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Abstract: We investigated the implications of string theory in the high-precision regime of quantum
mechanics. In particular, we examined a quantum field theoretical propagator which was derived
from string theory when compactified at the T-duality self-dual radius and which is closely
related to the path integral duality. Our focus was on the hydrogen ground state energy and
the 1S1/2 − 2S1/2 transition frequency, as they are the most precisely explored properties of the
hydrogen atom. The T-duality propagator alters the photon field dynamics leading to a modified
Coulomb potential. Thus, our study is complementary to investigations where the electron evolution
is modified, as in studies of a minimal length in the context of the generalized uncertainty principle.
The first manifestation of the T-duality propagator arises at fourth order in the fine-structure
constant, including a logarithmic term. For the first time, constraints on the underlying parameter,
the zero-point length, are presented. They reach down to 3.9× 10−19 m and are in full agreement
with previous studies on black holes.

Keywords: string T-duality; zero-point length; minimal length; extra dimensions; modified Coulomb
potential; hydrogen energy levels

1. Introduction

Symmetries lie at the heart of almost any theory in physics and imply far-reaching consequences:
symmetries powerfully constrain the structure of terms that are allowed in a given action; e.g., of the
electroweak theory [1]. They allow one to clearly extract the fundamental degrees of freedom of a theory
by choosing an appropriate gauge (cf. gravitational waves; e.g., [2,3]). In the context of string theory,
there are even symmetries which show the equivalence of whole theories. Among those is T-duality,
which acts on the moduli space and relates string theories compactified on different backgrounds.

As a special case, T-duality relates toroidally compactified theories which emerge from each other
under inversion of the compactification radius, R, and exchange of the Kaluza-Klein mode numbers, n,
with the winding mode numbers, w. In the case of one extra dimension, the relation reads R→ R?2/R
and n↔ w. The self-dual radius R? is mapped onto itself while compactification radii smaller than R?

are identified with larger ones. Thus, a notion of a smallest sensible length scale arises. The self-dual
radius is located at the string scale, R? =

√
α′, where α′ denotes the Regge slope.

Starting from toroidally compactified bosonic string theory with compactification radius R?,
the authors of [4] derived an effective 4-dimensional propagator for the center-of-mass of closed
strings (cf. also [5,6]). Compared to standard quantum field theory propagators, the presence of
compactified extra dimensions implies a UV finite behavior. There are contributions from a tower of
momentum and winding modes, out of which the massless mode is the most relevant for low-energy
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physics. It gives rise to the T-duality propagator. The T-duality propagator found its first, and so far,
only application in the recent derivation of a quantum-gravity corrected black hole description [7].
Here, the self-dual radius plays a crucial role: It leads to a resolution of the curvature singularity at
the black hole center and to a non-divergent black hole evaporation process without a final explosion.
The latter difference to the Schwarzschild black hole solution offers an observable to test the hypothesis
of the T-duality propagator.

A concept related to the T-duality ansatz which also tries to capture effects of the quantum nature
of spacetime is the path integral duality. While the former is derived from string theory, the latter
is an ad hoc ansatz in quantum field theory which introduces scale-inversion symmetric weights
in the Schwinger representation of the propagator—at a scale known as zero-point length, l0 [8,9].
Both the propagators, from the first order T-duality approach and from the path integral duality,
agree. This allows one to relate the zero-point length to the self-dual radius, l0 = 2πR? = 2π

√
α′.

Using effective actions, several quantum field theoretical aspects of the path integral duality have been
examined; e.g., the Casimir effect and the thermal particle spectra of Rindler vacua [10]. In the context
of gravity, investigations in the curved spacetime of cosmology [11,12] and of black holes [13] have
been conducted. Recently, the regularization of path integrals has been generalized to the concept of
so-called path densities [14]. But there are, to our knowledge, no studies that derive bounds on the
zero-point length from experimental data.

For our work, modifications of electromagnetic interactions are relevant. In the literature,
the path integral duality has been used to calculate deviations in the radiative corrections in quantum
electrodynamics [15]. Radiative corrections for a whole family of propagators, which share a similar
analytical structure and are referred to as smeared propagators, have been addressed earlier [16–18].
The aim of the present study is to analyze the concept of the T-duality induced zero-point length from a
different, low-energy perspective. We chose a system in quantum physics which has been investigated
to high precision theoretically and experimentally—the hydrogen atom [19]—and derive constraints
on l0. The hydrogen atom has been used by several authors to test various high-energy concepts;
e.g., [20–24].

We used two characteristics of the hydrogen atom: firstly, the ground state energy, and secondly,
the transition frequency between the two lowest energy levels with vanishing orbital angular
momentum, 1S1/2 and 2S1/2—the spectral line which is experimentally known to highest precision [25].
The potential shift in these observables due to the T-duality concept strongly depends on the size of l0.
We calculated those in Rayleigh–Schrödinger perturbation theory. From comparison with discrepancies
between experimental and theoretical values and from their uncertainties, we obtained upper limits
of l0.

In Section 2, we review the theoretical description of the hydrogen atom. We obtain the energy
and frequency corrections from the T-duality propagator. The constraints from both observables are
derived in Section 3 and are discussed in Section 4. Section 5 offers a summary. Useful mathematical
identities are presented in the Appendix A. In this article we use natural units; in particular, c ≡ h̄ ≡ 1.
For electromagnetic quantities we apply the Lorentz–Heaviside convention which additionally implies
ε0 ≡ µ0 ≡ 1.

2. Hydrogen Atom Energy Levels

The hydrogen atom is a prime object in quantum mechanics. This section focuses on the energy
spectrum in the conventional description and on the corrections arising from a T-self-dual spacetime.
We start with the Schrödinger equation with fine-structure terms because we are considering a
low-energy quantum system. Then, we introduce the T-duality induced modifications of the Coulomb
potential. Finally, we derive shifts in energy levels and transition frequencies.
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2.1. Conventional Description

The stationary Schrödinger equation, H0 |ψ〉 = E |ψ〉, with the eigenvectors |ψ〉 and eigenvalues
E, is the starting point of our recapitulation which follows the references [26,27]. In position space,
the Hamiltonian for spherically symmetric systems is given by

H0 = − 1
2µ

∆ + V0 = − 1
2µr2 ∂r

(
r2∂r

)
+

~L2

2µr2 + V0. (1)

Here, µ is the reduced mass of the electron-proton system, ∆ is the Laplace operator, and~L the angular
momentum operator. The potential term follows directly from the Coulomb interaction,

V0 = −α

r
, (2)

where α = e2/4π denotes Sommerfeld’s fine-structure constant. The well-known separation ansatz in
spherical coordinates reads

ψ
(0)
nlm(r, ϑ, ϕ) ≡

〈
~r
∣∣∣ nlm(0)

〉
=

unl (r)
r

Ylm(ϑ, ϕ) , (3)

with the principle, the orbital angular momentum, and the magnetic quantum numbers n, l, and m.
The spherical harmonics Ylm(ϑ, ϕ) solve the angular part while the radial equation simplifies to(

− 1
2µ

d2

dr2 +
1

2µ

l (l + 1)
r2 − α

r

)
unl(r) = En unl(r) , (4)

with the bound-state solutions

unl(r) = −
[
(n− l − 1)! (2κ)3

2n ((n + l)!)3

]1/2

r (2κr)l e−κr L2l+1
n+l (2κr) . (5)

Herein, we define κ ≡ µα/n and apply the associated Laguerre polynomials

Ls
r (x) =

r−s

∑
k=0

(−1)k+s (r!)2

k! (k + s)! (r− k− s)!
xk. (6)

The spectrum of the energy eigenstates is discrete and depends on n only,

En = −µα2

2
1
n2 . (7)

The ground state, denoted by 1S1/2, shows the energy ES
th ≡ E1 = −µα2/2. Below, we will also employ

the first excited state of spherical symmetry, 2S1/2. The associated wave functions read

ψ
(0)
100 =

2√
4π

(µα)3/2 e−αµr (8)

ψ
(0)
200 =

2√
4π

(µα

2

)3/2
[

1− 1
2

αµr
]

e−αµr/2, (9)

and the transition frequency between both states follows to be νS
th ≡ (E2 − E1) /2π.

Next, we include relativistic corrections which lead to the so-called fine structure in the spectrum.
These are encoded in the relativistically adjusted Hamiltonian H = H0 + Hfs. The terms for



Symmetry 2019, 11, 1478 4 of 11

relativistic momentum correction, spin-orbit coupling, and zitterbewegung (Darwin term) constitute
the Hamiltonian contribution

Hfs = −
∆2

8µ3 +
α

4µ2r3 ~σ ·~L +
1

8µ2 (∆V0) , (10)

which involves the Pauli matrices,~σ.
The correction in the energy spectrum can be calculated by means of the time-independent

Rayleigh–Schrödinger perturbation theory. The first order corrections partially break the degeneracy
and explicitly depend on the total angular momentum quantum number j = l + s = l± 1/2. They read

∆Efs
n,j =

〈
nlm(0)

∣∣∣ Hfs

∣∣∣ nlm(0)
〉

(11)

=
µα2

2n2
α2

n2

(
3
4
− n

j + 1/2

)
. (12)

In particular, the corrections to the 1S1/2 and 2S1/2 levels are

∆Efs
1,1/2 = −µα2

2
α2

4
, ∆Efs

2,1/2 = −µα2

2
5α2

128
. (13)

We define the improved value of the ground state energy as Efs
th ≡ E1 + ∆Efs

1,1/2 and the corrected

transition frequency as νfs
th ≡

((
E2 + ∆Efs

2,1/2

)
−
(

E1 + ∆Efs
1,1/2

))
/2π.

The fine-structure corrections naturally arise in the Dirac treatment of the hydrogen atom and
agree with Equation (12) to order α4. The state-of-the-art description of the hydrogen atom goes beyond
idealizations like that of a point-like nucleus or vanishing nuclear polarizability, and uses methods of
quantum field theory to include, e.g., multiple photon interactions in quantum electrodynamics or
hadronic contributions to the proton self-energy from quantum chromodynamics. Those corrections
appear at order α5 or higher. For an overview of the contributions, we refer the reader to [19].

2.2. Contribution from T-Duality Propagator

The considerations up to now originate from quantum mechanics and quantum field theory.
The standard model of particle physics, however, is generally being assumed to be incomplete.
In contrast, superstring theory is a possible candidate for a unified theory also valid at high energies
which reduces to the standard model and to general relativity as limiting cases [28]. In the following
we consider closed bosonic string theory on a manifold with toroidal compactification where the
compactification radius equals the self-dual radius under T-duality. Regarding the 4-dimensional
propagation, the string center of mass deviates from excitations of quantum fields. The Euclidean
propagator of a massless scalar field inherited from bosonic string theory reads [7]

G(k) = − l0√
k2

K1

(
l0
√

k2
)
→
{
−1/k2 if k2 � 1/l02

−l01/2 (k2)−3/4 e−l0
√

k2 if k2 � 1/l02 , (14)

where Kν(x) are modified Bessel functions of the second kind. In the low-momentum limit, one obtains
the standard scalar propagator, while there is an exponential suppression for momenta large compared
to 1/l0.

We regard such a kinetic modification to apply to all quantum fields, especially to bosons.
Virtual-particle exchange then leads to modified interaction potentials which contain the zero-point
length as a UV cutoff [7]. In electrodynamics, the potential energy reads

VTd = − α√
r2 + l02

. (15)
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The difference to the conventional Coulomb interaction can be used to identify manifestations of
T-duality from the hydrogen energy spectrum. From that we can derive constraints on l0. Similar to
the inclusion of fine-structure corrections, we apply the Rayleigh–Schrödinger perturbation theory to
the amended Hamiltonian H = H0 + Hfs + HTd. The additional term comprises the modification of
the Coulomb energy,

HTd = VTd −V0 =
α

r
− α√

r2 + l02
, (16)

which is presented in Figure 1.

Coulomb |V0|

T-duality |VTd|

Correction VTd -V0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r / l0

V
l 0

/
α

Figure 1. Potential energy. The solid curve (blue) displays the absolute value of the conventional
Coulomb energy, |V0|, while the dashed line (orange) shows the absolute value of the T-duality
corrected energy, |VTd|. The difference of both equals the Hamiltonian contribution HTd (dot-dashed
curve, green).

In general, the level shifts depend on n and l,

∆ETd
n,l =

〈
nlm(0)

∣∣∣ HTd

∣∣∣ nlm(0)
〉

(17)

=
22+2l (n− l − 1)! µα2

n4+2l((n + l)!)3

×
∫ ∞

0
dy y2+2l e−2y/n

[
L2l+1

n+l (2y/n)
]2
(

1
y
− 1√

y2 + x2

)
.

(18)

Here we introduce y ≡ αµr and define x ≡ λ0α where λ0 ≡ µl0. For the ground state, we find the
following expression at first order in perturbation theory:

∆ETd
1,0 =

µα2

2

(
2 +

16
3

x3 + 2πx [Y1(2x) + H1(2x)]− 4πx2 [Y0(2x) + H2(2x)]
)

(19)

=
µα2

2

([
−2− 4γ + 4 ln

1
x

]
x2 +O

(
x3
))

(20)

= µλ2
0

[
−1− 2γ + 2 ln

1
αλ0

]
α4 +O

(
α5
)

. (21)
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We used the Euler–Mascheroni constant, γ ≈ 0.577; the Bessel functions of the second kind, Yν(x);
and the Struve functions, Hν(x). The level shift of 2S1/2 reads:

∆ETd
2,0 =

µα2

2

(
1
2
+

3
4

x3 +
π

4

(
x + x3

)
[Y1(x)−H1(x)]

+
π

8

(
−3x2 + x4

)
[Y0(x)−H0(x)]

) (22)

=
µα2

2

(
1
8

[
−5− 4γ + 4 ln

2
x

]
x2 +O

(
x3
))

(23)

=
µλ2

0
16

[
−5− 4γ + 4 ln

2
αλ0

]
α4 +O

(
α5
)

. (24)

We provide the identities crucial in deriving this result in the Appendix A. Note that the corrections
start at order α4. Note also that they are of the form ∆E ∝

(
const. + ln 1

αµl0

)
l02. For small values of l0

the logarithmic term dominates ensuring the energy shifts to be positive. In contrast, the change in the
transition frequency is negative for small values of l0:

∆νTd
1S–2S =

1
2π

(
∆ETd

2,0 − ∆ETd
1,0

)
(25)

=
1

2π

µα2

2

(
1
8

[
11 + 4 ln 2 + 28γ− 28 ln

1
x

]
x2 +O

(
x3
))

(26)

=
µλ2

0
32π

[
11 + 4 ln 2 + 28γ− 28 ln

1
αλ0

]
α4 +O

(
α5
)

. (27)

3. Constraints on the Zero-Point Length

In the previous section, we derived the shifts in the energy levels 1S1/2 and 2S1/2, and the shift in
the associated transition frequency as a function of the zero-point length. Now we can contrast the
shifts with experimental data in order to obtain constraints on the value of l0.

3.1. Ground State Energy

The reference values and uncertainties of the hydrogen ground state energy from theory and
experiment are displayed in Table 1. Taking into account the respective standard deviations, we take the
maximum difference between the fine-structure improved Schrödinger value, Efs

th, and the experimental
one, Eexp, and that between the current theoretical value, EQED

th , and the experimental one. In this
context, the experimental precision ∆Eexp by itself defines the smallest upper bound on l0.

Table 1. Theoretical and experimental values of the hydrogen ground state energy. The calculations
of ES

th and Efs
th are based on the 2014 CODATA recommended values [19]. When expressed in eV,

the actual precision of the current theoretical and experimental value is masked by the less-precisely
known Planck constant [19]. For this reason, h is factored out and the values are given also in terms of
MHz · h.

Energy Description Value

ES
th Schrödinger −13.598 287 15(9) eV

Efs
th Schrödinger, incl. fine-structure −13.598 468 18(9) eV

EQED
th current theoretical value [29] −13.598 434 49(9) eV

−3 288 086 857.1276(31)MHz · h

Eexp current experimental value [25] −13.598 434 48(9) eV

−3 288 086 856.8(7)MHz · h
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Figure 2 shows the relative T-duality contribution ∆ETd
1,0 as a function of the zero-point length,

l0. The reference values are included as well. The zero-point length has to be smaller than the
intersection point value to comply with the corresponding bound. We found the upper bounds for
l0 to be 15.7 fm (from comparison of the fine-structure improved Schrödinger description with the
experiment), 0.136 fm (from comparison of the state-of-the-art theoretical value with the experiment),
and 0.112 fm (from the experimental precision), respectively.

T-duality

Eexp vs Eth
fs

Eexp vs Eth
QED

ΔEexp

0.01 0.10 1 10 100

10-11

10-9

10-7

10-5

l0 / fm

Δ
E

/
|E
thS
|

Figure 2. Normalized uncertainty in the hydrogen ground state energy. The possible T-duality
contribution ∆ETd

1,0 (solid, blue) increases with the zero-point length, l0. The dashed (orange) and
dot-dashed (green) lines show the differences between the experimental value on the one hand and the
fine-structure corrected or the current theoretical value on the other hand—taking into account the
respective standard deviations. The experimental error is presented by the dotted line (red).

3.2. Transition Frequency

Among all transitions of states in the hydrogen atom, the transition frequency between the
1S1/2 and the 2S1/2 level is experimentally known with the highest precision. The relative precision
∆νexp/νexp of the experimental value surpasses the relative precision of the absolute ground state
energy, ∆Eexp/Eexp, by five orders of magnitude. Therefore, we obtained more stringent upper bounds
from the transition data than from the absolute energy data discussed above. The theoretical and
experimental values of the transition frequencies associated with their uncertainties are presented in
Table 2.

Table 2. Theoretical and experimental values of the 1S1/2 − 2S1/2 hydrogen transition frequency.
The calculations of νS

th and νfs
th are based on the 2014 CODATA recommended values [19].

Frequency Description Value

νS
th Schrödinger 2 466 038 423(32)MHz

νfs
th Schrödinger, incl. fine-structure 2 466 068 517(32)MHz

νQED
th current theoretical value [29] 2 466 061 413.187 103(46)MHz

νexp current experimental value [30] 2 466 061 413.187 018(11)MHz

Our approach is analogous to the case of the ground state energy. In Figure 3 one finds the
l0-dependent T-duality contribution to the transition frequency and the reference values.
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T-duality

νexp vs νth
fs

νexp vs νth
QED

Δνexp

10-4 0.001 0.010 0.100 1 10 100

10-15

10-13

10-11

10-9

10-7

10-5

l0 / fm

-
Δ
ν

/
ν
thS

Figure 3. Normalized uncertainty in the 1S1/2 − 2S1/2 hydrogen transition frequency. The possible
T-duality contribution ∆νTd

1S–2S (solid, blue) increases with the zero-point length, l0. The dashed
(orange) line shows the difference between the experimental and the fine-structure corrected value.
The dot-dashed (green) line shows the difference between the experimental and the current theoretical
value. Both take into account the respective standard deviations. The experimental error is presented
by the dotted line (red).

The corresponding upper bounds on l0 are 15.7 fm (from comparison of the Schrödinger
description including fine-structure corrections with the experiment), 1.45× 10−3 fm (from comparison
of the current theoretical value with the experiment), and 3.90× 10−4 fm (from the experimental
precision). For the sake of clarity and for contrasting with the other approach, the values are
summarized in Table 3.

Table 3. Bounds of l0. This table summarizes the findings from Section 3.

Reference Value Upper Bound on l0 Reference Value Upper Bound on l0

Eexp − Efs
th 1.6× 10−14 m νexp − νfs

th 1.6× 10−14 m
Eexp − EQED

th 1.4× 10−16 m νexp − νQED
th 1.5× 10−18 m

∆Eexp 1.1× 10−16 m ∆νexp 3.9× 10−19 m

4. Discussion

Below, we discuss the validity and self-consistency of the results of Section 2 first. Then, we
comment on the bounds on the zero-point length.

One can classify the different contributions to the hydrogen energy levels in terms of powers
of the fine-structure constant. Generally, the higher is the order of a term, the smaller is its absolute
contribution. The Schrödinger value sets the scale at α2 and the Schrödinger fine-structure correction
occurs at α4. The Dirac treatment reproduces the terms at order 4 and yields additional terms at order
6 and above. According to the standard theoretical description, further corrections set in at α5 [19].

As presented in Equations (19) and (25), we obtained the corrections induced by the T-duality
propagator in terms of Bessel and Struve functions. When expanding these results in powers of
the fine-structure constant, Equations (21) and (27), we found the first manifestations at order
α4 and α4 ln (1/α). At second order in perturbation theory, we expect terms starting with α5.
Similarly, mutual interactions with the fine-structure corrections can only appear at order 5 and
above. Therefore, we ensure describing a proper observable since we have taken all contributions to
order 4 into consideration.

The other parameter which determines the amplitude of the T-duality induced correction is the
zero-point length. For small l0, we found an approximately quadratic dependency, as evident in the
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series expansions Equations (20) and (26). Furthermore, the logarithmic term is dominating and is
responsible for the overall sign of the corrections. Both these features are evident in Figures 2 and 3.

We stress that the fine-structure corrected Schrödinger value for the ground state energy lies
below the experimental one. Additionally, the current theoretical value hints at stronger binding than
the current experimental one (cf. Table 1). Similarly, the analogous theoretical transition frequencies
are found above the experimental counterpart (cf. Table 2). Thus, at qualitative level, a shift towards
weaker binding energy and smaller transition frequency improves the match between the theoretical
and experimental results. Indeed, both hold true for the T-duality corrections.

At a quantitative level, there are two ways of comparing potential theoretical contributions
with experimental data. One can compare the conventional theoretical value with the experimentally
measured one. Under the assumption that the discrepancy is generated by the novel effect only, one can
derive a bound on the underlying parameter. Alternatively, one can focus on uncertainties and require
the extra contribution to be smaller than the experimental accuracy. Then, the experimental standard
deviation is regarded as the reference scale. The latter approach usually results in stronger constraints
and is used commonly in literature, e.g., [20,22]. We followed both approaches. However, we refined
the first way in a conservative manner: we did not just take into account the discrepancy between the
theoretical and experimental value; we also took into consideration the respective standard deviations.
That way, we obtained a less strict, but more reliable bound.

In this paper we address the ground state energy and the energy difference between the
1S1/2 and 2S1/2 levels. The latter observable turns out most suitable: Firstly, the corresponding
transition frequency is known to a better precision, experimentally and theoretically. For instance,
the experimental relative error exceeds the one of the ground state energy by five orders of magnitude.
Indeed, this transition frequency is the most accurately known hydrogen spectral line [25]. Secondly,
the difference between two levels is relative by definition: It is insensitive to global energy shifts.

Overall, we found constraints in the range 1.6× 10−14 m down to 3.9× 10−19 m. Table 3 shows
a compilation of the bounds obtained. Limits in the range of 10−17 m were also found in related
minimal length considerations [20,23] even though they arose from a different context: they rely on a
generalization of the Heisenberg uncertainty relation while the limits presented here are the direct
consequence of the T-duality propagator. There is a further sense of complementarity: they focus
on a modification of the electron evolution and alter the Schrödinger or Dirac equation. In contrast,
we applied the modified massless propagator to the electromagnetic field and studied the modified
Coulomb potential while keeping the ordinary Schrödinger description. Although in both ways the
energy contributions set in at α4, we found an additional logarithmic contribution.

More precise experimental and theoretical results would be helpful to further restrict the size
of minimal lengths and to explore the viable range of quantum gravity modifications. Based on a
consistency condition for the smallest sensible size of black holes, the authors of [7] expected the value
of the zero-point length at l0 = (2/3)3/4 lP ≈ 0.8 lP, where lP is the Planck length. Testing this length
scale with the hydrogen atom would correspond to a relative precision of 10−47 for the ground state
as well as for the transition frequency. While this seems out of reach with the techniques present
today, astrophysical observations, e.g., of the maximum temperature of microscopic black holes, could
provide stronger constraints and further insights.

5. Summary

String theory is a high-energy completion of quantum field theory and gravitation. Regarding
quantum field excitations as strings instead of point-like particles, the authors of [4] derived the
modified 4-dimensional propagator. It introduces a parameter called zero-point length, l0, which is
closely related to the self-dual radius of T-duality. This approach was applied to the context of black
holes; differences to the general relativistic counterparts were identified [7].

In this paper, we investigated how the modified propagator manifests itself in the hydrogen
atom. The hydrogen atom is a well suited system since it has been investigated to high precision
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in theory and experiment. We derived the corrections to the hydrogen ground state energy and
the 1S1/2 − 2S1/2 transition frequency by first order Rayleigh–Schrödinger perturbation theory.
By comparison with experimental data, we could derive constraints on the zero-point length ranging
down to l0 < 3.9× 10−19 m.
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Appendix A. Useful Identities

The energy shifts from the T-duality contribution presented in Section 2.2 stem from non-standard
integrals which result in special functions. The generalized form of these integrals results in

∫ ∞

0
x2ν−1

(
u2 + x2

)ρ−1
e−µx dx =

u2ν+2ρ−2

2
√

πΓ(1− ρ)
G 3,1

1,3

(
µ2u2/4

∣∣∣ 1−ν
1−ρ−ν, 0, 1/2

)
(A1)

for |arg u| < π/2, <µ > 0, and <ν > 0 ([31] p. 351, Equation (3.389.2)). Here, G m,n
p,q

(
x
∣∣∣ a1,...,ap

b1,...,bq

)
is the

Meijer’s G-function.
The resulting expressions can be simplified by using representations of the special functions

in terms of the Meijer’s G-function. In particular, the Bessel functions of the second kind, Yν(x),
and the Struve functions, Hν(x), turn out useful ([31] p. 1034, Equation (9.34.2) and [31] p. 1035,
Equation (9.34.5)):

Yν(x) xα = 2α G 2,0
1,3

(
x2/4

∣∣∣ (α−ν−1)/2
(α−ν)/2, (α+ν)/2, (α−ν−1)/2

)
(A2)

Hν(x) xα = 2α G 1,1
1,3

(
x2/4

∣∣∣ (α+ν+1)/2
(α+ν+1)/2, (α−ν)/2, (α+ν)/2

)
(A3)
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