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MATERIAL&

Candidate,genes,for,schizophrenia,

Table&S1.&Discovery&sample&based&on&TDT?studies&&
 
A list of genes extracted from the SZgene database1 hosted by the Schizophrenia  Research 
Forum (http://www.szgene.org) was used as discovery sample. Reproducibility of 
association was considered more important than a low p value. The criterion for inclusion 
in this sample was a p-value ≤ 0.05 obtained by at least two independent research groups in 
TDT studies. As of July 7, 2011, the SZgene database contained 33 genes that fulfilled this 
criterion. The TDT-based 33 candidate genes of schizophrenia are listed below. 

 (1) AKT1, (2) ARVCF,  (3) BDNF,  (4) CHRFAM7A, (5) CHRNA7, (6) CLDN5, 
(7) COMT, (8) DAOA,  (9) DISC1,  (10) DRD2,  (11) DRD3,  (12) DTNBP1,  (13) 
GABRB2, (14) GAD1, (15) TRMT2A, (16) HTR2A, (17) IPO5, (18) MTHFR, (19) 
NOS1AP, (20) NOTCH4, (21) NRG1, (22) NTNG1, (23) PLA2G4A, (24) PPP3CC, (25) 
PRODH,  (26) RBFOX2, (27) RGS4, (28) DAT1, (29) 5HTT, (30) SYN2,  (31) TNF, (32) 
UFD1L,  (33) ZDHHC8. 

This sample was employed as discovery sample for the construction of the putative 
schizophrenia pathway depicted in Figs. 1 and 2.  The TDT gene sample was updated as 
requested by an anonymous reviewer during the peer review process. The update increased 
the number of TDT genes from 33 to 41. The additional genes were (34) ACSL6,  (35) 
DRD1,  (36) ERBB4,  (37) GABRB2,  (38) NRG3,  (39) PIP5K2A,  (40) SNAP25,  (41) 
ZNF804A. The last TDT sample of 41 candidate genes obtained in December 2014 from 
the SZ database was employed for the intersection analysis of the combined five samples 
(discovery sample and four replication sample). The results are shown in Table 1. 

 

Table&S2.&Replication&sample&#1&based&on&case?control&studies&&
 
Because of the higher rate of false positive findings in case-control studies2, the 
requirement for replication was increased. The choice of three independent groups for 
inclusion was guided by the need to validate the findings by the highest possible number of 
replications and to obtain at the same time a sufficiently large number of genes for 
statistical analysis. On July 7, 2011, 58 candidate genes for schizophrenia were found in 
the SZgene database1, which showed positive results in case-control studies by three 
independent groups. The case-control based candidate genes (CC genes) were 

 (1) ACSL6, (2) AHI1, (3) AKT1, (4) APOE, (5) BDNF, (6) CCKAR, (7) CFB, (8) 
CHGB, (9) CHI3L1, (10) CHRNA7, (11) COMT, (12) DAO, (13) DAOA, (14) DISC1, 
(15) DRD2, (16) DRD3, (17) DRD4, (18) DRD5, (19) DTNBP1, (20) EGF, (21) ERBB4, 
(22) GABRB2, (23) GC, (24) GCLM, (25) GNB1L, (26) GRIK3, (27) GRIN1, (28) 
GRIN2B, (29) GRM3, (30) GSTM1, (31) HP, (32) HTR2A, (33) IL10, (34) IL1B, (35) 
IL1RN, (36) KCNN3, (37) MTHFR, (38) NOS1, (39) NOTCH4, (40) NRG1, (41) NRG3, 
(42) NTF3, (43) NTNG1, (44) PCM1, (45) PDE4B, (46) PIK3C3, (47) PIP4K2A, (48) 
PLA2G4A, (49) RELN, (50) RGS4, (51) SLC18A1, (52) SLC6A3, DAT1, (53) SLC6A4, 
5HTT, (54) SNAP25, (55) TH, (56) TNF, (57) TPH1, (58) UFD1L 

The latest update of the SZgene database obtained in December 2014 did not change 
the number of genes from case-control studies. 
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GenomeBwide,association,studies,(GWAS),

Table&S3.&Replication&sample&#2&obtained&from&the&NHGRI&catalog&
*
The second replication sample consisted of 164 genes from the NHGRI catalog of 
GWAS3 (available at: www.genome.gov/gwastudies/ accessed March 3, 2015). These 
genes were indicated in the catalog as mapped to loci associated with schizophrenia at a 
p-value threshold of p < 10E-08 and were obtained from 45 GWAS of schizophrenia 
(PubMed IDs and first authors are given in the following Table S3 (see 
http://www.ncbi.nlm.nih.gov/pubmed). The dates of publication ranged from 2007 until 
2014, but did not include the large-scale GWAS by the SWGPGC (2014).  
*
 
PMID First author PMID First author 
24280982 Ruderfer 2014  21752600 Chen 2011 
24043878 Wong 2014 21679298 Ma 2011 
23358160 Borglum  2014 21674006 Yamada 2011 
24253340 Lencz  2013 21107309 McClay 2011 
24166486 Sleiman 2013 21057379 Curtis 2011 
24086445 Wang 2013 20939080   Greenbaum 2010 
24039173 McGrath 2013 20889312 Wang 2010 
23974872 Ripke 2013 20713499 Huang 2010 
23453885 Smoller 2013 20558996 Ott 2010 
23894747 Aberg 2013 20185149 Athanasiu 2010 
23142968 Betcheva 2013 19571811 Purcell 2009 
23382809 Xu 2013 19571808 Stefansson 2009 
23212062 Fanous 2012 19571809 Shi 2009 
22885689 Levinson 2012 19197363 Need 2009 
22883433 ISGC 2012 19023125 Potkin 2009 
22688191 Bergen 2012 18677311 O'Donovan 2008 
22648509 Wang 2012 18369103 Walsh 2008 
22479419 Liou 2012 18347602 Sullivan 2008 
21747397 Rietschel 2012 18332876 Kirov 2009 
21682944 Alkelai 2012 18282107 Shifman 2008 
22037555 Shi 2011 17522711 Lencz 2007 
22037552 Yue 2011   
21926974 Ripke 2011   
21795503   Alkelai 2011   
*

Table&S4.&Replication&sample&#3&obtained&from&Ayalew&et&al.&(2012)&
*
An intersection analyses was also performed of the carefully selected set of 42 genes from 
GWAS described by Ayalew et al. (2012)4. This replication sample is characterised by high 
reproducibility and predictive ability in four independent cohorts of different ethnicities4.  
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Table&S5.&Replication&sample&#&4&obtained&from&SWGPGC&2014& 
 
A fourth replication sample consisted of 111 genes assigned by proximity to the 108 
genome-wide significant regions of the SWGPGC's recent large GWAS5. Genes were 
assigned to index-SNPs using a 50 kb window. If multiple genes were present within 
the 50 kb window, the hierachy described by Torkamani et al.6 was employed: coding > 
intronic > 5'UTR > 3'UTR > 5' upstream > 3' upstream > nearest gene. Additionally, the 
entire list of 343 genes within range of genome-wide significant loci (as given by the 
SWGPGC in column 5 of their supplementary Table 3) was used to exclude the 
possibility of a bias by the gene assignment.  

 

Functional,gene,sets,

Table&S6.&Vascular&and&acute&ischemia&genes&of&the&adult&brain&
 
A list of 2 866 ischemia or reperfusion-induced genes were obtained by literature mining 
from 61 sources including 75 genes from the Entrez Genes database of Homo sapiens (HS), 
which were extracted by use of the keywords hypoxia, ischemia, ischemic, erythropoietin 
or vascular. The remainder of the genes came mostly from  gene-expression studies of the 
adult brain reported in the literature7-65. After removal of duplicate genes, a set of 1673 
ischemia genes remained for statistical analysis. 

The gene set for vascular genes consists of 3 500 genes involved in perivascular 
nerves66-74 (N = 253), capillary endothelial cells75 (N = 20), brain endothelial cells76 (N = 
301), capillary shear-stress77-93 (N = 2 818), blood-brain barrier (BBB)94 (N = 29) and 
vascular smooth muscle cells (VSMC)95 (N = 79). After the removal of duplicates, 3 249 
vascular genes remained.  

 

Table&S7.&Neurodevelopmental&genes&
 
A list of 4 020 differentially expressed genes during neurodevelopment was extracted from 
18 published studies96-113. The Entrez Genes database of HS114 had no entries for the key 
words neurodevelopment or brain development. After removal of duplicates, a list of 3 211 
neurodevelopmental genes remained for further analysis. 

 

Table&S8.&Synaptic&genes&
 
A list of 2 988 synaptic genes was obtained from the Entrez Genes database of HS, from 
Bayés et al. ground-breaking study of human Postsynaptic Densities (hPSD)115 and a list of 
1 480 genes was compiled from two additional references116,117. The Entrez Genes database 
provided 50 genes, which were extracted by using the keywords synapse or synaptic. The 
hPSD study yielded 1 458 genes. Since 1 011 genes were found in several datasets, a gene 
set of 1 977 synaptic genes remained after removing duplicates. 
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Table&S9.&Post?ischemic&repair&genes&
*
A list of 159 genes involved in post-ischemia repair was compiled from the literature118-126. They 
are designated as "R" in Tables and Figures. Since ND genes are involved in adult neurogenesis 
and post-ischemic repair120,127, R and ND genes were combined and termed "Repair".  
*

Figure&S1.&Venn&diagrams&&
*

*
 

Figure S1. Venn diagram of vascular, ischemia, and vascular-ischemia genes overlapping 
with neurodevelopmental or repair genes. The diagram was produced by using GeneVenn 
(available at http://genevenn.sourceforge.net). 
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METHODS&

Construction,of,schizophrenia,pathway,

Protein?protein&interaction&analysis&using&STRING&

For protein-proteins interaction analysis, STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins) version 8 at (http://string-db.org) was employed128. 
Supplementary Fig. S1 shows the  protein-protein interactions of candidate genes for 
schizophrenia used in the present study.  

Figure&S2.&Results&of&interaction&analysis&by&STRING&

 
Figure S2. STRING's evidence view revealing protein-protein interactions of candidate 
genes for schizophrenia employed in the present study. Data from the STRING database 
were used for constructing the energy-supply pathway shown in Figs. 1 and 2.  
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Gene&ontology&analysis&
 
The gene ontology (GO) database of the Gene Ontology Consortium129 at 
(http://www.geneontology.org) was employed to search for overrepresentation of 
biological processes or cellular localisations among the genes of the discovery sample. 

As requested by a reviewer, the results of such an analysis are shown in 
Supplementary Table S8. The 125 schizophrenia-associated genes of the combined four 
samples were employed for the GO term analysis. The GO analysis produced a long list of 
significant biological processes, which are difficult to interpret with regard to an unitary 
etiological factor. Only the first page is shown.  
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Table&S10.&GO&terms&enrichment&&
*

*
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Table&S11.&References&for&candidate&genes&from&TDT&studies&for&Fig.&1&?&2.&
*
Gene (Entrez Gene ID) functions and localizations 
1. AKT1 (PKB) (207) is part of the PI3K-AKT-mTOR pathway (KEGG’s pathway 
hsa04012+207)  (see Fig. 2 in article), which regulates essential cellular functions such as 
glucose metabolism, growth, vascular homeostasis, angiogenesis, expression and activity of 
pro- and anti-angiogenic factors, activity of nitric oxide synthase (eNOS), NO 
production130, contraction and relaxation of blood vessels induced by various agents131. 
Furthermore, it enhances vascular function130,132,133, augments Hypoxia-Inducible Factor-
1A (HIF1A) expression by increasing protein translation through a mammalian target of 
rapamycin (mTOR)134, reduces ischemic damage134,135 and is a vital cytoprotectant for 
vascular and neuronal cells135. 
 
2. ARVCF (421) The armadillo repeat gene deleted in velocardiofacial syndrome 
(ARVCF) associates with E-cadherin136, which is part of the tight junctions between the 
endothelial cells of blood vessels. E-cadherin is important for the function of the blood–
brain barrier (BBB). Short exposures to ischemia cause a decreased expression of E-
cadherin and harm the BBB137.  
 
3. BDNF (627), brain-derived neurotrophic factor, attenuates microvascular permeability 
disturbances and axonal injury138, prevents ischemia-induced neuronal cell death in the 
hippocampus139 and plays a role in ischemic preconditioning140. 
 
4. CHRNA7 (1139), cholinergic receptor, nicotinic, alpha 7, is expressed in vascular 
smooth muscle cells141 and induces cerebral vasodilatation142. Acetylcholine is known to 
induce dilation of intracortical microvessels and an increase in cortical perfusion143. 
 
5. CHRFAM7A (89832) CHRFAM7A, cholinergic receptor, nicotinic, alpha 7, exons 5-
10, is a partially duplicated variant of CHRNA7. It is unknown but possible that 
CHRFAM7A is translated and that the gene product is able to interact with alpha 7 
polypeptide since most of the contact regions are encoded in exons 5–10. Furthermore, 
CHRFAM7A has been found to be associated with four types of dementia, Alzheimer’s 
disease, dementia with Lewy bodies, Pick’s disease and vascular dementia144. 
 
 6. CLDN5 (7122), claudin 5 is a major cell adhesion molecule of tight junctions in brain 
endothelial cells which function as blood-brain barrier (BBB). Hypoxia disrupts the BBB 
function through changes in the expression of claudin 5145.  
 
 7. COMT (1312), catechol-O-methyltransferase, plays an important role in the metabolic 
degradation of the catecholamine neurotransmitters dopamine, adrenaline and 
noradrenaline. It is also involved in the  vasoconstriction of cortical microvessels by 
dopamine69. 
 
8. DAOA (267012), D-amino acid oxidase, an enzyme that degrades D-serine, markedly 
inhibites neuronal damage by cortical ischemia and N-methyl-D-aspartate (NMDA)29. One 
isoform appears to play a role in mitochondrial function146. Furthermore, interaction of 
DAOA with COMT has been observed147. 
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9. EGLN1, PHD2, disrupted in schizophrenia 1 (DISC1) (54583). The schizophrenia-
associated Leu607Phe polymorphism hinders the axonal transport of mitochondria required 
for energy production in presynaptic terminals148. Furthermore, EGLN1 is part of the HIF-
VHL-prolyl hydroxylase pathway149, which functions as a cellular oxygen sensor and, 
under normoxic conditions, targets the hypoxia-inducible factor (HIF-1) alpha protein 
through hydroxylation for ubiquitination and proteasomal degradation via the von Hippel-
Lindau (VHL) complex150,151. HIF-1 is a transcriptional complex that plays a central role in 
mammalian oxygen homeostasis and regulates, under hypoxic conditions, the transcription 
of numerous genes related to angiogenesis, cell survival, and glucose metabolism152. 
 
10. DRD2 (1813), dopamine receptor D2 is involved in peripheral vasoconstriction153. With 
regard to the brain, central dopaminergic neurones make close contacts with the basal 
lamina of arterioles and with astrocytic end-feet (reviewed in154). Microinjection of 
dopamine causes a pronounced constriction of cerebral microvessels69. Moreover, D2 
receptor agonists produced negative changes in regional cerebral blood volume (rCBV). On 
the other hand, D1/D5 receptor agonists and DAT blockers induce positive hemodynamic 
changes155. 
 
11. DRD3 (1814). Similar to DRD2, D3 dopamine receptors are involved in peripheral 
vasoconstriction153. In the brain, D3 receptors are expressed by all astrocytes156, by 75% of 
capillary endothelial cells, 25% of capillaries, and 40% of microvessels. D3 receptor 
agonists cause negative changes in rCBV155. 
 
12. DTNBP1 (84062), dystrobrevin binding protein 1. Dystrobrevin and probably its 
binding protein is localized in the astrocytic endfeet and endothelial cells of cerebral 
microvessels157,158 and is part of the signal-transduction pathway for the  α1D-adrenergic 
receptor (α1D-AR).  The latter are ubiquitously expressed on vascular smooth muscle, 
cause vasoconstriction when activated by noradrenaline and adrenaline159 and are 
responsible for increased blood pressure during exercise, injury, and stress (reviewed in160).  
 
13. GABRB2 (2561), gamma-aminobutyric acid A (GABA-A) receptor beta 2. Cortical 
GABA interneurons provide a rich innervation to local microvessels and appear to act as 
local integrators for the tight coupling of neuronal activity and local perfusion, which is 
essential for normal brain function161. GABA-A receptors are present in cerebral 
microvessels162,163 and respond by vasodilatation to GABA released from nerve 
terminals163,164. Muscimol, a GABA-A receptor agonist, elicites vasodilation in 
hippocampal microvessels163. Vasodilatation by cholinergic neurons is in part mediated by 
the local release of GABA from cholinoceptive cortical interneurons and through GABA-A 
receptors165.  
 
The transcription of GABRB2 itself is highly sensitive to hypoxia166 and GABA-A 
receptors are involved in BBB disruption during cerebral ischemia167. With regard to 
cerebral ischemia, GABA exerts neuroprotective effects (reviewed in168,169) via GABA(A) 
and GABA(B) receptors170. And GABAergic interneurons survive ischemic injury for up to 
30 days in all investigated brain regions171. Finally, the induction of ischemic tolerance by 
preconditioning depends on functional modifications of GABA synapses172. 
 
14. GAD1 (2571), glutamate decarboxylase 1 (brain, 67kDa) is responsible for catalyzing 
the production of gamma-aminobutyric acid (GABA) from L-glutamic acid. For GABA’s 
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localisation and role in cortical microvessels, see GABRB2 above.  
 
15. HTR2A (3356), 5-hydroxytryptamine (serotonin) receptor 2A mediates 
vasoconstrictive responses to 5-HT in many vascular smooth muscles and also potentiates 
the activity of growth factors (reviewed in173). Intracerebrally released serotonin cause a 
decrease of cerebral blood flow (CBF) in several brain regions such as the neocortex 
suggesting a major vasoconstrictor role174. In the CNS, 5-HT2A receptors are abundant in 
the cerebral cortex and the limbic system!and are expressed in neurons as well as in 
astrocytes175. Astrocytes are involved in the regulation of cerebral blood flow (CBF) 
(reviewed in176).  In addition, the HTR2A gene appears to be associated with ischemic 
stroke177. Antagonists of the 5-HT2A receptor such as ketanserin and ritanserin increase 
CBF in cortical areas and reduce ischemic damage (reviewed in174). Finally, atypical 
antipsychotic drugs (such as clozapine, aripiprazole, asenapine, iloperidone, lurasidone, 
olanzapine, quetiapine, risperidone, and ziprasidone) produce extensive blockade of 
serotonin 5-HT2A receptors and stimulation of 5-HT1A receptors at clinically effective 
doses178. Both , i.e. 5-HT1A receptor agonists and 5-HT2 receptor antagonists, have a 
neuroprotective effect against ischemia-induced deficits179. 
 
16. IPO5 (3843) also known as imp5, RANBP5, IMB3, Pse1, and KPNB3 encodes the 
importin 5 protein, which is a member of the importin beta family, a cytoplasmic protein 
that binds to nuclear pore complexes (NPCs)180, imports ribosomal proteins in the nucleolus 
where they are assembled into the eukaryotic ribosomal subunits required for protein 
synthesis181 and mediates the nuclear import of H2A, H2B, H3 and H4 histones182. These 
four core histones - H2A such as Hist1H2AG, H2B such as Hist1H2BJ, H3 and H4 - are 
localized on chromosome 6p22, a region showing a strong association with 
schizophrenia183. The import of the four core histones is essential for the S-phase of the cell 
cycle during which DNA is replicated and newly synthesized histones are deposited onto 
the DNA in order to form the chromatin structure182 (reviewed in184).  

The S-phase of the cell cycle is important for the proliferation of vascular endothelial cells 
during angiogenesis (reviews185-187). Angiogenesis is a predictive marker of neurological 
outcome following hypoxia-ischemia188,189. Furthermore, histones H4190, H3, and H2A are 
known to play a role in ischemia protection190-194. 

17. MTHFR (4524) methylene tetrahydrofolate reductase catalyzes the reduction of 5,10-
methylene tetrahydrofolate to 5-methyl tetrahydrofolate, the predominant ciruclatory form 
of folate and carbon donor for the re-methylation of homocysteine to methionine. Two 
polymorphisms are known to cause mild enzyme deficiency.  A common polymorphism in 
the MTHFR gene (C677T, Ala --> Val) is associated with a decreased activity of the 
enzyme due to thermolability. In case of homozygosity for the Val allele, a relative 
deficiency of the enzyme leads to a mild-to-moderate hyperhomocysteinaemia195. 
Hyperhomocysteinemia is a risk factor for cerebrovascular disease196.  
 
18. NOS1AP (9722) nitric oxide synthase 1 (neuronal) adaptor protein, alias CAPON, 
encodes a cytosolic adapter protein that activates neuronal nitric oxide synthase 
(nNOS/NOS1) and is involved in the synthesis of nitric oxide (NO)197. In humans, nNOS 
produces NO in nitric oxide interneurons and vascular smooth muscle cells regulating 
microvascular tone in humans198-200. In brain ischemia, nNOS stimulates the increase of NO 
from baseline nanomolar to micromolar levels NO (reviewed in201). However, the 
activation of nNOS alone has neurotoxic effects202, whereas simultaneous activation of 
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eNOS appears to be neuroprotective (reviewed in201,203). 
 
19. NOTCH4 (4855) alias INT3, encodes for the Notch-4 protein, an endothelial cell 
specific homologue of Notch. The expression of NOTCH4 is restricted to endothelial cells 
in the embryonic and adult brain204. The Notch-4 protein plays a crucial role in 
vasculogenesis, vascular repair of injury and angiogenesis205,206. The latter is a key response 
to cerebral ischemia185-187 and predicts the neurological outcome188,189. During 
angiogenesis, Notch-4  induces microvessel differentiation of brain endothelial cells207 and 
the formation of new blood vessels from existing vasculature. To allow for endothelial 
sprouting,  the extracellular matrix around existing vasculature is degraded by matrix 
metalloproteases (MMPs)208. The MMPs is induced by VEGF signaling via VEGFR-2 and 
the PI3K/Akt pathway209.  
 
20. NRG1 (3084) neuregulin 1 alias glial growth factor 2 - also known as GGF; HGL; 
HRG; NDF; ARIA; GGF2; HRG1; HRGA; SMDF; MST131 – and two of its receptors 
(erbB2, erbB3) are expressed in brain microvascular endothelial cells210, astrocytes and 
oligodendrocytes211,212. Neuregulin 1 activates the PI3K/AKT intracellular signaling 
pathway by binding to erbB receptors211,213. Cellular survival after ischemia depends in 
large extent on the activation of the PI3K/Akt pathway (reviewed in214,215). Like other 
growth factors, NRG1 activates the PI3K/Akt pathway and subsequently the mTOR-
dependent protein synthesis210,213,216,217 required for ischemia protection and repair. NRG1 
has been shown to be a powerful neuroprotective factor in ischemia119,218-220 and to play a 
role in repair119. Following vessel hypoxia and injury, the expression of of NRG1 and erbB 
is upregulated whereas in uninjured vessels it is low218,221,222 .  
 
21. NTNG1 (22854) Netrin G1 belongs to a conserved family of proteins that act as axon 
guidance cues during vertebrate nervous system development114,223.  
 
Another member of this family Netrin-1, has the ability to attract blood vessels as well as 
axons, and is capable of functioning as a vascular growth factor224. In addition, netrin-1 
stimulates NO production in mature endothelial cells225 and has been shown to protect the 
cerebral cortex from the effect of ischemia226. 
 
Little is known about a possible vascular function of netrin G1. However, the fact that the 
trajectories of nerves and blood vessels are often shared, led to the hypothesis that tissues 
may use identical or similar factors to guide innervation and vascularization227. Human 
NTNG1 is localized at the chromosomal position 1p13.3. This region is syntenic with 
mouse chromosome 3, where a modifier locus for renal vascular disease lesions has been 
identified228. 
 
22. PLA2G4A (5321) (alias cPLA2-alpha). The gene product, cytosolic, calcium – 
dependent phospholipase A2 (cPLA2), is expressed in astrocytes229, mediates agonist-
induced release of AA230,231, responds to stress, inflammation, G protein-coupled receptors, 
adrenoreceptor-mediated vasoconstriction232 and ischemia233. AA is further metabolized 
into prostaglandin molecules by cyclooxygenase-2 (COX-2) causing relaxation of vascular 
smooth muscles and subsequent vasodilatation. This mechanism is also activated by the 
skin flush induced by niacin (nicotinic acid)231,234-239. AA  are metabolized by cytochrome 
P450 (CYP) epoxygenase to form epoxyeicosatrienoic acids (EETs) which are known key 
astrocyte- and endothelium-derived regulators of cerebrovascular function240. EETs have 
been shown to protect astrocytes and neurons against ischemia and to be key regulators of 
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cortical angiogenesis, which is important for recovery from ischemia241 (reviewed in240).  
 
23. PPP3CC (5533) PPP3CC (aliases CNA3; CALNA3; PP2Bgamma) codes for 
calcineurin A gamma subunit114. Calcineurin is a serine/threonine phosphatase that is 
activated by calcium and calmodulin242.  It promotes the expression of Hypoxia-inducible 
Factor 1 alpha (HIF-1α) via the receptor for activated C kinase 1 (RACK1)242. Highly 
localized in the brain, especially in those parts which are vulnerable to hypoxia/ischemia, it 
has protective as well as toxic effects and the balance may be important for the outcome of 
ischemia243. 
 
24. PRODH (5625) encodes proline oxidase (POX), a mitochondrial inner-membrane 
enzyme that metabolizes l-proline. Most of the alleles associated with schizophrenia result 
in severely reducted POX activity and hyperprolinemia244. The latter impairs the activity of 
cytochrome c oxidase, an enzyme of the respiratory electron transport chain of 
mitochondria245.  In the cerebral cortex, proline causes mitochondrial dysfunction, oxidative 
stress and impaired energy metabolism246. 
 
25. RBFOX2 (23543) alias Rbm9, RNA binding protein, fox-1 homolog. The mammalian 
Fox genes are complex transcription units that specifically recognize the RNA element 
UGCAUG and generate transcripts from multiple promoters247. Fox-1/2  are preferentially 
expressed in brain, heart and muscle tissues. They target genes involved in muscle 
contraction and vascular regulation, such as potassium ion transport, myosin, dystrophin, 
calmodulin binding92.  
 
Potassium (K+) channels play an important role in neurovascular coupling (reviewed in248), 
cerebral ischemia (reviewed in249) and endothelial dysfunction (reviewed in250). Myosin is 
expressed in vascular smooth muscle and pericytes251 suggesting a role in vasoconstriction. 
Dystrophin is involved in flow (shear stress)-induced endothelium-dependent dilation and 
its absence in mice reduces NO-dependent vascular function252. Calmodulin and calcium 
activate calcineurin, which promotes the expression of hypoxia-inducible Factor 1 alpha 
(HIF-1α)242. 
 
26. RGS4 (5999), regulator of G-protein signaling 4, is selectively enriched in the heart and 
brain (reviewed in253). RGS proteins modulate hormone and neurotransmitter signaling254. 
With regard to the former, insulin release from pancreatic beta-cells is negatively regulated 
by RGS4255. Insulin activates the PI3K/Akt pathway, which is important for ischemia 
protection and repair from ischemia injury by angiogenesis. The latter is inhibited by 
RGS4256. Concerning neurotransmitter signaling, RGS proteins modulate and inhibit signal 
transduction by G-protein-coupled receptors (GPCRs) (reviewed in253,257,258). Mice 
deficient for RGS4 show increased concentration of serum catecholamines259. In addition, 
RGS4 is linked to regulation of cholinergic and serotonergic signaling in the brain and is 
expressed in most cortical layers (reviewed in253). GPCRs are widely associated with the 
regulation of vascular smooth muscle cell contractility260 and RGS proteins are known to 
play a role in the regulation of vascular tone261,262.  
 
27. SLC6A3, DAT1 (6531), solute carrier family 6 (neurotransmitter transporter, 
dopamine) member 3, is situated in the plasma membrane of the dopaminergic neurons 
where it mediates the re-uptake of dopamine from the synaptic cleft into the presynaptic 
neuron263,264. Dopaminergic signaling in the brain is primarily modulated by dopamine 
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transporters (DATs) (reviewed in265). In rats, DAT blockers induce positive hemodynamic 
changes via D1/D5 dopamine receptors and smaller negative changes through D2/D3 
receptors on microvessels and astrocytes155. In humans, the DAT blocker cocaine caused 
dose-dependent cerebral vasoconstriction as revealed by magnetic resonance 
angiography266. Cocaine abuse and dependence is associated with increased incidence of 
stroke and myocardial ischemia267,268. The latter has been shown to be a consequence of 
vascular spasms268.  

28. SLC6A4, 5HTT (6532), solute carrier family 6 (neurotransmitter transporter, serotonin) 
member 4 -  also known as HTT; 5HTT; OCD1; SERT; 5-HTT; SERT1; hSERT; 5-
HTTLPR - encodes a membrane protein that transports the neurotransmitter serotonin from 
synaptic spaces into presynaptic neurons. It terminates the action of serotonin and recycles 
it114. Serotonergic perivascular nerves are involved in the regulation of cerebrovascular 
tone68. Intracerebrally released serotonin (5-HT) has a major vasoconstrictor effect resulting 
in a decrease of cerebral blood flow (CBF) in several brain regions including the neocortex 
(reviewed in174). A serotoninergic pathway originating in the raphe nucleus projects to 
cortical microvessels endowed with several 5-HT receptors including 5-HT1B receptors 
that mediate their contraction (reviewed in68,174). Consistent with serotonin’s 
vasoconstrictor effect, 5-HT2 receptor antagonists such as ketanserin and ritanserin, have 
been shown to increase CBF in cortical areas and to exert a protective effect in ischemia174.  

29. SYN2 (6854), synapsin II - is a member of the synapsin family and encodes a neuron-
specific phosphoprotein that selectively binds to small synaptic vesicles in the nerve 
terminal114. Synapsin proteins have important functions in maintaining the integrity and 
stability of synaptic vesicles269 and are regulators of neurotransmitter release from 
presynaptic nerve terminals (reviewed in270,271).  
 
SNYN2 is a negative regulator of catecholamine release. SYN2 knock-out mice showed an 
increase of catecholamine release272. Furthermore, double knock-out mice, with deletions of 
SYN1 and SYN2, display higher concentrations of acetylcholine in the cortex269. SYN2 
knock-out mice also had an increase of glutamatergic and GABAergic synaptic 
transmission in the spinal cord after nerve injury273. Catecholamines and acetylcholine play 
a role in neurovascular regulation (reviewed in68). Glutamate release following ischemia is 
thought to cause neuronal injury (reviewed in274). 
 
30. TRMT2A (27037), HpaII tiny fragments locus 9c protein, HTF9C, TRM2 tRNA 
methyltransferase 2 homolog A is a protein expressed in proliferating cells. It is 
overexpressed in breast cancer275 suggesting a role for TRMT2A in angiogenesis and in 
protection and recovery from ischemia. Angiogenesis is predictive of neurological outcome 
following hypoxia-ischemia188,189. 
 
The transcription of TRMT2A is repressed in quiescent tissues and growth-arrested cells, 
activated at the G1/S transition of the cell cycle, and peaks in S phase276,277. The G1/S 
transition is the first brake-point through which the cell must pass before it can enter cell 
division. During S-phase of the cell cycle, DNA is replicated and de novo chromatin 
assembly takes place278.  
 
A key response to tissue hypoxia is angiogenesis, which requires the proliferation of 
vascular endothelial cells (reviewed in185-187). Prevention of endothelial cells to enter G1 
phase of the cell cycle results in reduced angiogenesis279,280 and hence in protection and 



* 18*

recovery from ischemia.  
 
31. TNF (7124), tumor necrosis factor, is a multifunctional proinflammatory cytokine114 
which is induced within 1 hour in brain ischemia, It has oligodendrocyte cytotoxic as well 
as neuroprotective effects (reviewed in281,282). The activation of the Akt pathway has 
protective effects on TNF-mediated oligodendrocyte cytotoxicity283.  Concerning 
neuroprotection, TNF activates also the mammalian target of rapamycin (mTOR) which has 
an influence on mitochondrial energy metabolism, protein synthesis and adaptation to 
ischemia284. Moreover, TNF activates cPLA2 (reviewed in285), which regulates 
cerebrovascular function via arachidonic acid  (AA) and epoxyeicosatrienoic acids (EETs) 
(reviewed in240,286). Finally, TNF improves ischemia repair by upregulating the 
erythropoietin receptor (EPOR) thereby sensitizing cerebral endothelial cells for 
erythropoietin-induced angiogenesis287. 
 
32. UFD1L (7353), ubiquitin fusion degradation 1 like. The protein encoded by this gene 
forms a complex with two other proteins, nuclear protein localisation-4 and valosin-
containing protein. This complex is necessary for the degradation of ubiquitinated 
proteins114. Ubiquitination of proteins is the first step in the degradation of proteins by the 
proteasome system. The ubiquitin-proteasome system degrades hypoxia-inducible factor 
1alpha (HIF-1alpha) protein under normoxic conditions, while it is stabilized and 
accumulated rapidly following exposure to low oxygen tensions288,289. HIF-1 is a master 
regulator of  response to hypoxia by activating the transcription of many genes, including 
those involved in blood flow, cell survival, glucose transport, energy metabolism, i.e. genes 
whose protein products increase oxygen delivery or facilitate adaptation to hypoxia114. 
Ubiquitin fusion degradation protein 1 (UFD1) is a blood marker for the early diagnosis of 
ischemic stroke290. 
 
33. ZDHHC8 (29801), zinc finger, DHHC-type containing 8 (DHCC8), is localised in 
mitochondria and presynaptic processes, mostly glutmatergic and to a lesser extent 
GABAergic processes. It interacts interacts with mitochondrial Complex III. ZDHHC8 
dosage change is able to disrupt mitochondrial function and to influence cell survival and 
death291.  
 

 

Pathway,analyses 

Preliminary&pathway&analyses&

KEGG,pathway,analysis,

 
The Kyoto Encyclopedia of Genes and Genomes (KEGG)292 at (http://www.kegg.jp) was 
used for pathway analysis and as guide for the construction of the candidate schizophrenia 
pathway depicted in Figs. 1 and 2.  

As requested by one of the reviewers, results of these analyses are shown as 
Supplementary Information. The KEGG pathway analyses produced a five pages long list 
of pathways, which are difficult to interpret with regard to the etiology of schizophrenia. 
Table S12 lists the top results on the first page of output from KEGG. Figs. S3S5 are 
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shown to exemplify the help provided by KEGG pathways for constructing the candidate 
pathway for schizophrenia depicted in Figs. 1 and 2.  

The first page of the results from the KEGG pathway analysis is shown in Table S12. 
Five genes from our list of candidate genes for schizophrenia were not found in the KEGG 
database. Yellow highlights pathways related to vascular regulation or the energy-
delivering pathway depicted in Figs. 1 and 2.  
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Table&S12.&Results&of&pathway&analysis&by&KEGG 
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Figure&S3.&KEGG’s&mTOR&pathway&

 
 
Figure S3.  Two candidate genes for schizophrenia from the TDT sample (in red) mapped 
by KEGG to the mTOR signaling pathway are shown as an example of the data from 
KEGG employed for constructing the energy-delivering pathway (see Figs. 1 and 2).   
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Figure&S4.&KEGG’s&Hypoxia?Inducible&Factor&(HIF)&pathway&

 
 
Figure S4. Five schizophrenia-associated genes mapped by KEGG to the Hypoxia-
Inducible Factor (HIF) signaling pathway. The combined sample of 345 schizophrenia-
associated genes was used to obtain this figure from KEGG.  
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Figure&S5.&KEGG’s&Vascular&Smooth&Muscle&Contraction&(VSMC)&pathway&

 
Figure S5. Five schizophrenia-associated genes were mapped by KEGG to the VSMC 
pathway. The combined sample was used for this Figure. In addition, actin was marked, 
because Fromer et al. (2014) and  Zhao et al. (2014) found evidence for the involvement of 
actin in schizophrenia293,294. Furthermore, the polymerisation status of the submembranous 
actin web in vascular endothelium determines the activity of eNOS and the release of 
NO295 (see also Fig. 1–2). In addition, a role for calcium signaling genes in schizophrenia 
was reported in the 2014 GWAS by the SWGPGC5 and has recently been emphasized by 
Tansey et al. (2015)296.  
 

PANTHER,pathway,analysis,
 
The PANTHER (Protein ANalysis THrough Evolutionary Relationships) 
Classification System297 at (http://www.pantherdb.org) was employed for pathway 
analysis of the discovery and the combined sample. The results of the latter are 
shown in Table S13. They involved the dopamine receptor mediated signaling pathway, 
adrenaline and noradrenaline biosynthesis, EGF receptor signaling pathway, 5HT2 type 
receptor mediated signaling pathway, nicotinic acetylcholine receptor signaling pathway. P 
values are Bonferroni corrected for multiple testing.  

Stress
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Table&S13.&Results&of&pathway&analysis&by&PANTHER&&

 

Genetic,disease,association,analysis,by,DAVID,
 

The discovery and the combined gene samples described in this article were also 
analysed genetic disease associations by the Database for Annotation, Visualization and 
Integrated Discovery (DAVID)298 at  (http://david.abcc.ncifcrf.gov/). Table S14 shows 
some of the results.  
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Table&S14.&DAVID’s&genetic&associations&with&diseases&

 
Legend for Table S14. Functional annotation of the discovery sample by DAVID's genetic 
association database. Interestingly, seven of the candidate genes for schizophrenia are also 
involved in migraine (see above).  
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Gene,set,analysis,
All genes from other species were transformed into human orthologous genes and 

identified by Entrez Gene IDs. The association between schizophrenia-associated genes and 
functional gene sets were computed by using the intersect function of the programming language 
R (version 3.0.2, platform: x86_64-apple-darwin10.8.0, 64-bit)299. 

Supplementary&statistics&information&

Genome,resampling,test,
Homo sapiens’ complete list of genes was downloaded on April 8, 2011 from the Entrez 

Gene database!maintained by the National Center for Biotechnology Information (NCBI) 
(http://www.ncbi.nlm.nih.gov/gene). It had 45 386 entries.   

To improve the power (i.e. the chances of obtaining an intersection of randomly drawn 
genes from the database with functional gene sets), the list was curated by deleting all genes 
with unknown function from the Entrez Gene database. Using the Unix stream editor SED, 
genes with the following key words were removed: pseudogene, hypothetical LOC, 
hypothetical protein, pseudo, miscRNA, readthrough, read-through, open reading frame, 
deletion syndrome, duplication syndrome, triplication syndrome, unknown, uncharacterised 
protein, putative uncharacterised protein and repeat sequence. Next, all candidate genes for 
schizophrenia and functional gene sets were added and duplicates removed to ensure that all 
genes under investigation are represented equally among the constructed representation of the 
Human Genome and have a chance of being drawn during genomic resampling. The final 
modified list of Entrez Genes was comprised of 21 012 human genes mostly of known 
function.  

The number of intersections between schizophrenia-associated genes and functional gene 
sets was determined by the intersect function implemented in R299. A genomic resampling 
procedure was employed to obtain estimates of the expected numbers of intersecting genes by 
drawing the same number of genes as the candidate genes 1 million times at random (with 
replacement) from the representation of the Human Genome described above and determining the 
intersection of the random genes with the functional gene set. The resampling method has the 
avantage of being independent of the distribution assumption, but due to computational 
restrictions significance can only be computed up to a threshold of p ≥ 10E-6. Within this limit 
imposed by computational restriction, the empiciral p-values were identical to the nominal p-
values from Fisher's Exact Test.  
 

RESULTS&

Putative,schizophrenia,pathway,
The stress-induced increase of cortisol and desoxycorticosterone (DOC)300 has an 

inhibitory influence on the expression of glucose transporters301, brain metabolism302, and 
serotonin uptake303. Furthermore, stress induces the release of adrenaline into the 
circulation and of noradrenaline and dopamine in the prefrontal cortex (reviewed in304); 
these are neurotransmitters known for their vasoconstrictive effects69,303 (reviewed in305). 
Magnitude and duration of the signals of these neurotransmitters is primarily influenced by 
their plasma membrane transporters (e.g., DAT1, NAT1 and 5-HTT) (reviewed in306). The 
expression of these transporters at the cell surface depends on the activity of the PI3K/Akt 
pathway and its stimulation by insulin and insulin-like growth factor 1 (IGF-1)307. 
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Numerous studies have shown that growth factors, cytokines and hormones (such as 
insulin, IGF-1, EGF, prolactin, estrogens and erythropoietin) have a positive effect on Akt, 
thereby probably reducing the vasoconstrictive impact of stress via Akt’s positive influence 
on DAT1264,  NAT1308 and eNOS309. At low concentrations, testosterone exerts an 
activating effect on Akt, but an inhibitory effect at high concentrations310. In addition, 
prolactin activates Akt311 suggesting that the hyperprolactinemia caused by typical 
antipsychotics is likely to have vasodilatatory and ischemia-protective effects (Fig. 2).  

In summary, cerebral blood flow and energy supply depend on growth factors, 
hormones and genes involved in the PI3K–Akt–mTOR pathway. Activation of this 
pathway also protects tissue from ischemia by influencing the protein synthesis of the 
hypoxia-inducing factor (HIF)312,  which subsequently induces the translation of more than 
70 proteins in order to increase blood flow, cellular survival and alternative energy 
production from lactate.  
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Discovery,sample,,

Table&S15.&Intersection&between&functional&gene&sets&and&candidate&genes&for&
schizophrenia&obtained&from&TDT&studies.&
 

Functions 

 N 

SZ 

N 

E 

(N) 

O 

(N) 

E 

(%) 

O 

(%) 

RF CI 

 

Nominal 

p ≤ 

Bonferroni 

corrected p ≤ 

VIRND 6409 41 13 28 30.4 68.3 2.3 22–41 6.8E-07 1.3e-05 ** 

VI 4213 41 8 25 20.1 61.0  3.0 19–41  1.2E-08 2.3e-07 *** 

V 3249 41 6 20 15.4 48.8 3.2 14–41  5.9E-07 1.1e-05 ** 

PV 253 41 1 11 1.2 26.8 22.3  6–41 1.7E-12 3.2e-11 *** 

I 1673 41 3 15 8.0 36.6 4.6  1041 2.8E-07 5.3e-06 ** 

R 159 41 0 11 0.7 26.8 35.5 6–41 8.5E-15 1.6e-13 *** 

Repair  3319 41 6 23 15.8 56.1 3.6 17-41 3.7E-09 7.0e-08 *** 

ND 3211 41 6 16 15.3 39.0 2.6  11–41 1.9E-04 3.6e-03 * 

SY 1977 41 4 19 9.4 46.3 4.9 13–41 9.9E-10 1.9e-08 *** 

VI x ND 1051 41 2 13 5.0 31.7 6.3 8–41 5.4E-08 1.0e-06 *** 

VI x Repair 1124 41 2 20 5.3 48.8 9.1 14–41 2.8E-15 5.3e-14 *** 

V x ND 784 41 2 11 3.7 26.8 7.2 6–41 2.0E-07 3.8e-06 ** 

V x Repair 845 41 2 18 4.1 43.9 10.9 13–41 5.3E-15 1.0e-13 *** 

I x ND 523 41 1 8 2.5 19.5 7.9 4–41 6.4E-06 1.2e-04 ** 

I x Repair 569 41 1 12 2.7 29.3 10.8 7–41 5.2E-10 9.9e-09 *** 

VI  -ND 3163 41 6 12 15.1 29.3 1.9  7–41 0.02 n.s. 0.38 n.s. 

VI  -SY 3273 41 6 9 15.5 22.0 1.4 5–41  0.18 n.s 1.0 n.s. 

ND -VI 2161 41 4 3 10.3 7.3 0.7 1–41 0.81 n.s 1.0 n.s. 

SY  -VI 1037 41 2 3 4.9 7.3 1.5  1–41 0.33 n.s 1.0 n.s. 

Legend for Table S15. CI, 95 percent confidence intervals expressed as number of 
identical genes; E, Expected number and percentage of intersecting genes by chance; I, 
ischemia genes; Minus sign (-), overlapping genes removed; ND, neurodevelopmental 
genes; O, Observed number or percentage of intersecting genes; PV, perivascular nerve 
genes; R, post-ischemic repair genes; Repair, R and ND genes combined because ND 
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genes are involved in post-ischemic repair120,127; RF, representation factor, i.e., the 
number of intersecting genes divided by the expected number of intersecting genes drawn 
from two independent groups. RF > 1 indicates an overrepresentation of genes; SY, 
synaptic genes; SZ, schizophrenia-associated genes; x, indicate interacting genes; VI, 
vascular and ischemia genes of the brain combined. VIRND, all genes involved in 
ischemia combined, i.e., V, I, R and ND genes. Levels of significance (Bonferroni 
corrected): * indicates p ≤ 1.0E-02;  ** indicates p ≤ 1.0E-03;  *** indicates p ≤ p ≤ 
1.0E-06. 
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Replication,sample,#1,,

Table&S16.&Intersection&between&functional&gene&sets&and&candidate&genes&for&
schizophrenia&obtained&from&case?control&studies&(CC).&
 

Functions 

 N 

SZ 

N 

E 

(N) 

O 

(N) 

E 

(%) 

O 

(%) 

RF CI 

 

Nominal 

p ≤ 

Bonferroni 

corrected p ≤ 

VIRND 6409 58 18 47 30.6 81.0 2.7 41–58 2.4E-15 5.0e-14 *** 

VI 4213 58 12  43 20.1 74.1  3.7 36-58  2.2E-16 4.6e-15 *** 

V 3249 58 9  36 15.4 62.1  4.0 29-58  9.0E-16 1.9e-14 *** 

PV 253 58 1 19 1.2  32.7  27.2 13-58  2.2E-16 4.6e-15 *** 

I 1673 58 5 28 8.0  48.3 6.1  21-58 4.5E-16 9.5e-15 *** 

R 159 58 0 19 0.7 32.8 43.3 13–58 2.2E-16 4.6e-15 *** 

Repair 3319 58 9 29 15.8 50.0 3.2 22–58 1.3E-09 2.7e-08 *** 

ND 3211 58 9  16 15.3 27.6  1.8  10-58 0.01 n.s. 2.1e-01 n.s. 

SY 1977 58 6 23 9.4  39.7  4.2 16-58 8.0E-10 1.7e-08 *** 

VI x ND 1051 58 3 13 5.0 22.4 4.5 8–58 4.4E-06 9.2e-05 ** 

VI x Repair 1124 58 3 25 5.3 43.1 8.1 19–58 2.2E-16 4.6e-15 *** 

V x ND 784 58 2 12 3.7 20.7 5.6 7–58 1.2E-06 2.5e-05 ** 

V x Repair 845 58 2 24 4.0 41.4 10.3 18–58 2.2E-16 4.6e-15 *** 

I x ND 523 58 1 8 2.5 13.8 5.6 4–58 8.8E-05 1.8e-03 * 

I x Repair 569 58 2 16 2.7 27.6 10.2 11–58 1.9E-12 4.0e-11 *** 

VI  -ND 3163 58 8 30 15.0 51.7 3.4  23-58 7.6E-11 1.6e-09 *** 

VI  -SY 3273 58 9 21 15.5 36.2  2.3  15-58 1.0E-04 2.1e-03 * 

I  -ND 1151 58 3 20 5.5  34.5  6.3 14-58  1.4E-11 2.9e-10 *** 

I  -SY 1180 58 3 15  5.6 25.9  4.6 10-58  5.1E-07 1.1e-05 ** 

ND -VI 2161 58 6 3 10.2 5.2 0.5 1–58 0.96 n.s. 1.0 n.s. 

SY  -VI 1037 58 3 1  4.9  1.7 0.3  1–58 0.95 n.s. 1.0 n.s. 
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Legend for Table S16. Abbreviations are explained at Table S15. Levels of significance 
(Bonferroni corrected): * indicates p ≤ 1.0E-02;  ** indicates p ≤ 1.0E-03;  *** indicates p 
≤ p ≤ 1.0E-06. 
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Replication,sample,#2, ,

Table&S17.&Intersection&of&the&schizophrenia&gene&set&obtained&from&the&NHGRI&
catalog&with&functional&gene&sets.&
 

Functions 

 N 

SZ 

N 

E 

(N) 

O 

(N) 

E 

(%) 

O 

(%) 

RF CI 

 

Nominal 

p ≤*
Bonferroni 

corrected p ≤ 

VIRND 6409 164 50 76 30.5 46.3 1.5 65–164 6.0E-06 1.1e-04 ** 

VI 4213 164 33 44 20.0 26.8 1.3 35–164 0.02 0.38 n.s. 

V 3249 164 25 37 15.5 22.6 1.5 28–164 0.01 0.19 n.s. 

PV 253 164 2 7 1.2 4.3 3.5 3–164 0.004 7.6e-02 n.s. 

I 1673 164 13 16 7.9 9.8 1.2 10–164 0.23 1.0 n.s. 

R 159 164 1 6 0.7 3.7 4.8 3–164 0.001 1.9e-02 n.s. 

Repair 3319 164 26 50 15.8 30.5 1.9 40–164 9.2E-07 1.7e-05 ** 

ND 3211 164 25 46 15.3 28.0 1.8 37–164 2.1E-05 4.0e-04 ** 

SY 1977 164 15 31 9.4 18.9 2.0 23–164 1.4E-04 2.7e-03 * 

VI x ND 1051 164 8 15 5.0 9.1 1.8 9–164 0.02 0.38 n.s. 

VI x Repair 1124 164 9 18 5.3 11.0 2.1 12–164 0.003 5.7e-02 n.s. 

V x ND 784 164 6 13 3.7 7.9 2.1 8–164 0.007 0.13 n.s. 

V x Repair 845 164 7 15 4.0 9.1 2.3 9–164 0.003 5.7e-02 

I x ND 523 164 4 8 2.5 4.9 2.0 4–164 0.05 0.95 n.s. 

I x Repair 569 164 4 10 2.7 6.1 2.3 5–164 0.01 0.19 n.s. 

VI  -ND 3163 164 25 29 15.1 17.7 1.2 21–164 0.20 1.0 n.s. 

VI  -SY 3273 164 25 29 15.6 17.7 1.1 21–164 0.26 1.0 n.s. 

ND  -VI 2161 164 17 31 10.2 18.9 3.7 23–164 6.4E-04 1.2e-02 n.s. 

SY  -VI 1037 164 8 16 4.9 9.8 2.0 10–164 8.0E-03 0.15 n.s. 

 
Legend for Table S17. Abbreviations are explained at Table S15. Levels of significance 
(Bonferroni corrected): * indicates p ≤ 1.0E-02;  ** indicates p ≤ 1.0E-03;  *** indicates p ≤ 
p ≤ 1.0E-06. 
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Replication,sample,#3,

Table S18. Intersection of the schizophrenia gene set developed by Ayalew et al.4 
with functional gene sets. 

 
Functions 

 N 

SZ 

N 

E 

(N) 

O 

(N) 

E 

(%) 

O 

(%) 

RF CI 

 

Nominal 

p ≤*
Bonferroni 

corrected p ≤ 

VIRND 6409 42 13 36 30.5 85.7 2.8 31–42 1.6E-13 3.0e-12 *** 

VI 4213 42 8.5 31 20.2 73.8 3.7 25–42 1.2E-13 2.3e-12 *** 

V 3249 42 6 24 15.5 57.1 3.7 18–42 6.9E-10 1.3e-08 *** 

PV 253 42 1 12 1.2 28.6 23.7 1-42 7.4E-14 1.4e-12 *** 

I 1673 42 3.4 22 8.0 52.4 6.6 16–42 8.4E-14 1.6e-12 *** 

R 159 42 0 11 0.7 26.2 34.6 6–42 1.2E-14 2.3e-13 *** 

Repair 3319 42 7 29 15.8 69.0 4.4 23–42 1.6E-14 3.0e-13 *** 

ND 3211 42 6.5 26 15.4 61.9 4.1 20–42 9.9E-12 1.9e-10 *** 

SY 1977 42 4.0 29 9.5 69.0 7.3 23–42 2.2E-16 4.2e-15 *** 

VI x ND 1051 42 2 21 5.0 50.0 10.0 15–42 2.2E-16 4.2e-15 *** 

VI x Repair 1124 42 2 24 5.3 57.1 10.7 18–42 2.2E-16 4.2e-15 *** 

V x ND 784 42 2 16 3.8 38.1 10.2 11–42 8.0E-13 1.5e-11 *** 

V x Repair 845 42 2 19 4.1 45.2 11.3 14–42 5.6E-16 1.1e-14 *** 

I x ND 523 42 1 14 2.4 33.3 13.4 9–42 8.0E-13 1.5e-11 *** 

I x Repair 569 42 1 17 2.7 40.5 15.0 12–42 2.4E-16 4.6e-15 *** 

VI  -ND 3163 42 6.4 10 15.2 23.8 1.6 5–42 0.09 n 1.0 n.s. 

VI  -SY 3273 42 6.6 7 15.7 16.7 1.1 3–42 0.50 1.0 n.s. 

ND  -VI 2161 42 4.4 5 10.4 11.9 1.2 2–42 0.44 1.0 n.s. 

SY  -VI 1037 42 2.1 5 5.0 11.9 2.4 2–42 0.06 1.0 n.s. 

 
Abbreviations are explained at Table S15. Levels of significance (Bonferroni corrected): * 
indicates p ≤ 1.0E-02;  ** indicates p ≤ 1.0E-03;  *** indicates p ≤ p ≤ 1.0E-06. 
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Replication,sample,#4,(all,genes,within,range), ,

Table&S19.&Intersection&of&all&the&343&genes&within&range&of&108&genome?wide&
significant&loci&reported&in&2014&by&the&SWGPGC&in&the&largest&GWAS&of&
schizophrenia&to&date.&

Functions 

 N 

SZ 

N 

E 

(N) 

O 

(N) 

E 

(%) 

O 

(%) 

RF CI 

 

Nominal 

p ≤*
Bonferroni 

corrected p ≤ 

VIRND 6409 343 105 154 30.5 44.9 1.5 139–343 5.2E-09 9.9e-08 *** 

VI 4213 343 69 97 20.1 28.3 1.4 83–343 1.7E-04 3.2e-03 * 

V 3249 343 53 76 15.5 22.2 3.5 63–343 6.8E-04 1.3e-02 n.s. 

PV 253 343 4 12 1.2 3.5 2.9 7–343 0.001 1.9e-02 n.s. 

I 1673 343 27 46 8.0 13.4 1.7 36–343 3.8E-04 7.2e-03 * 

R 159 343 3 7 0.8 2.0 2.7 3–343 0.01 0.19 n.s. 

Repair 3319 343 54 95 15.8 27.7 1.8 81–343 7.4E-09 1.4e-07 *** 

ND 3211 343 52 91 15.2 26.5 1.7 78–343 5.9E-08 1.1e-06 *** 

SY 1977 343 32 49 9.4 14.3 1.5 39–343 0.002 3.8e-02 n.s. 

VI x ND 1051 343 17 35 5.0 10.2 2.0 26–343 4.4E-05 8.4e-04 ** 

VI x Repair 1124 343 18 38 5..3 11.1 2.1 29–343 1.5E-05 2.8e-04 ** 

V x ND 784 343 13 28 3.7 8.2 2.2 20–343 8.1E-05 1.5e-03 * 

V x Repair 845 343 14 31 4.0 9.0 2.3 23–343 2.0E-05 3.8e-04 ** 

I x ND 523 343 9 22 2.5 6.4 2.6 15–343 4.6E-05 8.7e-04 ** 

I x Repair 569 343 9 23 2.7 6.7 2.5 16–343 5.8E-05 1.1e-03 * 

VI  -ND 3163 343 52 62 15.0 18.1 1.2 50–343 0.07 1.0 n.s. 

VI  -SY 3273 343 53 67 15.6 19.5 1.3 55–343 0.03 0.57 n.s. 

ND  -VI 2161 343 35 56 10.3 16.3 1.6 45–343 3.7E-04 7.0e-03 * 

SY  -VI 1037 343 17 19 4.9 5.5 1.1 12–343 0.34 1.0 n.s. 

Legend for Table S19. Abbreviations are explained at Table S15. SZ, all the genes 
within range of the 108 genome-wide significant loci listed in column 5 of supplementary 
Table 3 of the large GWAS of schizophrenia by the SWGPGC 20145. Levels of 
significance (Bonferroni corrected): * indicates p ≤ 1.0E-02;  ** indicates p ≤ 1.0E-03;  
*** indicates p ≤ p ≤ 1.0E-06. 
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Replication,sample,#4,(genes,assigned,by,proximity),

Table&S20.&Intersection&between&functional&gene&sets&and&111&genes&assigned&by&
proximity&to&108&genome?wide&significant&loci&from&the&largest&GWAS&of&
schizophrenia&to&date.&&

Functions 

 N 

SZ 

N 

E 

(N) 

O 

(N) 

E 

(%) 

O 

(%) 

RF CI 

 

Nominal 

p ≤ 

Bonferroni 

corrected p ≤ 

VIRND 6409 111 34 58 30.5 52.3 1.7 49–111 1.4E-06 2.7e-05 ** 

VI 4213 111 22 40 20.0 36.0 1.8  32–111 6.7E-05 1.3e-03 * 

V 3249 111 17 33 15.4 29.7 1.9 25–111 1.0E-04 1.9e-03 * 

PV 253 111 1 8 1.2 7.2 6.0 4–111 6.5E-05 1.2e-03 * 

I 1673 111 9 19 8.0 17.1 2.1 13–111 0.001 1.9e-02 n.s. 

R 159 111 1 6 0.8 5.4 7.1 3–111 2.0E-04 3.8e-03 * 

Repair 3319 111 18 40 15.8 36.0 2.3 32–111 1.5E-07 2.8e-06 ** 

ND 3211 111 17 37 15.3 33.3 2.2 29–111 1.8E-06 3.4e-05 ** 

SY 1977 111 10 18 9.4 16.2 1.7 12–111 0.02 0.38 n.s. 

VI x ND 1051 111 6 19 5.0 17.1 3.4 13–111 2.4E-06 4.6e-05 ** 

VI x Repair 1124 111 6 22 5.3 19.8 3.7 15–111 8.4E-08 1.6e-06 ** 

V x ND 784 111 4 15 3.7 13.5 3.6 9–111 1.6E-05 3.0e-04 * 

V x Repair 845 111 4 18 4.0 16.2 4.0 12–111 4.4E-07 8.4e-06 ** 

I x ND 523 111 3 13 2.5 11.7 4.7 8–111 3.9E-06 7.4e-05 ** 

I x Repair 569 111 3 14 2.7 12.6 4.7 9–111 1.8E-06 3.4e-05 ** 

VI  -ND 3163 111 17 21 15.1 18.9 1.2 15–111 0.16 1.0 n.s. 

VI  -SY 3273 111 17 27 17.3 24.3 1.6 20–111 0.01 0.19 n.s. 

ND -VI 2161 111 11 18 10.3 16.2 1.6 12–111 0.04 0.76 n.s. 

SY -VI 1037 111 5 5 4.9 4.5 0.9 2–111 0.65 1.0 n.s. 

 
Abbreviations are explained at Table S15. Levels of significance (Bonferroni corrected): * 
indicates p ≤ 1.0E-02;  ** indicates p ≤ 1.0E-03;  *** indicates p ≤ p ≤ 1.0E-06. 
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Postmortem,studies,of,schizophrenia,,

Table&S21.&Intersection&of&functional&gene&sets&with&genes&differentially&expressed&
in&postmortem&brains&of&schizophrenic&patients.&&

Functional 

Gene Set 

Genes Differentially Expressed in Postmortem Brains of Schizophrenic Patients 

SZ All SZ Up SZ Down 

 N N RF Bonferroni  
corrected p ≤ 

N RF Bonferroni  
corrected p ≤ 

N RF Bonferroni  
corrected p ≤ 

VIRND 6409 113 1.3 0.03 * 31 1.6 0.02* 82 1.2 1.0 n.s. 

VI 4213 113 1.2 0.95 n.s. 31 1.7 0.13 n.s. 82 1.1 1.0 n.s. 

V 3249 113 1.1 1.0 n.s. 31 1.6 1.0 n.s. 82 1.0 1.0 n.s. 

I 1673 113 1.4 1.0 n.s. 31 1.8 1.0 n.s. 82 1.2 1.0 n.s. 

R 159 113 0.7 1.0 n.s. 31 2.7 1.0 n.s. 82 0.0 1.0 n.s. 

Repair 3319 113 1.7 3.4e-04 ** 31 1.7 0.57 n.s. 82 1.7 3.2e-03 ** 

ND 3211 113 1.8 1.3e-04 ** 31 1.7 0.38 n.s. 82 1.8 1.5e-03 ** 

SY 1977 113 1.7 0.08 n.s. 31 0.6 1.0 n.s. 82 2.0 5.3e-03 ** 

VI x ND 1051 113 2.6 4.6e-04 *** 31 2.4 0.57 n.s. 82 2.6 4.0e-03 ** 

VI x Repair 1124 113 2.4 1.3e-03 ** 31 2.3 0.76 n.s. 82 2.4 8.7e-03 ** 

V x ND 784 113 2.2 0.06 n.s. 31 1.6 1.0 n.s. 82 2.5 0.06 n.s. 

V x Repair 845 113 2.1 0.11 n.s. 31 1.5 1.0 n.s. 82 2.3 0.11 n.s. 

I x ND 523 113 2.5 0.10 n.s. 31 2.4 1.0 n.s. 82 2.5 0.38 n.s. 

I x Repair 569 113 2.3 0.17 n.s. 31 2.2 1.0 n.s. 82 2.3 0.57 n.s. 

VI  -ND 3163 113 0.8 1.0 n.s. 31 1.5 1.0 n.s. 82 0.6 0.19 n.s. 

VI  -SY 3273 113 1.2 1.0 n.s. 31 2.1 0.02 * 82 0.8 1.0 n.s. 

ND  -VI 2161 113 1.4 0.76 n.s. 31 1.4 1.0 n.s. 82 1.4 1.0 n.s. 

ND -I 2689 113 1.7 5.9e-03 ** 31 1.6 1.0 n.s. 82 1.7 0.06 n.s. 

SY  -VI 1037 113 1.8 0.19 n.s. 31 0.8 1.0 n.s. 82 2.2 0.10 n.s. 

Abbreviations are explained at Table S15. The differentially expressed gene samples were 
obtained from the large combined cohort by Mistry et al.313. Because of the small sample 
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sizes, the p-value for significance was increased to 0.05 (Bonferroni corrected): * indicates 
p ≤ 0.05;  ** indicates p ≤ 0.01;  *** indicates p ≤ p ≤ 1.0e-03 

 

Overview,of,significant,findings,

Table&S22.&Overview&of&significant&findings.& 
 

Sample VIRND VI x 

ND 

VI x 

Repair 

VI I R Repair ND SY ND 

-VI 

VI -

ND 

VI -

SY 

Candidate-gene association studies  

Discovery  ** *** *** *** ** *** *** * ***    

Replication #1 *** ** *** *** *** *** ***  ***  *** * 

GWA studies  

Replication #2  **      ** ** *    

Replication #3  *** *** *** *** *** *** *** *** ***    

Replication #4   

(Proximity) 

 

** 

 

** 

 

** 

 

* 

 

 

 

* 

 

** 

 

** 

 

 

 

 

 

 

 

 

(Within range) *** ** ** * *  *** ***  *   

All combined  *** *** *** *** *** *** *** *** ***  **  

Postmortem gene expression studies of prefrontal cortex  

All DE genes * *** **    ** **     

Up-regulated  *           * 

Down-regulated   ** **    ** ** **    

 

Legend for Table S22. Significant findings from Tables S15–S21 and Table 1 are shown. 
The number of asterisks refers to Bonferroni corrected p-values as given in these Tables.  
 
-  minus sign, overlapping genes removed;  
DE, differentially expressed genes; 
I, genes induced by cerebral ischemia;  
ND, neurodevelopmental genes;  
proximity, genes assigned by proximity to index SNP;  
R, post-ischemic repair genes;  
Repair, R and ND genes combined, because ND genes are involved in post-ischemic 
repair120,127;  
SY, synaptic genes;  
VI, vascular-ischemia genes;  
VIRND, all genes involved in ischemia, i.e., V, I, R and ND genes;  
within range, all genes within range of index SNP;  
x, overlapping, i.e., interacting genes.  
 
 
  



* 38*

Quasi,experimental,study 

Figure&S6.&Quasi?experimental&impairment&of&components&of&the&candidate&
pathway&
 
 

 
Figure S6. Results of quasi-experimental impairment of components of the postulated 
schizophrenia pathway. Disturbances of all components of the energy-supply pathway, i.e. 
perivascular nerves, oxygen, microvessels, oligodendrocytes, and mitochondria (see Fig. 1 in 
article), appear to produce a high percentage of schizophrenia-like symptoms. Multiple sclerosis 
(MS) is the exception, which might be due to the localized damage of myelin in MS. Very 
preterm birth seems to impair neurodevelopment independent of an increase in risk for ischemic 
disorders314,315. It causes high rates of neurodevelopmental disabilities from 25% to 50% such as 
cerebral palsy (5% to 15%)316, but only 0.05 % (495 of 1 022 431) of term births compared to 
0.1 % (6 of 5125) of very preterm births (gestational age < 32 weeks) developed later a non-
affective psychosis317. For more data and references, see also supplementary Table S23–S24.  
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Table&S23.&Quasi?experimental&disturbance&of&candidate&schizophrenia&pathway&&
as independent variables and the production of schizophrenia-like symptoms. 

Putative 
schizophrenia 
pathway  

Evidence for mild ischemia Schizophrenia-like 
symptoms§ 

Max. 
Rate 

Hypoxia    
Cardiac 
Insufficiency 

Insufficient tissue oxygenation, 
mild ischemia 
 
 

Cardiac psychosis, paranoid-
hallucinatory syndromes in 
44% of acute cardiogenic 
psychosis318. 

44% 

Cardiac 
Surgery  

Measures of hypoxia and 
cerebral hypoperfusion predict 
postoperative neuropsychiatric 
disorders319,320 

Paranoid-hallucinatory 
syndromes321,322, psychoses, 
delirium, and cognitive 
dysfunction are common 
following a lucid 
postoperative interval323. 
Neuropsychological 
dysfunction occurs frequently 
in 40% to 50%, up to 79% of 
patients323.  

50% 

Intensive Care 
Unit Syndrome 
(ICUS) 

ICU syndrome/delirium is 
associated with decreased 
anemia and extended times on 
the ventilator324. 

Hallucinations and delusions 
usually as part of delirium325. 

40% 

Perivascular 
nerves 

   

Amphetamine 
(AMPH) and 
Cocaine 

AMPH and cocaine cause a 
decrease in CBF326, cerebral 
vasospasms327,328 and ischemic 
as well as hemorrhagic 
strokes267,329-331, probably via 
their action on DAT1, NAT1 
and 5-HTT resulting in an 
increase of dopamine, 
noradrenaline and 
serotonin332,333. 

Paranoid state with auditory 
and visual hallucinations in 
chronic users334,335 
resembling schizophrenia336-

338. Drug-induced psychosis 
has been reported in 8–46% 
of regular users of 
amphetamines339.  

46% 

Anticholin-
ergics 

Reduced cortical perfusion, 
mainly in the frontal cortex340. 

Paranoid-hallucinatory 
psychosis341,342, worsening of 
positive symptoms in 
schizophrenia343. 

 

Traumatic 
Brain Injury 
(TBI) 

TBI consistently damages 
cerebral perivascular nerves 
and impairs autoregulation of 
CBF344. 

Higher frequency of prior 
TBI in schizophrenia 
compared to other psychiatric 
disorders345. 

 

Vascular 
component 
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Vascular 
Dementia 
(VaD)  

VaD results from ischemic 
injury or sustained mild 
ischemia346,347. 

In mild VaD, 37% of patients 
had hallucinations and 50% 
paranoid symptoms348. In 
VaD, 8.1% heard voices and 
8.6% talked to people who 
were not there349. 

50% 

Neuro-
psychiatric 
Systemic 
Lupus 
Erythematosus 
(NPSLE) 

Vasculitis is rare but vascular 
hyalinization, endothelial 
proliferation and perivascular 
gliosis are common350. 
Furthermore, small lesions in 
white matter (WM) (100%), 
diffuse WM abnormalities 
(43%) and cerebral infarction 
(29%)351. Cerebral 
hypoperfusion measured by 
SPECT is related to 
neuropsychiatric symptoms in 
NPSLE352. 

Psychosis has been reported 
in 5% of NPSLE353 including 
schizophrenia-like 
psychosis354-356. In 
consultation psychiatry, 24% 
of NPSLE had schizophrenia 
or unclassified psychosis354. 

24% 

Cerebral 
syphilis 

Treponema pallidum invades - 
through the intercellular 
junctions of endothelial cells357 
into perivascular areas358 
causing perivasculitis, 
adhesion of leukocytes, 
endothelial cell 
abnormalities359 and ischemic 
stroke as primary symptom in 
about 14% of neurosyphilis 
patients360.  

Schizophrenia-like psychoses 
have been reported in patients 
with general paresis from 
3.5% up to 20% (reviewed 
in361) 

20% 

Economo’s 
Encephalitis 
Lethargica 
(EL) 

Perivascular inflammation and 
infiltrates of lymphocytes 
within the Virchow-Robin 
spaces of small vessels in acute 
EL362. In 45% of cases, the  
cortex is affected363. 

Postencephalitic 
schizophrenia-like 
psychoses364 in 15-30% of EL 
cases365. 

30% 

Cannabis Increase of CBF in acute 
cannabis use, but decrease of 
CBF in frontal cortex of 
chronic users366. 

Cannabis-induced psychosis 
shares genetic predisposition 
and many common symptoms 
with schizophrenia367,368. The 
maximum proportion of 
psychosis attributable to 
cannabis in psychosis-free 
subjects is higher than 50 
percent369. 

50% 

Oligodendro-
cyte & myelin 
component 

   

Metachromatic Bilateral fronto-temporal white Adult onset psychosis in 25- 40%  
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§ defined as hallucinations and/or delusions with or without disorientation 
 

Experienced clinical psychiatrist will have observed, that the former, i.e., 
hallucinations and/or delusions with disorientation, correspond to the diagnosis of delirium 
and might demand an explanation for the lumping together of schizophrenia with delirium.  

First, lumping and splitting of diagnostic categories are widely used in psychosis 
research (see Kraepelin's lumping of paranoia, hebephrenia and catatonia and his splitting 
of major psychoses into schizophrenia and manic depression or the current debate about the 
lumping of bipolar disorder and schizophrenia based on genomic findings375,376.  

Second, similarities between schizophrenia and neurodevelopmental disorders, such 

leukodystrophy  
 

matter is affected (reviewed 
in370). 
 

40% (reviewed in370). 

Niemann–Pick 
disease type C  
 

Callosal and periventricular 
white matter is affected 
(reviewed in370). 
 

Adult-onset psychosis or  
dementia in 25-40% 
(reviewed in370). 
 

40% 

Multiple 
sclerosis (MS)  

MS is an inflammatory-
mediated demyelinating 
disease of the human brain 
(reviewed in371). 
 

In 2% - 3% of MS patients, a 
psychosis develops (reviewed 
in372). 
 

3% 

Mitochondrial 
component 

   

Mitochondrial 
disorders 

Symptoms of mitochondrial 
disorders can appear either in 
infancy or adulthood. Various 
organs can be affected 
including the brain with stroke-
like episodes in MELAS 
(Mitochondrial encephalo-
myopathy, lactic acidosis, 
stroke-like episodes)*(reviewed 
in373).  

Psychosis or psychotic 
features combined with mood 
disorders were diagnosed in 
35 of 59 cases (59%) with a 
mitochondrial disorder 
(reviewed in374). 

59% 

Neuro-
development 

   

Preterm infants 
 

Very preterm infants (< 32 
weeks of gestational age), have 
shown in follow-up studies 
high rates of 
neurodevelopmental disability 
with 5% to 15% having 
cerebral palsy, severe 
neurosensory impairment, and 
25% to 50% having cognitive, 
behavioral, and social 
difficulties that impede 
progress in school316. 

Increased rate of psychiatric 
hospitalization for non-
affective psychoses (i.e. 
schizophrenia and 
schizoaffective psychosis) 
from 0.05% (495 of 1022431 
cases) for term birth to 0.1% 
(6 of 5125 cases) for very 
preterm infants (< 32 weeks 
of gestational age)317. 

0.1% 
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as cerebral palsy, epilepsy, and mental retardation, have frequently been used to support the 
neurodevelopmental hypothesis377,378. See, e.g., page 401 of Weinberger's and Harrison's 
recent, excellent book on schizophrenia379: "In a sense, schizophrenia appears to be on a 
developmental continuum with other behavioral disorders that appear in childhood, 
including autism, intellectual disability, and epilepsy, arising perhaps from overlapping 
biological risk factors that may each have distinct covariants, but schizophrenia reflects the 
relatively least noise burden of this group of developmental disturbances378".  

Third, the same reasoning may be applied to ischemia, with stroke on one end of the 
continuum, delirium and schizophrenia in the middle, hyperperfusion on the other end (see 
Fig. 4), and cerebral localization as covariant. Differences in severity or cerebral 
localization of ischemia might account for differences in disorientation. Consequently, an 
acute ischemic psychosis of known etiology would be diagnosed as delirium and an 
ischemic psychoses of unknown cause without disorientation as schizophrenia. For this 
discussion of hallucinations/delusions with disorientation, it is important to note that 
disorientation has also been found in some acute380, as well as in chronic schizophrenic 
patients381-384. In regard to cerebral localization, isolated time orientation has been observed 
in 4 percent of patients with thalamic ischemia385. 
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Table&S24.&Quasi?experimental&neurodevelopmental&disturbance&&
as independent variable and the production of schizophrenia-like symptoms. 

Etiology of 
neurodevelop
-mental 
disturbance  

Evidence for 
neurodevelopmental 
disturbance 

Schizophrenia-like 
symptoms§ 

Max. 
Rate 

Obstetric 
complications 
(OBC) 

After intrauterine and 
neonatal insults, the most 
common long-term outcome 
were developmental delay 
(59%), cognition and 
learning difficulties or 
cerebral palsy (21%), 
hearing impairment (20%) 
and visual impairment 
(18%) (meta-analysis386). 

Since OBC is associated with 
the development of 
cardiovascular disorders387,388 
and stroke in 
adulthood314,315,389,390 
(reviewed in391,392), OBC 
cannot be considered here as 
proving that schizophrenia-
like symptoms are caused by 
neurodevelopmental 
disturbance.  

 

Perinatal brain 
damage  

A 1966 North Finland Birth 
Cohort revealed that 29.9% 
of the children surviving 
perinatal brain damage 
developed cerebral palsy, 
epilepsy or mental 
retardation (IQ less than 
71)393. 

In the 1966 North Finland 
Birth Cohort, six of the 125 
survivors (4.8%) of severe 
perinatal brain damage  
developed later 
schizophrenia394. However, 
these data cannot exclude 
perinatal brain damage due to 
OBC, which is associated 
with  coronary heart disease 
and stroke (see row above).  

 

Preterm 
infants 
 

Since length of gestation and 
preterm birth is not 
associated with coronary 
heart disease314 or stroke315, 
the effect of neurodevelop-
mental disturbances 
independent of vascular 
factors can only be 
investigated in preterm 
infants.  Very preterm 
infants (< 32 weeks of 
gestational age), have shown 
high rates of neurodevelop-
mental disability  in follow-
up studies with 5% to 15% 
having cerebral palsy, severe 
neurosensory impairment 
and 25% to 50% having 

Increased rate of psychiatric 
hospitalization for non-
affective psychoses (i.e. 
schizophrenia and 
schizoaffective psychosis) 
from 0.05% (495 of 1022431 
cases) for term birth to 0.1% 
(6 of 5125 cases) for very 
preterm infants (< 32 weeks 
of gestational age)317. 

0.1% 



* 44*

 
 
 
 
 

§ defined as hallucinations and/or delusions with or without disorientation 
 

cognitive, behavioral, and 
social difficulties that 
impede progress in 
school316. 
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DISCUSSION&

Evidence,for,ischemia,during,schizophrenic,psychosis,

Table&S25.&Supplementary&references&for&Figure&4&

CBF 
(ml/100
g/min) 

 
Consequence 

 
Similar findings in schizophrenia 

100 Hyperperfusion in man395. 
Focal hyperperfusion 
after ischemia396 

Regional cerebral hyperperfusion 
and hypoperfusion  in unmedicated 
patients397-399 

60 Normal CBF depending 
on species400-402 

 

50 Mean human CBF403  
40 Mild hypoperfusion 

(oligemia)395,403 
Reduced CBF and CBV mostly 
frontal!(review404) 

35 Onset of decrease in 
oxidative phosphorylation 
and increased generation 
of reactive oxygen 
species (ROS) causing 
mitochondrial damage405. 
Mild ischemia may be 
much more damaging 
than total ischemia 
because the availability of 
sufficient oxygen for 
producing ROS405. 

Evidence for increased oxidative 
damage406-408, mitochondrial 
dysfunction409-411 (reviews412,413, 
and impaired energy metabolism 
(review414) have been found in the 
post-mortem brains of schizophrenic 
patients.   

30§ Depression of protein 
synthesis at 
approximately 60 - 40 % 
of mean CBF415,416. 
After 7 hrs, onset of loss 
of dendritic structure and 
spines at 64% of 
perfusion in some 
animals417. 

Only 1 rather preliminary study 
measured protein metabolism in 4 
schizophrenic patients and found 
focal suppression of protein 
metabolism in the parietal cortex of 
1 patient418. Reduced dendritic spine 
density and arborization419-421. 

25§ Beginning of decrease in 
phosphocreatine (high 
energy phosphate) and 
increase in lactate422!
(review423). 

Decrease of phosphocreatine and 
ATP in the frontal cortex of 
neuroleptic-free schizophrenic 
patients424, but not in medicated or 
chronic patients425. Increase of 
lactate was found in the blood426, 
post-mortem brain tissue409, and 
CSF427 of schizophrenic patients. 
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22 Increase in cortical 
conduction time428 and 
reduction in the amplitude 
of evoked potentials 
(EP)403,429.  

Increase in latency and reduction in 
the amplitude of EP (ERP, event-
related potentials) is one of the most 
replicable biological marker in 
schizophrenia430(meta-analysis431). 
The same changes have been 
reported for gamma 
oscillations432,433. 

20 Functional threshold 
(mild paresis), penumbra 
threshold395. 

Disturbed voluntary motor activity 
in schizophrenic patients434. 
Increased frequency of frontal 
release signs (primitive reflexes, i.e. 
soft neurological signs) in transient 
ischemic attacks435 and 
schizophrenia436,437.  

18 Disturbance of energy 
metabolism: anaerobic 
glycolysis at ca. 33 % of 
mean CBF, corresponding 
to 17 ml/100g/min in 
humans401,416. 

Reduction of glycolysis was found 
in brain tissue of schizophrenic 
patients obtained during prefrontal 
leukotomies438 or post-
mortem409,439,440.  

18 Threshold for synaptic 
transmission failure 
(range 20 – 8)400,416,429. 

 

18§ Evoked potentials 
abolished (range 22 – 
6)401,441.  

 

18 Nerve cells cease 
spontaneous activity401.  

 

15§ Drop in ATP (range 15 - 
8 depending on 
species416,422.  

 

15 Terminal depolarization 
and potassium efflux401 

 

12 Critical threshold395  
10 Membrane failure401  
8 Irreversible damage, 

infarction395 
Nine of 10 post-mortem studies 
reported focal infarctions in the 
brain of schizophrenic patients442 
(review443). 
 

Legend for Table S25: § Values from animal studies were converted to approximate CBF 
values for humans by using the percentage of reductions from mean CBF. However, this 
approach cannot take into account the physiological and biochemical differences among 
species.  
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Table&S26.&Signs&of&cerebral&ischemia&in&adult&schizophrenic&patients&

Consequences of cerebral 
hypoxia/ischemia 
 

Presence in schizophrenic patients 

Biochemical signs  
Mitochondrial dysfunction follows 
incomplete cerebral ischemia 
despite reperfusion444-446. 

Reduced oxygen uptake in brain tissue from 
schizophrenic patients447, impaired energy 
metabolism (review414), mitochondrial 
dysfunction313,409-411 (reviewed in412,413). 

Lactate formation is increased 
during hypoxia-ischemia 
(reviews423,448). 

Increase of lactate in schizophrenic patients 
has been reported for blood426, post-mortem 
brain tissue409, and CSF427. 

Oxidative stress: Incomplete 
ischemia generates reactive 
oxygen species (ROS), which 
attack mitochondrial lipids, 
proteins, and DNA444-446.  

Evidence for increased oxidative damage406-

408 

ROS initiate lipid peroxidation449 Increased lipide peroxides450-453 
Inflammation is activated in 
response to focal cerebral 
ischemia454,455. 

Inflammatory signs in schizophrenia 
(reviewed in456),  increased hsCRP levels 
(meta-analysis457). 

Increased Endothelin 1 (ET-1)458 
 
 

ET-1 has a very long-lasting constrictive 
effect on cerebral vasculature459. ET-1 blood 
values are elevated in cerebral ischemia458 
and  
schizophrenia460. 

Increased S100B serum level461 Increased serum S100B462,463 
High skeletal muscle creatine 
kinase (CK) in serum after 
stroke464 

High skeletal muscle creatine kinase in 
serum during acute schizophrenic 
psychosis465-467 

Impaired Blood-Brain Barrier 
(BBB)145 

Evidence for increased BBB permeability in  
5% - 20% of schizophrenic patients468-470 

Cellular signs  
Hypoxia/ischemia and chronic 
cerebral hypoperfusion lead to 
slight degeneration of astrocytic 
end-feet processes and BBB 
disruption471,472.  

Signs of ultrastructural damage to capillaries of the 
neocortex in schizophrenic patients that resemble 
those observed in chronic hypoperfusion, oxidative 
stress, damaged blood brain-barrier, or cerebral 
ischemia473.  

Mitochondrial damage474 Reduced density of mitochondria as well as 
deformed, hypoplastic and small 
mitochondria (review406) 

Oligodendrocyte are selectively 
vulnerable to ischemia{Lyons 

Neuropathological, transcriptomic, 
proteomic and brain imaging studies show 
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1998) (reviewed in475). damage of oligodendrocytes and myelin 
(reviewed in476-479). 

Loss of spine and dendrite 
structure417 

Lower density of dendritic spines, reduced 
dendritic arborizations480, and decreased 
presynaptic protein markers (reviewed 
in481,482). 

Electroencephalographic signs  
Slowing of EEG400,483, increased 
latency of  evoked potentials (EPs, 
ERPs)403 

Delayed latency of P300 (meta-
analyses484,485) 

Reduced amplitude in ERPs400,403 Reduced amplitude of P300 (meta-
analysis484 decreasing with symptom 
exacerbations and increasing with 
improvements486 (reviewed in430).  

Gamma-oscillations are highly 
vulnerable to hypoxia487,488. 

Delayed latency and decreased magnitude of 
gamma-oscillations432,433 

Brain imaging evidence  
Hypoperfusion395 Hypoperfusion in frontal cortex 

(hypofrontality), parietal cortex and medial 
cingulate gyri ) (meta-analyses489,490; 
review404). Hypoperfusion  correlates with 
negative symptoms397,398. Amelioration of 
regional cerebral blood flow is associated 
with clinical improvement491.  

Focal hyperperfusion after 
ischemia396. 

Regional cerebral hyperperfusion and 
hypoperfusion  in unmedicated patients397-

399,404. Positive symptoms correlated with 
either cerebral hyper- or hypoperfusion.  
This correlation disappeared after reduction 
of positive symptoms398. 

Clinical signs of hypoxia  
Inappropriate affect and facial 
expression, silly laugther during 
experimental hypoxia492 

Inappropriate affect493,494, elation494, 
inappropriate laughter495, and silly 
emotions496. 

Perseveration during experimental 
hypoxia492 

Perseveration494 

Cognitive impairment during 
experimental hypoxia492 

Cognitive impairment is the core of the 
disorder493 and begins between the 
premorbid phase and first episode497 
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The,foundation,of,the,neurodevelopmental,hypothesis,can,also,be,explained,
by,adult,vascular,disorders,

The left column of Table S27 lists the evidence interpreted as support for the 
neurodevelopmental hypothesis according to reviews by Harrison498, Moises et al.499, 
Marenco et al.377, and Weinberger378. The right column shows findings of a literature search 
in PUBMED and Google SCHOLAR using  the key words of the left column and 
"cardiovascular" or "cerebrovascular".  

Summing up, the foundation of the neurodevelopmental hypothesis is not only 
associated with schizophrenia, but also with adult vascular disorders (depicted in 
supplementary Fig. S7). In conclusion, schizophrenia as adult vascular disorder is an  
alternative explanation for the available evidence previously interpreted as support for the 
neurodevelopmental hypothesis.  

 

Table&S27.&The&foundation&of&the&neurodevelopmental&hypothesis&and&adult&
vascular&disorder&as&alternative&explanation.&

Evidence supporting the ND 
hypothesis 
 

Alternative explanation 

Prenatal evidence  

Broadly defined obstetric 
complications (OC)377,378,498 are 
associated with an increased risk 
for schizophrenia (meta-
analysis500). However, overall 
effect of OC on the occurrence of 
schizophrenia is small377. 93% of 
schizophrenic patients did not 
experience such OC (see Table 
S28).  

Obstetric complications (OC) are 
frequently a sign of placental 
inefficiency388,501, which causes fetal 
undernutrition, intrauterine growth 
restriction  (IUGR), OBC, insulin-resistance, 
type 2 diabetes and increased risk for 
cardiovascular disorders387,388, and stroke in 
adulthood314,315,389,390 (reviewed in391,392). 

Preeclampsia377: The only OC 
study able to adjust for mother’s 
psychotic illness during her adult 
life found only preeclampsia to be 
significantly associated with an 
increased risk for schizophrenia502. 

Preeclampsia has a strong genetic 
component (reviewed in503) associated with 
an increased risk of cardiovascular or 
cerebrovascular disease (meta-analysis504).   

Birth weight377 is inversely 
related to schizophrenia505. 

Birth weight is inversely related to systolic 
blood pressure, ischemic heart disease, and 
stroke506. 

Maternal influenza377,378,498 Maternal influenza is associated with an 
20% increase in cardiovascular disease507.  

Prenatal famine377,378,498 results in 
a 2-fold increase of risk for 
schizophrenia508-510. 

Prenatal famine causes increase of 
hypertension, raised glucose levels, 
increased blood pressure response to stress, 
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and a 2-fold increase of risk for coronary 
heart disease (reviewed in510).  

Blood group 
incompatibilities378,511 

Thickening of the amniotic epithelium512 and 
the trophoblast basement membrane513 
suggests reduced diffusion and availability 
of nutrients mimicking prenatal famine. 

Winter birth498. The effect 
correlates with the latitude514 
(colder winter temperatures) and is 
not detectable in the Southern 
Hemisphere515 (relatively warm 
winters). 

Cold outdoor temperature at birth is 
associated with increased coronary heart 
disease and insulin resistance516. 

Maternal homocysteine level 
elevated378 

Elevated homocysteine concentrations at 
pregnancy are associated with increased risk 
of cardiovascular disease, angina, and stroke 
(reviewed in517). 

Paternal age at conception378 Paternal age results in reduced telomere 
length in his offspring518. Reduced telomere 
length is associated with premature 
myocardial infarction519. 

Maternal severe stress during 
pregnancy378 

Maternal stress, anxiety, and glucocorticoids 
reduce fetal growth and birth weight, and 
predispose the offspring to adult 
cardiovascular disorder and stroke520,521.  

Structural cerebral 
abnormalities (ventricular 
enlargement, reduced cortical 
volume)498 

Progressive changes in ventricular and gray 
matter volume challenge the 
neurodevelopmental hypothesis (meta-
analyses522,523) 

Neuropathology498: Reported 
cytoarchitectural abnormalities 
related to intrauterine development 
have not been replicated and are 
not unequivocally established443.  

In comparison, the undisputed 
cytoarchitectural findings, such as alterations 
in neuronal size, and synaptic and dendritic 
organization, could well originate much 
later443. 

Postnatal evidence  

Delays  in motor and speech 
development378,498, poor motor 
coordination377. The delays are 
very modest and do not cause 
concern to physicians or parents. 
Furthermore, most individuals 
with such a delay do not develop 

Maturational delay, i.e., slow growth in fetal 
life, infancy, and during childhood is 
associated with adult cerebrovascular 
disorder524. Furthermore, delays in motor 
development are associated with the 
personality dimension of neuroticism (trait 
anxiety) in adulthood525. Neuroticism seems 
to predispose to schizophrenia526.  
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schizophrenia378. 

Behavioural abnormalities as 
infants498 such as hyperactivity, 
poor verbal abilities, nervous, 
withdrawn, or disruptive, 
aggressive, and antisocial behavior 
in school377. 

These behavioural abnormalities are 
characteristic for the two personality 
dimensions frequently observed in 
schizophrenic patients: introversion / 
neuroticism (trait anxiety)527 and 
impulsive/antisocial/psychopathic 
personality528-530. Social introversion and 
psychoticism/psychopathy (type A 
behaviour pattern) are associated with an 
increased risk for myocardial infarction531,532 

Soft neurological signs have been 
observed in up to 60% of 
schizophrenic patients and are 
interpreted as evidence for 
premorbid brain damage in 
schizophrenia436,437 (meta-
analysis533).  

These signs are present in up to 40.6% of 
normal individuals (meta-analysis533). 
Transient ischemia increases the frequency 
of these signs435. In schizophrenic patients, 
soft neurological signs decrease in parallel 
with the remission of acute psychosis (meta-
analysis534). 

Enuresis in childhood378,535 Enuresis is associated with anxiety/ 
withdrawal536, extraversion537, conduct 
problems, attention deficit behaviors, and 
anxious/withdrawn536 or antisocial/ 
psychopathic personality538. The latter 
predisposes to schizophrenia528-530 

Lower premorbid IQ of about 0.5 
standard deviations (SD)378 (meta-
analysis539). 

The superior premorbid high intelligence 
(IQ) of a considerable number of patients{ 
540-542 is  not compatible with a premorbid 
fronto-cortical brain damage. However, a 
premorbid high IQ is not at variance with the 
adult ischemia hypothesis. .  
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Figure&S7.&Foundation&of&neurodevelopmental&hypothesis&and&adult&vascular&
disorder&as&alternative&explanation.&
 

 
Figure S7. The foundation of the neurodevelopmental hypothesis of schizophrenia consists 
of epidemiological studies showing that prenatal factors and delayed growth are associated 
with an increased risk for schizophrenia (in green, for reviews377,378,498,499). The same 
factors increase the risk for adult cardiovascular and cerebrovascular disorders (in red, 
references in supplementary Table S27), also known as Barker's theory391,392,524. Adult 
vascular disorder as intermediary variable between broadly defined birth complications 
(OC) and schizophrenia has been ignored suggesting that OC are a proxy variable for the 
predisposition to adult cerebrovascular disorders, and that the Barker theory might be a 
well-founded substitute for the neurodevelopmental hypothesis to explain prenatal risk 
factors and maturational delays in schizophrenia. IQ, intelligence quotient; OC, obstetric 
complications.  
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Normal,or,superior,intelligence,in,schizophrenia,
 
The average premorbid IQ of schizophrenic patients is on average only 0.5 SD below the 
population average539, which might be explained by their higher trait anxiety (neuroticism)526 
and not necessarily an indication of a neurodevelopmental brain damage. Trait anxiety is known 
to correlate positively with test anxiety and negatively with IQ test results (reviewed in543) 

The Danish draft-board study by Ufer-Parnas et al. found a premorbid uni-modal normal 
distribution (mean 94.38, SD 16.24) in schizophrenia541. Superior intelligence or the cognitive 
abilities of genius are often defined as an IQ ≥ 120 or IQ ≥ 130, respectively. The percentage and 
number of schizophrenic patients exceeding that level can be calculated from the normal 
distribution of IQ scores, 0.4% for global lifetime prevalence544, and an estimated global 
population of 7 billion for 2015. 

The results show that 36.5%, 10.2%, 5.7%, and 1.4% of schizophrenic patients are 
expected to premorbidly have an IQs of  ≥ 100,  ≥ 115, ≥ 120, ≥ 130 corresponding globally to 
10.2 millions of schizophrenic patients with a normal IQ ≥ 100, 2.8 millions with IQ ≥ 115, 1.6 
millions with IQ ≥ 120, and 0.4 millions with IQ ≥ 130. Such a large number of individuals with 
normal or superior intelligence contradicts the postulated neurodevelopmentally caused 
premorbid brain defect.  
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Birth,complications,in,only,7%,of,schizophrenic,patients,
Data for calculating the percentage of obstetric complications in schizophrenic patients 
were obtained from Table 2 of the meta-analysis of prospective population-based studies 
by Cannon et al. (2002)500. 

In 93% of schizophrenic patients and in 94.6% of normal controls, no evidence of (broadly 
defined) birth complications were found (see Table S28).  In conclusion, the overall 
majority of schizophrenic patients were not exposed to birth complications that might have 
caused a defect of brain development.  

Table&S28.&Percentage&of&schizophrenic&patients&with&broadly&defined&birth&
complications&
Obstetric complications 
 

Schizophrenic 
patients Exposed 

Controls 
 Exposed 

Diabetes in pregnancy  237 3 1909 3 
Placental abruption 308 3 508352 1643 
Birth weight <2000 g  504 6 10926 78 
Emergency Cesarean section  818 20 507863 1595 
Congenital malformations  737 10 508781 6144 
Uterine atony  659 27 507703 16913 
Rhesus variables  759 18 17537 2911 
Threatened premature delivery 308 8 508352 6498 
Asphyxia 1109 60 2297 119 
Bleeding in pregnancy 1223 34 524972 9367 
Birth weight <2500 g  1294 60 536045 19343 
Head circumference <32 cm  758 53 508315 15388 
Smoking in pregnancy  105 26 17886 5752 
Preeclampsia 1712 75 510275 18286 
Anemia in pregnancy  522 20 1526 96 
Gestational age <37 weeks  1290 67 536051 21710 
Small for gestational age  1272 86 519229 23485 
Induction of labor 689 186 2361 232 
Apgar score <7 at 1 minute after birth 390 18 507434 22771 
Gestational age >42 weeks  1187 34 508747 16065 
Child stayed in hospital after mother 
discharged 973 110 1488 99 
Forceps delivery or vacuum extraction 1724 124 527058 29753 
Birth length <49 cm  761 130 51320 105205 
Cephalopelvic disproportion  662 10 2338 42 
Cord around neck 893 171 1345 333 
Cesarean section 1214 63 526045 42947 
Birth weight <2500 g and premature 954 41 11376 215 
Nonvertex presentation  1667 74 510208 61130 
Breech delivery 464 11 508508 13580 
Urinary tract infection in pregnancy 690 20 507730 7115 
Nonspontaneous delivery  331 46 17108 1554 
Total 23208 1614 7300987 391603 
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Percentage with complications 
 

7,0% 
 

5,4% 
Percentage without complications 

 
93,0% 

 
94,6% 

Difference  
 

1.6% 
  Data from500. 

*

Schizophrenia,treatments,improve,CBF,and,ischemia,protection,
All treatments found to improve schizophrenia also improve cerebral perfusion and/or 
protect against ischemia or its harmful consequences such as inflammation (see Table S29).  

Table&S29.&Effects&of&treatments&for&schizophrenia&on&cerebral&perfusion&and&
ischemia.&
Treatment in schizophrenia Effects  
Acetylsalicylic acid545 prevents cerebral ischemia546 
Atypical antipsychotics547,548 enhance CBF397,491,549. Clinical improvement 

correlates with CBF491. A recent meta-analysis 
provides a more variable picture with increased as 
well as decreased areas of rCBF following 
antipsychotic treatment550. 

Celecoxib551-553, nonsteroidal anti-
inflammatory drugs (NSAID)554 

Celecoxib is an non-steroidal anti-inflammatory 
drug with potent neuroprotective effect against 
ischemia-induced inflammatory reaction555 

Electroconvulsive therapy (ECT)556  Epileptic seizures are accompanied by an increase in 
focal CBF557,558. ECT improves CBF and 
catatonia559 

Erythropoietin (EPO)560 EPO enhances cerebral vasodilatation561, activates 
the PI3K/Akt pathway562 and improves the 
consequences of cerebral ischemia563 

Exercise564 increases cerebral vasodilatation, BDNF565, and 
cerebral blood volume in the hippocampus566 

Ginkgo Biloba Extract567,568 increases CBF569,570, and protects against cerebral 
ischemia571 

Glucose572,573 Glucose, the obligatory energy substrate for the 
brain574, is lacking in ischemia.  

Insulin Coma Therapy (ICT)575,576 Insulin causes cerebral vasodilatation577, and 
activates the PI3K/Akt pathway in neurons 
following brain ischemia578. Furthermore, insulin-
induced hypoglycemia leads to a marked increase in 
CBF579. 

Nicotine (alpha-7 nicotinic 
agonists)580,581 

enhances cholinergic vasodilation in the cerebral 
cortex582 

Reserpine583 depletes dopamine and noradrenaline from the 
brain584. Its use as antihypertensive drug suggests a 
vascular effect585. 

Transcranial Magnetic Stimulation 
(rTMS)586,587 

increases CBF in some areas of the brain588-590. 

Typical neuroleptics591 Dopamine causes a dose-dependent vasoconstriction 
in about 50% of cortical microvessels69. 
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Antipsychotic drugs block D2/3 receptors592 and 
increase CBF397,491,549,593, mainly in paranoid 
patients550. But see also evidence for a decrease of 
CBF490,550. Clinical improvement was found in one 
study to correlate with CBF491.  

 
 

Table&S30.&Evidence&for&repair&mechanisms&in&schizophrenia.&
 Evidence 
1 Adult neurogenesis and synaptic plasticity are involved in postischemic repair and in 

schizophrenia (reviewed in594,595). 
2 Adult neurogenesis and synaptic plasticity have been implicated in schizophrenia by 

previous pathway analyses (see supplementary information). 
3 Motor endplate alterations in schizophrenic patients resemble  axonal destruction 

followed by regeneration596. 
4 Erythropoietin, a stimulator of adult neurogenesis,  improves cognitive functions in 

chronic schizophrenic patients560. 
5 Neuroleptics appear to stimulate adult neurogenesis either directly or indirectly via 

prolactin597,598. 
6 Drug responding patients show signs of myelin repair in brain imaging599. 
7 Physical exercise increases BDNF, adult neurogenesis, hippocampal volume, and 

improves negative symptoms in schizophrenic patients564,565,600,601. 
8 The PI3K/Akt pathway mediates not only the effects of stress, growth factors, and 

hormones on metabolism, vasoconstriction, and vasodilatation, but also on synaptic 
plasticity and adult neurogenesis, i.e., repair602,603 (see Fig. 2). 

9 Neural stem cell proliferation required for adult neurogenesis is reduced in 
schizophrenia, but not in major depression604. 
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The,AVIH,seems,to,offer,a,better,explanation,for,the,evidence,compared,to,
the,NDH,

Theory choice is a search for the best explanation of the evidence. The three main criteria 
for the evaluation of a hypothesis are consilience, simplicity, and analogy605. The adult vascular-
ischemia hypothesis better fulfills the criteria of consilience, simplicity, and analogy than the 
neurodevelopmental hypothesis. For consilience, see Table S31.  

Table&S31.&Consilience&of&the&NDH&and&the&AVIH&with&the&evidence&
Evidence/facts Explanation by 

ND hypothesis AVI hypothesis 
Genetic   

 1 Overrepresentation of VI606, ND, and repair genes 
(Table S22, Fig. 3a) 

Yes Yes 

Prenatal   
 2 Evidence supporting the ND hypothesis (Table 

S27 and Fig. S7) 
Yes Yes 

 3 Absence of birth complications in 93% of 
schizophrenic patients, difference to normal 
population only 1.6% (meta-analysis500) (see 
Table S28) 

No Yes 

 4 Absence of minor physical signs in 65% of 
patients607 (reviewed in608) 

No Yes 

 5 Absence of neuropathological evidence for 
neurodevelopmental brain defect443,482 

No Yes 

Premorbid   
 6 High premorbid intelligence (IQ)540-542,609-612 

(supplementary info above) 
No Yes 

Schizophrenic psychosis   
 7 Late-onset schizophrenia (reviewed in613) No Yes 
 8 Signs of cerebral ischemia during acute psychosis 

(Fig. 4, Table S26) 
No Yes 

 9 Progressive brain tissue loss614 (meta-analysis523) No Yes 
10 Improvement by blockade of dopamine D2/D3 

and 5-HT2A receptor (review178) (see Fig. 1) 
No Yes 

11 Soft neurological signs decrease in parallel with 
the remission of acute psychosis (meta-analysis534) 
(see also refs. in Table 27). 

No Yes 

12 Course: remissions, relapses, and progressions615 No Yes 
13 Treatment-dependent outcome (review608) No Yes 

Legend for Table S31. AVI, adult vascular-ischemia; ND, neurodevelopmental; VI, vascular-
ischemia.  
 

The criterion of simplicity is met by requiring less auxiliary hypotheses, e.g., for evidence # 3–13 
in Table S31 above. Finally, disorders disturbing the cerebral energy-supply (Table 23, Fig. S6) 
and adult vascular disorders (Fig. 7) provide useful analogies for better understanding the 
pathogenesis of schizophrenia, whereas the analogy of the NDH with neurodevelopmental 
disturbances in very preterm infants is surprisingly unconvincing (see supplementary Fig. S7, 
Tables S23–S24).   
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