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The theoretical review of the last femtoscopy results for the systems created in ultrarelativistic 𝐴 + 𝐴, 𝑝 + 𝑝, and 𝑝 + 𝑃𝑏 collisions
is presented. The basic model, allowing to describe the interferometry data at SPS, RHIC, and LHC, is the hydrokinetic model.
The model allows one to avoid the principal problem of the particlization of the medium at nonspace-like sites of transition
hypersurfaces and switch to hadronic cascade at a space-like hypersurface with nonequilibrated particle input. The results for pion
and kaon interferometry scales in 𝑃𝑏+𝑃𝑏 and𝐴𝑢+𝐴𝑢 collisions at LHC and RHIC are presented for different centralities.The new
theoretical results as for the femtoscopy of small sources with sizes of 1-2 fm or less are discussed.The uncertainty principle destroys
the standard approach of completely chaotic sources: the emitters in such sources cannot radiate independently and incoherently.
As a result, the observed femtoscopy scales are reduced, and the Bose-Einstein correlation function is suppressed. The results are
applied for the femtoscopy analysis of 𝑝 + 𝑝 collisions at √𝑠 = 7TeV LHC energy and 𝑝 + 𝑃𝑏 ones at √𝑠 = 5.02TeV. The behavior
of the corresponding interferometry volumes on multiplicity is compared with what is happening for central 𝐴 + 𝐴 collisions. In
addition the nonfemtoscopic two-pion correlations in proton-proton collisions at the LHC energies are considered, and a simple
model that takes into account correlations induced by the conservation laws and minijets is analyzed.

1. Introduction

The two-particle correlation femtoscopy of identical particles
allows one to analyze the space-time structure of a particle
emission from the systems created in heavy ion, hadron
and lepton collisions (for recent reviews see, e.g., [1–3]).
The femtoscopy method, which is based on the Bose-
Einstein or Fermi-Dirac interference of identical particles,
has been proposed first in [4–7] for measurements of the
geometrical sizes and shapes of the interaction region in
hadronic collisions. Then it has been developed in [8–14] as
a tool for a study of rapidly expanding fireballs formed in
ultrarelativistic heavy ion collisions. Despite the extremely
small sizes of such systems (the order of the value is around
10

−14m), they have a pronounced inhomogeneous structure.
The generalized treatment of the interferometry measure-
ments asserts that the measured scales—the interferometry
radii—are associated just with the homogeneity lengths in
the system [15–18]. Only in the very particular case of a

finite homogeneous system such lengths correspond to the
total geometrical sizes, but normally they are smaller than
the latter. The interferometry scanning of femtosystems at
various total momenta of pion pairs allows one to analyze the
homogeneity lengths related to different space-time regions
of the expanding fireball [11, 12, 17, 18]. An understanding
of interferometry in terms of the homogeneity lengths, as
opposed to the simple-mind geometrical picture, provides
explanation to some, at first sight paradoxical, results at
RHIC.

The long-term study of the peculiarities of the interfer-
ometry scales behavior in heavy ion collisions, in particular,
the so-called RHIC HBT puzzle [19–21], relatively small
observed radii and close to unity ratio of the two transverse
femtoscales, helps much in clearing up the underlying prop-
erties of the matter created in these processes. The physical
conditions explaining the RHIC HBT puzzle are [22–28] a
relatively hard EoS because of a crossover transition (instead
of the 1st order one) between quark-gluon and hadron
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phases, the presence of prethermal anisotropic transverse
flow developed to thermalization time, and an “additional
portion” of the transverse flow caused by the shear viscosity
effect and fluctuations of the initial conditions. An account
for these factors gives the possibility to describe well the
hadron spectra together with the femtoscopy data within
a realistic freeze-out hydrokinetic model (HKM) with a
gradual decay of the fluid into observed particles [28–30].

Soon after the first Large Hadron Collider (LHC) heavy
ion results were received, it became evident that the hydrody-
namic picture of the collision processes, confirmed at RHIC,
is clearly seen also at much higher energy. This conclusion is
based on the two classes of observables.The first one is related
to the azimuthal anisotropy of particle spectra expressed
basically through their second harmonics or V

2

coefficients.
The obtained LHC results for the transverse momentum
dependence of V

2

(𝑝
𝑇

) at a given centrality bin (here and below
for the quantities depending on one particle momentum 𝑝

𝑇

means the transverse momentum of one particle, whereas
for the pair quantities 𝑝

𝑇

means the average pair transverse
momentum, 𝑝

𝑇

= (𝑝
1𝑇

+ 𝑝
2𝑇

)/2) were found to be similar
to the ones at RHIC, except for the higher momentum range
at LHC [31]. This is the evidence of the same hydrodynamic
mechanism of the anisotropy formation as at RHIC.The sec-
ond type of observables deals with the direct measurements
of the space-time structure of nucleus-nucleus collisions by
means of the correlation femtoscopy. The hydrodynamic
predictions [32] for 𝑝

𝑇

behavior of the interferometry radii at
the LHC energies were confirmed by the ALICE experiment
[33]. The most impressive hydrodynamic prediction [28, 34],
that the ratio of the two transverse interferometry radii, out
to side, will drop in the whole 𝑝

𝑇

-interval with increasing
collision energy and will reach a value close to unity at the
LHC, has been discovered experimentally [33].

However, quantitative application of the hydrodynamic
approach is a nontrivial problem, because it depends on
both the initial conditions for the continuous matter evolu-
tion and final state treatments for the particles production.
The hydrokinetic model (HKM) [23, 29, 35] allows one to
apply hydrodynamics also at the late nonequilibrated stage
of gradual system decay, where it can be matched, in its
hybrid version (hHKM) [30, 36], with the ultrarelativistic
quantum molecular dynamics (UrQMD) cascade [37, 38]. A
utilization of the UrQMD ensures an adequate description of
the very rarefied stage of matter evolution and transition to
particle free-streaming regime. It is especially important at
the LHC energies because of relatively prolonged duration of
the interacting nonequilibrated stage. It was shown that the
hydrokinetic approach without such correction of later-time
evolution results in overestimated effective temperature of
proton spectra at RHIC energy and insufficient rise of inter-
ferometry radii and volume from top RHIC to LHC energies
[36]. It is important to note that utilization of hydrokinetic
model in between pure hydrodynamics and UrQMD gives
the possibility to switch correctly to the UrQMD cascade at
any space-like hypersurface, in particular, at isochronic one.
It allows one to avoid problems that usually appear in hybrid
models matching hydrodynamics with hadronic cascade
at hadronisation hypersurface. The latter typically contains

nonspace-like sectors that cannot be correctly accounted for
in initial conditions for hadronic cascade model.

In the recent paper [39] the correlation femtoscopy anal-
ysis is going beyond the model of independent particle emit-
ters, which is fairly good for the systems formed in heavy ion
collisions but not for small systems (with sizes about 1 fm) cre-
ated in𝑝 + 𝑝,𝑝 + 𝑃𝑏, and 𝑒+ + 𝑒− collisions. It is found that the
uncertainty principle leads to (partial) indistinguishability
of closely located emitters that fundamentally impedes their
full independence and incoherence. The partial coherence of
emitted particles is because of the quantum nature of particle
emission and happens even if there is no specific mechanism
to produce a coherent component of the source radiation.The
found effect leads to reduction of the interferometry radii and
suppression of the Bose-Einstein correlation functions. We
review briefly the observed results and their application [40]
to 𝑝 + 𝑝 collisions at√𝑠 = 7TeV LHC energy.

As for the elementary particle collisions, like 𝑝 + 𝑝, there
is no unambiguous interpretation of the HBT radii 𝑝

𝑇

-
dependence. It became clear [41–43] that for relatively
small systems the additional two-particle correlations affect
the correlation functions in the kinematic region where
quantum statistical (QS) and final state interaction (FSI)
correlations are usually observed. These correlations can be
induced by total energy and momentum conservation laws
(see, e.g., [44, 45]) and minijets [39, 46, 47]. As opposed
to the QS and FSI correlations, which are familiar from
the correlation femtoscopy method and so are sometimes
called femtoscopy correlations, these correlations are not
directly related to the spatiotemporal scales of the emitter
and are therefore called nonfemtoscopic correlations. Since
the latter noticeably affects correlation functions for small
systems, the interferometry radii extracted from the complete
correlation function in 𝑝 + 𝑝 collisions depend strongly on
the assumption about the so-called correlation baseline—the
strength and momentum dependence of the nonfemtoscopic
correlations [41–43]. It has an influence on the interpretation
of the momentum dependence of the interferometry radii
in 𝑝 + 𝑝 collisions, where the possibility of hydrodynamic
behavior of matter is questionable.

2. Escape Function Dynamics of
Expanding Medium Particlization

Let us start with discussion of hydrokinetic approach to 𝐴 +
𝐴 collisions and explain how it helps switch from hydro-
dynamical expansion to molecular dynamics of hadronic
particles. It was proposed in [35] to describe the hadronic
momentum spectra in 𝐴 + 𝐴 collisions basing on the escape
function of particles which are gradually liberated from
hydrodynamically expanding systems. The escape function,
first introduced in hydrodynamic framework in [48, 49]with-
out a resort to the Boltzmann kinetics, was utilized in [35]
within the Boltzmann equations in a specific approximation
based on hydrodynamic approach. It was shown that such
a picture corresponds to a relativistic kinetic equation with
the relaxation time approximation for the collision term,
where the relaxation time tends to infinity, 𝜏rel → ∞, when
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𝑡 → ∞, indicating a gradual transition to the free-streaming
regime. It is worth noting that the hydrodynamics at fairly
large times play no role in formation of locally anisotropic
particle spectra.

The Boltzmann equation for the distribution function
𝑓(𝑥, 𝑝) in the case of no external forces has the form

𝑝
𝑖

𝑝0

𝜕𝑓 (𝑥, 𝑝)

𝜕𝑥𝑖
= 𝐹

gain
(𝑥, 𝑝) − 𝐹

loss
(𝑥, 𝑝) . (1)

The terms 𝐹gain and 𝐹loss are associated with number of par-
ticles which, correspondingly, came to point (𝑥, 𝑝) and
left this point because of collisions. Term 𝐹

loss
(𝑥, 𝑝) =

𝑅(𝑥, 𝑝)𝑓(𝑥, 𝑝) can easily be expressed in terms of the rate
of collisions of the particle with momentum 𝑝, 𝑅(𝑥, 𝑝) =

⟨𝜎Vrel⟩𝑛(𝑥). The term 𝐹
gain has, in general, more compli-

cated integral structure and depends on differential cross-
section.

The escape fraction, 𝑓𝜎esc(𝑥, 𝑝), describes the (probabilis-
tic) distribution of the particles that reaches the hypersurface
𝜎 without interactions. At asymptotic hypersurface 𝜎 where
times 𝑡 → ∞, the distribution function corresponds to free
quanta: 𝑓𝜎esc(𝑥, 𝑝) → 𝑓(𝑥, 𝑝). In general cases, which we will
need, when the space-like hypersurface 𝜎 is situated at the
final times, we define the escape function as

𝑓
𝜎

esc (𝑥, 𝑝) = P
𝜎

(𝑥, 𝑝) 𝑓 (𝑥, 𝑝) , (2)

whereP
𝜎

(𝑥, 𝑝) is the escape probability for particle to reach
freely the hypersurface 𝜎 at some point (𝑡

𝜎

, x
𝜎

) starting from
the point (𝑡, x). If the point 𝑥 belongs to this hypersurface 𝜎,
thenP

𝜎

(𝑥, 𝑝) = 1, and so

𝑓
𝜎

esc(𝑥, 𝑝)|𝜎 = 𝑓(𝑥, 𝑝)|𝜎. (3)

The escape probability is the relativistic invariant and can be
expressed explicitly through the rate of collisions along the
world line of free particle with momentum 𝑝:

P
𝜎

(𝑥, 𝑝) = exp(−∫
𝑡

𝜎

𝑡

𝑑𝑡𝑅 (𝑥, 𝑝)) , (4)

where 𝑥 ≡ (𝑡, x
𝜎

+ (p/𝑝
0

)(𝑡 − 𝑡
𝜎

)). It satisfies the differential
equation

1

P
𝜎

(𝑥, 𝑝)

𝑝
𝜇

𝑝0

𝜕

𝜕𝑥𝜇
P

𝜎

(𝑥, 𝑝) = 𝑅 (𝑥, 𝑝) =
𝐹
loss
(𝑥, 𝑝)

𝑓 (𝑥, 𝑝)
. (5)

It follows from (1) and (5) that

𝑝
𝜇

P0

𝜕

𝜕𝑥𝜇
𝑓
𝜎

esc (𝑥, 𝑝) = P
𝜎

(𝑥, 𝑝) 𝐹
gain

(𝑥, 𝑝) . (6)

The formal solution of (6) can be presented in the follow-
ing form:

𝑓
𝜎

esc (𝑥, 𝑝) = 𝑓
𝜎

esc (𝑥0, 𝑝)

+ ∫

𝑡

𝑡

𝜎
0
(x0)

𝑑𝑡


P
𝜎

(𝑥


, 𝑝) 𝐹
gain

(𝑥


, 𝑝) ,

(7)

where 𝑥 = (𝑡, x), 𝜎 : 𝑡 = const, 𝑓𝜎esc(𝑥0, 𝑝) with 𝑥0 ≡ (𝑡𝜎0(x0),
x
0

= x+(p/𝑝
0

)(𝑡
𝜎

0

(x
0

)− 𝑡)) corresponds to the portion of the
system, which propagates without collisions until some time 𝑡
starting from initial hypersurface 𝜎

0

, 𝑥 ≡ (𝑡, x + (p/𝑝
0

)(𝑡


−

𝑡)).
The expression (7) for escape function 𝑓𝜎esc(𝑥, 𝑝) can be

explained in simple heuristic way as follows. Let us split the
distribution function at each space-time point into two parts:
𝑓(𝑥, 𝑝) = 𝑓

𝜎

int(𝑥, 𝑝) + 𝑓
𝜎

esc(𝑥, 𝑝), 𝑥 = (𝑡, x). The first part,
𝑓
𝜎

int(𝑥, 𝑝), describes the fraction of the system which will
continue to interact before reaching the hypersurface 𝜎. The
second fraction, 𝑓𝜎esc(𝑥, 𝑝), describes the particles that reach
the hypersurface𝜎without interactions. Denote again by𝑥 ≡
(𝑡


, x+(p/𝑝
0

)(𝑡


−𝑡)) the space-time point where the particle at
𝑥 with momentum 𝑝 would be, if it moved freely. Consider,
at each vicinity of the phase-space point (𝑥, 𝑝), the number
of particles that have escaped from the interacting system
during the time interval (𝑡, 𝑡 + 𝑑𝑡). First, this additional
portion of escaped particles can be produced only from the
interacting part of the system. Second, these particles are
only among particles that came to the phase-space vicinity
of the point (𝑥, 𝑝) just after the interaction during the time
𝑑𝑡

. Indeed, if some particles from the interacting part of
the system 𝑓int(𝑥



, 𝑝) do not interact during the given time
interval (𝑡, 𝑡 + 𝑑𝑡



), then they will interact without fail
at some future time; thus, they cannot contribute to the
additional portion of particles escaping during 𝑑𝑡.Therefore,
the additional contribution Δ𝑓

𝜎

esc(𝑥, 𝑝; 𝑡


), from the time
interval (𝑡, 𝑡 + 𝑑𝑡) to the distribution function 𝑓𝜎esc(𝑥, 𝑝), is
Δ𝑓

𝜎

esc(𝑥, 𝑝; 𝑡


) = P
𝜎

(𝑥


, 𝑝)𝐹
gain
(𝑥



, 𝑝)𝑑𝑡
 for 𝑡 < 𝑡 and is zero

for 𝑡 > 𝑡. HereP
𝜎

(𝑥


, 𝑝) is probability for any given particle
at point 𝑥 with momentum 𝑝 to reach without interaction
the hypersurface 𝜎. The summation of such contributions is
presented by (7), and the differential of this equation leads to
(6).

Utilization of the escape function for the momentum
spectra formation is based on (3) which can be used to
describe inclusive spectra of particles,

𝑝
0

𝑑𝑁

𝑑p
=⟨𝑎

+

𝑝

𝑎
𝑝

⟩, 𝑝
0

1

𝑝
0

2

𝑑𝑁

𝑑p
1

𝑑p
2

=⟨𝑎
+

𝑝

1

𝑎
+

𝑝

2

𝑎
𝑝

1

𝑎
𝑝

2

⟩, . . . , (8)

that are constructed in the standard way by means of the
averages of product of creation and annihilation operators.
Namely, on the hypersurface 𝜎out

⟨𝑎
+

𝑝

1

𝑎
𝑝

2

⟩ = ∫
𝜎out

𝑑𝜎
𝜇

(𝑥) 𝑝
𝜇 exp (𝑖𝑞𝑥) 𝑓esc (𝑥, 𝑝) , (9)

where 𝑝 = (𝑝
1

+ 𝑝
2

)/2, 𝑞 = 𝑝
1

− 𝑝
2

. Then, using
the Gauss theorem, (6) and (1) analytically continued to
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off-mass-shell four-momenta 𝑝, and taking into account that
𝜕
𝜇

(𝑝
𝜇 exp(𝑖𝑞𝑥)) = 0 for particles on mass shell, one can get

⟨𝑎
+

𝑝

1

𝑎
𝑝

2

⟩ = 𝑝
0

∫
𝜎

0

𝑑
3

𝜎
𝜇

(𝑥
0

) 𝑝
𝜇

𝑓
𝜎

esc (𝑥0, 𝑝) 𝑒
−𝑖𝑞𝑥

0

+ 𝑝
0

∫

𝜎

𝜎

0

𝑑
4

𝑥P
𝜎

(𝑥, 𝑝) 𝐹
gain

(𝑥, 𝑝) 𝑒
−𝑖𝑞𝑥

,

(10)

⟨𝑎
+

𝑝

1

𝑎
𝑝

2

⟩ = 𝑝
0

∫
𝜎

0

𝑑
3

𝜎
𝜇

(𝑥
0

) 𝑝
𝜇

𝑓 (𝑥
0

, 𝑝) 𝑒
−𝑖𝑞𝑥

0

+ 𝑝
0

∫

𝜎

𝜎

0

𝑑
4

𝑥

× [𝐹
gain

(𝑥, 𝑝) − 𝐹
loss
(𝑥, 𝑝)] 𝑒

−𝑖𝑞𝑥

,

(11)
respectively, where P

𝜎out
(𝑥, 𝑝) is the probability for particle

to reach the hypersurface 𝜎 from the space-time point 𝑥,
𝑓
𝜎

esc(𝑥0, 𝑝) = 𝑓(𝑥0, 𝑝)P𝜎

(𝑥
0

, 𝑝) is a portion of the particles at
the initial hypersurface 𝜎

0

that reach hypersurface 𝜎moving
freely without interactions, 𝑓(𝑥

0

, 𝑝) is the distribution func-
tion at 𝜎

0

, and 𝑝0P𝐹gain is the Lorentz-invariant emission
density.

The hydrokinetic approach is based on (10) where one uti-
lizes the escaping function dynamics (6) for finding solution
of the Boltzmann equation at hypersurface 𝜎 and calculation
there the particle momentum spectra. The escaped functions
and escape probabilities are calculated within the local equi-
librium approximation for the term 𝐹

gain and the collision
term 𝑅. The latter is defined from the particle cross-sections
which are similar to those in the UrQMD. The equation of
state is supposed to be the same as in the Boltzmann hadron
gas with changing in time chemical composition. The evo-
lution of the parameters, such as the temperature, chemical
potentials, particle concentrations, and collective velocities
in the hadron-resonance gas, are defined by the equations
of relativistic hydrodynamics. All the details are presented
in [23, 29, 35]. The resulting distribution function at 𝜎,
found from the integral form (7) of the equation for escaped
functions, is, of course, far from the local equilibrium one.

In themodels like UrQMD, distribution function dynam-
ics (1) is utilized for calculation of the momentum spectra in
accordance with (11). Both approaches coincide in the case of
free-streaming, when 𝐹gain

(𝑥, 𝑝) = 𝐹
loss
(𝑥, 𝑝) ≡ 0 and there-

fore P
𝜎

(𝑥
0

, 𝑝) ≡ 1, then the second terms in (10), (11) are
equal to zero and the first terms are coincided (note that it is
not the case when 𝐹gain

(𝑥, 𝑝) = 𝐹
loss
(𝑥, 𝑝) ̸= 0. Then distribu-

tion function dynamics (1) is still as at a free-streaming, while
the escaping function dynamics (6) becomes nontrivial). It is
worth noting that if the initial hypersurface 𝜎

0

has nonspace-
like sites, Δ𝜎

𝜇

(𝑥
1

), then for some momenta 𝑝
1

we have
𝑝
𝜇

1

Δ𝜎
𝜇

(𝑥
1

) < 0, and so these parts give the negative contribu-
tion to the particle number density according to (10) and (11).
It happens because the particles are going inside the hyper-
surface 𝜎

0

near the point 𝑥
1

. This negative contribution will

1

2

𝜎

𝜎

𝜎0

𝜎0 𝜎in

x1

Figure 1: The cartoon of the particlization at the hypersurface 𝜎
0

(solid line) and spectra formation at 𝜎 (dashed line). The very
initial system forms at the hypersurface 𝜎

𝑖𝑛

(double line) and then
evolves. The Gauss theorem in (10) and (11) is applied to enclosed
hypersurface 𝜎

0

⊕ 𝜎. In the case of large opacity 𝑓𝜎

esc(𝑥1, 𝑝1) ≈ 0 for
particle 1, also is small for particle 2, and so 𝑝

𝜇

Δ𝜎
𝜇

0

(𝑥
1

)𝑓
𝜎

esc(𝑥1, 𝑝) ≈

0, while for the distribution function 𝑓(𝑥
1

, 𝑝) the similar value
𝑝
𝜇

Δ𝜎
𝜇

0

(𝑥
1

)𝑓(𝑥
1

, 𝑝) is not zero, and for 𝑝 = 𝑝
1

it is negative if Δ𝜎
0

is a nonspace-like site of the hypersurface 𝜎
0

.

be compensated when the particle crosses the hypersurface
again in another point 𝑥

2

of the hypersurface to go out. See
the possible trajectory of the particle 1 in Figure 1. Of course,
theGauss theorem applied to the enclosed hypersurface𝜎

0

⊕𝜎

guarantees the correct positive result for particle momentum
spectra, nomatter how complicated structure 𝜎

0

has and how
many times the negative contributions happen. As for the
external hypersurface 𝜎, it can be chosen as a space-like one.

Typically at a modeling of 𝐴 + 𝐴 collisions the initial
conditions for the Boltzmann equations are selected at the
hypersurface𝜎

0

close to the hadronisation hypersurface. Such
a hypersurface is not everywhere a space-like one, but at sites
with 𝑝𝜇Δ𝜎

𝜇

< 0 particles cannot go deeply inside because
of high opacity (see Figure 1). It is taken into account in the
escape function formalism, where the escape probability for
the particles with momentum directed into the fluid is about
zero at these sites,P

𝜎

(𝑥
0

, 𝑝) ≈ 0, and so the escape function
is about zero, 𝑓𝜎esc(𝑥0, 𝑝) ≈ 0, resulting in suppression of
the negative contributions to particle momentum density in
(10) from the 𝜎

0

hypersurface. Note that within the escape
function formalism a transition from continuous medium to
particles is described as a gradual process, because escape
function and escape probability can be defined for both
sides of the hypersurface 𝜎

0

(in other words, hadronisation
process is treated as gradual in the escape function dynamics,
and the very initial system state is defined, in fact, on a
space-like hypersurface). The latter fact, accounting for (2),
implies the continuity of the distribution function through
𝜎
0

in accordance with Boltzmann kinetics (1). It means
that if it is the local equilibrium on the one side of the
hypersurface, it will be the same on the other side, no
matter whether they are space-like or nonspace-like sectors.
Then in (11), dealing with the full distribution function,
the negative contributions at the nonspace-like sites really
exist and have to be preserved to maintain true dynamics.
Summarizing, the hydrokineticmodel is based on continuous
behavior of the physical values. It implies a continuous
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behavior of the locally isotropic distribution function at any
parts of the hypersurface 𝜎

0

, including “bad” nonspace-like
sites. It is implemented through a continuous hydrodynamic
description of the matter crossing the 𝜎

0

that is utilized for
calculation of the escape probability and emission function.
Therefore no discontinuity in the energy and momentum
flows through 𝜎

0

arises. The hydrokinetic approach accounts
also for the smooth time behavior of the escape function
that forms the distribution function at some space-like
hypersurface 𝜎 that can be used then to provide the input of
the nonlocally equilibrium distribution function (the output
of HKM) to the UrQMD [30].

In cascade models, which solve the Boltzmann equation
in the form (11), one does not deal with the small fraction of
the particles that are already free at 𝜎

0

but brings into play the
distribution function𝑓(𝑥, 𝑝) itself for further numerical sim-
ulations of the collisions in the Boltzmann gas. Then one can
see from (11) that near the nonspace-like site at 𝑥

1

a negative
number of the particles with corresponding momenta 𝑝

1

has
to be “injected” (see Figure 1). Typically, to cure this dilemma
people just cut them in the full distribution function𝑓(𝑥

1

, 𝑝),
that leads to discontinuity of the energy and momentum
flows through the corresponding sites of 𝜎

0

[50]. Such a cut,
introduced through the Heaviside function Θ(𝑑𝜎

𝜇

𝑝
𝜇

) in the
Cooper-Frye prescription [51], destroys the basic equation
(11) where the negative contributions have to be preserved!
Also locally, it obviously violates the continuity of the particle
current 𝑛𝜇 = 𝑛𝑢

𝜇

: 𝜕
𝜇

𝑛
𝜇

(𝑥)
|Δ𝜎

0
(𝑥

1
)

̸= 0. The error of such
prescription is that it considers a decaying hadronic system
rather as a star, practically unlimited reservoir of emitted
photons/particles, while the hadronic medium formed in the
heavy ion collisions is a small compact holder of emitted
particles and it is rearranged when the system loses them
(back reaction).

The situation can be improved if one introduces some
model of the surface layer with the locally isotropic thermal
distribution that includes also the particles with momenta 𝑝

1

moving towards the nonspace-like sites where 𝑝𝜇
1

Δ𝜎
0

(𝑥
1

) <

0. These particles have to collide with the particles that
move from the inside of Δ𝜎

0

(𝑥
1

) to outside. The attempt to
substitute such real collisions inside the surface layer by the
elastic reflection from the moving (with the “velocity” of the
nonspace-like site) wall was performed in [52]. It results in
the specific combination of the Heaviside Θ-functions in the
Cooper-Frye formula and provides the local conservation
law for particles 𝜕

𝜇

𝑛
𝜇

(𝑥)
|Δ𝜎

0
(𝑥

1
)

= 0. Such a prescription is
utilized in the FAST MC Freeze-out Generator [53] and is
planned to be used in UrQMD [54]. However, the method
[52] ensures continuity of particle and energy flows but
not the momentum flow and so preserves discontinuity of
momentum-energy tensor at nonspace-like segments of 𝜎

0

[52].
Because of the difficulties in building the model of the

surface layer, one can use hydrokinetics, that does not deal
directly with the distribution function at 𝜎

0

but only with
the distributions of particles continuously escaping from
the hydrodynamically expanding matter and calculate a
nonequilibrated distribution function with (2) and (4) on

a space-like hypersurface 𝜎 where one can switch to UrQMD
cascade without troubles described.

Theoretical calculations, presented in the next section,
are performed in hybrid hydrokinetic model (hHKM) [30].
At the initial state the Monte-Carlo Glauber model of the
initial conditions is used (see [30]). After the thermalization
stage of the system’s evolution, the matter is supposed to be
chemically and thermally equilibrated, and its expansion is
described within perfect (2 + 1)𝐷 boost-invariant relativistic
hydrodynamics with the lattice QCD-inspired equation of
state in the quark-gluon phase [55] matched with chemi-
cally equilibrated hadron-resonance gas via crossover-type
transition. The hadron-resonance gas consists of 329 well-
established hadron states (according to Particle Data Group
compilation [56]) made of 𝑢, 𝑑, and 𝑠 quarks, including 𝜎-
meson (𝑓

0

(600)). With such an equilibrated evolution the
system reaches the chemical freeze-out isotherm with the
temperature𝑇ch = 165MeV.At the second stagewith𝑇 < 𝑇ch,
the hydrodynamically expanding hadron system gradually
loses its (local) thermal and chemical equilibrium, and
particles continuously escape from the system. This stage
is described within the hydrokinetic approach [35] to the
problem of dynamical decoupling. In hHKMmodel [30] the
hydrokinetic stage is matching with hadron cascade UrQMD
one [37, 38] at the isochronic hypersurface 𝜎 : 𝑡 = const
(with 𝑇

𝜎

(𝑟 = 0) = 𝑇ch) that guarantees the correctness of
the matching (see [29, 30] for details). In the latter case of
transition from the hydrokinetics to cascade, the following
distribution functions are used:

𝑓
𝑖

(𝜏, �⃗�, �⃗�) = 𝑓
𝑙.eq.
𝑖

(𝜏
0

, �⃗�
(𝜏

0
)

(𝜏) , �⃗�)

× exp(−∫
𝜏

𝜏

0

�̃�
𝑖

(𝑠, �⃗�
(𝑠)

(𝜏) , �⃗�) 𝑑𝑠)

+ ∫

𝜏

𝜏

0

𝑑𝜆 [𝑓
𝑙.eq.
𝑖

(𝜆, �⃗�
(𝜆)

(𝜏) , �⃗�)

× �̃�
𝑖

(𝜆, �⃗�
(𝜆)

(𝜏) , �⃗�)

+𝐺
decay
𝑖

(𝜆, �⃗�
(𝜆)

(𝜏) , �⃗�)]

× exp(−∫
𝜏

𝜆

[�̃�
𝑖

(𝑠, �⃗�
(𝑠)

(𝜏) , �⃗�)

+𝐷
𝑖

(𝑠, �⃗�
(𝑠)

(𝜏) , �⃗�)] 𝑑𝑠) .

(12)

The different terms in (12) correspond to the follow-
ing: �̃�

𝑖

(𝜆, �⃗�, �⃗�) is the collision rate of the 𝑖th sort of hadrons
with the rest of particles, 𝐺 decay

𝑖

(𝜆, �⃗�, �⃗�) is an income of
particles into the phase-space point owing to resonance
decays, and 𝐷

𝑖

(𝜆, �⃗�, �⃗�) is the decay rate of a given resonance
species. To calculate the collision rates, we assume meson-
meson, meson-baryon, and baryon-baryon cross-sections in
a way similar to the UrQMD code [37, 38].
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3. Femtoscopic Correlations in
Relativistic 𝐴 + 𝐴 Collisions

In the processes of multiparticle production the two-particle
correlation function is defined through the ratio of the one-
and two-particle (semi)inclusive spectra as follows:

𝐶 (𝑝
1

, 𝑝
2

) =
𝑝
0

1

𝑝
0

2

(𝑑𝑁/𝑑p
1

𝑑p
2

)

𝑝
0

1

(𝑑𝑁/𝑑p
1

) 𝑝
0

2

(𝑑𝑁/𝑑p
2

)
. (13)

Experimentally, the two-particle correlation function is
defined as the ratio of the distribution of particle pairs from
the same collision event to the distribution of pairs with
particles taken from different events. In heavy ion collisions
almost all the correlations between identical pions with low
relative momentum are due to quantum statistics and final
state interactions. As for the latter, in this review we suppose
that they are already extracted from the total correlation
function (the method is well known and has been proposed
in [57]).

The quantum-statistical enhancement of the pairs of
identical pions produced with close momenta was observed
first in𝑝+𝑝 collisions in 1959 [58]. It tookmore than a decade
to develop the method of pion interferometry microscope
based on the discovered phenomenon. This was done at
the beginning of 70 s by Kopylov and Podgoretsky [4–6].
Their theoretical analysis assumed the radiating source to
consist of independent incoherent emitters. In fact, such a
representation is used for a long time for the analysis of the
space-time structure of particle sources. For such chaotic
sources the four-point average in (8) can be decomposed in
the following sum of pair products:

⟨𝑎
+

𝑝

1

𝑎
+

𝑝

2

𝑎
𝑝

1

𝑎
𝑝

2

⟩ = ⟨𝑎
+

𝑝

1

𝑎
𝑝

1

⟩ ⟨𝑎
+

𝑝

2

𝑎
𝑝

2

⟩ + ⟨𝑎
+

𝑝

1

𝑎
𝑝

2

⟩ ⟨𝑎
+

𝑝

2

𝑎
𝑝

1

⟩ .

(14)

Then using (8) and (10) one can express the correlation
function (13) for chaotic sources

𝐶 (𝑝, 𝑞) = 1 +
∫ 𝑑

4

𝑥
1

𝑑
4

𝑥
2

𝑆 (𝑥
1

, 𝑝) 𝑆 (𝑥
2

, 𝑝) 𝑒
𝑖𝑞(𝑥

1
−𝑥

2
)

(∫ 𝑑4𝑥
1

𝑆 (𝑥
1

, 𝑝
1

)) (∫ 𝑑4𝑥
2

𝑆 (𝑥
2

, 𝑝
2

))

, (15)

where 𝑝 = (𝑝
1

+ 𝑝
2

)/2, 𝑞 = 𝑝
1

− 𝑝
2

, 𝑆(𝑥, 𝑝) is the emission
function; if 𝑓𝜎esc|𝜎

0

≈ 0, then 𝑆(𝑥, 𝑝) = 𝑝0𝐹gain
(𝑥, 𝑝)P

𝜎

(𝑥, 𝑝)

as it follows from (10) (in general case it includes in addition
the contribution from 𝜎

0

).
When calculating these femtoscopic correlation func-

tions in a quasiclassical particle production model (or event
generator) that produces particles without any quantum
correlations, the output of event generator is the list of particle
positions (at the point of their last interaction) and their
momenta, and 𝐶(𝑝, 𝑞) is equal to unity there. So one has
to construct in addition a numerical procedure to calculate
quantum-statistical correlations in accordance with (15). It is
done usually in a way that is similar to the final state inter-
action method: one takes outcome of a given classical event
generator and then constructs a numerical approximation
of (15) based on smoothness conditions [59]. This can be
done using the binning technique, also used in several event

generators [53, 60] including hHKM. One takes outcome of
a given distribution of the particle pairs in the bins according
to their relative momentum ⃗𝑞 and the average momentum of
the particle pair �⃗�. If one calculates the correlations arising
only due to the Bose-Einstein enhancement, for example,for
pion pairs, the corresponding numerical equivalent of (15) at
each transverse 𝑝

𝑇

bin looks like

𝐶 ( ⃗𝑞)

=

∑
𝑖

∑
𝑗 ̸= 𝑖

𝛿
Δ

( ⃗𝑞 − ⃗𝑝
𝑖

+ ⃗𝑝
𝑗

)(1 + cos ((𝑝
𝑗

− 𝑝
𝑖

)(𝑥
𝑗

− 𝑥
𝑖

)))

∑
𝑖

∑
𝑗

𝛿
Δ

( ⃗𝑞 − ⃗𝑝
𝑖

+ ⃗𝑝
𝑗

)

,

(16)

where 𝛿
Δ

(𝑥) = 1 if |𝑥| < Δ𝑝/2 and 0 otherwise, with Δ𝑝
being the bin size in histograms. We decompose the relative
momentum ⃗𝑞 into (𝑞out, 𝑞side, 𝑞long) projections and perform
analysis in the longitudinal center of mass system (LCMS),
where themean longitudinalmomentumof the pair vanishes.
Evaluation according to (16) can be done with the help of 3D
histograms, implemented in ROOT library classes [61], and
in hHKM two separate histograms are used to calculate the
numerator and the denominator of (16), which are divided
one by another to get the correlation function.

Some remarks to such a receipt are in order here. First,
note that this procedure does not change single-particle
momentum spectra, while one can expect that they will be
changed if the quantum statistics were taken into account
in the event generators. Even if hydrodynamic evolution
accounts for the quantum statistics through corresponding
EoS and gives Bose-Einstein and Fermi-Dirac heat distribu-
tions as the input for event generator like UrQMD, the subse-
quent quasiclassical UrQMD hadronic cascade destroys the
true quantum-statistical picture. Unfortunately, an account
for the quantum statistics is still not realized for realistic event
generators because, in particular, any direct account of quan-
tum statistics is very time consuming (for current develop-
ments and recent attempts to overcome this problem see [62,
63] and references therein).Therefore, the theoretical analysis
of the quantum effects at multiparticle production, that goes
beyond the simple prescription (16), is still very important.
Some significant results have been already obtained. One of
them concerns quantum corrections to spectra and correla-
tions in the case when homogeneity length 𝜆 in the system
is less than the particle wavelength, 𝜆 < 1/𝑝

0 [15, 16, 64,
65]—this drastically changes the form of the spectra and
BE correlations. The other is the multibosonic effects when
particle number is close to the Bose-Einstein condensation
[65–67]—this leads to decrease of the interferometry radii.
Also, the effects of coherence for femtoscopic correlations
of charged particles were considered in detail in [68] based
on the formalism of generalized coherent states—it gives the
tool for the correlation search of a coherence component
by measuring the correlations between like and oppositely
charged pions. One more quantum effect, which also cannot
be taken into account by prescription (16), is connected with
the uncertainty principle and is analyzed very recently in
[39, 40]. We will discuss this effect in Sections 4 and 5.
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Figure 2: HBT radii of 𝜋− pairs at 200AGeV RHIC energy, calculated in different models and compared to experimental data from the
STAR [69] and PHENIX [70] collaborations. Dashed lines correspond to the hydrokinetic procedure of matching (hHKM), while solid lines
stand for the “hybrid” model case. The results for the “hybrid-isochronic” model are presented for central 𝑐 = 0–5% events with a gray solid
line.The ICs used for hydrodynamic evolution: 𝜏

0

= 0.1 fm/c with zero initial transverse flow and the MC-Glauber profiles for initial entropy
density.

The resulting correlation function obtained with (16) is
fitted with the Bertsch-Pratt parameterization

𝐶 (𝑞) = 1 + 𝜆 ⋅ exp (−𝑅2out𝑞
2

out − 𝑅
2

side𝑞
2

side

− 𝑅
2

long𝑞
2

long − 𝑅
2

os𝑞out𝑞side

−𝑅
2

sl𝑞side𝑞long − 𝑅
2

ol𝑞out𝑞long) .

(17)

Next, we show some results for the correlation radii
from hHKMmodel. Following the experimental cuts (which
are somewhat different for STAR, PHENIX, and ALICE
Collaborations), we consider pions in central pseudorapidity
region |𝜂| < 0.5. Owing to longitudinal boost invariance
and approximate azimuthal symmetry for the most central
collisions which we consider for the present HBT studies, the
cross-terms 𝑅2os, 𝑅

2

sl, and 𝑅
2

ol are neglected.

The comparison of interferometry radii, calculated in
hHKM with the experimental data from √𝑠 = 200GeV
𝐴𝑢 + 𝐴𝑢 collisions at RHIC, is shown in Figure 2. The
parameters of the model are chosen to reproduce the basic
set of observables: charged hadron density at midrapidity as
a function of collision centrality [30]. Note that PHENIX
presented its results for the 0–30% centrality bin, which
corresponds to a smaller average multiplicity than the 0–
5% STAR bin; thus PHENIX radii lie slightly below the ones
calculated by STAR; in our model we observe the same
tendency with the initial conditions set for 0–30% centrality.

From Figure 2 one can conclude that both the hHKM
and the “hybrid” cases describe the data quite satisfactory,
except for HBT radii for 30–50% centrality, which are clearly
underestimated (and here we note that the hHKM results for
40–50% centrality, which describe well the hadron spectra
and flow [30], seem to correspond to smaller effective system
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Figure 3: HBT radii of 𝜋− pairs for the most central events, calculated in the hHKMmodel and compared to experimental data from ALICE
[33]. Dashed lines correspond to hydrokinetic procedure of matching, while solid lines stand for the “hybrid” model case. Corresponding
HBT radii for top RHIC energy are shown for comparison purposes.

size). The shear viscosity should also reduce the 𝑅out/𝑅side
ratio because it enhances the transverse flow, and the corre-
sponding influence on HBT radii is shown in [71] (however
the model presented in [71] does not include cascade stage;
thus only resonance decays are considered after the hydro-
dynamic freezeout at isothermal hypersurface). As for the
“hybrid-isochrone” model, it fails to describe the shape of
pion, kaon, and proton transverse spectra, V

2

, and long-, side-
and out-interferometry radii. The main difference between
the first two (hHKM, hybrid) and “hybrid-isochrone” scenar-
ios is that the first two matching procedures do not use the
local equilibrium particle distribution functions as input for
UrQMD cascade at the space-time regions where the system
should be far from equilibrium. The peripheral regions at
isochronic hypersurface are spatially and temporally distant
from the freeze-out isotherm and have rather small tempera-
tures, and in this transition area the finite and rapidly expand-
ing system cannot be described hydrodynamically: the free-
streaming regime of particle propagation already starts there.

Next, recent results fromALICECollaboration show con-
siderable rise of both 𝑅side and 𝑅long (and the corresponding
rise of interferometric volume) with increase of collision
energy from 200AGeV RHIC to 2.76 TeV LHC. As one
can see from Figure 3, this behavior is well reproduced in
hHKM (see also [36]), and it is found to be caused by the
protracted cascade stage at LHC energy. We keep unchanged
the model parameters when passing from RHIC to LHC
energies, except for a general normalization of initial entropy
(or energy) density for increased 𝑑𝑁/𝑑𝑦, contribution from
binary collisions, and the baryonic chemical potentials at
freeze-out; we also find a decent reproduction of basic set of
observables with hHKM at LHC. One can conclude that this
supports the same physical picture of bulk matter evolution
at both top RHIC and LHC energies.

In Figure 4 (taken from recent STAR publication [72]) we
show HBT radii of kaon pairs measured recently by STAR
collaboration, compared to the older results by PHENIX and
to the ones calculated in hHKM. The figure demonstrates



Advances in High Energy Physics 9

3

4

5
R

ou
t

(fm
)

0.5 0.6 0.7 0.8 10.9 1.1 1.2
mT (GeV/c2)

√sNN = 200GeVAu + Au

(a)

3

4

5

R
sid

e
(fm

)

0.5 0.6 0.7 0.8 10.9 1.1 1.2
mT (GeV/c2)

(b)

3

4

5

R
lo

ng
(fm

)

0.5 0.6 0.7 0.8 10.9 1.1 1.2
mT (GeV/c2)

Buda-Lund (0–30%)
HKM Glauber (0–30%)

(c)

0.2

0.4

0.6

0.8

0.5 0.6 0.7 0.8 10.9 1.1 1.2

𝜆

mT (GeV/c2)

PHENIX kaon (0–30%)STAR kaon (0–30%)
STAR kaon (0–20%)

(d)

Figure 4: Transverse mass dependence of Gaussian radii (a) 𝑅out, (b) 𝑅side, and (c) 𝑅long for midrapidity kaon pairs from the 30%most central
𝐴𝑢 + 𝐴𝑢 collisions at √𝑠

𝑁𝑁

= 200GeV. The results from STAR [72] and PHENIX [73] are compared to the calculations in hHKM model
(dotted lines).

a good reproduction of kaon femtoscopy in hHKM and
Buda-Lund models. This is connected with the fact that in
hHKM we see no exact scaling between kaon and pion radii.
Generally, due to different cross-sections with the hadron
mixture, pions and kaons decouple (i.e., suffer their last
interactions) from the system at different times and have
different contributions from strong resonance decays. It was
demonstrated in the pure HKM [29] that, despite the smaller
cross-section, the emission duration of kaons with the same
𝑚
𝑇

as for pions is slightly larger than for pions, at least
for intermediate 𝑚

𝑇

, because the same 𝑚
𝑇

corresponds to
smaller 𝑝

𝑇

for kaons (and the duration of emission process
is highly 𝑝

𝑇

dependent), which results in somewhat larger
values of HBT radii for kaons. Generally, HBTmeasurements
for different particle species seem to be a valuable tool
to study the details of the particle liberation process and
discriminate between models of particle production.

4. Correlation Femtoscopy for Small Systems

In the work [39] it is shown that for small systems formed
in particle collisions (e.g., 𝑝𝑝, 𝑒+𝑒−), where the observed
interferometry radii are about 1-2 fm or smaller, the uncer-
tainty principle does not allow one to distinguish completely
between individual emission points. Also the phases of
closely emitted wave packets are mutually coherent. All that
is taken into account in the formalism of partially coherent
phases in the amplitudes of closely spaced individual emitters.
The measure of distinguishability and partial coherence is
then the overlap integral of the two emitted wave packets. In
thermal systems the role of corresponding coherent length

is played by the thermal de Broglie wavelength that defines
also the size of a single emitter.TheMonte-Carlomethod (16)
cannot account for such effects since it deals with classical
particles and point-like emitters (points of the particle’s last
collision).The classical probabilities are summarized accord-
ing to the event generator method (16), while in the quantum
approach a superposition of partially coherent amplitudes,
associated with different possible emission points, serves as
the input for further calculations [39]. Such approach leads to
the reduction of the interferometry radii as compared to (16).
In addition, the ascription of the factor 1+ cos((𝑥

1

−𝑥
2

)(𝑝
1

−

𝑝
2

)) to theweight of the pion pair in (16) is not correct for very
closely located points 𝑥

1

and 𝑥
2

, because there is no Bose-
Einstein enhancement if the two identical bosons are emitted
from the same point [39, 74]. The effect is small for large
systems with large number of independent emitters, but for
small systems it can be significant, and one has to exclude the
excessive contributions (“double counting” [39]) in the two-
particle emission amplitude. Such corrections lead to a sup-
pression of the Bose-Einstein correlations that is manifested
as a reduction of the observed correlation function intercept
as compared to one in the standard method (16).

The results of [39] are presented in the nonrelativis-
tic approximation related to the rest frame of the source
movingwith four-velocity 𝑢𝜇. In hydrodynamic/hydrokinetic
approach the role of such a source at given pair’s half-
momentum bin near some value 𝑝 is played by the fluid
element or piece of the matter with the sizes equal to the
homogeneity lengths𝜆(𝑝) [15, 16].These lengths are extracted
from the HKM simulations, namely, from the interferometry
radii defined by the Gaussian fits to the correlation functions
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obtained in HKM. All the pairs in procedure (1) are con-
sidered in the longitudinally comoving system (LCMS) in
the boost-invariant approximation automatically selects the
longitudinal rest frame of the source and longitudinal homo-
geneity length in this frame (it is Lorentz dilated as compared
to one in the global system [13]). The femtoscopy analysis is
typically related to some 𝑝

𝑇

bin, and so one needs also to
determine the transverse source size in the transverse rest
frame, marked by the asterisk. The corresponding Lorentz
transformations do not change the side-homogeneity length;
as for the out-direction, we proceed in the way proposed first
in [13]. The corresponding transformations then are [13, 40]

𝑅
∗

out (𝑝) = 𝑅out (𝑝)
cosh𝑦

𝑇

cosh (𝑦
𝑇

− 𝜂
𝑇

)
,

𝑅
∗

side = 𝑅side = 𝜆side,

𝑅
∗

long = 𝑅long = 𝜆long,

𝜆
∗

out = 𝜆out
cosh𝑦

𝑇

cosh (𝑦
𝑇

− 𝜂
𝑇

)
,

𝑝
∗

out
𝑝
∗

0

𝑇
∗

= 𝑇
sinh𝑦

𝑇

cosh (𝑦
𝑇

− 𝜂
𝑇

)
.

(18)

Here 𝑅∗2out(𝑝) = 𝜆
∗2

out + (𝑝
∗2

out/𝑝
∗2

0

)𝑇
∗2, 𝑇 is the emission

duration, 𝜂
𝑇

is a rapidity of the source in transverse direction,
and 𝑦

𝑇

= (𝑦
1𝑇

+ 𝑦
2𝑇

)/2 is half sum of transverse rapidities of
the particles forming the pair. Note that 𝑦∗

𝑇

= 𝑦
𝑇

− 𝜂
𝑇

, and
if rapidity of the pair is equal to the rapidity of the source,
𝑦
∗

𝑇

= 0, then in this particular case the radius in the rest frame
is Lorentz-dilated by the factor 𝛾. Generally, the reference
system where the pair’s momentum is zero does not coincide
with the rest frame of the source that emits the pair.Therefore
the direct application of these formulas is not an easy task
for rather complicated emission structure in hypothetical
hydrodynamic/hydrokinetic model of 𝑝 + 𝑝 collisions. Of
course, the details of the transformation will be different for
the string event generator; therefore one can estimate the
theoretical uncertainties using the radii transformation just
in the two limiting cases 𝑅∗out = 𝑅out and 𝑅

∗

out = 𝛾𝑅out(𝛾 =
cosh𝑦

𝑇

).
In [40] the quantumcorrections are calculated at each𝑝

𝑇

-
bin in the rest frame of the corresponding source using (18),
and then a transition is made again to the global reference
system. In what follows the asterisk mark is omitted and all
values are related to the source rest frame. To account that due
to the uncertainty principle the emitters (strictly speaking
emitted wave packets) have the finite sizes ⟨(Δ𝑥)2⟩ ∼ 𝑘

2 (𝑘
is the momentum variance of the particle radiation) when
defining the lengths of coherence, one should at first consider
the amplitude of the radiation processes and only then make
statistical averaging over phases of the wave packets using the
overlap integral as the coherence measure [39].

Following to [39] we present the quantum state 𝜓
𝑥

𝑖

(𝑝, 𝑡)

corresponding to a boson with mass𝑚 emitted at the time 𝑡
𝑖

from the point x
𝑖

as a wave packet with momentum variance
𝑘 which then propagates freely:

𝜓
𝑥

𝑖

(𝑝, 𝑡) = 𝑒
𝑖𝑝𝑥

𝑖
−𝑖𝐸𝑡

𝑒
𝑖𝜑(𝑥

𝑖
)

𝑓 (p) , (19)

where𝜑(𝑥
𝑖

) is some phase and𝑓 defines the primarymomen-
tum spectrum 𝑓(p) that we take in the Gaussian form,

𝑓 (p) = 𝑓2 (p) = 1

(2𝜋𝑘2)
3/2

𝑒
−(p2/2𝑘2)

, (20)

with the variance 𝑘2 = 𝑚𝑇. The effective temperature of
particle emission in the local rest frames in HKM, 𝑇, is close
to the chemical freeze-out temperature 𝑇ch.

The amplitude of the single-particle radiation from some
4-volume is supposed to be a superposition of the wave
functions𝜓

𝑥

(𝑝)with the Gaussian coefficients 𝜌(𝑥) = √𝜌(𝑥),
where 𝜌(𝑥) is the probability distribution in the case of
random phases:

𝜌 (𝑥, 𝑡) ∝ 𝑒
−∑

𝑖
𝑥

∗2

𝑖
/2𝜆

∗2

𝑖
(𝑝)−𝑡

∗2

/2𝑇

∗2

(𝑝)

. (21)

Then in the rest frame of the source

𝐴 (𝑝, 𝑡) = 𝑐 ∫𝑑
4

𝑥𝜓
𝑥

(𝑝, 𝑡) 𝜌 (𝑥) , (22)

where 𝑐 is the normalization constant.
The single- and two-particle spectra, averaged over the

ensemble of emission events with partially correlated phases
𝜑(𝑥) are

𝑊(𝑝) = 𝑐
2

∫𝑑
4

𝑥𝑑
4

𝑥


𝑒
𝑖𝑝(𝑥−𝑥



)

𝜌 (𝑥) 𝜌 (𝑥


)

× 𝑓 (p) ⟨𝑒𝑖(𝜑(𝑥)−𝜑(𝑥


))

⟩ ,

𝑊 (𝑝
1

, 𝑝
2

)

= 𝑐
4

∫𝑑
4

𝑥
1

𝑑
4

𝑥
2

𝑑
4

𝑥


1

𝑑
4

𝑥


2

𝑒
𝑖(𝑝

1
𝑥

1
+𝑝

2
𝑥

2
−𝑝

1
𝑥



1
−𝑝

2
𝑥



2
)

⋅ 𝑓 (p
1

) 𝑓 (p
2

) 𝜌 (𝑥
1

) 𝜌 (𝑥
2

) 𝜌 (𝑥


1

) 𝜌 (𝑥


2

)

× ⟨𝑒
𝑖(𝜑(𝑥

1
)+𝜑(𝑥

2
)−𝜑(𝑥



1
)−𝜑(𝑥



2
))

⟩ .

(23)

The phase averages are associated with corresponding
overlap integrals [39]

⟨𝑒
𝑖(𝜑(𝑥)−𝜑(𝑥



))

⟩ = 𝐺
𝑥𝑥

 = 𝐼
𝑥𝑥

 =


∫ 𝑑

3r𝜓
𝑥

(𝑡, r) 𝜓∗
𝑥

 (𝑡, r)

,

(24)

⟨𝑒
𝑖(𝜑(𝑥

1
)+𝜑(𝑥

2
)−𝜑(𝑥



1
)−𝜑(𝑥



2
))

⟩ = 𝐺
𝑥

1
𝑥



1

𝐺
𝑥

2
𝑥



2

+ 𝐺
𝑥

1
𝑥



2

𝐺
𝑥

2
𝑥



1

− 𝐺
𝑥

1
𝑥



2

𝐺
𝑥

2
𝑥



1

𝐺
𝑥

1
𝑥

2

,

(25)

where 𝜓
𝑥

𝑖

(𝑡, r) = (1/(2𝜋)3/2) ∫ 𝑓(p)𝑒−𝑖p(r−x𝑖)𝑒−𝑖(p
2

/2𝑚)(𝑡

𝑖
−𝑡)

𝑑
3

𝑝

are the wave functions of single bosonic states in coordinate
representation.
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Then the correlation function 𝐶(p, q) can be expressed
through the homogeneity lengths in the local rest frame 𝑅

𝐿

≡

𝜆
∗

long(𝑝),𝑅𝑆 ≡ 𝜆
∗

side(𝑝), and𝑅𝑂 ≡ 𝜆
∗

out(𝑝)which in its turn are
expressed through the HBT radii obtained from the Gaussian
fit (17) of the HKM correlation functions and transformation
law (18) as described above:

𝐶 (p, q) =
𝑊 (𝑝

1

, 𝑝
2

)

𝑊 (𝑝
1

)𝑊 (𝑝
2

)

= 1

+ 𝑒
−𝑞

2

𝑂
𝑅

2

𝑂
(4𝑘

2

0
𝑅

2

𝑂
/(1+4𝑘

2

0
𝑅

2

𝑂
))−𝑞

2

𝑆
𝑅

2

𝑆
(4𝑘

2

0
𝑅

2

𝑆
/(1+4𝑘

2

0
𝑅

2

𝑆
))

× 𝑒
−𝑞

2

𝐿
𝑅

2

𝐿
(4𝑘

2

0
𝑅

2

𝐿
/(1+4𝑘

2

0
𝑅

2

𝐿
))

× 𝑒
−((q⋅p)2𝑇2/𝑚2)(4𝑘2𝑇2/(1+4𝑘2𝑇2))

− 𝐶
𝑑

(p, q) ,

(26)

where 𝑘2
0

= 𝑘
2

/(1 +𝛼𝑘
4

𝑇
2

/𝑚
2

), parameter 𝛼(𝑘2𝑅2) is defined
from the model numerically (it is the order of unity for 𝑅 ∼

1 fm and tends to zero for the large sources—see [39] for
details), and the subtracted term

𝐶
𝑑
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(27)

responds for the elimination of the double counting.
Now we can see that the apparent interferometry radii

extracted from the Gaussian fits to the correlation function
(26) are reduced as compared to those obtained in the
standard approach.

Particularly, if we neglect the double counting effects,
truncate the subtracted term 𝐶

𝑑

(p, q) in (26), and fit the
correlation function with the Gaussian form (17), we obtain

the femtoscopic radii 𝑅out, 𝑅side, and 𝑅long related to the
standard ones 𝑅out,st, 𝑅side,st, and 𝑅long,st as follows:

𝑅
2

out
𝑅2out,st

= (𝑅
2
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2
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2
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2
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2
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,

(28)

where Vout = 𝑝
∗

out/𝑝
∗

0

≪ 1 according to the nonrelativistic
approximation. At large source sizes, for example, when the
homogeneity lengths correspond to𝐴+𝐴-collisions, 𝑘2

0

𝑅
2

≫

1, 𝑘2𝑇2 ≫ 1, all these ratios tend to unity.
The mean emission duration is supposed to be propor-

tional to the average system’s size, 𝑇 = 𝑎(𝑅
𝑂

+ 𝑅
𝑆

+ 𝑅
𝐿

)/3,
that leads to the quadratic equation expressing 𝑅

𝑂

(and 𝑇)
through 𝑅

𝑖,st. The latter are connected with ones taken in
the global reference system according to transformation laws
(18).The value 𝑎 is a free model parameter.Then we put these
extracted values into the expression (26) for the correlation
function and perform its fitting with the Gaussian (17). This
gives us finally the interferometry radii 𝑅out, 𝑅side, and 𝑅long
in view of the uncertainty principle. The radii are presented
then in the global system using the transformations inverse
to (18).

The correlation function is the ratio of the two- and one-
particle spectra. It is found [39] that quantum corrections
to this ratio are not so sensitive to different forms of the
wave packets as the spectra itself. In particular, the effective
temperature of the corrected transverse spectra depends
on whether the parameter of mean particle momentum is
included or not into the wave packet formalism. If yes, the
corrected effective temperature for small sources 𝑅 ∼ 1 fm is
equal or even higher than that the individual emitters have,
𝑇 = 𝑘

2

/𝑚, while for the wave packets in the form (19) it is
lower [39]. Besides this, in the nonrelativistic approximation
one can describe only very soft part of the spectra.That is why
we focus in the paper on the corrections to the Bose-Einstein
correlation functionswhere in the rest frame of the source the
total and relative momenta of the boson pairs are fairly small.

5. Femtoscopy of 𝑝 + 𝑝 Collisions in View of
the Uncertainty Principle

This section of the review is based on the results of [40].
The attempt of the systematic theoretical analysis of the

pion femtoscopy of 𝑝 + 𝑝 collisions at the top RHIC and
√𝑠 = 0.9TeV LHC energies was made in [75] within
Quark-Gluon String Model (QGSM). It was found that for a
satisfactory description of the interferometry radii one needs
to reduce significantly the formation time by increasing the
string tension value relative to the one fixed by the QGSM
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description of the spectra and multiplicity. Otherwise, the
radii obtained within QGSM are too large as compared
to the measured femtoscopy scales. Hypothetically one can
hope to reduce the predicted radii suggesting the other
approach—the hydrodynamic mechanism of the bulk matter
production in 𝑝 + 𝑝 collisions, at least, for high multiplicity
events. Although the applicability of hydrodynamics to 𝑝+𝑝
collisions is still questionable, there are certain arguments in
its favor. For instance, in [76, 77] multiparticle production
in nuclear collisions is related to that in hadronic ones
within the model based on dissipating energy of participants
and their types, which includes Landau relativistic hydro-
dynamics and constituent quark picture. Then to reproduce
high multiplicity, the initially very small 𝑝 + 𝑝 system
has to be initially superdense. This leads to very large
collective velocity gradients, and so the homogeneity lengths
should be fairly small. However, as we will demonstrate,
even at the maximally possible velocity gradients at the
given multiplicity, one gets again an overestimate of the
interferometry radii in 𝑝 + 𝑝 collisions. Therefore, one can
conclude that the problem of theoretical description of the
interferometry radii in 𝑝 + 𝑝 collisions may be a general one
for different types of event generators associated with various
particle production mechanisms. Here we try to correct the
femtoscopic results of event generators using for this aim the
quantum effects accounting for partial indistinguishability
and mutual coherence described in the previous section.

We will employ the hydrokinetic model (HKM) [23, 29,
35] in its hybrid form [30] where the UrQMD hadronic
cascade is considered as the semiclassical event genera-
tor at postfreeze-out (“afterburn”) stage of the hydrody-
namic/hydrokinetic evolution. The analysis provided in [30]
shows a fairly small difference of the one- and two-particle
spectra obtained in hHKM and in the case of the direct
matching of hydrodynamics and UrQMD cascade at the
chemical freeze-out hypersurface. Thus, in this paper we
utilize just the latter simplified “hybrid” variant for the
afterburn stage.

Let us try to apply the above hydrokinetic picture to the
LHC 𝑝+𝑝 collisions at√𝑠 = 7TeV aiming to get the minimal
interferometry radii/volume at the given multiplicity bin. As
it is known [23] the maximal average velocity gradient and
so the minimal homogeneity lengths can be reached at the
Gaussian-like initial energy density profile. For the same aim
we use the minimal transverse scale in ultrahigh energy 𝑝+𝑝
collision, close to the size of gluon spots [78, 79] in proton
moving with a speed V ≈ 𝑐. In detail, the initial boost-
invariant tube for 𝑝 + 𝑝 collisions has the energy density
Gaussian distribution in transverse plane with the width
(rms) 𝑅 = 0.3 fm [78, 79], and, following [30], we attribute it
to the initial proper time 𝜏

0

= 0.1 fm/c. At this time there is no
initial transverse collective flow. The maximal initial energy
density is defined by all charged particle multiplicity bin.

In Figures 5 and 6, taken from [40], for the two mul-
tiplicity classes ⟨𝑑𝑁ch/𝑑𝜂⟩ = 9.2 and ⟨𝑑𝑁ch/𝑑𝜂⟩ = 17.9

we present the three curves for interferometry radii as a
function of 𝑝

𝑇

: the experimental one, the one taken just
from the HKM simulations, and the other one obtained after
application of the quantum corrections.The basic parameters

used correspond to the limiting case, when the homogeneity
lengths in the source rest frame coincide with the ones
taken from the model, 𝛾 = 1. For this case 𝑎 ≈ 1,
𝑘 = 0.18GeV/c, and 𝑝∗

𝑇

= 0.13GeV/c. The 𝛼 parameter
values linearly increase with 𝑝

𝑇

from 1.15 to 1.35 for the
⟨𝑑𝑁ch/𝑑𝜂⟩ = 9.2 case and from 1.02 to 1.1 for ⟨𝑑𝑁ch/𝑑𝜂⟩ =
17.9. As one can see, the quantum corrected 𝑝

𝑇

-dependency
of the radii gets closer to the experimental values, but for
large 𝑝

𝑇

the corrections are insufficient to fully describe the
observable femtoscopy scales behavior.This factmay indicate
that sources of particles with large 𝑝

𝑇

cannot be described in
hydrodynamical approximation. Note that just for such large
𝑝
𝑇

the nontrivial baseline corrections, already provided in
presented experimental data, are very essential.

Considering the multiplicity dependence of femtoscopy
scales in 𝑝 + 𝑝 and 𝑝 + 𝑃𝑏 collisions we cannot bypass the
scaling hypothesis issue [44, 45], that suggests a universal
linear dependence of the HBT volume on the particle mul-
tiplicity. It means that the observed interferometry volume
depends roughly only on the multiplicity of particles pro-
duced in collision but not on the geometrical characteristics
of the collision process. At the same time, as it was found in
the theoretical analysis in [88, 89], the interferometry volume
should depend not only on the multiplicity but also on the
initial size of colliding systems. In more detail, the intensity
of the transverse flow depends on the initial geometrical size
𝑅
𝑔

0

of the system: roughly, if the pressure is 𝑝 = 𝑐2
0

𝜖, then the
transverse acceleration 𝑎 = ∇

𝑥

𝑇

𝑝/𝜖 ∝ 𝑝(x
𝑇

= 0)/(𝑅
𝑔

0

𝜖) =

𝑐
2

0

/𝑅
𝑔

0

. The interferometry radii 𝑅
𝑇

, that are associated with
the homogeneity lengths, depend on the velocity gradient and
geometrical size and for nonrelativistic transverse expansion
can be approximately expressed through 𝑅

𝑔

0

, the averaged
transverse velocity ⟨|V

𝑇

|⟩, and inverse of the temperature 𝛽
at some final moment 𝜏 [17, 18, 90, 91]:

𝑅
𝑇

=
𝑅
𝑔

(𝜏)

√1 + (2/𝜋) ⟨
V𝑇
⟩
2

𝛽𝑚
𝑇

≈ 𝑅
𝑔

0

(1 +
𝜏
2

𝑐
2

0

2(𝑅
𝑔

0

)
2

− 𝛽𝑚
𝑇

𝜏
2

𝑐
2

0

𝜋2(𝑅
𝑔

0

)
2

) .

(29)

The result (29) for the HBT radii depends obviously
on 𝑅𝑔

0

and, despite its roughness, demonstrates the possible
mechanismof compensation of the growing geometrical radii
of an expanding fireball in the femtoscopy measurements.
For some dynamical models of expanding fireballs the
interferometry radii, measured at the final time of system’s
decoupling, are coincided with the initial geometrical ones,
no matter how large the multiplicity is [35, 92]. The reason
for such a behavior is clear from (11): if there is no dissipation
in the expanding system, 𝐹gain

(𝑡, x) = 𝐹
loss
(𝑡, x), then the

spectra and correlation functions are coincided with the
initial ones. The detail study of hydrodynamically expanding
systems is provided in [88, 89]. It is found that at the
boost-invariant isentropic and chemically frozen evolution
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Figure 5: Interferometry radii dependency on 𝑝
𝑇

, ⟨𝑑𝑁ch/𝑑𝜂⟩ = 9.2. The data are taken from [42].

the interferometry volume, if it were possible to measure at
some evolution time 𝜏, is approximately constant:

𝑉int (𝜏) ≃ 𝐶 (√𝑠)
𝑑𝑁/𝑑𝑦 (𝜏)

⟨𝑓⟩
𝜏

𝑇
3

eff (𝜏)
, (30)

where ⟨𝑓⟩ is the averaged phase-space density [93, 94]
which is found to be approximately conserved during the
hydrodynamic evolution under the above conditions as well
as 𝑑𝑁/𝑑𝑦 [88, 89]. As for the effective temperature of the
hadron spectra, 𝑇eff(𝜏) = 𝑇(𝜏) + 𝑚(⟨V

𝑇

(𝜏)⟩
2

/2), one can
see that, when the system’s temperature 𝑇 drops, the mean
V2
𝑇

increases; therefore 𝑇eff does not change much during
the evolution (it slightly decreases with time for pions and
increases for protons). Hence 𝑉int, if it has been measured

at some evolution time 𝜏, will also approximately conserve.
Of course, the real evolution is neither isentropic nor chem-
ically frozen and includes also QGP stage, but significant
dependence of the femtoscopy scales on the initial system size
preserves anyway.

Figure 7 shows the dependency 𝑉int(⟨𝑑𝑁ch/𝑑𝜂⟩) for con-
sidered case of 𝑝 + 𝑝 collisions at the LHC, √𝑠 = 7TeV,
and for the most central (only!) collisions of nuclei having
similar sizes, 𝑃𝑏 + 𝑃𝑏 and 𝐴𝑢 + 𝐴𝑢, at the SPS, RHIC, and
LHC. We have also put on the plot our prediction for the
interferometry volume of𝑝𝑃𝑏-system, that has initially larger
size than 𝑝𝑝-system. As one can see, the different groups of
points corresponding to𝑝+𝑝,𝑝+𝑃𝑏, and𝐴+𝐴 events cannot
be fitted by the same straight line. This apparently confirms
the result obtained in [88, 89] that the interferometry volume
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Figure 6: Interferometry radii dependency on 𝑝
𝑇

, ⟨𝑑𝑁ch/𝑑𝜂⟩ = 17.9. The data are taken from [42].

is a function of both variables: the multiplicity and the initial
size of colliding system. The latter depends on the atomic
number 𝐴 of colliding objects and the collision centrality 𝑐.

One can conclude that quantum corrections to the pion
interferometry radii in 𝑝 + 𝑝 collisions at the LHC can
significantly improve the (semiclassical) event generator
results that typically give an overestimate of the experi-
mental interferometry radii and volumes. The corrections
account for the basic (partial) indistinguishability andmutual
coherence of the closely located emitters because of the
uncertainty principle [39]. The additional suppression of
the Bose-Einstein correlation function also appears. The
effects become important for small sources, 1-2 fm or smaller.
Such systems cannot be completely random and so require
the modification of the standard theoretical approach for

the correlation femtoscopy. The predicted femtoscopic scales
for 𝑝 + 𝑃𝑏 collisions need some small corrections only for its
minimal values corresponding to the initial transverse size of
𝑝𝑃𝑏 system 0.9 fm.

6. Nonfemtoscopic Two-Pion Correlations in
Small Systems

The interest to the nonfemtoscopic correlations is motivated
in particular by the fact that for relatively small systems
they appreciably affect the complete two-particle correlation
function, forming the so-called correlation baseline. It has
an influence on the interpretation of the interferometry
radii momentum dependence in 𝑝 + 𝑝 collisions with high
multiplicities, where the different mechanisms of spectra
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Figure 7: The interferometry volume dependency on charged
particlesmultiplicity.The curve fragments in themiddle correspond
to the HKM prediction for 𝑝 + 𝑃𝑏 collision at the LHC energy√𝑠 =
5.02GeV.Theupper one is related to the initial transverse system size
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𝑝𝑝 volumes are calculated as a product 𝑅out𝑅side𝑅long of respective
experimental radii. The blue lines correspond to pure HKM results,
whereas the quantum corrections to them are presented by the red
lines. Figure is taken from [40].

formation are under discussion. Therefore, for successful
and unambiguous application of the correlation femtoscopy
method to the case of elementary particle collisions, one
needs to know the mechanisms of nonfemtoscopic correla-
tions to separate the femtoscopic and nonfemtoscopic ones.

The two-particle correlation function is defined as

𝐶 (𝑝
1

, 𝑝
2

) =
𝑃 (𝑝

1

, 𝑝
2

)

𝑃 (𝑝
1

) 𝑃 (𝑝
2

)
, (31)

where 𝑃(𝑝
1

, 𝑝
2

) is the probability of observing two particles
withmomenta p

1

andp
2

, while𝑃(𝑝
1

) and𝑃(𝑝
2

) designate the
single-particle probabilities. In heavy ion collisions

𝐶 (𝑝
1

, 𝑝
2

) ≈ 𝐶
𝐹

(p, q) , (32)

where p = (p
1

+ p
2

)/2, q = p
2

− p
1

, and 𝐶
𝐹

denotes
the femtoscopic correlation function that takes into account
quantum statistics and final state interactions. In elementary
particle collisions additional (nonfemtoscopic) correlations,
like those arising from jet/string fragmentation and from
energy and momentum conservation (see, e.g., [41–43]), can
also give a significant contribution. The important problem

in this regard is whether we can factorize out the part corre-
sponding to the nonfemtoscopic correlations, 𝐶

𝑁𝐹

, from the
total correlation function:

𝐶 (𝑝
1

, 𝑝
2

) = 𝐶
𝐹

(p, q) 𝐶
𝑁𝐹

(p, q) . (33)

It [39], such a factorization, was demonstrated numer-
ically within the simple models of three- and two-particle
emission accounting for minijets fragmentation and event-
by-event initial state fluctuation induced nonfemtoscopic
correlations, and below we will assume this factorization
property.

Recently, the ALICE Collaboration utilized some event
generators, which do not include effects of quantum statistics,
for an estimate of the correlation baseline (i.e., nonfem-
toscopic correlation function of identical pions) under the
Bose-Einstein peak at LHC energies [41, 42]. It wasmotivated
by a reasonable agreement of the corresponding event gener-
ator simulations with the experimental data for correlation
functions of oppositely charged pions in 𝑝 + 𝑝 collisions at
the same energy [41, 42]. The calculated correlation baseline
has been utilized by the ALICE Collaboration to extract
femtoscopic correlations from measured identical pion two-
particle correlation functions [41]. Because the utilized event
generators account for energy-momentum conservation and
emission of minijets, it was conjectured in [41, 42] that some
specific peculiarities of the unlike-sign pion correlations as
well as like-sign nonfemtoscopic pion correlations can be
caused by the jet-like and energy-momentum conservation
induced correlations. In [46], we support this conjecture.
There, to describe the nonfemtoscopic pion correlations in
a simple analytical model, we assume that 𝑁 pions are
produced with momenta p

1

, . . . , p
𝑁

in (𝑁 +𝑋)multiparticle
production events and consider pions as distinguishable,
yet equivalent particles with symmetrical probability density
functions. A distinguishability of equivalent particles means
that there is no quantum interference between possibili-
ties that correspond to all 𝑁! permutations of the parti-
cle momenta 𝑝

𝑖

. Then single-particle probability, 𝑃
𝑁

(𝑝
1

),
and the two-particle probability, 𝑃

𝑁

(𝑝
1

, 𝑝
2

), can be written
as

𝑃
𝑁

(𝑝
1

) =
1

𝑁

𝑁

∑

𝑖=1

∫𝑑Ω
𝑝

∗𝐸
∗

𝑖

𝛿
(3)

(p
1

− p∗
𝑖

) �̂�
𝑁

(𝑝
∗

1

, . . . , 𝑝
∗

𝑁

) ,

(34)

𝑃
𝑁

(𝑝
1

, 𝑝
2

)

=
1

𝑁 (𝑁 − 1)

𝑁

∑

𝑖 ̸= 𝑗=1

∫𝑑Ω
𝑝

∗𝐸
∗

𝑖

𝛿
(3)

(p
1

− p∗
𝑖

) 𝐸
∗

𝑗

× 𝛿
(3)

(p
2

− p∗
𝑗

) �̂�
𝑁

(𝑝
∗

1

, . . . , 𝑝
∗

𝑁

) ,

(35)



16 Advances in High Energy Physics

where 𝑑Ω
𝑝
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)/𝐸
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⋅ ⋅ ⋅ (𝑑
3

𝑝
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)/𝐸
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. The nonsymmet-
rized 𝑁-pion probability density in such events reads
as
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(36)

where𝑀
𝑁+𝑋

(𝑝
1

, . . . , 𝑘
𝑋

) is nonsymmetrized (𝑁+𝑋)-particle
production amplitude, 𝑝

𝑎

and 𝑝
𝑏

are 4-momenta of col-
liding particles (protons), and 𝐾 is the normalization fac-
tor,
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Expression (36) for �̂�
𝑁

(𝑝
1

, . . . , 𝑝
𝑁

) is rather complicated
because, in particular, it depends on 𝑋 particles that are
produced in addition to 𝑁 pions. The latter means also that
one can hardly expect that total energy or momentum of the
pion subsystems are constants in the system’s center of mass;
instead, one can expect that they fluctuate in event-by-event
basis. Here we assume that the total transverse momentum of
𝑁 pions is equal to zero in the system’s center of mass (keep-
ing, however, inmind that this constraint is, in fact, too strong
and can be weakened if necessary) and neglect the constrains
conditioned by the conservation of energy and longitudinal
momentum supposing that the system under consideration is
barely𝑁-pion subsystem in a small midrapidity region of the
total system.Then, motivated by (36), we assume that a non-
symmetrized𝑁-pion probability density can be written as

�̂�
𝑁
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) , (38)

where 𝐹
𝑁

(𝑝
1

, . . . , 𝑝
𝑁

) is a nonsymmetrized function of
pionic momenta, 𝛿(𝑝

1

, . . . , 𝑝
𝑁

) denotes average constraints
on the 𝑁-pion states that appear due to energy and
momentum conservations in multiparticle production
events, and we assume that

𝛿 (𝑝
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, . . . , 𝑝
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where p
𝑇1

, p
𝑇2

, . . . , p
𝑇𝑁

are transverse components of the
momenta of the𝑁 particles.Then the normalization factor is

𝐾 = ∫𝑑Ω
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𝛿 (𝑝
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, . . . , 𝑝
𝑁

) 𝐹
𝑁
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) . (40)

Now, to describe the nonfemtoscopic pion correlations in
a simple analytical model, we assume that there are no other
correlations in the production of𝑁-pion states except for the
correlations induced by transverse momentum conservation
and cluster (minijet) structures in momentum space. For the

sake of simplicity we assume here that the only two-particle
clusters appear. Then one can write for fairly large𝑁 ≫ 1
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where 𝑄(𝑝
𝑖

, 𝑝
𝑗

) denotes the jet-like correlations between
momenta p

𝑖

and p
𝑗

; existence of such correlations means
that 𝐹

𝑁

cannot be expressed as a product of one-particle
distributions. Then, utilizing the integral representation of
the 𝛿-function by means of the Fourier transformation,
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), and accounting for (34),
(38), (39), and (41), the single-particle probability reads as
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A possibility of different cluster configurations of particles
means, in particular, that registered particles with momenta
p
1

andp
2

can belong either to differentminijets or to the same
minijet.Then, taking into account (35), (38), (39), and (41), we
get

𝑃
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Here 𝐹
𝑁

≡ 𝐹
𝑁

(𝑝
∗

1

, . . . , 𝑝
∗

𝑁

). The first term in the right hand
side of (44) is associated with events where the two registered
particles belong to the same minijet, and the second term
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corresponds to events where the particles are from different
minijets. Evidently, the former is relatively rare; however,
notice that the first term can be significant for small systems
with not very large𝑁.

It was demonstrated in [46] that this model can repro-
duce, with reasonable parameters, the correlation functions
of unlike-sign pions measured by the ALICE Collaboration
[41] and nonfemtoscopic correlations of like-sign pions that
are generated in the PHOJET simulations and utilized as
the correlation baseline by the ALICE Collaboration [41]. To
calculate nonfemtoscopic correlations, analytical parameter-
izations of the functions in interest were used, namely,

𝑓 (𝑝
𝑖

) = 𝐸
𝑖

exp(−
p2
𝑖,𝑇

𝑇
2

𝑇

) exp(−
p2
𝑖,𝐿

𝑇
2

𝐿

) , (49)

𝑄(𝑝
𝑖

, 𝑝
𝑗

) = exp(−
(p

𝑖

− p
𝑗

)
2

𝛼2
) , (50)

where𝑇
𝑇

,𝑇
𝐿

, and 𝛼 are some parameters, and we assume that
𝑇
𝐿

≫ 𝑇
𝑇

. In accordance with ALICE baseline obtained from
the PHOJET event generator simulations, we assume that
only 𝑞inv = √(p2 − p

1

)
2

− (𝐸
2

− 𝐸
1

)
2 is measured for each p

𝑇

bin. Assuming that longitudinal components of the registered
particles are equal to zero,𝑝

1𝐿

= 𝑝
2𝐿

= 0, we approximate 𝑞2inv
as

𝑞
2

inv ≈ q2
𝑇

(
𝑚
2

+ p2
𝑇

sin2𝜙
𝑚2 + p2

𝑇

) , (51)

where 𝜙 denotes unregistered angle between p
𝑇

and q
𝑇

,
p
𝑇

q
𝑇

= |p
𝑇

||q
𝑇

| cos𝜙. Then

𝐶
𝑁𝐹

(
p𝑇

 , 𝑞inv) =
∫
2𝜋

0

𝑑𝜙𝑃
𝑁

(𝑝
1

, 𝑝
2

)

∫
2𝜋

0

𝑑𝜙𝑃
𝑁

(𝑝
1

) 𝑃
𝑁

(𝑝
2

)

, (52)

and, taking into account (44), we get

𝐶
𝑁𝐹

(
p𝑇

 , 𝑞inv) =
𝑁 − 2

𝑁 − 1

× (𝐶
2jet
𝑁

(
p𝑇

 , 𝑞inv)

+
1

𝑁 − 2
𝐶
1jet
𝑁

(
p𝑇

 , 𝑞inv)) ,

(53)

where

𝐶
2jet
𝑁

(
p𝑇

 , 𝑞inv) =
∫
2𝜋

0

𝑑𝜙𝑃
2jet
𝑁

(𝑝
1

, 𝑝
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)

∫
2𝜋
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𝑑𝜙𝑃
𝑁

(𝑝
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) 𝑃
𝑁

(𝑝
2

)

, (54)

𝐶
1jet
𝑁

(
p𝑇

 , 𝑞inv) =
∫
2𝜋

0

𝑑𝜙𝑃
1jet
𝑁

(𝑝
1

, 𝑝
2

)

∫
2𝜋

0

𝑑𝜙𝑃
𝑁

(𝑝
1

) 𝑃
𝑁

(𝑝
2

)

. (55)

It is well known (see, e.g., [44, 45]) that the influ-
ence of exact conservation laws on single-particle and two-
particle momentum probability densities at the 𝑁-particle
production process depends on the value of𝑁 and disappears

at 𝑁 → ∞. Since one considers a subsystem of 𝑁 pions
but not the total system, to weaken the influence of the
total transverse momentum conservation on pions we will
consider 𝐶1jet

𝑀

and 𝐶2jet
𝑀

with𝑀 > 𝑁 instead of 𝐶1jet
𝑁

and 𝐶2jet
𝑁

in (53). This is the simplest way to account for a weakened
conservation law in our model. At the same time, the factor
1/(𝑁 − 2) in (53) remains the same since it is associ-
ated with the combinatorics of the distribution of particles
between clusters in momentum space (“minijets”), which
happens whether or not one weakens the total momentum
conservation law. Also, for more exact fitting of the data
points in each average transverse momentum bin, we utilize
the auxiliary factors Λ; when we compared results of our
calculationswithALICE two-pion correlation and simulation
data, these proportionality factors differ slightly from unit in
our calculations (nearly 0.9). Then (53) gets the form

𝐶
𝑁𝐹

(
p𝑇

 , 𝑞inv) = Λ (p𝑇)

× (𝐶
2jet
𝑀

(
p𝑇

 , 𝑞inv)

+
1

𝑁 − 2
𝐶
1jet
𝑀

(
p𝑇

 , 𝑞inv)) .

(56)

The results of our calculations of the nonfemtoscopic
correlation functions 𝐶

𝑁𝐹

are shown in Figures 8 and 9
in comparison with correlation functions reported by the
ALICE Collaboration [41] for different transverse momenta
of pion pairs (actually, we performed calculations for the
mean value in each bin). The data for unlike-sign pion
correlations measured by the ALICE Collaboration as well
as for the PHOJET simulations of like-sign two-pion non-
femtoscopic correlation functions at midrapidity for the total
charged multiplicity 𝑁ch ≥ 12 bin in 𝑝 + 𝑝 collisions at
√𝑠 = 900GeV are taken from [41, 95]. Note that cor-
relations of nonidentical pions measured by the ALICE
Collaboration, as well as the PHOJET simulations of identical
two-pion correlation functions, demonstrate Coulomb FSI
correlations at the lowest 𝑞inv bin and peaks coming from
resonance decays. These Coulomb FSI and contributions
from resonance production are not taken into account and
so are not reproduced in our model. The presented results
are obtained for 𝑀 = 50, 𝑇

𝑇

= 𝛼 = 0.65GeV (to
minimize the number of fit parameters, we fixed 𝑇

𝑇

= 𝛼

for all calculations. Note that with these parameter values
the mean transverse momentum ⟨𝑝

𝑇

⟩ is about 0.58GeV),
and the fitted values of 𝑁 are different for like-sign and
unlike-sign pion pairs, namely, 𝑁±±

= 20 for the former
and 𝑁+−

= 11 for the latter. The relatively high value of 𝑀
can be interpreted as a residual effect on the pion subsystem
of total energy-momentum conservation in a multiparticle
production process. The relation 𝑁

+−

< 𝑁
±± between

fitted𝑁 values means that the magnitude of the correlations
induced by a minijet for unlike-sign pion pairs is higher
than that for like-sign ones. This happens because in the
former there is no local charge conservation constraint for the
production of oppositely charged pion pairs, and, therefore,
one can expect less identically charged pion pairs from the
fragmenting minijets than oppositely charged ones. One can
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Figure 8: The nonfemtoscopic correlation functions of like-sign (a) and unlike-sign (b) pions in the 0.1 < 𝑝
𝑇

< 0.25GeV bin from a
simulation using PHOJET [41, 95] (solid dots) and those calculated from the analytical model: minijets + momentum conservation (solid
line). See the text for details.
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Figure 9: The nonfemtoscopic correlation functions of like-sign pions (a) from a simulation using PHOJET and unlike-sign pions (b)
measured by the ALICE Collaboration in the 0.7 < 𝑝

𝑇

< 1.0GeV bin from [41, 95] (solid dots) and those calculated from the analytical model
(solid line). The contributions to the nonfemtoscopic correlation function from the first term of (56) (dotted line) and from the second one
(dashed line) are also presented.

see from the figures that the behavior of the nonfemtoscopic
correlation functions of pions, 𝐶

𝑁𝐹

, is reproduced well
despite the simplicity of our model. This is a result of the
competition of the two trends: an increase of the correlation
function with 𝑞inv because of momentum conservation and
its decrease due to fragmentation of one minijet into the
registered pion pair. Figure 9 also demonstrates the relative
contribution of the first and second terms in (56) to the
nonfemtoscopic correlation functions.

Another type of correlations not induced by theQS effects
is the correlations connected with existence of subensembles
of events with different emission functions that leads to
the corresponding fluctuations in single-particle and two-
particle momentum spectra. In hydrodynamical models of
nucleus-nucleus and proton-proton collisions these fluctu-
ations can be caused by asymmetrically fluctuating initial
densities used for the hydrostage of themodel. Let us consider
the effect of such correlations on the resulting correlation

function on the example of a simple analytical model [46].
Disregarding the QS correlations (for model of two-particle
emission that accounts for the QS see [39]) we suppose that
the𝑁-particle probability density is defined as

𝑃
𝑁

(𝑝
1

, 𝑝
2

, . . . , 𝑝
𝑁

) = ∑

𝑖

𝑤 (𝑢
𝑖

) 𝑃
𝑁

(𝑝
1

, 𝑝
2

, . . . , 𝑝
𝑁

; 𝑢
𝑖

) ,

(57)

where 𝑃
𝑁

(𝑝
1

, 𝑝
2

, . . . , 𝑝
𝑁

; 𝑢
𝑖

) is the 𝑁-particle probability
density for some 𝑢

𝑖

type of the initial conditions, and 𝑤(𝑢
𝑖

)

denotes the distribution over initial conditions,∑
𝑖

𝑤(𝑢
𝑖

) = 1.
To analyze the possible effect of fluctuating initial conditions,
here we neglect conservation law constraints and the pro-
duction of minijets. Because we assume uncorrelated particle
emissions for each specific initial condition, one can write

𝑃
𝑁

(𝑝
1

, 𝑝
2

, . . . , 𝑝
𝑁

; 𝑢
𝑖

)

= 𝑓 (𝑝
1

; 𝑢
𝑖

) 𝑓 (𝑝
2

; 𝑢
𝑖

) ⋅ ⋅ ⋅ 𝑓 (𝑝
𝑁−1

; 𝑢
𝑖

) 𝑓 (𝑝
𝑁

; 𝑢
𝑖

) ,

(58)
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where we normalize 𝑓(𝑝; 𝑢
𝑖

) as ∫(𝑑3𝑝/𝐸)𝑓(𝑝; 𝑢
𝑖

) = 1, and
then 𝐾 = 1; see (38) and (40). The two-particle nonfemto-
scopic correlation function 𝐶

𝑁𝐹

then reads as

𝐶
𝑁𝐹

(𝑝
1

, 𝑝
2

) =
∑
𝑖

𝑤 (𝑢
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) 𝑓 (𝑝
1

; 𝑢
𝑖

) 𝑓 (𝑝
2

; 𝑢
𝑖

)

∑
𝑖

𝑤 (𝑢
𝑖

) 𝑓 (𝑝
1

; 𝑢
𝑖

)∑
𝑗

𝑤(𝑢
𝑗

) 𝑓 (𝑝
2

; 𝑢
𝑗

)

.

(59)

Evidently, the different type of fluctuation, that is, the
form of the distribution 𝑤(𝑢

𝑖

), leads to a different behavior
of the nonfemtoscopic correlations. To illustrate that fluctu-
ations can lead to the nonfemtoscopic correlation functions
that are similar to the ones induced byminijets, let us consider
the toy model where

𝑤 (u
𝑇

) =
𝛼
2

𝜋
exp (−u2

𝑇

𝛼
2

) , (60)

𝑓 (𝑝; u
𝑇

) =
𝛽
2

𝛾

𝜋3/2
𝐸 exp (−(p

𝑇

− u
𝑇

)
2

𝛽
2

) exp (−𝑝2
𝐿

𝛾
2

) ,

(61)

and normalization is chosen in such a way that
∫𝑑

2

𝑢
𝑇

𝑤(u
𝑇

) = 1 and ∫(𝑑3𝑝/𝐸)𝑓(𝑝; u
𝑇

) = 1. The main
feature of such a model is that event-by-event single-particle
transverse momentum spectra have a maximum for event-
by-event fluctuating p

𝑇

values. Such momentum spectrum
fluctuations could take place, for example, in hydrodynamics
with a highly inhomogeneous initial energy density profile
without cylindrical or elliptic symmetry. One can easily see
that in this case 𝐶

𝑁𝐹

decreases with 𝑞2
𝑇

,

𝐶
𝑁𝐹

(𝑝, 𝑞) ∼ exp(−
𝛽
4

2 (𝛼2 + 𝛽2)
𝑞
2

𝑇

) , (62)

and this means (after taking into account (51) and (52)) that
𝐶
𝑁𝐹

decreases with 𝑞2inv too, which is similar to the behavior
of 𝐶

𝑁𝐹

if the nonfemtoscopic correlations are induced by
minijets. At the same time, unlike the latter, the hydrody-
namical fluctuations lead to similar correlations for like-
sign and unlike-sign pion pairs. Then, our analysis suggests
that, up to different resonance yields, the value of the slope
of the correlation baseline at relatively low 𝑞inv can be
somewhere between pure hydrodynamic (i.e., the same as for
nonidentical pion pairs) and pure minijet (i.e., lower than for
nonidentical pion pairs) scenarios.

7. Summary

It is often said that the femtoscopic measurements allow one
to restore the space-time structure of the particle/nucleus
collision processes. It is really possible but only through
the theoretical constructions allowing to interpret these
processes and describe the wide range of the corresponding
experimental data. If such an advanced model is based on
some kind of the space-time picture, then the crucial point
for the model is a recreation of the femtoscopic data. If it
is successful, then, first, this model claims to be true, and,

second, the same is related to recover by the model the space-
time structure of a collision process.

In this review we analyzed hydrokinetic model (HKM)
for 𝐴 + 𝐴 collisions as the reliable theoretical construction
for description of the momentum spectra of pions, kaons,
protons/antiprotons, all charged particles, and elliptic flows,
in wide range of different centralities [29, 30] at RHIC
and LHC. We demonstrate here that it describes well the
available femtoscopic data for 𝐴𝑢 + 𝐴𝑢 and 𝑃𝑏 + 𝑃𝑏

collisions.
A particular interest is the theoretical basis of HKM

which is grounded on the escape functions (not on the
distribution ones) when the particle liberation process from
the expanding medium is described within the Boltzmann
equation. This allows one to avoid the principal problem
of the particlization of a medium at nonspace-like sites of
transition hypersurfaces, where medium evolution converts
into hadronic cascade, like the UrQMD one. So, using the
hydrokinetics, as the “buffer” zone, one can switch to hadr-
onic cascade at some space-like hypersurface with a nonequi-
librated particle input from HKM. In review we describe just
this hybrid variant of the HKM + UrQMD (hHKM).

The HKM, UrQMD, and other existing models/event
generators are quasiclassical constructions, and quantum ele-
ments, like Bose-Einstein correlations, are inputted typically
at the very late stage as the external weights of the boson pair
states. In its turn such a procedure is based on the model of
independent chaotic sources [4–6]. It is found recently [39]
that such a model is inadequate for fairly small sources where
the uncertainty principle leads to (partial) indistinguishabil-
ity of closely located emitters that fundamentally impedes
their full independence and incoherence. We review the
recent results as for the correlation femtoscopymethod that is
going beyond the standard approach of independent/random
particle emission. The partial coherence of emitted particles
is because of the quantum nature of particle emission and
happens even if there is no specific mechanism to produce a
coherent component of the source radiation. The measure of
distinguishability/indistinguishability and mutual coherence
of the two emitted wave packets is associated with their
overlap integral. In thermal systems the role of corresponding
coherent length is played by the thermal de Broglie wave-
length.

The application of the new femtoscopymethod is demon-
strated using the results of [40], where it was found that
quantum corrections to the pion interferometry radii in
𝑝 + 𝑝 collisions at the LHC can significantly improve the
(semiclassical) event generator results that typically give an
overestimate of the experimental interferometry radii and
volumes. The effects become important for small sources, 1-
2 fm or smaller. Such systems cannot be completely random
and so require the modification of the standard theoretical
approach for the correlation femtoscopy.

More sophisticated result of this study is a good applica-
bility of the hydrodynamics/hydrokinetics with the quantum
corrections for description of the femtoscopy scales not only
in 𝐴 + 𝐴 collisions but also, at least for large multiplicities,
in 𝑝 + 𝑝 events. These scales are well reproduced for not
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large 𝑝
𝑇

. Whether it means the validity of the hydrodynamic
mechanism for the bulk matter production in the LHC 𝑝 + 𝑝
collisions is still an open question. It is also related to the
problem of early thermalization in the processes of heavy
ion collisions; the nature of such phenomenon is still a
fundamental theoretical issue.

For small systems the specific nonfemtoscopic correla-
tions can appear in the same kinematic region as the fem-
toscopic ones. They could be a result of the cluster (minijet)
structures in final momentum space of produced particles
and the global energy-momentum conservation constraints.
The latter typically result in an increase with 𝑞inv for fairly
high 𝑞inv of the nonfemtoscopic two-pion correlation func-
tions of small systems, whereas the formermostly determines
a decrease of the ones at relatively low 𝑞inv. We discuss
the simple analytical model [46] that takes into account
correlations induced by the total transverse momentum
conservation as well as minijets and show that the model
gives reasonable description of the two-pion nonfemtoscopic
correlations of identical and nonidentical pions in proton-
proton collision events at √𝑠 = 900GeV reported by
the ALICE Collaboration [41]. The important issue is that
femtoscopic and nonfemtoscopic correlations are factorized
[39].

There can be different types of multiparticle production
mechanisms in 𝑝 + 𝑝 collisions, and some of them could
result in qualitatively similar nonfemtoscopic correlation
functions. We discuss heuristic arguments [46] that the
two-pion nonfemtoscopic correlation functions calculated
in hydrodynamics with event-by-event fluctuating initial
conditions can be qualitatively similar at relatively low 𝑞inv to
the ones calculated in the PHOJET-like generators, where the
nonfemtoscopic correlations for low 𝑞inv aremainly caused by
minijets. It is worth noting an important difference between
the nonfemtoscopic correlations induced by minijets and
hydrodynamical fluctuations: while the former leads to a
higher magnitude of the nonfemtoscopic correlations for
unlike-sign pion pairs as compared to like-sign pions, the
latter results in a similar (up to the resonance contributions)
strength of the nonfemtoscopic correlations for identical and
nonidentical pions.Then, if the applicability of hydrodynam-
ics to 𝑝+𝑝 collisions will be justified, such an analysis allows
one to estimate the correlation baseline and, so, to extract the
femtoscopic scales in these collisions by means of tuning the
hydrokinetic model to reproduce the experimental unlike-
sign pion correlations.
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