphs and their definition are

described in Section Random Geometric Graph.

Optionally, it is possible to compute typical graph statistics. The user can chose

default statistics and the extended statistics option. The splitting of the provided statistics

is reasoned by the computational demand. Default statistics include all graph properties

that are fast to compute, e.g. all vertex properties that can be computed locally (node

degree, cluster coefficient, and nearest neighbor type). The extended statistics option

also enables extensible, time consuming tasks. At the current state, the plugin computes

the eccentricity vertex centrality, which includes determining all shortest paths, and the

connected components.

The options provided by the GUI also can be accessed via text command and can
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be executed in headless mode. Listing 4.2 shows two exemplary commands. ExportCell-

Graphs loads a graph and exports it in the requested output_formats. Valid formats

are GML, TGF, CSV, and KAVOSH. The second command, CreateReducedCCCGraphs,

creates the corresponding cell class graphs and cell meta class graphs.

Listing 4.2: Supported commands Graph plugin

# create a cell graph from data base:

GraphPlugin;ExportCellsGraph:prepare_db_current=true ;\\

igp_distribution_properties=true;threshold_distance =700;\\

create_heatmaps=true;default_statistics=true ;\\

extended_statistics=false;output_format=CSV

# create sub graphs (cell class and cell meta class graphs)

GraphPlugin;CreateReducedCCCGraphs:create_heatmaps=true ;\\

default_statistics=true;extended_statistics=false ;\\

igp_distribution_properties=true;output_format=CSV;\\

rgtcat_save_reduced_graphs=false;

.

The create_heatmap enables the additional creation of heatmaps for all created

graphs. A grid with a tile size of 512 x 512 is created and for each tile the contained

cells are determined. The cell count and the average node degree is calculated. The

heatmaps are stored as comma separated value files in the image directory within the

impro workspace directory. The heatmaps can be viewed using the ImageViewer plugin,

see Figure 4.33.

Cell graphs can be further processed via the GraphReducer plugin. It provides func-

tions for graph reduction based on community structures. The original cell graphs are

partitioned into cell groups and a new reduced graph is created, where each vertex re-

presents a group of cells in the original graph. For the GraphReducer plugin no GUI

is available, the plugin can only be accessed by impro text commands. The following

Listing demonstrates the usage of the GraphReducer plugin.

Listing 4.3: Supported commands GraphReducer plugin

GraphReducerPlugin;ReduceGraph:workspace=$WORKSPACE$ ;\\
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reducer=GeometricCliques;reducer_options =5 ,3/1 ,1;\\

max_level =10;

GraphReducerPlugin;ReduceGraph:workspace=$WORKSPACE$ ;\\

reducer=CommunityStructures;reducer_options =4;\\

max_level =10;

GraphReducerPlugin;CreateMultiLevelGraphStatistics :\\

dir=$WORKSPACE$/mgraph_stats_diss/

.

With the ReduceGraph command the plugin performs a graph reduction for the cell

graphs of all loaded images. The workspace option lets the user chose a custom input

directory. The reducer option specifies which method will be used for the graph reduction.

The GeometricCliques reducer performs a clique-based reduction as described in 4.2.2.

As additional parameter the user has to specify the reducer_options, in case of the

GeometricCliques reducer a single integer value to define the clique size k. Optional

the max_level defines the maximum number of reduction steps. The second supported

reducer, CommunityStructures reducer, performs a clique percolation, which is explained

in Section k-Clique Percolation (3.3.6). Here, the reducer_options needs to be two same

sized lists of integer values, separated by a ’/’. The first list specifies the clique sizes for

each graph level (parameter k). The second list defines the required overlaps between

two cliques to percolate into each other for each graph level (parameter x). Optionally

the user can limit the maximum graph level and thereby restrict the maximal number

of reduction steps by setting max_level. The max_level can be set for both reduction

methods.

The GraphReducer plugin also provides a statistical overview of the reduced graphs.

The statistics are created by the CreateMultiLevelGraphStatistics command. All .mgraph

files stored in the requested input directory dir are processed. Distributions of the vertex

count and the area size of all communities are created.

Cell graph properties

The vertex count of the CD30 cell graphs is equal to the number of cell objects detected

by the imaging pipeline. Figure 4.18 summarizes the results for the CD30 image set. In
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lymphadenitis, the number of vertices is less than 5,000, except for a single case which

reaches about 10,000 CD30+ cells. Compared to the LA cases, cHL cell graphs commonly

have more than 5,000 vertices. Typical ranges are 8,000 to 30,000 vertices for MCcHL

cases and 5,000 to 15,000 vertices for NScHL.

Table 4.9 summarizes the edge count per vertex of the cHL image set. Overall, cHL

cell graphs are more connected than CD30 cell graphs from lymphadenitis cases. One

lymphadenitis cell graph was examined having a average edge count of 0.67 per vertex.

In this case, many vertices are isolated in the graph and CD30+ cells have large distances

to neighboring CD30+ cells. The graph consists of many small connected components,

which may reflect less communication between CD30+ cells. The average edge count

per vertex in lymphadenitis was 3.27. The sample LA graph depicted in Figure 4.38 has

a comparable edge count per vertex, 3.81. The graph is disconnected, but connected

components of size of 100 vertices or above exist.

Table 4.9: Edge count per vertex in CD30+ cell graphs

Diagnosis Average edge # ± Std. dev. Minimum Maximum
LA 3.27 2.97 0.67 11.40
MCcHL 10.51 5.89 2.35 18.68
NScHL 12.10 3.80 5.33 18.37
ALL 8.78 5.77 0.67 18.68

In MCcHL and NScHL cases, the average edge count per vertex is 10.51, and 12.10,

respectively. While NScHL has on average more edges, the number of edges vary more

in MCcHL. The edge per vertex count in MCcHL ranges from a minimum of 2.35, which

is comparably high as some of the lymphadenitis cases, to a maximum of 18.68, the

overall highest edge count. To get a reference value for the edges per vertex count, we

compared the observed edge counts to random geometric graphs. Figure 4.38 depicts

exemplary CD30+ cell graphs in the row A and corresponding random geometric graphs

in row B. The random geometric graphs were created to match the cell density of the

original CD30+ cell graph. Note, that the overall cell density in the ROI of each WSI

was taken into account. The image illustrates a small part of the tissue section and the
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cell density within one column, showing the original cell graph and the corresponding

random graph, may differ slightly. The vertices of the random graphs are distributed

more evenly throughout the plane. The CD30+ cell graphs all have locally dense CD30

cell regions and within the tissue sections there are areas without any CD30+ cells.

Figure 4.38: Sample sections of CD30+ cell graphs for all three diagnoses Row A depicts cell
graphs computed from the cell detection. Row B shows random geometric graphs with a density equal
to the sample in row A. The densities are calculated for the whole tissue section. The CD30+ cell graphs
contain denser areas and for higher densities they still have areas depleted of cells.

We compared the edge per vertex count of the CD30+ cell graphs with simulated

random geometric graphs. Figure 4.39 illustrates the comparison with the simulated

data. The 35 images are sorted by the cell density on the x axis. On the y axis the

edge per vertex count is shown as relative value compared to the average edge per vertex

count of the simulated graphs of the same density. The bottom part of the figure gives

a detailed view to the value range near 1. The average of the simulated data is always

1, see red line. The plot also shows the minimum and maximum values reached within

10 simulated random geometric graphs. All 35 CD30 images had an increased edge per
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vertex count. The vast majority of cases were increased 1.3-fold up to 4-fold. In five

images, the relative edge per vertex count were clearly increased. The relative edge

count of those five cases were in the range of 6.4 and 14.6. All of the five images were

cHL cases, four of which were NScHL.

Figure 4.39: Relative edges per vertex counts Data for 35 images are plotted. They are sorted by
the cell density on the x axis. The y value is calculated from the average edge count per vertex, divided
by the average edges per vertex count of simulated random geometric networks with equally high cell
density. The CD30 cell graphs have a much higher edge count. The edges per vertex count is typically
increased by a factor of 1.2 to 4.8. The lower image depicts the ranges of the simulated data.

Interestingly, the relative edge count can vary a lot for images with similar cell density.

Looking at MCcHL cases, we observed three image with a cell density of roughly 2. While

one case had a relative edge count of 1.4, a value very close to the simulated random

geometric graphs, another case had a value of 7.3 and thus differed substantially from

the simulated data. The different cell distributions of both cases are illustrated in Figure

4.40. The image shows the ROI in white and the relative amount of CD30+ cells.
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Figure 4.40: High and low edge count comparison The CD30+ cell distribution of two MCcHL
cases. The left case had a low relative edges per vertex count, the right one a high relative vertex count
compared to the simulated random geometric graphs. The left tissue section has a more even CD30 cell
distribution and only small parts of the lymph node are depleted by CD30 cells. In contrast, the second
tissue section contains locally restricted clusters of CD30 cells of high density.

The two images were post-processed by increasing the contrast and brightness. Thus,

the pixel brightness demonstrate the relative cell density within one tissue section. In-

tensity values are not comparable between the two tissue sections. The CD30+ cells

of the two lymph node samples highly differ. On the left side, the malignant cells are

distributed equally through out the whole lymph node section. The whole section is

affected and only few areas exist that are not infiltrated by the CD30+ cells. The equal

distribution in the whole lymph node section leads to the low relative edge per vertex

count. In comparison, the right sample has large areas depleted of CD30+ cells. The

malignant cells instead are located in small, but dense areas. The densely packed neigh-

borhood results in an accordingly high number of edges in the cell graph. Even though

both cases were classified as MCcHL, the spreading of the malignant cells seem to follow

different mechanisms. A follow-up question is which biological processes are the driving

forces behind those mechanisms. The lymph node structure, cell-cell communication and

cell movement may play an important role in the development of the disease.
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Vertex degree distribution In cell graphs, the vertex degree describes the number of

CD30+ cells in the local neighborhood. Due to the Euclidean distance based construction

of the CD30 cell graphs, the vertex degree reflects the cell density per unit disk area.

Accordingly, the vertex degree distribution gives information about the cell distribution

in the the tissue section. Low vertex degrees mark CD30+ cells in regions sparsely

populated by CD30+ cells, high vertex degrees mark cells clustering with many other

CD30+ cells. The vertex degree distribution differed for the three diagnoses, see Figure

4.41 and Figure 4.42. A low average vertex degree was found in lymphadenitis cases.

The vertex degree was shifted towards high values in cHL.

In lymphadenitis, most vertices have a vertex degree of less than 10. The cHL cases

had on average higher vertex degrees, but we also found a high variability in the image

sets. Figure S9 summarizes the vertex degree distribution for all three diagnoses. For the

majority of cases the vertex degree distributions are typical for one specific diagnosis. In

lymphadenitis, the distribution has a high and narrow peak between 0 and 10. Vertex

degrees of 20 or above are an exception.

The exemplary MCcHL vertex degree distribution in Figure 4.41 has its maximum at

16. Here, most CD30+ cells are distributed in areas with a higher cell density compared

to CD30+ cells in lymphadenitis. The vertex degrees are distributed over a broad range.

Cells most frequently have a vertex degree between 10 and 20, but still a large fraction

of CD30+ cells are neighbored by more than 20 CD30+ cells.

The highest vertex degree maxima were found in NScHL cases. Figure 4.42 gives

two example distribution of NScHL. NScHL-I has a relative low mean vertex degree

compared to other NScHL images. With respect to the average vertex degree it is more

similar to the MCcHL cases. The maxima of the curve is at vertex degree 12, but still

many high degrees (> 30) were observed. NScHL-II demonstrates the vertex degree

distribution of a NScHL case with highly clustered CD30+ cells. The most frequent

degree is 47. Overall, the vertex degrees were more evenly distributed in the range of 0

and 85.

Figure S9 compares the three image sets by plotting the average vertex degree dis-

tributions, and the respective maxima and minima for each diagnosis. The averaged
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Figure 4.41: Vertex degree distribution of lymphadenitis and MCcHL The upper diagram
depicts the typical vertex degree distribution of a lymphadenitis case. The distribution peaks at a vertex
degree of 2. Vertex degrees higher than 20 are rarely seen in lymphadenitis. In 9 out of 11 lymphadenitis
cases, less than 10 % cells had a higher vertex degree. The second diagram shows an exemplary vertex
degree distribution of the diagnosis MCcHL. The distribution is shifted towards higher values compared
to lymphadenitis and the number of high vertex degree values is significantly increased. Although the
majority of MCcHL vertex distributions are similar, extreme distributions that are shifted to very low
or to high vertex degrees also exist.
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Figure 4.42: Vertex degree distribution of NScHL cases Both diagrams depict vertex degree
distributions of NScHL diagnosed cases. While the first distribution has its maximum at a low vertex
degree of 12, the second shows a more uniform distribution of vertex degrees with a maximum at 35.
Even though the maximum value is reached for a lower vertex degree than in the MCcHL cases in Figure
4.41, the case NScHL I has many cells with a high vertex degree. Vertex degrees of 40 and above are
more likely to be found in NScHL than in MCcHL.
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curves approve the statements gained from the exemplary vertex degree distribution. In

general, LA shows very low vertex degrees. While MCcHL has in many cases a high

fraction of vertices with a degree of 5-15, NScHL is characterized by a flat vertex degree

distribution with equally distributed vertex degrees between 5-40. However, those trends

are not sufficient to distinguish between the three diagnoses. Exceptional cases exists

resulting in similar vertex degree distributions across the three diagnosis image sets, see

maxima and minima curve in Figure S9.

Randomness of cell distribution

To check whether the CD30+ cell distribution is caused by a directed driving force or

is a rather random process, the measured vertex degree distributions were compared

to random geometric graphs of same cell density, see Section 3.3.3 in Methods. With

random geometric graphs as null model, we assume equally, randomly distributed CD30+

cells in the lymph node section.

As the positioning of each vertex in the 2D geometric random graph is randomly

chosen in a plane, the likelihood of two vertices, v1 and v2, to be neighbored, is only

dependent on the distance threshold t of the graph in relation to the size of the plane.

The probability pN (v1, v2) of v1 being connected to v2 with an edge can be expressed as:

pN (v1, v2) =
πt2

Aplane
, (4.5)

where πt2 is the area of a unit disk in the graph and Aplane is the area of the plane.

The number of neighbors, i.e. the vertex degree distribution, can be modeled as Poisson

distribution with λ = Edisk, the expectation number of cells per unit disk. Both, simu-

lated geometric random graph data and the Poisson distributions are depicted in Figure

4.41 and 4.42. Compared to the null model, the vertex degree distributions of cell graphs

are shifted to high values. The modeled Poisson distributions have a single, narrow peak.

The maxima are 1.5 in LA, 5.5 and 6 in NScHL, and 15 in MCcHL for the four sample

vertex distribution. Compared to the modeled distributions, the measured vertex degree

distributions are asymmetrical. In most cases they have a long tail of higher vertex de-

grees, which occur with a low frequency. The differences of the observed distributions
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and the expected Poisson distributions of random geometric graphs are clearly visible so

that we can reject the null hypothesis of a random distribution of CD30+ cells in the

lymph node.

CD30+ Cell Clustering

The shift to higher vertex degrees and the long tails of very high vertex degrees suggest

a preference of clustering for CD30+ cells. This effect is visible in cHL as well as in

LA cases. The nonuniform distributions of cells in the sections are partly caused by the

lymph node structure itself. Lymph nodes are structured into several compartments with

different functions. The inner parts are sectioned into multiple lobules, which are also

organized into sections, the superficial cortex and the paracortex.

During infections only parts of lymph node might be active and CD30+ reactive im-

mune cells, are only present in some of the compartments. As we measured the cell

density within the whole lymph node, the CD30+ cluster more than expected. However,

the clustering of cells is way higher in cHL than in LA. Multiple regions with high cell

density are observable, while other regions are nearly depleted of CD30+ cells. The clus-

tering can be reasoned by different processes. First of all, cell division plays an important

role for the spreading of malignant cells in the lymph node. Ongoing cell division in com-

bination with low cell movement leads to a clustering of the malignant cells. Another

hypothesis would be active movement. The malignant cells may be attracted to spe-

cific regions. The nutrition, as well as the surrounding micro environment are possible

influences.

CD30+ Cell Graphs Are Not Scale-free

In Section Randomness of cell distribution we described the differences between the mea-

sured vertex degree distributions of CD30+ cell graphs and simulated Poisson distri-

butions. Except the shift to higher vertex degrees most measured distributions were

asymmetrical. They were described best by a gamma distribution, see fitted gamma dis-

tribution in Figure 4.41 and 4.42. The gamma distribution is defined by two parameters,

the rate and the shape parameter. As moments of arbitrary degree exist for the gamma
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distribution we can conclude that CD30+ cell graphs are not scale-free.

The rate and shape parameter of the fitted gamma distributions of all 35 images are

depicted in Figure 4.43. The gamma distribution gained from LA images tend to have a

low shape parameter compared to the cHL images. On average LA images have a higher

rate parameter than cHL images, but here the overlap between the image sets is much

higher.

Figure 4.43: Gamma parameter overview All 35 images separated into the three diagnoses LA,
MCcHL, and NScHL. The plot depicts the shape and the rate parameter of the gamma distribution
fitted to describe the measured vertex degree distribution of the CD30+ cell graphs best. A low shape
parameter is typical for LA cases.

The LA image set is separable from the cHL cases using the rate parameter. Only

exceptional case overlaps with the MCcHL and NScHL image sets. However, the two

cHL subtypes can not be distinguished based only on the gamma distribution parameters,

shape and rate.

4.2.2 CD30+ Community Structures

Up to now we analyzed the CD30+ cells according their spatial position and the relation

between locally neighbored cells. The goal of this rather limited view is to break down

101



the large system, CD30+ cell graphs of 2D lymph node sections reach more than 50,000

vertices, into smaller pieces. This makes it possible to measure properties of the system in

low computation time. Local properties like vertex degree and nearest neighbor distance

can be calculated without seeing the whole, complex system. Instead of treating single

cell objects, this section focuses on cell groups. Here, the step is to identify meaningful

groups. In graph theory, groups of vertices computed based on the graph topology, are

called cluster or communities.

The following section discusses the results of two graph theoretical methods to define

communities in CD30+ cell graphs. The first method is k-clique percolation, which has

been used for various networks. The second method iteratively combines vertices of

k-cliques using edge contraction.

k-Clique Percolation

k-clique percolation is a widely used method to determine groups of vertices in graphs

[54][55]. In cell graphs, the community structures are based on the geometric property of

the graphs that arises from the unit disk graph construction. Here, edges are generated

according to the Euclidean distance of vertex pairs. A k-clique arises in unit disk graph if

the locale vertex density is at least k
A◦

, where A◦ is the area of a circle with a diameter of

t, the distance threshold of the unit disk graph. The k sets a limit regarding the minimum

cell density in the cell graph. All cells located in regions of lower density are not part of

the community structure. Cells share the same community if they are connected via a

chain of adjacent k-cliques.

Figure 4.44 depicts the community structure of a NScHL case, for k = 3, 5, 10.

Communities are highlighted in different colors. The overlay, created by the ImproIm-

ageViewer plugin depicts the member cells of the communities, and the area of the

community. The area is calculated by Delaunay triangulation, but invalid triangles, that

are triangles with an edge length greater than the distance threshold of the unit disk

graph, are filtered out. A more detailed view is visible in Figure S11 in the supplements.

For k = 3, there are only few, very large communities, see Figure 4.44 A. The

communities are mainly limited by the lymph node structure, which is heavily altered

102



by the NScHL. Sclerotic bands section the lymph node into separated nodules and thus

split the population of malignant cells into multiple large communities. The adjacency

criterion of 3-cliques is rather low and in conclusion touching groups of CD30+ cells are

combined into one community, e.g. see large brown community in Figure 4.44 A.

For higher k values, those large communities are split into multiple smaller commu-

nities, see beige and olive green community in Figure 4.44B. Such oval communities are

split even more in the community structure gained by 10-clique percolation. Here, only

very dense cell groups are connected to one community. In addition low CD30+ cell

density regions are not covered by the community structure any more, because of the

lack of 10-cliques in the corresponding part of the CD30+ cell graph.

Figure 4.45 summarizes the community counts, detected by the 3-clique percolation

method. For most cell graphs, the community count ranges from 60 to 300. In NScHL

the community count is slightly decreased compared to MCcHL and LA, suggesting that

the CD30+ cells in NScHL are clustered to fewer, but larger communities.

The size of the CD30+ cell communities differs among the diagnoses lymphadenitis,

MCcHL, and NScHL. It is also influenced by the chosen k value for the k-clique perco-

lation. Figure 4.46 summarizes the community sizes, by plotting the relative amount of

CD30+ cells in a community of size x. Because of the stricter condition, 10-clique perco-

lation produces much smaller communities compared to 3-clique and 5-clique percolation.

Here, only few cells were located in communities greater than 3,000.

In comparison, lymphadenitis cases contain much smaller CD30+ communities com-

pared to cHL. Even for 3-clique percolation, which produces the largest communities,

nearly no community were found in lymphadenitis having a size of > 1,000. A single,

exceptionally large community (8,000 cells) was detected in a lymphadenitis image show-

ing an untypically high CD30+ cell density. 5- and 10-clique percolation require much

higher cell densities. In 10-clique percolation this requirement is so strict, that even in

NScHL and MCcHL cases the cells are split into small communities, typically of size

3,000 and below. In the 10-clique percolation plot of Figure 4.46, only six communities

greater 3,000 cells exist, four of which are MCcHL cases. In NScHL fewer large commu-

nities are found, because tissue sections with a high CD30+ cell content show a highly
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Figure 4.44: Communities in NScHL cell graph Results of the k-clique percolation for k = 3, 5, 10.
The communities are highlighted in different colors. 3-clique percolation leads to a small number of large
communities (A). With raising k values, the vertices are grouped into more, but smaller communities.
10-clique percolation only includes regions with a local CD30+ cell density of 10

A◦
or higher. Low density

regions, e.g. the small tissue section within the sclerotic region on the right side, are not included in the
community structure for high k values.
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Figure 4.45: Community counts for the three diagnoses The 3-clique percolation reduces the
graph and the majority of the cell graphs have less than 300 communities. The differences between the
three diagnoses is low, but NScHL has on average a lower community count than the other diagnoses.

altered lymph node structure and the formation of nodules by sclerotic bands separates

the malignant cell populations into smaller communities.

While Figure 4.46 plotted the size in number of cells, Figure 4.47 depicts the area

in µm2. The area was calculated by Delaunay triangulation, but additional exclusion of

triangles with a side length exceeding the distance threshold t of the cell graph. Most

cells are located in communities with small expand. The percentage of cells drops for

communities which have expanded wider in the tissue for all three diagnoses. In lymph-

adenitis the drop is steeper and only a small percentage of CD30+ cells can be found

in an community with an area of > 100,000 µm2. For higher ks, the clique percolation

algorithm produces a lower number of communities having a small area. The 10-clique

percolation plot visualizes that no cells are located in communities having an area less

than 7,000 µm2. From this we can conclude, that communities with a small area only exist

in low cell density regions, which are excluded from the computation of the communities

because of the high k value.

The overall smaller communities in lymphadenitis may have multiple reasons. First,

the smaller number of CD30+ cells per community can be, at least partly explained, by

the overall lower density, see Section CD30+ Cell Density. The smaller area of commu-

nities in lymphadenitis may originate from the more controlled progress of the inflam-

mation, compared to the rather uncontrolled spreading of malignant cells. In some of
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Figure 4.46: Average percentage of cells in a community of size x The plot depicts the relative
cell counts located in communities of size x for the three diagnoses lymphadenitis, MCcHL, and NScHL.
The size of the communities decreases for high k values. Overall, CD30+ cells in lymphadenitis are
located in communities of small size, while cHL cases contain larger communities.
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the cHL tissue sections the malignant cells were spread through the whole lymph node

section. In lymphadenitis the CD30+ cells were mostly limited to only parts of the tissue

section.

Figure 4.47: Average percentage of cells in a community with an area of x µm2. The three
plots depict the ratio of cells in communities of certain sizes for k-clique percolation (k = 3, 5, 10). Cases
diagnosed as cHL have communities expanded over a bigger area than cases of lymphadenitis.

Graph Reduction by k-Clique Contraction

A second method to find communities in cell graphs is k-clique contraction. The idea

is, to contract a set of non-overlapping k-cliques in each iteration. Therefore all current
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k-cliques of the cell graph are computed and scored. In this work, we use a very basic

score based on the Euclidean distances of the vertices in the k-clique. Beginning with the

best scoring k-cliques, the algorithm contracts all edges of the selected, non-overlapping

cliques. The process can be iteratively applied to the reduced graph, resulting in a set

of graphs with increasingly high reduction level.

An example is depicted in Figure 4.48. The figure illustrates different graph levels‡.

For each community, the center of mass is displayed and the expand is drawn with

different colors. The method is a bottom-up approach, thus at the beginning each vertex

lies in its own community. The k clique contraction merges k-communities to form

a single, larger community. After multiple steps the communities consist of large cell

groups, representing CD30+ cells clustering in the lymph node section, see the two bottom

images in Figure 4.48. For the corresponding CD30+ cell graph, with different reduction

levels we refer to Figure S10.

Graph Reduction Steps The number of iterations and the growth of the communities

depend on the connectivity of the graph. In densely connected regions the communities

grow exponentially with a rate of k. Thus, the number of the communities drops quickly

in early reduction steps. Figure 4.50 depicts the fraction of vertices of the original cell

graph that is located in a community of size x or higher. The diagram plots the relative

counts for ten iteration steps. The curve is shifted towards higher community size values

the more iteration steps were performed. We can also see that the size of the communities

is limited by the number of iterations. As only non-overlapping cliques are reduced in

on step, the maximum vertex count of a community can be ki, where i is the number

of iterations. While during the first iterations many small communities are merged to

form a larger community, later iteration steps affect rather large communities. For the

example graph, there are only little changes between reduction level nine and ten. This

is also true for most of the CD30+ cell graphs in this study. From visual inspection we

found the communities in reduction step six to nine, to be most similar to communities

we would select manually.

‡Some reduction level are not shown.
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Figure 4.48: Communities gained by clique contraction The figure depicts a small section of
a NScHL case. The communities of the CD30+ cell graph are drawn for multiple steps of the clique
contraction method. The area of each community is highlighted in a single color. The white circles
represent the center of mass’ and their size is proportional to the number of vertices within the community.
The figure also illustrates the bottom-up approach. First, each vertex for its own is one community. The
k-clique contraction merges k of those small communities into one larger community. The bottom picture
shows a late step with very few, large communities.
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Figure 4.49: Community counts 3-clique contraction The 3-clique contraction iteratively com-
bines cliques of the graph to larger communities. While at reduction step 3 many communities exist,
the number decreases further to less than 1,300 after 10 reduction steps. The number of communities is
still high, compared to the 3-clique percolation, see Figure 4.45.

Overall, the clique contraction methods produces more communities, compared to the

clique percolation. Figure 4.49 gives an overview of the community counts per diagnosis.

Two iteration steps are plotted. After three iterations many small communities exist,

which are further combined to larger communities in the following reduction steps. After

three iterations we observe a much higher number of communities in MCcHL compared

to the other two diagnoses. The lower community count in LA is expected as LA CD30+

cell graphs have a lower number of vertices. The cell count in NScHL cases is similar

high compared to MCcHL. Here, the clique contraction method reduces the graphs in

early reduction steps more than in MCcHL, as CD30+ cells cluster more in the tissue.

For comparison, Figures S12 and S13 show the fraction of vertices in communities

of size x for two artificial graphs. In the random graph, in which vertices are randomly

placed in space with same density as in the original graph, the communities tend to be

smaller and cells cluster less than in the CD30+ cell graph. In the regular graph, see Fi-

gure S13, the communities grow exponentially and all communities have nearly the same

size. Slightly differences of the community sizes are caused by the sorting of the cliques

done by the reduction algorithm. A measurement of the quality of the community struc-

ture is the modularity, Q. For the k-clique reduction method, we could see that, first,

the Q value raises with each iteration step. Because of the scoring and sorting of the k

cliques, dense cell cluster are merged first into communities. At some point the algorithms

starts merging big cell clusters with only few connections and the Q value decreases. De-
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Figure 4.50: Communities gained by clique contraction Each curve represents one reduction step
for an exemplary CD30+ cell graph. The y axis displays the total number of vertices, that located in a
community of size x or higher. The community sizes are partly limited by the number of iterations, for
a larger number of reduction steps, it is mainly caused by the graph structure.

pending on the CD30+ cell distribution, the Q value can also have local maxima for

multiple iteration steps. For a more complete overview of the Q values of community

structures in cell graphs see ’Bioinformatische Bewertung von Graphpartitionierungen

durch cliquenbasierte Reduktion auf Gewebeschnitten des Hodgkin-Lymphoms’, a bach-

elor thesis performed by TM.

Comparison of k-Clique Percolation and k-Clique Contraction

Clique percolation is a very frequently used method to find communities in graphs, e.g.

in biological networks. However, the application to geometric graphs, a property which

cell graphs have because of their construction as unit disk graphs, has some limits. The

separation of cell clusters with clique percolation highly depends on parameter k. Two

touching cell clusters are only separated if no k- clique exist, which percolates into k-

cliques of both clusters. As cell cluster sizes differ within one tissue section and the

touching area of two adjacent cell clusters may also differ in size, the required k value

to separate those clusters may differ. Thus, a constant k value can be inaccurate in

tissue slides where the cell density and/or the cell cluster size differ throughout the

tissue section. For large k values only regions with a high CD30+ cell density, are
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considered. The minimum cell density of a cell group to be part of the community

structure is CD30density ≥ k
A◦t

, where A◦t is the area of a circle with radius t, the

distance threshold of the underlying cell graph. In contrary to the k-clique percolation,

the clique contraction method allows smaller graduated reduction steps. The benefit of

the finer reduction steps, comes at the cost of scoring the community structure in each

iteration. Another complex task is the definition of a good score for the k-cliques. The

currently used score, based of the vertices’ distances, locally favors merging of vertices

with a small distance. But the algorithm ignores global differences of the cell density

in the tissue sections. In low CD30+ cell density regions, cliques with a large spreading

of the cells are merged in early iteration steps, while similar cliques near dense CD30+

regions are merged later on. The score of the clique contraction method needs further

tweaking. Currently, all non-overlapping cliques are reduced in each iteration. This also

results in reducing cliques with different scores. In a single step, cliques with high scores

as well as cliques with low scores are reduced. An adaptation would be a threshold

relative to the best scoring clique. The algorithm stops when only cliques remain whose

margin to the best scoring clique is above the threshold.

To make k-clique percolation better applicable to cell graphs, multiple k values need

to be tested. Community structures found with low k values can be further divided by

increasing k, resulting, similar to the the clique contraction method, into a hierarchical

structure. The best fitting community structure then needs further information and a

scoring, e.g. the Q modularity, is required to decide which partitioning best reflects the

cell distribution.
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Chapter 5

Conclusion

Digital pathology is a growing field. Whole slide scanners allow the digitization of com-

plete tissue sections and make object slides accessible for computer aided analysis. We

examined a set of 35 pre-selected WSIs with a high resolution. With 0.25 µm per pixel,

the WSIs enable a detailed view of the cell. Even cell compartments, like the nucleus,

and the outline of the cells are visible.

The image set consists of tissue sections with three different diagnoses, two of which

are the cHL sub-types NScHL and MCcHL containing CD30+ malignant tumor cells.

For comparison, we included also lymphadenitis cases as the third group. Here, the

CD30+ cells are non-malignant cells. The CD30+ cell population is composed of activated

lymphocytes and is involved in a normal inflammation of the lymph node.

The images have been provided by the Dr. Senckenbergisches Institute for Pathology.

Thus, the staining quality conforms with object slides used in the routine diagnostic. The

35 pre-selected cases were of best quality, chosen from a set of 137 WSIs in total. About

36.5 % of the WSIs were considered to be of good quality. Unfortunately, the number

of cases and the overall quality differed throughout the three diagnoses. While there

was a large number of 57 MCcHL cases available, the image count for lymphadenitis

and NScHL was ∼ 40 each. To achieve similar image set sizes, we limited the data

set to the 35 presented images. From the original image set, 23.4 % of the cases were

rated to have a very low quality. While the image quality may be sufficient for an
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expert pathologist to make a diagnosis, it may lead to highly inaccurate results with the

computer-aided approach. Large areas show staining and preparation artifacts, such that

tissue structures are barely recognizable, even for human eye. The diagnosis can be made

using just selected parts of the WSI and thus regions with staining issues are neglected.

For the computer-aided method the statistic is done for the whole tissue section and is

more sensible for an insufficient image quality.

One of the main goals of the Impro software was dealing with the SVS whole slide

image format. To integrate standard imaging software into the pipeline it was required to

provide the images in a standard image format. This was achieved by splitting the WSI

into image tiles in standard TIF format. During the last years, projects like the OME

evolved, and accessing WSI formats became easier. Now, standard imaging programs

allow reading such images, but the support for pyramidal tiled images is still low. Our

approach to convert the images has the advantage of being independent of the input WSI

format, and the separate treatment of the image tiles easily allows for a parallelization

of the imaging tasks. Yet, the approach also comes at a cost. First, the image tiles are

written to the hard disc to make them available to external programs like CellProfiler.

This produces a high I/O load, slowing down the processing time of the images. For

everyday usage of the computer-aided analysis in routine pathology, such a slow-down

needs to be avoided. Second, the external program has no information about the whole

image. For example, some automatic thresholding methods of CellProfiler cannot be

applied to the separated image tiles, because the intensity value distribution of the whole

image is necessary.

The conversion of the WSIs into separated image tiles is only one time-consuming

task. Overall, we tried to fasten up the image processing time allowing to work off whole

slides. On the one hand, this is done by reducing the input data, e.g., by defining a

region of interest. On the other hand, most Impro plugins process tasks multi-threaded

to make use of the computation power of modern multi-core CPUs. But still, the mini-

mum processing time is more than 1 h. The software architecture of Impro can still be

improved. The tasks of the pipeline run mostly separately for the whole image, leading

to saving and loading the intermediate results to, or from, the hard disc. A way more
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efficient design would be the single loading of an image tile and applying all imaging

tasks at once. Beside the software architecture one also can improve the efficiency of

the imaging pipeline using GPUs. They are better suited to apply a single task to a

large number of values, e.g. all pixels of an image, than CPUs. For pattern detection,

it is also worth noting neuromorphic processor units (NPU). As deep learning currently

is a distinguished topic in computer science, NPUs may play an important role in the

near future. To make use of the hardware, many image processing algorithms need a

re-implementation though. The implementation requires a lot of effort, as standard im-

age processing libraries currently do not fully support the hardware. Yet, the costs of

the re-implementation will likely shrink in the near future, as computing on GPUs be-

comes more and more popular. The development will allow very quick and efficient image

processing and will most likely reduce the running time, to a few minutes or less, even

for WSIs. The fast computation is a key requirement to integrate the computer-aided

analysis of WSIs into routine diagnostics.

This work demonstrates that the processing of WSIs and the detection of CD30+

cells in complete cHL tissue sections is possible. For the set of 35 WSIs, the pipeline

detected more than 400,000 CD30+ cells. The large number of cells makes the need for a

computer-aided approach evident. For comparison, the manual cell labeling used for the

validation took about 15 - 60 minutes per image, but only 10 % of the image tiles were

annotated. The validation also showed a high accuracy of the Impro pipeline. For the

manually annotated WSIs the pipeline achieved a total precision of 84 % and a sensitivity

of 95 %. The precision is the ratio of detected cells to the actual number of cells in the

image. The sensitivity can be interpreted as the accuracy of the detected cell objects.

Only a small fraction of detected cell objects were false positive.

The comparison of cell count and cell morphology descriptors gives additional infor-

mation to characterize the tissue sections. The three diseases differed in the CD30+ cell

numbers and cell morphology distribution. While NScHL and lymphadenitis cases can

be separated based on these properties, MCcHL has a high variety. Overall, the cell mor-

phology and number is more similar in MCcHL and NScHL compared to lymphadenitis.

This was expected because lymphadenitis has a different disease pattern. In cHL, the
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population of CD30+ mainly consists of HRS cells, which most likely have a differentiated

behavior compared to the activated lymphocytes in lymphadenitis. Surprisingly, the area

size distributions of cHL and lymphadenitis have similar maxima. Also cHL-CD30+ cells

show an increased average area size compared to lymphadenitis. Most cells have an area

size of 187.5 µm2 in all three image sets. Either a large percentage of HRS cells are of

the same size of activated lymphocytes or cHL cases also contain a fraction of activated

lymphocytes. The first hypothesis is supported by the fact that HRS cells in most cases

originate from precursor B lymphocytes. Additionally, the detected CD30+ objects are

based on 2D cross sections of actual 3D objects, this may also influence the observed

area sizes.

The statistical data already give valuable information of the disease pattern. Model-

ing the lymphoma at the system level also needs to include relations between single cells.

Cell-cell communication plays an important role in the tumor micro environment. In cell

graphs, the communication is modeled indirectly. Edges represent the spatial closeness

and thus connect potentially communicating cells. Here, graphs represent an efficient

data structure that allows a quick exploration of the local neighborhood. The nearest

neighborhood analysis performed by JS is an example. The analysis highlights statis-

tically over- or underrepresented morphology classes of CD30+-nearest-neighbor-pairs.

The results illustrate differences for the three diagnoses not only in the distribution of

the morphology descriptors, but also in the preferences of CD30+ cells to neighbor cells

of a certain morphology class. For example, small, round cell profiles highly prefer small,

round cell profiles as a direct neighbor.

A more global view to the cell graphs is achieved by community structures. The

malignant cells are distributed unevenly in the tissue section and form, especially in

NScHL, dense cell clusters. Communities, calculated by clique percolation, reveal the

underlying hierarchical structure of the graph. Up to now, the computed communities

are only based on the cell graph’s topology. Additional cell properties like the morphology

may allow to determine more specific communities that are also grounded on biological,

functional properties. One interesting aspect for future work is the influence of the

lymph node structure on the formation of CD30+ cell clusters. The micro environment,
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including cell-cell communication, is another influence.

The presented approach focuses on the examination of CD30+ cells, but cell graphs

can easily be extended to other cell types. Especially in cHL, where malignant cells

do not form a solid tumor, the micro-environment is of interest. The lymph node tis-

sue consists of a large number of immune cells, and malignant cells need a strategy to

survive surrounded by an environment that is specialized in recognizing and destroying

potentially harmful particles or cells. A large pool of routinely used antibodies exists

to differentiate lymphocytes and other immune cells. The object detection needs to be

adapted according to the altered immune staining.

Multi-stained images, e.g. by fluorescence microscopy, allow the recognition of dif-

ferent cell types in a single tissue section. The corresponding cell graph includes the

malignant tumor cells embedded in their micro-environment. Local interactions of the

malignant cells can be examined and the interplay of tumor and surrounding tissue be-

comes visible. Another possibility to extend cell graphs in the future are 3D data similar

to the approach described in [85]. The unit disk graph formalism can be transferred to

3D space allowing for a less restricted view on the development of cHL.

At the current state, the computer-aided approach demonstrates the possibility to

perform an automated cell recognition on whole slide images of cHL to support the dia-

gnosis with additional statistical information. For the application in routine pathology,

some criteria are not yet fully met. First, the efficiency of the image processing pipeline

needs to be improved in the future allowing for a quick response to incoming patient

cases. Second, further investigations can find new correlations between cell graph pro-

perties and disease progression, which may help to characterize diseases in more detail

and to assist pathologists to make a diagnosis.
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Chapter 6

Supplement

Listing S1: Imaging pipeline for WSIs of cHL lymph node sections.

## TEMPLATE/TEST FILE FOR impro PIPELINE

MainApp;Timestamp:name=StartTime

## add a run extension (multiple runs):

MainApp;ImproRun:improRunExtension=rezidiv

## create an ImproImage from svs file

ImproImageViewerPlugin;CreateImproImage

MainApp;Timestamp:name=TimeImproImageCreated

## compute ROI based on layer 3 and 2

ImproImageMultiResClusteringPlugin;IdentifyROI:minLayer =3;

maxLayer =2; saveROI=true;onlyProcessROI=true;noImageOutput=true;

fragmentFilterSizes =64 ,64 ,32 ,16;

trainingDirectory =~ improWorkspace/mult_res_classes /;

MainApp;Timestamp:name=ROICalculated

## perform color deconvolution:

ColorDeconvolutionPlugin;UnmixColor:minLayer =3;

maxLayer =0; useNormalization=false;minimumNormalizationThreshold =255;

colorVectorFile=$WORKSPACE$/color_stains.txt;

substractChannels =0,0,0,0,0,1,0,0,0;

substractChannelFactors =1.0 ,1.0 ,1.0 ,1.0 ,1.0 ,5.0 ,1.0 ,1.0 ,1.0

MainApp;Timestamp:name=TimeColorDeconvolutionDone

## split image tiles including border for cellprofiler (ROI only)

ImproCellProfilerAdapter;SplitImage:tileSize =1024; imgType=CD30000;

border =100; useROI=true;createSubfolder=false;

outputDir=$WORKSPACE$/tmpImages/

MainApp;Timestamp:name=SplittingGridTilesEnded

## run cellprofiler task / store cell objects in database
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ImproCellProfilerAdapter;IdentifyCellObjects:

pipelineFile=$WORKSPACE$/pipeline_odysseus_gcb2014.cp;

dir=$WORKSPACE$/tmpImages /; useBatchFile=true;numberOfProcesses =8

## prepare database

MainApp;Timestamp:name=PrepareDatabaseStarts

ImproCellProfilerAdapter;PrepareDatabase

MainApp;Timestamp:name=PrepareDatabaseEnded

## remove duplicate cells

MainApp;Timestamp:name=RemoveDuplicateCellsStarts

ImproCellProfilerAdapter;RemoveDuplicateCells:threshX =20; threshY =20

MainApp;Timestamp:name=RemoveDuplicateCellsEnded

## graphs

MainApp;Timestamp:name=BeforeGraphExport

GraphPlugin;ExportCellsGraph:prepare_db_current=true;

threshold_distance =700; create_heatmaps=false;default_statistics=true;

igp_distribution_properties=true;extended_statistics=false;

output_format=CSV ,GML

MainApp;Timestamp:name=AfterGraphExport

## graphs

MainApp;Timestamp:name=BeforeCCCROIGraphExport

GraphPlugin;CreateReducedCCCGraphs:create_heatmaps=true;default_statistics=true;

extended_statistics=false;igp_distribution_properties=true;output_format=CSV;

rgtcat_save_reduced_graphs=false;

MainApp;Timestamp:name=AfterCCCROIGraphExport

MainApp;Timestamp:name=EndTime

## exit

MainApp;ExitProgram

Table S1: Edge count in CD30+ cell graphs in absolute numbers

Diagnosis Average edge # ± Std. dev. Minimum Maximum
LA 15,595.55 29,270.59 313 102,081
MCcHL 251,409.67 304,677.49 12,135 1,017,703
NScHL 173,350.17 244,358.10 30,177 919,348
ALL 150,533.40 243,452.46 313 1,017,703
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Figure S1: Pixel classification and quantification Each pixel were assigned to one of the three
classes CD30_positive, hematoxylin_positive or unstained. In cHL cases the amount of CD30_positive
pixels were increased. Compared to the other diagnoses, NScHL images consisted of more unstained
pixels. Unstained pixels can be found in connective tissue and sclerotic bands. The latter are frequent
in NScHL and may explain the high amount of unstained pixels.
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Figure S2: Percentage of image tiles with a high cell density having a high cell density
neighborhood The twelve images of the MCcHL images set and the twelve images of the NScHL image
set are depicted. On the y-axis the fraction of high density image tiles are plotted, having at least one
high density image tile within their local neighborhood. In NScHL, this fraction is on average higher
than in MCcHL. Ten out of twelve cases have 60 % and more high cell density image tiles neighbored by
other high cell density tiles. Only half images of the MCcHL image set have similarly high fraction. Four
of the MCcHL images have a low amount of high cell density image tiles located near high cell density
image tiles. Here, most image tiles with a high cell density are isolated. A high number of isolated high
density image tiles indicate that the cells do not form big cluster. Big cluster of densely packed cells
would reach over multiple image tiles.

Figure S3: 8-neighborhood of high cell density image tiles The amount of high cell density
image tiles that have x high cell density image tiles in their 8-neighborhood. The MCcHL image set
contains more high cell density image tiles neighbored by a single high cell density image tile. In NScHL
the relative amount of three up to six neighboring high cell density image tiles is increased compared to
the MCcHL image set.
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Figure S4: Morphology descriptor compact-
ness The compactness computed by CellProfiler in
relative numbers.

Figure S5: Morphology descriptor extent
The extent computed by CellProfiler in relative
numbers.

Figure S6: Morphology descriptor mean ra-
dius The mean radius computed by CellProfiler in
relative numbers.

Figure S7: Morphology descriptor form fac-
tor The form factor computed by CellProfiler in
relative numbers.
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Figure S8: Morphology descriptor major
axis length The major axis length computed by
CellProfiler in relative numbers.

Figure S9: Vertex degree distribution: CD30 image set The average vertex degree distributions
for the three diagnoses lymphadenitis, MCcHL, and NScHL. The dotted lines mark the minimal and
maximal occurrences in the image set. Overall CD30+ cells tend to have a low vertex degree in lymph-
adenitis. Here, the majority of CD30+ cells have a vertex degree of less than 10. The highest average
vertex degree was found in NScHL, a large fraction of CD30+ cells have a vertex degree between 10
and 50. The MCcHL vertex degree distribution is in between the two other diagnoses. Vertex degrees
of 5 to 10 are observed mostly, but high degrees of 20 and higher are more likely in MCcHL than in
lymphadenitis. The maximum curves illustrate the high variability in the image sets. In single cases the
vertex distribution highly overlaps with distribution of an other diagnosis.
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Figure S10: k-clique contraction graph levels The original graph, first row, is step-wise reduced.
The vertex size scales with the number of member in the community represented by the vertex. Edges
for the reduced graphs are calculated by single linkage.
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Figure S11: Community area The calculation of the community area is based on Delaunay triangu-
lation (B). The resulting calculated area is always convex and some triangles calculated by the Delaunay
triangulation do not reflect the actual area of the community. The area is post-processed by deleting
all triangles with an edge that exceeds the edge threshold of the original unit disk graph. The resulting
community area is depicted in C.
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Figure S12: Clique contraction random graph The plot depicts ten reduction steps of a random
geometric graph for the clique contraction method. The y axis shows the count of vertices in a community
of x or higher. With increasing reduction level, the size of the communities raises.

Figure S13: Clique contraction regular graph The plot depicts ten reduction steps of a random
geometric graph for the clique contraction method. The y axis shows the count of vertices in a commu-
nity of x or higher. Compared to cell graphs and random geometric graphs, most vertices are part of
communities of the same size. The plot lines proceed nearly without changes and then drop down to
zero within a narrow x margin.
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