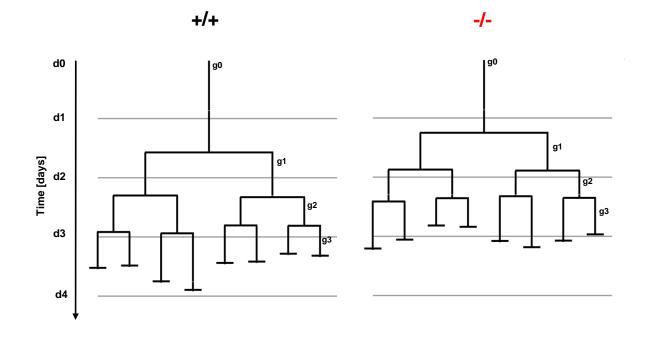
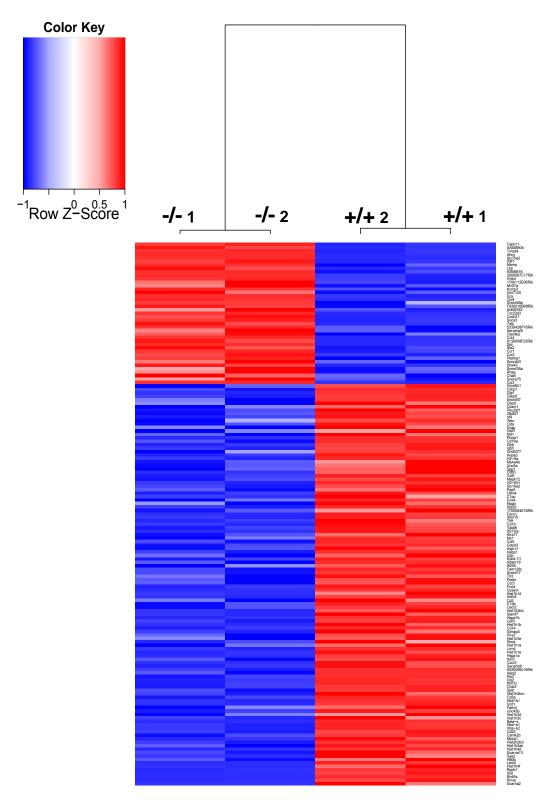
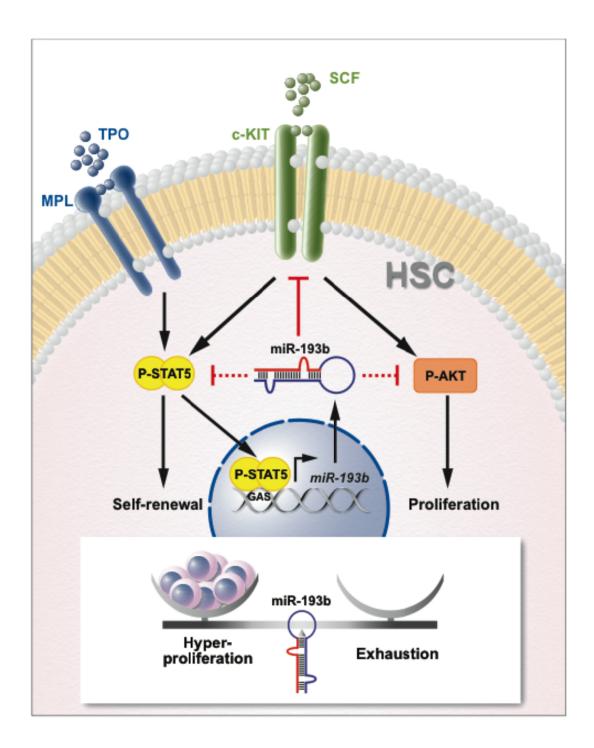

Supplementary Figure 1. MiR-193b expression in HSPC populations in steady-state and during haematopoietic stress. (a) Quantification of endogenous miR-193b in FACSsorted LT-HSCs, MPPs, c-KIT⁺ Sca1⁻ Lin⁻ (KL) cells and Lin⁺ cells of adult wildtype mice in steady-state hematopoiesis, determined via miR-specific quantitative RT-PCR. MiR-193b levels were normalized to snoRNA-202 expression. (b) Quantification of endogenous miR-193b in FACS-sorted LT-HSCs, MPPs, c-KIT⁺ Sca1⁻ Lin- (KL) cells and Lin⁺ cells of adult wildtype mice 10 days after a single 5-fluorouracil (5-FU) injection, determined via miRspecific quantitative RT-PCR. MiR-193b levels were normalized to snoRNA-202 expression. N=4 mice for MPPs, KL and Lin⁺, N=3 mice for LT-HSCs. The bar diagrams represent the mean and SD. The significance was only determined between the LT-HSCs and the respective cell populations. *, P<0.05; **, P<0.01; and ***, P<0.001.


Supplementary Figure 2. Haematopoietic cell distribution in miR-193b-deficient mice and in recipient mice transplanted with *miR-193b*^{-/-} LT-HSCs. (a) Peripheral blood counts in 3-4-month-old mice. N=11 *miR-193b*^{+/+} mice, N=17 *miR-193b*^{-/-} mice. (b) Spleen weights of 3-month-old mice, N=6 *miR-193b*^{+/+} mice, N=14 *miR-193b*^{-/-} mice. (c) Distribution of mature cell lineages in the spleen and bone marrow of 3-month-old mice, N=6 *miR-193b*^{+/+} mice, N=7 *miR-193b*^{-/-} mice. (d) Progenitor cell distribution in lineage enriched bone marrow in 3 months old mice, N=4 *miR-193b*^{+/+} mice, N=6 *miR-193b*^{-/-} mice. (e) Percentage of LSK cells in in 3-month-old mice, N=4 *miR-193b*^{+/+} mice, N=6 *miR-193b*^{-/-} mice. (f) Donor cell reconstitution in the bone marrow of primary and secondary transplanted recipients g) Multilineage engraftment in the bone marrow of primary and secondary transplanted recipients. (h) Absolute number of donor cells in in the bone marrow of primary and secondary transplanted recipients. Mann-Whitney test. The bar diagrams represent the mean and SD. *, *P*<0.05; **, *P*<0.01; and ***, *P*<0.001.


Supplementary Figure 3. Lentiviral expression vectors. (a) Schematic lentiviral vector maps used for ectopic miR-193b and miR-132/212 expression. The natural genomic loci encompassing the miR-193b sequence (680bp) and the miR-132/212 sequence (874bp) were cloned into the vector 3'of the open reading frame of eBFP2. (b) Schematic lentiviral vector maps used for ectopic c-KIT expression. The expression vector contains the open reading frame coding for c-KIT but not the 3'UTR containing the miR-193b targeting sequence.


Supplementary Figure 4. The ectopic expression of an unrelated miR-132/212 did not lead to diminished expansion of LT-HSCs. (a) Lentiviral transduction of LT-HSCs with miR-193b, miR-132/212 or CTRL vectors and cell culture in SCF, TPO for 10 days. The percentage of transduced cells was determined via FACS at indicated time points. N=3 independent experiments. (b) Lentiviral transduction of granulocyte-macrophage progenitors (GMPs) with miR-193b or CTRL vectors and cell culture in SCF, IL3, IL6 for 7 days. The percentage of transduced cells was determined via FACS at indicated time points. N=3 independent experiments. The data is represented as mean and SD. *, P<0.05; **, P<0.01; and ***, P<0.001.

Supplementary Figure 5. Behaviour of HSCs and their progeny determined via cell tracking. Example pedigrees of individual HSCs and their progeny derived from *miR-193b*^{+/+} and *miR-193b*^{-/-} mice as assessed using video-microscopy-based cell tracking. The HSCs are represented at the apex of the pedigree; each cell division is indicated with a horizontal bar. All cells emerging from the mother HSC (g0) were tracked until generation 3 (g3).

Supplementary Figure 6. Heat map of up-regulated and down-regulated genes in *miR-193b^{-/-}* **LSKs.** Gene expression in LSKs from two sets of *miR-193b^{-/-}* and *miR-193b^{+/+}* mice was quantified using RNA sequencing. Differentially expressed genes (1.5 fold up-regulated or down-regulated, p<0.05) were clustered and displayed as a heat map.

Supplementary Figure 7. Graphical abstract of the study. Here we show a regulatory circuit that prevents excessive HSC self-renewal by up-regulation of miR-193b driven by self-renewal promoting Thrombopoietin (TPO)–MpI-STAT5 signalling. In turn, miR-193b restricts cytokine signalling by targeting the tyrosine kinase receptor c-KIT. The dashed lines indicate potential additional direct inhibition.

Antigen	Clone	Dosage	Conjugate	Company
CD3	145-2C11	1µl/1x10 ⁷ cells	Biotin,	eBioscience
		1µl/test	PE-Cy7	
CD11b	M1/70	0.5µl/1x10 ⁷ cells	Biotin	eBioscience
CD11b	M1/70	1µl/test	PE, AF670	Biolegend
CD16/32	2.4G2	3µl/test	FITC, V450	BD
CD19	1D3	0.5µl/1x10 ⁷ cells	Biotin	eBioscience
CD34	RAM34	25µl/test	eFluor660	eBioscience
CD41	MWReg30	0.5µl/1x10 ⁷ cells	Biotin	eBioscience
CD48	HM48.1	2µl/test	PE, FITC	Biolegend
CD45.1	A20	1µl/test	eFluor450, FITC	eBioscience
CD45.2	104	1µl/test	PerCP-Cy5.5	eBioscience
CD45R	RA3-6B2	0.5µl/1x10 ⁷ cells	Biotin,	eBioscience
(B220)		1µl/test	PE	
CD117	2B8	3µl/test	PE-Cy7, APC,	eBioscience
(c-KIT)			BV421	
CD150	TC15-12F12.2	3µl/test	PE	Biolegend
Sca-1	D7	2µl/test	PerCP-Cy5.5,	eBioscience
			BV510	
Gr-1	RB6-8C5	0.5µl/1x10 ⁷ cells	Biotin,	eBioscience
Ly6G	1A8	1µl/test	PE, AF647	Biolegend
Ter119	TER-119	2µl/1x10 ⁷ cells	Biotin	eBioscience
		1µl/test	APC-eFlour780	
Streptavidin		2µl/1x10 ⁷ cells	APC-eFluor780	eBioscience
P- STAT5	47	20µl/test	PE	BD
P-STAT3	4	20µl/test	AF647	BD
P-AKT	M89-61	5µl/test	BV421	BD
P-ERK1/2	20A	20µl/test	Alexa Fluor488	BD
Ki67	SolA15	1 µl/test	FITC	eBioscience
7-AAD		20µl/test		BD
BrdU	BU20A	1µl/test	PE	BD

Supplementary Table 1 Antibodies used for flow cytometry