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Abstract. We discuss the current developments by the European Twisted Mass Collab-
oration in extracting parton distribution functions from the quasi-PDF approach. We
concentrate on the non-perturbative renormalization prescription recently developed by
us, using the RI′ scheme. We show results for the renormalization functions of matrix
elements needed for the computation of quasi-PDFs, including the conversion to the MS
scheme, and for renormalized matrix elements. We discuss the systematic effects present
in the Z-factors and the possible ways of addressing them in the future.

1 Introduction

Parton distribution functions (PDFs) are one of the most important tools describing the rich internal
structure of hadrons, resulting from the strong interactions of valence quarks with each other and
with dynamically created sea quarks and antiquarks, via exchange of gluons. Due to the large value
of the strong coupling constant at the relevant energy scales, PDFs are non-perturbative and thus,
in principle, can be studied quantitatively only in the framework of Lattice QCD. Such an evaluation
from first principles would constitute an important test of non-perturbative aspects of QCD. Moreover,
it could provide important data for experiments, in particular for the transversity PDFs (and to some
extent also for polarized PDFs), which are rather poorly constrained by phenomenological fits using
perturbation theory. Even for the well-constrained experimentally unpolarized case, there are still
some regions that are not kinematically accessible, such as the large Bjorken x region [1, 2]. However,
since PDFs are defined on the light cone, the standard lattice Euclidean formulation allows only
to compute their low Mellin moments (cf. [3–7] for recent reviews). Attempts to reconstruct full
PDFs from these moments are bound to fail, due to both practical problems (unfavourable signal-to-
noise ratio for higher moments) and theoretical ones (inevitable power divergent mixings with lower
dimensional operators).
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A thoroughly investigated alternative to lattice computations of the moments is the method sug-
gested by Ji [8]. This approach does not rely on the light cone definition, but instead one computes
spatial matrix elements using fermion operators with a finite-length Wilson line that makes the object
gauge invariant. The infinite nucleon momentum on the light cone is, in turn, replaced by a nucleon
boost in a spatial direction, conventionally the third direction (z). The Fourier transform of such com-
puted matrix elements defines quasi-PDFs (qPDFs), which can be matched to standard light cone
PDFs using perturbation theory [9, 10], presently available at one-loop. If sufficiently large nucleon
momentum can be achieved, which is itself a non-trivial issue due to the signal-to-noise ratio worsen-
ing for large boosts, the matching is relatively small and the higher order corrections are small in the
matching, making the extraction of PDFs from this approach robust.

There has been considerable attention devoted to Ji’s approach, see e.g. Refs. [11–15]. A plethora
of aspects has already been addressed, including effects of smearing the links in the Wilson line
[11, 13–15], using momentum smearing [16] to improve the signal at large momenta [15], nucleon
boost dependence in lattice data [11, 13–15] and in models [17, 18] (using the relation of PDFs
and transverse momentum dependent distribution functions (TMDs)) and corrections that the finite
nucleon mass induces [13, 14], as well as excited states effects (dependence on the source-sink sep-
aration in the computation of the three-point functions) [13, 14]. Theoretical aspects have also been
discussed. In particular, the role of the Euclidean signature in the computation of quasi-PDFs has
been considered [19, 20] and led to the conclusion that matrix elements obtained from the lattice are
the same as ones from the LSZ formula in Minkowski space. Question has also been raised [21] about
the presence of power divergent mixings in moments of qPDFs. However, as argued in Ref. [22],
the moments of qPDFs do not exist and hence the problem of such mixings does not exist either. An
alternative generalization of light cone PDFs to finite momentum has also been proposed, leading to
the so-called pseudo-PDFs [23, 24]. Finally, for completeness we mention that Ji’s approach can also
be used to compute distribution amplitudes (DAs), as shown in Refs. [25, 26].

An essential aspect of PDFs computation from qPDFs has until recently been missing, which is
the issue of their renormalization. Obviously, this is crucial from the point of view of applicability
of the whole programme. The renormalizability of qPDFs to all orders in perturbation theory was
recently addressed [27, 28]. These papers used two different approaches – the former is based on the
auxiliary field formalism of Dorn [29] (which can also be used to extract renormalization functions
[30]), while the latter considered qPDFs defined in coordinate space. The matrix elements of qPDFs
contain standard logarithmic divergences, but in addition also a power divergence is present, related
to the inserted Wilson line [31]. At one-loop in perturbation theory, the divergence appears as a
linear divergence, and was calculated in Ref. [32] for different fermionic and gluonic actions. A way
to eliminate the linear divergence was also developed in Ref. [33], where it is made finite by using
the gradient flow. An additional aspect in qPDFs renormalization is also that qPDFs operators exhibit
mixing for certain Dirac structures [32]. The aim of our present work is to perform the renormalization
procedure in a fully non-perturbative manner. Such a procedure was introduced, for the first time, in
our paper [34] and the proposed renormalization programme was also applied in Ref. [35]. In these
proceedings, we recapitulate the results of our extensive analysis that can be found in Ref. [34].

2 Renormalization prescription

We consider the following matrix elements with Dirac structure Γ (γµ for unpolarized, γµγ5 for helicity
and σµν for transversity PDFs):

hΓ(P3, z) = �P|ψ̄(0, z) ΓW3(z)ψ(0, 0)|P�, (1)
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taken between boosted nucleon states |P� with P = (P0, 0, 0, P3), i.e. with the spatial momentum
along the third direction. W3(z) represents the Wilson line of length z in the direction of the boost.
The qPDFs can be obtained by Fourier transforming these matrix elements.

The adopted renormalization prescription relies on the non-perturbative RI′ scheme [36] and pro-
ceeds along the lines of the renormalization programme developed for local operators [37]. In absence
of mixing, it consists in imposing the following momentum space renormalization condition, for each
Wilson line length z:

Z−1
q ZO(z)

1
12

Tr
[

V(p, z)
(

VBorn(p, z)
)−1]∣∣
∣

∣

p2=µ̄2
0

= 1 , (2)

where Zq is the quark field renormalization function that satisfies:

Zq =
1

12
Tr
[

(S (p))−1 S Born(p)
]

∣

∣

∣

∣

p2=µ̄2
0

. (3)

In both of the above equations, the momentum p is set to the RI′ renormalization scale µ̄0, which we
choose in such a way that its third spatial component is P3. We test two choices for the other two
spatial components – we leave them to be 0 (“parallel” choice) or equal to P3 (“diagonal”). Previous
studies of local matrix elements renormalization [38] show that the latter choice is expected to have
much smaller discretization effects, as it has a much smaller value of the ratio P̂≡

∑

ρ µ̄
4
0ρ /
(

∑

ρ µ̄
2
0ρ

)2
.

Further,V(p, z) denotes the amputated vertex function of the operator, withVBorn its tree-level value,
e.g. iγ3γ5 eipz for the helicity operator. S (p) is the quark propagator, which equals S Born(p) at tree-
level.

The above RI′ renormalization conditions remove all the divergences present in the matrix ele-
ments. The linear divergence resums into a multiplicative exponential factor, e−δm|z|/a+c|z|, where the
operator-independent δm is the strength of the divergence, while c is an arbitrary scale [39] that is
fixed by the renormalization condition. The presence of this divergence is the major difference with
respect to the case of local operators. As in the case of the latter, the standard logarithmic divergence
is also removed and finite renormalization is fixed with RI′ equations.

Analogous conditions can be written for the case when mixing is present, e.g. for the vector
operator with Dirac structure parallel to the direction of the Wilson line that mixes with the scalar
operator. In such case, one constructs a 2×2 mixing matrix [34].

Having obtained the RI′ scheme renormalization functions, it is desirable to convert them to the
conventional renormalization scheme for phenomenology, i.e. the MS scheme. Moreover, change
of the scale from µ̄0 to an MS scale of µ̄, typically 2 GeV, can also be peformed. We use the one-
loop conversion factor from Ref. [32]. The evolution to the MS renormalization scale µ̄=2 GeV is
performed using the intermediate Renormalization Group Invariant scheme (RGI), see Refs. [38, 40]
for more details.

We illustrate the conversion factor for the unpolarized and helicity operators from two RI′ scales,
aµ̄0=

2π
32 ( 7

2+
1
4 , 3, 3, 3) (“diagonal” one) and aµ̄0=

2π
32 ( 4

2+
1
4 , 0, 0, 3) (“parallel”), to the MS scheme at the

same scale in Fig. 1. Each value of the conversion factor is calculated numerically (which includes
the evaluation of integrals of modified Bessel functions). The real part is an order of magnitude larger
than the imaginary part and increases with increasing z, whereas the imaginary part stabilizes for
|z|/a � 2. At z=0, the conversion equals 1, since the corresponding Z-factors are just ones of the
local vector or axial vector currents. For other values of µ̄0, the behaviour of the conversion factor is
qualitatively similar.
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Figure 1. Conversion factor for the unpolarized and helicity operators from the RI′ scheme to the MS scheme
with µ̄=µ̄0. The left plot shows the real and the right plot the imaginary part of the conversion factor vs. z/a. We
employ two RI′ momenta: aµ̄0=

2π
32 ( 7

2+
1
4 , 3, 3, 3) (blue circles, labeled (7,3,3,3)) and aµ̄0=

2π
32 ( 4

2+
1
4 , 0, 0, 3) (red

squares, (4,0,0,3))

3 Lattice setup

We use the setup of Ref. [15] for calculating qPDFs matrix elements, i.e. we take one ensemble of
Nf=2+1+1 maximally twisted mass fermions [41–44] produced by the ETM Collaboration [45, 46].
The parameters of this 323×64 ensemble correspond to a lattice spacing of a≈0.082 fm [47] and a pion
mass of around 375 MeV. The nucleon boost that we use, P3 =

6π
L , is around 1.4 GeV in physical units.

We performed 30000 measurements on 1000 configurations, using the standard Gaussian smearing of
quark fields.

For the computation of the renormalization functions in the RI′ scheme, we employ the momentum
smearing technique [38, 48]. This technique allows to obtain good statistical precision already with
10-20 gauge field configurations and this is the number of configurations that we have used in practice.

4 Results

We now show (Fig. 2) the renormalization function Z∆h for the helicity case, i.e. the Z-
factors that renormalize the matrix element ∆h(P3, z). The left panel shows the “parallel” case,
aµ̄0=

2π
32 ( 4

2+
1
4 , 0, 0, 3), while the right panel corresponds to the “diagonal” choice of the renormal-

ization scale, aµ̄0=
2π
32 ( 7

2+
1
4 , 3, 3, 3). In both cases, the real part of the Z-factors increases significantly

for increasing Wilson length lines, in accordance with the presence of the power divergence. The
conversion to the MS scheme further enhances the values. The “parallel” case leads to slightly larger
values of the real parts. We can expect that these values are more contaminated by lattice artifacts
in the “parallel” case. This can be argued on general grounds from the higher value of P̂, which is
around 0.54, as compared to approx. 0.26 for “diagonal”. Moreover, we can compare the local value,
for z = 0, when the Z-factor is real and scheme- and scale-independent. For the “parallel” case, we
find Z∆h(0) = 0.8620(15), as compared to Z∆h(0) = 0.7727(2) for the “diagonal” choice. Both values
should be compared to the value of ZA=0.7556(5) found in Ref. [38], where a robust calculation has
been performed, including usage of several scales, subtraction of lattice artifacts computed in lattice
perturbation theory and extrapolation to the limit (ap)2 → 0. It is clear that the value that we find for
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Figure 2. The z-dependence of the renormalization function for the matrix element ∆h(P3, z) with aP3 =
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L . We

plot two cases: the “parallel” (aµ̄0=
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1
4 , 0, 0, 3); left) and “diagonal” (aµ̄0=
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2+
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for µ̄0. The open symbols correspond to the RI′ scheme and the filled ones to the MS scheme (µ̄ = 2 GeV).

the “diagonal” case is much closer to this reference value and hence, this choice of the renormalization
scale aµ̄0 is subject to smaller discretization effects.

For the imaginary parts of Z∆h in the RI′ scheme, we find smaller values in the “diagonal” case as
compared to the “parallel” one and they are further reduced after conversion to the MS scheme. Again,
the difference between the two choices suggests that the “diagonal” choice is subject to smaller lattice
artifacts, since the perturbative Z-factor in dimensional regularization is extracted only from the poles
and hence it is real to all orders in perturbation theory. As such, the non-zero value of the imaginary
part of Z∆h is an indication of both lattice artifacts and truncation effects resulting from the usage of
only one-loop conversion between the schemes.

The above discussion makes it clear what needs to be done to make the extraction of Z-factors
more robust for our case of interest. The subtraction of lattice artifacts in lattice perturbation theory
has been shown to be very efficient for the local Z-factors case [38] and is expected to work in a similar
fashion here. In this way, we expect that after performing this subtraction, different scales will lead to
similar values of the Z-factors, i.e. the slope of the (ap)2-dependence of Z-factors will be significantly
reduced. The other unwanted effect in the MS renormalization functions comes from truncating the
conversion factor to one-loop in perturbation theory. We plan a two-loop computation to investigate
this aspect.

Finally, we employ the above discussed Z-factors to renormalize the helicity matrix elements. In
Fig. 3 left/right, we show the real/imaginary part of bare matrix elements (blue circles), together with
MS (µ̄ = 2 GeV) renormalized matrix elements for the two choices of the renormalization scale, the
“parallel” one (green triangles) and the “diagonal” one (red squares). The differences between the lat-
ter are a measure of lattice artifacts present in the Z-factors. Note that these differences can be treated
as an upper bound of these artifacts, since they involve two very different choices of renormalization
scales. In typical extractions of the renormalization functions, one typically restricts oneself to scales
with corresponding values of P̂ below 0.35-0.40 [38]. In such case, lattice artifacts are much smaller
and moreover, they can be reliably subtracted with a one-loop lattice perturbative calculation. As we
argued above, another source of uncertainty in the Z-factors and hence also in the renormalized ma-
trix elements is the truncation of the conversion factor between the RI′ and MS schemes to one-loop.
This manifests itself, for example, in the fact that the real part of renormalized matrix elements be-
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Figure 3. The z-dependence of the bare and MS (µ̄ = 2 GeV) renormalized matrix elements ∆h(P3, z) with aP3 =
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comes negative for large Wilson line lengths. This behaviour can occur even when the bare real part
has already decayed to zero (as happens around |z|/a = 9), but when the imaginary part is still non-
zero and it is multiplied by the non-zero imaginary part of the MS Z-factor. Obviously, both of the
unwanted effects would propagate to the extracted quasi-PDFs and would contaminate the extracted
light-front PDFs. Hence, addressing them is of utmost importance for the robustness of the whole
research programme.

After the LATTICE 2017 conference, we have indeed addressed the systematic effects shortly
described here and we refer to our paper [34] for more details. In short, we have investigated there
several “diagonal” scales and estimated the magnitude of lattice artifacts as well as of truncation ef-
fects. The explicit computation of these effects, i.e. the one-loop evaluation of lattice artifacts in lattice
perturbation theory and calculation of the two-loop RI′-MS conversion formulae is the necessary next
step.

5 Conclusions and future directions

In this proceeding, we have summarized our prescription for the non-perturbative renormalization of
matrix elements involved in the computation of quasi-PDFs. The employed RI′ scheme correctly han-
dles both kinds of divergences that are present, i.e. the standard logarithmic divergence as well as the
Wilson line related power divergence. We have shown our results for the RI′ and MS renormalization
functions for the relevant Wilson line lengths and we have discussed the systematic effects present
in these Z-factors. Addressing them is a necessary step to obtain robust results for the appropriate
matrix elements and, thus, also for quasi-PDFs and the light-front PDFs as the final step. In Ref.
[34], we have made first quantitative assessment of such effects, i.e. lattice artifacts resulting from the
breaking of the rotational symmetry and truncation effects in the perturbative conversion to the phe-
nomenologically widely used MS scheme. However, the explicit computation of these effects remains
essential.

Obviously, the systematic effects that need to be addressed for a robust extraction of light-front
PDFs are not restricted to the ones present in the renormalization functions. Apart from this, several
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After the LATTICE 2017 conference, we have indeed addressed the systematic effects shortly
described here and we refer to our paper [34] for more details. In short, we have investigated there
several “diagonal” scales and estimated the magnitude of lattice artifacts as well as of truncation ef-
fects. The explicit computation of these effects, i.e. the one-loop evaluation of lattice artifacts in lattice
perturbation theory and calculation of the two-loop RI′-MS conversion formulae is the necessary next
step.

5 Conclusions and future directions

In this proceeding, we have summarized our prescription for the non-perturbative renormalization of
matrix elements involved in the computation of quasi-PDFs. The employed RI′ scheme correctly han-
dles both kinds of divergences that are present, i.e. the standard logarithmic divergence as well as the
Wilson line related power divergence. We have shown our results for the RI′ and MS renormalization
functions for the relevant Wilson line lengths and we have discussed the systematic effects present
in these Z-factors. Addressing them is a necessary step to obtain robust results for the appropriate
matrix elements and, thus, also for quasi-PDFs and the light-front PDFs as the final step. In Ref.
[34], we have made first quantitative assessment of such effects, i.e. lattice artifacts resulting from the
breaking of the rotational symmetry and truncation effects in the perturbative conversion to the phe-
nomenologically widely used MS scheme. However, the explicit computation of these effects remains
essential.

Obviously, the systematic effects that need to be addressed for a robust extraction of light-front
PDFs are not restricted to the ones present in the renormalization functions. Apart from this, several

other effects have to be taken into account and this direction is also currently pursued by us. Arguably
the most important of these effects is the influence of the pion mass. So far, our computations [13,
15, 34] have focused on an ensemble of Nf = 2 + 1 + 1 twisted mass fermions at a non-physical pion
mass of around 375 MeV. However, as shown e.g. in Ref. [49], the moments of PDFs with such a
pion mass are considerably different than the experimentally measured ones. Moreover, the moments
extracted from the 375 MeV ensemble using the quasi-PDF approach [15] (including matching, but
with renormalization proxied only by HYP smearing and the usage of the local currents Z-factor)
agree with the extraction of Ref. [49] within uncertainties. This indicates that the pion mass can
indeed considerably influence the shape of the quasi-distributions. To investigate these effects, we are
currently performing computations for an ensemble of Nf = 2 twisted mass fermions with a clover
term, at the physical pion mass, see Ref. [50] in these proceedings.
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