

Benjamin Bluhm | Jannic Cutura

Econometrics at Scale: Spark Up
Big Data in Economics

SAFE Working Paper No. 266

Electronic copy available at: https://ssrn.com/abstract=3226976

Econometrics at Scale:

Spark Up Big Data in Economics*

Benjamin Bluhm� Jannic Cutura�

February 6, 2020

Abstract

This paper provides an overview of how to use “big data” for economic
research. We investigate the performance and ease of use of different Spark
applications running on a distributed file system to enable the handling and
analysis of data sets which were previously not usable due to their size. More
specifically, we explain how to use Spark to (i) explore big data sets which
exceed retail grade computers memory size and (ii) run typical econometric
tasks including microeconometric, panel data and time series regression mod-
els which are prohibitively expensive to evaluate on stand-alone machines.
By bridging the gap between the abstract concept of Spark and ready-to-use
examples which can easily be altered to suite the researchers need, we provide
economists and social scientists more generally with the theory and practice
to handle the ever growing datasets available. The ease of reproducing the
examples in this paper makes this guide a useful reference for researchers with
a limited background in data handling and distributed computing.

Keywords : Econometrics, Distributed Computing, Apache Spark

*An earlier version of this paper circulated as “Time Series Econometrics at Scale: A Practical
Guide to Parallel Computing in (Py)Spark”. We would like to thank Sanjiv Das, Frauke Kreuter
and Satachit Sagade as well as participants from the GRADE Workshop on Big Data in the Social
Sciences, the Bank of England Conference on Modelling with Big Data and Machine Learning: In-
terpretability and Model Uncertainty (2019), participants of the Columbia University Data Science
Institute Financial and Business Analytics Center Poster Session November 2019 and members
of the International Monetary Funds’ BigData@Fund Community of Pratice for helpful comments
and suggestions. We gratefully acknowledge a travel grant sponsored by the Bank of England. We
gratefully acknowledge research support from the Leibniz Institute for Financial Research SAFE.
All remaining errors are our own.

�Data Science Freelancer, Email: benjaminbluhm@gmail.com
�Goethe University Frankfurt, Email: janniccutura@gmail.com

Electronic copy available at: https://ssrn.com/abstract=3226976

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3226976
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3226976

Contents

1 Introduction 3

2 Why Distributed Computing? 5

3 Distributed Computing Architecture 7
3.1 General overview and cluster architecture 7
3.2 The map–reduce framework . 9

4 Distributed Econometrics 12
4.1 Summarising a large dataset . 12
4.2 Micro Econometrics on Spark . 15
4.3 Panel Econometrics on Spark . 18
4.4 Time Series Econometrics on Spark 25

5 Conclusion 29

A Appendix 36
A.1 Running Spark on your local machine 37

A.1.1 PySpark on Jupyter Notebook 37
A.1.2 Sparklyr on RStudio . 38

A.2 Setting up a cloud computing environment (on AWS) 40
A.2.1 Setting up AWS and upload data 40
A.2.2 Creating an EMR cluster and installing custom software . . . 41

A.3 Running Spark on a cluster . 44
A.3.1 Running PySpark . 44
A.3.2 Running sparklyr . 45

2

Electronic copy available at: https://ssrn.com/abstract=3226976

1 Introduction

Research in economics and finance moved towards ever larger datasets and com-

putationally more advanced methods, including statistical methods borrowed from

the machine learning (ML) literature (Hamermesh 2013; Einav and Levin 2014). A

growing number of papers discusses the potential and limits of modern data analysis

frameworks such as ML algorithms (Varian 2014; Mullainathan and Spiess 2017),

text as data (Gentzkow et al. 2019; Grimmer and Stewart 2013) and the progress on

inference methods in high-dimensional settings (Athey and Imbens 2017; Kleinberg

et al. 2015). Finally, Fernández-Villaverde and Valencia (2018) provide an introduc-

tion to parallel computing for economics. While most of these works describe the

underlying algorithms at great length, there is almost no guidance on how to handle

the typically very large1 datasets used for these tools. As data availability is very

likely to grow in the foreseeable future, the inability to handle big data sets poses a

severe challenge to empirical economic research.2

This paper aims to fill this gap by providing accessible guidance on how to use

distributed computing solutions for economic research. With datasets in the bil-

lions of observations (e.g. Cavallo and Rigobon (2016) and Gao et al. (2019)) and

peta-bytes of data (e.g. Ng (2017)) and growing, economists need to be able to

handle and analyse those in a practical and efficient manner. We provide such a

framework by showing how to run your existing data handling pipeline on a dis-

tributed computing solution. More specifically we illustrate the parallelization of

key tasks frequently encountered in economic research and policy anaylsis: (i) com-

puting summary statistics, (ii) estimating micro econometric models, (iii) panel data

models and (iv) time series models using the Apache Spark framework. The paper

specifically targets a non-expert audience and is therefore useful for researchers in

economics and social sciences more general who struggle with datasets larger than

their in house resources allow them to handle.

1For this paper we consider a data set as large whenever analysing it on retail-grade computers
is a challenge. This is typically the case whenever datasets exceeds the 64 GB memory limit of
most machines. Ng (2017) analyse over 4 million gigabytes (=4 zetabytes) of price data in their
work, describe the memory problem that researchers face, when dealing with this kind of data.

2Other field in economics, notably macroeconomics, provide guidance on how to numerically
solve models. For example Druedahl (2019) describes how to solve non-convex consumption-saving
models. Caraiani (2018) shows how to solve heterogeneous agents models in Julia. Guidance on
handling large datasets for empirical research is limited. A notable exception is the textbook by
Foster et al. (2016) who provide an excellent overview of multiple topics related to big data in social
sciences, including web crawling, machine learning tools for classification and ethical consideration.
In our paper, we focus exclusively on Spark as a tool to handle and analyse datasets available to
researchers that were too large to handle on retail grade computers.

3

Electronic copy available at: https://ssrn.com/abstract=3226976

The basic idea behind Spark is that instead of bringing the data to the compu-

tation (i.e. read the data from your hard drive into your computers memory) you

should bring the computation to the data (i.e. run several computations in parallel

on the machines where the different parts of the dataset are stored). This allows to

handle datasets which are much larger than your computers memory usually allows

to handle. There are several providers for cloud computing solutions providing a rich

ecosystem of tools for distributed data storage and processing including Spark. In

this paper we use Amazon Web Services (AWS), but the logic described seamlessly

extends to other platforms.

To illustrate the use of Spark for economists, we demonstrate four typical use

cases. First, we handle and pre-process a real-world dataset of US home mortgage

applications with nearly 140 million observations using R’s sparklyr library, which

is built on the popular dplyr library providing an efficient and intuitive approach

for data pre-processing. We then use this dataset to illustrate the estimation of var-

ious micro econometric models where we provide standard regression output tables

and information on runtime performance conditional on cluster resource constraints.

Next, we use Python’s pyspark to fit a static fixed effects model via within-group

data transformation using a simulated panel dataset with one billion observations.

In this respect we show how to compute panel robust standard errors using a sim-

ple customized distribution scheme. Finally, we provide an example that entails

forecasting a large number of time series in parallel.

Fernández-Villaverde and Valencia (2018) conclude that Python and R are in-

ferior to higher level programming languages like C++ and Julia, when it comes to

run-time performance based on their comparison of value function iteration. Our

results indicate, that for empirical economic research Python and R by using Spark

are well equipped for data handling and analysis of very large datasets. As Python

and R are considerably easier to learn than e.g. C++ (and in fact today’s working

standard in data science), we view our introduction to Spark (based on Python and

R) as a useful guide for economists who want to analyse datasets larger than their

computer’s memory allows. Our results in terms of runtime and ease of handling

suggest Spark is a suitable tool for economic research. Using an Elastic Map Re-

duce (EMR) setup we are able to pre-process a 150 GB dataset in just under five

minutes, whereas the standalone approach on our local machine crashes. Similarly,

estimating micro econometric and panel regression models on our local machine

would require computing crossproducts of very large arrays, which is not feasible on

retail grade computers. Moreover, for the time series analysis case, the distribution

scheme reduces total runtime performance by about 95% relative to a single-machine

4

Electronic copy available at: https://ssrn.com/abstract=3226976

setting.

The contribution of the paper is two-fold. First, we demonstrate the usage

of Spark for economic research and its superiority in fact for many applications

involving large datasets. Secondly, the intuitive explanation of the framework along

side the uses cases should enable economists without previous experience in parallel

computing to work with Spark. This will allow them to (i) easily migrate their

existing data handling and analysis to gain significant run time performance and

(ii) allow them to handle datasets which were previously not manageable. To ease

the process, we provide the codes3 used in this paper and (in the appendix) carefully

explain how to connect to a cloud service to run the codes. Moreover, we show how

you can easily develop, test and debug your Spark programs (written in Python and

R) on your local machine (avoiding paying fees for cloud services).

The remainder of the paper is organized as follows. The next section will briefly

motivate the use of distributed computing solutions for empirical economic research.

Section 3 will elaborate on the distributed computing architecture and provide a

few numerical examples to illustrate the key idea of the Spark framework. Section 4

starts with a description on how to handle and preprocess a large real-world dataset

followed by subsection 4.2 which uses this dataset to walk through the estimation of

micro econometric models in Spark. Subsection 4.3 shows how to implement a fixed

effects regression in Spark and how to obtain panel robust standard errors. The last

subsection 4.4 shows a distributed set up for estimating time series models. The

last section concludes.

2 Why Distributed Computing?

Parallel Computing has gained a lot attention and is today used across various

fields in economic research, in particular for solving highly complex quantitative

models. In this paper, we argue that Distributed Computing is the next step in the

evolution of computational methods for economic research. The major advantage

of parallel computing is that it can allow to solve quantitative problems, that were

previously prohibitive expensive to evaluate. Fernández-Villaverde and Valencia

(2018) provide an excellent overview of parallel computing performance of various

programming languages and illustrate the runtime gains for solving a standard value

3Completely reproducible examples provided as RMarkdown and Jupyter notebook files are
posted on our github repository: https://github.com/benjaminbluhm/econometrics_at_scale

5

Electronic copy available at: https://ssrn.com/abstract=3226976

https://github.com/benjaminbluhm/econometrics_at_scale

function iteration problem.4 They point out that (depending on your problem) you

can speed up the analysis by a factor equal to the number of your computer’s CPU

cores. A standard retail grade computer at the time of writing typically comes with

4-8 cores, which means you can speed up the performance of your computations

by up to 8 times, if you use parallel computing appropriately. As pointed out in

Fernández-Villaverde and Valencia (2018), that very same logic holds true for the

case of distributed computing with that exception that instead of being able to only

use all your computer’s CPU cores, you can use hundreds and even thousands of

CPU cores of a cloud computing framework. Therefore, while parallel computing

on your own machine certainly speeds up the process of many applications, it pales

in comparison with the performance of a Spark cluster.5

Secondly, while your own computer comes at a (potentially high) fixed cost and

is only used for a certain number of hours a day, the access to a cloud computing

instance can be turned on and off at the flick of a switch. From a societal point of

view, this will save resources: Instead of individuals owning powerful machines they

only use so many hours a day, one can buy runtime on centralized high performance

cloud computers.6

Thirdly, and most importantly for the scope of this paper, distributed comput-

ing allows to tackle data handling and analysis which were previously prohibitively

expensive to run. For empiricists, this is usually the case when the dataset under

consideration is considerably larger than your computers memory, making any anal-

ysis on it painfully slow or when the number of models which need to be evaluated

becomes so large that even parallelization on a powerful retail-grade computer does

not alleviate overall runtime concerns. Moreover, the researchers training with data

handling and analysis shapes and limits the kind of research questions she conceives

of in the first place. By lowering the threshold to use distributed computing solu-

tions for economic research, we hope to achieve two goals. Firstly, we enable social

scientists to approach their existing (big) data handling more efficiently and tackle

existing questions that were previously prohibitively expensive to run. Secondly,

by demonstrating the ease of use of cloud computing technologies, we hope to in-

spire new questions which leverage the possibilities of ever growing and ever more

accessible datasets in the future.

4See S. Borağan Aruoba and Fernández-Villaverde (2015) for a comparison of different pro-
gramming languages with regards to non-parallel computing performance.

5Sagade et al. (2019) fit vector error correction models for a large number of stocks and days.
Even though the model was implemented in Python and C, the authors communicated to us that
run-time was a major issue.

6Gray (2008) discusses pricing implications for cloud computing.

6

Electronic copy available at: https://ssrn.com/abstract=3226976

3 Distributed Computing Architecture

3.1 General overview and cluster architecture

In this section, we describe the core architecture of a distributed computing sys-

tem based on Spark. The system is not limited to solving large-scale data handling

and econometric tasks as described in this guide, but can be applied to many other

expensive computing workloads that can be broken up into subsets of indepen-

dent tasks. To only mention a few use cases from an economist’s perspective, the

distributed system in this guide could be adopted to distribute tasks such as for

example value function iteration (S. Boragan Aruoba et al. 2003), extreme bounds

analysis (Leamer 1985; Sala-I-Martin 1997), forecast combination (Clemen 1989;

Timmermann 2006) or hyperparameter search.7

The choice of the distributed computing architecture presented in this section is

guided by the following goals:

� Facilitate distributed computations on datasets which do not fit into a single

machine’s memory

� Highly scalable to large clusters of machines

� Minimal effort for setting up a cluster and pre-installation of user-defined

libraries

� Ease of use to handle and analyse data in a distributed fashion using your

existing Python and R data analysis pipelines8

A simple diagram of the distributed computing architecture is illustrated Fig-

ure 1. There are four layers, providing different capabilities and functionalities to

the cluster. The distributed storage layer is based on the Hadoop API and uses

Amazon S3 as a distributed, scalable file system, where input and output files from

the application are stored on multiple machines, each storing a subset of all files.

Hadoop scales to hundreds or even thousands of machines and therefore supports

applications that run on very large datasets. A key idea of Hadoop (Ghemawat et al.

7Further details on using Spark for distributed hyperparameter search can be found on
the Databricks website: https://docs.databricks.com/applications/machine-learning/

automl/hyperopt/hyperopt-spark-mlflow-integration.html
8Other statistical packages like Stata unfortunately do not offer any Spark interfaces. Matlab,

another popular computing language, recently started to offer Spark/Hadoop support (see https:

//www.mathworks.com/products/compiler/hadoop-and-spark.html). Java and Scala also offer
interfaces, but are less known among social scientists

7

Electronic copy available at: https://ssrn.com/abstract=3226976

https://docs.databricks.com/applications/machine-learning/automl/hyperopt/hyperopt-spark-mlflow-integration.html
https://docs.databricks.com/applications/machine-learning/automl/hyperopt/hyperopt-spark-mlflow-integration.html
https://www.mathworks.com/products/compiler/hadoop-and-spark.html
https://www.mathworks.com/products/compiler/hadoop-and-spark.html

2003; Dean and Ghemawat 2004) is to move the computation to the data (and not

vice versa) in order to minimize network congestion which yields large benefits in

terms of computational efficiency for huge datasets of gigabytes to terabytes in size.

Figure 1: Spark’s distributed computing architecture

This schema illustrates a distributed computing architecture. When the user submits a Spark
application it launches the Spark Driver which is the process that takes care of breaking down the
user program into individual tasks and coordinating each of these tasks on the Spark Executors.
The Spark Driver submits a resource request to the Cluster Manager which launches the Spark
Executors according to the requested resources. The Spark Executors perform the tasks received
from the Spark Driver. The Distributed Storage Layer is based on the Hadoop API and holds the
distributed dataset which is partitioned across harddrives of the Spark worker nodes. Distributed
datasets can be used on any Hadoop supported storage system including for example Hadoop
Distributed File System (HDFS), S3, Cassandra, Hive and HBase. Authors graph based on Karau,

Konwinski, et al. (2015), Karau and Warren (2017) and Samadi et al. (2018).

Data Node 1

Spark Worker
Executor 1

Task 1, Task 2,
..., Task n

Spark Driver Process
(Spark Session & User code)

Data Node 2 Data Node N

Spark Worker
Executor 2

Task 1, Task 2,
..., Task n

Spark Worker
Executor N

Task 1, Task 2,
..., Task n

Distributed
Storage Layer

Data Processing
Layer

Yarn / Mesos / Standalone
Cluster Manager

Sc
he

du
le

 w
or

k
/

R
et

ur
n

re
su

lt

M
an

ag
e

re
so

ur
ce

s

Launch job

The resource management layer uses YARN (Yet Another Resource Negotiator)

and is in charge of managing cluster resources and scheduling data-processing jobs.9

9The other two existing Spark cluster managers are standalone mode and Mesos. While the
latter is just another cluster manager for running Spark in a distributed environment, the former
is typically used for running Spark on your local machine where the cluster size is determined by
the machine’s memory and number of cores.

8

Electronic copy available at: https://ssrn.com/abstract=3226976

Moreover, the cluster resource manager is responsible for administering YARN com-

ponents and keeping the cluster in good health.

The data processing layer uses Spark, which was first introduced by Matei Za-

haria et al. (2010) at UC Berkeley for large-scale machine learning use cases. In

the meantime, Spark has turned into an open-source, distributed data processing

platform for big data workloads relating to machine learning, stream processing

and graph analytics.10 The Resilient Distributed Dataset (RDD) defines the core

component of Spark’s distributed data processing engine. RDDs are collections of

lazily evaluated, distributed data objects - also called partitions - which are stored

in the data nodes connected to the Spark worker nodes and can be manipulated

in a parallel fashion on the different executors of the system. Spark is based on a

master/worker architecture where the driver communicates with the cluster man-

ager as a single coordinator which is responsible for managing the workers in which

executors run. The Spark driver is a process that hosts a Spark application and

executors are processes that run computations and store data defined by your ap-

plication code (for example, a sparklyr program for micro econometric analysis).

A more elaborate description of the Spark architecture can be found, for example,

in Chambers and M. Zaharia (2018).

3.2 The map–reduce framework

In this section we illustrate how Spark manipulates data in a parallel fashion using

two simple examples. The first example takes as an input an RDD with key/value

pairs to highlight a map-reduce algorithm that returns the mean value for each key.

In the second example we briefly sketch how Spark is applied to approximate the

maximum likelihood estimate of a generalized linear model.

Example 1 – A simple case for distributed computing: Compute the mean

of a large dataset

Perhaps the simplest example to demonstrate the map-reduce framework is to com-

pute the average value for each group for a large dataset.11 Consider a dataset D =

[(’A’, 5), (’B’, 7), (’C’, 3), (’D’, 4), (’A’, 8), (’B’, 6), (’C’, 2), (’D’, 1), (’A’, 9), (’B’,

3)]. Figure 2 illustrates the map–reduce logic used in Spark. As an input it takes an

RDD with 10 key/value tuples where the capital letters define the keys. The map

function takes as an input the RDD with key/value pairs which is distributed across

10For further details see: https://spark.apache.org/
11A similar example is provided in Fernández-Villaverde and Valencia (2018)

9

Electronic copy available at: https://ssrn.com/abstract=3226976

https://spark.apache.org/

three partitions in this example. The reduce function is called once for each key,

takes the input values to compute the average value and returns a key/value tupple.

Note that the data is shuffled between the map and reduce stage to ensure that all

values of a given key share the same node.12 After the reduce step is completed,

the data is transferred back to the masternode, where we can find the output [(’A’,

7.33), (’B’, 5.33), (’C’, 2.5), (’D’, 2.5)], i.e. the averages for each group A, B, C and

D. We can simultaneously count the number of observations per group such that in

a second step one can compute a weighted average of the group averages, weighted

with the number of observations in each group to obtain the overall average. While

the computational overhead of mapping the data across nodes does not justify the

efficiency gains for such a small dataset, it becomes increasingly powerful when the

size of the input data grows, and in particular if the input data exceeds memory.

Figure 2: Distributed Computation of the mean

This illustrates a simple map–reduce logic for computing the average of a list of numbers. The
data is first (randomly) mapped across workers. In a second step it is shuffled such that all values
with a given key are allocated to the same worker. In the reduce step, the average is computed and
finally returned back to the master node. On the master node, one can then compute the weighted

average of the groups’ averages.

[('A', 5), ('B', 7),
('C', 3), ('D', 4),
('A', 8), ('B', 6),
('C', 2), ('D', 1),
('A', 9), ('B', 3),]

[(A', 5), ('B', 7),
('C', 3)]

[('D', 4), ('A', 8),
('B', 6)]

[('C', 2), ('D', 1),
('A', 9), ('B', 3)]

'A', (5,8,9)

'C', (3,2)

'D', (4,1)

'B', (7,6,3)

'A', 7.33

'B', 5.33

'C', 2.5

'D', 2.5

[('A', 7.33), ('B', 5.33),
('C', 2.5), ('D', 2.5)]

Input Map Shuffle Reduce Output

12Since this shuffle process can be computationally expensive it may be more efficient to im-
plement a hash partitioner to ensure that all values associated with a particular key are grouped
together in the same partition. An example of this is provided in subsection 4.3.

10

Electronic copy available at: https://ssrn.com/abstract=3226976

Example 2 – A not so simple case for distributed computing: Compute

median of a large dataset

The previous subsection outlined how to compute the average value for each group

of a dataset, which is one of the most common examples to illustrate the map–reduce

framework. Does the framework easily extend to all frequently used characteristics

of data? Consider a dataset D = [3, 4, 2, 6, 7, 1, 2, 4, 5, 6, 4, 4, 5, 6, 4]. If you sorted

that dataset by size it would look like Dsorted = [1, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7]

and its median would be equal to 4. If D is too large to be fit into memory, (how)

can we use Spark to compute the median value? A simple application of the map–

reduce framework is not possible for this case, since there is no way to allocate the

data across workers in a helpful way. There is however a large literature on dealing

with these kind of computational problems.13 For practical purposes Greenwald et

al. (2001) propose an algorithm implemented in Spark that strikes a good balance

between accuracy and runtime to compute percentiles on large datasets. The main

take away however remains: When computation cannot be broken down across

nodes, the trivial map–reduce framework fails to deliver a simple solution and more

elaborate algorithms are required.

Example 3 – Back to econometrics: Distributed Ordinary Least Squares

Linear regression is arguably one of the most popular statistical model used in

economics. Spark uses a distributed version of stochastic gradient descent (SGD),

an optimization technique which is widely used in existing machine learning libraries

(Apache 2020). While a thorough treatment of the method is beyond the scope of

this paper14, we shall outline the basic ideas to provide an intuitive understanding to

the reader. Stochastic gradient descent is essentially a stochastic approximation of

the well-known gradient descent optimization. To run SGD in a distributed fashion,

Spark computes SGD for sub-samples on each worker and averages the estimated

parameters, a procedure similar in spirit to Zinkevich et al. (2010). A graphical

representation of the procedure (with three workers) is provided in Figure 3. A

similar procedure is feasiable for generalized least squares models (allowing probit

and logit specifications). At the time of writing, Spark’s MLlib contains a useful set

of estimation commands for our purposes15, which is likely to grow in the future.

13The interested reader is referred to Munro and Paterson (1980) as a starting point on selection
and sorting problems under limited storage.

14The interested reader is referred to Bonaccorso (2018).
15Bottou (2010) provides a comparison of run-time performance of different algorithms for a

big data setting

11

Electronic copy available at: https://ssrn.com/abstract=3226976

Figure 3: Distributed Linear Regression Algorithm

In this example, we illustrate distributed OLS. This example uses three Spark executors w = 1, 2, 3.
The input data (X, y) has n observations of K variables and a dependent variable y. In the map
step, random sub-samples of the data (m observations each) are distributed across the executors.

Each executor w computes a stochastic-gradient-descent solution β̂SGD
w which stochastically ap-

proximates the (true) OLS solution (X ′wXw)−1X ′wy
′
w on the sub-sample of data allocated to the

executor w. In a final step, the estimates are averaged to obtain β̂. For details see Zinkevich et al.
(2010).

(X, y)

(X1,y1)

(X2,y2)

(X3,y3)

...

=� ̂ 1

3 ∑
�=1

3

� ̂ ���

�

Input Map Shuffle Reduce Output

(n x K, n x 1)

(m x K, m x 1)

(m x K, m x 1)

(m x K, m x 1)

(K x 1)

(K x 1)

(K x 1)

(K x 1)

≅ (� ̂ ���

1
� ′

1
�1)−1� ′

1
�1

≅ (� ̂ ���

2
� ′

2
�2)−1� ′

2
�2

≅ (� ̂ ���

3
� ′

3
�3)−1� ′

3
�3

...

...

4 Distributed Econometrics

In this section we discuss how to use well-known econometric techniques in a dis-

tributed setting. The first subsection shows how to obtain summary statistics of

a big data set. Subsection 4.2 and 4.3 show how to run micro-econometric and

panel-regression models in spark on data which would be too expensive to evaluate

in a non-distributed fashion. Finally subsection 4.4 demonstrates how to train time

series models at scale. In all subsections, we provide information about comput-

ing time and cluster resources which may serve as a reference for other researchers

confronted with similar big data applications.

4.1 Summarising a large dataset

In this subsection, we discuss how to use spark to explore and understand datasets

that are too large to fit in memory (referred to as big data from here on).16 With

ever more data being both collected and connected, the ability to handle such data

16The code to reproduce the results in this section are stored on our github repository: https:
//github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.1

12

Electronic copy available at: https://ssrn.com/abstract=3226976

https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.1
https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.1

amounts is of crucial importance. Even at the time of writing, many existing datasets

used in economic research qualify as big data. For example, Edwards et al. (2007),

Dick-Nielsen et al. (2012), and Jankowitsch et al. (2014) use the TRACE dataset

on corporate bond trades which as of today consists of more than 230 million obser-

vations and 32.9 GB. Many non-public datasets are even larger. For example, the

European Central Banks collects daily snapshots of derivative exposures of financial

intermediaries in the Euro area, which resulted in the need of a specific IT infras-

tructure (Boneva et al. 2019). With the trend of administrative data for research

(Einav and Levin 2014), being able to handle such amounts of data will be crucial

both for academic research and policy work (Irving-Fisher-Committee 2020).

Dataset

For this paper we focus on the well-known HMDA dataset, which contains loan

application data from the US, frequently used in economic research (see for example

Munnell et al. (1996), Duchin and Sosyura (2014), and Gilje et al. (2016)), which is

also introduced in Foster et al. (2016). The data can be downloaded in yearly files

from the Federal Financial Institutions Examination Council (FFIEC) website.17

The entire data set spans from 2007–2017 and contains 150GB+ of data, which

one can reduce to 29GB by replacing character labels with numerical identifiers (for

example using the FIPS numeric code “01” instead of spelling out “Alabama”).

The dataset contains applications for loan mortgages along several characteristics

of borrowers (income, county, etc. . .) and lenders (bank name, balance sheet info,

etc. . .). We provide a copy of the dataset18 and the subset we are using19 on our

dropbox. Please note that we do not own or maintain this dataset. Check the

FFIEC’s website for the most recent version.

Spark Setup

To analyse the dataset, we follow a two-part strategy. We locally develop a Spark

application on a randomly selected sub-sample of 200,000 observations. We test and

debug our spark program on a retail grade computer and after finding satisfactory

performance run the same code in a distributed fashion on AWS. While we restrict

ourselves to the main steps of the distributed computing logic here, the complete

sparklyr code is available including a fully reproducible example on our github

17https://www.consumerfinance.gov/data-research/hmda/explore
18https://www.dropbox.com/sh/y5vrc3fnhwvw14o/AAAkgKja5YVpTT2vSUM0dW6-a?dl=0
19https://www.dropbox.com/s/z690uga5a0qrezv/HMDA_subsample.csv?dl=0

13

Electronic copy available at: https://ssrn.com/abstract=3226976

https://www.consumerfinance.gov/data-research/hmda/explore
https://www.dropbox.com/sh/y5vrc3fnhwvw14o/AAAkgKja5YVpTT2vSUM0dW6-a?dl=0
https://www.dropbox.com/s/z690uga5a0qrezv/HMDA_subsample.csv?dl=0

repository. To use sparklyr for handling and analysing large datasets, we found

the following tasks useful:

� Upload the data to S3

� Do all heavy computations in sparklyr using dplyr syntax for dataframe

manipulation and spark apply() to use base R functions

� Use collect() to get the results back to base R and continue to plot or print

tables

Results

With 29.4 GB in size, we were not able to load the entire data set into R or Python on

our local machine (which featured 16 GB of memory). Therefore, running the entire

analysis in base R was not feasible.20 Instead we imported a subset of 200,000 ran-

domly selected observations and developed a spark application which conveniently

summarizes the dataset. We find a combination of spark apply() and dplyr func-

tions very helpful to handle the dataset. For example, we need to combine the

two-digit state fips code with the three-digit county fips code to create a unique

county identifier. To do so we need to pad all single-digit state codes with a leading

zero (i.e. changing “1” to “01”). There is no dplyr function to do so, so we use

spark apply to pass a base R function to create the “state code fips” variable:

hmda spark = hmda spark %>%

spark apply (func t i on (e)

data . frame (s p r i n t f (”%02d” , as . numeric (e$ s t a t e code)) , e) ,

names = c (’ s t a t e c o d e f i p s ’ , colnames (hmda spark)))

We can use dplyr backend to analyse large datasets, which provides very read-

able code. Consider for example the following six lines of code which generate the

raw data used for Figure 4. It first groups the data by year and county and computes

the average loan to income ratio for country-year. Subsequently we use collect()

to read the Spark data back onto driver and further manipulate it:

hmda group = hmda spark %>%

group by (a s o f y ea r , c oun ty f i p s c ode) %>%

summarise (a vg p r c t o i n c = mean(l o an t o i n c , na . rm=TRUE)) %>%

c o l l e c t () %>% # read back to memory a f t e r heavy l i f t i n g i s done by Spark

mutate (l o g l o a n t o i n c = log (1+ l o an t o i n c) %>%

s e l e c t (county f ip s , l o g l o a n t o i n c , a s o f y e a r)

A visual illustration is provided in Figure 4.

20We could have broken the computation down manually into several steps, however we found
the Spark application much easier to implement, especially for researchers with a limited back-
ground in data handling, since the conceptually difficult steps are handled by spark autonomously.

14

Electronic copy available at: https://ssrn.com/abstract=3226976

Figure 4: Heat map US loan-to-income ratios

This graph plots the log of the loan-to-income of home mortgage application ratio across US
counties for 2008.

2008

30

40

50

−120 −100 −80

long

la
t

0.0

0.5

1.0

1.5

2.0
Loan to Income

4.2 Micro Econometrics on Spark

In this section, we explore how to run some popular micro econometric models

using Spark. We use the same dataset as in the previous section to estimate linear

regression, probit and logit models. We estimate those on a subset of the dataset

locally, using base R functions and Spark functions to demonstrate their equivalence.

Finally, we run Spark functions on AWS on the entire dataset. The code to reproduce

the results in this section are stored on our github repository.21

Spark Setup

Using sparklyr, we access the Spark’s machine learning library MLlib, which con-

tains many statistical models used for economic research as well. As outlined in the

previous section, we can clean the data using dplyr syntax in sparklyr to create

a spark dataframe against which we can run regressions. sparklyr allows us to use

base R formulas to be evaluted in their ml * function family. For example, using

the 137,819,151 observations strong hmda spark dataframe created in the previous

section, we can run a probit regression using the following code:

21https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.

2

15

Electronic copy available at: https://ssrn.com/abstract=3226976

https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.2
https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.2

glm model = hmda spark %>%

ml g e n e r a l i z e d l i n e a r r e g r e s s i o n (app l i c a t i on a c c ep t ed ˜ app l i cant income 000s ,

fami ly = ”binomial ” ,

l i n k = ” prob i t ”)

sparklyr automatically distributes the computation across the cluster, increasing

the speed of computation or making it feasible in the first place. We run different

versions of the following baseline regression

LoanGrantedi = β0 · Incomei + β1 ·Malei + β2 ·Whitei

+ β3 ·Blacki + 1Y ear(i) + 1LoanPurpose(i) + εi, (1)

where Income is the applicants income in $1000, Male is a dummy variable which is

equal to one if the applicant is male (and zero otherwise), White, Black are dummy

variables which are equal to one if the applicant is white or black respectively (with

Hispanics being the omitted category), 1LoanPurpose(i) and 1Y ear(i) are loan purpose

and year fixed effects respectively. LoanGranted is a dummy variable which is equal

to one if the loan application was successful. We estimate equation (1) using OLS,

probit and logit regressions.

Results

To evaluate the performance of Spark, we run 9 models and report the results in

Table 1. We run a linear regression, a probit and a logit model, each one locally

on a sub-sample using base R functions and the Spark algorithm as well as the

Spark algorithm executed on AWS on the entire dataset. While the empirical es-

timation confirm some well-known facts (such as white and male privilege in the

loan market), the interesting result with regards to this paper’s research question

is the performance of the sparklyr regression commands. For example consider

the linear regression estimated in column (1) – (3). Column (1) and (2) estimate a

linear regression on the same dataset. Column (1) was estimated using native R’s

linear regression model, while column (2) used Spark’s OLS via MLlib. Both report

identical results, as expected. Runtime is considerably larger for the Spark solution.

On a small dataset, the computational overhead used for the distribution scheme in

Spark outweighs the speed benefits gained by distributed computing. Column (3)

provides the same regression on the entire dataset, ran on AWS. Columns (4) – (6)

and (7) – (9) repeat this exercise for probit and logit regression and yield similar

conclusions.

A concern with big data as input for regression models is that with enough

16

Electronic copy available at: https://ssrn.com/abstract=3226976

T
a
b
le

1
:

M
ic

ro
e
c
o
n

o
m

e
tr

ic
re

g
re

ss
io

n
in

S
p

a
rk

T
o

es
ti

m
at

e
a

li
n

ea
r

re
gr

es
si

on
,

sp
ec

ifi
ca

ti
on

(1
)

u
se

s
n

a
ti

ve
R

’s
l
m
(
)

o
n

th
e

su
b

sa
m

p
le

,
sp

ec
ifi

ca
ti

o
n

(2
)

u
se

s
s
p
a
r
k
l
y
r
’s
m
l
l
i
n
e
a
r
r
e
g
r
e
s
s
i
o
n
(
)

o
n

th
e

su
b

sa
m

p
le

w
h

il
e

sp
ec

ifi
ca

ti
on

(3
)

u
se

s
s
p
a
r
k
l
y
r
’s
m
l
l
i
n
e
a
r
r
e
g
r
e
s
s
i
o
n
(
)

o
n

th
e

en
ti

re
d

a
ta

se
t.

T
o

es
ti

m
a
te

a
p

ro
b

it
re

g
re

ss
io

n
,

sp
ec

ifi
ca

ti
o
n

(4
)

u
se

s
n

at
iv

e
R

’s
l
m
(
)

on
th

e
su

b
sa

m
p

le
,

sp
ec

ifi
ca

ti
o
n

(5
)

u
se

s
s
p
a
r
k
l
y
r
’s
m
l
g
e
n
e
r
l
i
z
e
d
l
i
n
e
a
r
r
e
g
r
e
s
s
i
o
n
(
)

o
n

th
e

su
b

sa
m

p
le

w
h

il
e

sp
ec

ifi
ca

ti
o
n

(6
)

u
se

s
s
p
a
r
k
l
y
r
’s
m
l
g
e
n
e
r
l
i
z
e
d
l
i
n
e
a
r
r
e
g
r
e
s
s
i
o
n
(
)

o
n

th
e

en
ti

re
d

a
ta

se
t.

T
o

es
ti

m
a
te

a
lo

g
it

re
g
re

ss
io

n
,

sp
ec

ifi
ca

ti
o
n

(7
)

u
se

s
n

a
ti

ve
R

’s
l
m
(
)

on
th

e
su

b
sa

m
p

le
,

sp
ec

ifi
ca

ti
on

(8
)

u
se

s
s
p
a
r
k
l
y
r
’s

m
l
g
e
n
e
r
l
i
z
e
d
l
i
n
e
a
r
r
e
g
r
e
s
s
i
o
n
(
)

o
n

th
e

su
b

sa
m

p
le

w
h

il
e

sp
ec

ifi
ca

ti
o
n

(9
)

u
se

s
s
p
a
r
k
l
y
r
’s

m
l
g
e
n
e
r
l
i
z
e
d
l
i
n
e
a
r
r
e
g
r
e
s
s
i
o
n
(
)

on
th

e
en

ti
re

d
a
ta

se
t.

R
u

n
ti

m
e

in
lo

ca
l

sp
a
rk

d
ep

en
d

s
o
n

th
e

m
a
ch

in
e

it
is

ra
n

o
n

.
T

h
e

re
su

lt
s

a
re

b
a
se

d
o
n

a
n

A
W

S
E

C
2

in
st

an
ce

ty
p

e
m

5
.x

la
rg

e
(m

as
te

r
+

4
n

o
d
es

).
R

u
n
ti

m
e

is
m

ea
su

re
d

in
m

in
u

te
s.

*
*
*
,

*
*
,

*
,

in
d

ic
a
te

st
a
ti

st
ic

a
l

si
g
n

ifi
ca

n
ce

a
t

th
e

1
%

,
5
%

,
a
n

d
1
0
%

re
sp

ec
ti

ve
ly

.

O
L

S
P

ro
b

it
L

o
g
it

B
as

e
R

S
p

ar
k

S
p

a
rk

B
a
se

R
S

p
a
rk

S
p

a
rk

B
a
se

R
S

p
a
rk

S
p

a
rk

(l
o
ca

l)
(l

o
ca

l)
(A

W
S

)
(l

o
ca

l)
(l

o
ca

l)
(A

W
S

)
(l

o
ca

l)
(l

o
ca

l)
(A

W
S

)

L
oa

n
gr

an
te

d
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)

In
co

m
e

(0
00

$
)

0.
00

01
∗∗
∗

0.
00

01
∗∗
∗

0
.0

0
0
0
0
6
1
9
4
4∗
∗∗

0
.0

0
0
3∗
∗∗

0
.0

0
0
3∗
∗∗

0
.0

0
0
2∗
∗∗

0
.0

0
0
6∗
∗∗

0
.0

0
0
6∗
∗∗

0
.0

0
0
2∗
∗∗

(0
.0

00
0)

(0
.0

00
0)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

M
al

e
0.

02
50
∗∗
∗

0.
02

50
∗∗
∗

0
.0

2
9
8∗
∗∗

0
.0

6
3
9∗
∗∗

0
.0

6
3
9∗
∗∗

0
.0

7
0
∗∗
∗

0
.0

9
8
2∗
∗∗

0
.0

9
8
2∗
∗∗

0
.0

7
0
0
6∗
∗∗

(0
.0

00
0)

(0
.0

00
0)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

R
ac

e

W
h
it

e
0.

01
38

3
∗∗
∗

0.
01

38
3
∗∗
∗

0
.0

0
8
2
9∗
∗∗

0
.0

3
5
4∗
∗∗

0
.0

3
5
4∗
∗∗

0
.0

2
6
4∗
∗∗

0
.0

6
1
3∗
∗∗

0
.0

6
1
3∗
∗∗

0
.0

2
6
4
5∗
∗∗

(0
.0

11
3)

(0
.0

11
3)

(0
.0

0
0
0
)

(0
.0

1
0
9
)

(0
.0

1
0
9
)

(0
.0

0
0
0
)

(0
.0

0
6
1
)

(0
.0

0
6
1
)

(0
.0

0
0
0
)

B
la

ck
-0

.1
48

6
∗∗
∗

-0
.1

48
6
∗∗
∗

-0
.1

4
5
0
∗∗
∗

-0
.3

8
2
3
∗∗
∗

-0
.3

8
2
3
∗∗
∗

-0
.3

6
2
9
∗∗
∗

-0
.6

0
6
0
∗∗
∗

-0
.6

0
6
0
∗∗
∗

-0
.3

6
2
9
∗∗
∗

(0
.0

00
0)

(0
.0

00
0)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

(0
.0

0
0
0
)

#
O

b
se

rv
at

io
n

s
14

7,
32

9
14

7,
32

9
1
3
7
,8

1
9
,1

5
1

1
4
7
,3

2
9

1
4
7
,3

2
9

1
3
7
,8

1
9
,1

5
1

1
4
7
,3

2
9

1
4
7
,3

2
9

1
3
7
,8

1
9
,1

5
1

Y
ea

r
F

E
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es

L
oa

n
P

u
rp

os
e

F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

R
u

n
ti

m
e

(m
in

)
0
.7

1
0
.0

0
7

9
.9

0
0
.1

4
6

1
.5

5
6

3
3
.6

9
0
.0

2
6

0
.9

9
5

1
9
.8

3
3

17

Electronic copy available at: https://ssrn.com/abstract=3226976

observations, any correlation will be statistically significant at conventional levels

(usually 1%). This is true, since the variance of the estimator shrinks towards zero,

as the number of observations grows to infinity. However, this does not imply that

regressions on large datasets will incorrectly find effects, it merely means that the

effect size can be arbitrary small and still statistically significant. When discussing

these issues with other researchers, we often encountered suggestions like “With big

data, the size of the effect is more important”. We are sceptical of that interpre-

tation: The size of an effect matters for small and big data, but the larger your

dataset, the more likely it is that you are able to pick up even very small effect

sizes (Flom 2013). In fact, you pick up effect sizes which one would simply discard

as statistically “insignificant” on small datasets. For a more thorough treatment of

large sample theory, the reader is referred to Ferguson (2017).

4.3 Panel Econometrics on Spark

This section illustrates how to estimate a panel data regression in a distributed

fashion using Spark.22 We simulate a big data scenario by generating an artificial

panel dataset that is about 90GB in size and contains one billion observations. The

key contributions of this section are as follows: First, we illustrate a simple Spark

SQL logic to implement within-group data transformation in order to fit a one-way

fixed effects estimator. While we restrict the example in this paper to a single fixed-

effect, the approach can be easily generalized to a larger number of fixed effects which

are encountered in many real-world datasets. Second, we provide empirical results on

the validity of the estimated model coefficients and we give an indication of runtime

performance and required computing resources. Third, we show how to compute

panel-robust standard errors allowing for heteroscedasticity and serial correlation.

These standard errors are currently not available in Spark MLlib, however, we show

that robust standard errors can be computed in a distributed fashion using our

customized distribution scheme.

As for the other subsections, we provide the relevant source code in the format

of a Jupyter notebook available on our github repository.23 Additionally, the data

used for this section is provided on our Dropbox.24

22For a comprehensive treatment of panel data models we refer the interested reader to Baltagi
(2008).

23https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.

3
24https://www.dropbox.com/sh/vk2ra1ufupi0yky/AABHUX6FZxIOWdk9LMnNTy5ea?dl=0

18

Electronic copy available at: https://ssrn.com/abstract=3226976

https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.3
https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.3
https://www.dropbox.com/sh/vk2ra1ufupi0yky/AABHUX6FZxIOWdk9LMnNTy5ea?dl=0

Dataset

To generate our large artificial dataset we simulate data according to the following

linear panel regression model (for a general introduction to panel data and fixed

effects see e.g. Wooldridge (2010)):

yit = X ′itβ + εit ∀ i = 1, ..., N t = 1, ..., T (2)

where subscript i defines the panel index and refers for example to an individual,

subscript t denotes the time period, yit is the dependent variable, Xit is the matrix of

regressors, β denotes the vector of parameters and εit the error term. Furthermore,

we assume that the data contains an unobserved individual-specific fixed effect that

is constant over time. In particular, the error term εit is decomposed into an id-

iosyncratic component uit and an individual-specific effect αi that is constant over

time:

εit = αi + uit (3)

In addition, the individual-specific fixed effect is assumed to enter one of the

regressors:

X1,it = αi + γ1,it (4)

For simplicity all random variables above are drawn from a standard normal

distribution. We simulate a dataset with T = 10, N = 100, 000, 000 and K = 8 (the

number of regressors including the intercept). Furthermore, we impose a coefficient

of 0.5 on all regressors without loss of generalization.

Note that the data generating process described by equations (2), (3), (4) in-

troduces correlation between the regressors and the error implying that estimation

of β via OLS yields inconsistent results. In the next section, we illustrate how to

address this problem in Spark by implementing the well known within-group data

transformation scheme which allows for consistent estimation of β via OLS for pan-

els with short T and large N .25 While the within-group estimator is implemented in

various standard econometric software packages (see for example reghdfe command

in Stata (Correia 2016), plm and lfe packages in R (Millo 2017; Gaure 2019) or

linearmodels in Python (Sheppard 2019)), Spark does not yet provide any out-of-

the box functionalities for estimating panel data models.

25Note that Hansen (2007) showed that tests based on robust standard errors are consistent
even for large T as long as N →∞.

19

Electronic copy available at: https://ssrn.com/abstract=3226976

Spark Setup

To apply the within-group data transformation scheme we rewrite (2) by following

the definition in Cameron and Trivedi (2005):

yit − ȳi = (Xit − X̄i)
′β + (εit − ε̄i) (5)

where ȳi = 1/Ti
∑Ti

t=1 yit. By subtracting the mean across time for each individ-

ual we remove the unobserved fixed-effect such that β can be consistently estimated

via OLS. Below, we provide a brief sketch of the Spark SQL logic that implements

this simple data transformation scheme for a dataset with one right-hand side vari-

able:26

Load panel data in to Spark dataframe

df = spark . read . parquet (’ . / pane l data ’)

Create dataframe with mean ac ro s s time f o r each i nd i v i dua l i

df . createOrReplaceTempView (” df ”)

df mean = spark . s q l (”SELECT i , AVG(y) AS y bar , AVG(x1) AS x1 bar FROM df GROUP BY i ”)

Apply within−group data t rans fo rmat ion scheme via l e f t j o i n

df mean . createOrReplaceTempView (”df mean”)

d f w i th in g roup = spark . s q l (”

SELECT a . i , t , (a . y − b . y bar) AS y t i l d e , (a . x − b . x bar) AS x t i l d e

FROM df AS a LEFT JOIN df mean AS b ON a . i = b . i ”)

Following the transformation defined by (5), we can implement the within es-

timator using Spark MLlib generalized linear regression class. We should notice

though that the standard errors provided by MLlib are the default OLS standard

errors which tend to be too low as they do not account for the loss in degrees of free-

dom arising from demeaning the data. To get a consistent and unbiased estimate for

the standard errors we must inflate them by factor ([N(T − 1)−K]−1[NT −K])1/2

(see Cameron and Trivedi (2005) for further details).

Yet, researchers often prefer to compute a panel-robust estimate of the variance-

covariance matrix which permits serial correlation in the error term εit and het-

eroskedasticity of arbitrary form. In practice, model errors are often correlated over

time for a given individual which violates the assumption of independence in the

model errors. This erroneous assumption leads to a downward bias in conventional

standard errors as the benefit of additional time periods is overestimated. Moreover,

the failure to control for heteroskedasticity induces additional bias in the standard

errors. While at the time of writing this paper, panel-robust standard errors are not

available in Spark MLlib or any other Spark package we are aware of, we can define

our own simple distribution scheme to compute these standard errors. The distri-

26Note that the same logic could be easily implemented using Spark’s Dataframe API rather
than Spark SQL.

20

Electronic copy available at: https://ssrn.com/abstract=3226976

bution scheme can be easily derived from the standard definition of the estimator

for the panel-robust asymptotic variance matrix (Arellano 1987):

V̂ [β̂] =

[
N∑
i=1

X̃ ′iX̃i

]−1 N∑
i=1

X̃ ′i ˆ̃εiˆ̃ε
′
iX̃i

[
N∑
i=1

X̃ ′iX̃i

]−1
(6)

where X̃i = Xi − X̄i is a T ×K matrix of the transformed regressors and ˆ̃εi =

ỹi − X̃iβ̂ is a T × 1 vector of residuals for panel index i from estimating (5) via

OLS. Note that in our example N = 100, 000, 000 making the size of this dataset

much too large to compute V̂ [β̂] on a standard computer. However, we exploit (6)

to break the computation into small independent chunks, apply the computation on

each of them separately and finally combine the resulting output to construct V̂ [β̂].

Figure 5 provides a graphical representation of the distribution scheme.

Figure 5: Distribution Scheme for Panel Robust Variance Estimate

In this example, we illustrate a distribution scheme for panel robust variance estimates. This
example uses three Spark executors w = 1, 2, 3. The input data (X̃, ˆ̃ε) has N × T observations of
K variables and the N × T × 1 vector of residuals of the regression ˆ̃ε. In the map step, the data
(N × T/3 observations each) is distributed across exexutors. A hash partitioner is used to ensure
that all data for a given panel index is sent to the same executor (for details refer to the code
on our github repository). Each executor w computes (X̃ ′wX̃w, X̃

′
w

ˆ̃ε′w ˆ̃εwX̃
′
w) on the sub-sample of

data allocated to the executor w. In a final step, the results are returned to the master node where
the partial sums are summed up to serve as an input for (6).

(,)�̃
� ̃
̂

(,)�̃

1 � ̃

̂

1

(,)�̃

2 � ̃

̂

2

(,)�̃

3 � ̃

̂

3

(,)∑
�=1

3

�̃

′

�
�̃

� ∑
�=1

3

�̃

′

�
� ̃

̂

�� ̃

̂

′

�
�̃

�

Input Map Reduce Output

(N x T) x K, (N x T) x 1

(K x K, K x K)

(K x K, K x K)

(,)�̃

′

1
�̃

1 �̃

′

1
� ̃
̂

1� ̃
̂

′

1
�̃

1

(K x K, K x K)

(,)�̃

′

2
�̃

2 �̃

′

2
� ̃
̂

2� ̃
̂

′

2
�̃

2

(K x K, K x K)

(,)�̃

′

3
�̃

3 �̃

′

3
� ̃
̂

3� ̃
̂

′

3
�̃

3

(N x T)/3 x K, (N x T)/3 x 1

(N x T)/3 x K, (N x T)/3 x 1

(N x T)/3 x K, (N x T)/3 x 1

A paired RDD with equally sized data partitions is generated where the RDD’s

key is defined by the panel index and the value holds the data (X̃i, ˆ̃εi) for that

particular index. After mapping the RDD onto the executors a reducer function is

called to perform the crossproduct computation of submatrices. The output is then

collected back to the master node where V̂ [β̂] can be computed with little computa-

21

Electronic copy available at: https://ssrn.com/abstract=3226976

tional effort. Given a size of one billion observations and 8 regressors (incuding the

intercept), we assign one million observations to a single partition which is reduced

to two small two-dimensional arrays, each of dimension 8× 8. As a result, 2,000 of

these arrays are collected to the master node which are then used as an input to

form (6).

The box below shows that it only requires a few lines of code to calculate the

distributed version of the robust variance estimator. Note that in order to obtain

correct results when distributing the computation across executors each RDD par-

tition must hold all the data for a given panel index which is ensured by the hash

partitioner function.

Se l e c t r e l evan t columns f o r computing sandwich VCE

df = df . s e l e c t ([” id ” , ” time” , ”u” , ” i n t e r c e p t ” , ”x1” , ”x2” , ”x3” , ”x4” , ”x5” , ”x6” , ”x7”])

Create hash p a r t i t i o n e r a s su r ing that data f o r each id i s in one p a r t i t i o n

de f k e y pa r t i t i o n e r (id) :

r e turn hash (id)

Create key−value RDD with 1 ,000 p a r t i t i o n s

key va lue rdd = df . rdd .map(lambda x : (x [0] , x [1 : 1 0])) . par t i t i onBy (1000 , k e y pa r t i t i o n e r)

Compute array cross−products f o r sandwich VCE and c o l l e c t r e s u l t s to master node

arr bread meat = key va lue rdd . mapPart it ions (compute bread meat) . c o l l e c t ()

Construct bread and meat ar rays and sandwich VCE

bread = np . l i n a l g . inv (sum ([item [0] f o r item in arr bread meat]))

meat = sum ([item [1] f o r item in arr bread meat])

vcov = bread . dot (meat) . dot (bread)

Results

In this section we show results for 3 different model specifications reported in Ta-

ble 2 as OLS, Fixed Effects and Fixed Effects (Robust VCE). For each specification

Table 2 shows estimation and runtime results across three separate estimation runs.

The first two columns in each specification provide a comparison of results between

Spark in local mode and R’s plm package using a small subsample of data (100,000

rows). Essentially, this comparison serves to confirm the validity of estimated co-

efficients and standard errors obtained in Spark taking as a benchmark a popular

panel data package from the R community. The estimation and runtime results for

the complete dataset can be found in the last column of each specification.

Columns (1) - (3) show coefficient and standard error estimates for the OLS

specification corresponding to a linear regression without prior data transformation

to account for fixed effects. As expected the coefficient estimates on regressor X1

show in all three regressions a significant deviation from its true value of 0.5. This

bias is corrected for in the fixed effects case when estimation is performed on the

transformed dataset as shown in columns (4) - (6) where standard errors have been

22

Electronic copy available at: https://ssrn.com/abstract=3226976

adjusted for the loss in degrees of freedom. Columns (7) - (9) contain the estimation

results with panel robust standard errors using our custom distribution scheme.

A comparison of runtimes across columns shows that the performance advantage

of Spark comes into play for large volumes of data. For the cases that consider

only a subsample of data the parallelization through Spark does not provide any

performance improvement over local model fitting. Columns (3), (6) and (9) show

the results when the entire dataset is used. Note that in order to provide a realistic

indication of required cluster life time the reported runtime includes not only the

time for the actual model fitting stage but also for the time it takes to perform the

relevant data transformation steps. A comparison of columns (3) and (6) indicates

that this data transformation can be computationally expensive as runtime is sub-

stantially higher for the fixed effects specification. The highest runtime is reported

for column 9 which is not surprising given that on top of data transformation this

specification involves both the computation of residuals and the variance covariance

matrix in a distributed fashion. Finally, note that the standard errors in column (7)

are the same as in column (8) which confirms that our custom distribution scheme

yields valid results for the panel robust variance estimator.

23

Electronic copy available at: https://ssrn.com/abstract=3226976

T
a
b
le

2
:

P
a
n

e
l

R
e
g
re

ss
io

n
in

S
p

a
rk

T
o

es
ti

m
at

e
a

li
n

ea
r

re
gr

es
si

on
,
sp

ec
ifi

ca
ti

on
(1

)
u

se
s

b
a
se

R
’s
l
m
(
)

o
n

th
e

su
b

sa
m

p
le

,
sp

ec
ifi

ca
ti

o
n

(2
)

u
se

s
P
y
S
p
a
r
k
’s
M
L
l
i
b
L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n
M
o
d
e
l
(
)

on
th

e
su

b
sa

m
p

le
w

h
il

e
sp

ec
ifi

ca
ti

on
(3

)
u

se
s
P
y
S
p
a
r
k
’s
M
L
l
i
b
L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n
M
o
d
e
l
(
)

o
n

th
e

en
ti

re
d

a
ta

se
t.

T
o

es
ti

m
a
te

a
st

a
ti

c
p

a
n

el
re

g
re

ss
io

n
,

sp
ec

ifi
ca

ti
on

(4
)

u
se

s
R

’s
p
l
m
(
)

p
ac

ka
ge

on
th

e
su

b
sa

m
p

le
,

sp
ec

ifi
ca

ti
o
n

(5
)

u
se

s
P
y
S
p
a
r
k
’s

M
L
l
i
b
L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n
M
o
d
e
l
(
)

o
n

th
e

w
it

h
in

-g
ro

u
p

tr
an

sf
or

m
ed

su
b

sa
m

p
le

w
h

il
e

sp
ec

ifi
ca

ti
on

(6
)

u
se

s
P
y
S
p
a
r
k
’s
M
L
l
i
b
L
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n
M
o
d
e
l
(
)

o
n

th
e

w
it

h
in

-g
ro

u
p

tr
a
n

sf
o
rm

ed
en

ti
re

d
a
ta

se
t.

S
ta

n
-

d
ar

d
er

ro
rs

u
n

d
er

sp
ec

ifi
ca

ti
on

(4
)-

(6
)

h
av

e
b

ee
n

a
d

ju
st

ed
fo

r
th

e
lo

ss
in

d
eg

re
es

o
f

fr
ee

d
o
m

in
d

u
ce

d
b
y

th
e

w
it

h
in

tr
a
n

sf
o
rm

a
ti

o
n

.
T

o
es

ti
m

a
te

a
p

an
el

re
gr

es
si

on
w

it
h

ro
b

u
st

st
an

d
ar

d
er

ro
rs

,
sp

ec
ifi

ca
ti

o
n

(7
)

u
se

s
R

’s
p
l
m
(
)

p
a
ck

a
g
e

o
n

th
e

su
b

sa
m

p
le

,
sp

ec
ifi

ca
ti

o
n

(8
)

u
se

s
o
u
r

d
is

tr
ib

u
te

d
va

ri
a
n

ce
co

va
ri

an
ce

es
ti

m
at

or
on

th
e

su
b

sa
m

p
le

w
h

il
e

sp
ec

ifi
ca

ti
o
n

(9
)

u
se

s
o
u

r
d

is
tr

ib
u

te
d

va
ri

a
n

ce
co

va
ri

a
n

ce
es

ti
m

a
to

r
o
n

th
e

en
ti

re
d

a
ta

se
t.

R
u

n
ti

m
e

in
lo

ca
l

sp
ar

k
d

ep
en

d
s

on
th

e
m

ac
h

in
e

it
is

ra
n

on
.

T
h

e
re

su
lt

s
a
re

b
a
se

d
o
n

a
n

A
W

S
E

C
2

in
st

a
n

ce
ty

p
e

m
4
.x

la
rg

e
(m

a
st

er
+

1
0

n
o
d

es
).

R
u

n
ti

m
e

is
m

ea
su

re
d

in
m

in
u
te

s.
**

*,
**

,
*
,

in
d

ic
a
te

st
a
ti

st
ic

a
l

si
g
n

ifi
ca

n
ce

a
t

th
e

1
%

,
5
%

,
a
n

d
1
0
%

re
sp

ec
ti

ve
ly

.

O
L

S
F

ix
e
d

E
ff

e
c
ts

F
ix

e
d

E
ff

e
c
ts

(R
o
b

u
st

V
C

E
)

b
as

e
R

S
p

ar
k

S
p

a
rk

R
p
l
m
(
)

S
p

a
rk

S
p

a
rk

R
p
l
m
(
)

S
p

a
rk

S
p

a
rk

(l
o
ca

l)
(l

o
ca

l)
(A

W
S

)
(l

o
ca

l)
(l

o
ca

l)
(A

W
S

)
(l

o
ca

l)
(l

o
ca

l)
(A

W
S

)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

X
1

0.
99

75
∗∗
∗

0.
99

75
∗∗
∗

0.
9
9
9
9∗
∗∗

0
.4

9
9
7
∗∗
∗

0
.4

9
9
7∗
∗∗

0
.5

0
0
0∗
∗∗

0
.4

9
9
7∗
∗∗

0
.4

9
9
7∗
∗∗

0
.5

0
0
0∗
∗∗

(0
.0

02
7)

(0
.0

02
7)

(0
.0

0
0
0
)

(0
.0

0
3
3
3
9
)

(0
.0

0
3
3
3
9
)

(0
.0

0
0
)

(0
.0

0
3
3
4
2
)

(0
.0

0
3
3
4
2
)

(0
.0

0
0
)

X
2

0.
49

67
∗∗
∗

0.
49

67
∗∗
∗

0.
5
0
0
0∗
∗∗

0
.4

9
8
7∗
∗∗

0
.4

9
8
7∗
∗∗

0
.5

0
0
0∗
∗∗

0
.4

9
8
7∗
∗∗

0
.4

9
8
7∗
∗∗

0
.5

0
0
0∗
∗∗

(0
.0

03
9)

(0
.0

03
9)

(0
.0

0
0
0
)

(0
.0

0
3
3
3
7
)

(0
.0

0
3
3
3
7
)

(0
.0

0
0
)

(0
.0

0
3
3
6
1
)

(0
.0

0
3
3
6
1
)

(0
.0

0
0
)

X
3

0.
48

95
∗∗
∗

0.
48

95
∗∗
∗

0.
5
0
0
0∗
∗∗

0
.4

9
1
6∗
∗∗

0
.4

9
1
6∗
∗∗

0
.5

0
0
0∗
∗∗

0
.4

9
1
6∗
∗∗

0
.4

9
1
6∗
∗∗

0
.5

0
0
0∗
∗∗

(0
.0

03
9)

(0
.0

03
9)

(0
.0

0
0
0
)

(0
.0

0
3
3
3
8
)

(0
.0

0
3
3
3
8
)

(0
.0

0
0
)

(0
.0

0
3
3
0
6
)

(0
.0

0
3
3
0
6
)

(0
.0

0
0
)

X
4

0.
50

28
∗∗
∗

0.
50

28
∗∗
∗

0.
5
0
0
0∗
∗∗

0
.5

0
3
9∗
∗∗

0
.5

0
3
9∗
∗∗

0
.5

0
0
0∗
∗∗

0
.5

0
3
9∗
∗∗

0
.5

0
3
9∗
∗∗

0
.5

0
0
0
∗∗
∗

(0
.0

03
9)

(0
.0

03
9)

(0
.0

0
0
0
)

(0
.0

0
3
3
3
9
)

(0
.0

0
3
3
3
9
)

(0
.0

0
0
)

(0
.0

0
3
3
5
0
)

(0
.0

0
3
3
5
0
)

(0
.0

0
0
)

X
5

0.
49

88
∗∗
∗

0.
49

88
∗∗
∗

0.
5
0
0
0∗
∗∗

0
.5

0
1
7∗
∗∗

0
.5

0
1
7∗
∗∗

0
.5

0
0
0∗
∗∗

0
.5

0
1
7∗
∗∗

0
.5

0
1
7∗
∗∗

0
.5

0
0
0
∗∗
∗

(0
.0

03
9)

(0
.0

03
9)

(0
.0

0
0
0
)

(0
.0

0
3
3
3
4
)

(0
.0

0
3
3
3
4
)

(0
.0

0
0
)

(0
.0

0
3
3
1
6
)

(0
.0

0
3
3
1
6
)

(0
.0

0
0
)

X
6

0.
49

94
∗∗
∗

0.
49

94
∗∗
∗

0.
5
0
0
0∗
∗∗

0
.5

0
0
2∗
∗∗

0
.5

0
0
2∗
∗∗

0
.5

0
0
0∗
∗∗

0
.5

0
0
2∗
∗∗

0
.5

0
0
2∗
∗∗

0
.5

0
0
0
∗∗
∗

(0
.0

03
9)

(0
.0

03
9)

(0
.0

0
0
0
)

(0
.0

0
3
3
5
2
)

(0
.0

0
3
3
5
2
)

(0
.0

0
0
)

(0
.0

0
3
3
5
4
)

(0
.0

0
3
3
5
4
)

(0
.0

0
0
)

X
7

0.
51

01
∗∗
∗

0.
51

01
∗∗
∗

0.
5
0
0
0∗
∗∗

0
.5

0
3
6∗
∗∗

0
.5

0
3
6∗
∗∗

0
.5

0
0
0∗
∗∗

0
.5

0
3
6∗
∗∗

0
.5

0
3
6∗
∗∗

0
.5

0
0
0∗
∗∗

(0
.0

03
9)

(0
.0

03
9)

(0
.0

0
0
0
)

(0
.0

0
3
3
3
4
)

(0
.0

0
3
3
3
4
)

(0
.0

0
0
)

(0
.0

0
3
3
1
6
)

(0
.0

0
3
3
1
6
)

(0
.0

0
0
)

#
O

b
se

rv
at

io
n

s
10

0,
00

0
10

0,
00

0
1,

00
0
,0

0
0
,0

0
0

1
0
0
,0

0
0

1
0
0
,0

0
0

1
,0

0
0
,0

0
0
,0

0
0

1
0
0
,0

0
0

1
0
0
,0

0
0

1
,0

0
0
,0

0
0
,0

0
0

R
u

n
ti

m
e

(m
in

)
0
.0

1
9

0
.0

1
7

8
.3

3
0
.1

8
3

0
.0

8
3

3
6
.0

9
0
.3

8
6

0
.3

6
7

8
3
.5

2

24

Electronic copy available at: https://ssrn.com/abstract=3226976

4.4 Time Series Econometrics on Spark

In this section we illustrate how to leverage Spark for large-scale time series analysis

which plays a crucial role in the decision making process of many public and private

institutions. Real-world forecasting systems in industries including manufacturing,

retail, finance and energy nowadays have to process large forecasting workloads

scaling to millions of time series.27 Moreover, research in economics often requires

fitting many time series models.28 With each individual model typically containing

only a limited number of data points, the setup is ideal for distributed computing

since existing estimation methods can be executed in parallel across the worker

nodes of the cluster framework.

An end-to-end machine learning system for probabilistic demand forecasting at

Amazon built on Spark is described in Böse et al. (2017). The platform scales

to large datasets containing millions of time series. The authors propose a simple

distribution scheme for what they call a local learning approach, using Spark’s map()

operator to distribute model fitting and forecasting tasks across the cluster. Note

that the distribution logic described in this section follows a very similar approach.

A brief review of other distributed machine learning frameworks is given by Chun

et al. (2016).29 To replicate the results in this subsection we provide the input data30

and a Juypter notebook which is available on our github repository31.

Dataset

The dataset consists of 1,000 simulated time series with each draw of length 1,000.

While many real-world time series datasets are considerably larger, the dataset is

27Consider for example a large retailer with several thousand stores and several thousand items
per store. In order to forecast sales demand on store/item level granularity, the number of forecasts
to be produced on a regular basis is in the order of several millions while the historical data to
train the underlying models is even bigger. Similar examples could be made for other areas where
time series analysis plays a key role. Ultimately, the computational challenge of such large-scale
forecasting systems requires a high degree of parallelism to be able to produce models and forecasts
in a reasonable amount of time.

28Many models which originated from the macro-econometric literature found their way in other
fields. Sagade et al. (2019) use vector-error-correction models to study the market micro structure
of stock exchanges. For this purpose, they have to evaluate a VECM for each stock and each day
using tick-by-tick data, which is computationally expensive.

29Different distributed systems for time series forecasting have been proposed in the literature.
For example, Stokely et al. (2011) introduce a computational infrastructure for large-scale statisti-
cal computing at Google using the MapReduce paradigm for R. Their technique is able to generate
hundreds of thousands of forecasts in a matter of hours, using the googleparallelism package.

30https://www.dropbox.com/home/Time_Series_SampleData
31https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.

4

25

Electronic copy available at: https://ssrn.com/abstract=3226976

https://www.dropbox.com/home/Time_Series_SampleData
https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.4
https://github.com/benjaminbluhm/econometrics_at_scale/tree/master/chapter_4.4

sufficiently large to demonstrate the performance gains from distributing the model

fitting and forecasting process. Moreover, the limited size of the dataset facilitates

easy reproducibility of the steps in this guide.

Time series are simulated from an Autoregressive Moving Average Process (ARMA)

process, defined as follows (see, for example, Hamilton (1994)):

(
1−

2∑
i=1

αiL
i

)
Xt =

(
1 +

2∑
i=1

θiL
i

)
εt, εt ∼ N (µ, σ2) (7)

where X is a real valued vector ordered by time index t, L is a lag operator, αi and

θi define the parameters on the autoregressive (AR) and moving average (MA) com-

ponent, and εt is an independent, identically distributed disturbance term sampled

from a normal distribution.32

The simulated time series data is written to a csv file with three columns. One

column holds the time series data, a second column a unique identifier for each series

and a third column a sequence of numbers specifying the order of the data for each

series.33 The last column is required because Spark may not preserve the temporal

order of records when distributing the data across the cluster. To be able to fit a

time series model after processing the data in Spark we therefore need to add this

column in order to recover the temporal ordering of the data.

32Time series draws are generated with the arima sim() method in R’s stats package (see Team
(2016)). Following the example in the official package documentation, the orders of the AR and
MA components are restricted to two and the AR and MA coefficients α1, α2, θ1, θ2 are set to 0.89,
-0.49, -0.23, 0.25 respectively. The variance σ2 of the disturbance term is set to 0.18. For further
details see: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/arima.sim.html

33In analogy to a timestamp or date in a real-world time series dataset.

26

Electronic copy available at: https://ssrn.com/abstract=3226976

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/arima.sim.html

Spark Setup

This section illustrates the key concept of our distributed forecasting system in

Spark.34 In short, the distribution of model fitting and forecasting is broken up into

the following subtasks:

� Create custom Python module (we call it fit model and forecast.py) with

method that

– reads time series data based on time series identifier contained in RDD

partition

– fits time series models, generates forecasts and saves fitted model

� Read dataset with time series data into Spark dataframe on master node

� Create RDD with distinct time series identifiers from Spark dataframe and

partition RDD into collections of distinct identifiers

� Map RDD partitions of identifiers onto Spark executors

� On each Spark executor, import custom Python module and call method from

module

To illustrate the simplicity of this approach we provide below the Python code

that implements this parallelization logic in less than 10 lines of code:

Load time s e r i e s data in to Spark dataframe

df = spark . read . parquet (’ /path/ to / t ime s e r i e s d a t a ’)

Create RDD with d i c t i n c t i d e n t i f i e r s and r e p a r t i t i o n dataframe in to 100 chunks

t im e s e r i e s i d s = df . s e l e c t (’ ID ’) . d i s t i n c t () . r e p a r t i t i o n (1 00) . rdd

Add Python module to Spark context f o r p a r a l l e l execut ion

spark . sparkContext . addPyFile (’ /path/ to /python module/ f i t mod e l a nd f o r e c a s t . py ’)

Function to import Python module on Spark executor f o r p a r a l l e l f o r e c a s t i n g

de f import module on spark executor (t im e s e r i e s i d s) :

from f i t mod e l a nd f o r e c a s t import f i t mod e l a nd f o r e c a s t

re turn f i t mod e l a nd f o r e c a s t (t im e s e r i e s i d s)

34Noteworthy, there are two libraries for distributed time series analysis in Spark. The spark-ts
package provides functionalities for fitting time series models and manipulating large time series
datasets. For further details see: https://github.com/sryza/spark-timeseries The pack-
age contains some frequently used univariate time series models, however, it is not under ac-
tive development anymore and does not allow for parallel execution of algorithms not covered
by the package (for example, multivariate time series models). The set of supported models
is found at: https://github.com/sryza/spark-timeseries/tree/master/python/sparkts/

models Another initiative is Flint, a library for highly optimized time series operations in Spark,
which provides functionalities to efficiently compute across large panel and high frequency data.
The github repository can be found at https://github.com/twosigma/flint. To the best of our
knowledge, at the time of writing this guide Flint does not provide methods to fully parallelize all
stages of the model fitting and forecasting process.

27

Electronic copy available at: https://ssrn.com/abstract=3226976

https://github.com/sryza/spark-timeseries
https://github.com/sryza/spark-timeseries/tree/master/python/sparkts/models
https://github.com/sryza/spark-timeseries/tree/master/python/sparkts/models
https://github.com/twosigma/flint

Pa r a l l e l model f i t t i n g and f o r e c a s t i n g

t im e s e r i e s i d s . f o r each (lambda x : import module on spark executor (x))

We first load the entire time series dataset into a Spark dataframe and create a

partitioned RDD with distinct time series identifiers. In the context of the exercise

in this paper, we set the number of RDD partitions to 100 using the repartition()

function, cutting the collection of distinct identifiers into 100 subsets. Given that

we have 1,000 time series in our dataset, the average number of identifiers in each

partition is 10.35 Since Spark will run one task for each partition, the number

of RDD partitions in combination with the number of executors allocated for the

application is an important parameter that determines the degree of parallelism.

In order to make our custom Python module available to all Spark executors, we

need to add the module to the Spark context by calling the addPyFile method that

takes as an argument the file path to the module. Next we define a function that

we call below to (i) import the Python module on each Spark executor and (ii) to

execute the Python module’s method that takes as an input an RDD element and

performs model fitting and forecasting tasks for the time series in question. Finally,

we call this function for each RDD partition and its elements in a distributed fashion

by calling Spark’s foreach method.36

Results

Given a total sample size of 1,000 for each time series, we reserve the last 50 ob-

servations of the sample for forecast evaluation while the first 950 observations are

used to fit an initial ARMA(2,2) model which is then used to produce the first

forecast. Subsequently, we use a recursive estimation scheme, i.e. the size of the

estimation sample for model fitting is extended by one observation as one makes

forecasts for successive observations. As a result, a total of 50,000 estimations is

performed across all time series in the dataset. The forecasts as well as the final

model, fitted on the full sample for each time series, are stored in the S3 file system.

For sake of simplicity, only one-step ahead forecasts are generated.

Table 1 shows the runtime for two different execution schemes. In the first sce-

nario, the forecasting algorithm is executed on the master node in a non-distributed

fashion and, thus, mirrors a single-core single-machine execution scheme. In this

35Note that Spark does not automatically distribute the number of elements evenly across
partitions. Therefore, it is likely that some partitions contain more and others contain less than 10
elements. In order to maximize the gains from parallelization, we recommend to create partitions
of balanced size via a custom function.

36Note that we use foreach rather than map since we do not collect any data back to the driver.

28

Electronic copy available at: https://ssrn.com/abstract=3226976

setting, models and forecasts are produced by iterating through all time series iden-

tifiers using a for loop. This scenario is used as a benchmark case to evaluate the

performance gain from the distributed execution scheme.

The cluster hardware has been configured to 13 EC2 instances of type m4.2xlarge,

comprising a total of 192 virtual CPUs and 384 GiB of RAM for the 12 worker nodes.

The number of RDD partitions containing collections of distinct time series IDs is

set to 100. Table 3 shows the runtime results for the two different scenarios.

Table 3: Runtime for different execution schemes

The results are based on an AWS EC2 instance type m4.2xlarge. Runtime is measured in minutes,
Memory is measured in GiB, Virtual CPUs refers to the number of virtual processing units and
Partitions defines the number of RDD partitions, containing subsets of distinct time series IDs.

Scenario Parallel Virtual CPUs Memory # Partitions Runtime

1 no 16 32 - 201.27

2 yes 192 384 100 6.20

The total runtime for the non-distributed scheme is about 200 minutes. This

compares to roughly 6 minutes execution time for the distributed scheme, reducing

runtime by about 95%. Clearly, the runtime of the distributed approach is strongly

affected by the hardware configuration and the number of RDD partitions. An

increase in the number of RDD partitions and a more powerful cluster with more

CPUs and memory will likely lead to higher performance gains. While the impact

of different hardware settings on the performance gain is beyond the scope of this

paper, the results show that the distributed scheme can be used to complete large

model fitting and forecasting workloads that would be intractable without substan-

tial parallelization.

5 Conclusion

This paper presents a unified framework for handling large datasets for empirical re-

search. It enables economists to handle and analyse ever growing datasets which are

computationally difficult to evaluate on retail-grade computers using their existing

data handling pipelines. With datasets becoming larger and larger, these compu-

tational constraints are more likely to be binding in the future. With data coming

in ever higher frequency, dimensions and potential for being linked, being able to

handle such data sources will likely result in novel empirical research designs. By

29

Electronic copy available at: https://ssrn.com/abstract=3226976

lowering the threshold of employing cloud computing solutions to handle these kind

of data sets, we aim to contribute to this process.

The cloud computing solution we elucidate, is built in Apache Spark and the

distribution scheme is suitable for many established econometric methods as well

as now popular machine learning models. After providing some background on dis-

tributed computing architectures, we demonstrate ease of use and (sizeable) com-

putational gains. We do so by providing codes and configuration instructions for

easily reproducible examples featuring a range of applications from micro-, panel-

and time-series econometrics. In a first step, we demonstrate how Spark compares

to a local execution of base R and Python codes. Intuitively, the computational

overhang of mapping data cross the spark cluster is inefficient on small datasets.

Yet the empirical results are identical and the Spark code comes at almost no ad-

ditional complexity. We then take the operation to the cloud: Running the same

codes we ran locally on a subset of data, we are able to handle and analyse datasets

which would have been difficult to handle on retail grade computers. We provide

an overview of popular statistical models which (i) are implemented in Spark as of

now, (ii) can be estimated using simple modifications of existing commands and (iii)

are difficult to run on Spark.

The presented approach requires minimal installation and configuration effort

and it can be implemented with little background in computer science and paral-

lel/distributed computing and without physical access to high performance comput-

ers. Additionally, the appendix of this paper contains extremely detailed instruc-

tions on how to lunch a computing cluster and provides minimal examples, which

can easily be adapted to the readers needs.

30

Electronic copy available at: https://ssrn.com/abstract=3226976

References

Apache, Software Foundation (2020). Apache Spark 2.4.4: Linear Methods – RDD-

based API. Online Documentation; accessed 01/02/2020. url: https://spark.

apache.org/docs/latest/mllib-linear-methods.html.

Arellano, Manuel (1987). “Practitioners’ corner: Computing robust standard errors

for within-groups estimators”. In: Oxford bulletin of Economics and Statistics

49.4, pp. 431–434.

Aruoba, S. Borağan and Jesús Fernández-Villaverde (2015). “A comparison of pro-

gramming languages in macroeconomics”. In: Journal of Economic Dynamics

and Control 58, pp. 265–273.

Aruoba, S. Boragan, Jesus Fernandez-Villaverde, and Juan F. Rubio-Ramirez (Nov.

2003). Comparing Solution Methods for Dynamic Equilibrium Economies. PIER

Working Paper Archive 04-003. Penn Institute for Economic Research, Depart-

ment of Economics, University of Pennsylvania. url: https://ideas.repec.

org/p/pen/papers/04-003.html.

Athey, Susan and Guido W. Imbens (2017). “The State of Applied Econometrics:

Causality and Policy Evaluation”. In: Journal of Economic Perspectives 31.2,

pp. 3–32.

Baltagi, B. (2008). Econometric Analysis of Panel Data. John Wiley & Sons.

Bonaccorso, Giuseppe (2018). Machine Learning Algorithms: Popular algorithms for

data science and machine learning. Packt Publishing Ltd.

Boneva, Lena et al. (2019). “Derivatives transactions data and their use in central

bank analysis”. In: Economic Bulletin Articles 6.

Böse, Joos-Hendrik et al. (2017). “Probabilistic demand forecasting at scale”. In:

10, pp. 1694–1705.

Bottou, Léon (2010). “Large-scale machine learning with stochastic gradient de-

scent”. In: Proceedings of COMPSTAT’2010. Springer, pp. 177–186.

Cameron, A Colin and Pravin K Trivedi (2005). Microeconometrics: methods and

applications. Cambridge university press.

Caraiani, Petre (2018). Introduction to Quantitative Macroeconomics Using Julia:

From Basic to State-of-the-Art Computational Techniques. Academic Press.

Cavallo, Alberto and Roberto Rigobon (2016). “The Billion Prices Project: Using

Online Prices for Measurement and Research”. In: Journal of Economic Perspec-

tives 30.2, pp. 151–78.

Chambers, B. and M. Zaharia (2018). Spark - The Definitive Guide: Big Data Pro-

cessing Made Simple. O’Reilly Media, Incorporated.

31

Electronic copy available at: https://ssrn.com/abstract=3226976

https://spark.apache.org/docs/latest/mllib-linear-methods.html
https://spark.apache.org/docs/latest/mllib-linear-methods.html
https://ideas.repec.org/p/pen/papers/04-003.html
https://ideas.repec.org/p/pen/papers/04-003.html

Chun, Byung-Gon et al. (2016). “Dolphin: Runtime Optimization for Distributed

Machine Learning”. In: The ML Systems Workshop at ICML.

Clemen, Robert T. (1989). “Combining forecasts: A review and annotated bibliog-

raphy”. In: International Journal of Forecasting 5.4, pp. 559–583. url: https:

//ideas.repec.org/a/eee/intfor/v5y1989i4p559-583.html.

Correia, Sergio (2016). Linear Models with High-Dimensional Fixed Effects: An Ef-

ficient and Feasible Estimator. Tech. rep. Working Paper.

Dean, Jeffrey and Sanjay Ghemawat (2004). “MapReduce: Simplified Data Pro-

cessing on Large Clusters”. In: OSDI’04: Sixth Symposium on Operating System

Design and Implementation. San Francisco, CA, pp. 137–150.

Dick-Nielsen, Jens, Peter Feldhütter, and David Lando (2012). “Corporate bond liq-

uidity before and after the onset of the subprime crisis”. In: Journal of Financial

Economics 103.3, pp. 471–492.

Druedahl, Jeppe (2019). “A Guide On Solving Non-Convex Consumption-Saving

Models”. In:

Duchin, Ran and Denis Sosyura (2014). “Safer ratios, riskier portfolios: Banks re-

sponse to government aid”. In: Journal of Financial Economics 113.1, pp. 1–

28.

Edwards, Amy K, Lawrence E Harris, and Michael S Piwowar (2007). “Corporate

bond market transaction costs and transparency”. In: The Journal of Finance

62.3, pp. 1421–1451.

Einav, Liran and Jonathan Levin (2014). “Economics in the age of big data”. In:

Science (New York, N.Y.) 346.6210, p. 1243089.

Ferguson, Thomas S (2017). A course in large sample theory. Routledge.

Fernández-Villaverde, Jesús and David Zarruk Valencia (2018). A Practical Guide

to Parallelization in Economics. Cambridge, MA: National Bureau of Economic

Research.

Flom, Peter (2013). Hypothesis Testing with Big Data. Cross Validated. (version:

2013-08-13). url: https://stats.stackexchange.com/q/67335.

Foster, Ian et al. (2016). Big data and social science: A practical guide to methods

and tools. Chapman and Hall/CRC.

Galarnyk, Michael (2017). “Install Spark on Windows (PySpark)”. In: Medium.

url: https://medium.com/@GalarnykMichael/install-spark-on-windows-

pyspark-4498a5d8d66c.

Gao, Haoyu, Hong Ru, and Xiaoguang Yang (2019). What Do a Billion Observations

Say About Distance and Relationship Lending? Working Paper.

32

Electronic copy available at: https://ssrn.com/abstract=3226976

https://ideas.repec.org/a/eee/intfor/v5y1989i4p559-583.html
https://ideas.repec.org/a/eee/intfor/v5y1989i4p559-583.html
https://stats.stackexchange.com/q/67335
https://medium.com/@GalarnykMichael/install-spark-on-windows-pyspark-4498a5d8d66c
https://medium.com/@GalarnykMichael/install-spark-on-windows-pyspark-4498a5d8d66c

Gaure, Simen (2019). lfe: Linear Group Fixed Effects. url: https://CRAN.R-

project.org/package=lfe.

Gentzkow, Matthew, Bryan T. Kelly, and Matt Taddy (2019). “Text as Data”. In:

Journal of Economic Literature (Forthcoming).

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung (2003). “The Google File

System”. In: Proceedings of the 19th ACM Symposium on Operating Systems

Principles. Bolton Landing, NY, pp. 20–43.

Gilje, Erik P., Elena Loutskina, and Philip E Strahan (2016). “Exporting Liquidity:

Branch Banking and Financial Integration”. In: The Journal of Finance 71.3,

pp. 1159–1184.

Gray, Jim (2008). “Distributed computing economics”. In: Queue 6.3, pp. 63–68.

Greenwald Michael; Khanna, Sanjeev et al. (2001). “Space-efficient online compu-

tation of quantile summaries”. In: ACM SIGMOD Record 30.2, pp. 58–66.

Grimmer, Justin and Brandon M. Stewart (2013). “Text as Data: The Promise and

Pitfalls of Automatic Content Analysis Methods for Political Texts”. In: Political

Analysis 21.03, pp. 267–297.

Hamermesh, Daniel S. (2013). “Six Decades of Top Economics Publishing: Who and

How?” In: Journal of Economic Literature 51.1, pp. 162–172.

Hamilton, James Douglas (1994). Time series analysis. Princeton, NJ: Princeton

Univ. Press.

Hansen, Christian (Feb. 2007). “Asymptotic Properties of a Robust Variance Matrix

Estimator for Panel Data When T Is Large”. In: Journal of Econometrics 141,

pp. 597–620.

Irving-Fisher-Committee (2020). “2019 IFC Annual Report”. In: Irving Fisher Com-

mittee on Central Bank Statistics. (accessed 15/01/2020). url: https://www.

bis.org/ifc/publ/ifc_ar2019.pdf.

Jankowitsch, Rainer, Florian Nagler, and Marti G Subrahmanyam (2014). “The

determinants of recovery rates in the US corporate bond market”. In: Journal of

Financial Economics 114.1, pp. 155–177.

Karau, Holden, Andy Konwinski, et al. (2015). Learning Spark: Lightning-Fast Big

Data Analytics. 1st. O’Reilly Media, Inc.

Karau, Holden and Rachel Warren (2017). High Performance Spark: Best Practices

for Scaling and Optimizing Apache Spark. 1st. O’Reilly Media, Inc.

Kleinberg, Jon et al. (2015). “Prediction Policy Problems”. In: The American eco-

nomic review 105.5, pp. 491–495.

33

Electronic copy available at: https://ssrn.com/abstract=3226976

https://CRAN.R-project.org/package=lfe
https://CRAN.R-project.org/package=lfe
https://www.bis.org/ifc/publ/ifc_ar2019.pdf
https://www.bis.org/ifc/publ/ifc_ar2019.pdf

Leamer, Edward E. (1985). “Sensitivity Analyses Would Help”. In: The American

Economic Review 75.3, pp. 308–313. url: http://www.jstor.org/stable/

1814801.

Millo, Giovanni (2017). “Robust Standard Error Estimators for Panel Models: A

Unifying Approach”. In: Journal of Statistical Software 82.3, pp. 1–27.

Mullainathan, Sendhil and Jann Spiess (2017). “Machine Learning: An Applied

Econometric Approach”. In: Journal of Economic Perspectives 31.2, pp. 87–106.

Munnell, Alicia H et al. (1996). “Mortgage lending in Boston: Interpreting HMDA

data”. In: The American Economic Review, pp. 25–53.

Munro, J.I. and M.S. Paterson (1980). “Selection and sorting with limited stor-

age”. In: Theoretical Computer Science 12.3, pp. 315–323. url: http://www.

sciencedirect.com/science/article/pii/0304397580900614.

Ng, Serena (2017). Opportunities and challenges: Lessons from analyzing terabytes

of scanner data. Tech. rep. National Bureau of Economic Research.

Sagade, Satachit et al. (2019). “A Tale of Two Cities – Inter-Market Latency, Market

Integration, and Market Quality”. In: Safe Working Paper Series 234.1, pp. 1–

57.

Sala-I-Martin, Xavier X. (1997). “I Just Ran Two Million Regressions”. In: The

American Economic Review 87.2, pp. 178–183. url: http://www.jstor.org/

stable/2950909.

Samadi, Yassir, Mostapha Zbakh, and Claude Tadonki (2018). “Performance com-

parison between Hadoop and Spark frameworks using HiBench benchmarks”. In:

Concurrency and Computation: Practice and Experience 30.12. e4367 cpe.4367,

e4367. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.

4367. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4367.

Sheppard, Kevin (2019). linearmodels: Models for Panel Data. url: https : / /

bashtage.github.io/linearmodels/doc/panel/models.html.

Stokely, Murray, Farzan Rohani, and Eric C. Tassone (2011). “Large-Scale Parallel

Statistical Forecasting Computations in R”. In: JSM Proceedings, Section on

Physical and Engineering Sciences, American Statistical Association.

Team, R. Core (2016). R: A Language and Environment for Statistical Computing.

Vienna, Austria.

Timmermann, Allan (2006). “Forecast Combinations”. In: Handbook of Economic

Forecasting. Ed. by G. Elliott, C. Granger, and A. Timmermann. Vol. 1. Hand-

book of Economic Forecasting. Elsevier. Chap. 4, pp. 135–196. url: https:

//ideas.repec.org/h/eee/ecofch/1-04.html.

34

Electronic copy available at: https://ssrn.com/abstract=3226976

http://www.jstor.org/stable/1814801
http://www.jstor.org/stable/1814801
http://www.sciencedirect.com/science/article/pii/0304397580900614
http://www.sciencedirect.com/science/article/pii/0304397580900614
http://www.jstor.org/stable/2950909
http://www.jstor.org/stable/2950909
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4367
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4367
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4367
https://bashtage.github.io/linearmodels/doc/panel/models.html
https://bashtage.github.io/linearmodels/doc/panel/models.html
https://ideas.repec.org/h/eee/ecofch/1-04.html
https://ideas.repec.org/h/eee/ecofch/1-04.html

Varian, Hal R. (2014). “Big Data: New Tricks for Econometrics”. In: Journal of

Economic Perspectives 28.2, pp. 3–28.

Wooldridge, Jeffrey M (2010). Econometric analysis of cross section and panel data.

MIT press.

Zaharia, Matei et al. (2010). Spark: Cluster Computing with Working Sets. Boston,

MA: USENIX AssociationBoston, MA.

Zinkevich, Martin et al. (2010). “Parallelized stochastic gradient descent”. In: Ad-

vances in neural information processing systems, pp. 2595–2603.

35

Electronic copy available at: https://ssrn.com/abstract=3226976

A Appendix

The appendix contains all codes and setup details necessary to replicate the results

above. Moreover, we hope it is a useful guide for researchers who are not familiar

so far with distributed computing solutions. Our set up is built on Amazon Web

Services (AWS) and while it would easily translate to another provider37, the in-

struction below reference solely to the AWS platform. There is a massive amount of

documentation for AWS available online and many user written tutorials describe

different applications. In what follows we condensed this information into the mini-

mal steps necessary to get your own data handling and analysis pipeline running on

the cloud framework.38

A word of caution

Please be aware you will be billed by AWS for running computing instances and

trying to replicate our setup will require running AWS computing instances. Also,

uploading data to AWS may results in cyber-security risks. Make sure that you

have the relevant permissions for your data and jurisdiction. This guide comes with

absolutely no warranty. You may find some instructions helpful but you use it at

your own risk!

The appendix is structured as follows. Section A.1 describes how to run spark on

your local machine. More specifically, section A.1.1 describes pyspark and section

A.1.2 describes sparklyr. The next subsection introduces Amazon Web Servies

(AWS) and presents how to initialize a minimal setup to reproduce the results

of this paper. The last subsection A.3 demonstrates how to deploy pyspark and

sparklyr in section A.3.1 and A.3.2 respectively.

37such as Cloudera, Microsoft Azure, Google Cloud Platform, etc . . .
38We benefitted greatly both from Amazon’s official documentation as well as various resources

from third parties. Some of those explained certain steps better than we ever could, so we merely
restate them here such that the readers of our paper have all information in one place. Such cases
are clearly marked at the beginning of each section.

36

Electronic copy available at: https://ssrn.com/abstract=3226976

A.1 Running Spark on your local machine

In this section, we show how to run Spark in local mode from a Jupyter notebook39

using pyspark and from RStudio using sparklyr.

A.1.1 PySpark on Jupyter Notebook

The first step in the installation process is to download the latest Spark release from

the official website and to decompress the folder into the home directory of your

machine and (of course) have a Python distribution installed.40 As a prerequisite,

make sure to install the latest version of the Java Development Kid 8.41 Afterwards

you need to add the home directory of your local Spark installation to the path

variable in your system’s environment:

� On MacOS you need to edit the .bash profile file, which is stored in your

home directory, and add the following statement:42

export PATH=$PATH:/ Users /home/ spark −2.4.0−bin−hadoop2 . 7

export SPARK PATH=/Users /home/ spark −2.4.0−bin−hadoop2 . 7

export PYSPARK DRIVER PYTHON=” jupyter ”

export PYSPARK DRIVER PYTHON OPTS=”notebook”

export PYSPARK PYTHON=python3

a l i a s spark notebook=’ source a c t i v a t e your−env ; $SPARK PATH/bin /pyspark −−master l o c a l [1] ’

To start a Spark session, simply execute the following lines in your Jupyter

notebook:

in jupyte r type :

from pyspark . s q l import SparkSess ion

spa r k s e s s i o n = SparkSess ion . bu i l d e r . appName(’ e c onome t r i c s a t s c a l e ’) . getOrCreate ()

� On Windows the process is slightly more involved. Galarnyk (2017) provides

an excellent explanation, which we restate here merely for sake of complete-

ness.43 Download and decompress Spark to a local directory (avoid blanks

39To keep this part as simple as possible we do not elaborate on setting up PySpark in other
commonly used Python developer tools such as PyCharm IDE where the configuration steps are
slightly more involved.

40There are several Python distributions available. We would recommend you get an Anaconda
distribution (available for Windows, MacOS and most Linux versions) which is great for scientific
computing, as it comes with many popular libraries. You can download the latest version here:
https://www.anaconda.com/distribution/#download-section

41You can find it here: https://www.oracle.com/technetwork/java/javase/downloads/

jdk8-downloads-2133151.html
42You can edit the file using a standard text editor such as for example nano. Open the command

line interface and after changing into your home directory, type nano .bash profile to edit the file
(changes can be saved via ctrl + x). Subsequently, the changes need to be activated via command
source .bash profile.

43not claiming authorship of the material.

37

Electronic copy available at: https://ssrn.com/abstract=3226976

https://www.anaconda.com/distribution/#download-section
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

in the path), e.g. to C:\opt\spark. Next, download the winutils.exe44 into

the bin folder of your Spark directory (e.g. C:\opt \spark\spark-2.4.0-bin-
hadoop2.7\bin) and add the relevant environmental variables by running the

following commands from the command line interface (CLI)45:

se tx SPARKHOME C:\ opt\ spark\ spark −2.4.0−bin−hadoop2 . 7

se tx HADOOPHOME C:\ opt\ spark\ spark −2.4.0−bin−hadoop2 . 7

se tx PATH ”%PATH%;C:\ opt\ spark\ spark −2.4.0−bin−hadoop2 .7\ bin ”

Close the terminal window and reboot your computer. Restart the terminal

and enter pyspark which will open a Jupyter notebook. In the Juypter noote-

book enter the following codes to create a spark context and test whether you

are on the right version:

in Juypter type :

sc = SparkContext . getOrCreate ()

sc . v e r s i on

>> ’ 2 . 4 . 0 ’

A.1.2 Sparklyr on RStudio

If you are using R, chances are you are using the RStudio editor, which is free

of charge for personal and academic use at the time of writing this paper. The

developers of RStudio provide a magnificent introduction to sparklyr, which can

be found here.46 In what follows we borrow greatly from those resources, yet focus

a bit more on the “social scientist” perspective of data handling and analysis.

To install sparklyr simply run the following commands in your R console:

i n s t a l l . packages (” spa rk ly r ”)

l i b r a r y (spa rk ly r)

spark i n s t a l l (v e r s i on = ” 2 . 1 . 0 ”)

Once installed, load the library and create a connection:
l i b r a r y (spa rk ly r)

de f i n e spark con f i gu r a t i on

conf <− spark con f i g ()

conf $ ‘ s pa rk ly r . c o r e s . l o ca l ‘ <− 2 # number o f CPU core s spark can use

conf $ ‘ s pa rk ly r . s h e l l . d r iver−memory ‘ <− ”8G” # memory s i z e o f s h e l l d r i v e r

conf $ spark .memory . f r a c t i o n <− 0 .6 # f r a c t i o n o f t o t a l computer ’ s memory ava i l a b l e to spark

e s t a b l i s h a spark connect ion

sc <− spark connect (master = ” l o c a l ” ,

c on f i g = conf)

The official documentation continues by exploring the well-known flights dataset

and we suggest you follow it along. Here however, we would like to continue with an

44You can find it here: https://github.com/steveloughran/winutils/blob/master/

hadoop-2.6.0/bin/winutils.exe?raw=true
45You can open the command line interface by pressing ctrl + R and type cmd, which will

open the console.
46https://spark.rstudio.com/

38

Electronic copy available at: https://ssrn.com/abstract=3226976

https://github.com/steveloughran/winutils/blob/master/hadoop-2.6.0/bin/winutils.exe?raw=true
https://spark.rstudio.com/
https://github.com/steveloughran/winutils/blob/master/hadoop-2.6.0/bin/winutils.exe?raw=true
https://github.com/steveloughran/winutils/blob/master/hadoop-2.6.0/bin/winutils.exe?raw=true
https://spark.rstudio.com/

example which might be a bit closer to what economists are used to. Suppose you

have a very large dataset and would like to develop your Spark application in local

mode (to avoid paying cloud services fees) but the dataset is too large to be read

into memory. Since your local spark instance is limited by the physical memory of

your computer, we will read in only a fraction of the entire dataset. As an example,

we chose the popular HMDA data provided by the Federal Financial Institutions

Examination Council (FFIEC), which contains loan application data for the US. To

develop locally we created a subsample containing the first 10,000 observations from

the yearly HMDA datasets. Since it is only a small subsample you can fit it into

your computers memory and develop your Spark application locally:
import smal l subset to R

df = read . csv (”HMDA subsample . csv ”)

copy the R dataframe df to spark us ing copy to ()

df spark = copy to (sc , df)

or load i t d i r e c t l y to spark

hmda spark= spark read csv (sc , name = ”hmda spark ” , header= TRUE, d e l im i t e r = ” , ” ,

path= ”HMDA subsample . csv ”)

Now, let’s compute the mean loan amount by year in R using dplyr and in Spark

usings sparklyr:

meanbyyear = hmda %>%

group by (as o f year) %>%

summarise (mean loan amounts 000 s =

mean(loan amount 000 s))

meanbyyear

A t i bb l e : 10 x 2

as o f year mean loan amounts 000 s

<int> <dbl>

1 2007 176 .

2 2008 201 .

3 2009 201 .

4 2010 219 .

5 2011 224 .

6 2012 225 .

7 2013 230 .

8 2014 242 .

9 2015 246 .

10 2016 259 .

meanbyyear = hmda spark %>%

group by (as o f year) %>%

summarise (mean loan amounts 000 s =

mean(loan amount 000 s)) %>%

c o l l e c t ()

meanbyyear

A t i bb l e : 10 x 2

as o f year mean loan amounts 000 s

<int> <dbl>

1 2008 201 .

2 2009 201 .

3 2011 224 .

4 2014 242 .

5 2015 246 .

6 2010 219 .

7 2016 259 .

8 2007 176 .

9 2012 225 .

10 2013 230 .

A great feature of sparklyr is that you can use dplyr syntax for your Spark ap-

plication. Note how both approaches yield the same result. Also, note that the Spark

results are not ordered. This is because the group by() command in sparklyr dis-

tributes the data across executors and collects them back after computing the mean,

which does not necessarily preserve the order. This example illustrates the basic data

handling pipeline in Spark using sparklyr:

1. Establish a Spark connection

39

Electronic copy available at: https://ssrn.com/abstract=3226976

2. Load the data into Spark

3. Using dplyr syntax, manipulate the Spark dataframe

4. Load the results back to the R environment using collect()

Finally, we can disconnect the local Spark interface:
spark d i s connec t (spark)

A.2 Setting up a cloud computing environment (on AWS)

A.2.1 Setting up AWS and upload data

In this section we walk through the process of creating an Amazon Web Services

(AWS) account. Before we get into the details, note that if you are running com-

puting instances on AWS you will be billed and a credit card is necessary for the

setup. Also, note that uploading data to AWS and using computing instances may

result in data vulnerabilities. This manual comes with no warranty whatsoever.

You can create your own account at https://aws.amazon.com/. Upon login

you will see the AWS Management Console:

As a first step, we will upload data to AWS storage (called “S3”). To this end

click Services and in the Storage section choose S3. First, we create a bucket for

the project. To do so click + Create Bucket. Choose any (DNS compliant) name.

We named our bucket “econometricsatscalebucket” (Note that you cannot use the

same name, since all buckets have to be unique on S3.). Under Configure options

and Set permissions you may leave the standard settings.

40

Electronic copy available at: https://ssrn.com/abstract=3226976

https://aws.amazon.com/

In the bucket, we create several folders, where we store research data, bootstrap

scripts and outputs. Specifically we create 3 folders: “data”, “scripts”, “output”. In

order to replicate our analysis in section 4.1 and 4.2 upload the HMDA47 data to your

S3 in a subfolder called data/ micro . For the panel econometrics exercise in section

4.3, upload our simulated data48 to a subfolder data/ panel . For the time series

exercise in section 4.4, upload our simulated time series data to a subfolder called

data/ time_ series . Additionally, we need to create subfolders to store outputs

from the exercise, namely parquet files (output/ time_ series/ parquet), forecasts

(output/ time_ series/ forecasts) and fitted models (output/ time_ series/

models). Also make sure to upload the python modul fit model and forecast.py

for computing forecasts and saving fitted models to a subfolder scripts/ time_

series . Instructions regarding the necessary bootstrap scripts for sparklyr will be

provided at the respective subsections below.

A.2.2 Creating an EMR cluster and installing custom software

In this section we walk through the process of creating a Spark cluster using AWS

EMR service. As emphazised earlier there are many other cloud vendors which

provide similar services, so this section only contains one out of many other existing

solutions that may be equally well or possibly even more suited for your application.

The firs step in creating a cluster is to go to the AWS Services menu and select

EMR:

The EMR dashboard will open and provide you with the option to create a

cluster as shown below:

47You can access the data from the FFIEC website. For convenience we provide a copy of the
data on our dropbox. You can download it at https://www.dropbox.com/sh/y5vrc3fnhwvw14o/
AAAkgKja5YVpTT2vSUM0dW6-a?dl=0. Note that we do not own or maintain this data. The latest
version can be found at https://www.ffiec.gov/hmda/.

48You can simulate it yourself or access a copy we provide at: https://www.dropbox.com/sh/
vk2ra1ufupi0yky/AABHUX6FZxIOWdk9LMnNTy5ea?dl=0

41

Electronic copy available at: https://ssrn.com/abstract=3226976

https://www.dropbox.com/sh/y5vrc3fnhwvw14o/AAAkgKja5YVpTT2vSUM0dW6-a?dl=0
https://www.dropbox.com/sh/y5vrc3fnhwvw14o/AAAkgKja5YVpTT2vSUM0dW6-a?dl=0
https://www.ffiec.gov/hmda/
https://www.dropbox.com/sh/vk2ra1ufupi0yky/AABHUX6FZxIOWdk9LMnNTy5ea?dl=0
https://www.dropbox.com/sh/vk2ra1ufupi0yky/AABHUX6FZxIOWdk9LMnNTy5ea?dl=0

By clicking on the “Create cluster’ button we enter the cluster configuration

dashboard, noting that we have actually not yet created a cluster so we do not have

to worry about any service charges at this stage. Next we need to configure our

cluster to install Spark (at the time of writing this paper the latest version available

in EMR is 2.4.0) and also Livy which is required for running a Jupyter notebook

on the cluster. In order to configure the cluster software, we click on the “Go to

advanced options” field:

In Release choose the EMR version you want to run. To replicate the finding of

this paper, choose “emr-5.23.0”. In the Software Configuration section, check the

Spark and Livy boxes and leave all other configurations at their default values:

We proceed to configure the hardware settings of the cluster including the in-

stance type and the number of instances. The hardware configuration strongly

depends on the resource requirements (and budget considerations) of the specific

application. We recommend to start with a small cluster with limited resources to

familiarize yourself with the process of deploying and running your locally developed

Jupyter notebook or RStudio script. For example, running one master and two core

42

Electronic copy available at: https://ssrn.com/abstract=3226976

instances of type m4.large will give you enough flexibility to deploy and test your

application on a small scale, while it will barely cost you more than a few dollars

over a couple of hours:49

Once you have selected your preferred hardware configuration, go to the next

section General Cluster Settings :

49A list of available instance types and prices can be found at: https://aws.amazon.com/de/
ec2/pricing/on-demand/.

43

Electronic copy available at: https://ssrn.com/abstract=3226976

https://aws.amazon.com/de/ec2/pricing/on-demand/
https://aws.amazon.com/de/ec2/pricing/on-demand/

At the bottom of the page there is a Bootstrap Actions field where custom actions

can be specified to install additional software or to customize the configuration of

cluster instances. In essence, bootstrap actions are scripts that run on all nodes

after the cluster is launched. For this purpose, a shell script specifying your custom

installations must be uploaded to a folder in the S3 bucket. For example, if you

want to install scikit-learn on all cluster nodes you would upload a shell script

with the following content:
#!/ bin /bash −xe

sudo pip i n s t a l l −U sk l ea rn

Add the bootstrap action by selecting “Custom action” and, under the “Config-

ure and add” button, browse the S3 path to the shell script (no optional arguments

needed) and click ”Add”.

After adding the custom bootstrap action, move on to the last step Security

where you have to add your previously created EC2 key pair. Finally, you can

create the cluster via the “Create cluster” button:

A.3 Running Spark on a cluster

A.3.1 Running PySpark

This section describes the procedure of creating a Jupyter notebook for running

PySpark jobs on an AWS EMR cluster. Note that the notebook will automatically

be saved to your S3 bucket so after terminating the cluster you can still use the

notebook when you start another cluster at a later stage.

To create a notebook, go to the EMR dashboard, select Notebooks and choose

Create notebook. In the notebook configurations window, you are asked to provide

a notebook name and under the Cluster* option you can either choose to create

44

Electronic copy available at: https://ssrn.com/abstract=3226976

a new cluster (via Create cluster) or alternatively you can attach to an existing

running cluster. As mentioned above, you may want to start with a small cluster to

familiarize yourself with the notebook workflow on EMR. For example, if you specify

three instances, one instance is devoted to the master node and two instances are

devoted to the worker nodes. You can also select an S3 location to store your

notebook.50 Finally, you can create the notebook by choosing Create notebook. A

new view will open showing the configuration details of the notebook. Once the

cluster is ready the notebook can be accessed via the Open button.51

In the notebook, a Spark session is automatically started which can be verified

by following the example below:

data = [1 , 2 , 3 , 4 , 5]

sc = spark . sparkContext

d i s t da t a = sc . p a r a l l e l i z e (data)

d i s t da t a . c o l l e c t ()

A.3.2 Running sparklyr

In this section we show how to deploy sparklyr on AWS EMR. The general steps are:

1. Configure and upload a bootstrap script

2. launch a cluster using the appropriate bootstrap script

3. Connect remotely to your RStudio on AWS

Configuring and uploading a bootstrap script

For the first step, we suggest to upload a bootstrap script which will install RStudio

Server along with sparklyr. One such script is provided by Cosmin Catalin on

his GitHub account.52 For reference, we forked it to our repository and you can

download the install-rstudio-server.sh bootstrap script here. You can open it

using any editor and (if you wish) edit the following parameters:
USER=”drwho”

PASS=” t a r d i s ”

SPARK=” 2 . 1 . 1 ”

This allows to change the username and password for the web-login to the AWS

RStudio Interface and the spark version running on it. Finally, upload the install-

rstudio-server.sh to your S3 storage to any folder (for example into economet

ricsatscale\bootstrap\sparklyr.

50If you leave the default value a directory will automatically be created in your bucket.
51The user guide for setting up an AWS EMR notebook instance can be found at: https:

//docs.aws.amazon.com/emr/latest/ManagementGuide/emr-managed-notebooks.html
52https://gist.github.com/cosmincatalin/a2e2b63fcb6ca6e3aaac71717669ab7f0

45

Electronic copy available at: https://ssrn.com/abstract=3226976

https://gist.github.com/cosmincatalin/a2e2b63fcb6ca6e3aaac71717669ab7f#file-install-rstudio-server-sh
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-managed-notebooks.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-managed-notebooks.html
https://gist.github.com/cosmincatalin/a2e2b63fcb6ca6e3aaac71717669ab7f0

Launch a cluster

When launching a cluster as described in A.2.2, choose the install-rstudio-

server.sh as bootstrap script (and leave the additional parameters field blank).

Create the cluster. While the cluster is launching you may edit the security group

of your master node and enable TCP Port 8787 from Anywhere on your master

node in order to allow a remote connect to RStudio Server. To do so, click Security

⇒ Create a security group. As a security group name you can choose anything,

similarly for the Description. Upon creation, click “Inbound Rules” in the ribbon,

and click “Edit rules” and then “Add Rule”. For Type choose “Custom TCP Rule”,

and set the port range to 8787. As source, choose “Anywhere”. Finish by clicking

“Save rules”.

Connect remotely (from a Windows machine)

As a first step, you will need to install Putty53, an SSH client, which lets you run

sparklyr on AWS from the comfort of your local machine’s RStudio interface. Ama-

zons keypair format is not supported by putty, which is why you need to convert it

first. To do so, execute puttygen, click File⇒ Conversions⇒ Import Key and choose

the AWS keypair (“.pem” file) which you downloaded when creating it. Finish by

choosing Save Key. Now, you can configure PuTTy. How to do so is documented

on AWS54 and merely restated here for reference:

1. Click Category List⇒ Session and in the Host name field, type “hadoop@MasterPublicDNS”,

where “MasterPublicDNS” is your master’s node address, for example:

“hadoopec2-###-##-##-###.compute-1.amazonaws.com”

2. Click Category List⇒ Session > SSH⇒ Auth⇒ Browse and select the .pkk

file which you generated earlier.

3. Click Category List⇒ Session > SSH⇒ Tunnels and in the source port field,

type 8157. Leave the Destination field blank and select the Dynamic and Auto

options

4. Choose “Add” and “Open” and choose “Yes” to dismiss the PuTTy security

alert.

The AWS console should open. In the AWS consolte type:

53You can find the latest version here: https://www.chiark.greenend.org.uk/~sgtatham/

putty/latest.html
54https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-ssh-tunnel.html

46

Electronic copy available at: https://ssrn.com/abstract=3226976

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-ssh-tunnel.html

sudo rs tud io−s e r v e r s t a r t

and press enter. This will launch RStudio on the AWS master node. Finally, to

access RStudio on AWS open a browser and copy and paste:

@ec2-###-##-##-###.compute-1.amazonaws.com:8787

to your browser. You will be asked to enter the username and password created

above and stored in your install-rstudio-server.sh file.

Connect remotely (from a Mac)

How to do so is documented on AWS55 and merely restated here for reference:

1. Open a terminal window. On Max OS X, choose Applications ⇒ Utilities ⇒
Terminal. On other Linux distributions, terminal is typically found at Appli-

cations ⇒ Accessories ⇒ Terminal.

2. To establish a connection to the master node, type the following command.

Replace “˜\mykey.pem” with the location and filename of the private key file

(.pem) used to launch the cluster:

ssh -i ~/mykey.pem hadoop@ec2-###-##-##-###.compute-1.amazonaws.com

The AWS console should open. In the AWS console type:

sudo rs tud io−s e r v e r s t a r t

and press enter. This will launch RStudio on the AWS master node. Finally, to

access RStudio on AWS open a browser and copy and paste:

@ec2-###-##-##-###.compute-1.amazonaws.com:8787

to your browser. You will be asked to enter the username and password created

above and stored in your install-rstudio-server.sh file.

55https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-ssh-tunnel.html

47

Electronic copy available at: https://ssrn.com/abstract=3226976

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-ssh-tunnel.html

Leibniz Institute for Financial Research SAFE | www.safe-frankfurt.de | info@safe-frankfurt.de

Recent Issues

No. 265 Christian Schlag, Julian Thimme,
Rüdiger Weber

Implied Volatility Duration: A Measure for
the Timing of Uncertainty Resolution

No. 264 Hengjie Ai, Jun E. Li, Kai Li,
Christian Schlag

The Collateralizability Premium

No. 263 Vanya Horneff, Daniel Liebler,
Raimond Maurer, Olivia S. Mitchell

Implications of Money-Back Guarantees
for Individual Retirement Accounts:
Protection Then and Now

No. 262 Andrea Bedin, Monica Billio,
Michele Costola, Loriana Pelizzon

Credit Scoring in SME Asset-Backed
Securities: An Italian Case Study

No. 261 Monica Billio, Michele Costola,
Loriana Pelizzon, Max Riedel

Buildings' Energy Efficiency and the
Probability of Mortgage Default: The Dutch
Case

No. 260 Matthias Thiemann, Tobias H.
Tröger

It’s the Tail-Risk, Stupid!

No. 259 Inaki Aldasoro, Florian Balke,
Andreas Barth, Egemen Eren

Spillovers of Funding Dry-ups

No. 258 Anderson Grajales-Olarte, Burak R.
Uras, Nathanael Vellekoop

Rigid Wages and Contracts: Time- versus
State-Dependent Wages in the Netherlands

No. 257 Baptiste Massenot, Giang Nghiem Depressed Demand and Supply

No. 256 Christian Schlag, Kailin Zeng Horizontal Industry Relationships and
Return Predictability

No. 255 Silvia Dalla Fontana, Marco Holz
auf der Heide, Loriana Pelizzon,
Martin Scheicher

The Anatomy of the Euro Area Interest
Rate Swap Market

No. 254 Martin R. Goetz Financing Conditions and Toxic
Emissions

No. 253 Thomas Johann, Talis Putnins,
Satchit Sagade, Christian
Westheide

Quasi-Dark Trading: The Effects of
Banning Dark Pools in a World of Many
Alternatives

No. 252 Nicole Branger, Patrick
Konermann, Christian Schlag

Optimists and Pessimists in (In)Complete
Markets

Electronic copy available at: https://ssrn.com/abstract=3226976

	WPS_Cover-Template_2020_A4
	paper_7
	Introduction
	Why Distributed Computing?
	Distributed Computing Architecture
	General overview and cluster architecture
	The map–reduce framework

	Distributed Econometrics
	Summarising a large dataset
	Micro Econometrics on Spark
	Panel Econometrics on Spark
	Time Series Econometrics on Spark

	Conclusion
	Appendix
	Running Spark on your local machine
	PySpark on Jupyter Notebook
	Sparklyr on RStudio

	Setting up a cloud computing environment (on AWS)
	Setting up AWS and upload data
	Creating an EMR cluster and installing custom software

	Running Spark on a cluster
	Running PySpark
	Running sparklyr

	WPS_Recent Issues_Template

