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Abstract The non-equilibrium early time evolution of an
ultra-relativistic heavy ion collision is often described by
classical lattice Yang—Mills theory, starting from the colour
glass condensate (CGC) effective theory with an anisotropic
energy momentum tensor as initial condition. In this work
we investigate the systematics associated with such studies
and their dependence on various model parameters (IR, UV
cutoffs and the amplitude of quantum fluctuations) which
are not yet fixed by experiment. We perform calculations for
SU(2) and SU(3), both in a static box and in an expanding
geometry. Generally, the dependence on model parameters
is found to be much larger than that on technical parameters
like the number of colours, boundary conditions or the lat-
tice spacing. In a static box, all setups lead to isotropisation
through chromo-Weibel instabilities, which is illustrated by
the accompanying filamentation of the energy density. How-
ever, the associated time scale depends strongly on the model
parameters and in all cases is longer than the phenomenolog-
ically expected one. In the expanding system, no isotropisa-
tion is observed for any parameter choice. We show how
investigations at fixed initial energy density can be used to
better constrain some of the model parameters.

1 Introduction

The medium created by ultra-relativistic heavy-ion collisions
is characterised by strong collective behaviour. It is generally
accepted that a quark-gluon plasma (QGP) is formed and the
effective theory describing the multiparticle correlations of
this nearly-perfect fluid is relativistic viscous hydrodynam-
ics. For a long time it was believed that the application of
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hydrodynamic models requires the thermalisation time from
the initial non-equilibrium stage of the collision to the QGP
to be very short [1,2] compared to the lifetime of the QGP.
More recently it was argued that hydrodynamics also applies
to a not-yet equilibrated system [3].

From a theoretical point of view, a heavy-ion collision
has different stages. As an initial condition, one assumes the
colour glass condensate (CGC), i.e. an effective field theory
description of boosted, saturated gluons [4]. The resulting
strong gauge field dynamics constitutes the first stage of the
evolution. A following later stage is then governed by hydro-
dynamic equations until the medium becomes too dilute for
this long wavelength description. The precise duration of the
early stage is not yet known for realistic values of the cou-
pling. Models of the hydrodynamical stage constrain it to be
around or less than 1 fm [5].

The evolution of soft gauge fields during the early stage,
including dynamical instabilities such as the chromo-Weibel
instability [6-13], is a subject of intense research. Field
dynamics in an expanding background has been extensively
studied using numerical simulations of classical Yang—Mills
theory [14-20] and perturbative approaches in the high
energy limit [21,22]. In between the effectively classical and
hydrodynamical stages there might be a regime where the
evolution is already affected by quantum corrections, but not
yet hydrodynamical. This can be studied by kinetic Vlasov—
Yang-Mills equations [23-25], whose current versions pre-
dict a “bottom-up” thermalisation scenario [26-29].

In this work, we focus on the early time dynamics of the
gauge fields out of equilibrium, where we pursue a purely
classical treatment of Yang—Mills theory. This approach is
justified for the infrared modes of gauge fields with a high
occupation number, see, e.g., [29-32].

Our goal is to initiate a systematic study of the dependence
on a variety of parameters entering through the CGC initial
condition as well as the systematics of the classical evolution
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itself. In particular, we compare a treatment of the realistic
SU(3) gauge group with the more economical SU(2), moni-
tor a gauge-invariant definition of the occupation number of
field modes to address the validity of the classical approxi-
mation, and compare the evolution in a static box with the
one in an expanding medium. We also attempt to quantify
the dependence of our results on various model parameters
introduced in the literature, like the amplitude of initial boost
non-invariant fluctuations, an IR cutoff to emulate colour
neutrality on the scale of nucleons as well as a UV cutoff
on the initial momentum distribution. Many of these issues
have already been addressed one by one when they were
introduced, as indicated in the following sections, but not in
their interplay, as we attempt to do here.

In the next section we summarise the theoretical frame-
work of our approach and give the CGC initial conditions
this work is based on. In Sect. 3, we present the numerical
results of our simulations, where we extensively elaborate on
the underlying parameter space of the CGC. We will see that
the system is highly sensitive to the model parameters and
suggest a method to reduce the number of free parameters by
keeping the system’s physical energy density fixed. We also
present depictions of the filamentation of the energy density
in position space, which results from initial quantum fluctu-
ations and indicates the occurrence of chromo-Weibel insta-
bilities. Section 4 contains our conclusions and an outlook.
Some very early stages of this work appeared as a conference
proceeding [33].

2 Classical Yang—Mills theory on the lattice
2.1 Hamiltonian formulation

Our starting point is the Yang—Mills action in general coor-
dinates,

S:fd4x£ (1)

1
=—5 | d% /= detl(gu)] Tr[Fug"g Fop] . ()

For a treatment on an anisotropic, hypercubic lattice in
Minkowski spacetime we employ Wilson’s formulation’

s=L
Ne

1
ReTr éZ(l—UU-(x))—g Z (1-U;j(x))

x,i<j

(€)

! Unless stated differently, we use the following index convention
throughout this paper in order to minimise redundancy: © = 0, 1,2, 3 =
t,x,y,zlt,x,y,m),i =1,2,3 =(x,y,zlx,y,n), k=1,2 =x,y
and ¢ =3 = (z|n).
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The anisotropy parameter & = a, /a; is the ratio of spatial
and temporal lattice spacings which does not renormalise
in the classical limit, and 8 = 2N,/g? is the lattice gauge
coupling (we choose N, = 2 and N, = 3 colours).

In the expanding geometry, where we use comoving coor-
dinates T = +/t2 — 72 and n = atanh(z/t), the lattice action
reads

2 anT a2
S:—ZZReTr[ 0 (1 = Up) + —=—(1 — Uqy)
8 = X nt

dar ara
apa,T a
— (1= Uy) = —= 3= Uy |- )
aj ant <

We introduced the transverse lattice spacing a; and the
dimensionless rapidity discretisation a,. Inserting the link
variables

Up(x) = elstnnt®) ®)
into the plaquettes Uy, (x) = Uy (x)Uy(x + )U—_,(x +
A+DNU_(x +D), U_,(x) = U;i(x — [1), and expanding
around small values of the lattice spacing one recovers the
classical Yang—Mills action in the continuum limit, a;, — 0.

In order to choose canonical field variables and construct a
Hamiltonian, we set

Aiyr) =0 & Uy(x) =1, (6)

i.e., we are using temporal gauge. The field variables are then
the spatial (and rapidity) links

Ui(x) = elsahito) @

and the rescaled dimensionless chromo-electric fields,

static box:  E;(x) = ga2d, A; (x), (8a)

expanding system: Ej(x) = ga] 10; Ar(x), (8b)
1

E,(x) = gai;a,A,,(x). (8¢)

For the situation in a static box this results in the standard
Hamiltonian

1
H[Ui,E,-]=g72ReTr ZZ[I—U,»]-]—i—ZEiZ ,
7 x

i<j i

©)
with corresponding classical field equations
Ustx +1) = exp 6™ Ei0) | U (o), (102)
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Ef(x +1) = E{'(x) + 2¢ ™

X ZImTr {T9[Uji(x) + U_ji(x)]}. (10b)
J#

and Gauss constraint

G*(x) = Zlm Tr {T¢ [Uir(x) + U—is(0)]} =0.
: U=l

(1D

For the expanding case we have, in comoving coordinates,

g U
HIU, Eil = 5 - XX:ReTr{zr[l Usy]
(12)
2 E?
+a%—TXk:[1 —Ukn]+7’<+rE§},

with field equations

U (r+2) = exp [15 Ex(0) | Ui o).
T

Up(x + 1) =exp [ia,,a,tE,,(x)] Uy,(x),

(13a)
(13b)
Ef(x+%) = E{(x)+2ImTr { T* | arT ) _ [Ujr(x)

J#k

+U_jk(x)] + az—T[Unk(x) + U—nk(x)])} ,
ClnT

(13c¢)
u . . 2a; a
Ej(x + 1) = Ej(x) + s Xk:ImTf {T [Ury(x)
+U_y(]}. (13d)

and Gauss constraint

G*(x)=—ImTr {T“ <ai Z [Ukr(X) + U_iz (x)]
Tk (14)

a,
+ a%—T[Um(x) + U_,,T(x)D} =0

We then consider the time evolution of the classical statisti-
cal system whose equilibrium states are determined by the
classical partition function

Z:/DUiDEi 5(GyeT. (15)

For simulations in equilibrium, initial configurations are gen-
erated with a thermal distribution governed by this partition
function, and then evolved in 7 by solving (10) or (13), respec-
tively. For a system out of equilibrium, by definition there is

no partition function. Rather, specific field configurations sat-
isfying the Gauss constraint have to be given by some initial
conditions, and are then evolved using the field equations.

2.2 Non-equilibrium initial conditions (CGC)

Heavy-ion collisions at high energy density can be described
in terms of deep inelastic scattering of partons. The corre-
sponding parton distribution functions are dominated by glu-
onic contributions, which motivates the description in terms
of a colour glass effective theory [4,34]. The gluonic con-
tribution to the parton distribution is limited by a saturation
momentum Q;, which is proportional to the collision energy.
When the saturation scale Qs becomes large there is a time
frame where soft and hard modes get separated [35]. The
colliding nuclei constitute hard colour sources, which can be
seen as static. Due to time dilatation, they are described as
thin sheets of colour charge.

Choosing z as the direction of the collision, this is usually
described in light cone coordinates,
ok

V2

The colour charges are distributed randomly from collision
to collision. In the McLerran—Venugopalan (MV) model [36]
the distribution is taken to be Gaussian, with charge densities
(a,be{l,...,Ng:=N>—1}),

X1 = (x,y). (16)

4,2
n
& N By 58?8 (x, — y1). (17)

(paennl o) =at

Here u> ~ A3 fm~2 is the colour charge squared per unit
area in one colliding nucleus with atomic number A. It is
non-trivially related to the saturation scale [37], with O =~
Q := g%u. For Pb-Pb or Au—Au collisions, this is larger
than the fundamental QCD scale Agcp. We choose a value
in the range of expectations for ultra-relativistic heavy-ion
collision at the Large Hadron Collider (Q; ~ 2 GeV [38])
and fix Q = 2 GeV for our simulations throughout this paper.

Originally the MV model was formulated for a fixed time
slice. Later it was realised that, in order to maintain gauge-
covariance in the longitudinal direction, this initial time slice
has to be viewed as a short-time limit of a construction using
N; time slices, containing Wilson lines in the longitudinal
direction [37,39]. In the literature the designation “N,” is
also frequently used for the number of longitudinal sheets,
but in order to distinguish it from the lattice extent in y-
direction we use N; instead.

The colour charge densities produce the non-Abelian cur-
rent

R (x) = 8t pf (xp, x7) + 8H p§ (s, x ) (18)

@ Springer
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and the corresponding classical gluon fields are then obtained
by solving the Yang—Mills equations in the presence of those
sources,

D, FM = J". (19)

For the lattice implementation of this initial condition, we
follow [37] and solve

[AL +m?] Ay (x1) = = (x1) (202)
Ny

Vi) = ]_[ exp[iak(x1)] (20b)
v=1

Uk = V)V ey +) (20¢)

with the lattice Laplacian in the transverse plane,

ALA(x) = Y (AL +1) =240 + Alxy — D).
i=x,y

2n

The two nuclei are labelled by k = 1,2, the index v =
1, ..., N; indicates the transverse slice under consideration
and m is an IR regulator. For m = 0, a finite lattice volume
acts as an effective IR cutoff. However, a finite m ~ Aqcp
is expected to exist, since correlators of colour sources are
screened over distances of AaéD, as was initially proposed
in [37]. Of course, a determination of this screening length
requires the full quantum theory and thus is beyond a classical
treatment. We shall investigate the dependence of our results
by varying m between zero and some value of the expected
order of magnitude. Physically, the parameter m indicates
the inverse length scale over which objects are colour neutral
in our description, and hence m = 0.1 Q ~ 200 MeV =~
1 fm~! ~ RL, with R, being the proton radius, is a sensible
choice. !

Although we already have a UV cutoff ~ 1/a; from the
lattice discretisation, often an additional UV momentum cut-
off Aisusedin the literature [19,29,40,41]. Itis implemented
by neglecting all modes larger than A while solving Poisson’s
equation (20a) in momentum space. There are two ways to
interpret this additional UV cutoff. It is sometimes used as a
technical trick to maintain an initial spectrum in the IR while
allowing to make a | smaller, in order to reduce discretisation
effects. As we shall see, this is only consistent in the expand-
ing scenario. Alternatively, it can be interpreted simply as an
additional model parameter of the CGC, which restricts the
colour sources in Fourier space to modes in the IR. Again,
we shall investigate how results depend on the presence and
size of this parameter.

To get the transverse components of the collective initial
lattice gauge fields Uy = exp(ie,T%), oy, € R, we have to
solve N, equations at each point on the transverse plane,

@ Springer

Tr {T“ [w,g“ + U1+ U = c“ —0. (22)

For the case of N, = 3 we do this numerically using multidi-
mensional root finding methods of the GSL library [42]. For
the case of N, = 2, one can find a closed-form expression
and circumvent this procedure, i.e. (22) reduces to

i 7
U= (U +u®) (UM +u") (23)

The remaining field components are U (x) = 1, E{(x) =0
and

Ef(xu) = =3 Y Tr{T* (W) — 1]
k=1,2

< [Uf @ - v o] + [ =k - 1]
x [U,?)(x b= UV — 12)]) - h.c.] ,
(24)

with the index convention introduced in Sect. 2.1.

To make the initial conditions more realistic, fluctuations
can be added on top of this background [15,43], which are
supposed to represent quantum corrections to the purely clas-
sical fields. They are low momentum modes constructed to
satisfy the Gauss constraints (11) and (14), respectively,

1 N
SEL() = — [Fuo) = Fx = D). (259)
ag
SE(x)=— [Fk(x) — Ul — k)
k
X Fi(x) — DU (xy — 12)] , (25b)
Fe(x) = A cos (22’—5) XL, (25¢)

where xi (x ) are standard Gaussian distributed random vari-
ables on the transverse plane. The amplitude of the fluctu-
ations is parametrised by A. So far there is no theoretical
prediction for its value, which is yet another model parame-
ter we shall vary in order to study its effect on the physical
results. Note that, in principle, these modelled fluctuations
could be replaced by the spectrum calculated at NLO from
the initial conditions, without additional parameters [44]. To
our knowledge, this has not been implemented so far, and
we first assess the relative importance of fluctuations before
attempting such a task.

2.3 Setting the lattice scale and size

In a non-equilibrium problem, a scale is introduced by the
physical quantity specifying the initial condition. In our case
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this is the magnitude of the initial colour charge distribu-
tion defined in (17) and we follow again [19] in setting
the dimensionless combination QL = 120, where L cor-
responds to the transversal box length in physical units. It
is chosen to correspond to the diameter of an Au atom with
A =197, Ry = 1.2 A3 fm ~ 7 fm. In the LHC literature
it is conventional to define the transverse section of the box
by 7 R% = L?, which then sets the transverse lattice spacing
through L = Nja,. Together with Q = 2 GeV we thus
have

L 120 12
a) = — = r~ —Im
Ny ON, Ny

(26)

As long as we do not add any term describing quantum fluc-
tuations, the system reduces to a 2D problem and thus the
results are independent of a; . For non-vanishing fluctuations
in the static box we work with an isotropic spatial lattice,
i.e. a; = a), whereas our 3D simulations in comoving coor-
dinates are performed at a, N, = 2.0 as proposed, e.g., in
[45].

2.4 Observables

Energy density and pressure are convenient observables to
investigate the early isotropisation process of the plasma.
The system’s energy density is the Oth diagonal element of
the energy-momentum tensor, 7%, and can be separated into
its evolving chromo-magnetic and chromo-electric compo-
nents, € g and € g, respectively, and further into transverse and
longitudinal components,

€ =€r +e€ =ep; +€g; +€p, +€g;. 27
On the lattice, the chromo-electric and chromo-magnetic

contributions to the Hamiltonian density in Cartesian coor-
dinates, H = T, are

atHE @1, x) = i Tr[Ei (x)E;i ()], (28a)
atHB(t,x)=p n; [1 — NicReTr Umn(x)} . (28b)
m,n#i

The contributions to the lattice Hamiltonian density in
comoving coordinates, H = tT'7, read

al pai

?Hk (x) = NI Tr [Ex(x) Ex(x)], (29a)
4

%Hf(x) = 55 T [Ey™)Ey)], (29b)

at Ba?

TLH,?()C) = 2N—a§t2 Re Tr[1 — U], (29¢)

B
2N,

4
a

—LHE(x) = ReTr[1 — Up]. (29d)
T

Summing the transverse and longitudinal components over
the lattice then gives the averaged energy density contribu-

tions,

1
e ()= 3D ) HE (), (30a)
X k
1
er, ()= > HE (), (30b)
1
es (1) =1 DO HE), (30c)
X k
1
€5, () =+ Z HE (), (30d)

with the lattice volume V = NiN;.

A suitable measure for isotropisation is given by the ratio
of longitudinal and transverse pressure. These are given by
the spatial diagonal elements of the energy momentum ten-
sor,

1
Pr = E[T’”‘ +TW] =€,

Py =Tzz(x)=6T—6L‘ Py =‘L’2T7m=€T—EL. (31b)

(31a)

Note that at early times the field component of the longitudi-
nal pressure is negative. This is due to the leading order of the
CGC initial condition which sets Py, to exactly the negative
value of Pr [46],

TégeLo = diag(e, €, €, —€) 32)

and reflects the force of the colliding nuclei. In complete
equilibrium both pressures are equal.

2.5 Validity of the classical approximation

One necessary requirement for a continuum quantum field to
behave effectively classically is a high occupation number N
of its field modes. In addition, for a classical description to
be a good approximation, the IR sector should dominate the
total energy of the system, since the classical theory breaks
down in the UV.

Occupation numbers can be defined unambiguously for
free fields, and only then. In the framework of canonical
quantisation, and in a fixed gauge, the Fourier modes of the
gauge and chromo-electric fields correspond to annihilation
and creation operators of field quanta (or gluons) with energy
o (p) = |p|. With proper normalisation, these combine to a
number density operator n(p), returning the number of glu-
ons with momenta in (p, p+dp) when acting on an arbitrary

@ Springer
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Fock state. The (vacuum subtracted) Hamiltonian of the free
theory can then be expressed simply by counting the excited
field quanta of momentum p,

H= / d’p w(p)n(p). (33)

For interacting fields, the interpretation of their Fourier
modes is changed and occupation number cannot be defined
rigorously. Itis thus a valid concept only for sufficiently weak
coupling and weak fields. In this case it has been shown
that the energy contribution of the gauge-fixed field modes
according to the last equation agrees well with the gauge-
invariant energy of the system, see e.g. [49].

In order to study the population of different momentum
modes and their contribution to the energy, it is therefore
customary to compute the Fourier components of the gauge
and/or chromo-electric field, e.g. [47-50], or, close to equi-
librium, those of field correlators [40,51]. However, besides
the gauge-dependence, which gets amplified for interacting
and strong-fields and causes ambiguities in the interpretation
of the momentum distribution, this also introduces a signifi-
cant computational overhead for the process of gauge fixing,
especially for SU(3). For this reason, we turn the procedure
around and consider the spectral decomposition of the man-
ifestly gauge-invariant Fourier transform of the total energy
density,

1 .
- E B
H(tp) = 3 D e ™Y [HE )+ HE )], (34)
X i
whose average over equal absolute values of momenta® nor-
malised on that momentum, provides a measure for the popu-
lation of momentum modes. That is, we define an alternative
occupation number density

N(p) 1
n(p) = VoS (Ié(p)l)p, (35
with the physical volume V and €(p) = H(p) in the static
case and € (p) = H(p)/t in the expanding one, respectively.
We used the eigenfrequency w corresponding to the free
massless dispersion relation w(p) = p, as is appropriate for
p = 0.1 Q [47]. In the non-interacting limit and Coulomb
gauge, this definition results in the same energy density as
the gauge-fixed ones used in the literature [47-50]. In the
interacting and strong field case, when occupancy becomes
ambiguous, our definition removes any gauge dependence
while retaining its physical interpretation based on Fourier
modes of the energy density.

2 This means we average over all vectors with the same length, i.e., all
combinations of p = (py, py, p;) thatresult in the same absolute value

p =Ipl = /p}+ p} + p?. This is indicated by the notation (- ).

@ Springer

Another question is up to which energy level the modes of
a classical theory provide a good approximation: because of
the Rayleigh-Jeans divergence, the UV sector of the classical
theory in equilibrium increasingly deviates from that of the
full quantum theory, irrespective of occupation numbers. In
thermal equilibrium, a UV cutoff is usually fixed by match-
ing a thermodynamical observable between the full and an
effective theory. In a non-equilibrium situation, however, it is
difficult to identify a scale up to which the classical theory is
valid. A common self-consistent procedure then is to demand
that the total energy of the system under study is “dominated
by infrared modes”.

2.6 Ordering of scales and parameters

We wish to study the dependence of the classical Yang—Mills
system on the lattice spacing and volume, as well as of the
various parameters introduced through the CGC initial con-
ditions. For the classical description of the CGC model to be
self-consistent, the parameters representing various scales of
the problem have to satisfy

lemcowas L (36)
L a|

The original MV model without additional IR and UV cutoffs
corresponds to the special case m = L~ and A = all. The
dimensionless version of these relations to be satisfied by our
lattice simulation is obtained by dividing everything by Q.

3 Numerical results

Our numerical implementation is based on the well-tested
and versatile QDP++ framework [52], which allows for data-
parallel programming on high performance clusters. Unless
stated differently, we will use Q L = 120 throughout this sec-
tion. Furthermore, as introduced in Sect. 2.2, the initial condi-
tions in the boost invariant scenario, i.e. the one without lon-
gitudinal fluctuations, are identical in both frameworks. We
will therefore present corresponding results for the energy
density solely in the expanding formulation, since the coun-
terparts in the static box can easily be derived therefrom due
to energy conservation.

3.1 SU(2) vs. SU(3)

Performing the calculations for the realistic SU(3) rather than
SU(2) gauge theory introduces roughly an additional factor
of 3 in terms of computational time, depending on the studied
observables. Comparing physical results between the groups
is non-trivial, since the ratio Q/Q depends on the number
of colours, as well as our observables like the energy den-
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4002, N;=30,m/Q=0.1

0.20 ‘ ‘

0.18 Ly, SU(2),e i -

0.16 + = SU(3), e |
o= 014k SU(2), €5 -
2" 0.12 SU(?)),GB I
E"} 0.10 = SU(Z),GE —
= 0.08 SU(3),ep i
=L 0.06 -
D

0.04 |

0.02 |

0 | | | | | | |

Fig. 1 Total energy density and its chromo-magnetic and chromo-
electric components for SU(2) and SU(3)

sity. For the saturation scale we have Q; ~ +/N.Q [37] and
for the initial energy density g2e(t|t = 0) ~ N¢Ng [39]. A
physically meaningful, dimensionless combination with the
leading N.-behaviour scaled out is thus g%€/(Q*N.N o) plot-
ted vs. /N.Qt. In Fig. 1, where we applied this rescaling,’
we clearly see that there is no significant difference in the
observables we are studying. In particular, the sub-leading
N.-dependence appears to be much weaker than the sensi-
tivity to the parameters of CGC initial conditions, which will
be discussed in Sect. 3.4. These results support early findings
on the N,-scaling of classical simulations [53]. We checked
this observation for several parameter settings with the same
outcome and will therefore focus mostly on SU(2) in the
following, in order to reduce the numerical cost.

3.2 Boundary effects

In the MV model, the nucleus is usually “spread” over the
whole lattice. This introduces a systematic error when using
periodic boundary conditions. However, for our choice of
parameters the total diameter of the plane representing the
nucleus is about 12 fm, which should be large enough to
suppress boundary effects. In Fig. 2 we show the total energy
density € (times the proper time t) in comoving coordinates
for three different scenarios: first, the nucleus is “spread” over
the whole 4007 points on the transverse lattice plane, second,
the nucleus is represented by 400? lattice points within a
6007 lattice and third, the same nucleus is embedded in an
800 lattice. We observe an effect at the 5%-level. We have
explicitly checked that the size of finite volume effects does
not change when additional model parameters are introduced,
as in the following subsections.

3 Inthe following, we will keep the scaling factor for the energy density,
but we will drop the /N, normalisation factor in front of Q in order
to ease the comparison with other works, where this is almost always
neglected, too.

SU(2), N;=30,m/Q=0.1
0.20 ‘ ‘ ‘ ‘
0.18 p, 4002 in 4002 —— T
0.16 ~ 4002 in 6002 .
> 0.14 4002 in 8002 .
5 0.12

= 0.08
w

=2 0.06

0.04

0.02

0.06 ‘ ‘ ‘

0.02 |} 4002 in 4002 ——— -
) 4002 in 6002 ———
0.0 4002 in 8002 1
O I I I I

0 0.5 1 1.5 2 2.5 3
QT

Fig. 2 Total energy density (top) and total energy density times the
proper time (bottom) for a nucleus represented by 4002 lattice points
embedded in different lattice sizes

3.3 Discretisation effects

Ideally, the non-physical scales a, or aj entering our cal-
culations because of the lattice discretisation should have no
effect on our results. On the other hand, a continuum limit
does not exist for a classical theory and one has to investi-
gate which values of the lattice spacing are appropriate and
to which extent observables are affected by it.

For our problem at hand, the transverse lattice spacing is
set by the number of lattice points spanning the size of the
nucleus, cf. (26). On a coarser lattice less momentum modes
are available, which translates into lower initial energy den-
sity for a fixed colour charge density Q, as shown in Fig. 3
(top). For a non-expanding system the energy density stays
constant, thus implying large discretisation effects. In the
expanding system, these differences are quickly diminished
below percent level, which in the literature is often inter-
preted as a sign for continuum-like behaviour. However, this
behaviour should not be confused with a proper continuum
limit, which does not exist for the classical theory. Rather, the
expansion adds more and more infrared modes to the system,
thus “diluting” the initial UV modes affected by the lattice
cutoff and maintaining the apparent classicality.
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Fig. 3 Total energy density for different transverse lattice spacings a
(top) and different temporal lattice spacings a, (bottom)

Note also, that the apparent freedom to choose a lat-
tice spacing results from our ignorance of the detailed
physics. While yet unknown, there must be a relation €(Q)
between energy density and colour charge density for given
nuclei and collision energy. The lattice spacing would then
be fixed by matching the energy density of the classi-
cal system to the physical one, similar to the situation in
equilibrium.

For our further investigations we will choose a 4002 lattice,
since it is a reasonable compromise between small discreti-
sation effects and computation time. As can be seen in Fig. 3
(top), with this choice the discretisation effects are negligible
for Qt = 0.3.

We also have to be sure that there are no discretisa-
tion effects coming from the numerical integration over
the time variable. To this end we vary the anisotropy
parameter &, with the results for the transverse and lon-
gitudinal energy density shown in Fig. 3 (bottom). We
used § = 20 & a;; = 0.05a,L for all the results
presented in this work, since this choice leads to neg-
ligible systematic errors coming from our time
discretisation.
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Fig. 4 Total energy density for different numbers of longitudinal sheets
N; without (top) and with (bottom) an additional IR cutoff

3.4 Investigation of the parameters of the CGC initial
conditions

In the following we elaborate on the different parameters
entering the system’s description through the CGC initial
conditions.

3.4.1 Number of longitudinal sheets N;

As shown in [39], the originally proposed initial conditions
of the MV model lack randomness within the longitudi-
nal dimension. Fukushima proposed to use N; sheets of the
nucleus rather than only a single one. This is a merely tech-
nical parameter coming from the numerical implementation
and thus vanishes in continuous time, where N; — oo. Fig-
ure 4 shows that the total energy density depends strongly
on N; for small values < 30 and then saturates. This effect
is amplified by adding an IR cutoff m, leading to a faster
saturation for m/Q = 0.1 than for m/Q = 0. This has
also been observed in [37] and can be expected: the IR cut-
off introduces an additional screening of the colour sources
and hence reduces the correlation length also in the rapidity
direction. The computation time of the system’s initialisa-
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tion grows linearly with V; and hence a reasonable choice is
N; = 30, which we set for most of our simulations.

3.4.2 IR cutoff m

Asexplained in the last section, the IR parameter m provides a
simple way to incorporate the colour neutrality phenomenon
studied in [54]. While m = 0.1 Q =~ RLp’ with R, being the
proton radius, is a physically motivated choice, the precise
value of m/ Q has a large effect on the initial energy density
which can be seen in Fig. 5 (top). With a higher cutoff, less
modes are populated to contribute to the energy density. As
studied in [37], the parameter m also affects the ratio Q/Q;:
at N; = 30 the physical saturation scale Q; is around 0.85 Q
form/Q = 0.1 and around 1.03 Q for m/Q = 0. Since the
energy density is normalised by Q?, this difference amounts
to about a factor of 2 in the dimensionless quantity €/ Q?.

Since the effect of m is in the infrared, it does not get
washed out by the expansion of the system, in contrast to the
discretisation effects. Hence a careful understanding to fix
this parameter is important. For example, one might won-
der whether this inverse length scale should not also be
anisotropic in the initial geometry. In what follows we will
eitheruse m = 0, asin the initial MV model, or the physically
motivated choice m/Q = 0.1.

3.4.3 UV cutoff A

As discussed in Sect. 2.2, one can apply a UV cutoff A while
solving Poisson’s equation (20a), in addition to the existing
lattice UV cutoff. This is an additional model parameter lim-
iting the initial mode population to an infrared sector deter-
mined by A. Figure 5 (bottom) shows the influence of this
parameter on the energy density, which gets reduced because
of the missing higher modes in the Poisson equation. This is
similar to the observation we made on the IR cutoff m, but
with the important difference that the ratio Q/Qj is indepen-
dent of A [55]. We are not aware of a unique argument or
procedure to set this parameter, for the sake of comparison
with the literature we choose A/Q = 1.7 [19] in some of
our later investigations. As a welcome side effect, with the
emphasis of the infrared modes strengthened, the dependence
of the total energy density on the lattice spacing is reduced
and the expanding system saturates even faster towards a -
independent values, cf. Fig. 6 and the previous Fig. 3 (top).

3.5 The energy density mode spectrum

The occupation number of field modes in Fourier space is
the most direct and often applied criterion to judge the valid-
ity of the classical approximation during the time evolution
of the system. It is well-established that, starting from CGC
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Fig. 5 Total energy density for different IR (top) and UV (bottom)
cutoff parameters
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Fig. 6 Total energy density for different transverse lattice sizes NJZ_
with an additional UV cutoff of A = 1.7 Q

initial conditions, simulations in a static box quickly pop-
ulate higher modes, implying a breakdown of the classical
description beyond some time. In the expanding system this
process is considerably slowed down [19,38,56,57]. We con-
firm these earlier findings by plotting our generalised occu-
pation number as a function of the momentum modes defined
via (35).

Figure 7 (top) shows the energy mode spectra for different
model parameter values at initial time. In order to study the
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Fig. 7 Occupation number as a function of the momentum p/Q at
initial time (top) and after the same number of time steps in the static
box (middle) and in the expanding formulation (bottom). The highest
momentum is defined by the lattice cutoff, pmax = V2 Ja; ~ 14.81 Q

1 1 ]
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full range of the additional UV cutoff, we deliberately chose
A = Q asits smallest value, cf. (36). One clearly sees that the
additional UV cutoff causes a strong suppression of higher
modes, thus strengthening the validity of the classical approx-
imation. This is also consistent with the observation from
Sect. 3.4.3, that the additional cutoff can be used to weaken
discretisation effects. Another observation is that the distri-
bution is rather independent of the IR cutoff value. In Fig. 7

@ Springer

(bottom) we present the evolution of the same initial config-
uration in the static and expanding framework. While with-
out an additional UV cutoff the distributions nearly reach a
plateau in the static box, the occupation of the higher modes in
the expanding system stays considerably lower, thus extend-
ing the validity of the classical approximation.

One can now try to get a quantitative measure of the
supposed dominance of infrared modes. By integrating the
Fourier modes of the energy density up to some momen-
tum scale, one can infer the energy fraction of the system
contained in the modes below that scale, thus assessing the
classicality of the mix (see for example [29]). For exam-
ple, without applying any cutoffs, integrating modes up to
20 ~ 4 GeV contains 65% of the total energy of the system
at initial time. At Qt|Qt = 150, this changes to 60% or
77% in the static and expanding cases, respectively. Hence,
the quality of the classical approximation deteriorates only
slowly or not at all. Nevertheless, a significant systematic
error should be expected when several 10% of the energy is
in the UV sector, where a running coupling and other quan-
tum effects should be taken into account. This must certainly
be the case when modes 2 50 ~ 10 GeV get significantly
populated, as in Fig. 7. At this stage of the evolution a better
description might be obtained by an effective kinetic theory
[26-28], where quantum effects are already included.

Finally, we remark that the Fourier mode distribution of
energy density, like occupation number in a free field theory,
is also sensitive to the homogeneity of the system in coor-
dinate space: a plane wave with only one momentum mode
occupied corresponds to a (finite) delta peak in occupation
number, whereas wave packets have broader distributions.

3.6 Isotropisation

In this section we add small quantum fluctuations on the
initial conditions, as described by Eq. (25). These initial
fluctuations lead to an eventual isotropisation of the system,
which can be studied by the evolution of the ratio of the
pressure components Py, /Pr. To include their effects, we
have to extend our two-dimensional analysis by an additional
longitudinal direction N,,, increasing the computation time
linearly with N,j;. Within our computational budget, this
forces us to use smaller lattices (200°) for this section, thus
inevitably increasing the cutoff and finite volume effects we
have discussed so far. However, as we shall see, the effects
of the model parameters are by an order of magnitude larger.

3.6.1 Static box

We begin with the static box. The general behaviour of the
pressure ratio Pr/Pr has been known for a while and is
shown in Fig. 8. After a peak at around Qt ~ 0.6 follows an
oscillating stage until the system isotropises. The oscillating
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Fig. 8 Pressure ratio in the static box for different longitudinal lattice
extents N, (top) and for different fluctuation amplitudes A (bottom)

Table 1 The initial total energy density and its relative increase due
to the fluctuations for different cutoff setups. First row: no additional
cutoff, second row: m/Q = 0.1, third row: m/Q = 0.1 and A/Q =
1.7. The statistical errors are all below the 1 %-level

@%:Ng Relative increase

A=0 A=10""! A=1072 A=1073
0.163 23.9% 0.239 % 0.00239 %
0.122 32.2% 0.321 % 0.00322 %
0.057 68.1% 0.682 % 0.00683 %

stage originates from turbulent pattern formation and diffu-
sion [18,19] and precludes a hydrodynamical description.
We see a strong finite size effect in N, Fig. 8 (top), which
decreases for larger values and should vanish in the limit
N, — oo. For very small values of N, < 10, the fluctuations
cannot evolve and the system behaves as in the unperturbed
A = 0 case.

The dependence on the fluctuation amplitude A is studied
in Fig. 8 (bottom). In accord with expectation, increasing the
fluctuation amplitude A reduces the isotropisation time. Note
the interesting dynamics associated with this: while for larger
initial amplitudes the onset towards isotropisation occurs ear-
lier, the eventual growth of the longitudinal pressure appears
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Fig. 9 Pressure ratio in the static box for different IR and UV cutoffs
(top) and for the different gauge groups (bottom)

Table 2 Hydrodynamisation time extrapolations in units of Q' for
different lattice and CGC parameter setups

2003 and no additional cutoff

A=10""! A =102 A=1073
751 770 885

2002 x 20 and A = 102

No add. AJQ =17 m/Q =0.1 m/Q = 0.1
Cutoff AJQ =17
799 1719 3259 4736

to be faster for the smaller amplitudes. The initial fluctuation
amplitude A also significantly affects the early behaviour of
the system, causing a strong change of the pressure ratio and a
significant increase of the energy density (~ A2), as shown
in Table 1. Also the frequencies of the plasma oscillations
are affected. Of course, increasing the quantum fluctuation
amplitude weakens the classicality of the initial condition:
for A > 0.1 the fluctuations already make up > 20% of
the initial energy density. On the other hand, for A < 1072
there is no visible effect on the pressure ratio at early times
(Qt < 20), and also the energy remains the same within
numerical fluctuations.
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Fig. 10 Snapshots of the 927{5/(1'5 QY ngE/Q4 gZ’Hf/Q“
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The hydrodynamisation time of a heavy ion collision is the
time, after which hydrodynamics is applicable to describe the
dynamics of the system. This is commonly believed to be the
case once the pressure ratio Pp/Pr > 0.7. For an initial
amplitude of A = 1072 and without further model cutoffs,
this happens at t &~ 770/ Q & 76 fm in our simulations. This
value is considerably larger than experimentally expected
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ones, but it is in line with earlier numerical results in a static
box, e.g. [19].

The pressure ratio is highly sensitive both to the additional
IR and to the UV cutoff introduced in the initial condition,
cf. Fig. 9 (top). Especially the UV cutoff changes the qual-
itative shape of the curve at early times significantly. Fur-
thermore, both cutoffs considerably slow down the process
of isotropisation as shown in Table 2. The hydrodynamisa-
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tion time grows by factors of 2—6 for cutoff values as chosen
before. Hence, a better understanding and fixing of those
model parameters is mandatory for any quantitative investi-
gation.

Note that our tabulated hydrodynamisation times have
been obtained by extrapolation. In principle it would be pos-
sible to simulate the late stage of the Pr/Pr evolution and
compare its details to the predicted power law behaviour
observed in other studies [18,41]. However, our discussion
of the mode distribution in Sect. 3.5 suggests that at such late
times a purely classical evolution might no longer be self-
consistent, so we refrained from this computationally very
expensive investigation.

In accord with Sect. 3.1, we see no significant change in
the isotropisation time when using N, = 3 colours instead
of 2, cf. Fig. 9 (bottom). By contrast, the details of the oscil-
latory behaviour at early times differ. This implies that for
the investigation of the properties of collective excitations as
in [58], the correct gauge group will eventually be important
for quantitative results.

3.6.2 Chromo-Weibel instabilities

It has been suggested that the apparent rapid thermalisation
during heavy ion collisions might be caused by chromo-
Weibel instabilities [7,8]. Indeed, the final increase of the
pressure ratio towards isotropisation, as observed in Fig. 8§,
may be attributed to such an instability, as we now show.
Firstly, our anisotropic initial conditions imply a fluctuating
current, which is a necessary ingredient for the occurrence of
a Weibel instability. Secondly, an instability causes a rapid
population of harder longitudinal modes, which during the
evolution in time spreads to others, as suggested by the mode
spectrum in Fig. 7. The most striking illustration of the pres-
ence of a chromo-Weibel instability is obtained by observing
the chromo-electric and chromo-magnetic energy densities
in position space, where filaments caused by the instabil-
ity are clearly visible. Figure 10 shows the amplitude of the
x-component of the chromo-magnetic energy density in the
yz-plane while averaging over the remaining x-direction*.
Each box is a snapshot at a given time step, where the hor-
izontal axis represents the longitudinal direction (along the
beam line) and the vertical axis is in the transverse direction.

Qualitatively the snapshots do not change if we replace the
chromo-magnetic energy density 7 by the chromo-electric
energy density ¥, with one exception: for the large fluctua-
tion amplitude A = 10~!, the filamentation in Hﬁ , and HE

appears already at initial time, whereas it propagates into H f

and Hfl y only after a few time steps.

4 We can of course replace x by y and vice versa in Fig. 10, since the
two transverse directions are indistinguishable.
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Fig. 11 Pressure ratio in the expanding system with different cutoffs
and fluctuation seeds. No isotropisation is observed for any choice of
parameters

The pattern at Qr = 0.3 (first row of Fig. 10) for
A = 1072 and A = 1073 represents the initial fluctua-
tions which are independent of the longitudinal direction z.
At a later time Qr = 90 the chromo-Weibel instability is
visible with filaments that are more pronounced for higher
fluctuation seeds. At very late times Q¢ = 300 the filaments
dissolve again. Note how the detailed timing of the growth
and decay of the filaments crucially depends on the value of
A. It is interesting to compare these plots with Fig. 8 (bot-
tom): apparently the dynamical instabilities arise late, after
the oscillatory period around the onset to isotropisation.

For consistency, we checked that indeed no filamenta-
tion arises in the transverse plane, as expected. This holds
for all components of both the chromo-magnetic and for the
chromo-electric energy density. Instead, the average values
of the energy densities are random with large fluctuations at
early stages, which get smoothed during the time evolution.

3.6.3 Expanding system
By contrast, in an expanding system, as realised in heavy ion

collisions, the pressure ratio does not appear to isotropise
after the oscillatory stage but settles at a small or zero value,
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lines represent constant energy density levels at integer multiples of 108
The red solid lines indicate the constant energy densities corresponding
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as shown in Fig. 11. This is in accord with the findings in
[14,15,41] and robust under variation of all model param-
eters. In particular, it also holds for the largest fluctuation
seed considered, cf. Fig. 11 (bottom). Correspondingly, in
the expanding system no dynamic filamentation takes place
either. Only for fluctuation amplitudes > 10! filaments are
forced right from the beginning, since the initial configura-
tion is equivalent to the one we have shown for the static
box scenario. The conclusion is that an expanding gluonic
system dominated by classical fields according to the CGC
does not appear to isotropise and thermalise. For future work
it would now be interesting to check whether adding light
quark degrees of freedom helps towards thermalisation, as
one might expect.

Note that the non-thermalisation of the expanding classi-
cal system is in marked contrast to simulations of an effec-
tive kinetic theory, which predict hydrodynamisation times
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the constant energy density contour obtained for Q L = 120 without an
additional UV cutoff, which is the choice of the majority of previous
studies. The gray horizontal line represents the lattice UV cutoff above
which the additional UV cutoff no longer affects the system

consistent with phenomenological expectations [28,59] (see,
however, [23]). Further studies of the systematics of both
approaches are necessary to see whether quantum effects
and/or the role of the UV sector are the reason for this dis-
crepancy.

3.7 Initial condition at fixed energy density

Altogether the numerical results of classical simulations
show a large dependence on the various model parameters of
the CGC initial condition. This creates a difficult situation,
because the initial condition and the early stages of the evolu-
tion until freeze-out are so far not accessible experimentally.
We now propose a different analysis of the simulation data
which should be useful in constraining model parameters
suchas A, m and A.
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Fig. 13 Total energy density for different fluctuation seeds A and dif-
ferent UV cutoffs A/Q at initial time. The dashed lines represent con-
stant energy density levels in multiples of 0.025. The solid green line
corresponds to the energy density obtained without an additional UV
cutoff and no fluctuations, i.e. A = 0. The horizontal grey line repre-
sents the lattice cutoff above which the additional cutoff A no longer
affects the system

In a physical heavy ion collision the initial state is char-
acterised by a colour charge density, an energy density and
some effective values of A, m and A. However, these cannot
all be independent, rather we must have € = €(Q, A, ...),
where the detailed relation is fixed by the type of nuclei
and their collision energy. We should thus analyse computa-
tions with fixed initial energy density L*e, while varying the
model parameters. The outcome of such an investigation for
A and Q are the contour plots shown in Fig. 12. We consider
Ot = 0.3 as well, since then even without an additional UV
cutoff the discretisation effects are negligible for N = 400,
cf. Fig. 3. In the same figure we also compare the situation
with an additional IR cutoff as discussed earlier. Thus, to
the extent that the energy density as a function of time can
be determined experimentally, it should be possible to estab-
lish relations between the parameters Q, A and m to further
constrain the initial state.

The same consideration can be applied to study the fluc-
tuation amplitude. Figure 13 shows contours of fixed energy
density €/Q* in the (A, A/Q) plane, where A = 0 repre-
sents the classical MV initial conditions, i.e., the tree-level
CGC description without any quantum fluctuations, and we
have chosen QL = 120. Clearly, similar studies can be made
for any pairing of the model parameters at any desired time
during the evolution and should help in establishing relations
between them in order to constrain the initial conditions.

4 Conclusions

We presented a systematic investigation of the dependence
of the energy density and the pressure on the parameters

entering the lattice description of classical Yang—Mills the-
ory, starting from the CGC initial conditions. This was done
in a static box framework as well as in an expanding geometry
and both for N, = 2 and N, = 3 colours.

After the leading N.-dependence is factored out, devia-
tions between the SU(2) and the SU(3) formulation are small
and only visible in the details of the evolution during the early
turbulent stage. This is not surprising in a classical treatment,
since in the language of Feynman diagrams most of the sub-
leading N.-behaviour is contained in loop, i.e. quantum, cor-
rections.

Finite volume effects are related to the treatment of the
boundary of the colliding nuclei and their embedding on the
lattice. Given sizes of ~ 10 fm, such effects are at a mild 5%-
level. Note, however, that this effect is larger than the finite
size effects of the same box on the vacuum hadron spectrum,
as expected for a many-particle problem.

The choice of the lattice spacing affects the number of
modes available in the field theory and thus significantly
influences the relation between the initial colour distribution
and the total energy of the system. In the static box, all further
evolution is naturally affected by this. Since the classical the-
ory has no continuum limit, the lattice spacing would need to
be fixed by some matching condition at the initial stage. By
contrast, in the expanding system the energy density quickly
diminishes and the effect of the lattice spacing is washed out.

A quantitatively much larger and significant role is played
by the model parameters of the initial conditions, specifi-
cally additional IR and UV cutoffs affecting the distribution
of modes and the amplitude of initial quantum fluctuations,
whose presence is a necessary condition for isotropisation.
For the static box we presented direct evidence for isotropi-
sation to proceed through the emergence of chromo-Weibel
instabilities, which are clearly visible as filamentation of
the energy density. However, the hydrodynamisation time
is unphysically large and gets increased further by additional
IR- and UV-cutoffs in the initial condition. Without quan-
titative knowledge of these parameters, the hydrodynami-
sation time varies within a factor of five. We suggested a
method to study the parameters’ influence on the system at
constant initial energy densities. This allows to establish rela-
tions between different parameter sets that should be useful
to constrain their values.

Rather strikingly, no combination of model parameters
leads to isotropisation in the expanding classical gluonic sys-
tem.
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