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Abstract

Decisions under ambiguity depend on both the belief regarding possible scenarios and

the attitude towards ambiguity. This paper exclusively investigates the belief formation

and belief updating process under ambiguity, using laboratory experiments. The results

show that half of the subjects tend to adopt a simple heuristic strategy when updating

beliefs, while the other half seems to partially adopt the Bayesian updates. We recover

beliefs, represented by distributions of the priors/posteriors. The recoverable initial priors

mostly follow a uniform distribution. We also find that subjects on average demonstrate

slight pessimism in an ambiguous environment.

Keywords: ambiguity, learning strategy, belief updates, non-Bayesian updates, pes-

simism, laboratory experiments

1 Introduction

One central question in the decision theory is how the presence of ambiguity affects individuals’

decision making. Ambiguity may affect decision makings through two aspects: how is the

belief about the possible scenarios in the ambiguous environment formed and updated, and

how ambiguity-averse (-neutral, -seeking) is the decision maker? These two aspects work very

differently in shaping the final decisions. A sizable number of theoretical literature studies

ambiguity by separating these two aspects (Ahn 2008; Brennan 1998; Cao et al. 2005; Chen

and Epstein 2002; Epstein and Schneider 2007; Galaabaatar and Karni 2013; Karni 2018, to

name a few). However, empirically it is difficult to distinguish beliefs from attitudes, and

especially to elicit beliefs. Most of the empirical literature fails to do so. Our paper contributes

to the literature in several ways. First, this paper isolates beliefs from attitudes in an ambiguous
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environment by adopting a special laboratory experiment design. Second, we recover beliefs,

represented by the entire distributions of initial priors, in situations involving ambiguity. Third,

we investigate how subjects update their beliefs in response to new information. We consider

five possible models of belief updating dynamics, and determine which models are applied by

the individual subjects for belief updating. Fourth, we investigate whether beliefs are biased

towards good or bad outcomes, i.e. whether there exists pessimism or optimism among subjects.

The concept of ambiguity is usually defined in comparison with the concept of risk. Risk

is defined as a situation in which a decision maker faces an event, whose outcome contingen-

cies have clear and objective probability measurements, while ambiguity is mostly defined as a

situation in which a decision maker cannot obtain the full information of the probability mea-

surement, due to the scarcity or imprecision of the information. (Becker et al. 1964; Epstein

1999; Knight 1921, to name a few). The belief under ambiguity can be defined as the subjective

perception of the unknown probability measurement. Previous literature argues that the prob-

ability measurement under ambiguity can be degenerated to a certain subjective probability

evaluation (Gilboa et al. 2008a; Savage 1954), or expressed by a non-additive probability system

theorized by the Choquet integral (Choquet 1954; Schmeidler 1989), or understood as a two-

order probability measurement (Ghirardato et al. 2004; Gilboa and Schmeidler 1989; Klibanoff

et al. 2005). This paper adopts the theory which interprets the ambiguous environment as

two-layer uncertainty. The ambiguous environment, in our experiment, is operationalized by

an ambiguous lottery, whose winning probability is unknown to the players (for the detailed

design, see the experiment design section). The ambiguous lottery can be translated into a

package of multiple single lotteries. Each single lottery in the package has a singular and

known winning probability, defined as the first-order probability. But the occurrence probabil-

ity of each single lottery is unknown. It is how ambiguity arises. This occurrence probability

is defined as the second-order probability. In this paper, we investigate beliefs by tracking

down the subjective evaluations of the second-order probability at a given point in time. We

design the ambiguous lottery to be completely ambiguous. From the subjects’ point of view, it

means the winning probability of the lottery lies between [0, 1], incremented by 0.01. Thus, our

experiment generates a large number of possible scenarios including extreme scenarios, thereby

offering a rich setting with a high degree of ambiguity. It supplements the existing literature

with binary set-ups (Buser et al. 2018; Dominitz and Hung 2009; Filippis et al. 2017) and rather

narrow interval set-ups (Chew et al. 2017).

One objective of this paper is to investigate the initial subjective evaluation of the second-

order probability at the very beginning of the experiment, known as the initial prior. Our

interest is to recover the initial prior distribution, deduce its functional form, and capture several

main characteristics of the distribution, for instance, the shape of the distribution, mode, and

variance. We first characterize the initial prior distribution by the beta distribution. The beta

distribution is widely applied by conjugate prior literature to model the initial prior (Diaconis

and Ylvisaker 1979; Gelman et al. 2004; Schlaifer and Raiffa 1961). The beta distribution is a

family of various distributions, including but not limited to uniform distribution, bell-shaped

distribution and distributions with monotonic PDF. Its shape is governed by only two shape

parameters. The beta distribution ranges between zero and one, naturally fitting the winning
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probability in our experiment design that ranges from zero to one. Due to its attractive features,

diversity of distribution, simplicity of construction and range, we first assume that one’s initial

prior follows the beta distribution and subsequently recover the shape of the distribution by

estimating the shape parameters. We develop a method to recover the characteristics of the

initial prior of each subject, also acknowledging the possibility that subjects may think simple

and do not have the specific prior distribution in mind.

Another objective of this paper is to understand the subjective belief updating process,

namely, how does a subject update her belief responding to the new information provided

to her. This process is also called learning, and we use these two terms, belief updating

and learning, interchangeably in the paper. More specifically, learning can be understood as

a process that subjects update initial priors to posteriors using the new information. The

experiment permits learning in the way that: a subject always faces the same and the only

ambiguous lottery through the entire experiment. The lottery is repeatedly played in front of

her and reset to the original status after each play. The result of each play, winning or losing,

is observable and traceable to her (for the detailed design, see the experiment design section).

Therefore, she can update her belief about the winning probability of the lottery, referring

to the provided new information in whatever way she wishes. Previous literature concerning

learning strategies can be roughly categorized into two streams: Bayesian updates (Branger

et al. 2013; Gilboa and Schmeidler 1993; Hanany and Klibanoff 2007; Peijnenburg 2014; Pires

2002), where subjects learn the new information and update their beliefs employing the Bayes

rule, and non-Bayesian updates (Epstein 2006; Epstein et al. 2008; Marinacci 2002). This paper

considers both possibilities. We propose five learning strategies (henceforth: LS1, LS2 · · · LS5)

to accommodate both Bayesian and non-Bayesian learning. LS1 and LS3 are categorized as

Bayesian updating rules, where LS1 assumes a uniformly distributed initial prior while LS3

assumes a beta-distributed initial prior. LS2 and LS4 are categorized as non-Bayesian updating

rules. They both update beliefs by weighting between the previous beliefs and the Bayesian

reference. What distinguishes them is that LS2 refers to the Bayesian updates with a uniformly

distributed initial prior while LS3 refers to the Bayesian updates with a beta-distributed initial

prior. This paper intends to explicitly recover the shape of the belief distributions after each

update. Most of the existing empirical studies fail to recover the entire belief distribution, rather

they are limited to the discussion of belief range (Campanale 2011; Gilboa et al. 2008b), belief

as single value (Buser et al. 2018; Dominitz and Hung 2009; Filippis et al. 2017), or different

specifications (Campanale 2011; Epstein and Schneider 2007). Our experiment design and the

constructions of LS1-LS4 help us to fill this gap. LS5 is rather unique. It is categorized as

non-Bayesian updating rule and does not relate to the Bayes rule in any visible way. LS5 leaves

the shape of the initial prior distribution unspecified and is a model for a heuristic learning

strategy. For each given subject and LS, we use experimental data of the belief updates to

estimate the parameters which govern the LS features, and later recover the belief update

dynamics. The proposed five LSs incorporate abundant choice possibilities along the learning

process. Such wide coverage seems to be diverse enough, since the factual belief updates of a

given subject, in most of the cases, are well captured by at least one of the five LSs. Therefore

we can determine, for each given subject, which learning strategy she adopts. Based on these
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results, we can make statements on their initial prior distributions.

The third objective of this paper is to analyze the tendency that subjects display towards

pessimism/optimism during the belief formation and the belief updating process. The concept

of pessimism/optimism is widely applied in different disciplines. In the psychology literature,

pessimism is usually defined as a negative mental and emotional disposition in which an undesir-

able outcome is anticipated. In philosophy works, it is defined as the worldview which perceives

life has no intrinsic meaning or value. In decision theory, however, the concept of pessimism is

not well-defined nor thoroughly discussed. Especially in the ambiguity literature, the concept

of pessimism/optimism is usually mingled with other concepts such as ambiguity attitude. In

some cases, authors use the word pessimism/optimism interchangeably with the word ambi-

guity aversion/seeking (Giraud and Thomas 2017). We argue that pessimism/optimism can

be conceptualized as the perceptive tendency to bias toward good/bad scenarios in assigning

probabilities to scenarios. We clarify that pessimism/optimism is, in essence, a characteristic

of belief, rather than an attitude. It bases on the shape of belief, prior to and independent

from the decision making based on this belief. Attitude only enters and takes effect during

the phase of decision making. Hence pessimism/optimism belongs to the discussion of belief

characterization and should be clearly differentiated from the discussion of attitude. This paper

manages to do so. The experiment design facilitates a clear cut between belief and attitude, and

thus pessimism/optimism is partitioned out as a clean independent measurement. In addition,

the term pessimism/optimism is embedded with judgmental features. Pessimism reflects the

perceptive tendency towards bad situations, whereas optimism reflects the perceptive tendency

towards good situations. The experiment design also accordingly operationalizes this structure:

the higher the winning probability of the lottery is, the better the situation is considered to

be. The degree of pessimism can be measured by the negative bias towards the worst pos-

sible situation of the factual belief, deviating from some chosen benchmark. The benchmark

is a theoretically constructed belief profile that is neutral between good and bad outcomes.

For sure, the choice of the neutral benchmark is an arguable question. This paper proposes

six benchmark candidates, covering a range of possible initial prior distributions. Under the

experiment set-up, pessimism is measured by the difference between the subjective conceived

winning probability of the ambiguous lottery and the winning probability delivered by the belief

formation/updating strategy according to a neutral benchmark.

This paper reaches the following findings: (1) Subjects tend to prefer simple initial prior

formation: more than one-third of the subjects are inclined to form a uniformly distributed

initial prior, and nearly half of the subjects keep silence about the initial prior distribution and

constrain their attention to the mode of the prior distribution. (2) As for the learning strategy,

nearly half of the subjects employ the Bayes rule to update their beliefs, but all of them choose

to, to some degree, deviate from the perfect Bayesian updates path. The other half tends to

adopt a heuristic strategy, characterized by a simple update pattern. (3) Subjects on average

demonstrate slight pessimism in situations with higher degrees of ambiguity.

The rest of the paper is organized as follows: Section 2 introduces the experiment design.

Section 3 presents the descriptive analysis of the belief updates data. Section 4 introduces the

set-up of the five LSs. Section 5 discusses the characteristics of LSs. Section 6 discusses the
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subjective choices of the LS. Section 7 discuses the pessimism/optimism of subjects. Section 8

presents robustness checks. Section 9 is the conclusion.

2 Experiment design

The laboratory experiment is computerized by Z-tree (Fischbacher 2007). We operationalize

the ambiguous environment by the design of a completely ambiguous lottery urn. Subjects of

the experiment are told that the urn contains in total 100 balls. The color of a ball is either

white or black. Neither the true proportion of the white ball(s) nor the true proportion of the

black ball(s) is known to any subject. It is also explained to the subjects that the number of

the white ball(s) in the urn can be any integer between zero and 100 (both ends inclusive). A

so-called guess game is designed to track down the subjective belief. In a guess game, a subject

needs to answer the following question: standing at this point, how many white balls do you

think are in the urn? A subject enters her own belief about the proportion of the white ball(s)

in the guess game. Figure 1a presents the screen display of the first guess game.

In order to track down the learning and belief updating process, new information about

the urn is provided to the subjects. New information is generated by implementing draws from

the ambiguous urn. In each draw, one ball is drawn out from the urn and its color, either white

or black, is displayed to the relevant subjects. Then the ball is immediately put back to the urn.

Therefore it is the draw with replacement. Guess games and draws are played/implemented

for multiple times and the sequence is designed as follows: we first define 15 periods, indexed

by t = 1, 2 · · · 15. In each period t, subjects first play a guess game, followed by a draw

implementation. Therefore the 1 + 1 pack (one guess game plus one draw) is repeated for 15

times. Table 1 displays the experiment procedure.

The belief reported at time t can be seen as an updated belief based on the learning of

t − 1 times of draw history. The past draw history, if any, is displayed on screen for subjects’

reference. Figure 1b presents the guess game screen display after some draws are implemented

(as an example, t = 6, five draws are done and the draw results are displayed on the screen.).

The true proportion of the white balls in the ambiguous urn is fixed at 40 for good. Subjects

are incentivized such that: every time one enters the correct white ball proportion (=40) in

the guess game, she is rewarded with two Euro, otherwise zero. In other words, subjects are

incentivized to insert the mode value of the prior/posterior distribution (if any) in each guess

game, since the mode corresponds with the highest second-order probability, which indicates

that the urn is most likely to contain as many white balls as the mode value. By inserting the

mode value, one maximizes her chance to win the reward. The earning is only announced to

the subjects at the very end of the experiment, hence the ambiguous feature of the urn sustains

through the entire experiment.

It is worthwhile to mention that the guess game design guarantees that the data obtained

from the games are purely related to the belief about the ambiguous environment, independent

from the attitude towards ambiguity. Attitude plays a role in decision and becomes observable

only when another alternative exists for comparison, for instance, another ambiguous or risky

lottery, or a riskless alternative. Since the guess game does not imply any preference-related
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decisions between two alternatives, and it merely requires the subjects report their beliefs about

the sole designed ambiguous environment, such design ensures the reported data in the guess

games are only belief relevant.

Three sessions of this experiment have been conducted. Subjects are all randomly se-

lected from the subject pool of the Frankfurt Laboratory for Experimental Economic Research

(FLEX), Goethe University Frankfurt. Most of the selected subjects are students from Goethe

University. 13 subjects attended Session I on 27.03.2018, 14 subjects attended Session II on

16.05.2018 and 14 subjects attended Session III on 23.05.2018. In Session II and III, one extra

guess game, denoted as the guess game at t = 16, is played after the 15th draw is implemented.

All subjects are grouped into markets. Each market implements its draws independently (the

ambiguous urns used in all markets are identical though), hence the draw history is market-

specific. A subject only knows the draw information of her own market. There are in total five

markets: one in Session I, two in Session II, and two in Session III. Thus five independent draw

history paths are generated. Table 2 displays this design information.

Apart from the guess game, the experiment also includes other parts, such as the choice

games and the asset trading sections. Since they are not of interest of this paper, we suppress

the detailed introduction of these parts, except for one point worthwhile to be mentioned: In the

choice games, the ambiguous urn is indeed served as a lottery involving high and low payouts. In

the asset trading section, the draws from the urn are also used to determine the asset dividend:

each time a white ball is drawn, the asset pays out a positive dividend; each time a black ball is

drawn, the asset pays out zero dividend. This pattern sustains through the entire experiment.

Therefore white draws are always interpreted as good news, while black draws correspond to

bad news. This information is useful when we analyze the pessimism/optimism of the subjects.

In addition, some quiz and a demonstration of a physical ambiguous lottery urn (in fact, a big

box containing 100 cards with “white” or “black” written on) are implemented, so as to help

the subjects fully understand the concept of lottery and the guess game. The content of the big

box is not observable to any subjects, and no draws are implemented during the demonstration.

Therefore when the first guess game is played, the lottery urn is as completely ambiguous as

intended. The complete experiment design is also reported in Table 1. A complete experiment

session lasts 2 hours 15 minutes on average. The average earning per subject is 27.8 Euro (total

earning from all parts).

3 Descriptive analysis

The guess game entry of subject i at the beginning of period t is denoted by whiteit. Each

subject has 15 (in Session I) or 16 (in Session II and III) entries of whiteit at the end of

the experiment. We compute the by-period market mean value: whitemt = 1
Nm

∑
iwhiteit,

where Nm denotes the number of subjects in market m. The results are reported in Table 5

and illustrated in Figure 2. In Figure 2, the shaded area at t indicates that a white draw is

observed at the end of period t−1. Analogously, the non-shaded area at t indicates that a black

draw is observed at the end of period t−1. Learning can be understood as the belief adjustment

responding to the draw information. As can been seen, the whitemt value mostly fluctuates

6

 Electronic copy available at: https://ssrn.com/abstract=3399983 



around the 50-white-ball line in all markets except Market 3. Market 1, 2 and 5 experience

seven-time white draw and Market 4 experiences six-time out of 15 times. In contrast, Market

3 only experiences three times of white draws out of 15. This may be the reason why beliefs

are on average lower in Market 3 than in other markets.

The across-subject standard deviation reported in Table 5 sd.columns represent the het-

erogeneity regarding the responses in the guess game in a given period. The standard deviation

tends to decrease when time evolves in all markets except in Market 3. It supports the argu-

ment that learning may help mitigate the belief heterogeneity. However, since the frequency of

learning is finite, only taking place for 15 times, the belief heterogeneity always sustains.

In theory, a rational belief update should steer such that each time a white draw is observed,

current belief is upwards adjusted or maintains at this current level; Each time a black draw

is observed, current belief is downwards adjusted or maintains at the current level. It can be

seen as weakly rational. Following this definition, we compute the rate of rational updates for

each subject and report the results in Table 6. As can be seen that subjects mostly update

their beliefs rationally. The market average rates of rational updates are all above 0.7, and full

sample average is nearly 0.8. There also exists some cases where subjects act more irrationally,

for example, Subject 1, 3, 15, 25, 39, whose rational updates rate is equal or below 0.5. We

discuss how irrational updates are accommodated by different learning strategies in the later

section.

4 Learning strategy

The main goal of this paper is to analyze the learning strategy one may adopt to form and

update her belief in an ambiguous environment. The guess game records the dynamic mecha-

nism how a subject forms her initial belief about the proportion of the white balls in the given

ambiguous urn, and how she updates her belief through learning from the dividend draws.

We first model five learning strategies that a subject may adopt for belief updating. The five

learning strategies include both Bayesian and non-Bayesian updates, with various initial prior

distributions.

4.1 LS1: Bayesian updates with uniformly distributed initial prior

First we propose a strategy which starts with a uniformly distributed initial prior and employs

the Bayes rule to update the priors into posteriors. The lottery urn is designed to be completely

ambiguous. Hence there are 101 possible scenarios regarding the true composition of the urn.

These 101 scenarios can be indexed by the possible proportion of the white ball(s) in the urn,

denoted by W , where W = 0, 1, 2 · · · 100. The belief of a subject at any time point can be

expressed in the way how she assigns probabilities to each of the 101 scenarios. Assume there

is a representative subject who adopts the following belief updating strategy: At the beginning

of Period 1 when no draws occur, she assigns equal probability to each of the 101 scenarios,
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forming a uniformly distributed initial prior:

Prior(W ) =
1

101
≈ 0.99%; W ∈ {0, 1, 2 · · · 100} (1)

Draws are implemented within market. At the beginning of Period t, Market m sees

n ≡ t − 1 balls are drawn out with replacement. Suppose kn,m out of n are white draws, the

representative subject of market m constructs her posteriors employing Bayes rule:

Posterior(W |n, kn,m) =
Prob(n, kn,m|W )× Prior(W )∑100
j=0 Prob(n, kn,m|j)× Prior(j)

(2)

W, j ∈ {0, 1, 2 · · · 100}; 0 ≤ kn,m ≤ n ≡ t− 1 ≤ 15, kn,m, n ⊆ Z; m ∈ {1, 2 · · · 5}

where Z denotes the set of all integers. Prob(n, kn,m|W ) denotes the probability of observ-

ing kn,m units of white balls in n draws with replacement from an urn containing W units of

white balls and 100−W units of black balls. And Prior(j) = 1/101 for each j. We can write:

Prob(n, kn,m|W ) =

(
n

kn,m

)
(W/100)kn,m(1−W/100)n−kn,m (3)(

n

kn,m

)
=

n!

(n− kn,m)!
(4)

Plugging into equation (2) yields:

Posterior(W |n, kn,m) =
(W/100)kn,m(1−W/100)n−kn,m∑100
j=0(j/100)kn,m(1− j/100)n−kn,m

(5)

W, j ∈ {0, 1, 2 · · · 100}; 0 ≤ kn,m ≤ n ≡ t− 1 ≤ 15, kn,m, n ⊆ Z; m ∈ {1, 2 · · · 5}

Therefore at the beginning of period t, the representative subject updates the probability

of scenario W from Prior(W ) to Posterior(W |n, kn,m). The guess game rewards a subject each

time when she correctly guesses the true proportion of the white balls. In other words, from

Period 2 on, subjects are incentivized to insert the number which equalizes with the scenario

index W , to which the highest probability is attached at this time. Therefore LS1, denoted by

BUmt (Bayesian Updates), reads:

BUmt = argmax
W

Posterior(W |n, kn,m) (6)

The priors and posteriors at each time t can be seen as the probability mass function (PMF)

for the 101 scenarios, with the mode being BUmt. Since the draw history is market-specific,

BUmt is also market-specific.

LS1’: Maximum likelihood updates. Another way to construct a learning strategy

for the representative subject is to apply the Maximum Likelihood (ML) approach. Suppose at
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the beginning of Period t, market m sees n ≡ t− 1 balls are drawn out with replacement and

kn,m of them are white balls, the ML update reads:

MLmt =
100kn,m

n
(7)

0 ≤ kn,m ≤ n ≡ t− 1 ≤ 15, kn,m, n ⊆ Z; m ∈ {1, 2 · · · 5}

Now we show that LS1 and LS1’ are equivalent.

Proposition 1. BUmt = MLmt

Proof.

BUmt = argmax
W

Posterior(W |n, kn,m)

= argmax
W

[(W/100)kn,m(1−W/100)n−kn,m ] (8)

First consider an internal solution such that W ∗ 6= 0 and W ∗ 6= 100 . The maximization

problem can be rewritten as:

max
W

[kn,m ln(W/100) + (n− kn,m) ln(1−W/100)] (9)

FOC leads to

kn,m
W ∗ =

(n− kn,m)

100−W ∗ ; if W ∗ 6= 0, and W ∗ 6= 100 (10)

Hence

BUmt = W ∗ =
100kn,m

n
= MLmt; if W ∗ 6= 0, and W ∗ 6= 100 (11)

Now consider if W = 0 is the solution to (8). If kn,m 6= 0, the objective function is always

positive with any W ∈ (0, 100), therefore W = 0 cannot be the solution. However if kn,m = 0,

the objective function reduces to (1−W/100)n. Given the domains of the variables, W ∗ = 0 is

the solution. In other words, only if kn,m = 0, W ∗ = 0 is the solution to (8). Hence

BUmt = W ∗ = 0 = MLmt; if kn,m = 0. (12)

Analogously, W ∗ = 100 is the solution to (8) only if kn,m = n, therefore

BUmt = W ∗ = 100 = MLmt; if kn,m = n. (13)

Combining equation (11)-(13) yields:

BUmt = MLmt (14)

m ∈ {1, 2 · · · 5}; t ∈ {1, 2 · · · 16}
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Therefore LS1 (Bayesian updates with uniformly distributed initial prior) and LS1’ (Max-

imum likelihood updates) are equivalent. From now on we do not distinguish between LS1

and LS1’, and simply use LS1 to refer to the Bayesian updates with uniformly distributed

initial prior. Bernstein von Mises theorem (Doob 1949) states that Bayesian updates asymp-

totically converge to the true parameter as long as initial prior obeys the Cromwell’s rule.

The Cromwell’s rule (Lindley 1991) requires that no scenarios are assigned with probability

one or zero. LS1 satisfied this condition. The construction of the LS1 is only dependent of

the objectively-generated draw information, independent from any subjective behavior. Given

these good features, we choose LS1 as the benchmark of belief formation and updates. The

following four LSs vary the construction of LS1 in various ways.

4.2 LS2: Imperfect Bayesian updates with uniformly distributed

initial prior

A subject may adjust his belief in period t on the basis of her belief in the previous period

t−1, using the Bayesian updates with uniformly distributed initial prior as a reference (Epstein

et al. 2010). The Bayesian updates reference is identical to BUmt in LS1. LS2, to a certain

extent, applies the Bayes rule to derive the posteriors, but it allows deviations from the Bayesian

updates. Hence we denote it as imperfect Bayesian updates with uniformly distributed initial

prior. The learning process reads:

whiteit = (1− γi)whitei,t−1 + γiBUmt (15)

i ∈ m; t = 2 · · · 16

where whiteit denotes the self-reported guess game entry of subject i at the beginning of

Period t. whitei,t−1 is the lag variable of whiteit; t = 16 corresponds with the time point when

the last guess game is played at the end of period 15. This guess game is only played in Session

II and III. γi denotes the weight that subject i assigns to the Bayesian reference. It varies

across subjects but time-invariant within subject. γi represents subject i’s degree of receptivity

to the new information. The higher the γi is, the more susceptibly subject i reacts to the newly

learned information. On the other hand, 1−γi represents the stickiness of belief. The lower the

γi is, hence the higher the 1− γi is, the more stubborn subject i sticks to her previous belief.

We estimate γi for each i based on equation (15). The by-subject results are reported in

Table 7 Column LS2 and summarized in Table 8 Panel A. All γ̂is lie between zero and one

and the mean value is 0.352. More than 80% of the γ̂is are less than 0.6, which implies a large

proportion of subjects who react to new information with reservation. Epstein et al. (2010) calls

it an underreacting to information. On the other hand, γ̂i > 1 suggests that subjects attach too

much weight to new observations, implying an overreacting to new information. But no cases

of γ̂i > 1 are observed in our samples. T-tests are also conducted to check whether coefficients

are significantly different from one, in other words, whether the coefficients significantly deviate

from the Bayesian updates. The conclusion does not change much. Still 34 out of 41 subjects

significantly underreact to Bayesian updates. It may be concluded that in general subjects
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react partially to the new information represented by the Bayesian reference. Epstein et al.

2010 argue that underreaction to the Bayesian updates (γi < 1) eventually converges to the true

parameter value. It is rather straightforward, since γi < 1 results in that belief keeps adjusting

towards the Bayesian update. Asymptotically belief converges to the Bayesian update, which

converges to the true parameter value. However, overreaction to the Bayesian updates (γi > 1)

may converge to incorrect parameter value, since it may swing around the Bayesian update

but not converge. The estimation results of γi imply that most subjects are on the converging

track.

4.3 LS3: Bayesian updates with beta-distributed initial prior

LS3 follows the thought of the conjugate prior in the Bayesian analyses (Diaconis and Ylvisaker

1979; Gelman et al. 2004; Schlaifer and Raiffa 1961). It assumes that a subject forms her initial

prior characterized by a beta-distribution, and employs the Bayes rule to update the prior using

new information. According to Bernstein von Mises Theorem, LS3 generates belief updates

which asymptotically converge to the true parameter value. In comparison with LS1, LS3 eases

the assumption inflicted on initial prior: from the only-possible uniformly distributed initial

prior to various initial prior shapes. Uniform distribution is still included as a special case.

The beta-distribution is chosen to simulate the initial prior since it characterizes a wide range

of distributions defined in the interval [0, 1], parametrized by only two shape parameters α and

β. In case of α = β = 1, the beta-distribution becomes the uniform distribution. Other shapes

of beta-distribution can be obtained by varying the values of (α, β). Figure 3 illustrates some

examples. In case of α = 1, β > 1, the PDF is strictly decreasing within the domain. In case

of β = 1, α > 1, the PDF is strictly increasing within the domain. In case of α and β are both

larger than one, the PDF has a bell-like shape.

Although the beta-distribution mostly applies to continuous distributions, the 101 discrete

scenarios of white-ball proportion is to some extent dense enough. Later we discretize the beta-

distribution, translating the PDF of the prior/posterior distribution into PMF to match the

101 discrete scenarios. Since our main interest is the mode of the distribution, the maximum

discrepancy between the mode read from the distribution described by continuous PDF and the

mode read from the distribution described by discrete PMF is only 0.5 (out of 100). Therefore

starting with a continuous prior distribution does little harm. To satisfy the domain criteria

of the beta-distribution, we first translate the 101 scenarios, indexed by the number of the

white balls W = 0, 1, 2 · · · 100, into a corresponding winning probability interval θ ∈ [0, 1].

Additionally, we restrict α ≥ 1 and β ≥ 1 to guarantee the uniqueness of mode value, if mode

exists.

Under LS3, the initial prior of subject i (in PDF) reads:

Prior(θ|αi, βi) =
Γ(αi + βi)

Γ(αi)Γ(βi)
θαi−1(1− θ)βi−1 (16)

θ ∈ [0, 1]; i ∈ {1, 2, · · ·N}; α, β ≥ 1
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The prior of subject i follows the a beta-distribution (PDF) , which is parametrized by αi

and βi. Γ(·) denotes the gamma function. The posteriors are updated employing the Bayes

rule. Suppose until the beginning of Period t ≥ 2, Subject i in Market m witness n ≡ t − 1

draws with replacement, kn,m of which are white draw(s). The draw is implemented by market,

therefore subjects in the same market share an identical draw history. For the time being, we

suppress the subscript of kn,m for the simplicity. The posterior of subject i employing the Bayes

rule reads:

Posterior(θ|n, k;αi, βi) =
Prior(θ|αi, βi)× Prob(k|n, θ)∫

θ′
Prior(θ′|αi, βi)× Prob(k|n, θ′)dθ′

(17)

where

Prob(k|n, θ) =

(
n

k

)
θk(1− θ)n−k (18)(

n

k

)
=

n!

(n− k)!
(19)

Plugging equation (16)(18) into (17) yields

Posterior(θ|n, k;αi, βi) =
θαi−1(1− θ)βi−1θk(1− θ)n−k∫

θ′
θ′αi−1(1− θ′)βi−1θ′k(1− θ′)n−kdθ′

=
θαi+k−1(1− θ)βi+(n−k)−1∫

θ′
θ′αi+k−1(1− θ′)βi+(n−k)−1dθ′

(20)

Since ∫
θ

Prior(θ|αi, βi)dθ =
Γ(αi + βi)

Γ(αi)Γ(βi)

∫
θ

θαi−1(1− θ)βi−1dθ = 1 (21)

Hence ∫
θ

θαi−1(1− θ)βi−1dθ =
Γ(αi)Γ(βi)

Γ(αi + βi)
(22)

Replacing αi with αi + k and βi with βi + (n− k) in equation (22) yields:∫
θ

θαi+k−1(1− θ)βi+(n−k)−1dθ =
Γ(αi + k)Γ(βi + n− k)

Γ(αi + k + βi + n− k)
(23)

Plugging (23) into (20) yields:

Posterior(θ|n, kn,m;αi, βi) =
Γ(αi + kn,m + βi + n− kn,m)

Γ(αi + kn,m)Γ(βi + n− kn,m)
θαi+kn,m−1(1− θ)βi+(n−kn,m)−1 (24)

θ ∈ [0, 1]; i ∈ m; αi, βi ≥ 1; kn,m ≤ n ≡ t− 1 ≤ 15, kn,m, n ⊆ Z

Therefore the posterior inherits the beta-distribution PDF fashion, with the updated pa-

rameters αi + kn,m and βi + (n − kn,m). The intuition is rather obvious: kn,m denotes the

number of white draws out of n draws implemented in market m (ie. the frequency of white
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draw). Whereas n − kn,m denotes the frequency of black draw. If the white draw is more fre-

quently observed than the black draw, the α-parameter increases relatively more quickly than

the β-parameter, reshaping the posterior beta-distribution more left-skewed and resulting in a

higher value of mode. On the other hand, if more black draw is observed, the β-parameter

increases relatively more quickly than the α-parameter, causing the posterior beta-distribution

more right-skewed and resulting in a lower value of mode. This property of beta-distribution

updates assumes that subjects upwards adjust their beliefs if they witness proportionally more

white balls, and downwards adjust their beliefs if they witness proportionally more black draws,

which is intuitive. In addition, when time evolves, more draws are implemented. n increases

for sure and kn,m is on the track of increase. Hence both αi + kn,m and βi + (n− kn,m) are on

the track of increase. The PDF of beta-distribution with larger parameter bundle concentrates

more densely on some narrower bandwidth. The bell-shape PDF curve looks thinner and taller.

It is also intuitive, since when learning evolves, subjects tend to feel more confident about their

beliefs, and assign more probabilities to a limited number of scenarios.

The estimation of the shape parameter bundle (αi, βi) of each subject i is done in the

following procedure. Like in LS1, a subject translates her posterior distribution into her guess

game entry by reporting the mode of the posterior distribution, since they are financially

incentivized to do so. The mode function of a beta-distribution with parameters α > 1 and

β > 1 is written as α−1
α+β−2

, and thus we can write:

whiteit
100

=
αi + kn,m − 1

αi + βi + n− 2
(25)

i = 1, 2 · · ·N ; αi, βi > 1; kn,m ≤ n ≡ t− 1 ≤ 15, kn,m, n ⊆ Z, k0,m = 0

Re-arrange to achieve:

100kn,m − whiteit(n− 2)− 100 = (whiteit − 100)αi + whiteitβi (26)

In order to restrict αi, βi > 1, we first transfer αi and βi into the reciprocals of the standard

logistic function. Since a standard logistic function (logistic(x) = /(1 + e−x)) has a co-domain

(0, 1), the co-domain of its reciprocal is (1,∞). The regression equation reads:

100kn,m − whiteit(n− 2)− 100 =
whiteit − 100

logistic(ai)
+

whiteit
logistic(bi)

(27)

αi = [logistic(ai)]
−1 (28)

βi = [logistic(bi)]
−1 (29)

i ∈ m; kn,m ≤ n ≡ t− 1 ≤ 15, kn,m, n ⊆ Z, k0,m = 0

First we run the nonlinear regression based on equation (27) to estimate (ai, bi) for each

subject i. Then we recover (αi, βi) using (28) and (29), respectively. If âi is large enough, αi is
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estimated by unity. Analogously, if b̂i is large enough, βi is estimated by unity. The parameter

estimation results are reported in Table 7 column LS3 and Table 8 Panel B and Figure 4. As is

shown that most of the subjects formulate their initial priors characterized by low α̂i, β̂i values,

which correspond with a rather flat PDF curve. More than one third of the subjects assign

the probability perfectly evenly (α̂i = β̂i = 1, uniformly distributed initial prior, equivalent to

LS1).

Furthermore, we discretize the continuous prior and posterior distributions (in PDF form)

to the PMF of the 101 discrete scenarios (W = 0, 1, · · · 100) in the following way:

Prior(W ) =
Prior(θ)∑
θ′ Prior(θ

′)
(30)

Posterior(W ) =
Posterior(θ)∑
θ′ Posterior(θ

′)
(31)

for each W ≡ 100θ ∈ {0, 1, · · · 100}; θ′ ∈ {0, 0.01, 0.02 · · · 1}

Prior(W )/Posterior(W ) is the PMF for urn scenario with W units of white balls, while

Prior(θ)/Posterior(θ) is the PDF value for winning probability θ = W/100. The transla-

tion is done for each subject in each period. The Prior(W ) (PMF of initial prior) is illustrated

in Figure 4b. As (α̂i, β̂i) suggests, there exists heterogeneity in the formation of initial prior.

(α̂i = 1, β̂i = 1), (α̂i > 1, β̂i = 1), (α̂i = 1, β̂i > 1), (α̂i > 1, β̂i > 1) implying uniformly

distributed, increasing, decreasing, bell-shaped initial priors, respectively, are all seen in the

samples.

4.4 LS4: Imperfect Bayesian updates with beta-distributed initial

prior

LS4 assumes that a subject adjusts her belief in Period t on the basis of her belief in the

previous period t− 1, using Bayesian updates with beta-distributed initial prior as a reference.

The Bayesian updates reference is constructed analogously to LS3. In comparison to LS3, LS4

allows belief to deviate from the Bayesian updates. This flexibility is facilitated by the choice of

γci . In comparison to LS2, LS4 shares the “imperfect” feature, but the Bayesian updates start

with a beta-distributed initial prior, not restricted to the uniformly distributed initial prior as

in LS2. Hence, LS4 is so far the most flexible learning strategy compared with the other three.

It is modeled as follow:

whiteit = (1− γci )whitei,t−1 + γci
100(αci + kn,m − 1)

αci + βci + n− 2
(32)

i ∈ m; kn,m ≤ n ≡ t− 1 ≤ 15, kn,m, n ⊆ Z, k0,m = 0

To avoid confusion, we upper-script the parameters with a c to distinguish those in LS2

and LS3. For each subject i, we estimate three parameters, γci , α
c
i and βci , using the data from
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t = 1, · · · 16 based on equation (32). Again we restrict αci , β
c
i ≥ 1 by first estimating aci and

bci analogously as in equation (28)(29) and later recovering αci and βci . In addition, we restrict

γci > 0 by estimating rci first, where γci = exp(rci ). Later we recover γci . A negative enough r̂ci
is estimated by γ̂ci = 0. Underreaction to the Bayesian reference leads to convergence to the

true parameter value, while overreaction may converge to incorrect values. The reasoning is

analogous to that in LS2.

The by-subject results are reported in Table 7 column LS4 and summarized in Table 8

Panel C. The mean value of γ̂ci is 0.732, indicating that on average subjects reluctantly deviate

from their current beliefs, only partially responding to the new information represented by the

Bayesian reference. If significance is taken into account, still about half of the subjects (21 out

of 40) present clear tendency to underreact to the Bayesian reference. As for the initial prior,

Figure 5a presents the distribution of estimated bundle (α̂ci , β̂
c
i ) (same as in Table 8 Panel C).

Initial prior is most likely to be formed as a uniform distribution (24 out of 40 subjects). Figure

5b recovers the initial prior distribution based on the estimation results. It is shown that the

initial prior formation in LS4 is comparable to that in LS3: most of the subjects tend to come

up with a uniformly distributed prior.

4.5 LS5: Heuristic updates

LS3 models the belief updating process such that a subject upwards adjusts her current belief

each time a white draw is observed, proportional to the maximum possible adjustment in

the upward direction. Analogously, she downwards adjusts her current belief each time a

black draw is observed, proportional to the maximum possible adjustment in the downward

direction. Compared to LS1-LS4, LS5 seems to be more straightforward and heuristic. LS1-

LS4 model beliefs by specifying the probability distribution across all possible scenarios. LS5

simply suppresses this specification, directly attending to the mode value of the distribution

(ie. the response in the guess game). As for the updating rule, LS5 adopts a rather heuristic

strategy which has nothing to do with the Bayes rule in any visible way. Such heuristic feature

pays the price in the way that belief updates by LS5 probably do not converge to the true

parameter value. The learning process reads:

whiteit − whitei,t−1 =δi,w1[white]m,t−1(100− whitei,t−1)

+δi,b1[black]m,t−1(0− whitei,t−1) (33)

i ∈ m; t = 2 · · · 16

1[white]m,t−1 is a dummy variable, equal to one if at the end of period t − 1 market m

observes a white draw, otherwise zero. Analogously, 1[black]m,t−1 is equal to one if at the

end of period t − 1 market m observes a black draw, otherwise zero. δi,w captures the belief

adjustment of subject i when she observes a white draw. δi,b captures the adjustment when

a black draw is observed. δi,w and δi,b are heterogeneous across subjects but time-invariant

for a given subject. A positive δi,w implies rational belief updating: upward adjustment if a

white draw is observed. Similarly, a positive δi,b implies downward adjustment if a black draw
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is observed. The estimation of δi,w and δi,b for each i are reported in Table 7 column LS5

and summarized in Table 8 Panel D. The results imply adjustment rationality as we expect:

δ̂i,w and δ̂i,b tend to be positive. Significance test for whether coefficients are different from

zero reduces the number of positive pairs, but still leaves 24 out 41 subjects who have at least

one significantly positive coefficient. Negative coefficients imply that such subjects update their

beliefs probably irrationally. It is justified by the low rates of rational updates of these subjects,

shown in Table 6. In addition, the mean values of δ̂i,w and δ̂i,b are not significantly different

(p-value=0.181), both around 0.11 − 0, 12. It implies that subjects tend to react to white

and black draws symmetrically, around 11% − 12% proportionally to the maximum possible

adjustment.

5 Characteristic of learning strategy

In this section, we summarize the characteristics of the five learning strategies, using the fitted

values obtained from the estimations. We already estimate the subject-specific parameters

which characterizes LS2-LS5 using the guess game data in the previous section. Consequently

we can recover the fitted values of the estimations. Now we use the fitted values to summarize

three characteristics of each learning strategy: the initial prior, the goodness of fit to the factual

data, the speed of convergence.

5.1 Initial prior

Based on the assumptions, LS1 and LS2 assume deterministic uniformly distributed initial

priors. LS3 and LS4 instead assume that initial priors follow a beta-distribution characterized

by some parameter bundle (αi, βi). The parameter bundle is subject-specific and therefore a

subject is endowed with the flexibility to form her own initial prior. For LS3 and LS4, we make

great efforts to recover the specific shape of the subjective initial priors. LS5, however, acts

indifferent to the shape of the distribution but directly focuses on the final interest, the mode

of the distribution. It is simply recorded as whitei1 in the data. Therefore, in this part, we

only focus on the characteristics of the initial priors in LS3 and LS4.

As a reminder, the estimated parameter bundles (α̂i, β̂i) of LS3 for each subject are

reported in Table 7 column LS3, Table 8 Panel B and illustrated in Figure 4. It shows that

there exists some heterogeneity in terms of initial prior formation. As is shown in Figure 4a,

The big bubble circling coordinate (1,1) represents 37% (15 out of 41) of the subjects who

formulates a uniformly distributed prior, parameterized by α̂i = β̂i = 1. The other circles lie

on the vertical line α = 1 corresponds with a relatively pessimistic initial prior, parameterized

by α̂i = 1, β̂i > 1 and thus the mode of the initial prior distribution rests at 0. The initial

prior shapes decreasingly from the peak at θ = 0 to the trough at θ = 1. This initial prior

choice accounts for 24% (10 out of 41) of the subjects. Analogously, the circles lie on the

horizontal line β = 1 corresponds with a relatively optimistic initial prior, parameterized by

β̂i = 1, α̂i > 1, and thus the mode of the initial prior distribution finds itself at 100. The

initial prior shapes increasingly from the trough at θ = 0 to the peak at θ = 1. 20% (8 out of
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41) of the subjects formulates their initial priors in such fashion according to the estimation.

The rest of the subjects, accounting for 20% (8 out of 41), start with a bell-shape initial prior,

parameterized by α̂i > 1, β̂i > 1, and thus the mode of the initial prior finds itself at an internal

singular value. Although the initial prior formations are heterogeneous across subjects, most

of the initial priors tend to shape rather flat. It is not a surprise that subjects tend to assign

the probability rather evenly to the 101 scenarios when the situation is completely ambiguous.

For those initial priors which appear to be non-flat, Figure 4b shows that, as a matter of fact,

no large PMF is assigned to some specific scenarios. The maximum PMF is merely as large as

0.02. It turns out that most subjects have a rather flat-shaped initial prior.

The estimated initial prior parameter bundles (α̂ci , β̂
c
i ) of LS4 are reported in Table 7

column LS4 and Table 8 Panel C, and illustrated in Figure 5 . LS4 recovers more flat-shaped

initial priors than LS3 does: 24 out of 41 subjects see α̂ci = β̂ci = 1, implying a uniformly

distributed initial prior. Four subjects come up with an optimistic initial prior (α̂i > 1, β̂i = 1),

less than the eight in LS3. Eight subjects formulate a pessimistic initial prior (α̂i = 1, β̂i > 1),

less than the ten in LS3. Only four subjects formulate an initial prior which has an internal

mode value (α̂i, β̂i > 1), less than the eight in LS3.

In conclusion, if we account for possible different initial priors, although there exists het-

erogeneity regarding the initial prior formation, subjects are most likely to be found to adopt

uniformly distributed initial priors. It seems that simplicity, symmetry, and high degree of

ambiguity prevail regarding the initial prior formation.

5.2 Goodness of fit

In this part, we analyze how well the belief update dynamic following one learning strategy

fits the factual belief update dynamic, and which learning strategy of the five fits it best. The

guess game entries of subject i (whiteit; t ∈ {0, 1, · · · 16}) records her belief updating dynamic.

Therefore the problem comes down to analyzing the difference between the belief updates

simulated by one of the five learning strategies and the factual belief updates recorded by the

guess game. We first compute the average difference over all subject for each learning strategy.

The difference is expressed by its absolute value to avoid the cancellation between positive

and negative differences during summation. The average differences between the factual belief
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updates and the simulated belief updates by LS1-LS5 are written, respectively, as follows:

diff(guess, LS1)t =
1

N

N∑
i=1

|whiteit −BUmt| (34)

diff(guess, LS2)t =
1

N

N∑
i=1

|whiteit − (1− γ̂i)whitei,t−1 − γ̂iBUmt| (35)

diff(guess, LS3)t =
1

N

N∑
i=1

|whiteit −
100(α̂i + kn,m − 1)

α̂i + β̂i + t− 3
| (36)

diff(guess, LS4)t =
1

N

N∑
i=1

|whiteit − (1− γ̂ci )whitei,t−1 − γ̂ci
100(α̂ci + kn,m − 1)

α̂ci + β̂ci + t− 3
| (37)

diff(guess, LS5)t =
1

N

N∑
i=1

|whiteit − whitei,t−1 − δ̂i,w1[white]m,t−1(100− whitei,t−1)

− δ̂i,b1[black]m,t−1(0− whitei,t−1)| (38)

i ∈ m; n ≡ t− 1; t ∈ {1, · · · 16}

where N denotes the number of the subjects. The results are reported in Table 9 and Figure

6. BUmt in LS1 and LS2 has no unique value at t = 1, since a uniformly distributed initial

prior has no unique mode value. And LS2, LS4, LS5 includes the lagged variable whitei,t−1.

Therefore the difference at t = 1 is only applicable to LS3. Only subjects in session II and III

play the guess game at t = 16, so N reduces from 41 to 28 at t = 16.

The results are reported in Table 9 and illustrated in Figure 6. As is shown in Figure 6,

all differences tend to shrink when learning evolves. In periods t = 3 · · · 16, LS4 tends to fit the

factual belief updates best. Flexibility seems to be the source of the improvement of goodness

of fit: LS4 proposes initial prior not to be restricted to uniform distribution and updating rule

to allow deviation from Bayesian reference. This argument is also supported by the fact that

LS3 fits the factual beliefs better than LS1 in all periods. The heuristic strategy LS5 performs

more or less averagely, dominating LS1 and LS2 for most periods. The goodness of fit of each

LS tends to converge to a similar level as time evolves, around 5-10 units. This remaining

discrepancy may be explained by the irrational proportion of the factual updates.

5.3 Speed of convergence

The speed of convergence of one learning strategy describes its speed of convergence to a

constant number, or a narrow-windowed interval (for instance, fluctuates only ±3 units out of

the maximum width 101 units). The analysis does not restrict the constant number to be the

true proportion of the white balls in the ambiguous urn, since the experiment only permits

15 times of learning, a finite case. In practice it is hard to see the belief update converge to

the true parameter value. The speed of convergence of one learning strategy focus on how

fast the fluctuation of the belief adjustment following one learning strategy undermines as

learning evolves. The inter-temporal belief adjustment of each learning strategy computed by
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the estimated parameters of subject i is written as:

Diff(j)it = ŵhite(j)i,t − ŵhite(j)i,t−1 (39)

j ∈ {LS1 · · ·LS5}; i ∈ {1, 2 · · ·N}; t ∈ {2, · · · 16}

where ŵhite(j)i,t denotes the simulated belief update of subject i in period t, simulated by

learning strategy j. ŵhite(j)i,t−1 is its lagged variable. The inter-temporal belief adjustment

of each learning strategy is then averaged over all subjects.

Diff(j)t =
1

N

N∑
i=1

Diff(j)it (40)

j ∈ {LS1 · · ·LS5}; t ∈ {2, · · · 16}

The results of Diff(j)t (by j and t) are reported in Table 10 and Figure 7. As is shown that LS5

seems to converge most slowly. Among LS1-LS4, LS2 seems to outperforms the other three

in the early periods, but the other three catch up after period 8. The speed of convergence

differs slightly among LS1-LS4 after period 10. LS1/LS3 seems to have a smaller standard

deviation, meaning that the speed of convergence of LS1/LS3 is more robust across subjects.

It can be concluded that a learning strategy initializing with a well-described prior distribution

(like in LS1-LS4) can more easily converge to some constant number than a learning strategy

initializing with a heuristic prior (like in LS5). Among the learning strategies initializing with

a well-described prior distribution, those that fully follow the Bayes rule (LS1/LS3) see its

fast convergence more robust across subjects than those which partially refer to the Bayesian

reference (LS2/LS4).

As a reference, we derive the speed of convergence of the factual guess game entries.

Analogously the Difference between the guess game entry and its lagged term of each subject

is computed by:

Diff(guess)it = whiteit − whitei,t−1 (41)

i ∈ {1, 2 · · ·N}; t ∈ {2, · · · 16}

Then averaging over all subjects for given t:

Diff(guess)t =
1

N

N∑
i=1

Diff(guess)it; t ∈ {2, · · · 16} (42)

The results are reported in Table 10 and Figure 7. In comparison with the convergence

speed of the belief updates generated by LS1-LS5, the factual belief updates seem to converge

more slowly. The temporal factual belief adjustment is usually around ten units (out of 100)

between two neighboring periods. Although the adjustment in the early periods tend to be

smaller than LS1-LS5, the later periods still sustain rather large adjustment. There exists

large heterogeneity across subjects in terms of convergence speed of the factual belief updates,

supported by large standard deviation shown in Table 10. In practice, the belief updates are

more unstable than the five learning strategies suggest.
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6 Heterogeneity

Based on the parameter estimation, we observe large heterogeneity across the 41 subjects in

terms of the initial prior formation and the choice of belief updating. In this section, we try

to answer the question: who chooses which LS. In order to answer this question, we define

that the initial prior and learning strategy actually formed/chosen by subject i produce a belief

update dynamic which best fits the factual belief update dynamic observed from subject i in

the guess game. In addition, since learning strategy is a dynamic concept, the comparison

of the goodness of fit between two learning strategies must base on their performances over

a multi-period duration, rather than a point-wise comparison in some specific period. The

criteria are thus set as follows: For a given subject i, a given learning strategy j ∈ {LS1· · ·
LS5}, we compute the root mean squared error (RMSE). The error arises from the difference

between i’s factual belief and the belief generated by learning strategy j in each period, and

the mean refers to averaging the errors over period. Therefore the RMSE of subject i for a

given learning strategy j reads:

RMSEi,j =

√
1

T

∑
t

[whiteit − ŵhite(j)i,t]2 (43)

j ∈ {LS1 · · ·LS5}; t ∈ {2, · · · 16}

where whiteit denotes the guess game entry of subject i in period t; ŵhite(j)i,t denotes the

simulated belief of subject i in period t simulated by the Learning strategy j. For subjects from

Session I, only 15 guess games are played, hence the final period T = 15. LS1, LS2, LS4 and LS5

cannot recover the mode value of initial priors, since LS1 assumes a uniform distribution which

has no unique mode and the other three include a one-period lagged variable in the regression.

For the comparability, RMSE is computed only including t ≥ 2, and T = 15 for Session I while

T = 16 for Session II and III. The learning strategy j which achieves the smallest RMSEi,j

value among the five learning strategies is defined as the chosen learning strategy of subject i.

Table 11 and Figure 8 report the ranking of LS using the RMSE criteria. Table 12 summarizes

the chosen learning strategy by subject, and accordingly recovers the corresponding initial prior

formation and the choice of belief updating rule.

As is shown in Figure 8, most of the subjects see their best fitted LS has a rather low

RMSE, below 10 (out of 100). It implies that for most of the subjects in our samples, there

exists at least one LS among the five, which explains the factual belief updates very well.

Outliers are Subject 1, 3, 15, 25, 26, and 39, whose updates cannot be explained by any of the

five LSs well. It may be due to the fact that these subjects update their beliefs irrationally for

a substantial proportion. This argument is supported by Table 6, which shows that the rate of

rational updates of these subjects are relatively low. In fact, the highest is merely 0.6, lower

than the full sample average 0.79. It is not a surprise to see that subjects with substantial

irrational updates are poorly explained by any of the five LSs.

As for “who chooses which LS”, Table 11 shows that LS5 is mostly chosen, followed by

LS2 and LS4. Regarding the initial prior formation, as is shown in Table 12 Panel B, nearly
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half of the subjects (20 out of 41) form an initial prior which can be specifically characterized

by either a uniform distribution (17 out of 20) or a non-uniform distribution (6 out of 20).

The non-uniform distributions, however, are mostly flat-shaped: the beta-distribution shape

parameters are mostly close to one, indicating flat PDF curves. The other half (20 out of 41)

tends to keep the initial prior distribution unspecific and directly attend to the mode of the

distribution.

In regard of the belief updating rule, the subjects, whose initial prior distribution is specific,

mostly underreact to the Bayesian updates. Table 12 Panel B shows that 17 out of 20 subjects

have a γ̂ (γ̂c) which is less that one. Even if the statistical significance (significance level=95%)

is taken into account, still 11 out of 20 subjects underreact to the Bayesian updates, one

overreacts, and eight subjects seem to perfectly follow the Bayesian updates. Among the eight

alleged Bayesian players, only four of them (subject No. 14, 18, 35, 38, see Table 8) can

probably be seen as the real Bayesian player, justified by their low RMSE values generating

by the Bayesian updates (by LS3). The other four (subject No. 1, 15, 25, 39, see Table 8),

as discussed above, should be categorized into irrational players instead of Bayesian players,

since their RMSEs for each LS are relatively high. For those who do not reveal a specific initial

prior distribution, the belief updating follows a rather heuristic strategy. They tend to simply

upwards adjust their beliefs if a white draw is observed, and downwards adjust their beliefs if a

black draw is observed. The belief adjustment turns out to be mostly rational and proportional

to the maximum possible adjustment along the rational direction. It is justified by the mean

value of δ̂i,w which is 0.127, and the mean value of δ̂i,b which is 0.114. Such value corresponds

with 5-10 units of white balls. In regard of the choice of the belief updating rule, it may be

concluded that subjects are mostly non-Bayesian players: either deviating from the Bayesian

updates path (12 out of 40), or adopting heuristic updating strategy in no relation to the Bayes

rule (20 out of 40).

7 Pessimism/optimism

Pessimism/optimism in general describes the perceptive tendency that one biases towards the

good/bad outcomes of an event. In an ambiguity setting, pessimism/optimism can be defined

as bias towards the good/bad scenarios when forming the second-order probabilities for each

possible scenarios in an ambiguous environment. If such a bias exists in an ambiguity set-

ting, it should be expected to weaken or disappear when learning makes the environment less

ambiguous.

In order to investigate the bias, we quantify the pessimism/optimism for each subject in

each period, in the way that we measure the difference between the mode of one’s factual belief

and the mode of a chosen benchmark. It is clear that the discussion of pessimism/optimism

relies on the choice of a benchmark. Hence the paper proceeds as follow: we first propose some

choices for benchmark and discuss their quality. Subsequently, using the chosen benchmarks,

we measure the average pessimism/optimism across subjects.
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7.1 Choice of benchmarks

As discussed, pessimism/optimism can be diagnosed by the belief bias in comparison with a

chosen benchmark. Question arises for how to choose a benchmark. Prior to learning (at the

beginning of Period 1), it is intuitive to choose the mid-point, 50, as the benchmark. Without

any draw information, all 101 scenarios (indexed by the possible number of the white balls: 0,

1, · · · 100) are equally possible. For a rational subject, the probability of inserting one integer

(inside the designed domain) in the guess game at t = 1 should be equal to the probability of

inserting any other integer (inside the designed domain). Asymptotically speaking, if infinite

many subjects play the guess game at t = 1, the inserted answers should form a uniform

distribution between [0, 1]. Therefore, we naturally choose the mean value of this distribution,

50, as the benchmark for the initial belief at t = 1.

From t = 2 onwards, how should one update her belief responding to the draw information

is a open question. 50, or any fixed number, is not any more a good candidate since it ignores

the effect of new information. The benchmark is supposed to be a dynamic process, neutrally

updating the belief responding to the new information. It is challenging to argue one belief

update process is better than another. Not to mention to define the best way of updating.

However, some basic criteria can be discussed for a benchmark: (a) It should start with neu-

trality, defined as neither pessimistic nor optimistic, in the initial prior formation. It implies

that the initial prior distribution should be symmetric about the mid-point 50. It results in

that no preexisting bias exists, and it also seamlessly fit in the chosen benchmark in period

t = 1 (b) It should demonstrate clear and unique mode value, at least for most of the time. (c)

It should rationally respond to the draw information: when good news comes, update the belief

towards the good direction; when bad news comes, bad direction. (d) It should asymptotically

converge to the true parameter value: in our case, the mode value of the updated posterior

should converge to 40, the true proportion of white balls in the urn. Taken these criteria into

account, a beta-distribution with α = β > 1 seems to be a straightforward candidate, since by

construction it satisfies criteria (a)(b). (c)(d) can be satisfied by the application of the Bayes

rule. Therefore, we propose six belief updating benchmarks, all of which incorporate the basic

criteria.

The six benchmarks are identical such that they all employ Bayes rule and perfectly follow

the Bayesian updates. They are differentiated in terms of the initial prior distribution:

B1: uniform distribution; (identical to LS1)

B2: a symmetric triangle distribution: linear, increasing (decreasing) between [0,

0.5] ([0.5, 1]), and kink at 0.5 (see Figure 9)

B3: beta-distribution with shape parameters α = β = 2;

B4: beta-distribution with shape parameters α = β = 3;

B5: beta-distribution with shape parameters α = β = 10;

B6: beta-distribution with shape parameters α = β = 50;

The initial prior distributions (in PMF) of all six benchmarks are illustrated in Figure 9.

We propose them as the benchmarks since they all satisfy the criteria mentioned above at least
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from Period 2 onward. The belief updating, employing the Bayes rule, can be written as:

PosteriorB(W |n, kn,m) =
(W/100)kn,m(1−W/100)n−kn,m × PriorB(W )∑100
j=0(j/100)kn,m(1− j/100)n−kn,m × PriorB(j)

(44)

W, j ∈ {0, 1, 2 · · · 100}; 0 ≤ kn,m ≤ n ≡ t− 1 ≤ 15,

kn,m, n ⊆ Z; m ∈ {1, 2 · · · 5}; B ∈ {B1 · · ·B6}

BUB
mt = argmax

W
PosteriorB(W |n, kn,m); B ∈ {B1 · · ·B6}; (45)

B1, as defined, is identical to LS1. B2-B6 are analogous to LS1, with the different initial

priors, PriorB(W ) for B ∈ {B2 · · ·B6}, respectively. We suppress the explicit functional forms

for PriorB(W ), but it is easy to construct the linear PMF function for B2 and recover the beta-

distribution for B3-B6. BUB
mt recovers the Bayesian updates of market m in period t, starting

with the initial priors whose shape is characterized by B ∈ {B1 · · ·B6}.
As a further quality check, goodness of fit of each benchmark is computed to check whether

one benchmark captures the factual belief updates well. A bad goodness of fit implies that one

updating process is rarely chosen by subjects in practice. The benchmark belief updates ought

to also consider the pragmatism and feasibility. Hence, a bad goodness fit may reduce the

candidature power of one benchmark. The goodness of fit of B1-B6 are computed as follow:

diff(guess, v)t =
1

N

N∑
i=1

|whiteit −BU v
mt|; (46)

i ∈ m, t = 2 · · · 16 v ∈ {V 1 · · ·V 5}

The results are reported in Table 13 Panel A and illustrated in Figure 10a. As can be

seen that, B1 present the best goodness of fit from Period 5 onwards, but performs worst in

early periods. It may be due to fact that B1, by construction, always generates the mode equal

to either extreme value (0 or 100) in Period 2. B2-B4, similar to each other, tend to be the

top three among the five. B5-B6 present the worse goodness of fit in later periods. It may

be explained by the construction of the initial prior distribution which concentrate too much

probability to scenario W = 50.

7.2 Analysis of pessimism/optimism

The pessimism/optimism in Period 1 is rather straightforward to diagnose. The mode value of

the initial priors (the response inserted in guess game at t = 1) is on average equal to 48.56

(N=41, sd.=10.28, min=23, max=70). It appears to be lower than the chosen benchmark

50, but the t-test shows that it is not significantly different from 50 (H0 : whitet=1 = 50,

p-value=0.375). It means that subjects tend to be neither pessimistic nor optimistic at first.

In period t = 2 · · · 16, We compute the exact differences between the factual belief up-

dates and each of the benchmark updates by subject by period. The average exact difference
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across subjects (in a given period, using one particular benchmark) presents the average pes-

simism/optimism (in that period, using that particular benchmark). The equation reads:

diff(guess, B)exactt =
1

N

N∑
i=1

(whiteit −BUmt); i ∈ m, t = 2 · · · 16 (47)

i ∈ m, t = 2 · · · 16 B ∈ {B1 · · ·B6}

diff(guess, B)exactt describes the average pessimism (if diff< 1) or optimism (if diff> 1) of

subjects in period t, using benchmark B ∈ {B1 · · ·B6} . The results are reported in Table

13 Panel B. Each column represents the analysis using one specific benchmark. Figure 10b

illustrates the same results. As can be seen in Table 13, significantly negative difference values

are more frequently seen in early periods than in later periods. It may imply that subjects

tend to demonstrate slight pessimism in situations with higher degree of ambiguity, and that

the pessimism disappears when the degree of ambiguity decreases as more information about

the urn is available.

8 Robustness check

8.1 LS2 variation

We consider a variation of LS2 with the homogeneous and time-variant γt:

whiteit =(1− γt)whitei,t−1 + γtBUmt (48)

i ∈ m; t = 2 · · · 16

We report the estimation results for both full sample and the rational sub-sample. As defined

in descriptive analysis, rational belief updates are those whiteit such that whiteit ≥ whitei,t−1

if a white draw is observed at the end of period t− 1, and whiteit ≤ whitei,t−1 if a black draw

is observed at the end of period t − 1. The results of γ̂t are reported in Table 14. All γ̂s are

between zero and one. It implies that on average subjects underreact to the new information.

Intertemporally, on average subjects tend to more actively react to the new information from

period 6 to 11, less actively at the beginning and at the end. It is intuitive to react less

actively when learning evolves for many periods. The marginal effect of the new information

on reshaping the belief is diminishing. The underreaction in early periods may be explained by

the wait-and-see attitude. The scarcity of new information may keep subjects sticky to their

initial beliefs. The estimation based on the rational sample only slightly differs from that based

on the full sample. The relatively large differences appear at t = 1, 14, 15, and the results are

more robust at t ∈ [2, 13].
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8.2 LS5 variation

First we consider a variation of LS5 with the homogeneous and time-variant δw,t and δb,t. We

denote this variation as LS5 Variation1 :

whiteit − whitei,t−1 =δw,t1[white]m,t−1(100− whitei,t−1)

+δb,t1[black]m,t−1(0− whitei,t−1) (49)

i ∈ m; t = 2 · · · 16

Like LS2 variation, we again report the estimation results for both full sample and the rational

sub-sample in Table 14. All δ̂w,t and δ̂b,t present intuitive positive signs. It implies that even in

full sample case, on average, subjects upwards adjust if observing a white draw, downwards if

a black draw. Naturally by design, the rational sub-sample case consistently presents stronger

effects than the full sample case, since sub-sample cases exclude the counter-directional behav-

iors. On average, subjects seem to respond equally to white draws as to black draws, consistent

with the finding in the original LS5. The average value of δ̂w,t over time, as well as the average

value of δ̂b,t over time, is around 0.19. The values of δ̂w,t and δ̂b,t seem to be higher during the

mid-period of learning. The difference between δ̂w,t and δ̂b,t are more obvious in the mid period

of learning but milder at the beginning and at the end of learning. It also consolidates the

finding that subjects react more actively to draw information during the mid-period, and less

actively at the beginning and at the end of learning.

In addition,we consider another variation of LS5 with homogeneous and time-invariant δw

and δb, denoted as LS5 Variation2. The belief updating dynamic then becomes:

whiteit − whitei,t−1 =δw1[white]m,t−1(100− whitei,t−1)

+δb1[black]m,t−1(0− whitei,t−1) (50)

i ∈ m; m ∈ {1, · · · 5}; t ∈ {2 · · · 16}

The estimation of δw and δb can be done by simply pooling all subject-level data. The

results of δ̂w and δ̂b are shown in Table 15 Column (1) and (2), without and with market fixed

effects in the regression, respectively.

At last, we test whether peer effect exists. The peer effect can be described as how the

belief updates of one subject affect the belief updates of other subjects in the same market.

Since there is no direct interaction across subjects when the guess games are played, we proxy

the beliefs of others within the market as follows: one part of the experiment is called asset

trading, where subjects trade assets in a double auction within market. The dividend of the

assets are ambiguous: the draws from the ambiguous urn, designed to permit learning in the

guess games, is also used to determine the dividend of the trading assets: each time a white

draw is observed, each unit of asset pays out a positive dividend; Each time a black draw, zero

dividend. The asset trading takes place for 15 periods (1+1+1 pack: one guess games + one

asset trading + one draw implementation, repeats 15 times, see Table 1). The traded price

reflects the belief of the traders: if one believes that the proportion of the white balls is high,
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she is likely to trade at a higher price. Hence we proxy beliefs of other subjects in market m in

Period t by the last traded price of market m in Period t, denoted by LTPm,t. Therefore, the

last variation of LS5, denoted as LS5 Variation3, reads:

whiteit − whitei,t−1 =δw1[white]m,t−1(100− whitei,t−1)

+δb1[black]m,t−1(0− whitei,t−1)

+δpLTPm,t−1 (51)

i ∈ m; m ∈ {1, · · · 5}; t ∈ {2 · · · 16}

LTPm,t−1 denotes the last traded price in market m in period t − 1. The estimation

results of δw and δb are shown in Table 15 Column (3) and (4), without and with market fixed

effects, respectively. The parameters of interest in Table 15 Column (1)-(4) are all positively

significant, consistent with the finding in the original LS5. The adjustment is around 0.1 to

0.2 proportional to the distance reference. This value is slightly higher than the results from

original LS5 estimation reported in Table 7 LS5 columns and Table 8 Panel D. Given the fact

that the heterogeneous δ̂i,w and δ̂i,b are more sensitive to the irrational individual behaviors

than homogeneous δ̂w and δ̂b (which pool all individual data, and the effect of the irrational

data is averaged out), the slight difference is understandable.

9 Conclusion

This paper manages to distinguish beliefs from attitudes in situations involving ambiguity. The

initial belief formation and belief updating process are directly tracked down by a simple and

clear-cut experiment design. The results show that, regarding the initial prior formation, more

than one third of the subjects tend to form a uniformly distributed initial prior, and nearly

half of the subjects tend to constrain their attention to the mode of the distribution, rather

than base their decisions on an entire prior distribution. Among the rest of the subjects, one

subject forms a strictly increasing initial prior distribution, three form strictly decreasing initial

prior distributions, and two form bell-shaped initial prior distributions. However, all these six

distributions tend to avoid allocating large probability to some specific scenarios, and thus they

all result in rather flat PDF curves. As for the belief updating strategy, subjects are mostly non-

Bayesian players: more than one third (12 out of 41) of the subjects significantly deviate from

the perfect Bayesian updates. Among them, 11 subjects underreact to the Bayesian updates

and one subject overreacts. Half the subjects (20 out of 41) employ the heuristic updating

strategy, irrelevant to the Bayes rule. Among the rest of the subjects, four tend to perfectly

follow the Bayesian updates, four subjects adopt some learning strategies which are not well

captured by any of the five proposed strategies, and one subject never updates the belief. As for

pessimism/optimism, subjects on average demonstrate slight pessimism in a highly ambiguous

environment. When the environment becomes less ambiguous due to learning, such pessimism

disappears.
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Table 1: Procedure of the experiment

The 15 periods

t = 0 t = 1 t = 2 · · · t = 15 t = 16

choice games Guess game Guess game · · · Guess game Guess game

↓ ↓ ↓ ↓
Asset trading Asset trading · · · Asset trading choice games

↓ ↓ ↓ Questionnaire

Draw

implementation

Draw

implementation
· · ·

Draw

implementation
Payment

Draw implementation: Each market implemets its own draw. In a draw,

one ball is drawn out from the completely ambiguous urn with replacement.

The color is displayed to the relevant subjects and then the ball is put back

to the urn. The whole process is computerized

Table 2: Subject group and guess game played

Session Market No. of the subjects Guess games played

I 1 13 t=1-15

II 2 7 t=1-16

II 3 7 t=1-16

III 4 7 t=1-16

III 5 7 t=1-16
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Table 3: Short summary of the five learning strategies

This table briefly summarizes the characteristics of the five learning strategies, in terms of the assumptions on initial prior and updating rule.

Initial prior Updating rule Bayesian or not

LS1: Bayesian updates with uniformly

distributed initial prior
uniform distr. Bayes rule Bayesian

LS2: Imperfect Bayesian updates with

uniformly distributed initial prior

The Bayesian reference term:

uniform distri. (as in LS1)

weight between current belief

and Bayesian reference (in LS1)
non-Bayesian

LS3: Bayesian updates with

beta-distributed initial prior
beta-distri. Bayes rule Bayesian

LS4: Imperfect Bayesian updates with

beta-distributed initial prior

The Bayesian reference term:

beta-distri. (as in LS3 )

weight between current belief

and Bayesian reference (in LS3)
non-Bayesian

LS5: Heuristic updates Mode of the distribution
heuristic adjustment responding

to new info
non-Bayesian
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Table 4: Summary of the five learning strategies and their variations

Learning strategy (LS) Initial Prior Updating rule Bayesian or not Remarks

LS1: Bayesian updates with uniformly distributed initial prior

LS1 Uniformly distribution prior Bayes rule Bayesian Belief (prior/posterior) is a distri-

bution

LS1’: Maximum likelihood (ML) updates

LS1’ Belief updates strictly follow the

ML method

Non-

Bayesian

Belief is single-valued, equal to

the mode value of the belief dis-

tribution in LS1.

LS2: Imperfect Bayesian updates with uniformly distributed initial prior

LS2 Bayesian updates component as-

sumes uniformly distributed prior

Current belief is updated

partially/fully/overly to the

Bayesian reference (in LS1).

Non-

Bayesian

The Bayesian reference refers to

the mode value of one posterior

distribution (as in LS1).

LS2 Variation same as above same as above Non-

Bayesian

The weight attached to the

Bayesian reference (par-

tially/fully/overly) is time-

variant but homogeneous.

LS3: Bayesian updates with beta-distributed initial prior

LS3 Prior is characterized by a beta-

distribution with shape parame-

ter (αi, βi)

Belief updates strictly follow the

Bayes rule. Posterior sustains the

beta-distribution fashion

Bayesian Differing from LS1 only in prior

assumption. The shape parame-

ter is subject-specific.
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LS4: Imperfect Bayesian updates with beta-distributed initial prior

LS4 Prior is characterized by a beta-

distribution with shape parame-

ter bundle (αc
i , β

c
i )

Current belief is updated

partially/fully/overly to the

Bayesian reference with a beta-

distributed prior (in LS3). In

practice, it means that belief is

updated by weighing between

current belief and the Bayesian

reference.

Non-

Bayesian

The Bayesian reference refers to

the unique peak point of one pos-

terior distribution. The weight

parameter is subject-specific but

time-invariant.

LS5: Heuristic updates

LS5 Belief is upwards (downwards)

adjusted if a white (black) draw

is observed.

Non-

Bayesian

Belief is single-valued. Adjust-

ment scale is heterogeneous and

time-invariant.

LS5 Variation1 same as above Non-

Bayesian

Adjustment scale is homogeneous

and time-variant.

LS5 Variation2 same as above Non-

Bayesian

Adjustment scale is homogeneous

and time-invariant.

LS5 Variation3 same as above plus controlling

market-wide belief

Non-

Bayesian

Adjustment scale is homogeneous

and time-invariant.
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Table 5: Market-average guess game responses

This table reports the market-average guess game responses of subjects for each market m: whitemt = 1
Nm

∑
i whiteit,

where i ∈ m and Nm denotes the number of the subjects in market m. Each market implements its own draw, and thus

the draw history is market-specific. The results of whitemt are reported in mean columns. sd. stands for the corresponding

standard deviation. The number of white draws (out of 15 draws) are presented for each market. The fraction of white

draws is computed by dividing the number of white draws by 15.

Market 1 Market 2 Market 3 Market 4 Market 5

Period mean sd. mean sd. mean sd. mean sd. mean sd.

1 47.54 8.53 46.86 9.36 53.86 10.59 49.71 9.21 45.71 11.94

2 45.92 13.67 44.57 14.26 48.14 18.38 49.57 10.98 48.29 15.10

3 42.69 13.37 50.86 10.83 58.29 16.18 45.86 6.56 63.29 9.28

4 42.38 13.73 57.00 9.35 49.86 13.89 41.43 11.11 69.14 17.32

5 46.92 10.67 48.43 5.21 46.00 21.39 34.57 11.39 52.00 29.94

6 42.38 11.12 64.43 16.88 52.86 18.13 21.00 10.77 71.29 14.49

7 47.46 9.52 54.86 23.55 42.43 19.14 33.43 16.03 48.71 21.00

8 52.08 6.39 55.43 12.07 40.86 26.54 38.14 10.29 62.29 13.32

9 53.77 6.83 52.00 17.84 25.86 20.57 30.00 13.89 57.29 9.59

10 54.31 7.03 45.71 13.57 37.43 31.54 40.71 8.07 64.43 8.35

11 49.92 8.15 56.71 11.41 20.86 21.20 45.14 8.29 54.29 12.26

12 50.38 4.75 51.43 7.98 39.43 18.74 40.14 9.16 51.14 5.14

13 53.85 4.65 44.57 9.59 39.86 28.63 43.29 8.03 52.14 4.52

14 52.85 4.38 49.14 12.86 33.86 23.84 48.71 4.30 49.57 11.07

15 51.23 2.08 53.71 14.80 38.57 30.43 43.43 6.88 44.14 18.53

16 - - 46.71 4.33 32.71 23.96 42.86 6.20 49.43 7.87

No. of white

draws
7 7 3 6 7

Fraction of

white draws
46.7% 46.7% 20% 40% 46.7%
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Table 6: Rationality of subjects’ belief updates

This table reports the rate of rational belief updates by subject. A rational belief update is defined as such: if a white draw is observed, a subject upwards

adjusts her belief or maintains her current belief; if a black draw is observed, a subject downwards adjusts her belief or maintains her current belief.

Subjects’ beliefs are those reported in the guess games (whiteit). The rational updates rate of a subject is computed by dividing the number of her rational

belief updates by the total number of her belief updates. The market average value and the full sample average value are reported in the last two rows,

respectively.

Market 1 Market 2 Market 3 Market 4 Market 5

Subject

No.

Rational

rate

Subject

No.

Rational

rate

Subject

No.

Rational

rate

Subject

No.

Rational

rate

Subject

No.

Rational

rate

1 0.50 14 1.00 21 0.67 28 0.93 35 1.00

2 0.93 15 0.47 22 1.00 29 0.93 36 0.87

3 0.50 16 1.00 23 0.67 30 1.00 37 0.67

4 0.64 17 0.73 24 0.93 31 0.60 38 0.87

5 0.79 18 1.00 25 0.47 32 0.87 39 0.27

6 0.64 19 0.93 26 0.60 33 0.87 40 0.80

7 0.64 20 0.93 27 0.80 34 0.93 41 0.73

8 0.79

9 1.00

10 1.00

11 0.86

12 0.71

13 0.86

Market

avg.
0.76 0.87 0.73 0.88 0.74

Total avg.

(N = 41)
0.79
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Table 7: Parameterization of LS2-LS5

This table displays the parameter estimation of LS2-LS5. LS2 assumes that a subject updates her belief by weighting between the Bayesian reference (Bayesian

updates with uniformly distributed initial prior) and her current belief. The weight assigned to Bayesian reference γ̂i is estimated based on equation (15).

LS3 assumes that a subject starts with a beta-distributed prior and employs the Bayes rule to update her belief. α̂i and β̂i is the estimated parameter which

characterizes the shape of the initial prior. The estimation is based on equation (27)-(29). LS4 assumes that a subject update her belief by weighting between

the Bayesian reference (Bayesian updates with beta-distributed initial prior) and her current belief. The estimation is based on equation (32). γ̂ci is the weight

assigned to the Bayesian reference. α̂ci and β̂ci are the shape parameters characterizing the initial prior. LS5 assumes that a subject upwards (downwards) adjusts

her belief if a white (black) draw is observed, proportional to the maximum possible adjustment along the upward (downward) direction. The estimation is

based on equation (33). δi,w governs the adjustment reacting to white draws, while δi,b to black draws. Mean value in the last row is the mean value of the

corresponding column (mean value across subjects). The parameters of Subject 22 cannot be estimated for LS4 since he/she never updates the belief. γ̂i of LS2

and γ̂ci of LS4 are tested for whether significantly different from one; δ̂i,w and δ̂i,b of LS5 are tested for whether significantly different from zero

LS2 LS3 LS4 LS5

Session Market (m) Subject (i) γ̂i α̂i β̂i γ̂ci α̂ci β̂ci δ̂i,w δ̂i,b

0 1 1 0.509 1.000 1.088 0.962 1.000 1.000 -0.060 -0.103

2 0.037*** 1.000 1.000 0.190*** 1.000 1.000 0.005 0.028

3 0.391** 1.000 1.000 0.595* 1.000 1.000 0.030 -0.044

4 0.188*** 1.000 1.000 1.138 1.000 1.000 -0.053 -0.095

5 0.320*** 1.000 2.140 0.269*** 1.000 1.000 0.055 0.071

6 0.083*** 1.000 1.000 0.165*** 1.000 1.000 0.007 0.003

7 0.251*** 1.242 1.000 0.907 1.245 1.000 0.088 0.050

8 0.545*** 1.000 1.000 0.863 1.000 1.000 0.173*** 0.127**

9 0.277*** 1.077 1.000 0.946 1.078 1.000 0.135*** 0.123***

10 0.605*** 1.075 1.131 0.941 1.031 1.081 0.165*** 0.167***

11 0.354*** 1.000 1.000 0.718** 1.000 1.000 0.120** 0.138***

12 0.147*** 1.839 2.330 0.462*** 1.000 1.272 0.040* 0.031

13 0.373*** 1.603 1.000 0.647** 1.606 1.000 0.171** 0.090

1 2 14 0.326*** 1.942 1.962 0.964 1.960 1.965 0.127*** 0.101***

15 0.764 1.000 1.000 0.933 1.000 1.000 0.107 0.069

16 0.354*** 1.772 2.144 0.118*** 1.000 1.000 0.062 0.050

17 0.310*** 1.000 1.068 0.592** 1.000 1.089 0.069 0.072*

18 0.320*** 1.719 2.163 0.982 1.954 2.390 0.106** 0.056

19 0.275*** 1.000 1.113 0.690** 1.000 1.123 0.105*** 0.081**

20 0.692 1.000 1.000 1.274 1.000 1.000 0.514*** 0.347***

3 21 0.555*** 1.000 1.508 0.338*** 1.000 1.000 0.184* 0.185*

22 0.000*** 11.639 1.006 - - - 0.000 0.000

23 0.095*** 1.000 1.000 1.261 1.017 1.000 -0.017 0.094

24 0.122*** 1.000 1.000 0.364*** 1.000 1.000 0.044 0.113***

25 0.729 1.110 1.000 0.766 1.000 1.000 0.194 0.415

26 0.611 1.000 1.000 0.560** 1.000 1.000 0.293 0.194

27 0.316*** 1.000 1.000 0.573** 1.000 1.000 0.126 0.204*

2 4 28 0.730* 1.000 1.000 1.153 1.000 1.000 0.203*** 0.282***

29 0.104*** 1.410 2.291 0.699*** 1.000 1.430 0.085*** 0.097**

30 0.128*** 1.101 1.471 1.008 1.106 1.502 0.101*** 0.116***

31 0.133*** 2.214 1.000 0.425** 1.000 1.000 0.058 0.072

32 0.200*** 1.981 1.000 0.557** 1.000 1.000 0.125* 0.116

33 0.283*** 1.169 1.000 0.581*** 1.000 1.000 0.137** 0.126*

34 0.301*** 1.410 1.000 0.334*** 1.000 1.000 0.000 0.100

5 35 0.570** 1.000 1.465 1.159 1.000 1.515 0.296** 0.254***

36 0.323*** 1.000 1.195 0.888 1.000 1.217 0.212*** 0.110***

37 0.046*** 1.000 1.237 0.202*** 1.000 1.000 0.077 0.025

38 0.268*** 1.000 1.820 1.066 1.000 1.879 0.163** 0.154***

39 0.568 1.000 1.000 0.924 1.000 1.000 0.051 -0.124

40 0.877 1.000 1.641 1.389** 1.000 2.401 0.586*** 0.510***

41 0.346*** 1.000 1.000 0.660** 1.000 1.000 0.295** 0.125

Mean value 0.352 1.446 1.263 0.732 1.075 1.172 0.126 0.110

For γ̂i of LS2 (γ̂ci of LS4), t-test: H0 : γ̂i(γ̂
c
i ) = 1. For δ̂i,w (δ̂i,b) of LS5, t-test: H0 : δ̂i,w(δ̂i,b) = 0. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 8: Statistical summary of estimated parameters in LS2-LS5

This table displays the across-subject statistical summary of each estimated parameters in Table 7. sd. denotes standard deviation.

Panel A: γ̂i in Table 7 column LS2

mean variance sd. N

0.352 0.049 0.222 41

Percentiles Distribution

25% 0.188 [0, 0.3) 41.5%

50% 0.319 [0.3, 0.6) 41.5%

75% 0.545 [0.6, 1] 17.0%

90% 0.692

Panel B: α̂i and β̂i in Table 7 column LS3

count percent

α̂i = β̂i = 1 15 37%

α̂i = 1, β̂i > 1 10 24%

α̂i > 1, β̂i = 1 8 20%

α̂i > β̂i > 1 1 2%

β̂i > α̂i > 1 7 17%

Total 41 100%

Panel C: γ̂ci , α̂
c
i and β̂ci in Table 7 column LS4

γ̂ci : mean variance sd. N

0.732 0.113 0.336 40

Percentiles Distribution

25% 0.510 [0, 0.3) 12.5%

50% 0.709 [0.3, 0.6) 27.5%

75% 0.963 [0.6, 1] 40.0%

90% 1.156 > 1 20.0%

count percent

α̂ci = β̂ci = 1 24 60%

α̂ci = 1, β̂ci > 1 8 20%

α̂ci > 1, β̂ci = 1 4 10%

α̂ci > β̂ci > 1 0 0%

β̂ci > α̂ci > 1 4 10%

Total 40 100%

Panel D: δ̂i,w and δ̂i,b in Table 7 column LS5

δ̂i,w δ̂i,b

mean 0.126 0.110

sd. 0.130 0.124

Percentiles

25% 0.051 0.050

50% 0.106 0.100

75% 0.171 0.138

90% 0.293 0.254

N 41 41
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Table 9: Goodness of fit: LS1-LS5

This table reports the differences (differences are expressed by the absolute values) between the factual belief updates (the guess game entry

whiteit) and the belief updates simulated by one of the five learning strategies (LS1-LS5). It checks the goodness of fit for each learning strategy.

Five learning strategies are developed to capture subjects’ belief update dynamics. LS1 assumes that a subject starts with a uniformly distributed

prior and employs the Bayes rule to update her belief. LS2 assumes that she weights between LS1 and her previous belief. LS3 assumes that

she starts with a beta-distributed prior and employs the Bayes rule. LS4 assumes that she weights between LS3 update and her previous belief.

LS5 assumes that she responds to the white (black) draw by upwards (downwards) adjusting her belief proportional to the maximum possible

adjustment in the upward (downward) direction. The diff columns report the average difference over all subjects by LS by period, computed

based on equation (34)-(38), respectively. sd. denotes the corresponding standard deviation.

diff(guess, LS1)t diff(guess, LS2)t diff(guess, LS3)t diff(guess, LS4)t diff(guess, LS5)t

Period diff sd. diff sd. diff sd. diff sd. diff sd. N

1 37.34 18.15 41

2 48.46 14.84 17.74 17.44 38.85 22.65 29.70 22.23 11.06 11.47 41

3 13.49 14.95 8.97 12.56 12.03 11.72 8.37 10.73 11.38 16.42 41

4 16.56 13.25 10.50 10.94 14.91 12.72 11.66 11.74 10.70 11.75 41

5 12.71 15.64 11.82 15.57 11.45 13.90 9.29 12.02 10.35 11.82 41

6 11.37 10.81 11.50 12.16 9.87 10.95 8.59 11.28 11.47 16.31 41

7 12.90 15.43 12.40 14.87 10.91 14.59 9.43 13.02 10.64 17.33 41

8 10.17 12.74 8.02 10.56 8.18 11.41 8.36 11.95 9.03 13.34 41

9 9.10 10.98 9.21 9.87 7.71 8.61 6.73 8.66 9.00 11.33 41

10 9.46 14.27 8.35 12.78 7.67 12.47 7.52 13.19 7.34 15.19 41

11 8.00 10.55 8.12 9.06 6.71 7.73 6.31 8.27 7.48 10.31 41

12 8.00 8.58 6.01 7.75 5.91 6.51 5.34 7.93 7.73 8.98 41

13 8.24 12.58 5.64 9.55 7.29 10.87 5.45 9.61 6.20 9.28 41

14 7.88 11.02 6.63 8.07 6.54 9.31 6.15 8.18 6.10 7.75 41

15 8.95 15.65 8.44 15.19 8.34 14.11 7.14 14.02 10.77 18.79 41

16 8.07 12.33 5.84 7.12 6.95 9.30 5.82 7.55 9.97 10.14 28
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Table 10: Speed of convergence of LS1-LS5

This table displays how fast one belief update process converges to a constant number. The five belief updates generated by five different learning strategies are considered,

respectively. For a given learning strategy (LS1-LS5), the belief adjustments between every two neighboring periods of subject i are first computed based on equation

(39), and then averaged over all subjects. The results are reported in Diff(LS1)t-Diff(LS5)t column as a reference for speed of convergence of LS1-LS5, respectively. The

corresponding standard deviations are reported in sd. columns. As a reference, the belief adjustment based on factual guess game data is computed by equation (41)-(42)

and shown in Factual belief columns.

LS1 LS2 LS3 LS4 LS5 Factual belief

Period Diff(LS1)t sd. Diff(LS2)t sd. Diff(LS3)t sd. Diff(LS4)t sd. Diff(LS5)t sd. Diff(guess)t sd. N

1

2 31.45 32.73 11.41 12.27 41

3 41.46 18.81 14.92 12.68 33.67 16.80 25.74 17.56 13.08 12.33 13.32 15.61 41

4 14.10 6.40 9.27 9.44 12.86 5.52 10.89 7.20 12.95 16.09 12.49 11.23 41

5 16.83 4.97 8.13 8.04 14.70 4.65 12.10 7.81 12.30 14.14 14.44 17.74 41

6 8.29 2.37 7.16 7.01 7.96 2.12 7.97 7.21 9.55 9.59 17.34 20.81 41

7 10.00 2.48 7.38 7.37 9.10 2.42 8.65 8.40 10.63 11.74 15.54 19.64 41

8 5.98 2.26 8.30 6.34 6.05 1.53 7.06 6.38 11.97 17.24 11.05 13.34 41

9 6.32 1.81 5.65 6.19 5.88 1.83 6.68 6.40 9.62 10.84 12.46 16.28 41

10 5.66 1.51 5.95 5.71 5.05 1.45 5.23 4.18 11.71 12.30 9.54 14.60 41

11 5.66 1.72 4.75 5.72 5.07 1.37 4.73 3.82 11.10 12.39 10.39 16.47 41

12 5.17 0.91 5.24 5.36 4.72 1.22 3.74 3.24 9.70 8.84 8.49 11.71 41

13 4.02 1.42 4.47 4.05 3.86 0.84 4.35 3.59 8.49 8.45 5.63 7.04 41

14 3.66 0.75 2.91 2.46 3.68 0.85 3.24 2.46 6.56 5.25 7.05 12.23 41

15 3.49 0.77 3.91 4.12 3.30 0.77 3.83 3.26 8.89 11.09 10.22 18.39 41

16 2.50 0.87 6.37 7.73 2.66 0.70 3.83 3.87 14.41 19.88 8.46 11.58 28
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Table 11: Ranking of LS by subject

This table displays the by-subject ranking of the five learning strategies, measured by the root mean square error (RMSE).

RMSE of a given LS is used to quantify, for a given subject, the explanatory power of this LS to her factual belief updates.

The RMSEs are computed based on equation (43). The lower the value of RMSE is, the better the corresponding LS

explains the factual belief updates, and hence the higher the rank of the LS is. Subject 22 has no entry since he/she never

updates the belief.

Learning strategy No.

Session Market Subject rank 1st rank 2nd rank 3rd rank 4th rank 5th

I 1 1 2 3 5 4 1

2 5 2 4 3 1

3 2 4 5 3 1

4 5 2 3 1 4

5 2 4 5 3 1

6 2 4 5 3 1

7 5 2 4 3 1

8 5 2 4 1 3

9 5 2 4 3 1

10 2 5 4 3 1

11 5 2 4 1 3

12 2 5 3 4 1

13 4 5 3 2 1

II 2 14 4 3 5 2 1

15 2 4 3 1 5

16 2 3 4 5 1

17 2 5 4 3 1

18 4 3 5 2 1

19 5 2 4 3 1

20 5 2 1 3 4

3 21 2 4 5 3 1

22 - - - - -

23 5 2 1 3 4

24 5 2 4 1 3

25 4 2 3 1 5

26 4 2 3 1 5

27 5 2 4 3 1

III 4 28 5 2 3 1 4

29 5 3 2 4 1

30 5 2 4 3 1

31 5 2 4 3 1

32 5 2 4 3 1

33 5 2 4 3 1

34 2 4 5 1 3

5 35 4 3 5 2 1

36 5 2 4 3 1

37 5 2 4 3 1

38 4 3 5 2 1

39 2 4 3 1 5

40 4 3 5 2 1

41 5 2 4 1 3

Count: LS ranked 1st LS5 LS2 LS4

20 12 8
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Table 12: Heterogeneity: initial prior and learning strategy

This table summarize the chosen learning strategy and initial prior by subject. The chosen learning strategy of subject i is defined as the learning strategy (of LS1-LS5) which produces the

smallest root mean squared error (RMSE) over all belief updating periods of subject i. The error is defined as the difference between the factual belief (guess game entry) and the simulated

belief generated by a given learning strategy. The RMSE is computed based on equation (43) by subject by learning strategy. Panel A reports the initial prior choice (uniformly distributed,

beta-distributed, or a singular value) and the learning strategy choice (responsiveness to the Bayesian reference; or the scaled parameters in directional adjustment) for each subject. Panel

B displays the statistical summary of the choices. Subject 22 has no entry since he/she never updates the belief.

Panel A: choice of initial prior and learning strategy

Initial prior: uniform or beta distribution Initial prior: distribution unspecified

learning strategy: referring to the Bayesian reference learning strategy: heuristic strategy

Session Market (m) Subject (i) Initial prior α̂ci β̂ci
Responsiveness to Bayesian

reference
γ̂ci Initial prior δ̂i,w δ̂i,b

I 1 1 uniform partially 0.509

2 60 0.005 0.028

3 uniform partially 0.391

4 40 -0.053 -0.095

5 uniform partially 0.320

6 uniform partially 0.083

7 45 0.088 0.050

8 40 0.173 0.127

9 50 0.135 0.123

10 uniform partially 0.605

11 65 0.120 0.138

12 uniform partially 0.148

13 beta 1.606 1.000 partially 0.647

II 2 14 beta 1.960 1.965 partially 0.964

15 uniform partially 0.764

16 uniform partially 0.354

17 uniform partially 0.310

18 beta 1.954 2.390 partially 0.982

19 42 0.105 0.081

20 63 0.514 0.347

3 21 uniform partially 0.555

22 - - - - - - - -

23 50 -0.017 0.094

24 50 0.044 0.113

25 uniform partially 0.766

26 uniform partially 0.560

27 42 0.126 0.204

III 4 28 63 0.203 0.282

29 40 0.085 0.097

30 35 0.101 0.116

31 50 0.058 0.072

32 60 0.125 0.116

33 50 0.137 0.126

34 uniform partially 0.301

5 35 beta 1.000 1.515 overly 1.159

36 37 0.212 0.110

37 50 0.076 0.025

38 beta 1.000 1.879 overly 1.066

39 uniform partially 0.568

40 beta 1.000 2.401 overly 1.389

41 42 0.295 0.125

Panel B: Summary

The best fitted LS is LS5

N=20 Initial prior whitei1 (mean) δ̂i,w (mean) δ̂i,b (mean)

48.7 0.127 0.114

The best fitted LS is LS2 or LS4

N=20 Initial prior Responsiveness to the Bayesian reference

α̂ = β̂ = 1 14 partially (γ̂, γ̂c < 1) 17

α̂ > 1, β̂ = 1 1 fully (γ̂, γ̂c = 1) 0

α̂ = 1, β̂ > 1 3 overly (γ̂, γ̂c > 1) 3

α̂ > 1, β̂ > 1 2 mean=0.622
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Table 13: Pessimism/optimism of subjects: in comparison with benchmark B1-B6

Panel A of this table reports the absolute difference between the factual guess game entries and six benchmark strategies (B1-B6), respectively. All benchmark strategies employ

Bayes rule to update beliefs. They differ from each other only in terms of the initial prior. B1 is constructed with a uniform distribution. B2 assumes a symmetric triangle-shaped

initial prior distribution (see Figure 9); B3-B6 assumes the initial priors characterized by the beta-distribution with α = β = 2, 3, 10, 50, respectively. The belief updates of

B1-B6 are computed by equation (44)-(45). The per period average absolute difference diff(guess, B1)t-diff(guess, B6)t are computed by equation (46). sd.columns report the

corresponding standard deviation. The absolute difference can be interpreted as the goodness of fit of B1(· · · B6) when regressing the guess game responses.

Panel B of this table reports the exact differences between the factual guess game entries and the six benchmark strategies (B1-B6), respectively, computed by equation (47).

sd.columns report the corresponding standard deviation. The exact difference can be interpreted as the pessimism/optimism of subjects, comparing with the chosen benchmark

(B1 · · · B6). A negative value indicates, on average, a lower value of the updates (towards zero) than the benchmark value, hence implying pessimism. In contrast, a positive

value indicates optimism. For each exact difference, a one-sided t-test is conducted for whether it is significantly positive or negative.

Panel A: Goodness of fit: absolute difference between guess games responses and benchmark B1-B6 updates

diff(guess, B1)t diff(guess, B2)t diff(guess, B3)t diff(guess, B4)t diff(guess, B5)t diff(guess, B6)t

Period diff sd. diff sd. diff sd. diff sd. diff sd. diff sd. N

1 7.24 7.26 7.24 7.26 7.24 7.26 7.24 7.26 7.24 7.26 41

2 48.46 14.84 12.02 8.83 17.66 12.14 13.63 10.29 12.29 8.44 12.05 8.68 41

3 13.49 14.95 8.59 10.19 9.41 10.49 8.59 10.19 9.02 10.27 9.37 10.64 41

4 16.56 13.25 11.46 9.68 11.63 9.27 10.54 8.87 11.76 9.45 12.68 10.70 41

5 12.71 15.64 11.73 13.36 11.98 13.99 11.73 13.48 11.98 13.30 12.27 13.62 41

6 11.37 10.81 12.83 10.86 11.10 10.65 11.71 10.80 14.78 11.79 17.07 12.94 41

7 12.90 15.43 12.76 13.14 12.46 14.06 12.46 13.66 13.10 13.03 13.54 13.27 41

8 10.17 12.74 10.68 10.00 9.83 11.56 9.90 10.79 11.61 9.38 12.90 9.98 41

9 9.10 10.98 9.83 10.45 9.34 10.59 9.78 10.48 11.68 11.39 13.07 13.04 41

10 9.46 14.27 10.54 12.28 9.59 13.07 9.98 12.24 11.54 11.21 13.12 11.76 41

11 8.00 10.55 8.85 9.65 8.56 9.94 9.05 9.83 10.41 10.63 11.68 12.23 41

12 8.00 8.58 6.66 7.79 7.68 7.57 7.37 7.26 7.32 6.98 7.20 8.46 41

13 8.24 12.58 8.24 11.38 8.24 11.76 8.24 11.39 8.51 10.63 8.93 10.96 41

14 7.88 11.02 7.73 10.13 7.73 10.39 7.78 10.15 8.22 9.72 8.85 10.47 41

15 8.95 15.65 9.20 14.59 9.07 14.88 9.15 14.41 9.44 13.63 9.71 13.88 41

16 8.07 12.33 8.54 10.88 8.18 11.30 8.43 10.73 9.61 9.26 10.96 10.46 28

Panel B: Pessimism/Optimism: exact difference between guess games responses and benchmark B1-B6 updates

diff(guess, B1)exactt diff(guess, B2)exactt diff(guess, B3)exactt diff(guess, B4)exactt diff(guess, B5)exactt diff(guess, B6)exactt

Period diff sd. diff sd. diff sd. diff sd. diff sd. diff sd. N

1 -1.44 10.16 -1.44 10.16 -1.44 10.16 -1.44 10.16 -1.44 10.16 41

2 -4.12 50.52 -2.90 14.63 -3.32 21.17 -3.15 16.79 -2.98 14.61 -2.93 14.56 41

3 -7.73*** 18.59 -2.10 13.16 -3.46* 13.66 -2.10 13.16 -0.05 13.67 0.63 14.16 41

4 -5.49** 20.49 -3.71* 14.54 -3.10* 14.55 -2.00 13.63 -0.34 15.08 0.39 16.59 41

5 -4.22* 19.71 -4.22* 17.27 -4.22* 17.92 -4.22* 17.36 -4.22* 17.39 -4.22* 17.84 41

6 2.39 15.50 -0.78 16.79 1.44 15.32 1.12 15.89 -0.15 18.91 -0.78 21.41 41

7 -4.32* 19.65 -4.32* 17.80 -4.32* 18.29 -4.32* 17.98 -4.32* 17.96 -4.32* 18.46 41

8 0.27 16.30 2.15 14.48 0.07 15.17 0.05 14.64 0.15 14.92 0.27 16.31 41

9 1.73 14.16 0.02 14.34 0.37 14.12 -0.32 14.33 -2.71 16.09 -4.24* 17.97 41

10 3.27 16.81 2.78 15.94 2.56 16.00 2.02 15.66 0.61 16.07 -0.29 17.62 41

11 1.17 13.19 -0.02 13.10 0.32 13.11 -0.37 13.35 -2.07 14.73 -3.44* 16.56 41

12 0.10 11.73 1.34 10.16 -0.27 10.78 -0.29 10.34 -1.85 9.94 -2.41* 10.84 41

13 0.88 15.02 0.44 14.05 0.34 14.35 0.15 14.06 -0.95 13.58 -1.85 14.01 41

14 1.73 13.43 1.29 12.68 1.20 12.89 0.85 12.76 -0.71 12.71 -1.78 13.59 41

15 3.10 17.76 1.39 17.19 2.24 17.28 1.73 16.98 -0.32 16.58 -2.20 16.80 41

16 4.43* 14.06 0.68 13.81 3.18 13.58 2.43 13.43 -1.32 13.28 -5.82** 13.99 28

t-test: H0 : diff(guess, .)exactt = 0. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 14: Robustness check: LS2 variation and LS5 variation

This table reports the estimation results for intertemporal LS2 and intertemporal LS35. LS2 assumes that a subject updates

her belief by weighting between the Bayesian reference and the one-period lagged belief. The intertemporal version of LS2 is

modeled such that the weight parameter γt is homogeneous across subjects but time-variant. The OLS estimation is based on

equation (48). LS5 assumes that a subject upwards (downwards) adjusts her belief if a white (black) draw is observed. Such

adjustment is proportional to the distance between her current belief and extreme scenario. The intertemporal version of LS5

is modeled such that the adjustment parameters δw,t and δb,t are homogeneous across subjects but time-variant. The OLS

estimation is based on equation (49). Two regressions are run based on full sample and rational sub-sample, respectively. The

rational sub-sample only include the rational belief updates. Rational belief updates, as defined, are those guess game entries

whiteit such that whiteit ≥ whitei,t−1 if a white draw is observed at the end of period t− 1, and whiteit ≤ whitei,t−1 if a black

draw is observed at the end of period t− 1. The results of γ̂t (δ̂w,t and δ̂b,t) over t are reported in LS2 columns (LS5 column).

LS2 LS5

γ̂t γ̂t δ̂w,t δ̂b,t δ̂w,t δ̂b,t

t=2 0.040 0.177*** 0.029 0.053 0.188*** 0.165***

(0.048) (0.043) (0.075) (0.083) (0.059) (0.061)

t=3 0.512*** 0.429*** 0.136** 0.0192 0.196*** 0.123*

(0.092) (0.077) (0.061) (0.093) (0.042) (0.066)

t=4 0.328*** 0.375*** 0.085 0.0892 0.181*** 0.213***

(0.108) (0.091) (0.087) (0.088) (0.061) (0.067)

t=5 0.726*** 0.614*** 0.117 0.220*** 0.193*** 0.324***

(0.149) (0.128) (0.083) (0.059) (0.061) (0.043)

t=6 0.980*** 0.892*** 0.508*** 0.157** 0.509*** 0.217***

(0.106) (0.089) (0.088) (0.074) (0.058) (0.052)

t=7 0.854*** 0.617*** 0.137** 0.292*** 0.159*** 0.351***

(0.135) (0.113) (0.056) (0.073) (0.038) (0.052)

t=8 0.538*** 0.538*** 0.184** 0.074 0.214*** 0.137**

(0.112) (0.102) (0.073) (0.080) (0.051) (0.056)

t=9 0.880*** 0.836*** 0.145*** 0.245***

(0.142) (0.121) (0.053) (0.039)

t=10 0.524*** 0.389*** 0.120* 0.092 0.157*** 0.147**

(0.160) (0.133) (0.064) (0.105) (0.045) (0.073)

t=11 0.835*** 0.828*** 0.157* 0.213*** 0.189*** 0.258***

(0.137) (0.109) (0.082) (0.061) (0.059) (0.043)

t=12 0.692*** 0.632*** 0.129** 0.101 0.177*** 0.140**

(0.175) (0.154) (0.058) (0.093) (0.042) (0.064)

t=13 0.023 0.221 0.066 0.028 0.078 0.115*

(0.194) (0.172) (0.074) (0.079) (0.050) (0.061)

t=14 0.532*** 0.764*** 0.098 0.095 0.141** 0.173***

(0.152) (0.136) (0.084) (0.065) (0.063) (0.050)

t=15 0.807*** 0.360** 0.007 0.056 0.144 0.106**

(0.173) (0.152) (0.130) (0.062) (0.098) (0.043)

t=16

Sample choice full sample rational sample full sample rational sample

N 574 456 574 456

R2 0.384 0.486 0.192 0.52

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 15: Robustness check: LS5 variation

This table summaries the estimated parameters built on two variations of LS5. LS5 assumes that a subject

upwards (downwards) adjusts her belief if a white (black) draw is observed. Such adjustment is proportional to

the distance between one’s current belief and the extreme scenario, governed by δw and δb, respectively. δw and

δb are assumed to be time-invariant and homogeneous across subjects. POLS is applied to equation (50). The

regression results are reported in column (1) (without market FE) and column (2) (with market FE). Column

(3)(4) further control for the one-period lagged market traded price. POLS is applied to equation (51). The

regression results are reported in column (3) (without market FE) and column (4) (with market FE).

Dependent variable: Belief adjustment: whitei,t − whitei,t−1

(1) (2) (3) (4)

δ̂w 0.136*** 0.120*** 0.113*** 0.109**

(0.020) (0.026) (0.041) (0.048)

δ̂b 0.129*** 0.152*** 0.231*** 0.240***

(0.019) (0.027) (0.046) (0.052)

δ̂p 0.083* 0.073

(0.045) (0.046)

market FE No Yes No Yes

N 602 602 392 392

R2 0.135 0.138 0.169 0.171

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
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Figure 1: Screen display of the guess game

This figure displays the computer screen a subject sees when she plays the guess game. A subject inserts

a integer between zero and 100 (inclusive) to announce her guess about the proportion of the white balls in

the ambiguous urn. Draws with replacement are implemented from the ambiguous urn as the source of new

information in order to permit learning. The play goes as 1 guess game + 1 draw, and this 1+1 pack is played by

15 times. In Session II and III, one extra guess game is played after the 15th draw. The previous draw history,

if any, is displayed on the screen for subjects’ reference. Figure (a) is the screen display of the very first guess

game; Figure (b) is the screen display of the guess game when five (as an example) draws are implemented.

Inactivity is not allowed. Time restriction does not apply.

(a) Guess game at t=1

(b) Guess game at t=6
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Figure 2: Guess game entry and draw history: by market

The diagram illustrates the market-average guess game entry, whitemt = 1
Nm

∑
i whiteit, and the market-specific

draw history. whiteit is the guess game entry of subject i in period t, the subjective belief about the number

of the white balls in the ambiguous urn. 15 draws are implemented in each market independently. The shaded

column (located in period t ≥ 2) represents that a white draw is observed at the end of previous period t− 1,

therefore the beliefs inside the shaded columns are reached just after the relevant subjects observe this white

draw. Analogously, the non-shaded column (located in period t ≥ 2) represents that a black draw is observed

at the end of previous period t − 1, and the beliefs inside the non-shaded columns are reached just after the

relevant subjects observe this black draw. The beliefs in period 1 are reached before any draw is implemented.
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Figure 3: Examples of beta-distribution: PDF

This diagram illustrates the PDFs of beta-distributions with shape parameter bundle (α, β) = (2, 2); (3, 3); (1, 5); (5, 1); (3, 5); (5, 3),

respectively. A uniform distribution is also displayed in the diagram as a reference, which is equivalent to the beta-distribution if

(α, β) = (1, 1)
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Figure 4: LS3: distribution of the initial prior

These diagrams illustrate the estimation results of the initial priors described in LS3. LS3 assumes that a subject starts with a

beta-distributed initial prior and update it by employing the Bayes rule. The shape of the initial prior is characterized by parameter

bundle (αi, βi). Using the guess game entries, we estimate subject-specific (αi, βi) bundles based on equation (27)-(29). α̂i and β̂i

are restricted α̂i, β̂i ≥ 1, . Diagram (a) illustrates the distribution of the 41 pairs of (α̂i, β̂i). The size of the bubble represents the

frequency of (α̂i, β̂i) estimated at this value. Diagram (b) illustrates the PMFs of the initial prior recovered from (α̂i, β̂i) based on

equation (16) and (30). Sample size N = 41.

(a) Distribution of (α̂i, β̂i)
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(b) PMF of the initial prior: recovered from (α̂i, β̂i)
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Figure 5: LS4: distribution of the initial prior

These diagrams illustrate the estimation results of the initial priors described in LS4. LS4 assumes that a subject starts with

a beta-distributed initial prior, employs the Bayes rule to update it (obtaining the posteriors), and adjusts her belief using the

posterior as a reference. The shape of the initial prior is characterized by parameter bundle (αc
i , βc

i ). We estimate subject-specific

(αc
i , βc

i ) bundles based on equation (32), together with the responsiveness parameter γc. α̂c
i and β̂c

i are restricted α̂c
i , β̂

c
i ≥ 1,

. Diagram (a) illustrates the distribution of the 40 pairs of (α̂c
i , β̂

c
i ). The size of the bubble represents the frequency of (α̂c

i , β̂
c
i )

estimated at this value. Diagram (b) illustrates the PMFs of the initial prior recovered from (α̂c
i , β̂

c
i ) using equation (16) and (30).

Sample size N = 40. One sample drops out since she never updates her belief and thus (αc
i , βc

i ) cannot be estimated.

(a) Distribution of (α̂ci , β̂
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Figure 6: Goodness of fit: LS1-LS5

This diagram illustrates the absolute differences between the factual belief updates (the guess game entry whiteit) and the belief

updates simulated by one of the five learning strategies (LS1-LS5). It checks the goodness of fit of LS1-LS5. Five learning strategies

are developed to capture subjects’ belief update dynamics. LS2 assumes that a subject updates her belief by weighting between the

Bayesian reference (Bayesian updates with uniformly distributed initial prior) and her current belief. LS3 assumes that a subject

starts with a beta-distributed prior and employs the Bayes rule to update her belief. LS4 assumes that a subject update her belief by

weighting between the Bayesian reference (Bayesian updates with beta-distributed initial prior) and her current belief. LS5 assumes

that a subject upwards (downwards) adjusts her belief if a white (black) draw is observed, proportional to the maximum possible

adjustment along the upward (downward) direction. The absolute difference diff(guess, LS1)t-diff(guess, LS5)t are computed by

equation (34)-(38)). These results corresponds with the diff columns in Table 9.
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Figure 7: Speed of convergence of LS1-LS5

This figure illustrates how fast one belief update process converges to a constant number. The five belief updates generated by five

different learning strategies are considered, respectively. For a given learning strategy (LS1-LS5), the belief adjustments between

every two neighboring periods of subject i are first computed based on equation (39), and then averaged over all subjects. The

results are illustrated by the line Diff(LS1) t- Diff(LS5) t, respectively. As a reference, the belief adjustment based on factual guess

game data is computed by equation (41)-(42) and illustrated by the red solid line Diff(guess) t
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Figure 8: Ranking of LS by subject

This diagram illustrates the by-subject ranking of the five learning strategies, measured by the root mean squared error (RMSE).

RMSE is used to quantify, for a given subject, the explanatory power of a given LS to her factual belief updates. The lower the

RMSE is, the better the corresponding LS explains the factual belief updates. All RMSEs are computed based on equation (43).

Subject 22 has no entry since he/she never updates the belief.
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Figure 9: Initial prior distributions of six benchmark strategies B1-B6

This diagram illustrates the PMF of six benchmark strategies B1-B6. B1 has a uniformly distributed prior (the blue solid line). B2

illustrates a symmetric triangle-shape prior; B3-B6 illustrate four priors which are characterized by beta-distribution with various

shape parameter values. B3 sets α = β = 2; B4 sets α = β = 3; B5 sets α = β = 10; B6 sets α = β = 50
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Figure 10: Pessimism/optimism of subjects: in comparison with benchmark B1-B6

Diagram (a) illustrates the absolute difference between the factual guess game entries and six benchmark strategies (B1-B6),

respectively. All benchmark strategies employ Bayes rule to update beliefs. They differ from each other only in terms of the

initial prior. B1 is constructed with a uniform distribution. B2 assumes a symmetric triangle-shaped initial prior distribution (see

Figure 9); B3-B6 assumes the initial priors characterized by the beta-distribution with α = β = 2, 3, 10, 50, respectively. The belief

updates of B1-B6 are computed by equation (44)-(45). The per period average absolute difference diff(guess, B1)t-diff(guess, B6)t

are computed by equation (46). sd.columns report the corresponding standard deviation. The absolute difference can be interpreted

as the goodness of fit of B1(· · · B6) when regressing the guess game responses. The illustration corresponds with the results in

Table 13 Panel A.

Diagram (b) illustrates the exact differences between the factual guess game entries and the six benchmark strategies (B1-B6),

respectively, computed by equation (47). sd.columns report the corresponding standard deviation. The exact difference can be

interpreted as the pessimism/optimism of subjects, comparing with the chosen benchmark (B1 · · · B6). Negative value indicates, on

average, lower value of the updates (towards zero) than the benchmark value, hence implying pessimism. Positive values, optimism.

The illustration corresponds with the results in Table 13 Panel B.

(a) Goodness of fit: absolute difference between guess games responses
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