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Abstract
Interferons (IFNs) are key players in the tumor immune response and act by inducing the expression of IFN-
stimulated genes (ISGs). Here, we identify the mixed-lineage kinase domain-like pseudokinase (MLKL) as an ISG in
various cancer cell lines. Both type I and type II IFNs increase the expression of MLKL indicating that MLKL up-
regulation is a general feature of IFN signaling. IFNγ up-regulates mRNA as well as protein levels of MLKL
demonstrating that IFNγ transcriptionally regulates MLKL. This notion is further supported by Actinomycin D chase
experiments showing that IFNγ-stimulated up-regulation of MLKL is prevented in the presence of the
transcriptional inhibitor Actinomycin D. Also, knockdown of the transcription factor IFN-regulatory factor 1
(IRF1) and signal transducer and activator of transcription (STAT) 1 as well as knockout of IRF1 significantly
attenuate IFNγ-mediated induction of MLKL mRNA levels. Up-regulation of MLKL by IFNγ provides a valuable tool
to sensitize cells towards necroptotic cell death and to overcome apoptosis resistance of cancer cells.
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ne hallmark of cancer is the evasion of regulated modes of cell death
ch as apoptosis [1]. Necroptosis is a recently identified type of
gulated cell death which is activated when caspases are inhibited or
sent [2]. Typical inducers of necroptosis such as tumor necrosis
ctor alpha (TNFα) or IFNs activate the receptor-interacting protein
nases (RIPK) 1 and 3 by phosphorylation [2]. Subsequently, RIPK3
osphorylates the pseudokinase MLKL which oligomerizes upon its
tivation, translocates to the plasma membrane and executes
croptosis, for example by forming pores in the plasma membrane
by interacting with ion channels [3–8].
IFNs are cytokines with antiviral and growth-inhibitory functions
d can be divided into three major classes, type I (α and β), type II
) and type III (λ) [9,10]. IFNγ plays a crucial role in coordinating
e tumor immune response and the recognition and elimination of
mor cells by immune cells [10]. Binding of IFNs to their cell surface
ceptor leads to activation of the Janus kinase STAT (JAK–STAT)
thway. As a result, STAT1 is phosphorylated by JAK, translocates
the nucleus and induces the expression of ISGs [9]. IFNs are able to
imulate the expression of hundreds of genes, some of which are
gulated by all IFNs, while some others only by specific IFNs [9,11].
he expression of IRF1 is preferentially induced by IFNγ [12]. IRF1
a member of the IRF family of transcription factors, a regulator of
Ns and ISGs [13] and also exerts antiviral functions by restricting
e replication of certain classes of viruses [14,15].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neo.2018.11.002&domain=pdf
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Figure 1. IFNγ increases MLKL mRNA and protein levels over time. Cells were treated for indicated time points with 1.5 ng/ml IFNγ (EFM-
192A) or 20 ng/ml IFNγ (HeLa). (A) mRNA levels of MLKL and IRF1 were quantified via RT-PCR and are shown as fold increase relative to
untreated control cells with mean and SEM of at least three independent experiments performed in duplicate; *P b .05; ***P b .001. (B)
Protein expression of MLKL, IRF1, phospho-STAT1 (pSTAT1), STAT1 and GAPDH was analyzed by Western blotting.
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IFNs have been reported to induce necroptosis by activation of the
K–STAT pathway [2,16–20]. We have previously shown that in
rious cancer cell lines IRF1 contributes to Smac mimetic/IFNγ-
duced necroptosis [21]. However, the exact mechanisms of IFN-
ediated necroptosis remain so far elusive [16,19]. To better
derstand how IFN signaling regulates necroptosis in the present
udy we analyze the effect of IFNγ on MLKL expression.
B
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aterials and Methods

ell Culture and Chemicals
EFM-192A, HeLa, MV4–11 and HT-29 cells were obtained from
SMZ (Deutsche Sammlung von Mikroorganismen und Zellk-
turen, Braunschweig, Germany) and MDA-MB-231 and HEK 293
cells from ATCC (American Type Culture Collection, CEM,
anassas, VA, USA). EFM-192A andMV4–11 cells were cultured in
PMI Medium 1640 GlutaMAX-I (Life Technologies, Inc.,
ggenstein, Germany), HeLa, HEK 293 T and MDA-MB-231
lls in DMEM Medium (Life Technologies) and HT-29 cells were
ltured in McCoy medium (Life Technologies), each supplemented
ith 10–20% fetal calf serum (FCS, Life Technologies), 1%
nicillin/streptomycin (Life Technologies) and 1% sodium pyruvate
ife Technologies). Cell lines were authenticated by STR profiles
d negatively tested for mycoplasma contamination. N-
nzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk)
as obtained from Bachem (Heidelberg, Germany), IFNβ from
iochrom (Ltd., Berlin, Germany), IFNγ from Merck & Co., Inc.
armstadt, Germany) and necrosulfonamide (NSA) from Calbio-
em Merck & Co. Inc. The bivalent Smac mimetic BV6 was kindly
ovided by Genentech, Inc. (South San Francisco, CA, USA) [22].
ll other chemicals were obtained from Sigma-Aldrich (Taufkirchen,
ermany) or Carl Roth (Karlsruhe, Germany), unless otherwise
dicated.

RNA Transfection and Quantitative Real-Time PCR
Cells were transfected with 20 nM Silencer Select siRNA
nvitrogen, Karlsruhe, Germany), i.e. non-silencing siRNA (no.
90844) or targeting siRNA (#1: s7501 and #2: s7502 for IRF1, #1:
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Figure 2. Type I and type II IFNs increaseMLKL expression in different cancer cell lines. EFM-192A cells were treated with 1.5 ng/ml IFNα,
β or γ for 24 hours (A), HeLa cells (B), MV4–11 (C) and MDA-MB-231 cells (D) were treated with 20 ng/ml IFNα, β or γ for 24 hours. Protein
expression of MLKL, STAT1 and β-Actin was analyzed byWestern blotting. (E and F)Western blots in A and Bwere quantified, and protein
levels of MLKL are shown normalized to β-Actin expression of at least three independent experiments.
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77 and #2: s278 for STAT1) using Lipofectamine RNAi MAX
nvitrogen) and OptiMEM (Life Technologies, Inc.). Total RNA
as isolated using peqGOLD Total RNA kit (Peqlab, Erlangen,
ermany) according to the manufacturer's instructions; 1 μg of total
NA was used for cDNA synthesis using the RevertAid H Minus
irst Stand cDNA Synthesis Kit (MBI Fermentas GmbH, St. Leon-
ot, Germany) according to the manufacturer's protocol with the use
random primers. For quantification of gene expression levels,
BR green-based quantitative real-time PCR (Applied Biosystems,
armstadt, Germany) was performed using the 7900GR fast real-
me PCR system (Applied Biosystems). Data were normalized to
S-rRNA expression. Relative expression levels of the target
anscript were calculated compared to the reference transcript by
ing the ΔΔCT method [23]. At least three independent experiments
duplicates are shown. All primers were purchased by Eurofins
amburg, Germany; suppl. Table 1).

eneration of IRF1 CRISPR/Cas9 KnockoutMDA-MB-231 Cells
MDA-MB-231 IRF1 knockout cells were generated as described
eviously [24]. Briefly, three IRF1 guide RNAs were designed with
and 3’ BsmB1 restriction site overhangs (suppl. Table 2), annealed
d ligated into pLentiCRISPRv2 (Addgene plasmid # 52961).
entiviral particles were generated by co-transfecting pLenti-
RISPRv2 IRF1 gRNAs with pPAX2 (Addgene plasmid # 12260)
d pMD2.G (Addgene plasmid # 12259) in HEK293T cells and
ed to transduce MDA-MB-231 cells with puromycin selection.
F1 knockout efficiency was confirmed using Western blot analysis
ith IRF1 antibodies.

estern Blot Analysis
Western blot analysis was performed as described previously [25]
ing the following antibodies: Mouse anti-STAT1 (Cell Signaling,
everly, MA, USA), rabbit anti-phospho-STAT1 (Cell Signaling),
ouse anti-IRF1 (Santa Cruz Biotechnologies, Santa Cruz, CA,
SA), rabbit anti-MLKL (GeneTex, Inc., Irvine, CA, USA), rabbit
ti-phospho-MLKL (Cell Signaling) mouse anti-GAPDH (HyTest,
urku, Finland), mouse anti-β-Actin (Sigma-Aldrich), mouse anti-
inculin (Sigma-Aldrich). Goat anti-mouse IgG or goat anti-rabbit
G conjugated to horseradish peroxidase (Santa Cruz Biotechnol-
ies) and enhanced chemiluminescence (Amersham Bioscience,
reiburg, Germany) or infrared dye-labeled secondary antibodies and
frared imaging (Odyssey Imaging System, LI-COR Bioscience, Bad
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Figure 3. Inhibition of transcription prevents IFNγ-induced MLKL
expression. (A) EFM-192A cells were treated with 1.5 ng/ml IFNγ
for indicated time points with or without pretreatment with 100 nM
Actinomycin D for 2 hours. Protein expression of MLKL, IRF1,
pSTAT1, STAT1 and β-Actin was analyzed byWestern blotting after
indicated time points. (B) mRNA levels of MLKL were quantified via
RT-PCR 9 hours after IFNγ treatment and are shown as fold
increase to untreated control cells with mean and SEM of at least
three independent experiments performed in duplicate; *P b .05.
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Figure 4. Caspase activity is dispensable for IFNγ-induced MLKL
expression. EFM-192A cells were treated with 1.5 ng/ml IFNγ and/
or 20 μM zVAD.fmk for 24 hours. Protein expression of MLKL,
phospho-STAT1 (pSTAT1), STAT1 and β-Actin was analyzed by
Western blotting.
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omburg, Germany) were used for detection. Representative blots of
least two independent experiments are shown. Protein expressions
Western blots were quantified using ImageJ 1.52e and normalized
β-Actin protein expression.

etermination of Cell Death
Cell death was assessed by propidium iodide (PI)/HOECHST
aining to determine plasma membrane permeability using ImageX-
ess Micro XLS system (Molecular Devices, LLC, Biberach an der
iss, Germany) according to the manufacturer's instructions.

atistical Analysis
Statistical significance was assessed by Student's t-test (two-tailed
stribution, two-sample, equal variance) using Microsoft Excel
icrosoft Deutschland GmbH, Unterschleißheim, Germany);
b .05; **P b .01; ***P b .001.

esults

ype I and Type II IFNs Increase MLKL mRNA and Protein
xpression
To investigate whether IFNs can stimulate expression of MLKL we
sessed MLKL levels upon treatment with IFNγ using EFM-192A
east carcinoma and HeLa cervical carcinoma cells as model systems.
portantly, IFNγ significantly increased MLKL mRNA levels in a
e-dependent manner in both cell lines (Figure 1A). This increase
MLKL expression was accompanied by a massive up-regulation of
RNA expression of IRF1, one of the key transcription factors of the
N pathway [13]. Next, we determined whether the increase in
LKL mRNA levels also results in elevated protein expression.
deed, Western blot analysis showed a time-dependent up-
gulation of MLKL protein expression in IFNγ-treated EFM-
2A and HeLa cells (Figure 1B). This was preceded by an increase in
F1 and STAT1 expression as well as phosphorylation of STAT1
igure 1B), consistent with activation of IFN signaling.
To investigate whether both type I and type II IFNs can stimulate
LKL expression we tested also IFNα and IFNβ in addition to IFNγ.
milarly, IFNα and IFNβ caused enhanced MLKL protein
pression, accompanied by an increase in STAT1 expression
igure 2A). Furthermore, we extended our experiments to additional
ncer cell lines to test the general relevance of our findings.
portantly, IFNα, IFNβ and IFNγ stimulated expression of MLKL
otein also in HeLa, MV4–11 acute myeloid leukemia (AML) and
DA-MB-231 breast carcinoma cells (Figure 2, B–D). Quantifica-
n of protein expression levels confirmed significant up-regulation of
LKL protein upon treatment with IFNα, IFNβ or IFNγ (Figure 2,
and F). By comparison, IFNγ had no or little effects on expression
vels of other necroptosis signaling proteins such as RIPK1 and
IPK3 (suppl. Figure 1). To determine whether up-regulation of
LKL leads to its activation, we analyzed MLKL phosphorylation.
e detected little MLKL phosphorylation after IFNγ treatment as
mpared to a positive control treated with a prototypic necroptotic
imulus (suppl. Figure 2), indicating that IFNγ-stimulated up-
gulation of MLKL alone may not be sufficient to initiate necroptotic
ll death.
Furthermore, we used the database Interferome [26] to search for
N-dependent up- or down-regulation of MLKL in published
tabases. Interestingly, we found a more than 2-fold up-regulation of
LKL in 71 datasets (suppl. Table 3). Together, these data show that
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pe I and type II IFNs increase MLKL expression in several cancer
ll lines.

Nγ Transcriptionally Increases MLKL Expression
To explore whether IFN-triggered up-regulation of MLKL occurs
a increased transcription we performed an Actinomycin D chase
periment. Actinomycin D is a well-known inhibitor of transcription
at blocks RNA synthesis [27]. To this end, we incubated cells for 2
urs with Actinomycin D to inhibit RNA synthesis before exposure
IFNγ. Intriguingly, IFNγ-stimulated up-regulation of MLKL was
olished in the presence of Actinomycin D compared to control cells
eated with IFNγ in the absence of Actinomycin D both on the
otein and mRNA level (Figure 3, A and B). Consistently, the
crease in IRF1 and STAT1 expression upon exposure to IFNγ was
bstantially reduced in the presence of Actinomycin D (Figure 3A).
his demonstrates that transcription is required for IFNγ-induced
pression of MLKL and confirms that IFNγ transcriptionally
creases MLKL expression.

aspase Activity is Dispensable for IFNγ-Induced Up-Regulation
MLKL
As IFNγ is known to induce and activate caspases [28,29], we
vestigated whether caspase activity is necessary for the up-regulation
MLKL upon IFNγ treatment. To this end, we blocked caspase
tivity using the broad-range caspase inhibitor zVAD.fmk. Addition
zVAD.fmk did not prevent the IFNγ-induced increase in MLKL
pression (Figure 4). In parallel, IFNγ similarly stimulated
osphorylation and expression of STAT1 in the presence and
sence of zVAD.fmk (Figure 4). This indicates that caspase activity
dispensable for IFNγ-induced up-regulation of MLKL.
Also, we explored whether IFNγ induces necroptotic cell death
hen caspase activation is simultaneously blocked. Indeed, treatment
ith IFNγ caused a significant increase in cell death in the presence of
e broad-range caspase inhibitor zVAD.fmk (suppl. Figure 3).

F1 and STAT1 Contribute to MLKL Up-Regulation by IFNγ
As we observed that the IFNγ-induced up-regulation of MLKL is
companied by an increased expression of IRF1 and STAT1, we next
ked whether these transcription factors are required to up-regulate
LKL. To address this question we silenced in parallel IRF1 and
AT1 by siRNA, using two independent sequences for each target
ne. As control we used a non-silencing siRNA sequence with no
unterpart in the human genome. Western blot experiments
nfirmed efficient knockdown of IRF1 and STAT1 (Figure 5A).
portantly, silencing of IRF1 and STAT1 significantly reduced
Nγ-induced increase of MLKL expression compared to control
lls transfected with non-silencing siRNA (Figure 5B). This indicates
at IRF1 and STAT1 contribute to MLKL up-regulation by IFNγ.
o further explore the role of IRF1 we created IRF1 knockout MDA-
B-231 cells using CRISPR/Cas9 technology. Efficient IRF1
ockout was confirmed by Western blotting (Figure 5 C).
portantly, IRF1 knockout prevented IFNγ-stimulated up-regulation
gure 5. IRF1 and STAT1 contribute to MLKL up-regulation by IFNγ. (A,
RNAs targeting IRF1, STAT1 (each 20 nM) or non-silencing siRNA (40
Nγ for 24 (A) or 9 hours (B). (A) Protein expression of IRF1, pSTAT1, S
vels of MLKL and IRF1 were quantified by RT-PCR and are shown as fo
at least three independent experiments performed in duplicate; *P b
lls were treated with 20 ng/ml IFNγ for 24 hours. Protein expression
MLKL (Figure 5C), confirming that IRF1 contributes to MLKL up-
gulation by IFNγ.
iscussion
the present study, we show that MLKL is an ISG up-regulated by
Ns in an IRF1- and STAT1-dependent manner in cancer cells.
his up-regulation of MLKL is a common feature of IFN signaling,
nce both type I and type II IFNs increase MLKL expression. In
dition, IFN-dependent increase in MLKL expression has consis-
ntly been observed in several cell lines of different cancer entities,
us emphasizing the general relevance of this finding. The
nclusion that IFNs enhance MLKL levels transcriptionally is
derscored by Actinomycin D chase experiments, showing that
tive transcription is required for IFN-induced increase of MLKL
pression. Also, prior to IFN-stimulated up-regulation of MLKL
RNA levels, the transcription factor STAT1 is rapidly phosphor-
ated, which marks its activation. Additional ISGs like IRF1 are
anscriptionally up-regulated upon IFN treatment as well. IRF1
longs to the IRF family of transcription factors that play an
portant role during IFN signaling [13]. Prediction analysis using
e Eukaryotic Promoter Database confirmed that the promoter of
LKL contains both STAT1 and IRF1 binding sites, indicating that
ese transcription factors stimulate MLKL transcription by directly
tivating the MLKL promoter. Furthermore, MLKL was found to be
-regulated in a number of published datasets of IFN-regulated
nes. Together, there are several lines of evidence underscoring that
Ns transactivate MLKL expression.
Our study defines MLKL as an ISG, in line with recent reports.
sing DNA microarray analysis, MLKL has previously been
scribed to be up-regulated by IFNβ or IFNγ in mouse embryonic
roblasts (MEFs) [16]. Also, increased protein levels of MLKL have
en reported upon IFN treatment in MEFs, HT-29 colon
rcinoma cells and mouse dental follicle cells [30–32]. In addition,
patotoxicity of IFNγ in a mouse model of hepatitis has recently
en linked to transcriptional up-regulation of MLKL via STAT1, as
own by promoter luciferase assay [33]. In the present study, we
ow that, in addition to STAT1, also the transcription factor IRF1
ntributes to up-regulation of MLKL by IFN. Of note, IRF1 has
cently been shown to be required for Smac mimetic/IFNγ-induced
croptosis [21], suggesting that IRF1-mediated up-regulation of
LKL promotes necroptosis. By comparison, caspase activity turned
t to be dispensable for IFN-induced up-regulation of MLKL.
A schematic diagram summarizes our findings (Figure 6). IFNγ
eatment leads to activation and phosphorylation of STAT1, which
tivates the expression of ISGs like IRF1. Transcription factors such
STAT1 and IRF1 contribute to MLKL up-regulation, sensitizing
lls towards necroptosis when caspases are inhibited. These findings
ghlight the relevance of MLKL up-regulation to overcome
optosis resistance in cancer cells and to sensitize cancer cells that
e refractory to undergo caspase-dependent apoptosis towards
croptotic cell death. In line with this notion, constitutive IFN
B) EFM-192A cells were transiently transfected with two distinct
nM). 72 hours after transfection cells were treated with 1.5 ng/ml
TAT1 and GAPDH was analyzed by Western blotting. (B) mRNA
ld change relative to untreated control cells with mean and SEM
.05; ***P b .001. (C) MDA-MB-231 IRF1 CRISPR/Cas9 knockout
of MLKL, IRF1 and Vinculin was analyzed by Western blotting.
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Figure 6. IRF1 and STAT1 regulate MLKL expression. IFNs like IFNγ bind to their IFN receptor and induce the activation and
phosphorylation of STAT1. The transcription factor STAT1 induces the expression of ISGs such as IRF1. We hypothesize that IRF1
together with STAT1 transcriptionally up-regulates MLKL after IFN stimulation, leading to higher protein levels of MLKL that sensitize cells
towards necroptosis.
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gnaling has recently been reported to maintain a critical threshold of
LKL expression to license necroptosis [34]. Besides its function in
croptosis, MLKL has been shown to regulate endosomal trafficking
d the generation of extracellular vesicles and to contribute to
flammasome activation [35–40].
Our study has several important implications. First, IFNγ-induced
-regulation of MLKL may well contribute to necroptotic cell death
hen caspases are inhibited, as IFNγ significantly increased cell death
the presence of zVAD.fmk. Furthermore, the MLKL inhibitor
SA significantly rescued cells from IFNγ-induced cell death in the
esence of zVAD.fmk, as we have shown previously [21]. Second,
F1 may facilitate IFN-induced necroptotic cell death via
anscriptional up-regulation of MLKL, thus providing a molecular
planation of how IRF1 contributes to IFNγ-mediated potentiation
Smac mimetic-induced necroptosis when caspases are inhibited
1]. Third, IFNs play a crucial role in coordinating the tumor
mune response by recognition and elimination of tumor cells by
mune cells [10]. Indeed, IFNα belongs to the agents approved by the
od and Drug Administration (FDA) for the treatment of cancer and
Nγ has cytostatic and cytotoxic effects on cancer cells, depending on
e context [41–44]. IFN-dependent up-regulation of MLKL and the
sulting increased susceptibility to undergo necroptosis offer an
ditional explanation for their antitumor activity as immunotherapeutic
ents. Taken together, up-regulation of MLKL by IFNγ provides a
luable tool to sensitize cells towards necroptotic cell death and to
ercome apoptosis resistance of cancer cells.
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