Supplementary information Peptide translocation by the lysosomal ABC transporter TAPL is regulated by coupling efficiency and activation energy Christoph Bock¹, Tina Zollmann¹, Katharina-Astrid Lindt¹, Robert Tampé¹, Rupert Abele¹* Keywords: ABCB9, Arrhenius activation energy, GTP hydrolysis, peptide binding, transport kinetics ¹ Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany ^{*} Correspondence should be addressed to R.A.: abele@em.uni-frankfurt.de **Figure S1:** Purity of TAPL TAPL and TAPL $_{KAHA}$ reconstituted in proteoliposomes were analyzed by SDS-PAGE (10%) followed by Coomassie staining (top, 2 μg protein per lane) or immunoblotting with TAPL specific antibody (bottom, 0.2 μg protein per lane). TAPL is split in two bands depicting unfolded and folded mVenus. Original, uncropped Coomassie stained SDS-PAGE and immunoblots are shown in supplementary information page 13. Figure S2: Time dependent peptide transport by TAPL Transport was performed with proteoliposomes (0.5 mg/ml lipids) containing TAPL (40:1 weight ratio of lipids to TAPL) up to 30 min at 37 °C with 3 mM ATP in the presence of 0.3 (**A** and **C**) or 30 μ M (**B** and **D**) peptide. Time dependent peptide transport of 9-mer^{FL} peptide (**A** and **B**) and 18-mer^{FL} peptide (**B** and **C**) was fitted with a linear regression, data points at 30 min were excluded from the fit. Transport was performed in triplicates with error bars indicating SD. **Figure S3:** Time dependent 9-mer^{FL} peptide transport by TAPL at 42 °C 9-mer FL peptide (100 μ M) transport was performed with proteoliposomes (0.5 mg/ml lipids) containing TAPL (40:1 weight ratio of lipids to TAPL) up to 30 min at 42 $^{\circ}$ C with 3 mM ATP. Time dependent peptide transport was fitted with a linear regression, transport was performed in triplicates with error bars indicating SD. Figure S4: Emission spectra of proteoliposomes containing C-Laurdan Proteoliposomes (33.3 μ g/ml lipids) were mixed with C-Laurdan in a molar ratio of 1:500 and emission spectra were recorded between 400 and 600 nm after excitation at 375 nm for temperatures between 16 and 44 °C. Figure S5: Time dependent ATP hydrolysis of TAPL ATP hydrolysis was determined with proteoliposomes (0.5 mg/ml lipids) containing TAPL (40:1 weight ratio of lipids to TAPL) up to 30 min at 37 °C with 3 mM ATP by colorimetric malachite green based assay in the absence of peptide. Time dependent ATP hydrolysis was fitted with a linear regression. ATP hydrolysis was performed in triplicates with error bars indicating SD. Figure S6: GTP dependent peptide transport and hydrolysis of TAPL Proteoliposomes (0.5 mg/ml lipids) containing TAPL or TAPL_{KAHA} (40:1 weight ratio of lipids to TAPL) were incubated with 3 mM GTP for 15 min at 37 °C in the absence (filled bar) or presence of ortho-vanadate (500 μ M, white bar). Peptide transport (**A**) was performed in the presence of 9-mer^{FL} peptide (10 μ M). GTP hydrolysis (**B**) was determined by colorimetric malachite green based assay in the absence or presence of 9-mer peptide (100 μ M). All experiments were performed in triplicates, error bars indicate SD. **Figure S7:** 9-mer^{FL} peptide transport by TAPL with GTP Proteoliposomes (0.5 mg/ml lipids) containing TAPL (40:1 weight ratio of lipids to TAPL) were incubated for 15 min at 37 °C with rising concentrations of 9-mer^{FL} peptide in the presence of 3 mM GTP. Data were fitted by Michaelis-Menten equation (equation 4) resulting in $K_{m(Pep)}$ of 4.4 \pm 0.8 μ M (R² = 0.96). Peptide transport was performed under steady state conditions in triplicates, error bars indicate SD. Figure S8: NTP dependent hydrolysis of TAPL NTP hydrolysis was performed with proteoliposomes (0.5 mg/ml lipids) containing TAPL (40:1 weight ratio of lipids to TAPL) for 15 min at 37 °C in the absence of peptide. NTP hydrolysis was quantified by radioactive based assay. Data were fitted by Michaelis-Menten equation (equation 4), $K_{m(NTP)}$ and $k_{cat(NTP)}$ values are listed in Table 3. All experiments were performed in triplicates, error bars indicate SD. Figure S9: Purity of TmrAB Reconstituted TmrAB was analyzed by SDS-PAGE (10%) followed by Coomassie staining (top, 2 μ g protein per lane) or immunoblotting with His-tag specific antibody (bottom, 0.2 μ g protein per lane). Original, uncropped Coomassie stained SDS-PAGE and immunoblots are shown in supplementary information page 13. Figure S10: NTP dependent peptide transport and hydrolysis of TmrAB Proteoliposomes (0.5 mg/ml lipids) containing TmrAB (40:1 weight ratio of lipids to TmrAB) were incubated with 3 mM ATP or GTP in the presence of 9-mer^{FL} peptide (3 μ M) for 10 min at 68 °C. NTP hydrolysis determined by colorimetric malachite green based assay (**A**) and peptide transport (**B**) were performed in the absence (filled bar) or presence of ortho-vanadate (500 μ M, white bar). All experiments were performed in triplicates, error bars indicate SD. Figure S11: Time dependent peptide transport by TmrAB Transport was performed with proteoliposomes (0.5 mg/ml lipids) containing TmrAB (40:1 weight ratio of lipids to TmrAB) up to 30 min at 68 °C with 3 mM ATP in the presence of 30 μ M 9-mer^{FL} peptide. Time dependent peptide transport was fitted with a linear regression, data point at 30 min was excluded from the fit. Transport was performed in triplicates with error bars indicating SD. Original and uncropped Coomassie stained SDS-PAGE (**A**) and immunoblots (**B**) of Figure S1 and and S9. Dashed lines highlight areas depicted in Figure S1 and S9. Deterg. purified TAPL in detergent. Reconst. TAPL and TmrAB reconstituted in proteoliposomes.