
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

The Value of Climate Forcing and Calibration for 

assessing Water Balance Components and Indicators 

of Streamflow and Total Water Storage Anomalies 
 

Abschlussarbeit zur Erlangung des akademischen Grades 

Master of Science (M.Sc.) Physische Geographie 

 

an der Johann Wolfgang Goethe-Universität, Frankfurt am Main 

 

 

 

 

vorgelegt von 

Leonie Schiebener 

geb. am 06.03.1994 in Bad Soden am Taunus 
 

 

 

 

 

 

 

 

Erstgutachter: Dr. H. Müller Schmied 

Zweitgutachterin: Prof. Dr. P. Döll 

 

 

 

Eingereicht 4. April 2022 
 

 

 

 

 

 

 



 

Erklärung 

 

 
Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen 

als die im Literaturverzeichnis angegebenen Quellen benutzt habe. 

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten 

Quellen entnommen sind, sind als solche kenntlich gemacht. 

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder 

mit einem entsprechenden Quellennachweis versehen. 

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Stelle zur Prüfung 

eingereicht worden. 

 

Frankfurt, den 4. April 2022 

 

 

 

Unterschrift 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I 

 

Abstract 

The reanalysis products and derived products, ERA5 (Copernicus Climate Change Service, 

2018) and W5E5 (WATCH Forcing Data (WFD) methodology applied to ERA5) (LANGE ET 

AL., 2021) have been recently published initiating a new phase of scientific research utilizing 

these datasets. ERA5 and W5E5 offer the possibility to reduce insecurities in model results 

through their improved quality compared to previous climate reanalyses (CUCCHI ET AL., 2020). 

The suitability of either climate forcing as input for the hydrological model WaterGAP and the 

influence of the models specific calibration routine has been evaluated with four model 

experiments. The model was validated by analysing the models ability to produce reasonable 

values for global water balance components and to reproduce observed discharge in 1427 basins 

as well as total water storage anomalies in 143 basins using well established efficiency metrics. 

Bias correction of W5E5 was found to lead to more global realistic mean precipitation and 

consequently discharge and AET values. In an uncalibrated model setup ERA5 results in better 

performances across all efficiency metrics. Model results produced with W5E5 as climate input 

were strongly improved through calibration ultimately leading to the best performances out of 

all four model experiments. However, model performances considerably improved through 

calibration with both climate forcings hence calibration was found to have the strongest effect 

on model performance. Furthermore, spatial differences in performance of either forcing were 

identified. Snow-dominated regions show an overall better performance with ERA5, while 

wetter and warmer regions are better represented with W5E5. Finally, it can be concluded that 

W5E5 should be preferred as climate input for impact modelling; however, depending on the 

spatial scale and region ERA5 should at least be considered, in particular for snow-dominated 

regions.
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Zusammenfassung 

Die Veröffentlichung der Klimareanalyse, ERA5 (Copernicus Climate Change Service, 2018) 

und dem daraus abgeleiteten Klimadatensatz W5E5 (WATCH Force Methodik angewandt auf 

ERA) (LANGE ET AL., 2021) eröffnen neue Forschungsmöglichkeiten. Beide Klimadatensätze 

bieten die Möglichkeit Unsicherheiten in den Modellergebnissen durch ihre verbesserte 

Qualität zu reduzieren (CUCCHI ET AL., 2020). Die Eignung als Eingangsdaten für das 

hydrologische Modell WaterGAP sowie der Einfluss der modelleigenen Kalibrierroutine wurde 

mithilfe von vier Modellexperimenten überprüft. Die Validierung der Modellergebnisse 

erfolgte mittels der Analyse der globalen Wasserhaushaltskomponenten sowie durch die 

Evaluierung von Effizienzkriterien berechnet mit gemessenen Durchflusswerten in 1427 

Einzugsgebieten und dem Gesamtwassergehalt in 143 Einzugsgebieten. Durch die Bias-

Korrektur in W5E5 konnten belastbarere globale Niederschlagswerte und folglich auch 

Durchflusswerte und AET modelliert werden. Von den beiden unkalibrierten 

Modellexperimenten konnten die besten Ergebnisse mit ERA5 erzielt werden. W5E5 als 

Eingangsdatensatz für ein kalibriertes Modellexperiment führt zu den besten 

Modellergebnissen. Die Kalibrierung des Modells führt in beiden kalibrierten 

Modellexperimenten zu einer deutlichen Verbesserung der Modellergebnisse, weshalb die 

Kalibrierung als der größte Einflussfaktor auf gute Modellergebnisse identifiziert werden kann. 

Räumlich unterscheidet sich jedoch die Qualität der Modellergebnisse beider Klimadatensätze. 

Während ERA5 zu besseren Ergebnissen in schneedominiertem Klima führt, kann W5E5 

feucht-warmes Klima besser wiedergeben. Die Analysen der Ergebnisse zeigen, dass W5E5 für 

die hydrologische Modellierung besser geeignet ist als ERA5. Dennoch sollte abhängig von der 

räumlichen Ebene und der modellierten Region, ERA5 als Klimaeingangsdatensatz zumindest 

in Erwägung gezogen werden.
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1 Introduction 

Climate change in combination with a growing world population and economic development 

has affected the global water cycle changing water distribution and storages (DÖLL ET AL., 

2012). In many regions, increasing water demand frequently combined with limited resources 

has resulted in rivalries between different water-using sectors, e.g. agriculture, domestic use or 

power generation, countries as well as human interests and ecosystems (WADA ET AL., 2010; 

United Nations, 2018). In order to sustainably manage water resources globally, quantitative 

estimates of the available freshwater resources and their storage distribution are indispensable. 

Global Hydrological Models (GHMs) aim to quantify freshwater resources with regard to 

spatial distribution and temporal development (MÜLLER SCHMIED ET AL., 2021). They enable 

estimates of global water availability, sustainable use of resources (DÖLL ET AL., 2012; WADA 

ET AL., 2012), water scarcity (GOSLING and ARNELL, 2016) and groundwater depletion (WADA 

ET AL., 2010; DÖLL ET AL., 2014). A major advantage, shared with satellite altimetry, of 

hydrological modelling is the possibility to obtain information about freshwater resources and 

their storage distribution in data-limited regions where at the same time, the need for such data 

is often the greatest (SHEFFIELD ET AL., 2018). GHMs are also used to explore the future 

development of freshwater resources taking human alterations of the water cycle, such as dams 

and irrigation projects, as well as climate change into account (SCHEWE ET AL., 2014; REINECKE 

ET AL., 2021). The findings of GHMs are used within the context of policy documents such as 

the International Panel for Climate Change Assessment Reports or UN World Water Reports 

(VELDKAMP ET AL., 2018; HERSBACH ET AL., 2020). 

1.1 State of Research and Motivation 

Despite the growing interest in GHMs and their continuing improvement over the past three 

decades in terms of detail, granularity, and speed as well as their increasing importance for 

impact studies in support of political decision-making, the quality of GHM output suffers from 

different uncertainty sources (VELDKAMP ET AL., 2018). These sources include uncertain or 

simplified hydrological process representation, model structure and input data (MÜLLER 

SCHMIED ET AL., 2014, 2021; BIERKENS ET AL., 2015; SCANLON ET AL., 2018). In order to judge 

whether these uncertainties impair the models’ results to the point where they become 
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disinformative or implausible, the assessment of their performance in the historical period is a 

valuable tool. Specifically, when assessing climate impacts, good performance of a model in 

the historical period increases confidence in the model’s future projections and uncertainties 

are less severe. Nevertheless, a good reproduction of climate and hydrological variables in the 

reference period is not a guarantee for good performance under changing climatic conditions 

(KRYSANOVA ET AL., 2018).  

Good performance of a model in the reference period however is strongly depended on the 

quality of the meteorological input data since it serves not only the purpose of calibration but 

also of model development and evaluation (KAUFFELDT ET AL., 2013; MÜLLER SCHMIED ET AL., 

2014). Historical meteorological datasets of good quality are therefore a key element to further 

optimize overall quality of GHMs output and to reduce uncertainties (CUCCHI ET AL., 2020). 

However, historical meteorological observations are unevenly distributed across the globe and 

data is often inconsistent. To overcome this obstacle, past observations are combined with 

models to generate time and space consistent reconstructions of past climate variables, so-called 

reanalysis (HERSBACH ET AL., 2020; C3S, 2021).  

The reanalysis products and derived products, further referred to as climate forcings, ERA5 

(Copernicus Climate Change Service, 2018) and WFDE5 (WATCH Forcing Data (WFD) 

methodology applied to ERA5) (C3S, 2020) have been recently published initiating a new phase 

of scientific research utilizing these datasets (CUCCHI ET AL., 2020). Compared to its predecessor 

ERA-Interim (DEE ET AL., 2011) ERA5 benefits from innovations in model physics, core 

dynamics, and data assimilation of recent years. Apart from model improvements, ERA5 has a 

significantly enhanced horizontal and temporal resolution as well as an integrated uncertainty 

assessment (HERSBACH ET AL., 2020). The WATCH Forcing Data (WFD) methodology 

(WEEDON ET AL., 2011) has been applied to ERA5 to create the global WFDE5 meteorological 

forcing dataset. As WFDE5 is derived from ERA5, it inherits the same innovations compared 

to WFDEI (WEEDON ET AL., 2014), which in turn is the resulting dataset from WFD 

methodology applied to ERA-Interim. In the context of WFDE5, it is worth mentioning that 

particularly the enhanced horizontal resolution of ERA5 leads to considerable improvement 

because WFD methodology requires forcing data with half-degree spatial resolution. In the case 

of ERA-Interim this was achieved by data interpolation and can now be obtained by data 

aggregation (CUCCHI ET AL., 2020). Instead of using WFDE5 directly within this study, the 

dataset was merged with ERA5 over the oceans and temporally downscaled to daily values. 

This version is called W5E5 (LANGE ET AL., 2021) and serves to support the bias adjustment of 
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climate input data for impact assessments of the Inter-Sectoral Impact Model Intercomparison 

Project (ISIMIP) (LANGE ET AL., 2021). 

WFDE5 and W5E5 are used within the third simulation round of ISIMIP. The third simulation 

round aims to harmonize input data, focusing on impact model evaluation and improvement in 

ISIMIP3b protocol (ISIMIP, 2021a). Within this context, CUCCHI ET AL. (2020) have tested the 

suitability of WFDE5 for impact modelling by using it as input data for the global hydrological 

model WaterGAP. The model was driven by ERA5, WFDE5, and WFDEI. However, due to 

time and technical constraints, only uncalibrated model runs were performed and quality was 

assessed by comparing the resulting water balance components and evaluating model efficiency 

as well as river discharge seasonality for selected large river basins. The assessment revealed 

rather similar results for WFDE5 and WFDEI concluding that WATCH adjusted climate 

forcings specifically WFDE5 should be preferred as direct input compared to ERA5 (CUCCHI 

ET AL., 2020). 

To improve model output apart from utilizing better climate forcings, WaterGAP uses a basin-

specific calibration routine, which matches simulated streamflow to long-term mean annual 

observed streamflow by adjusting the runoff coefficient and up to two additional correction 

factors accordingly. The remaining grid cells outside of these basins are calibrated by 

regionalizing the calibration factor (MÜLLER SCHMIED ET AL., 2021). While calibration is 

routinely practiced for catchment models, WaterGAP uniquely employs this technique within 

the context of GHMs (DÖLL ET AL., 2003; HUNGER and DÖLL, 2008; MÜLLER SCHMIED ET AL., 

2021). Calibration is in so far beneficial, that the fitting of simulated to observed monthly river 

discharge compensates to a certain degree for uncertainties regarding input data, model 

parameters, model structure as well as model scale and grid cell heterogeneity (MÜLLER 

SCHMIED ET AL., 2014). 

The significance of calibration for WaterGAP model results was proven by MÜLLER SCHMIED 

ET AL. (2014) who assessed the sensitivity regarding input data, model structure, human water 

use, and calibration. The authors concluded that the calibration method had the strongest impact 

on modelled freshwater fluxes and storage variations. These results are supported by the 

findings of KRYSANOVA ET AL. (2018) who evaluated the performance of regional hydrological 

models and GHMs with the intention of proving that models with poor performance specifically 

in the historical period should be excluded from climate impact studies based on ensemble 

means. Among other factors, KRYSANOVA ET AL. (2018) identified the calibration of regional 
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hydrological models to positively impact model performance in the historical period. They 

welcome the idea to include rigorous calibration approaches as used in WaterGAP. In a later 

study, KRYSANOVA ET AL. (2020) evaluated six GHMs, including WaterGAP, regarding their 

performance in the historical period applying common metrics with predefined thresholds. 

WaterGAPs superior performance was largely attributed to its calibration approach 

(KRYSANOVA ET AL., 2020). 

The above-mentioned study of MÜLLER SCHMIED ET AL. (2014) found the spatial differences of 

climate input data to be the second most influential factor regarding model output when 

analysed at grid cell level. Yet on a global scale these uncertainties even out. This highlights 

the importance of climate data specifically when analysing model performance on basin scale 

(MÜLLER SCHMIED ET AL., 2014). However, they utilized a combinational dataset consisting of 

WFD and WFDEI as standard climate input which proved to be rather adverse since the 

radiation bias between the two datasets led to inconsistencies of actual evapotranspiration 

affecting storages consequently. KAUFFELDT ET AL. (2013) examined the consistency between 

climate forcing data and discharge data used for model calibration and found that screening of 

data should be performed prior to modelling in order to identify data-epistemic inconsistencies 

and to ensure that water-balance closure is possible (KAUFFELDT ET AL., 2013).  

Accepting inconsistencies between combinational datasets used as climate input was the price 

to be paid in order to increase overall model performance through calibration. Climate forcing 

and calibration are interlinked beyond so far presented information. Since calibration focuses 

on discharge, its success is tightly knit to the availability and quality of discharge data. The 

gauging stations currently used for calibration consist of varying time series, which reveal a 

severe drop in available data for the period after 1979. Hence, calibration needs to occur before 

1979 requiring climate input data prior to the temporal coverage of ERA5 and W5E5, which is 

why artificially prolonged climate datasets are necessary. However, as presented above the 

prolongation has led to biases within the combinational climate datasets (MÜLLER SCHMIED ET 

AL., 2014). LANGE (2019) developed a new method for bias adjustment and statistical 

downscaling for ISIMIP phase 3. Originally designed to bias adjust simulated data to observed 

values, it can also be applied for the bias adjustment of one climate forcing to another. LANGEs 

(2019) method features a more comprehensive trend preservation compared to previous 

methods due to the use of parametric quantile mapping. However, trend preservation causes 

some inhomogeneities to remain at the 1978/1979 transition (MENGEL ET AL., 2021). 

Additionally, improvement of bias adjustment can be attributed to the newly introduced 
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adjustment of likelihood of individual events. The event likelihood adjustment confines 

extreme values to the physically plausible range and corrects imperfect distribution fits caused 

by the parametric quantile mapping (LANGE, 2019).  

In any case, calibration may lead to serious overfitting of model results since it is targeted to 

only reflect one compartment of the water cycle, namely discharge. The possibility to calibrate 

WaterGAP regarding other output parameters has been explored for the Murray-Darling Basin 

by SCHUMACHER ET AL. (2018). One of their objectives was to test model performance in dry 

basins incorporating long-term hydrological trends, a field in which WaterGAP is currently 

lacking sufficient representation, using terrestrial water storage anomalies (TWSA) from 

Gravity Recovery And Climate Experiment (GRACE) satellite mission. While the model 

results improved regarding seasonality and trend of TWSA as well as simulation of individual 

water storage components, GRACE-based parameter calibration was found to be very 

challenging (SCHUMACHER ET AL., 2018).  

Nevertheless, considering parameters apart from discharge for calibration and validation as well 

as for evaluation of model performance is recommended (KRYSANOVA ET AL., 2018; 

SCHUMACHER ET AL., 2018). Hence, discharge and TWSA are considered here for evaluating 

the influence of climate forcing and calibration, which is the main objective of this master 

thesis. River discharge represents a unique hydrological variable given that it is the result of 

multiple vertical and lateral water flows within the catchment area upstream of the gauging 

station (HUNGER and DÖLL, 2008). Observations of river discharge are available for many 

regions and often comprise several decades. Yet a clear concentration of long discharge records 

in Europe and North America can be identified (GRDC, 2021). Measurement errors of 

discharge observations are considered to be relatively small compared to precipitation 

estimations (HUNGER and DÖLL, 2008). While the same discharge data is used for model 

calibration as well as for model evaluation, TWS changes derived from GRACE are entirely 

independent from model results. TWS is the integrated sum of all surface water, soil moisture, 

snow water and groundwater. It is a critical metric to monitor water supply for domestic, 

industrial, and agricultural sectors (TANGDAMRONGSUB ET AL., 2015) but it is quite difficult to 

measure as well as to disaggregate the influence of individual water storages. Although very 

accurate, ground-based measurements only provide point-wise estimates (DORIGO ET AL., 2011; 

TANGDAMRONGSUB ET AL., 2015). Through GRACE satellite mission TWS changes can be 

measured with a global spatial and monthly temporal coverage. The possibility to monitor 

spatial and temporal variations of TWS in addition to the exclusive capability to capture 
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groundwater makes GRACE TWS data a very valuable resource for model calibration, 

validation and evaluation (EICKER ET AL., 2014; TANGDAMRONGSUB ET AL., 2015; SCHUMACHER 

ET AL., 2018). When applying TWS variations for model evaluation the approach complies with 

KRYSANOVA ET AL. (2018) minimum recommended variables to be analysed and one of the two 

variables is independent of model results. The analysis of TWS changes recognizes the problem 

of overfitting and differences between simulated and measured trends and seasonality in TWS 

are accounted for. 

1.2 Objective 

In this master thesis, the analysis and comparison of discharge, TWSA, water balance 

components and climate variables are used to evaluate the influence of calibration and climate 

forcing regarding model results and performance. This master thesis aims at (1) evaluating the 

influence of the choice of climate forcing on water balance components (uncalibrated and 

calibrated model setup), (2) analysing differences between the optimal choice of climate forcing 

on different spatial scales (river, climate zone and global), (3) resolving whether calibration 

further increases the model results generated with the bias adjusted W5E5 climate forcing and 

(4) assessing whether W5E5 should be preferred over ERA5 for hydrological impact modelling. 

In chapter 2 Methodological Approach and Data the data which this master thesis is based on 

as well as the methods to analyse said data are presented. Furthermore, it includes a detailed 

description of the methodological approach to update WaterGAPs calibration station database. 

The results are presented in chapter three. Chapter 4 Interpretation and Discussion covers the 

interpretation of the results and they are critically discussed. Additionally, a future research 

outlook is given here. The conclusion can be found in chapter 5 Conclusion followed by the 

references and appendix. 
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2 Methodological Approach and Data 

To examine the above-presented objectives a model experiment composed of four model runs 

was performed. The two climate forcing datasets, ERA5 and W5E5, were used as climate input 

data for an uncalibrated and a calibrated model run. However, both datasets had to be artificially 

extended to 1901 with the so-called climate forcing GSWP3, which was released within the 

Global Soil Wetness Project Phase 3. The data extension is necessary because WaterGAP 

requires a climate input dataset covering at least the time period from 1920 onwards in order to 

enable standard calibration. To prevent inconsistencies between GSWP3 and ERA5 and W5E5 

respectively as described by KAUFFELDT ET AL. (2013) and experienced by MÜLLER SCHMIED 

ET AL. (2014), GSWP3 has been homogenized to both climate forcing datasets using the 

ISIMIP3BASD v2.5.0 quantile mapping method (LANGE, 2019, 2021). 

 

Figure 1: Schematic of experimental model set-ups with respective experiment names  

Since the climate forcings of interest only date back to 1979 solely the period between 1979 

and 2019 are used for analyses. Model results are compared regarding their computed values 

of water balance components, climate variables, discharge and TWSA. All evaluations are 

performed with R-Studio (see Appendix B). To evaluate model performance well-established 
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efficiency criteria are used which are mostly computed with the hydroGOF package 

(ZAMBRANO-BIGIARINI, 2020). 

2.1 Climate Forcings 

2.1.1 GSWP3 

The GSWP3 dataset has been developed within the context of the third phase of the Global Soil 

Wetness Project (KIM, 2014). It offers observed data for twelve climate variables with a diurnal 

resolution and 0.5° x 0.5° gridded global coverage (DIRMEYER ET AL., 2006; DIRMEYER, 2011). 

GSWP3 is based on the 20th Century Reanalysis (20CR) (COMPO ET AL., 2011), which is 

dynamically downscaled using the spectral nudging data assimilation technique of 

Experimental Climate Prediction Centres (ECPCs) Global Spectral Model retaining synoptic 

features in the higher resolution (YOSHIMURA ET AL., 2008). The spectral nudging technique is 

in so far advantageous that it constrains large-scale atmospheric circulation to that of 

observations. Additionally, 20CR data is bias-corrected with observational data from Global 

Precipitation Climatology Centre (GPCC) (SCHNEIDER ET AL., 2014) for precipitation, Surface 

Radiation Budget (SRB) (STACKHOUSE ET AL., 2011) for short and long wave radiation, and 

Climate Research Unit (CRU) TS3.23 dataset (HARRIS ET AL., 2014) for monthly mean 

temperature and daily temperature ranges. Precipitation is further corrected by considering 

gauge type specific undercatch (HIRABAYASHI ET AL., 2008). GSWP3 climate forcing data is 

available for the period between 1901 and 2014 (KIM, 2014, 2017).  

The variety of data products used for bias adjustment of GSWP3 and their differing temporal 

availability consequently result in quality fluctuations of GSWP3 over time. However, a 

stabilization of data quality corresponding to quality improvements of 20CR can be identified 

around mid-century over the Northern Hemisphere and later over the Southern Hemisphere. 

Despite the improving quality of GSWP3 with advancing time, ERA5 is considered the more 

realistic dataset, which is why the use of GSWP3 in this study is limited to the years 1901-1979. 

The homogenization of GSWP3 to ERA5 and W5E5 included quantile mapping of GSWP3 

time series for 1901-2004 to time series featuring the same trends but with matching 

distributions over the 1979-2004 reference period of the corresponding climate forcing. The 

trend preservation leads to residual inhomogeneities at the 1978/1979 transition, which 

particularly affects surface downwelling shortwave radiation over northern Europe and the 

Mediterranean Basin (MENGEL ET AL., 2021). However, since the temporal focus of this study 
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is after 1979, implausible climate variables before 1979 are not expected to exceedingly impair 

the results. 

2.1.2 ERA5 

ERA5 reanalysis is the latest product of the European Centre for Medium-Range Weather 

Forecasts (ECMWF) covering the years from 1979 onwards. It is based on the Integrated 

Forecasting System (IFS) Cy41r2 with 4D-Var data assimilation (BONAVITA ET AL., 2016). 

ERA5 has a spatial resolution of 0.25° x 0.25° and the atmospheric parameters are determined 

on 137 pressure levels resulting in a very fine vertical resolution. The hourly output of ERA5 

is available as a preliminary version with a 5-day latency or as the final quality-checked version 

2-3 months later. Additionally, ERA5 includes an uncertainty estimate obtained from the 10-

member ensemble 4D-Var data assimilation system with 3-hourly output but at a coarser 

resolution than the original ERA5 data (HERSBACH ET AL., 2020). 

2.1.3 W5E5 

The WATCH Forcing Data (WFD) methodology (WEEDON ET AL., 2011) has been applied to 

the reanalysis product ERA5 to create the global WFDE5 meteorological forcing dataset. W5E5 

v2.0 is a combinational dataset consisting of ERA5 over the ocean and WFDE5 v2.0 dataset 

over land. The eleven climate output variables are available in daily time steps. In order to align 

with WFDs spatial resolution, ERA5 has been aggregated to half-degree longitude-latitude 

grids. The data has been sequential elevation and bias corrected. CRU TS4.04 data was applied 

to bias correct air temperature, downward shortwave radiation and rain- and snowfall rates. 

Additionally, rain- and snowfall is bias-adjusted with Global Precipitation Climatology Centres 

GPCCv2020 monthly precipitation totals (SCHNEIDER ET AL., 2011). Currently, the data is 

available for the period between 1979 and 2019 (LANGE ET AL., 2021). 

2.2 Global Hydrological Model WaterGAP 

WaterGAP is a global hydrological model developed since 1996 with the purpose to quantify 

freshwater resources on a global scale including the impact of anthropogenic interventions. The 

model allows the assessment of water stress for the historic period as well as the future 

specifically under different climate change scenarios. Continuous model improvements have 

led to version two of WaterGAP with the current spatial resolution. The latest model description 

covers version 2.2d of WaterGAP (MÜLLER SCHMIED ET AL., 2021), however for this master 
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thesis the most recent model version 2.2e was used. A thorough description paper is due to be 

published. In order to account for human water use as well as differentiating between surface 

and groundwater abstraction, WaterGAP comprises three substantial components: five global 

water use models, the linking model Groundwater-Surface Water Use (GWSWUSE), and the 

WaterGAP Global Hydrology Model. Consumptive water use, as the part of the abstracted 

water, that evapotranspirates, is computed for the sectors irrigation, livestock, domestic, 

manufacturing, and cooling of thermal power plants (MÜLLER SCHMIED ET AL., 2021). The 

withdrawal water use is computed for the latter three sectors as well. GWSWUSE computes the 

withdrawal water use from and return flows to either surface or groundwater to obtain monthly 

net abstractions for both water sources (DÖLL ET AL., 2012, 2014). 

Finally, the WGHM simulates daily water flows and storages by computing the vertical 

(canopy, snow, and soil in mm) and lateral water balance (groundwater, lakes, wetlands, man-

made reservoirs, and rivers in m³). WGHM uses meteorological input data consisting of air 

temperature, precipitation, downward shortwave radiation, and downward longwave radiation 

for the computation of daily water flows. All computational steps are performed on 0.5° x 0.5° 

grid cells which correspond to approximately 55 x 55 km at the equator (MÜLLER SCHMIED ET 

AL., 2021). Defined by the CRU land-sea mask (MITCHELL and JONES, 2005) the global 

continental area is divided into 64720 grid cells including small islands and Greenland but 

excluding Antarctica. Grid cells along the coastlines consist of continental and oceanic areas. 

The corresponding continental area is determined by subtracting the oceanic area from the total 

cell area. The borders between oceanic and continental area are defined by ESRIs worldmask 

shapefile. Continental areas in the sense of WaterGAP include land area and surface water body 

areas such as lakes, reservoirs and wetlands but exclude river area. The drainage direction map 

DDM30 (DÖLL and LEHNER, 2002) defines the upstream-downstream relation among grid cells 

allowing streamflow from the final water storage compartment ‘river’ to one of the eight 

neighbouring grid cells. Groundwater flow between gird cells does not occur (MÜLLER 

SCHMIED ET AL., 2021) .  
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Figure 2: Schematic of WGHM in WaterGAP2.2d. Boxes represent water storage 

compartments. Arrows represent water flows. Green (red) colour indicate processes that occur 

only in grid cells with humid ((semi-)arid) climate (MÜLLER SCHMIED ET AL., 2021). 

2.2.1 Calibration Approach 

WGHM is calibrated against observed streamflow data attempting to overcome model 

uncertainties regarding model parameters, input data as well as model structure including 

spatial resolution (DÖLL ET AL., 2003; MÜLLER SCHMIED ET AL., 2014). The basin-specific 

calibration routine matches simulated streamflow to long-term mean annual observed 

streamflow at now 1509 calibration stations which amounts up to 55 % of the global land area 

(except Antarctica and Greenland). Previous model versions used only 1319 calibration stations 

with approximately 54 % global coverage. The update of calibration stations was performed 

within the course of this master thesis. A detailed description of calibration station update and 

objective can be found in section 2.3 Update of Calibration Stations database. Generally, 

streamflow data for the calibration and evaluation of WHGM is only utilized if the respective 

station has an upstream area of at least 9000 km², the data covers at least four complete years, 

and the interstation catchment area comprises at least 30000 km². Through defining a minimum 

interstation area stations that are located in close proximity of each other are excluded. If 

available, the 30-year period from 1978 to 2009 is utilized for calibration (MÜLLER SCHMIED 

ET AL., 2021). 
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Preferably, calibration is limited to the adjustment of the soil water balance through varying the 

runoff coefficient γ (-). The runoff coefficient together with the soil saturation Ss/Ss,max  

determines the fraction of the effective precipitation (Peff) that becomes runoff from land Rl, 

which is calculated as 

𝑅𝑙 =  𝑃𝑒𝑓𝑓 (
𝑆𝑠

𝑆𝑠,𝑚𝑎𝑥
)

𝛾

 (1) 

where Ss is the soil water storage (mm) and Ss.max is the maximum soil water content (mm). The 

runoff coefficient is the only free parameter and varies between 0.1 and 5.0 in WaterGAP. The 

relationship between runoff as a fraction of effective precipitation and soil saturation is shown 

in figure 3. 

 

Figure 3: Relation between runoff from land and soil for different values of the runoff 

coefficient γ in WaterGAP (MÜLLER SCHMIED ET AL., 2021) 
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However, in many basins adjusting the runoff coefficient alone does not lead to a satisfactory 

fit of simulated to observed discharge. In this case, two additional correction factors are at 

disposal, the area correction factor (CFA) and the station correction factor (CFS). All together, 

the calibration approach consists of a four-step scheme that proceeds as follows (MÜLLER 

SCHMIED ET AL., 2021): 

1. Adjustment of the runoff coefficient in the range of 0.1 and 5.0 to match simulated 

discharge to observed discharge within a 1 % uncertainty range 

2. Adjustment of the runoff coefficient in the range of 0.1 and 5.0 to match simulated 

discharge to observed discharge within a 10 % uncertainty range 

3. Areal correction factor (CFA): in order to conserve the mass balance, actual 

evapotranspiration is adjusted within the range of 0.5 and 1.5 to match simulated 

discharge to observed discharge within a 10 % uncertainty range 

4. Station correction factor (CFS): Streamflow is multiplied in the cell where the gauging 

station is located by an unconstrained factor to match simulated discharge to observed 

discharge within a 10 % uncertainty range. Actual evapotranspiration is not adapted 

accordingly to avoid unphysical values, and mass is therefore not conserved. 

2.2.2 Regionalization Approach 

The land area outside the 1509 calibration basins benefits from the calibration due to the 

regionalization of the calibrated runoff coefficient. γ of so-far uncalibrated basins is adjusted 

within the before mentioned parameter limits and by relating the natural logarithm of γ to basin 

descriptors using a multiple linear regression approach. The basin descriptors consist of mean 

annual temperature, mean available soil water capacity, the fraction of local and global lakes 

and wetlands, mean basin land surface slope, the fraction of permanent snow and ice, and 

aquifer-related groundwater recharge factor (MÜLLER SCHMIED ET AL., 2021).  

2.3 Update of Calibration Stations database 

During bias-adjustment of the concatenated dataset GSWP3-W5E5 for ISIMIP Phase 3a, jumps 

in the seasonal cycle of all climate variables were identified. The discontinuities arise at every 

turn of the month and are not as initially thought the result of bias-adjustment but instead 

inherited from GSWP3 itself (ISIMIP, 2021c). ISIMIP retraced the data in March 2021, and to 

this point, no update of GSWP3 has been published. In view of the long period without progress 

concerning GSWP3, ISIMIP decided to release the latest version of GSWP3-W5E5 for Phase 
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3a simulations (ISIMIP, 2021b). Consequently, the newly released GSWP3-W5E5 was used 

within the context of this master thesis. The original and the new dataset differs in so far that 

the later versions of GSWP3 (v1.09 compared to v0.5b), W5E5 (v2.0 compared to v1.0) as well 

as the harmonization method ISIMIP3BASD (v2.5.0 compared to v2.4.1) have been used 

(ISIMIP, 2021b; MENGEL ET AL., 2021). 

Between November and March 2021, the insecurities to whether and when a rectified version 

of GSWP3 would be published made the prospect to circumvent the use of the erroneous dataset 

ever more appealing. Apart from the problem arising specifically with GSWP3, the backwards 

extension of modern climate forcings, all of which begin in 1979, results in discontinuities at 

the 1978/1979 transition (MÜLLER SCHMIED ET AL., 2016a; MENGEL ET AL., 2021). This 

implicates that if a calibrated run should be performed, the calibration period is preferably 

shifted to a time frame after 1979. Since WaterGAP version 2.2d (MÜLLER SCHMIED ET AL., 

2021), the 30-year calibration period was, if possible, adjusted to cover the years between 1979 

and 2008 instead of using the period between 1971 and 2000. However, as mentioned above, 

calibrating after 1979 causes a decline in available calibration stations since discharge data is 

scarce after 1979 for the 1319 GRDC stations used in WaterGAP 2.2d (MÜLLER SCHMIED ET 

AL., 2021). 

 

Figure 4: 1319 GRDC stations used for WaterGAP 2.2d. Stations that are lost for calibration 

after 1979 are indicated by black colour. 

The last data retrieval from GRDC for calibration stations was conducted in 2012, which is why 

beginning the search for contemporary and additional discharge data at GRDC seemed 
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plausible. Furthermore, in recent years two other discharge databases have been published, the 

Global Streamflow Indices and Metadata archive (GSIM) (DO ET AL., 2018; GUDMUNDSSON ET 

AL., 2018) and the African Database of Hydrometric Indices (ADHI) (TRAMBLAY ET AL., 2021). 

The updated and new data sources promised either the prolongation of discharge series of 

existing calibration stations or the enlargement of the total number of available stations meeting 

the calibration criteria potentially enabling successful calibration after 1979. Since including 

additional stations is beneficial in any way, the search for new stations was not limited to the 

period after 1979 but was simultaneously performed for stations containing data after 1951 and 

1901. Preparing calibration for 1951 aligns with plans to calculate ERA5 from 1951 onwards, 

which is why it has been considered here as well.  

2.3.1 Calibration Data 

GRDC 

The majority of streamflow data used for calibration and succeeding model evaluation is 

obtained from the Global Runoff Data Base (GRDB), which is maintained by the Global Runoff 

Data Centre (GRDC). The GRDC collects hydrological data and information on a global scale 

to foster scientific research in the field of climate change and risk assessment and to support 

water and climate-related programs of the United Nations. Daily and monthly discharge data of 

more than 10000 gauging stations around the globe with time series comprising up to 200 years 

of data are provided and perpetually updated through cooperation and exchange with national 

institutions, trans-national organisations and partner data centres. The data is free of charge for 

non-commercial users as specified by the centre’s data policy and can be downloaded through 

the GRDC Data Portal (https://portal.grdc.bafg.de). A major effort is attributed to developing a 

standardised hydrological metadata profile intending to account for differences in data quality 

and observations used to generate the data. Universities and scientific institutions widely use 

hydrological data from GRDC to assess present and future freshwater resources as well as for 

hydrological model verification, calibration, and the validation of model results (GRDC, 2021). 

GSIM 

GSIM (DO ET AL., 2018; GUDMUNDSSON ET AL., 2018) was published in 2018 and provides a 

global streamflow database using publicly available data from twelve streamflow databases. 

More than 35000 daily discharge series have been collected and consistently formatted. 

Standardized processing of metadata was established to facilitate the use of discharge data for 

a broader community. With GSIM, the authors address issues regarding global coverage and 

https://portal.grdc.bafg.de/
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missing updates arising with the broadly used GRDC. Especially for South America and Asia, 

sufficient coverage of GRDC stations is lacking. None the less, GRDC stations and discharge 

series are included in GSIMs discharge catalogue. Figure 5 shows the distribution of GRDC 

stations and the coverage of other databases employed for the construction of GSIM. Since 

some databases share common spatial domains, duplicates were identified and removed during 

the merge of all databases leaving around 31000 discharge series. This is especially true for 

GRDC stations, which have been replaced by more up-to-date national databases if available. 

However, as described in DO ET AL. (2018), the replacement of GRDC with those of national 

databases came at the cost of losing those stations exclusive in GRDC. In addition to collecting 

daily discharge data, the authors of GSIM computed streamflow indices describing the 

respective discharge series (DO ET AL., 2018; GUDMUNDSSON ET AL., 2018). 

 

Figure 5: A schematic overview of the twelve databases used for GSIM. Further information 

can be found in DO ET AL. (2018) 

ADHI 

The African Database of Hydrometric Indices (TRAMBLAY ET AL., 2021) was released in 2020. 

It provides daily discharge data, hydrological indicators, and climate variables for the African 

continent. The initiative’s objective was to collect discharge data and metadata for the else 

underrepresented African continent and, in effect, complement GRDC and GSIM. The database 

comprises 1466 stations with daily discharge data between 1950 and 2018. For a station to be 

included in ADHI, it has to include a minimum of ten complete but not necessarily consecutive 

years in the respective period. Discharge data is retrieved from GRDC and SIEREM databases 

(BOYER ET AL., 2006). During the merge of both databases, 106 duplicates with longer time 
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series in SIEREM database were identified and the GRDC duplicate was removed. In addition, 

a visual quality check has been performed on all discharge data. Stations showing signs of gap 

filling or suspicious data have been flagged in the metadata (TRAMBLAY ET AL., 2021).  

2.3.2 Procedure and methodological approach to update calibration database 

ID Verification and Adjustment 

Since the last data retrieval in 2012, GRDC has modified its station IDs, consequently stations 

IDs used by the working group and GRDC was mismatched. Prior to the database update, 

stations with new IDs needed to be identified. The search and matching process was based on 

two files (file with old and updated IDs, station list including metadata) provided by GRDC 

(GRDC, no date a, no date b). In the meantime, a new file containing updated GRDC IDs has 

been published. The file used for this master thesis can be found in the Appendix B.1 

Calibration Station Update. Seven out of the 1319 WaterGAP calibration stations had to be 

identified manually because their metadata was not identical. Through visual analysis of the 

metadata and manual search for their updated pendant, six of these stations could be matched 

with an updated GRDC ID. The seventh station could not be identified, which reduced the total 

number of calibration stations to 1318. The respective R scripts and a list of used and produced 

files regarding the update of GRDC stations can be found in the Appendix B.1 Calibration 

Station Update.  

Procedure to update the calibration station database 

The procedure to update the calibration station database followed five sequential steps. All steps 

were performed individually for all three above-mentioned databases. Due to differences 

between the databases structure, spatial and temporal coverage as well as formats minor 

adjustments had to be made. In the first step, stations were pre-selected by exclusively analysing 

the metadata. Stations were selected if the corresponding catchment was larger than 9000 km² 

in accordance with calibration requirements and the respective discharge series ends after 1982 

to ensure that the minimum available discharge series comprises four years.  

In the case of GRDC, the discharge data of stations identified in step one was commissioned at 

the Data Centre. However, after the pre-selection process, it became evident that some newly 

found GRDC stations interfered with established GRDC stations in terms of interstation area. 

The evaluation of conflicting interstation area had to be conducted manually, given that the 

metadata did not allow formulating an inquiry that inspects interstation area. Therefore, GRDC 
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stations identified in step one were analysed in ArcMap and removed if conflicting interstation 

areas were identified. Whether the interstation areas of two or more stations are conflicting or 

not was evaluated by analysing the information regarding interstation area in the provided 

metadata and the station’s position on DDM30. The general objective was to keep the 

established 1319 GRDC stations and update those if possible. In the case of conflicting 

interstation areas between one of the 1319 stations and a newly found station, the decision was 

ruled in favour of the station belonging to the 1319 stations. 

During the second step the quality of the discharge series was evaluated. Monthly discharge 

values provided by the databases are computed from daily values. Depending on the available 

data points (daily values) within a month, the quality of the resulting monthly value varies. For 

transparency reasons the databases provided information regarding the number of days used for 

the respective monthly value. Based on this information a quality indicator was implemented 

to ensure data consistency and resilience. The threshold for missing daily values used for the 

computation of monthly values was set to a maximum of two days. Monthly discharge values 

computed from less daily values were therefore not included in any further analyses. The chosen 

threshold of a maximum of two missing days is a very conservative approach since the authors 

of ADHI recommend excluding monthly values if 5 to 10 % or more days are missing 

(TRAMBLAY ET AL., 2021). The authors of GSIM propose to use monthly values only if they 

have been computed from a minimum of 25 days and denote their approach as very conservative 

(GUDMUNDSSON ET AL., 2018).  

In the third step, all discharge series of each database were merged into one file and stations 

were checked for complete years. If a year had less than twelve values, all values of the 

respective year were omitted. Based on that, stations covering at least four complete but not 

necessarily consecutive years after 1979 were kept. All stations with less than four years were 

removed and not included in any further analyses. Step three was performed for the years 1901 

and 1951 as well.  

The fourth step was only performed on the stations, including four complete years after 1979. 

The previously selected stations of all data centres were reconnected to their metadata and read 

into ArcMap for individual review. The visual analysis focused on identifying conflicting 

interstation areas between stations of the three data centres and duplicates, screening the 

metadata for suspicious content, and agreement of basin area in DDM30. As mentioned above, 

ADHI includes flagged stations containing suspicious or gap-filled data and time series with 
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significant regime shifts. Some of these stations have been removed during this step. In 

addition, some ADHI stations include the comment “donnee reconstituee” (TRAMBLAY ET AL., 

2021), which translates into “reconstructed data”, all of which have been removed after 

consultation of the authors (e-mail correspondence of Hannes Müller Schmied and Yves 

Tramblay, 16.11.2021).  

The occurrence of duplicates or multiple stations per grid cell allowed for the possibility of 

merging discharge series of two data sources (step five) to gain longer discharge series. Yet 

merging the two discharge series simply based on their matching position and metadata leaves 

too much ground for errors. Hence, both discharge series were displayed in one figure enabling 

visual analysis regarding seasonality, flow dynamics, and outliers that could stem from 

measurement inaccuracies or data manipulation. Apart from sharing the exact location and 

matching metadata, discharge series were merged if flow dynamics were similar, and 

seasonality seemed realistic. During the process, some discharge series showed anomalies of 

different forms such as continuous rise in discharge, overly high discharge values, or unnatural 

seasonality. For these stations, individual solutions were found. Some discharge series were 

modified to varying degrees. Others were removed because no solution or possible cause for 

the behaviour could be identified. All individual decisions and the scripts for displaying and 

merging station discharge data, are documented in GitHub by Hannes Müller Schmied, who 

developed the method and executed all tasks described in this paragraph 

(https://github.com/hmschmie/script-collection).  

Development of 2.2e Calibration Station Database  

The selection of calibration stations that are now used for calibration of WaterGAP 2.2e 

comprises 134 stations more than identified at the end of step five. For the construction of 2.2e 

calibration station database, the resulting station dataset from the above-described process was 

merged with stations included in 2.2d calibration. These 134 stations from 2.2d do not comprise 

four complete years of data after 1979, which is why they have not been considered before.  

2.4 Data for Model Validation  

In addition to model validation by analysing differences between simulated streamflow and the 

above observed discharge data, model performance is evaluated regarding its ability to compute 

terrestrial or total water storage (TWS). GRACE and GRACE Follow-On (GRACE-FO 

launched in 2018) satellite missions have measured the earth’s gravity field variations since 

2002 (BOERGENS ET AL., 2020). TWS changes or anomalies (TWSA) can be derived from the 
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measured gravitational signal after subtracting the impact of atmospheric and oceanic mass 

variations as well as other mass variations from total gravity variations. The residual 

gravitational signal is attributed to changes in TWS (SCHMIDT ET AL., 2006). The satellite 

mission consists of twin satellites following each other with a distance of approximately 220 

km and flying at over 400 km altitude. When encompassing changes of the gravity field, the 

distance between the satellites changes in terms of length and angle. Hence, the measurement 

of distance changes is a proxy for gravitational changes (JET PROPULSION LABORATORY, 

2021b). 

TWSA are provided in so-called mass concentration blocks or “mascons” which is an 

alternative way of solving for gravity variations to the standard spherical harmonic approach. 

These TWSA mascons are directly employable monthly gridded data provided in equivalent 

water thickness units (cm). However, TWSA provided by GRACE and GRACE-FO are not 

relative to a measured reference value but to the 2004 to 2009 time-mean baseline. Several 

institutions offer mascon data for TWSA (so-called Level-3 GRACE data products) which vary 

in terms of data processing (Jet Propulsion Laboratory, 2021b). Two GRACE mascon solutions 

are used within this master thesis: the Jet Propulsion Laboratories (JPL) mascon solution 

RL06M.MSCNv02 (WIESE ET AL., 2019) and the Center for Space Research’s mascon solution 

CSR RL06 v02 (SAVE, 2020). At the time of writing, monthly data was available between 

January 2002 and April 2021. However, due to battery problems and the period between 

GRACE and GRACE-FO missions (GRACE: 2002-2017, GRACE-FO: May 2018- today), data 

incontinuities occur. Furthermore, the data features higher errors in months when the satellite’s 

orbit is near exact-repeat, which is true for July to December 2004 and January to February 

2015 (Jet Propulsion Laboratory, 2021a). 

2.4.1 Mascons and Providing Institutions 

RL06M.MSCNv02 – Jet Propulsion Laboratories 

RL06M.MSCNv02 will further be referred to as JPL-RL06M. The dataset is based on Level-1 

observations processed at JPL. C20 (degree 2 order 0) coefficients, which describe the 

difference between equatorial and polar radii of the equipotential surface of the Earth’s gravity 

field, have been replaced with the solutions from Satellite Laser Ranging (CHENG ET AL., 2011) 

due to larger uncertainties of GRACE-C20 values. Degree-1 coefficients, describing the 

distance between the mass centre of the Earth and its ‘centre of figure’, are estimated using 

methods from SUN, RIVA AND DITMAR (2016) and SWENSON, CHAMBERS AND WAHR (2008). 
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Glacial isostatic adjustment (GIA) correction has been applied according to the ICE6G-D model 

(RICHARD PELTIER ET AL., 2018). The data is provided with a spatial resolution of 0.5° x 0.5°, 

however grids represent 3° x 3° equal-area cap mass concentrations which is the current native 

resolution of JPL-RL06M. As for WaterGAP, grids contain mixed land and ocean mass change 

signals. A Coastal Resolution Improvement (CRI) filter is applied to these grids separating land 

and ocean mass or TWSA, respectively (WIESE ET AL., 2016).  

CSR RL06 v02 – Center for Space Research  

CSR RL06 v02 will further be referred to as CSR-RL06. The mascon has been corrected for 

representation on ellipsoidal earth in accordance with DITMAR (2018). C20 (degree 2 order 0) 

coefficients were replaced with Satellite Laser Ranging (LOOMIS ET AL., 2019). C30 (degree 3 

order 0) coefficients were also replaced by Satellite Laser Ranging but only for GRACE-FO. 

Degree-1 coefficients were corrected using estimates in Technical Note 13a (TN13a), which 

are derived from SUN, RIVA AND DITMAR (2016) and SWENSON, CHAMBERS AND WAHR (2008). 

As for JPL-RL06M, GIA correction has been applied based on ICE6G-D (RICHARD PELTIER ET 

AL., 2018). CSR-RL06 is provided on 0.25 ° x 0.25 ° gird cells representing equal-area 1° x 1° 

grids, which is the current native resolution of CSR-RL06. This spatial scale has been used to 

comply with the newly defined hexagonal tiles, which can be split into two parts along the coast 

to minimize leakage between land and ocean mass signals (SAVE ET AL., 2016). 

2.4.2 Mascon Processing and Alignment of Mascons and WaterGAP output 

The data from both mascon solutions have been manipulated to fit the World Land Mask used 

for WaterGAP. The re-ordered data has been aggregated over the area of 143 basins. For the 

JPL mascon solution the Kalman filter was used during the aggregation of liquid water 

equivalence. Finally, a TWSA time series for each basin was produced. In order to ensure 

compatibility between GRACE mascon solutions and WaterGAP output, TWSA were 

computed from WaterGAP TWS. In accordance with GRACE methodology, the 2004-2009 

TWS baseline was calculated for each basin and consequently subtracted from every monthly 

TWS value. 

2.5 Evaluation metrics 

In hydrology, evaluation of model performance is necessary to quantitatively describe the 

models’ ability to reproduce observed watershed behaviour. Additionally, it provides a basis 

for evaluating improvements regarding parameter value, model structure, and inclusion of 
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additional observation information as well as spatial and temporal resolution. Finally, 

quantitative model evaluation allows for comparisons between previous and current model 

results as well as across different hydrological models. KRYSANOVA ET AL. (2018) argue using 

a standardized set of evaluation metrics in order to guarantee comparability of model results. 

In this manner well-established evaluation metrics, such as Nash-Sutcliff efficiency (NASH and 

SUTCLIFFE, 1970) and Kling-Gupta efficiency index (GUPTA ET AL., 2009; KLING ET AL., 2012), 

are used within the context of this master thesis.  

However, the spatial scale on which the different evaluation metrics are computed varies. Water 

balance components and climate variables are evaluated on a global scale excluding Antarctica 

and Greenland. Evaluation of streamflow indicators, Nash-Sutcliff efficiency, and Kling-Gupta 

Efficiency are computed for 1427 calibration basins. To evaluate the performance of TWSA, 

143 larger river basins have been chosen in accordance with WaterGAP 2.2d description paper 

(MÜLLER SCHMIED ET AL., 2021). All applied efficiency metrics and evaluation tools are 

described in the following section. 

2.5.1 Global Parameters 

Water balance components and climate variables are computed globally, and results are 

compared between the four model experiments. The evaluation of water balance components 

includes precipitation, discharge, potential evapotranspiration (PET), actual evapotranspiration 

(AET), net water abstraction from surface- and groundwater, consumptive water use, TWS 

changes, and long-term average volume balance error. In this context, computation of TWS 

changes is adjusted to the overall aim to evaluate satisfaction of global water balance, which is 

why the calculation method differs from that used to evaluate TWSA with GRACE mascon 

products. Here the change of TWS is obtained from the difference between the first and the last 

TWS value. Since the global computation of climate variables is not affected by calibration, 

differences in climate variables are evaluated between the two climate forcings only. In the 

context of this thesis, climate variables only include downward shortwave radiation, downward 

longwave radiation, temperature, and precipitation. 

2.5.2 Streamflow Indicators 

Streamflow indicators are computed to analyse the watersheds’ flow characteristics and 

discharge dynamics. Q99 and Q90 are computed to evaluate the performance of the model in 

the low flow regime and the low flow extremes. Q1 and Q10 are used to analyse the ability to 
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reproduce high flow regimes and flood conditions. Q50 is computed to analyse the median of 

a discharge series. Q25 and Q75 are computed as well but are not discussed in the results and 

following chapters. A graphical representation of Q25 and Q75 can be found in Appendix A. 

2.5.3 Efficiency Metrics 

Nash-Sutcliff Efficency (NSE) 

The Nash-Sutcliff (NASH and SUTCLIFFE, 1970) efficiency is a common measure for the 

goodness-of-fit in hydrology. It is defined as one minus the sum of the absolute squared 

differences between the predicted and observed values normalized by the variance of the latter. 

The formula reads as follows: 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑆𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1

 
(2) 

with S simulated and O observed values. The specified variable names for simulated and 

observed values apply to all other equations presented here. The value of NSE can range 

between one and an infinitively large negative value (-∞), where 1 represents a perfect fit 

between simulated and observed discharge. If NSE falls below zero, the mean of the observed 

discharge is a better predictor than the model results. Due to the normalization of the variance 

of observed discharge, NSE is relatively higher in catchments with higher dynamics and lower 

in those with lower dynamics. Meaning that models have to perform better in catchments with 

lower dynamics to retrieve comparable NSE values. Problematic with NSE is that it provides 

no means to differentiate whether higher values result from lower mean errors or better 

representations of the variance (HUNGER and DÖLL, 2008). Additionally, calculating the 

discharge time series differences as squared values leads to an overestimation of larger values 

while lower ones are neglected (LEGATES and MCCABE, 1999). This leads to overestimating 

model performance during peak flows and an underestimation during low flow conditions. 

Kling-Gupta efficiency index (KGE) 

The Kling-Gupta efficiency index (GUPTA ET AL., 2009; KLING ET AL., 2012) has been developed 

to decompose NSE and solve problems associated with NSE. The incentive of KGE 

development was to show how the decomposition helps to enhance the understanding of overall 

model performance and pinpoint the reason for sub-optimal model performance through 

evaluation of its three sub-components. KGE shares the same value range as NSE (1 to -∞), one 

being the aspired value. It is computed as follows (GUPTA ET AL., 2009; KLING ET AL., 2012): 
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𝐾𝐺𝐸 = 1 − √(𝐾𝐺𝐸𝑟 − 1)2 + (𝐾𝐺𝐸𝛽 − 1)2 + (𝐾𝐺𝐸𝛾 − 1)2 
(3) 

The sub-components of KGE are the Pearson’s correlation coefficient (rKGE), the bias ratio 

(βKGE), and the variability ratio (γKGE). The Pearson’s correlation coefficient evaluates the 

degree of linear relationship between observed and simulated data. It ranges from -1 to 1 and 

indicates a perfect positive or negative linear relationship when reaching the corresponding 

marginal value. No linear relationship between simulated and observed values exists if the 

correlation coefficient is zero. βKGE describes the ratio between the mean of simulated and 

observed values reaching unrestrained negative or positive values. For βKGE, one is the ideal 

value while values above or below indicate a discrepancy between the modelled and the 

simulated mean. The ratio between the coefficient of variation (CV) of simulated and observed 

values is described by the variability ratio (γKGE), which can become infinitely negative or 

positive. Ideal, however is again a value of one. Values below or above one reveal the variability 

of the simulated values to be lesser or greater than that of the observed time series. 

𝑟𝐾𝐺𝐸 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 
(4) 

𝛽𝐾𝐺𝐸 =
𝜇𝑆

𝜇𝑂
 

(5) 

𝛾𝐾𝐺𝐸 =  
𝐶𝑉𝑆

𝐶𝑉𝑂
=

𝜎𝑆

𝜇𝑆
𝜎𝑂

𝜇𝑂

 
(6) 

where µ denotes the mean and σ the standard deviation of the respective discharge series 

(GUPTA ET AL., 2009; KLING ET AL., 2012). 

2.5.4 Evaluation metrics for TWSA 

The gridded values of GRACE products are spatially averaged over the above-mentioned 143 

river basins. The performance of WaterGAP is evaluated by its ability to reproduce trends and 

variability detected in TWSA from the two GRACE solutions. The variability of WaterGAP 

TWSA is evaluated using the KGE function's variability ratio. Trends in GRACE mascon 

solutions and WaterGAP regarding TWSA were derived from the gradient of the time series 

linear regression. Additionally, the coefficient of determination is used to evaluate the model’s 

performance in replicating the dispersion of values. 
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Coefficient of determination 

The coefficient of determination (R²) is the square of the Pearson’s correlation coefficient. Both 

statistics analyse the linear relationship between simulated and observed values. R² specifically 

describes the proportion of the variance of observed values that can be reproduced by the model. 

It ranges between zero and one, which is again the value aimed for, while zero signifies no 

correlation between the model results and the observed values. R² is calculated as: 

𝑅2 = {
∑ (𝑂𝑖 − �̅�)(𝑆𝑖 − 𝑆̅)𝑛

𝑖=1

[∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1 ]0.5[∑ (𝑆𝑖 − 𝑆̅)2𝑛

𝑖=1 ]0.5
} 

(7) 

R² is, however quite sensitive to high extreme values and insensitive to additive and 

proportional differences between simulated and observed values. The same is true for the 

Pearson’s correlation coefficient (LEGATES and MCCABE, 1999). If a model systematically 

over- or underpredicts all the time, R² can still result in values close to 1, which is why R² 

should not be considered alone when evaluating a model. To account for the coefficient of 

determination’s inability to judge a models performance holistically, the gradient b of the 

regression on which R² is based should be combined with R², hence providing a weighted 

version of R². This is achieved by multiplying the gradient b with R². Consequently, a value of 

one for the gradient b is aimed for, which would in turn result in the same R² and weighted R² 

value (KRAUSE ET AL., 2005).
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3 Results 

3.1 Update of Calibration Stations 

3.1.1 GRDC ID Verification and Adjustment 

Out of the 1319 calibration stations from WaterGAP 2.2d, 175 have changed IDs since the last 

data retrieval in 2012. One station, namely “Below Fort Peck” (ID: 4120901) on the Missouri 

river, was identified as a station with a changed ID but a new ID could not be found. As a result 

of backwater effects, the station included negative values and has been retracted by GRDC (e-

mail correspondence between Ulrich Looser and Hannes Müller Schmied, 20.03.2019). The 

station has been excluded from further analyses. “Below Fort Peck” was, however reintegrated 

into the current calibration dataset by combining stations from WaterGAP 2.2d and stations 

resulting from section 2.3 Update of Calibration Stations database. 

3.1.2 Discharge dataset for calibration after 1979 

Of the 10361 GRDC stations, 2234 were pre-selected during the first processing step. Through 

visual analyses performed only on GRDC stations, another 797 were removed because of 

conflicting interstation area, leaving 1437 potential stations. The ADHI database includes 1466 

stations, of which only 197 comprise a catchment area greater than 9000 km² and include data 

until 1982 or longer. 1565 of the 35000 GSIM stations met the criteria formulated in step one. 

As a result of excluding months failing to meet the quality criteria in step two and removing 

incomplete years in step three, 1199 GRDC stations, 169 ADHI stations, and 1314 GSIM 

stations remained for the period after 1979. The available stations for the time periods 1901 and 

1951 are displayed in table 1. The visual analysis in ArcMap was performed twice (1st analysis 

by Leonie Schiebener, 2nd analysis by Hannes Müller Schmied) sequentially reducing the 

number of stations of all three data sources). After the second visual analysis, 1118 stations 

were selected for GRDC, and 79 ADHI stations remained. The number of GSIM stations was 

considerably reduced to 186 stations. 
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Table 1: Resulting number of stations after each processing step 

Step & author years GRDC ADHI GSIM 

Step 1 – LS -  1437 197 1314 

Step 2 – LS 
-  

as step 1, reduced 

discharge values 

for station 

as step 1, reduced 

discharge values 

for station 

as step 1, reduced 

discharge values 

for station 

Step 3 - LS 1901 1424 189 1367 

 1951 1424 189 1366 

 1979 1199 169 1314 

Step 4 - HMS 

& LS:  

1. visual     

analysis  1979 1143 103 521 

2. visual 

analysis 
1979 1118 79 186 

Step 5 - HMS:  1979 1116 79 180 

 

Finally, after the screening had been completed, suspicious stations had been excluded, and 

matching discharge series had been merged, a total of 1375 stations with four complete years 

after 1979 remained (step 5). The global distribution of these stations can be seen in figure 6. 

The total number of available years per station is colour-coded. The African continent, Asia 

and Russia are dominated by reddish colours, indicating that stations have relatively short 

discharge series. Stations with dark green signatures dominate in central Europe, Scandinavia, 

and the United States. Compared to figure 4 considerably large areas are lost for calibration or 

show fewer available stations often with shorter discharge series length. 
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Figure 6: Resulting 1375 stations after step 5 and number of available years after 1979 

3.1.3 Discharge dataset for WaterGAP 2.2e calibration 

For the construction of WaterGAP 2.2e calibration dataset, the results presented above were 

combined with additional stations from WaterGAP 2.2d. This way, the dataset could be 

extended by 190 stations. In total, 1509 stations are now used for standard calibration of 

WaterGAP, and the calibrated area was increased by approximately 1600000 km². Figure 8 

shows the affiliation to one of the three data sources. With 1252 stations, GRDC is still the 

dominant data source. 1109 GRDC stations are updated stations. Two of those have been 

merged with 2.2d stations. The resulting 143 stations were adopted from 2.2d without any 

alterations. In total, 177 GSIM stations are included in the calibration dataset, the majority of 

which are concentrated in Canada, Brazil, and India. Ten GSIM stations have been merged with 

2.2d stations, and two have been merged with updated GRDC stations. ADHI contributed to 

the dataset with 80 stations, which are concentrated in the east and centre of the African 

continent. Five ADHI stations have been merged with 2.2d stations and another nine with 

updated GRDC stations. 
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Figure 7: The final WaterGAp 2.2e calibration station dataset and the stations source database 

Figure 8 shows WaterGAP 2.2e calibration stations colour-coded according to discharge data 

availability starting in 1912. Green is by far the most dominant colour signifying that the 

majority of the stations comprise 20 or more years of discharge data. Two-thirds of the 1509 

stations are coloured dark green and have a discharge series equal to or longer than 30 years. A 

slightly higher concentration of dark green stations can be attributed to the United States, Brazil, 

central Europe, and Scandinavia. Stations with either 5 to 10 years or 10 to 20 years make up a 

neglectable quantity. Only 17 stations comprise just the minimum discharge series length of 

four years, most of which are located in the Middle East. 
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Figure 8: The final WaterGAP 2.2e calibration station dataset with availability of years 

In figure 9 the number of years and stations available for calibration in relation to calibration 

start year is displayed. The number of available years begins to decline in the mid-1940s, but a 

strong exponential decrease of available years and stations alike can be identified by the end of 

the 1960s. The graph ends in 1979 where the number of available years has dropped by 1000 

years, and the number of available stations has dropped to approximately 1300. 

 

Figure 9: Number of years and stations available for calibration in relation to calibration start 

year 
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3.2 Climate Forcings and Calibration  

3.2.1 Climate variables 

Global climate variables have been evaluated for two climate forcings, ERA5 and W5E5. Since 

climate variables are unaffected by calibration analyses is limited to the two climate input 

datasets. Table 2 shows the mean climate variables computed over the time period of 1979 to 

2019. With the exception of precipitation, all values are computed as yearly means. 

Precipitation is computed as the mean yearly sum. Figure 10 - 13show the corresponding spatial 

distribution of the climate variables. Since Greenland is not part of any other analyses, 

deviations between ERA5 and W5E5 in Greenland will not be discussed here.  

Table 2: Climate variables for ERA5 and W5E5 

Variable 
ERA5 W5E5 

Lwdown (W m-2) 323.05 323.81 

Swdown (W m-2) 194.59 192.04 

Temperature (°C) 13.58 13.65 

Precipitation (mm yr-1) 54519489 50475474 

 

Both forcings’ yearly mean downward longwave radiation (LWdown) amounts to 

approximately 323 W m-2 with deviations on the decimal range. The overall distribution of 

LWdown is rather similar for both forcings (see figure 10). Significant differences in the spatial 

distribution of LWdown between the forcings can be identified in high latitudes (> 60° N) of 

Russia and North America, where weaker radiation of W5E5 stretches further to the south than 

for ERA5. While the weakest radiation in Russian high latitudes is largely limited to a minimum 

of 210 W m-2 in ERA5, LWdown can sink to 180 W m-2 over the Lena and adjacent basins in 

W5E5. W5E5 shows high LWdown ranging between 420 and 450 W m-2 over large parts of the 

Amazon basin. In ERA5, comparably strong LWdown is limited to small areas in the centre of 

the Amazon basin. Generally, W5E5 shows a higher distribution of strong LWdown (> 420 W 

m-2) around the equator overlapping with the distribution of rainy tropical climates. 
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Figure 10: Mean downward longwave radiation (LWdown) between 1979 and 2019 for ERA5 

(top) and W5E5 (bottom) 

Mean downward shortwave radiation (SWdown) differs by approximately 2.5 W m-2 between 

the forcings. Mean SWdown amounts to 194.6 in ERA5 and 192 W m-2 in W5E5. Both forcings 

show almost horizontal distributions of SWdown, especially in the northern hemisphere (see 

figure 11). Weak radiation (< 60 W m-2) spreads further south in W5E5 compared to ERA5. 

Over China, W5E5 shows a greater distribution of lower SWdown than ERA5. Differences in 

the distribution of high SWdown (SWdown > longtime mean) are marginal. Nevertheless, 

ERA5 shows a slightly higher distribution of higher SWdown values, as for example on the 

eastern tip of Brazil as well as the horn and centre of Africa. 
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Figure 11: Mean downward shortwave radiation (SWdown) between 1979 and 2019 for ERA5 

(top) and W5E5 (right) 

Mean annual precipitation differs by approximately 4 Mio. mm yr-1. ERA5s mean annual 

precipitation is considerably higher than that of W5E5. Precipitation is lower for W5E5 over 

Alaska and Canada but also over high latitude Russian basins, the Tibetan plateau and the 

Chilean Andes (climate zone E and partially D) (see figure 12). ERA5 shows lower 

precipitation over the eastern part of the Sahara, the Arabian peninsula as well as Australia 

(climate zone B). Precipitation over the Amazon basin does not seem to differ quantitatively 

but it differs in distributional patterns. The highest mean precipitation over the Amazon basin 

can be seen in the exact same location for both forcings. Yet in ERA5 higher precipitation 

values (2000 to 3000 mm yr-1) concentrate in the centre of the basin while this precipitation 

class is shifted towards the east of the basin and the Brazilian coastline in W5E5. Precipitation 
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over central Africa is higher in W5E5 with a focus on the Congo basin. ERA5 additionally 

shows a greater distribution of higher precipitation values (> 1000 mm yr-1) over the Himalayas 

and Bangladesh as well as Indonesia, Malaysia, and adjacent islands. 

 

 

Figure 12: Mean annual precipitation between 1979 and 2019 for ERA5 (top) and W5E5 

(bottom) 

The mean temperature in ERA5 amounts to 13.58 °C. With a mean temperature of 13.65 °C, 

the climate of W5E5 is slightly warmer. Up to the -5 °C mark, lower temperatures spread further 

south in W5E5 than in ERA5 (see figure 13). A significantly colder area in W5E5 can be 

identified over the Lena basin. ERA5 shows lower mean temperatures over the Tibetan plateau. 

Differences in the distribution of higher temperatures between the forcings can be seen in the 

higher spatial coverage of temperatures above 30 °C in W5E5. Regions with greater 

distributions of high temperatures are the Amazon, the Sahara, India as well as Indonesia, 
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Malaysia and adjacent islands. On the other hand, ERA5 shows higher mean temperatures over 

the Arabian Peninsula. 

 

 

Figure 13: Mean annual temperature between 1979 and 2019 for ERA5 (top) and W5E5 

(bottom) 

 

 

 

 



42 

 

Five major climate zones based on the Köppen-Geiger classification have been identified for 

both forcings. The individual climatic characteristics of the two forcings lead to differences in 

climate zone distribution. Figure 14 shows how the climate zones are distributed in ERA5 and 

W5E5.  

 

 

Figure 14: Climate zones according to Köppen-Geiger classification 

3.2.2 Water Balance Components 

Precipitation in ERA5 is approximately 8 % higher than in W5E5 (difference: 8452 km³ yr-1) 

leading to comparably increased discharge in ERA5-nocal. Through calibration of ERA5-nocal, 

discharge is reduced by 4 %. Calibration of W5E5 shows a reversed trend since discharge is 

increased by 6 %. Discharge differences between the forcings are reduced through calibration 

from 4568 to 874 km³ yr-1. ERA5 reveals a 1 % higher PET than W5E5 (difference: 1361 km³ 
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yr-1). The mean annual AET of ERA5-nocal is 8 % higher compared to W5E5-nocal. Through 

calibration, AET is increased by around 2 % in ERA5. A reversed influence of calibration on 

AET in W5E5 can be identified; hence AET is decreased by 3 %. Before calibration, actual 

consumptive use of ERA5-nocal is higher than that of W5E5-nocal (7 %). The consumptive use 

of ERA5 and W5E5 is decreased through calibration by 10 % and 1 %, respectively. Change of 

total water storage is negative for all model versions, with ERA5-nocal and W5E5-nocal 

showing the same value. After calibration, the negative trend of water storage of both forcings 

is further increased. This leads to a greater negative total water storage change in ERA5. The 

long-term average volume balance error is smaller than 1 km³ yr-1 in all four model experiments. 

Table 3: Global water balance components (excluding Antarctica and Greenland) for 1979 to 

2019. All units in km³ yr-1. Actual evapotranspiration includes actual consumptive water use. 

Actual consumptive use is the sum of row 5 and 6. Long-term average volume balance error is 

computed as the difference of precipitation and the sum of components 2, 4 and 8. 

No. Component ERA5-

nocal 

ERA5 W5E5-

nocal 

W5E5 

1 Precipitation 119821 119821 111370 111370 

2 Streamflow into oceans and inland sinks 41892 40425 37324 39550 

3 Potential evapotranspiration 150360 150359 148998 149001 

4 Actual evapotranspiration 78017 79494 74133 71912 

5 Actual net abstraction from surface water 1666 1497 1568 1548 

6 Actual net abstraction from groundwater -92 -79 -93 -86 

7 Actual consumptive water use 1574 1418 1475 1462 

8 Change of total water storage -87 -97 -87 -93 

9 Long-term average volume balance error -0.23 -0.21 -0.21 -0.18 
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3.2.3 Efficiency Metrics 

NSE 

The NSE value aimed for is 1, values equal to or larger than 0.7 can already be judged as good 

model performance. Figure 15 shows the distribution of NSE values of all four model 

experiments. ERA5-nocal reaches NSE values larger than 0.7 in 13 % more basins than W5E5-

nocal. ERA5-nocal performs superior in basins located in Siberia and former USSR territories 

as well as Alaska, which to a large part belong to climate zone D (see table 4). Apart from the 

higher latitude regions, parts of South America as well as the southeast of the United States are 

represented quite well by ERA5-nocal. However, the African continent, the majority of South 

and North America, Australia and Europe as well as the majority of China and South East Asia 

show NSE values below 0.1. In total, 789 basins in ERA5-nocal fall below the 0.1 NSE mark, 

which is about 55 % of all evaluated basins.
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Figure 15: NSE of modelled discharge calculated for the period between 1979 and 2019 for 1427 basins 
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W5E5-nocal shows values between 0.7 and 0.9 for the Ganges basin and adjacent South East 

Asian basins as well as for western Russian basins. Values for South America are slightly better 

for W5E5-nocal than for ERA5-nocal. However, basins in Africa, the majority of North 

America, Australian as well as European basins show NSE values below 0.1. Additionally, 

W5E5-nocal fails to capture discharge behaviour in the majority of Russia and former USSR 

territories. In total, 802 basins have NSE values below 0.1, which is approximately 56 % of all 

evaluated basins. 

Both forcings perform inferior in basins on the African continent, the majority of North 

America, Australia as well as Europe. More than half of the evaluated basins of both forcings 

have NSE values below 0.1. 77 % of ERA5-nocal and 87 % of W5E5-nocal basins reach NSE 

values below 0.1 in climate zone B, making it the least performing climate zone. While ERA5-

nocal performs slightly better in the highest NSE class, there are only marginal differences 

between the two forcings in the low NSE value range. 
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Table 4: NSE values across climate zones for the two uncalibrated model experiments 

  NSE A B C D E Sum 

ERA5-

nocal 

> 0.9 2 0 2 3 1 8 

 0.7 - 0.9 25 0 43 99 2 169 

 0.5 - 0.7 21 5 38 108 5 177 

 0.3 - 0.5 26 10 28 81 3 148 

 0.1 - 0.3 29 9 34 63 1 136 

 < 0.1 227 82 162 292 26 789 

Sum  330 106 307 646 38 1427 

 

  A B C D E Sum 

W5E5-

nocal 

> 0.9 1 0 8 3 0 12 

 0.7 - 0.9 29 1 56 52 7 145 

 0.5 - 0.7 30 7 37 88 9 171 

 0.3 - 0.5 35 5 29 79 7 155 

 0.1 - 0.3 26 3 24 85 4 142 

 < 0.1 222 107 133 314 26 802 

Sum  343 123 287 621 53 1427 

 

Through calibration of ERA5, the number of basins with NSE values above 0.7 can be increased 

by 75 % (see table 5). Performance is significantly increased in India, South East Asia, China, 

Europe and the northern part of South America. Increases to values above 0.7 are mostly 

identified in basins located in climate zone A and C, where the number of basins has more than 

doubled. The Russian basins already showed relatively high values in the uncalibrated version 

however, these areas were further optimized by calibration. NSE values for the African 

continent have increased, but the continent is still dominated by values below 0.1. Comparable 

to the marginal performance increases on the African continent are those in North American 

basins. Performance of basins located in climate zone B was reduced. However, it is still the 

least performing climate zone with a little less than half of all basins falling below the 0.1 NSE 
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mark. Nevertheless, calibration reduced the number of basins with values below 0.1 by 52 %. 

In comparison to the 1427 evaluated basins, only one fourth is below the mark of 0.1 NSE. 

Calibration of W5E5 leads to a performance increase of 146 % (number of basins with NSE 

values above 0.7). The most significant increase can be identified in India, South East Asia, and 

China, where basins show NSE values close to 1. Additionally, increases of NSE values 

between 0.7 and 0.9 can be identified for Russian territories (with the exception of basins 

surrounding the Ural mountains), the northern part of South America, Europe, and Alaskan and 

south-eastern U.S. basins. The strongest performance increases are located in climate Zone A 

where the number of basins with values above 0.7 has more than tripled. Discontinuous 

performance increases can be registered for the African and Australian continent, where 

improvements vary between 0.5 and 0.9. Only marginal improvements can be identified for 

central North America, which is dominated by values below 0.1. The overall number of basins 

with values below 0.1 could be reduced by 52 % through calibration. 
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Table 5: NSE values across climate zones for the two calibrated model experiments 

 NSE A B C D E Sum 

ERA5 > 0.9 3 0 10 12 1 26 

  0.7 - 0.9 64 4 84 124 8 284 

  0.5 - 0.7 90 15 79 153 7 344 

  0.3 - 0.5 46 25 44 99 4 218 

  0.1 - 0.3 35 11 30 94 8 178 

  < 0.1 92 51 60 164 10 377 

Sum  330 106 307 646 38 1427 

 

  A B C D E Sum 

W5E5 > 0.9 2 0 21 4 4 31 

  0.7 - 0.9 98 12 96 134 15 355 

  0.5 - 0.7 86 25 62 145 5 323 

  0.3 - 0.5 32 15 33 91 8 179 

  0.1 - 0.3 32 12 23 84 7 158 

  < 0.1 93 59 52 163 14 381 

Sum  343 123 287 621 53 1427 

 

Even though both forcings reveal significant performance increases through calibration, W5E5 

performs 20% better than ERA5 (number of basins with NSE > 0.7). W5E5 is superior in India, 

China and South East Asia (NSE > 0.9). W5E5s superiority is less pronounced on the African 

and Australian continents as well as in the northern part of South America and Europe. ERA5 

performs better in high latitudes of Russia. However, this observation cannot be transferred to 

basins outside of Russia but within the same climate zone. Slightly higher numbers of basins in 

climate zones D and E with values above 0.7 for W5E5 (see table 5) support the visual analyses. 

It is important to say that W5E5’s higher performance is mostly attributed to its better 

performance in climate zone E. In climate zone D, W5E5 includes only two more basins with 

NSE above 0.7 than ERA5. Both forcings perform unsatisfactorily (NSE < 0.1) in the centre of 
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North America, the eastern part of South America, and the Nile and Indus basins. Additionally, 

both fail to represent about one-fourth of the 1427 evaluated basins (NSE values < 0.1). 

KGE 

When evaluating Kling-Gupta Efficiency a value of 1 is aimed for. However, values higher than 

0.7 can already be judged as good performance of the model. Figure 16 shows the distribution 

of NSE values of all four model experiments. ERA5-nocal includes 31 % more basins with 

KGE values greater than 0.7 than W5E5-nocal. ERA5-nocal shows higher KGE values (0.7 < 

KGE < 0.9) in basins located in Siberia, Alaska and adjacent Canadian territories, which to a 

large part belong to climate zone D (see table 6). Additionally, ERA5-nocal performs well in 

the northern part of South America, including large areas of the Amazon basins and in the 

southeast of the United States. At the same time, ERA5-nocal shows poor performances in 

basins located in central North America, eastern Brazil, Australia, and on the African continent, 

apart from a couple of smaller basins. 



51 

 

 

Figure 16: KGE of modelled discharge calculated for the period between 1979 and 2019 for 1427 basins
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W5E5-nocal reaches a relatively good representation of basins in China and South East Asia 

with KGE values varying between 0.5 and 0.9. Additionally, relatively good performance is 

reached over the Amazon basin, the southeast of the United States as well as Europe with KGE 

values in the same range. However, overall performance is dominated by KGE values below 

0.1 since about 41 % of all evaluated basins fall into this class. Basins with KGE values below 

0.1 dominate in the centre of North America, eastern Brazil, India, Australia and on the African 

continent.  

Even though ERA5-nocal reaches higher KGE values in more basins, they are distributed 

unequally across the globe. W5E5-nocal performs slightly better on the African continent than 

ERA5-nocal. More dominant is W5E5-nocals better representation of basins in China and South 

East Asia, where KGE values vary between 0.5 and 0.9. W5E5-nocal leads to basins with higher 

KGE values compared to ERA5-nocal in climate Zone A but ERA5-nocal includes twice as 

many basins with KGE values above 0.7 in climate Zone D. There are no significant differences 

between the performance of ERA5-nocal and W5E5-nocal in Australia, Europe and 

Scandinavia as well as central North America. Apart from basins in Europe, and Scandinavia, 

where both forcings vary between 0.1 and 0.7 without showing any particular trends, all of the 

formerly mentioned regions show KGE values below 0.1. Both forcings differ only marginal 

when analysing the number of basins with low KGE values (difference: 13 basins in favour of 

ERA5-nocal). The weakest performances can be identified in climate zone B, where 77 % of 

basins in ERA5-nocal and 89 % in W5E5 have KGE values below 0.1. 
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Table 6: KGE values across climate zones for the two uncalibrated model experiments 

  KGE A B C D E Sum 

ERA5-

nocal 

> 0.9 1 0 3 5 0 9 

 0.7 - 0.9 32 1 61 101 6 201 

 0.5 - 0.7 58 4 65 136 5 268 

 0.3 - 0.5 59 11 46 105 5 226 

 0.1 - 0.3 26 8 27 84 7 152 

 < 0.1 154 82 105 215 15 571 

Sum  330 106 307 646 38 1427 

 

 KGE A B C D E Sum 

W5E5-

nocal 

> 0.9 2 0 3 1 0 6 

 0.7 - 0.9 37 1 63 48 5 154 

 0.5 - 0.7 71 5 73 128 11 288 

 0.3 - 0.5 40 6 40 127 10 223 

 0.1 - 0.3 35 2 19 107 9 172 

 < 0.1 158 109 89 210 18 584 

Sum  343 123 287 621 53 1427 

 

Calibration enhances the performance of ERA5 by 86 % (number of basins with KGE > 0.7) 

(see table 7). The number of basins with KGE values close to the optimum (KGE > 0.9) is 

increases by 167 %. Significant improvements can be seen in India, China, South East Asia as 

well as Europe and adjacent regions where values between 0.7 and 0.9 dominate. Less distinct 

are improvements in basins located in the centre of the United States and on the African and 

Australian continent. Performance in South America is further enhanced. However, that is not 

true for the visually prominent Orinoco River in Venezuela, where performance decreased (0.5 

< KGE < 0.7). The number of basins with values below 0.1 is reduced by 58 % to 239 basins 

between ERA5-nocal and ERA5. Although the amount of basins with values below 0.1 in 
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climate zone B is reduced by more than half, it remains the climate zone where ERA5 performs 

the poorest.  

The impact of calibration on W5E5 is even greater, leading to an increase in model performance 

by 187 % (number of basins with KGE > 0.7). For basins with a KGE > 0.9, an improvement 

of 550 % can be identified. Especially the improvements in China and South East Asia have to 

be highlighted. While KGE values varied between 0.5 and 0.9, with the majority ranging 

between 0.5 and 0.7 for W5E5-nocal, most basins show values above 0.9 for W5E5. 

Furthermore, W5E5 produces good values for the African continent and South America. 

Additionally, the high latitude regions of Russia, Alaska, and Canada are improved. The 

number of basins in climate zone D and E with KGE values above 0.7 has more than tripled 

after calibration. 

Table 7: KGE values across climate zones for the two calibrated model experiments 

 KGE A B C D E Sum 

ERA5 > 0.9 4 0 7 12 1 24 

  0.7 - 0.9 76 6 128 143 14 367 

  0.5 - 0.7 111 23 81 181 12 408 

  0.3 - 0.5 50 30 45 120 2 247 

  0.1 - 0.3 30 12 18 77 5 142 

  < 0.1 59 35 28 113 4 239 

Sum  330 106 307 646 38 1427 

 

 KGE A B C D E Sum 

W5E5 > 0.9 10 0 19 6 4 39 

  0.7 - 0.9 104 13 128 159 16 420 

  0.5 - 0.7 99 28 69 155 9 360 

  0.3 - 0.5 50 24 29 117 4 224 

  0.1 - 0.3 22 18 14 66 7 127 

  < 0.1 58 40 28 118 13 257 

Sum  343 123 287 621 53 1427 
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Compared to ERA5, W5E5 has 15% more basins with KGE values above 0.7. A clear superior 

performance in basins located in China and South East Asia can be identified for W5E5. Higher 

KGE values can also be seen on the African continent. Except Russian territories where at least 

judging by visual analyses, ERA5 performs better, W5E5 is slightly better than ERA5. The 

number of basins with KGE values above 0.7 in climate zone D differs only by ten (in favour 

of W5E5) between both calibrated forcings. It is also worth mentioning that the number of 

basins with KGE values below 0.1 is lower for ERA5 than for W5E5. 

Pearson’s correlation coefficient (rKGE) 

The optimal value for the Pearson’s correlation coefficient is one. However, values equal to or 

larger than 0.8 already indicated good ability of the model to reproduce observed values. ERA5-

nocal shows good overall performance of rKGE since basins with rKGE values above 0.8 

dominate the resulting figure 17. Almost half of the evaluated basins have rKGE values above 

0.8 (47 %). Basins with rKGE values below 0.5 are located in central North America and 

scattered across the African continent. The northern part of South America shows a coherent 

region with basins reaching rKGE values between 0.5 and 0.8. Regarding performance and 

distribution, W5E5-nocal differs only marginal from ERA5-nocal. 48 % of W5E5-nocals basins 

result in an rKGE value of 0.8. By visual analyses, W5E5-nocal performs superior to ERA5-

nocal in Indian, Scandinavian and South American basins. A slightly better performance of 

W5E5-nocal can also be identified across basins on the African and Australian continents. 

ERA5-nocal shows a better performance in Russia and Alaska as well as the Indus basin. When 

partitioning the performance of both forcings across climate zones, W5E5-nocal includes more 

basins with good rKGE values in all climate zones with the exception of climate zone D 

(difference: 25 %). Both forcings fail to represent central North America, and the sub-basins of 

the Nile located in climate zone B. However, the number of basins with rKGE values below 0.5 

is greater in W5E5-nocal.
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Figure 17: rKGE of modelled discharge calculated for the period between 1979 and 2019 for 1427 basins 
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Between ERA5-nocal and ERA5, only minimal performance increases can be identified (see 

figure 17). Performance increases concentrate mainly in basins on the African continent and in 

the northern part of South America. Some basins in Africa show deteriorating performance after 

calibration. All remaining basins experience close to no performance changes. However, the 

results presented in table 8 and 9 contradict the visual analyses since it yields a 2 % decrease in 

performance compared to ERA5-nocal (rKGE > 0.8). The same is true for the number of basins 

falling in the category with rKGE values below 0.5, which increases by 18 basins. 

Table 8: rKGE values across climate zones for the two uncalibrated model experiments 

 rKGE A B C D E Sum 

ERA5-

nocal 

> 0.8 163 19 185 288 20 675 

 0.5 - 0.8 134 50 92 203 15 494 

 < 0.5 33 37 30 155 3 258 

Sum  330 106 307 646 38 1427 

 

 rKGE A B C D E Sum 

W5E5-

nocal 

> 0.8 209 39 199 217 21 685 

 0.5 - 0.8 107 46 69 224 14 460 

 < 0.5 27 38 19 180 18 282 

Sum  343 123 287 621 53 1427 

 

Performance of W5E5-nocal is further increased by calibration. The number of basins with 

rKGE values above 0.8 increases by approximately 6 %. Figure 17 shows that performance for 

Russian and Alaskan basins is increased. However, the most dominant changes can be seen in 

South America, where with a few exceptions, all basins show values equal to 0.8 or higher. The 

number of basins with values below 0.5 is slightly reduced. While there are only minor 

performance improvements in climate zone A and E, the number of basins reaching rKGE 

values above 0.8 in climate zone D increases by 17 %. At the same time, the performance in 

climate zones B and C decreases. 
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Table 9: rKGE values across climate zones for the two calibrated model experiments 

 rKGE A B C D E Sum 

ERA5 > 0.8 169 16 175 279 20 659 

  0.5 - 0.8 122 46 100 209 15 492 

  < 0.5 39 44 32 158 3 276 

Sum  330 106 307 646 38 1427 

 

 rKGE A B C D E Sum 

W5E5 > 0.8 216 35 193 253 26 723 

  0.5 - 0.8 98 43 75 202 12 430 

  < 0.5 29 45 19 166 15 274 

Sum  343 123 287 621 53 1427 

 

W5E5 contains 10 % more basins with rKGE values above 0.8 than ERA5. With the exception 

of climate zone D, W5E5 performs better in all climate zones. As mentioned above W5E5s 

performance in South American basins cannot be matched by ERA5. Even after calibration 

both forcings fail to represent basins in the centre of North America as well as the sub-basins 

of the Nile locate in climate zone B. The number of basins with values below 0.5 differs only 

marginally between the two forcings (differences: 2 basins). 

Bias Ratio (βKGE) 

The optimum value of βKGE is one, but values ranging between 0.9 and 1.1 are classified to 

represent a good fit between the model and observed discharge. Figure 18 shows the distribution 

of βKGE values of all four model experiments. 17 % of ERA5-nocal basins show βKGE in the 

desired class (see table 10). ERA5-nocal shows the best basin performances in the northern 

parts of Russia. Generally, ERA5-nocal tends to overestimate mean discharge rather than 

underestimating it. Underestimation of mean discharge can only be identified in basins located 

in Canadian territories and parts of Alaska as well as the northern parts of South America. Only 

14 % of evaluated basins reach βKGE values between 0.9 and 1.1.
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Figure 18: βKGE of modelled discharge calculated for the period between 1979 and 2019 for 1427 basins 
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W5E5-nocal performs the best in basins along the east coast of North America and Russian 

basins surrounding the Ural mountains. W5E5-nocal rather underestimates mean discharge, as 

large regions of North and South America as well as Russia and Asia show basins with βKGE 

values below 0.9. The tendency to over- or underestimate mean discharge represents the 

greatest difference between ERA5-nocal and W5E5-nocal. While ERA5-nocal overestimates 

mean discharge in Russian and Chinese basins, W5E5-nocal rather underestimates it. Across 

the climate zones, ERA5-nocal contains more basins with values between 0.9 and 1.1 than 

W5E5-nocal. The only exception is climate zone A. 

Table 10: βKGE values across climate zones for the two uncalibrated model experiments 

 βKGE A B C D E Sum 

ERA5-

nocal 

> 1.5 149 76 134 136 19 514 

 1.1 - 1.5 65 11 90 140 12 318 

 1.1 - 0.9 29 7 48 153 4 241 

 0.9 - 0.5 68 8 35 187 2 300 

 < 0.5 19 4  30 1 54 

Sum  330 106 307 646 38 1427 

 

 βKGE A B C D E Sum 

W5E5-

nocal 

> 1.5 163 105 101 83 2 454 

 1.1 - 1.5 72 9 87 94 1 263 

 1.1 - 0.9 36 4 44 106 3 193 

 0.9 - 0.5 62 2 48 189 31 332 

 < 0.5 10 3 7 149 16 185 

Sum  343 123 287 621 53 1427 

 

Calibration of ERA5 increases the number of basins falling into the desired class by 283 % (see 

table 10). The majority of basins in North and South America show values between 0.9 and 1.1. 

Significant performance increases can also be identified for basins located in Russia and 
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Scandinavia as well as parts of India, Australia, central Europe, and South East Asia. However, 

ERA5 overestimates the majority of basins outside the above-mentioned regions.  

The number of basins with βKGE values between 0.9 and 1.1 in W5E5 is increased by 353% 

compared to W5E5-nocal. Significant performance increases can be identified for basins 

located in North and South America, China and South East Asia as well as central Europe, 

Scandinavia and Russia. Although calibration failed to increase performance in some high 

latitude Russian basins. On the African continent, basins with βKGE values between 0.9 and 

1.1 as well as 1.1 and 1.5 are equally distributed. W5E5 tends to overestimate discharge in the 

remaining basins.  

Table 11: βKGE values across climate zones for the two calibrated model experiments 

 βKGE A B C D E Sum 

ERA5 > 1.5 19 6 10 8 2 45 

  1.1 - 1.5 104 41 92 137 14 388 

  1.1 - 0.9 188 38 197 480 20 923 

  0.9 - 0.5 19 18 8 21 2 68 

  < 0.5 0 3 0 0 0 3 

Sum  330 106 307 646 38 1427 

 

 βKGE A B C D E Sum 

W5E5 > 1.5 15 9 6 4  34 

  1.1 - 1.5 112 47 72 96 2 329 

  1.1 - 0.9 203 46 193 474 32 948 

  0.9 - 0.5 13 16 16 47 19 111 

  < 0.5 0 5 0 0 0 5 

Sum  343 123 287 621 53 1427 

 

W5E5 performs approximately 3 % better than ERA5 (number of basins with 0.9 < βKGE < 

1.1). W5E5 performs better in basins located in the southern Russian territories, China, South 

America, and on the African continent. In northern Russian basins, ERA5 performs slightly 
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better than W5E5. W5E5 includes more basins with optimal βKGE values in climate zones A, 

B, and E, whereas ERA5 includes slightly more basins in climate zones C and D. 

Variability Ratio (γKGE)  

If the variability ratio (γKGE) reaches a value of one, the model's optimal representation of 

discharge variability can be assumed. Nevertheless, γKGE values between 0.9 and 1.1 already 

signify good model performance. ERA5-nocal shows rather adverse performance of γKGE. 

Satisfactorily performing basins are scares all over the globe and distributed unequally. 20 % 

of the 1427 evaluated basins show γKGE values between 0.9 and 1.1. There is no significant 

dominance of a specific climate zone. W5E5-nocal leads to good performance in China, central 

Europe and the Amazon basin. Nevertheless, good performing basins are scares and only 19 % 

of all evaluated basins reach γKGE values between 0.9 and 1.1.
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Figure 19: γKGE of modelled discharge calculated for the period between 1979 and 2019 for 1427 basins 
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Table 12: γKGE values across climate zones for the two uncalibrated model experiments 

 γKGE A B C D E Sum 

ERA5-

nocal 

> 1.5 53 19 23 43 4 142 

 1.1 - 1.5 66 12 65 76 7 226 

 1.1 - 0.9 66 8 75 117 15 281 

 0.9 - 0.5 132 48 132 259 8 579 

 < 0.5 13 19 12 151 4 199 

Sum  330 106 307 646 38 1427 

 

 γKGE A B C D E Sum 

W5E5-

nocal 

> 1.5 55 18 32 54 7 166 

 1.1 - 1.5 74 28 80 103 16 301 

  1.1 - 0.9 85 8 72 92 10 267 

 0.9 - 0.5 120 51 94 260 9 534 

 < 0.5 9 18 9 112 11 159 

Sum  343 123 287 621 53 1427 

 

Through calibration of ERA5 the number of basins with γKGE values between 0.9 and 1.1 

decreases by 6 %. Although the area covered by basins with good γKGE performance is visually 

increased and basins form small clusters of good performance such as in central Europe and 

some Amazon subbasins. Calibration increases performances in climate zone B, C, and E but 

decreases performance in climate zone A and D. 

Calibration of W5E5 decreases the number of basins with good γKGE values by 2 %. Basins 

with γKGE values between 0.9 and 1.1 form clusters in China, South East Asia, and the Ganges 

basin. Apart from the clustered areas, the remaining basins with good performance are scattered 

across the globe with loose concentrations in the northern part of Southern America. Except for 

climate zone A, calibration increases the performance of W5E5 in all other climate zones. 
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Table 13: γKGE values across climate zones for the two calibrated model experiments 

 γKGE A B C D E Sum 

ERA5 > 1.5 50 15 27 26 4 122 

  1.1 - 1.5 40 16 64 64 5 189 

  1.1 - 0.9 51 14 79 103 16 263 

  0.9 - 0.5 157 42 120 277 9 605 

  < 0.5 32 19 17 176 4 248 

Sum  330 106 307 646 38 1427 

 

 γKGE A B C D E Sum 

W5E5 > 1.5 55 18 30 28 5 136 

  1.1 - 1.5 61 23 78 42 7 211 

  1.1 - 0.9 60 18 77 93 14 262 

  0.9 - 0.5 143 40 91 294 14 582 

  < 0.5 24 24 11 164 13 236 

Sum  343 123 287 621 53 1427 

 

The performance of both calibrated forcings differs only by one basin, which means that only 

18 % of the evaluated basins show good γKGE values. Apart from W5E5’s clear superior 

performance in China and South East Asia, no other significant differences can be identified in 

figure 19. According to table 13, W5E5 dominates in climate zones A and B, while ERA5 

contains slightly more high performing basins in climate zone C, D, and E. 

3.2.4 Streamflow indicators 

Significant streamflow indicators have been calculated for observed and modelled discharge 

series. To evaluate the performance of the two climate forcings and the influence of calibration, 

the deviations between the modelled and observed streamflow indicators have been calculated. 

The following figures include the calculated streamflow indicator of the observed discharge 

series in m3 s-1 and the deviations of all model experiments from the observed streamflow 

indicators in percent. Basins with deviations up to 20 % are judged to show good model 

performance. Basins showing a grey signature indicate an observed streamflow indicator value 
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of 0, which in turn leads to implausible deviation results created through dividing by 0. Hence, 

grey signatures provide no information as to whether the model managed to reproduce observed 

streamflow or not. The same is true for table 14 - 18. The category “basins with deviation greater 

than 100 %” includes basins with an observed streamflow indicator value of 0 and invalid 

deviation results as well as those actually deviating greater than 100 %. As a result, the 

respective category holds little information and will not be discussed further.  

Q1 

In ERA5-nocal 24 % of all evaluated basins show good compliance of simulated and observed 

Q1. Basins with up to 20 % deviation are located along the coasts of North America, in the 

Amazon and Siberian basins (see figure 20 and 21). Basins with deviations greater than 100 % 

can be seen in the centre of the United States, the east of Brazil and the African and Australian 

continent. 20 % of W5E5-nocals basins reach good deviation values. Those basins are located 

along the east coast of the United States, the Amazon basin as well as in China and South East 

Asia. Basins with a deviation greater than 100 % can be seen in the centre of the United States, 

the east of Brazil, and the African and Australian continent. 

Table 14: Percent deviations of modelled Q1 from observed O1 streamflow 

Q1 ERA5-nocal ERA5 W5E5-nocal W5E5 

0 - 20 % 336 579 291 551 

20 - 50 % 416 556 436 554 

50 - 100 %  309 202 340 230 

 > 100 % 366 90 360 92 

 

Through calibration of ERA5 the number of basins with good performance is increased by 72 

%. Significant improvements of simulated Q1 are distributed equally across the globe. Major 

basins with deviations larger than 100 % are the White Nile and Indus. Calibration of W5E5 

increases the number of good performing basins by 89 %. Only the Nile and the majority of its 

tributaries show deviations larger than 100 %.
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Figure 20: Q1 streamflows (m³ s-1) at 1427 stations evaluated for the period 1979 to 2019 
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Figure 21: Deviations (%) of modelled O1 flows from observed Q1 flows for 1427 basins 
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Q10 

With ERA5-nocal, approximately 26 % of all basins manage to limit deviation of Q10 to a 

maximum of 20 %. Basins with low Q10 deviations are distributed along the North American 

coastlines, the Amazon and south-eastern Siberian basins (see figure 22 and 23). Additionally, 

they occur incoherently in Europe and Russia. Basins where deviation exceeds 100 % can be 

found in the centre of the United States as well as on the African continent with the exception 

of east Africa. Furthermore, almost all Australian and some individual basins in Asia fall below 

this threshold. W5E5-nocal leads to 23 % of all basins showing good representation of Q10 

flows. Significant higher coverage of these basins can be identified on the east coast of North 

America, the Amazon basin, and western Russia. Basins with deviations greater than 100 % are 

located in the centre of the United States on the African and Australian continent. 

Table 15: Percent deviations of modelled Q10 from observed O10 streamflow 

Q10 ERA5-nocal ERA5 W5E5-nocal W5E5 

0 - 20 % 377 777 326 773 

20 - 50 % 431 512 413 510 

50 - 100 %  273 100 353 109 

 > 100 % 346 38 335 35 

 

After calibration of ERA5 the number of basins showing good streamflow compliance is 

increased by 106 %. These basins are distributed equally over the continents. A concentration 

of basins with deviations between 20 % and 100 % can be identified surrounding the Ural 

mountains. Furthermore, the only two larger basins showing deviations greater than 100 % are 

the Indus and the Australian Cooper Creek. Through calibration of W5E5 the number of basins 

with good performance is increased by 137 %. Improvements are not limited to a continent or 

region. Basins surrounding the Ural mountains indicate deviations between 50 and 100 %. 

Visually basins with deviations greater than 100 % are very spars. The only two larger basins 

showing such deviations are the Indus tributary Chenab River and the Cooper Creek.
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Figure 22: Q10 streamflows (m³ s-1) at 1427 stations evaluated for the period 1979 to 2019 
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Figure 23: Deviations (%) of modelled O10 flows from observed Q10 flows for 1427 basins 
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Q50 

ERA5-nocal leads to 25 % of all basins reaching good streamflow compliance. Basins with low 

deviations are located on the coasts of North America and the centre of South America as well 

as Scandinavia (see figure 24 and 25). Basins with deviations greater than 100 % cover the 

centre of the United States, most basins on the African and Australian continent, most Indian 

basins as well as northern Siberian basins. W5E5-nocal leads to 22 % of all basins reaching 

good streamflow compliance. Those basins are located on the east coast of North America, the 

south-east of South America, Scandinavia, adjacent Russian basins, and south-eastern Russian 

basins. Basins with deviations above 20 % but below 100 % are distributed all over. The centre 

of the US, most basins on the African and Australian continent as well as most Indian basins 

and north eastern Siberian basins are dominated by deviations above 100 %.  

Table 16: Percent deviations of modelled Q50 from observed O50 streamflow 

Q50 ERA5-nocal ERA5 W5E5-nocal W5E5 

0 - 20 % 352 597 311 603 

20 - 50 % 370 354 383 335 

50 - 100 %  260 224 328 240 

 > 100 % 445 252 405 249 

 

Calibration increases the number of basins with deviations equal to or below 20 % by 144 % 

between ERA5-nocal and ERA5. Those basins are concentrated in North and South America 

but also in Europe and the western part of Russia as well as in South East Asia. Most African 

basins previously showing deviations above 100 % now improved to deviations below 100 %. 

The same is true for the Indus and Ganges as well as Chinese basins. W5E5 shows an increase 

of 107 % in the number of basins with deviations below or equal to 20 %. Those basins are 

concentrated in North and South America as well as in Europe, Scandinavia and western 

Russian basins, China and South East Asia. As for ERA5, most African basins now show 

deviations between 20 and 100 %. Basins with deviations greater than 100 % are largely limited 

to Russian high latitudes but also occur in India and Australia.
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Figure 24: Q50 streamflows (m³ s-1) at 1427 stations evaluated for the period 1979 to 2019 
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Figure 25: Deviations (%) of modelled O50 flows from observed Q50 flows for 1427 basins 
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Q90 

ERA5-nocal results in 17 % of all basins reaching good streamflow compliance. Only loose 

concentrations of these basins can be identified (see figure 26 and 27). Basins with deviations 

larger than 100 % are located in the centre of North America, India, Australia and are widely 

distributed over the African continent and Russia. W5E5-nocal manages to reach a good 

representation of Q90 in 15 % of all evaluated basins. They are distributed over all continents. 

However, they rarely form cluster such as in the Argentinian Rio Parana and adjacent basins as 

well as the Danube basin and lower reach Yangtze. Deviations greater than 100 % can be seen 

in basins in the centre of North America, India, Australia and on the African continent as well 

as surrounding the Ural mountains and the eastern Russia. 

Table 17: Percent deviations of modelled Q90 from observed O90 streamflow 

Q90 ERA5-nocal ERA5 W5E5-nocal W5E5 

0 - 20 % 246 286 220 313 

20 - 50 % 280 308 293 311 

50 - 100 %  336 377 392 344 

 > 100 % 565 456 522 459 

 

After calibration of ERA5 the number of good performing basins is increased by 16 %. 

Calibration leads to the formation of low-deviation cluster in central Europe and western Russia 

as well as central Siberia. The distribution of basins with deviations greater than 100 % is 

reduced but can still be seen in India, eastern Russia, and Sub-Sahara Africa. Calibration of 

W5E5 leads to an increase of 42 % in basins reaching good streamflow compliance. Some 

cluster already existing in W5E5-nocal have expanded in W5E5, e.g. the Rio Parana region. 

But most clusters are exclusive for W5E5. Those are located in the Amazon basin, eastern 

Europe and western Russia as well as Siberia and upper reach Yangtze including adjacent 

basins. Basins with deviations greater than 100 % are located in Sub-Saharan Africa, Australia 

and eastern Russia as well as surrounding the Ural mountains.
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Figure 26: Q90 streamflows (m³ s-1) at 1427 stations evaluated for the period 1979 to 2019 
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Figure 27: Deviations (%) of modelled O90 flows from observed Q90 flows for 1427 basins 
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Q99 

16 % of all evaluated basins show good streamflow compliance for ERA5-nocal. Those basins 

are located in western Canada, the Amazon and Rio Parana basins as well as central Europe 

and Siberia (see figure 28 and 29). Basins with deviations greater than 100 % are concentrated 

in the centre of North America, India, the north-wester China as well as eastern Russia and 

surrounding the Ural mountains. The African continent is dominated by basins with deviations 

above 100 %. W5E5-nocal contains 186 basins (13 % of all basins) with good streamflow 

compliance. Those basins are distributed all over the continents, and no clear concentration can 

be identified. Basins with deviations greater than 100 % are concentrated in the centre of North 

America and occur quite frequently on the African continent as well as in Russia. 

Table 18: Percent deviations of modelled Q99 from observed O99 streamflow 

Q99 ERA5-nocal ERA5 W5E5-nocal W5E5 

0 - 20 % 230 227 186 223 

20 - 50 % 253 260 268 293 

50 - 100 %  365 433 458 419 

 > 100 % 579 507 515 492 

 

Calibration shows close to no effect on the number of well-performing basins in ERA5 

(differences: 3 basins). However, their spatial distribution changes. A small cluster can be seen 

on the Canadian-Alaskan boarder but also basins in Europe and western Russia show a decrease 

of deviation. The most significant difference can be seen on the African continent, where a 

considerable amount of basins previously showing deviations greater than 100 % now show 

deviations either between 20 and 100 % or even below 20 %. The same is true for basins in 

China and South East Asia. Calibration of W5E5 increases the number of basins with good 

streamflow compliance by 20 %. These basins are concentrated in China and South East Asia, 

Siberia and western Russia. Additionally, the distinct pattern of basins with deviations greater 

than 100 % in central North America has dissolved, and a more heterogeneous pattern can be 

identified. Concentrations of basins with deviations greater than 100 % concentrate around the 

Ural mountains and eastern Russia.
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Figure 28: Q99 streamflows (m³ s-1) at 1427 stations evaluated for the period 1979 to 2019 
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Figure 29: Deviations (%) of modelled O99 flows from observed Q99 flows for 1427 basins 
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3.2.5 TWSA 

R2 - CSR-RL06 

R² describes the proportion of the variance of observed values that the model can reproduce. 

One is again the value aimed for. Zero, on the contrary, indicates no correlation between the 

model and observed values. However, values equal to or larger than 0.8 can already be judged 

as good model performance. 43 of the evaluated basins show R² values above 0.8 in ERA5-

nocal. Basins with optimal performance are concentrated in the northern part of South America 

and Russian high latitude basins (see figure 36). ERA5-nocal TWSA simulations yield low R² 

values for basins in the centre of North America, south and east Africa. One basin located in 

Siberia shows an R² value below 0.2. W5E5-nocal includes three basins with a R² value above 

0.8 less than ERA5-nocal. High-performing basins are concentrated in South America, China, 

and South East Asia as well as basins in northwest Russia. Additionally, single high-performing 

basins can be identified in North America and in Africa. Only one basin in Siberia shows a R² 

value below 0.2. Other low-performing (0.2 < R² <0.6) basins can be identified in the centre of 

North America, South Africa, and in eastern Russia
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Figure 30: Coefficient of determination for TWSA of all four model experiments evaluated with CSR-RL06 
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Through calibration of ERA5 the number of basins with optimal values is reduced by two. The 

number of basins with R² values below 0.2 increases by two. However, performance over the 

northern part of South America, central North America as well as Africa increases while it 

slightly decreases for Russian and Asian basins. Calibration of W5E5 reduces the number of 

basins with R² values above 0.8 by approximately 25 %. While performance increases in South 

America, it decreases over China, South East Asia, and Russia. Basins that fell into the classes 

of low-performance in W5E5-nocal, have either not changed or transitioned to a lower class. 

The number of basins with R² below 0.2 has increased to five, located either in Siberia or in the 

centre of North America. 

W5E5 has 27 % less high-performing basins than ERA5. Apart from South America, where 

both forcings show coherently high performing basins, ERA5 shows higher R² values on all 

other continents. Additionally, W5E5 includes more basins with R² values close to zero. 

R2 – JPL-RL06M 

ERA5-nocal reaches high R² values in 36 basins. High-performing basins are located in South 

America. Individual high-performing basins can be found in Asia, North America and Africa 

(see figure 31). Low-performing basins (0.2 < R² <0.6) are clustered in central North America 

but can also be found on the African continent and in eastern Russia and with less frequency in 

Asia. Three basins (White Nile, Yukon and Selenga) fall below the mark of 0.2. W5E5-nocal 

shows 37 high performing basins, of which the majority are coherently located in South 

America, China and South East Asia. Individual high-performing basins are located in North 

America, Sub-Saharan Africa and western Russia. Low-performing basins are distributed in 

Alaska, central North America and eastern Russia as well as central to southern Africa. In total, 

three basins (Slave River, Selenga and its tributary) fall below a R² value of 0.2.
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Figure 31: Coefficient of determination for TWSA of all four model experiments evaluated with JPL-RL06M 
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Calibration of ERA5 marginally changes the number of basins per R² class. In fact, the number 

of basins in the highest class remains to be 36 and the same is true for the lowest class. However, 

the spatial distribution of the basins falling into these classes changes. Performance in South 

America is further increased. Slight performance increases can also be seen over the African 

continent. Performance over North America is highly heterogeneous since basins in the centre 

improved to R² values between 0.6 and 0.8, but at the same time, some basins previously 

reaching this class dropped down to values below 0.6. The Yukon basin however improved 

performance and now shows a R² value between 0.2 and 0.4. On the contrary, the Platte River 

basin in the centre of the US fell below the 0.2 mark. Additionally, Australian Cooper Creek 

basin shows an R² value below 0.2. Through calibration, the number of basins with R² larger 

than 0.8 is reduced by 32 % in W5E5. However, the spatial distribution of high-performing 

basins remains largely the same. The spatial pattern of low-performing basins is unchanged as 

well. The number of basins with a R² value below 0.2 is increased by one basin (Platte River 

basin). 

ERA5 contains eleven more basins with R² values higher than 0.8 compared to W5E5. Both 

forcings perform well in South America, but W5E5 outperforms ERA5 in China and South East 

Asia. ERA5 shows superior performance in North American, African and Russian basins. Both 

forcings show the lowest R² values in basins located in central North America however, W5E5s 

performance is significantly weaker.  

bR² – CSR-RL06 

ERA5-nocal includes 14 basins with high performance values equal to or above 0.8. The highest 

density of high-performing basins can be seen in South America (see figure 32). Performance 

over North America shows a diverse pattern. While basins closer to either of both coasts 

perform medium (0.6 < bR² < 0.8) to good (bR² < 0.8), basins located in the centre show low 

performances. Africa, Asia and Australia are largely dominated by basins with bR² values 

below 0.4. In total, 25 basins show bR² values below 0.2. W5E5-nocal includes just nine basins 

with good performance. Those basins are distributed across the continents, with the exception 

of Africa and Australia. 17 % of all evaluated basins fail to surpass the bR² value of 0.2. A clear 

concentration of these basins can be identified in the centre of North America.
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Figure 32: bR2 for TWSA of all four model experiments evaluated with CSR-RL06 
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Calibration of ERA5 reduces the number of high-performing basins, which can be seen equally 

across the continents. Almost half of all evaluated basins show bR² values below 0.4. 

Calibration of W5E5, on the other hand, reduces the number of high-performing basins to just 

three (Yangtze, Ohio River and Pechora). Simultaneously the number of basins with bR² values 

below 0.2 is increased by 20 %. The spatial concentration of these basins in North America is 

persistent. ERA5 contains more than three times as many high-performing basins and 

outperforms W5E5 everywhere apart from China and South East Asia. 

bR2 – JPL-RL06M 

Only 6 % of ERA5-nocal basins show bR² values above 0.8. They are located in the Amazon 

basin, the west coast of North America or in higher Russian latitudes (see figure 33). While 

most continents show a considerable amount of medium-performing basins (0.6< bR² <0.8), 

African basins result dominantly in values below 0.4. 16 % of all evaluated basins fail to reach 

bR² values above 0.2. The equal distribution of those basins prohibits the identification of 

regions with particular low performance. Comparatively, W5E5-nocal leads to 4 % of all basins 

showing high bR² values. They are located in South America, South East Asia, China, and 

northern Russia. On the contrary, 24 % of evaluated basins fail to reach bR² values above 0.2. 

Basins falling into the lowest performance class are distributed all over the globe. However, a 

significant concentration can be identified in North America.
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Figure 33: bR2 for TWSA of all four model experiments evaluated with JPL-RL06M 
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Calibration of ERA5 reduces the number of high-performing basins to five, located in the 

Amazon basin and high Russian latitudes. Performance in all other regions is reduced 

considerably. 32 % of all basins show bR² values between 0.2 and 0.4, making it the most 

dominant class for ERA5. W5E5 includes just three high-performing basins. All of which were 

not included in this class before calibration. Regions with high or medium performing basins 

are the Amazon basin, northeastern Russian as well as Chinese and South East Asian basins. 

The number of basins reaching bR² values below 0.2 increases and comprises 27 % of all 

evaluated basins. The concentration of basins in the lowest class is persistent in North America. 

Another cluster can be identified surrounding Lake Baikal. 

ERA5 includes two more high-performing basins than W5E5. W5E5 shows higher performance 

in China and South East Asia, while ERA5 dominates in South America and north-eastern 

Russian basins. Both forcings perform inferior on the African, North American and Australian 

continents. W5E5 contains 15 more basins with bR² values below 0.2 than ERA5.  

γKGE – CSR-RL06 

ERA5-nocal and W5E5-nocal each contain four basins with high performance (0.9 < γKGE < 

1.1). However, the model seriously under- or overestimates variability over most land areas 

when run with either forcing (see figure 34). Regions where ERA5-nocal only marginally over- 

or underestimates variability (0.5 < γKGE < 0.9 or 1.1 < γKGE <1.5) are the Amazon basin and 

China. The region where W5E5-nocal only slightly deviates from the optimum value is limited 

to basins in China. Compared to ERA5-nocal, W5E5-nocal tends to underestimate variability 

in this region. Additionally, W5E5-nocal forms more distinct cluster of either over- or 

underestimation of variability. For example, Amazon tributaries and western Russian basins 

uniformly underestimate variability while eastern Russian and Canadian basins tend to 

overestimate variability.
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Figure 34: γKGE for TWSA of all four model experiments evaluated with CSR-RL06 
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The number of good performing basins is doubled through calibration between ERA5-nocal 

and ERA5.Still, it is not possible to identify a region with coherently high-performing basins 

as they are scattered across the continents. As for ERA5-nocal, the Amazon basin performs 

relatively well. However, performance of Chinese basins is slightly reduced. Additionally, 

ERA5 tends to significantly overestimate variability in Siberian basins. Calibration of W5E5 

results in twice as many high-performing basins. The clustering of seriously under- and 

overestimated variability is persistent in W5E5 and Chinese basins remain the relatively best 

performing ones. Calibration leads to an inversion of the variability signal from seriously over- 

in W5E5-nocal to seriously underestimating variability in W5E5 in the Nile basin. 

Both forcings are improved through calibration and show almost the same number of high-

performing basins (difference: 1 basin). Furthermore, both forcings overestimate variability in 

eastern Russian and central and Canadian, central US and east Brazilian basins. The variability 

signal of the Nile is reversed between the forcings. While W5E5 seriously underestimates 

variability, ERA5 overestimates variability. 

γKGE – JPL-RL06M 

ERA5-nocal leads to eight high-performing basins, of which half are located in South America 

(see figure 35). W5E5-nocal contains only four high-performing basins with no apparent 

concentration in any region. Both forcings seriously over- or underestimate variability for most 

basins. However, ERA5-nocal shows a relatively good performance in the Amazon basin, 

where variability either is in line with the optimum values or is slightly underestimated. W5E5-

nocal shows good representation or slight overestimation of variability in basins in China. Both 

forcings show cluster of seriously overestimated variability in east Russian, Canadian, central 

US and east Canadian basins.
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Figure 35: γKGE for TWSA of all four model experiments evaluated with JPL-RL06M 
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Calibration slightly increases the performance of ERA5. Two regions with relatively good 

performance can be identified: the Amazon basin and basins along the Russian and Chinese 

border. Apart from that, the spatial distribution of seriously over- and underestimation of 

variability remains the same between ERA5-nocal and ERA5. Through calibration of W5E5, 

the number of high-performing basins is almost doubled. Chinese basins still perform relatively 

well even though calibration negatively affected them. Ganges and one Indus tributary form a 

small cluster of high performance. Apart from that, high performing basins appear only 

individually. The cluster of over- and underestimation identified in W5E5-nocal persists in 

W5E5. The variability signal is reversed in the Nile basin and shows an underestimation of 

variability in W5E5. 

ERA5 contains three high-performing basins more than W5E5. ERA5 performs superior in 

South America, while W5E5 slightly outperforms ERA5 in China. Nevertheless, over- or 

underestimating variability is identified for most basins in both forcings. Both overestimate 

variability in east Russian, Canadian, central US and east Canadian basins. The variability 

signal is reversed in Congo and Nile basins. 

TWSA Trends of JPL-RL06M and CSR-RL06 

JPL-RL06M and CSR-RL06 agree in TWSA trends in the majority of the evaluated basins (see 

figure 36 and 37). Both solutions show positive TWSA trends of 1 to 10 mm yr-1 in most central 

North American basins. Around the Great Lakes, an even higher positive trend of up to 20 mm 

yr-1 can be identified. Comparatively, all North American basins in high latitudes show 

decreasing TWSA trends. JPL-RL06M shows a greater amplitude of negative trend values than 

CSR-RL06. A more uniform decreasing TWSA trend can be seen for southern North American 

basins. Apart from one tributary (Rio Xingu) the entire Amazon basin shows an increasing trend 

of TWSA. Basins in the east of South America show low to strong decreasing trends (-1 to -30 

mm yr-1). The majority of African basins show increasing TWSA trends between 1 and 10 mm 

yr-1. However, basins in South Africa show no long-term decreasing or increasing trend at all. 

While the European and western Russian basins show a decreasing trend, basins east of the Ural 

mountains show rather increasing or stable TWSA trends. These conditions are disrupted on 

the transition between central and east Siberia, where basins show decreasing trends again. 

Ganges, Brahmaputra and Indus, as well as tributaries of Lake Aral show low to medium 

negative trends (-1 to -20 mm yr-1). The majority of Chinese and South East Asian basins show 

increasing trends, as do Australian basins. 
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Figure 36: TWSA trend (mm yr-1) in CSR-RL06 for 143 evaluated basins 

 

Figure 37: TWSA trend (mm yr-1) in JPL-RL06M for 143 evaluated basins 

Trends in model experiments 

ERA5-nocal shows decreasing to stable TWSA trends for central North America (see figure 

38). Decreasing trends can be identified for higher latitude basins but also for basins in the 

southern United States. The Amazon basin is dominated by increasing TWSA trends. However, 

a decreasing trend can be identified in the east of South America. The African continent is 

largely represented by basins showing no trend. However, the Congo basin shows low 

decreasing trends (-1 to -10 mm yr-1 ). European and most Russian basins are either showing 

low decreasing trends or stable trends. Only far eastern Russian basins show low, increasing 
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trends. Basins in India and adjacent countries show largely decreasing trends, while Chinese 

and South East Asian basins contain positive TWSA trends. 
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Figure 38: TWSA trend (mm yr-1) of the four model experiments for 143 evaluated basins 
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Figure 38 shows TWSA trends in W5E5-nocal, which is dominated by basins showing no 

significant TWSA trend. TWSA signal in North America is rather heterogeneous, with a loose 

cluster of basins showing an increase of TWSA. The basins in the east of South America show 

a clear decreasing signal. Sub-Saharan basins and Nile tributaries tend to show low, increasing 

trends, while the rest of the continent shows no trend at all. However, Indian basins show low 

to medium decreasing trends. Increasing TWSA trends can be identified for Chinese and South 

East Asian basins as well. 

The pattern of TWS trends remains largely the same after calibration of ERA5. However, the 

distribution of basins with no trend increases in North America. Additionally, the area with 

decreasing trends in Siberia enlarges. The centre of the Congo basin shows no trend after 

calibration. 

Calibration does not affect general TWSA trend patterns in W5E5. The majority of evaluated 

basins remain to show no trend. Therefore, influences of calibration are limited to individual 

basins. The Amazon now includes more basins with increasing trends and more North 

American basins show decreasing trends.



98 

 

4 Interpretation and Discussion 

4.1 Update of calibration stations 

As described in section 2.3 Update of Calibration Stations database, the original objective to 

update WaterGAP calibration stations was to find stations with equal to or preferably more than 

four years of discharge data after 1979. After evaluating the results of updating and extending 

the calibration station dataset, it became evident that the number of stations with sufficient 

discharge series length after 1979 was relatively small and data was often limited to the 

minimum requirement of four years. Shifting the core calibration period towards more recent 

years is beneficial since it aligns calibration and climate reanalyses time periods. However, that 

is not a requirement for general model success. For that reason, it had to considered whether 

longer calibration time series covering the distant past or shorter calibration time series covering 

a more recent time period are more valuable. In the case of this study, the consideration of this 

dilemma determined the decision against calibrating after 1979. Consequently, this meant that 

the success of this master thesis was again solely dependent on the re-publication and use of 

GSWP3. In a broader context, the search and updating process led to a general update of the 

WaterGAP calibration dataset, which has replaced the previously used dataset containing only 

1319 stations. 

In spite of the combined amount of discharge stations available from all three data sources, the 

number of stations incorporated into the new WaterGAP 2.2e calibration dataset was expected 

to be higher. During the processing of potential stations and particularly during the visual 

analysis in ArcMap, many GSIM stations could be identified as duplicates of GRDC stations. 

That itself is not a surprise since GRDC is one of the twelve databases included in GSIM and 

overlaps between national databases and GRDC are attributed for within the GSIM description 

paper. However, the authors of GSIM chose data from national databases over GRDC stations, 

given that national databases contained more up-to-date discharge series (DO ET AL., 2018; 

GUDMUNDSSON ET AL., 2018). Conversely, during the visual analyses of duplicate stations a 

different conclusion has to be drawn. For example, the broad majority of GSIM stations in 

Canada were removed because their GRDC duplicate had longer time series. Additionally, 203 

GSIM stations in Brazil had to be removed because of implausible metadata entries such as 

missing station or river names. Stations that cannot be identified with high confidence are 
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inadequate for hydrological modelling. It is very unfortunate to exclude stations with plausible 

discharge data due to suspicious metadata. 

The expectations regarding ADHI were comparatively high because discharge stations are 

unequally distributed on the African continent, which means that large areas are not represented 

at all. Because of ADHI’s relations to SIEREM, stations are clustered in the French-speaking 

countries, an area fairly well covered in the previous WaterGAP calibration dataset. The 

resulting amount of ADHI stations is strongly influenced by the criteria formulated in the 

context of this work and WaterGAP calibration requirements and therefore not solely dependent 

on the data availability. Nevertheless, 80 ADHI stations could be used to create the new 

calibration dataset. 27 of these stations are located in so far unrepresented basins, which is quite 

an improvement.  

Although the objective of enabling model calibration after 1979 was not satisfied, the outcome 

of the process was a success altogether. The number of calibration stations used for WaterGAP 

2.2e could be increased by 190 stations improving spatial coverage by 1.3 %. In addition to an 

increased spatial coverage, the discharge series of already existing stations could be prolonged 

significantly. As spatial and temporal coverage of calibration data could be enhanced, the 

updating process can be judged as successful. 

The calibration dataset update in addition to changes in the model structure between WaterGAP 

2.2d and 2.2e limits the comparability between previous and present model results. To evaluate 

the influence of all or even individual changes between WaterGAP 2.2d and 2.2e is out of the 

scope of this master thesis. However, it would be very interesting to determine the influence 

and degree of improvement in a separate study. 

4.2 Objective 1: Evaluation of climate forcing and calibration influences on 

water balance components 

Precipitation of ERA5 is considerably higher than in comparable studies that evaluated water 

balance components (MÜLLER SCHMIED ET AL., 2014, 2021; SCHNEIDER ET AL., 2014). 

Unsurprisingly the results presented here and in CUCCHI ET AL. (2020) differ only marginally 

since the same climate forcing has been used in both evaluations. The remaining differences 

can be explained by the different time period that has been chosen for the study (1981-2010 in 

CUCCHI ET AL. (2020), 1979-2019 in this study). Bias adjustment with monthly GPCC 

precipitation totals leads to a reduction of precipitation by 7 % in W5E5 compared to ERA5. 
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Through bias adjustment of precipitation, the global precipitation mean of W5E5 is well within 

the range of precipitation values of previous studies (MÜLLER SCHMIED ET AL., 2014, 2016b, 

2021; CUCCHI ET AL., 2020). 

As a result of high precipitation in ERA5, discharge values of calibrated and uncalibrated model 

experiments with ERA5 are higher than those of W5E5. However, discharge in ERA5 shows 

insignificant differences to results presented in previous studies (MÜLLER SCHMIED ET AL., 

2014, 2016b, 2021). While discharge values of W5E5 are within the range of the above-

mentioned studies, W5E5-nocal shows a considerably lower discharge. However, when 

comparing discharge results of the uncalibrated model experiments to those presented in 

CUCCHI ET AL. (2020), a striking difference, especially between discharge in ERA5, is evident 

even though precipitation differences are only marginal. Differences between discharge values 

of this study and CUCCHI ET AL. (2020) are attributed to the differences between the evaluated 

time periods with changing climatic variables and the changes between model version 2.2d to 

2.2e. In order to narrow down the reasons for the remaining differences, water balance 

components of the time period 1981 to 2010 have been computed for 2.2e (results can be found 

in table 19). Nevertheless, differences in discharge remain significantly large (ERA5 difference: 

1617 km³ yr-1, W5E5 difference: 809 km³ yr-1). Thus the dominant influence on discharge 

differences between CUCCHI ET AL. (2020) and the results presented here seem to be the result 

of changes in the model version. Only about 7 % of the discharge differences in ERA5 can be 

explained by differing climatic conditions (difference: 114 km³ yr-1). Differences between 

discharge in W5E5 are almost entirely attributed to model changes, since less than 1 % of 

differences can be explained by differing climatic conditions. However, since the specific 

differences between CUCCHI ET AL. (2020) and here-presented results were only briefly 

evaluated, a more thorough evaluation is needed to provide sound information on individual 

influences. 

Calibration aligns discharge values of both forcings (difference: 874 km³ yr-1). The discharge 

alignment can be judged as an indicator for the general overestimation of discharge in ERA5 

and general underestimation of discharge in W5E5. The identified tendency of both forcings in 

global values to either over- or underestimate discharge is supported by the spatial distribution 

of mean discharge evaluation of βKGE (see figure 18 and 43). After calibration, the respective 

tendency of either forcing is significantly reduced, just as in global discharge values. 

Interestingly the alignment of discharge reveals another factor. While MÜLLER SCHMIED ET AL. 

(2014) conclude that the main effect of calibration is to lower discharge, a different behaviour 
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can be observed here. While discharge is decreased in ERA5, it is increased in W5E5. Finally, 

by adjusting discharge accordingly, they are both transformed to fit into the ensemble of climate 

forcings producing discharges with 40000 km³ yr-1and a 1000 km³ yr-1 range as identified by 

(MÜLLER SCHMIED ET AL., 2021). 

Higher AET values of ERA5 compared to W5E5 result from increased precipitation and 

downward shortwave radiation of ERA5. Bias adjustment of precipitation in W5E5 leads to 

lower discharge and AET values in turn. Precipitation is the dominant driver of increased AET 

in ERA5-nocal and ERA5 since the precipitation differences between the climate forcings are 

substantial while those between PET values are marginal (0.9 %). Nevertheless, increased 

downward shortwave radiation positively influences ERA5s net radiation, leading to increased 

PET and consequently increased AET. On the other hand, while precipitation in W5E5 is 

already lower than in ERA5, its downward shortwave radiation is about 2.5 W/m² lower than 

that of ERA5. Lower downward shortwave radiation is the result of aerosol correction in W5E5. 

As precipitation in the model is partitioned in AET and discharge, it is evident that through 

adjustment of the runoff coefficient and consequently discharge, AET is forced to develop into 

the reversed direction as discharge. Hence, a decrease in discharge accompanied by an increase 

in AET in ERA5 and vice versa in W5E5 can be identified. Independent of uncalibrated and 

calibrated model setup, all AET values presented here are considerably higher than AET values 

presented in other studies (MÜLLER SCHMIED ET AL., 2014, 2016b). Only the AET value of 

W5E5 is comparable to those presented in (MÜLLER SCHMIED ET AL., 2021).Table 5 in MÜLLER 

SCHMIED ET AL. (2014) lists AET results of multiple studies and enables the classification of 

values presented here. Without exception, all AET values of this study align with the upper end 

of values from the literature. 

As discharge is lower here than in CUCCHI ET AL. (2020), AET is considerably larger. Again 

values from CUCCHI ET AL. (2020) were compared to AET computed with 2.2e for the time 

period 1981 to 2010. While the differences between AET results from this study and those of 

CUCCHI ET AL. (2020) amount to 1322 km³ yr-1 for ERA5 and 703 km³ yr-1 for W5E5, the 

differences between the two model versions evaluated for the same time period increases to 

1629 km³ yr-1 for ERA5 and 633 km³ yr-1 for W5E5. Since discharge differences decreased, it 

is not surprising that AET differences increased. Nevertheless, the major cause for differing 

model results regarding AET here and in CUCCHI ET AL. (2020) is attributed to the changes 

between model versions 2.2d and 2.2e. 
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The highest actual water consumption (WCa) values are identified for ERA5-nocal, followed 

by W5E5-nocal. Both calibrated forcings show lower WCa as their uncalibrated counterpart. 

However, reduction of WCa in W5E5 forcing is very small (0.88 %). As high AET leads to 

increased irrigational water demand and WCa icludes mostly evaportation of irrigational water, 

it is not surprising that WCa of ERA5-nocal is high. The same is true for W5E5-nocal, which 

follows ERA5-nocal in the rank of AET values. In reverse, a decrease of AET consequently 

leads to a reduction of WCa, as seen in W5E5. Despite the identified and confirmed relationship 

between AET and WCa, we can see a different behavior in ERA5. ERA5 shows the highest 

AET values of all four evaluated model experiments but simultaneously shows the lowest WCa. 

Applying the above-described relationship, ERA5 should show the highest WCa, especially 

since AET is increased through calibration. Reduced WCa of ERA5 is mostly influenced by the 

reduction of actual surface water use, which can be used as a proxy for irrigational water 

demand (see table 3). Since crop production area is not altered between the forcings, the same 

water demand for crop production can be assumed. However, the source through which water 

demand is met may differ between the forcings. As stated above, irrigational water demand is 

increased with increasing AET leading to the conclusion that, if anything, irrigational water 

demand should be higher in both ERA5 model experiments due to higher net radiation and PET. 

However, since precipitation is very high in both ERA5 model experiments but actual surface 

water use and consequently WCa is reduced in ERA5, it is plausible that agricultural water 

demand is at least to a certain degree satisfied through the increased rainfalls instead of 

irrigation with surface and/or groundwater. Yet the influence of variations in spatial patterns of 

climate variables (see figure 10 - 13) should not be underestimated, but as water balance 

components have not been spatially disaggregated, the influence of climatic variations, 

especially precipitation, cannot be quantitatively analysed. 

Just as AET, WCa shows increased values compared to previous evaluations of water balance 

compontents (MÜLLER SCHMIED ET AL., 2014, 2016b, 2021). As WCa is, apart from 

precipitation, directly forced by temperature, variations consequently influence WCa over time. 

(MÜLLER SCHMIED ET AL., 2016b) identified an increasing trend in global average temperature 

over the last three decades with 2010 as the temporal reference. Since the time period evaluated 

here stretches to 2019, increasing global mean temperatures have positively influenced WCa. 

In addition to an increase in temperature, irrigation water demand has increased steadily since 

1901 with a steepening increase since the 1960 (MÜLLER SCHMIED ET AL., 2016a) as a result of 
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increasing irrigational area, which can be seen in figure 39. Again irrigational water demand 

can be assumed to have grown further since 2010, thus increasing WCa here. 

 

Figure 39: Development of water abstractions (sum of return flows and consumptive use) and 

water consumption of the five water use sectors considered in WaterGAP for 1901–2010 

(MÜLLER SCHMIED ET AL., 2016a) 

Global change in total water storage is negative for all forcings and comparable to results in 

other studies (MÜLLER SCHMIED ET AL., 2016b), particularly if the evaluated period is 

overlapping with the one evaluated here (CUCCHI ET AL., 2020; MÜLLER SCHMIED ET AL., 2021). 

Water balance error is smaller than 1 km³ yr-1 and therefore neglectable. The satisfying results 

for water balance error are comparable to those presented in MÜLLER SCHMIED ET AL. (2021), 

which means that improvements first achieved with WaterGAP version 2.2d could be sustained 

in version 2.2e.  

4.3 Objective 2: Analyses of differences between the opimal choice of 

climate forcing on different spatial scales (geographic regions, climate zones 

and global) 

In order to assess the suitability of either climate forcing, only the uncalibrated model 

experiments will be discussed here. Global performance is assessed by comparing the number 

of basins showing high performance values in the different efficiency metrics. When analysing 

the performance on regional to continental scales, the spatial distribution of basins with high 
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performance is consulted as a measure of evaluation. However, visual analyses regional to 

continental performances are supported by the quantative performance assessment across 

climate zones. Therefore, assessing model performance by the number of good performing 

basins, seems plausible since it is easily quantitavely analyzed. However, the size of evaluated 

basins varies greatly, which is why it would also be beneficial to evaluate model performance 

relative to the percentage of land area that reaches good performance values. 

On a global scale, absolute performance of ERA5-nocal is better across almost all efficiency 

metrics. ERA5-nocal performs only inferior regarding the reproduction of hydrograph timing 

(rKGE). However, with only ten basins, differences are only marginal. Compared to results 

presented in CUCCHI ET AL. (2020), NSE values of ERA5-nocal and W5E5-nocal are not 

significantly different as the median is around 0. However, differences between ERA5 and 

WFDE5-GPCC regarding the size of the box (1. and 3. quantile) are greater in CUCCHI ET AL. 

(2020). As mentioned before, differences between results presented here and in CUCCHI ET AL. 

(2020) may stem from the chosen time period, the number of evaluation basins (1216 in CUCCHI 

ET AL. (2020), 1427 here) and their distribution. 

 

 

Figure 40: NSE boxplots of the four model experiments (outliers are excluded from this figure) 
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NSE performances with median values around 0 are not the result of poor model performance 

but rather of uncalibrated model runs (see figure 40). Compared to the ‘nocal’ model 

experiment in MÜLLER SCHMIED ET AL. (2014) results presented here are slightly better. While 

there are no differences in the median NSE values (equally around 0), the third quantile (lower 

part of the box) surpasses -4 while only extending to -2 here. The differing shapes of the third 

quantile box indicate a reduced spread of values included in the third quantile and 

simultaneously higher proximity to the median value. 

The evaluation of ERA5-nocals and W5E5-nocals performance across climate zones draws a 

more diverse picture. While ERA5-nocal produces the best performances across all efficiency 

metrics in climate zone D, W5E5-nocal reaches a complementary result for climate zone A. For 

three (KGE, βKGE, γKGE) out of the five applied efficiency metrics, ERA5-nocal reaches 

higher performances in climate zone E. Performances in climate zone B are indifferent. 

Although ERA5-nocal performs better in climate zone D, not all regions contribute equally to 

its high performance. Especially high performances in Alaska and eastern Russia lead to the 

overall performance superiority in climate zone D. As seen in figure 12, W5E5 shows smaller 

mean precipitation (difference: 100 mm yr-1) in climate zone D and particular in those regions 

where ERA5 shows the strongest performances. The same is true for regions in climate zone E, 

such as the Himalayas, where ERA5-nocal tends to perform better than W5E5-nocal. 

Additionally, mean temperatures in climate zone D are lower in W5E5. Particularly for the 

Lena basin, W5E5 shows mean temperatures between -15 and -20 °C while ERA5 shows -10 

to -15 °C. The combination of colder temperatures and less precipitation could lead to (1) a 

higher percentage of water stored as ice and (2) as a consequence of higher ice storage and less 

precipitation, reduced discharge. As W5E5-nocal systematically underestimates discharge in 

eastern Russia and Alaska, the two identified influences seem plausible. 

Likewise, high performance of W5E5-nocal is not the case for all basins located in climate zone 

A. W5E5-nocals superiority is largely attributed to high performance in the Amazon basin. 

Compared to ERA5-nocal, W5E5-nocal shows reduced precipitation and a greater distribution 

of high temperatures (30-33 °C) over the Amazon basin. Through the bias correction with 

monthly precipitation means, flow dynamics of rivers in climate zone A could be better 

reproduced by WaterGAP. 

The two climate forcings perform the worst in climate zone B. This is also true for the calibrated 

model experiments. Only 0 to 10 % or 1 to 11 % of all basins in climate zone B reach good 
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NSE or KGE values. However, climate zone B is underrepresented in both forcings. Of all 1427 

evaluated basins, only 106 in ERA5 and 123 in W5E5 are located in climate zone B. Differences 

in climate zone definition result from differing peculiarity of climatic variables as can be seen 

in figure 10 - 13. The underrepresentation of basins in climate zone B is of course the result of 

its dry climatic characteristics which naturally restricts the occurance of streams or perennial 

rivers. Exceptions are rivers that originate in wetter climates such as the Nile. Nevertheless, the 

combination of climatic conditions reversed flow of groundwater in loosing stream regions and 

increased regulation cause the model to fail.  

ERA5-nocal leads to better representation of streamflow across all evaluated streamflow 

quantiles. The spatial pattern of good streamflow representation differs, however. Satisfying 

streamflow representation can be frequently identified across eastern Russian basins as well as 

Alaskan and North American basins for the high flow indicators. Satisfying representation of 

low flow indicators can be found in the Amazon basin, Europe and the northern United States. 

Even though ERA5-nocal leads to better representation of streamflow indicators globally, 

W5E5-nocal cannot be classified as a poor representation for streamflow. For example, 

satisfying reproduction of streamflow with W5E5-nocal can be identified in the Amazon. 

Linear correlation of modelled and observed TWSA does not differ between ERA5-nocal and 

W5E5-nocal. The only major difference in performance are the very good results for South East 

Asia with W5E5-nocal. Regarding TWSA, both forcings tend to underestimate trends 

regardless of their characteristic. Since JPL-RL06M identifies a more diverse pattern of trends, 

ERA5-nocal and W5E5-nocal have greater agreement with CSR-RL06. ERA5-nocal identifies 

more basins with trends as W5E5, which for example can be seen across northern America. 

However, if a trend is identified, both forcings reproduce the respective trend satisfactorily. 

Finally, it can be concluded that on a global scale, ERA5 should be preferred over W5E5 as 

climate input, if an uncalibrated model experiement is carried out. When analyses are performed 

on a smaller scale like climate zones or large geographic regions (e.g. eastern Russia), the 

optimal choice of climate forcing depends on the chosen region. Colder dryer regions show an 

overall better performance with ERA5, while wetter and warmer regions are better represented 

with W5E5. 
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4.4 Objective 3: resolving whether calibration further increases the model 

results generated with the bias adjusted W5E5 climate forcing 

Calibration increases performance of W5E5 for NSE (146 %), KGE (187 %), rKGE (6 %) and 

βKGE (391%). The performance of the model to capture streamflow variability (γKGE g: - 2 

%) is slightly decreased through calibration. Performances of NSE and KGE overlap for most 

regions. Unsatisfactory results can be seen in northern America and large parts of Africa, 

eastern South America and central Asia. The analyses of KGE and its components allow a more 

thorough understanding of how these unsatisfactory performances in some regions come about. 

The failure to capture hydrograph timing (rKGE) is persistent for these regions in all four model 

experiments. Improvements through calibration are existent. However, with only 6 %, they are 

considerably lower than those of NSE, KGE and βKGE. In fact, calibration even leads to a 

small decrease in performance for basins in climate zones B and C. Why basins in northern 

America lead to unsatisfactory performances even though they are well observed in regard to 

the spatial and temporal coverage of discharge stations remains unexplained. Off timing in 

central Asian basins and the Nile basin, can be explained by a high degree of regulation through 

reservoirs and water abstractions (MÜLLER SCHMIED ET AL., 2021).  

Performance increases through calibration for βKGE is of no surprise since calibration fits 

modelled discharge to match long-term annual observed river discharge (MÜLLER SCHMIED ET 

AL., 2021). However, the intensity of performance increases is very satisfactory and confirms 

the potential of W5E5. In how far the improvements of βKGE are the result of improvements 

between model version 2.2d and 2.2e or updating the calibration station database can not be 

determined. In order to analyse the individual influence of calibration database update and 

model improvements, further research is needed. 

WaterGAP tends to underestimate variability in snow-dominated regions. A behaviour that is 

not exclusive of the calibrated model experiment with W5E5 but can also be identified for the 

remaining three model experiments. While the tendency to underestimate variability in snow-

dominated basins persists after calibration, the overall performance of γKGE decreases. 

Performance decreases can solely be ascribed to decreases in climate zone A or the Amazon 

basin, to be precise. All other climate zones show performance increases. MÜLLER SCHMIED ET 

AL. (2021) identify the failure of WaterGAP to properly model wetland dynamics as the reason 

for unsatisfactory performances. However, since the uncalibrated set-up of WaterGAP with 

W5E5 leads to satisfying results, those presented in MÜLLER SCHMIED ET AL. (2021) are more 
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likely related to the choice of climate forcing and time period or even the use of a calibrated 

model set-up. Choice of climate forcings as it is used here summarizes changes between the 

different forcing versions of WFDE5 or rather W5E5, homogenization methods as well as the 

use of a different forcing before 1979. Since no information regarding uncalibrated model 

results are provided in MÜLLER SCHMIED ET AL. (2021), the reasons leading to the presented 

results cannot be narrowed down any further.  

Additionally, deviations of all streamflow indicators are decreased through calibration. The 

number of basins with deviations up to 20 % increases by 89 % for Q1, 137 % for Q10, 94 % 

for Q50, 42 % for Q90 and 20 % for Q99. Improvements of Q50 can be attributed to the same 

reason as for βKGE. Before calibration W5E5-nocal shows insufficiencies regarding 

streamflow reproduction in the same regions where NSE and KGE fail. This is particularly true 

for the high flow indicators. However, through calibration, most streamflow indicators of the 

higher streamflow character show deviations below 100 %. The proportion of basins that do 

not surpass the mark of deviations larger than 100 % is considerably higher for low flow 

indicators. Again those regions with insufficient NSE and KGE values are the predominant hot-

spots for basins with deviations larger than 100 %. 

Most importantly, performance increases so much that W5E5 surpasses ERA5 in almost all 

evaluation components. The only exceptions are γKGE and complementary high and very low 

streamflow indicators (Q1, Q10 and Q99). Particularly strong performance increases can be 

seen in Asia, where basins reach the highest and very conservative category of efficiency 

metrics (KGE > 0.9, NSE > 0.9). Further insight of W5E5s suitability or superiority compared 

to ERA5 could be gained by analysing the degree of calibration that is needed to produce the 

here presented results. Ultimately the lower the need for more rigorous calibration steps, CFA 

or CFS, the higher the suitability of the climate forcing. 

Unfortunately, when analysing TWSA, calibration leads to a reversed result in model 

performance than discharge analysis. Performance of all efficiency metrics is decreased for JPL 

and CSR alike. Correlation between modelled and observed TWSA is decreased through 

calibration. Also, for Asians basins that otherwise show extraordinary good performances. 

WaterGAP fails to capture the variability of TWSA in W5E5-nocal and W5E5. As described 

above trends, of TWSA are generally quite weak compared to those identified by JPL or CSR 

and calibration shows only minor effects on trend identifications (see figure 38). That 

calibration would reduce performance of TWSA was expected as WaterGAPs calibration 
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routine focuses on adjusting only one compartment of the water-cycle, namely discharge. In 

turn dynamics of other components are (negatively) affected as the model’s performance to 

reproduce discharge is improved. 

Even though calibration decreases WaterGAPs ability to reproduce timing and variability of 

TWSA, the simulation of long-term trends is only marginally affected. Long-term TWSA trends 

are the most interesting and relevant information that GRACE provides since they capture the 

development of all water storages stripped of their seasonal dynamics. The integration of long-

term TWSA trends into impact modelling, could lead to better estimates of future freshwater 

availability and water stress. It is therefore delighting to see that calibration only marginally 

affects long-term trends all the while reproduction of discharge can be improved considerably. 

At this point it should be noted that GRACE is prone to measurement outages, which means 

that the observed TWSA time series is fragmented. As TWSA time series were computed using 

a linear regression which omitts missing values both from the observed and the simulated 

TWSA time series, the resulting time series is no longer a regular time series. That is because 

the multiple linear regression assums equal spacing between the individual data points, which 

is not given anymore after stripping the time series of the months with missing data. In order to 

solve this problem a multiple linear regression accounting for the individual influences of linear, 

annual and semi-annual trends on TWSA would have been needed to approximate the monthly 

TWSA series of both mascon products. However, that was outside the scope of this master 

thesis. Furthermore, approximating the monthly TWSA series would have manipulated the data 

in so fare that it cannot be judged as independet anymore thus failing the objective to use 

GRACE TWSA data as an independent data source for model validation. Finally, it can be 

assumed that the general direction of trend would not change considerably. Nevertheless, 

precise TWSA trends computed here, should be handled with care. In order to overcome this 

limitation, TWSA trends have been presented in value range groups (see figure 38). 

4.5 Objective 4: Assessment of W5E5s suitability for hydrological impact 

modelling  

When analysed with an uncalibrated model-run ERA5-nocal leads to better results than W5E5-

nocal, as has been analysed in detail in objective 2. Nevertheless, after calibration, performance 

increases of W5E5 are so strong that W5E5 surpasses ERA5, thus producing the best results 

out of the four model experiments. Impact Asssessments are usually performed on a regional 
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to basin scale, using regional hydrological models that are calibrated and validated with regard 

to the conditions in the study area (KRYSANOVA ET AL., 2018). As calibration is an integral 

component of WaterGAP, allowing the model to produce the best overall results with W5E5, 

the claim of W5E5 to be preferably used for impact modelling is strong. 

However, it is important for impact modelling to capture more than just the mean development 

of discharge. Thus it is necessary to evaluate the ability of a model and climate forcing to 

reproduce extreme flow conditions and seasonal variability as well as the compliance of 

hydrograph timing. Unfortunately, particularly the reproduction of extreme high and low flows 

(Q1, Q99) is a shortcoming of WaterGAP ran with W5E5 even after calibration. Only 39 % and 

16% of all evaluated basins reach deviations limited to a maximum of 20% for Q1 and Q99 

flows, respectively. Although ERA5 leads to a higher number of basins with acceptable 

deviations, it still fails to do so in 59 % for Q1 and 84 % for Q99 of all evaluated basins (percent 

difference: 2 % for Q1, < 1 % for Q99). The share of basins failing or not failing to produce 

satisfactory deviations for Q99 needs to be interpreted with caution due to the increased 

occurrence of basins with intermittent flow regimes. Where discharge drops to zero in observed 

data, percent deviations could not be computed due to division by zero. Differentiations 

between basins where division by zero occurred or deviations exceeded 100 % could not be 

performed. Thus the percentage of basins with satisfactory deviations can be assumed to be 

much higher than given here. Finally, it should be considered that in the context of this study, 

basins with deviations up to 20 % are classified as good performing nevertheless deviations of 

up to 20 % are not insignificant and can lead to large differences in discharge, particularly in 

the high flow regime. 

Impact modelling is designed mainly to give insight into future impacts of climate and 

hydrological changes. Based on the provided information, policymakers can decide on adequate 

adaptation measures (KRYSANOVA ET AL., 2018). As extreme streamflow events such as floods 

or the absence of discharge pose great socioeconomic risks, precise attribution of these events 

is at the core of assessing climate change impacts. Consequently, streamflow deviations of up 

to 20 % in the historical period can be classified as good when analysing performance on a 

global scale but are insufficient when deciding, e.g. on the scope of flood protection measures 

designed for the future. However that is a problem arising from the study set-up not from the 

quality of either climate forcings. Additionally, performances of all model experiments are of 

course influenced by WaterGAPs model structure and process representation (MÜLLER 

SCHMIED ET AL., 2014, 2021; BIERKENS ET AL., 2015; SCANLON ET AL., 2018) (HMS 2014, 2021, 
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Bierkens 2015, Scanlon 2018). Therefore, W5E5s suitability for impact modelling needs to be 

evaluated using other models as well.  

Besides W5E5’s slightly inferior performance in high and low streamflow representation, it can 

be assumed that the overall satisfying results produced by W5E5 would be matched when used 

as input data for regional hydrological models. The Yangze basin seems to be the most logical 

choice for a first basin specific impact assessment since W5E5, combined with a calibrated 

model setup, leads to exceptionally good performances. The Yangtze basin is evaluated using 

nine subbasins, of which the majority produces good to exceptional performances across all 

discharge efficiency metrics. Additionally, a satisfying linear relationship of observed and 

modeled TWSA can be identified and TWSA variability in the Yangtze basins ranges among 

the best globally. TWSA trends uniformly show a 1 to 10 mm increase per year in both GRACE 

mascons and the W5E5 model experiment. The good reproduction of TWSA with W5E5 would 

even permit calibrating for TWSA.
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5 Conclusion 

A model-based assessment of water balance components, discharge and TWSA on different 

spatial scales (basin to global) was performed to evaluate the influence of (1) climate reanalyses 

ERA5 and its derived climate dataset W5E5, and (2) calibration on the performance of the 

hydrological model WaterGAP. To support the analyses and interpretation, climate variables 

(downward shortwave radiation, downward longwave radiation, temperature and precipitation) 

of both forcings were evaluated on grid cell level (figure 10- 13) and global scale (table 2). 

Even though the model was setup to simulate freshwater fluxes between 1901 and 2019, only 

the years between 1979 and 2019 were used for model performance assessments as this time 

period aligns with that of the climate forcing. Due to problems arising with the climate dataset 

GSWP3 used to prologue ERA5 as well as W5E5, WaterGAP’s calibration station database 

was updated. The calibration dataset now comprises a total of 1509 calibration stations. 

Nevertheless, only 1427 stations were used to asses model performance since those stations 

include discharge data of at least four whole years after 1979. 

The climate forcing ERA5 overestimates mean annual precipitation on a global scale, which 

leads to high global mean annual discharge and AET values in the respective model experiment. 

Bias-adjustment with monthly GPCC precipitation totals in W5E5 lead to global mean annual 

precipitation values that are comparable to those presented in other studies (MÜLLER SCHMIED 

ET AL., 2014, 2016a, 2021; CUCCHI ET AL., 2020). Consequently, global mean annual discharge 

and AET values are considerably lower in W5E5 than in ERA5. Nevertheless, when used as 

input to an uncalibrated model setup, ERA5 tends to overestimate while W5E5 underestimates 

global mean annual discharge. Discharge differences are reduced through calibration and both 

forcings show global man annual discharge to be 40000 km³ yr-1 with a 1000 km³ yr-1 range. 

The ability of WaterGAP to reproduce flow dynamics was evaluated using NSE, KGE, its three 

components and streamflow indicators. In an uncalibrated model setup, ERA5 leads to better 

model performances than W5E5. Better performances of ERA5 are only marginal in regards of 

NSE but larger for overall KGE which is the result of strong performances in reproduction of 

mean discharge (βKGE) in snow-dominated regions. If the model is calibrated, W5E5 reveals 

its full potential by improving so much that it surpasses ERA5 in almost all efficiency metrics. 

The strongest performance increases with W5E5 can be seen in the models ability to reproduce 
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mean discharge (βKGE), particularly in regions where discharge was underestimated 

previously. Those regions include snow-dominated regions, which are very well reproduced 

with ERA5. Improvements in mean discharge reproduction of WaterGAP come at the cost of 

decreasing representation of variability independent of the climate forcing used as climate 

input. Especially, very strong performance increases in South East Asia, India and China with 

W5E5 are delighting to see. 

The performance of WaterGAP to reproduce TWSA is limited independent of the forcing used 

as climate input. WaterGAP reproduces correlation and variability inadequately in the evaluated 

basins. The ability to identify long-term TWSA trends is only achieved for some basins. 

Generally, WaterGAP tends to underestimate trends in TWSA. However, for those basins 

where a trend is identified by the model, the signal of the trend agrees with that identified by 

GRACE. Calibration further reduces the performance of WaterGAP to reproduce correlation 

and variability. The reproduction of TWSA trends is not reduced by calibration. Ultimately, 

this offers the possibility to calibrate the model to long-term TWSA trends and discharge 

simultaneously without having to expect performance constraints on TWSA trends. The 

inclusion of long-term trends is a great benefit when modelling freshwater fluxes in regions 

with high groundwater use paired with limited monitoring capacities. Furthermore, they could 

be used to fit the model to most recent TWS changes (since the beginning of GRACE satellite 

mission in 2002) induced by climate change in order to produce more robust estimates of 

resource development and availability.  

Finally, it can be concluded that W5E5 should be preferred as climate input for impact 

modelling with WaterGAP since it leads to very good model performances in a calibrated model 

setup. Yet depending on the spatial scale either forcing reveals certain advantages, which is 

why ERA5 should be at least considered as climate input. Of course, ERA5 and W5E5 can lead 

to different performance, when used as input for other models. Thus, it is recommended to 

initiate further model experiments using both climate forcings as input for different impact 

models. Additionally, it can be confirmed that calibration has in fact the most significant 

influence on WaterGAPs ability to satisfactorily model freshwater fluxes (MÜLLER SCHMIED 

ET AL., 2014; KRYSANOVA ET AL., 2018, 2020).
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Appendix A 

A.1 Additional Water Balance Components 

Table 19: Global water balance components (excluding Antarctica and Greenland) for 1981 

to 2010. All units in km³ yr-1. Actual evapotranspiration includes actual consumptive water 

use. Actual consumptive use is the sum of row 5 and 6. Long-term average volume balance 

error is computed as the difference of precipitation and the sum of components 2, 4 and 8 

No. Component ERA5-

nocal 

ERA5 W5E5-

nocal 

W5E5 

1 Precipitation 120244 120244 111351 111351 

2 Streamflow into oceans and inland sinks 42006 40462 37326 39568 

3 Potential evapotranspiration 149867 149867 148704 148707 

4 Actual evapotranspiration 78324 79886 74063 71841 

5 Actual net abstraction from surface water 1640 1473 1533 1518 

6 Actual net abstraction from groundwater -98 -86 -100 -94 

7 Actual consumptive water use 1542 1387 1432 1424 

8 Change of total water storage -86 -104 -38 -58 

9 Long-term average volume balance error -0.25 -0.24 -0.23 -0.21 
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A.2 Additional Efficiency metrics 

A.2.1 Boxplots of Efficiency metrics 

 

Figure 41: KGE boxplots of the four model experiments 

 

Figure 42: rKGE boxplots of the four model experiments 
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Figure 43: βKGE boxplots of the four model experiments 

 

Figure 44: γKGE boxplots of the four model experiments 

A.2.2 Percent bias 

Percent bias (PBIAS) evaluates the average tendency of simulated data to deviate from 

observed values offering the opportunity to differentiate between the tendency of simulated 

values to be larger or smaller (GUPTA ET AL., 1998). The aspired value for PBIAS is zero, 

however values only slightly deviating from zero already indicate high accuracy of a model. A 

model tends to have smaller values if PBIAS is positive and vice versa. If a model overpredicts 

as much as it underpredicts, the resulting PBIAS will be zero indicating a good model 
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performance. Just like other performance indicators PBIAS should therefore be used with other 

statistical measures (MORIASI ET AL., 2015). PBIAS expressed as percentage is calculated as: 

𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑂𝑖 − 𝑆𝑖) ∗ 100𝑛

𝑖=1

∑ (𝑂𝑖)
𝑛
𝑖=1

] 
(8) 

 

Figure 45: PBIAS of the four model experiments evaluated for 1427 basins 

A.3 Additional Streamflow Indicator 

 

Figure 46: Q25 streamflows (m³ s-1) at 1427 stations evaluated for the period 1979 to 2019 
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Figure 47: Deviations (%) of modelled O25 flows from observed Q25 flows for 1427 basins 

 

Figure 48: Q75 streamflows (m³ s-1) at 1427 stations evaluated for the period 1979 to 2019 
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Figure 49: Deviations (%) of modelled O75 flows from observed Q75 flows for 1427 basins 

Appendix B 

B.1 Calibration Station Update 

Subfolder ADHI 

This folder contains all discharge data provided by ADHI, the scripts to evaluate ADHI 

discharge data as well as the final set of discharge data used for WaterGAP 2.2e calibration 

dataset. Furthermore, the ADHI description paper can be found within the folder (TRAMBLAY 

ET AL., 2021). 

Subfolder GRDC 

This folder contains all discharge data provided by GRDC, the scripts to identify the updated 

station IDs, the scripts evaluate GRDC discharge data as well as the final set of discharge data 

used for WaterGAP 2.2e calibration dataset.  

Subfolder GSIM 

This folder contains all discharge data provided by GSIM, the scripts to evaluate GSIM 

discharge data as well as the final set of discharge data used for WaterGAP 2.2e calibration 
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dataset. Furthermore, the GSIM description paper can be found within the folder (DO ET AL., 

2018; GUDMUNDSSON ET AL., 2018). 

B.2 Model Experiments 

Subfolder climate 

This folder includes all evaluations of climate variables (downward shortwave and longwave 

radiation, precipitation and temperature) as well as the derivation of climate zones for ERA5 

and W5E5. 

Subfolder discharge_evaluation 

This folder contains the evaluation of model results with discharge data at 1427 discharge 

stations. Evaluation of modelled discharge included the computation of NSE, KGE and its 

components as well as streamflow indicator (Q1, Q10, Q25, Q50, Q75, Q90, Q99). 

Furthermore, plots of all streamflow indicators and efficiency metrics can be found here. 

Subfolder twsa 

This folder contains all files provided by JPL and CSR, the scripts to produce TWSA series 

from all four model experiments and the scripts to extract and process GRACE TWSA series. 

Evaluation of modelled TWSA included R2, bR2, γKGE as well as trends in TWSA series. 

Furthermore, plots of all efficiency metrics can be found here. 

Subfolder WBC 

This folder contains the script to compute water balance components of all four model 

experiments as well as the results for two time periods, 1979-2019 and 1981-2010.  


