SUPPLEMENTARY INFORMATION

Structural basis of proton-coupled potassium transport in the KUP family

Igor Tascón¹*, Joana S. Sousa²*, Robin A. Corey³, Deryck J. Mills², David Griwatz¹, Nadine Aumüller¹, Vedrana Mikusevic¹, Phillip J. Stansfeld^{3,4}, Janet Vonck^{2#}, Inga Hänelt^{1#}

¹Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany

²Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany

³Department of Biochemistry, University of Oxford, Oxford, UK

⁴School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.

*equal contribution, [#]corresponding authors

Supplementary Table 1: Cryo-EM data collection, refinement and validation statistics

	KimA inward-occluded state
	(EMDB-10092)
	(PDB 6S3K)
Data collection and processing	
Magnification	130,000
Voltage (kV)	300
Electron exposure (e–/Ų)	70
Defocus range (µm)	-0.5 to -3.2
Pixel size (Å)	1.077
Symmetry imposed	C2
Initial particle images (no.)	2,043,209
Final particle images (no.)	149,724
Map resolution (Å)	3.7
FSC threshold	0.143
Map resolution range (Å)	3 to 6
Refinement	
Initial model used (PDB code)	-
Model resolution (Å)	3.95
FSC threshold	0.5
Map sharpening <i>B</i> factor (Å ²)	-154
Model composition	
Non-hydrogen atoms	8896
Protein residues	1146
Ligands	6
<i>B</i> factors (Å ²)	
Protein	95.8
Ligand	71.5
R.m.s. deviations	
Bond lengths (Å)	0.39
Bond angles (°)	0.63
Validation	
MolProbity score	1.88
Clashscore	5.76
Poor rotamers (%)	0.62
Ramachandran plot	
Favored (%)	89.33
Allowed (%)	10.67
Disallowed (%)	0

		TM 1A	TM 1B		Ŵ		
B. subtilis S. pneumoniae J. marinus M. abscenssus D. metallireducens P. soli L. ithermophila L. thermophila L. thermophila S. aureus S. aureus S. haemolotycus C. gallinarum L. sakei E. faecalis W. kandleri	MYHSIKEFLIKKIKSOAAGEOKITK MYHSIKEFLIKKIKSOAAGEOKITK MYHSIKEFLIKKIKSOAAGEOKITK MYHSIKEFLIKKIKSOAAGEOKITK MISSIKEFTHIKKIKSOAAGEOKITK MUSAIKEFLIKRIKSOAGEOKINK MISCURFLIKRIKSELGEOKINK MISCURFLIKRIKSELGEOKINK MISUKILLORIKSELGEOKINK MISUKILLORIKISSELGEOKINK MISUKILLORIKSELGEOKINK MISUKIKIKKIKSI	KALAMISDALSVAT LKALAMISDALSVAT LKALAMISDALSVAT LKALAMISDALSVAT KALATISDALSVAT KALATISDALSVAT KALATISDALSVAT KALATISDALSVAT LKALVISDALSVAT FRGLIISDALSVAT FRGLATISDALSVAT FRALALSDALSVAT FRALALSDALSVAT GRALALSDALSVAT	$ \begin{array}{c} \mathbf{T} & 0 \; \mathbf{L} \mathbf{I} \; \mathbf{I} \; \mathbf{T} \; \mathbf{S} \; \mathbf{A} \; \mathbf{F} \; \mathbf{Y} \\ \mathbf{T} & 0 \; \mathbf{L} \mathbf{I} \; \mathbf{A} \; \mathbf{T} \; \mathbf{S} \; \mathbf{A} \; \mathbf{F} \; \mathbf{Y} \\ \mathbf{T} \; 0 \; \mathbf{L} \mathbf{I} \; \mathbf{A} \; \mathbf{T} \; \mathbf{S} \; \mathbf{A} \; \mathbf{F} \; \mathbf{Y} \\ \mathbf{T} \; 0 \; \mathbf{L} \mathbf{I} \; \mathbf{A} \; \mathbf{S} \; \mathbf{A} \; \mathbf{F} \; \mathbf{Y} \\ \mathbf{T} \; 0 \; \mathbf{L} \mathbf{V} \; \mathbf{V} \; \mathbf{T} \; \mathbf{S} \; \mathbf{A} \; \mathbf{F} \; \mathbf{Y} \\ \mathbf{P} \; 0 \; \mathbf{L} \; \mathbf{V} \; \mathbf{V} \; \mathbf{T} \; \mathbf{S} \; \mathbf{A} \; \mathbf{F} \; \mathbf{Y} \\ \mathbf{P} \; 0 \; \mathbf{L} \; \mathbf{V} \; \mathbf{V} \; \mathbf{T} \; \mathbf{S} \; \mathbf{A} \; \mathbf{F} \; \mathbf{Y} \\ \mathbf{P} \; 0 \; \mathbf{L} \; \mathbf{V} \; \mathbf{V} \; \mathbf{T} \; \mathbf{S} \; \mathbf{A} \; \mathbf{A} \\ \mathbf{P} \; 0 \; \mathbf{L} \; \mathbf{V} \; \mathbf{V} \; \mathbf{V} \; \mathbf{S} \; \mathbf{A} \; \mathbf{A} \; \mathbf{M} \\ \mathbf{P} \; 0 \; \mathbf{L} \; \mathbf{V} \; \mathbf{V} \; \mathbf{V} \; \mathbf{S} \; \mathbf{A} \; \mathbf{A} \; \mathbf{M} \\ \mathbf{P} \; 0 \; \mathbf{L} \; \mathbf{V} \; \mathbf{V} \; \mathbf{V} \; \mathbf{V} \; \mathbf{S} \; \mathbf{A} \; \mathbf{M} \\ \mathbf{P} \; 0 \; \mathbf{L} \; \mathbf{V} \; \mathbf{V} \; \mathbf{V} \; \mathbf{S} \; \mathbf{A} \; \mathbf{A} \; \mathbf{M} \\ \mathbf{T} \; \mathbf{V} \; \mathbf{V} \; \mathbf{V} \; \mathbf{V} \; \mathbf{V} \; \mathbf{T} \; \mathbf{S} \; \mathbf{A} \; \mathbf{I} \; \mathbf{Y} \\ \mathbf{V} \; \mathbf{V} \\ \mathbf{T} \; 0 \; \mathbf{V} \; \mathbf{V} \; \mathbf{V} \; \mathbf{T} \; \mathbf{S} \; \mathbf{A} \; \mathbf{I} \; \mathbf{Y} \\ \mathbf{T} \; \mathbf{U} \; \mathbf{V} \; \mathbf{V} \; \mathbf{V} \; \mathbf{T} \; \mathbf{A} \; \mathbf{I} \; \mathbf{A} \; \mathbf{V} \; \mathbf{S} \; \mathbf{V} \; \mathbf{I} \; \mathbf{I} \\ \mathbf{V} \; \mathbf{V} $	S PIRVON I I LA ILS I S PIRVON I I LA ILS I S PIRON I LA IS I S PIRON I LA ISSI	CIIYAYOGGGAYISKEI CIIYAYOGGGAYUSKEI CIIYAYOGGGAYUSKEI CIIYAYOGGGAYUSKEI CIIYAYOGGAYUSKEI CIIYAYOGGAYUSKEI CIIYAYOGGAYUSKEI CIIYAYOGGAYUSKEI CIIYAYOGGAYUSKEI CIIYAYOGGAYUSKEI CIIYAYOGGAYUSSEI CIIHAYOGGGAYUSSEI CIIHAYOGGGAYUSSEI CIIHAYOGGGAYUSSEI CIIHAYOGGGAYUSSEI CIIHAYOGGGAYUSSEI	EKPELIAGGSLUVDY ILIVAVS 11 RKPEIAGGSLUVDY ILIVAVS 11 RKPEIAGSLUVDY ILIVAVS 11 GKPEIAGSLUVDY ILIVAVS 11 GKPEIAGSLUVDY ILIVAVS 11 GKPEIAGSLUVDY ILIVAVS 11 GKASIIAGSLUVDY ILIVAVS 11 GKASIIAGSLUVDY ILIVAVS 11 GKASIIAGSLUVDY ILIVAVS 11 GKASIIAGSLUVDY ILIVAVS 11 GKASIIAGSLUVDY ILIVAVS 11 GKASIIAGSLUVDY ILIVAVS 11 GKASIIVAGSLUVDY ILIVAVS 11 GKASIVAGSLUVDY ILIVAVSL	25 25 25 25 25 25 25 25 25 25 25 25 25 2
			TM 5		TM 6A	TM 6B	
B. subtilis S. pneumoniae J. marinus M. abscenssus D. metallireducens P. soli P. indica L. thermophila L. thermophila L. thermophila S. aureus S. haemolotycus C. gallinarum L. sakei E. faecalis W. kandleri	ISA TO ITS F ALHDYN PLAIF ISA TO ITS F ALHDYN PLAIF ISA TO ITS FP ALHDYN PLAIF ISA TO ITS FP ALHDYN PLAIF ISA TO ITS FP ALHPYNLLIWYL VSATTO ITS F ALHPYNLLIWYL VSATTO ITS F ILHENVCLAVF VSATTO ITS FI ISLHHWALASY VSA TO ITS FI ILHPYVELAVG ISS AD FVA FSI SLHHWILACLI ISS AD FVA FSI SLHHWILACLI ISS AD FVA FSI SLYHWVLACU VSA TO ISS I ALYNAVPLAIT ISA AD FVS FSI ALYNAVPLAIT ISA AE ITS I ALYNAVPLAIT VSA TS ISI I ALYNAVCAISG VSA TS ISI I ISI IA	VLVIMILALROISEASI VLVIMILALROISEASI VLVIMILALROISEASI VLIMILALROISEASI VILIMILALROISEASI VIETVILARISEASI VIETVILARISEASI VAITTLAIROITEASI VAITTLAIROITEASI VIEVTLARITESISSI VIEVTLARISETSI VIETULALROITEASI VIETULARISETSI VIETULARISETSI VIETULARISETSI VIETULARISETSI VIETULARISETSI VIETULARISETSI VIETULARISETSI VIETUANIA	AYPYL VVALULAA AYPYL VVALUL AV AYPYL VAALVL AV AYPYL VAALVL VV AYPYL VAALVL VV AYPYL VAALVL VV AYPYL VAALVL VV AYPYL VLALLI AYPYL VLALLI AYPYL VLALLI SYPYL IGIIIN VV WPYL VANTLI WPYL VANTLI WPYL VANTLI YV YVAL AITTLI VV	LFKLMT QIDQPAHHTSL LFKLMT QIDQPAHHTSL LFKLMT QUPQPAHHTPL LFKLMT QVH-PAEHTPI LYNIVT QVH-PAEHTPI LYNIVT QVH-PAEHTPI LYNIVT QVS-ADLHASI LFVUTM VNS-ADLHASI LFVUTM VNS-ADLHASI LFVUTM VNS-ADLHASI LFVUTM QUPAEHTANY VWXVAT QAE-PHHATYV CYKIFT AIP-FHATATYV LFKIVT QOF-LNATALP LFKIVT QOF-LNATALP	TPVA TTF ILKATSGCS TPVA TTF ILKATSGC TPVA TTF ILKATSGC TPVA TTF ILKATSGC TPVA ISTF ILKATSGC TPVA ISTF ILKATSGC TPVA ISTF ILKATSGC TPVA ISTF ILKATSGC TPVA ISTF ILKATSGC TVVO VITF ILKATSGC TAVP VITF ILKATSGC AVVP TISA IFATSGC AVVP TISA IFATSGC AVVP ISMA IFATSGC TSFS ISTV VMFATSGS	SALTOVATISMAT PARIN PARIN 23 SALTOVATISMAT PARIN PARIN 2 SALTOVATISMAT PARIN PARIN PARIN 2 SALTOVATISMAT PARIN PARIN PARIN 2 SALTOVATISMAT PARIN PAR	50 50 19 19 19 19 19 19 19 19 19 19 19 19 19
			w	TM 8		TM 9	
B. subtilis S. pneumoniae J. marinus M. abscenssus D. metallireducens P. soli L. thermophila L. thermophila L. thermophila S. aureus S. haemolotycus C. gallinarum L. sakei E. faecalis W. kandleri	AR DAME I LA ILES ITV ANGY AR DAME ILA ILES ITS ITV ANGY AR DAME ILA LES IV AR DIA DE LA DE LA DE LA GENERAL AR DIA DE LA DE LA DE LA DE AND AND AND AR DIA DE LA DE LA DE AND AND AND AR DIA DE LA DE AND	TA KPDE VSOIA SET TA KPDE VSOIA SET TA KPDE VSOIA SET TA KPDE VSOIA SET TS KHDEV VSOIA ET IS RGVVVSOIA KT IV HARMIVSOIA ET IT SETE VISIA SET IT KVEEVISIA SET IT KVEEVISIA SEN TV ELKVVSOIA ENVI IN OFT VSOIA MIL IN OFT VSOIA MIL IN VSEVISIO GOT VMEET VISOIA MIL IV KEEVISOI GOT IV KEEVISOI GOT R SNEEVIA OIDEOU	RNUFYYUI GU SLID RNUFYYUI GU SLID RNUFYYUI GU SLID RNUFYYI GU SLID RNUFYYI GU SLID RNMYYYI GU SLID RNMYYI GU SLID RNMYYYI AT ALI RNAVYYYI AT ALI RNAVYYYI AT ALI RNAVYYYI AT ALI RNAVYYYI AT ALI RNAYYYI AT ALI RNAYYYYI AT ALI RAGYYYA AT WALV RAGYYPY AT AT ALI RAGYYPY AT AT ALI RAGYYPY AT AT ALI RAGYPYL RAGYPYL RAGYPYL RAGYNA RAGYNA <td>LANTE FSEP OLI FNLAR LANTE FSEP OLI FNLAR LANTE SATOLI FNLAR LANTE SATOLI FNLAR LANTE SATOLI FNLAR LANTE SATILI FNLAR LANTE SATILI FNLAR LANTE SATILI FSEN LANTE SATILI FSEN LANTE SATILI FSEN LANTE FSEN LASSAK LANTE FSEV LY MLASSAK VANTE SATVI YNLAR VANTE SATVI YNLAR</td> <td>QYM RMETVRÖDRUGFSNG QYM RMETVRÖDRUGFSNG QYM RMETVRÖDRUGFSNG QYM RMETVRÖDRUGFSNG KFI RMETVRÖDRUGFSNG KFI RMETVRÖDRUGSNG KFI RMETVRÖDRUGSNG KFI RAMETVRÖDRUGSNG KFM RAMETVRÖDRUGSNG KFM RAMESVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS</td> <td>IF GPASTVIIILIGQOEHIT3 IF GPASTVIILIGQOEHIT3 IF GVASTVIILIGQOEHIT3 IF GVASTVIILIGQOEHIT3 IF GVASTVIILIGQOEHIT3 IF GVASTVIILIGQOEHIT3 IF GVASTVIILIGQOEHIT3 IF GVASTVIIAIRQOEHIT3 II GPASTFIVLGHEQHEA3 IT GITSILDIIA EQUEHI3 IT GITSILDIIA EQUEH13 IT GUASTLIVIQOEHEL13 IT GUASTLIVIQOEHEL13 IT GUASTLIVIQOEHEL13 IT GUASTLITIVOEHEL13 IT GUASTLITIVOEHEL13 IT GUASTLITIVOEHEL13 IT GUASTLITIVOEHIT3 IT GUASTVILIQUASTLITIS IT GUASTVILIQUASTLITIS IT GUASTVILIQUASTLITIS IT GUASTVILIQUASTLIAN IT GUASTVILIQUASTLIAN</td> <td>75 75 74 74 74 74 74 74 74 74 73 73 73</td>	LANTE FSEP OLI FNLAR LANTE FSEP OLI FNLAR LANTE SATOLI FNLAR LANTE SATOLI FNLAR LANTE SATOLI FNLAR LANTE SATILI FNLAR LANTE SATILI FNLAR LANTE SATILI FSEN LANTE SATILI FSEN LANTE SATILI FSEN LANTE FSEN LASSAK LANTE FSEV LY MLASSAK VANTE SATVI YNLAR VANTE SATVI YNLAR	QYM RMETVRÖDRUGFSNG QYM RMETVRÖDRUGFSNG QYM RMETVRÖDRUGFSNG QYM RMETVRÖDRUGFSNG KFI RMETVRÖDRUGFSNG KFI RMETVRÖDRUGSNG KFI RMETVRÖDRUGSNG KFI RAMETVRÖDRUGSNG KFM RAMETVRÖDRUGSNG KFM RAMESVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS KMM RMETVRÖDRUGSNS	IF GPASTVIIILIGQOEHIT3 IF GPASTVIILIGQOEHIT3 IF GVASTVIILIGQOEHIT3 IF GVASTVIILIGQOEHIT3 IF GVASTVIILIGQOEHIT3 IF GVASTVIILIGQOEHIT3 IF GVASTVIILIGQOEHIT3 IF GVASTVIIAIRQOEHIT3 II GPASTFIVLGHEQHEA3 IT GITSILDIIA EQUEHI3 IT GITSILDIIA EQUEH13 IT GUASTLIVIQOEHEL13 IT GUASTLIVIQOEHEL13 IT GUASTLIVIQOEHEL13 IT GUASTLITIVOEHEL13 IT GUASTLITIVOEHEL13 IT GUASTLITIVOEHEL13 IT GUASTLITIVOEHIT3 IT GUASTVILIQUASTLITIS IT GUASTVILIQUASTLITIS IT GUASTVILIQUASTLITIS IT GUASTVILIQUASTLIAN IT GUASTVILIQUASTLIAN	75 75 74 74 74 74 74 74 74 74 73 73 73
		TM 11		TM 12			
B. subtilis S. pneumoniae J. marinus M. abscenssus D. metallireducens P. soli P. indica L. thermophila L. thermophila L. thermophila S. aureus S. haemolotycus C. gallinarum L. sakei E. faecalis W. kandleri	A VOUP INT IS THOMK IKOF NAVOUP INT STUCKING IKOF NAVOUP INT STUCKING IKOF NAVOUP INT STUCKING NAVOUP INT SSTUCKING NAVOUP INT SSTUCKING NAVOUP INT SSTUCKING NAVOUP INT SSTUCKING NAVOUP INT SSTUCKING	KG IGKMLINSCOLISF KG IGKMLINSCOLISF KG IGKMLINSCOLISF KG AVKMLINSCOLASF GC LSKFINTGLISF KG QTKFAINMISLICF KG VKLINFTVAF KG VKLINFVAF KG KKSLSANLLASISF KG KSLSANLLASISF KG FKKSLSVILLASISF KN FKKSIANFVAF KN FKKSIANFVALISF KN FKKSIANFVALISF KN FKKSIANFVALISF KN FKKSIANFVALISF GH IAKAVINFICALSF	MULSILFVTKENVV PVL MULSILFVTKENVV PVL MULSVLFVTKENVV PVL MULSVLFVTKENVV PVL IVSTFELTKENVV PVL IVSTFELTKENVV PVL IVSTFELTKENVV SVL AMMIFFITKEGOVAVL VLLIFFITKEGOVAVL VLLIFFITKEGOVAVL IVFNILLTKESOV PIL IVFNILLTKESOV PIL IVFNILLTKESOV PIL IVFNILLTKESOV PIL IVFNILLTKESOV PIL ALIALFITKIGDI FFF ALIALFITKGDI FFF ILVLTLFALRETNV PVL	TPM IVULL FAIKNE TAN TPM IVULL FAIKNE TAN TPM IVULL FAIKNE TAN TPM IVULL FAIKNE TAN TPM IVULL FAIKNE TAN TPL LITTEN HOIRS KEN TPL LITTEN HOIRS KEN TPL LITTEN HOIRS KEN TPL LITTEN KIKNE RAN TPL LITTEN KIKNE RAN TPL LITTEN KIKNE KON TPL LITTEN KIKNE KON TPL LITTEN KIKNE KON TIM VILTEN KIKNE KIKNE TIM VILTEN KIKNE KIKNE	CERTUDKEPEEIKG CERTUDKEPEEIKG CERTUDKEPEEIKG CERTUDKEPEEIKG ADDURVSPEPTMEIEC CERTUDKEPTMEIEC CERTUDKENAN CERSISTER CERSIS CERSISTER CERSIS CERSISTER	VVIVPUAGV TVVQKSIHAKS 4 VVIVPUAGV TVVQKSIHAKS 4 VVIVPUAGV TVVQKSIHAKS 4 VVIVPUAGV TVVQKSIQAKS 4 VVITPUAGI TVVQKSIQAKS 4 VVITIPVAGI VVVNSIGAKS 4 VVITIPVAGI VVVSIGAL AKS 4 VVIVPUAGI KVVAGIVAKS 4 VVIVPUAGI KVVAGIV KSI 4 ILAI VPSTISAIDKSVIAM 4 ILAI VPSTISAIDKSVIAM 4 ILAI VPSTISAIDKSVIAM 4 ILAI VPSTISAIDKSVIAM 4 ILAI VPSTISAIDKSVIAM 4 VVVVVVISKVKVANANSI 4 VVVVVVISKVKANANSI 4 VVVVVISKVKANANSI 4 VVVVVISKVKANANSI 4 VVVVVISKVANANSI 4 VVVVVISKVANANSI 4 VVVVISKVANANSI 4 VVVVVISKVANANSI 4 VVVVVISKVANANSI 4 VVVVVISKVANANSI 4 VVVVISKVANANSI 4 VVVVVISKVANANSI 4 VVVVISKVANANSI 4 VVVVVISKVANANSI 4 VVVVISKVANANSI 4 VVVVISKVANANSI 4 VVVVVISKVANANSI 4 VVVVVISKVANANSI 4 VVVVISKVANANSI 4 VVVVVISKVANANSI 4 VVVVVVISKVANANSI 4 VVVVVISKVANANSI 4 VVVVVISKVANSI 4 VVVVVISKVANSI 4 VVVVVVISKVANSI 4 VVVVVVISKVANSI 4 VVVVVVVISKVANSI 4 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	<pre>>7 >77 >77 >77 >77 >77 >77 >77 >77 >77</pre>
		ß3	H3	ß4	H4	ß5	
B. subtilis S. pneumoniae J. marinus M. abscenssus D. metallireducens P. soli P. indica L. thermophila L. thermophila L. thermophila S. aureus S. aureus S. aureus S. aakei L. sakei E. faecalis W. kandleri	S-DQVI VHVSFDREQEKKFEKR S-DQVI WEGFDREQEKKFEKR S-DQVI WEGFDREQEKKFEKR S-DQVI WEGFDRENEKKFEKR S-DQVI WEGFDRENEKKFEKR SVDQII WYGFDREDEKRFDEK SVDQII WYGFDREDEKRFDEK S-DEWM WYGFDREDENRFMEKE S-DEWM WYGSFDEADNEMREKE G-DVI WHSFCDEADNEARFWIEF G-DVI WHSFCDEADNEARFWIEF G-DVI WHSFCDEADNEARFWIEF G-DYU WHSFCDEADNEARFWIEF G-DYU WHSFCDEADNEARFWIEF G-DYU WHSFCDEADNEARFWIEF G-DYU WHSFCDEDEKRFDENF	EELNNGV LVTLHSSYS EELNNGVLUTTHSSYS EELNGVLUTTHSSYS EELHNGVLUTTHSSYS KEWHPDI LVTLHSSYS KKWAPDVLUTTLSHS KEWHPDI LVTLHSPYS KKWAPDVLUTTYSLYS NRVHPEVMANIFSPYS KRHPPDVLUTHSSYS KRHPPDVLUTHSSYS KKHPPDVLUTHSSYS KKHPPDVLSIVHSSYS	LUH FOK LETVEAKAKK LUH FOK LETVEAKAK LUH FOK LETVEAKAK LUH FOK LETVEAKAK LUH FOK LETVEAKAK TOULAK ISTVETKANA VIT LSET DITEHKANE TOULAK ISTVETKANA VIT LSET DITAKAND ISD LIMK I DITAKAKAND VIR ISR IDKINKKAND VIR ISR IDKINKKAND VIR ISR IDKINKAND VIR JAR VUJUKANAK LON ILRVUDLYSKNAK	EQFSVMULF Q ITKKR HI EQFSVMULF Q ITKKR HI EQFSVMULF Q ITKKR HI EQFSVMULF Q ITKKR Q SNHQVT LIE ITKKG HI SNHQVT LIE ITKKG HI SNHQVT LIE ITKKG HI ONYLTY LI Q IPKKG Q QNMITY UFQ ITKKN HI KNYVIT VVQ ITKKS HI	I LHNCSAFLIRVREFWKKD I LHNCSAFLIRVREFWKKD I LHNCSAFLIRVREFWKKD I LHNCSAFLIRVREFWKKD I LHNCSAFLIRVREFWKKD I LHNCSSLIRVREFWKLD I LHNCSSLIRVREFWKLD I LHNCSSLIRVREFWKLD I LHNCSSLIRVREFWKLD I LHNCSSLRERABYLCOM I LHNCSSLRERABYLCOM I LHNCSSLRERABYCOM I LHNCSSLRERABYCOM I LHNCSSLRERABYCOM I LHNCSSLRERABYCOM I LHNCSSLRERABYCOM I LHNCSSLRERABYCOM I LHNCSSLRERABYCOM I LHNCSSLRERABYCOM I LHNCSSLRERABYCOM	MWATLPYHFKK 60 MWATLPYHFKK 60 MWATLPYHFKK 60 MWATLPYHFKK 60 JUVTUPYHLKK 60 JUVTUPYHLKK 60 JUVTUPYHLKK 60 JUVTUPYHLKK 60 JUVTUPYHLKK 60 JUVTUPYHLKK 60 JUSTYYHLKK 60 JUSTYSHLKK 60 JISTYSHLKK 60 JUSTYSHLKK 60 JUSTYSHLKK 60 JUSTYSHLKK 60 JUSTYSHLKK 60)7)7)7)8)8)8)9)7)9)7)9)7)9)7)9)7)9)7)9)7)9)7)10

Supplementary Fig. 1: Sequence alignment of KimA from *B. subtilis* with other homologous proteins from different bacteria. Sequences of KimA from *Streptococcus pneumoniae*, *Jeotgalibacillus marinus*, *Mycobacteriodes abscenssus*, *Desulfitobacterium metallireducens*, *Planomicrobium soli*, *Paenisporosarcina indica*, *Lihuaxuella thermophila*, *Listeria monocytogenes*, *Staphylococcus aureus*, *Staphylococcus haemolyticus*, *Carnobacterium gallinarum*, *Lactobacillus sakei*, *Enterococcus faecalis* and *Weissella* *kandleri* are aligned. Selection of sequences was done with BLAST and the alignment was performed with T-coffee. Sequence conservation is shown by coloring, red being fully conserved. The secondary structure of KimA is shown above the alignment. The red star indicates a residue potentially implicated in proton coupling, the purple stars indicate residues potentially involved in potassium binding within the substrate binding site, the orange star indicates a residue potentially involved in potentially involved in potassium binding estar indicates a residue involved in potentially involved in potassium binding the potential binding within the intracellular tunnel and the half purple, half orange star indicates a residue involved in potassium binding site and within the intracellular tunnel. The figure was prepared using Jalview.

Supplementary Fig. 2: Image processing workflow. Approximately 2,000,000 particles were autopicked using Gautomatch and used for reference-free 2D classification in Sphire. Particles from the best 2D classes were further classified in 3D in Relion, using a low-resolution map generated by the stochastic gradient descent method implemented in Relion

as an initial reference. After two rounds of 3D classification, a set of approximately 300,000 particles was refined in Relion to 3.8 Å resolution, with poor densities at the periphery of the map due to small differences in the relative position of the monomers. In order to obtain a more homogeneous subset of particles, a 3D classification without alignment was performed with a symmetry expanded dataset (reference map shown in grey/red); the position of one membrane domain and the cytoplasmic domain located below was fixed by refitting the maps in Chimera to a partial map (red) every five iterations. This approach made it possible to classify the particles based on the position of the second half of the map, improving the densities at the periphery of the cytoplasmic domain. After reversing the symmetry expansion applied, the best 3D class contained 150,000 unique particles, which produced a map at an overall resolution of 3.7 Å after homogeneous refinement in cryoSPARC. Processes performed in Relion, Sphire, cryoSPARC and Chimera are indicated in blue, orange, green and red, respectively.

Supplementary Fig. 3: Quality of the cryo-EM map. a, Gold-standard FSC plot for the final refined map. **b**, KimA map colored according to local resolution determined in cryoSPARC, as seen from the membrane (left) and at a central section (right). **c**, Cryo-EM density of a β -sheet with fitted model, showing well-resolved strands and good side chain densities. **d-e**, Cryo-EM density of an α -helix in the cytoplasmic domain (d) and of TM helices (e) with fitted model, showing clear helical pitch and good side chain densities. **f-g**, Cryo-EM densities of the potassium ions in the binding site (f) and the cytoplasmic tunnel (g), in a map low-passed filtered to 3.3 Å.

Supplementary Fig. 4: Dimeric arrangement of KimA. **a**, Cryo-EM map of KimA with the SMALP belt, seen from the extracellular side (left), the membrane (middle), and the cytosol (right). The two monomers are depicted in salmon and blue and the SMALP density low-pass filtered to 30 Å is shown in light grey. **b**, **c**, Negative staining 2D class averages of KimA in SMALP and DDM. The overall shape of the dimer is similar when solubilized with SMAs or with detergent and the angle between the membrane domains of both monomers is preserved (middle classes).

Supplementary Fig. 5: Molecular dynamics simulation of KimA in a lipid bilayer. a, Minimum distances between TM domains of each KimA dimer over 4 CG simulations. A dotted line denotes the threshold for contact in the Martini force field. b, Calculating the angles of the KimA TM domains for the data in Fig. 3b and panel c of this figure. The protein backbone is shown in white, and the backbone beads of Gly347 and Ile364 of each monomer are shown in blue or orange. The vector between these beads for each monomer was calculated and compared to the cryo-EM structure (set to 0°). c, Plots of the TM domain angle over time for the CG simulations, as in Fig. 3b. d, As panel a, but minimum distances for 3 atomistic simulations of *ca.* 2 μ s. 2 out of 3 runs sample the upright dimer state. e, Principal component analysis on the atomistic KimA data. 68% of the total variance can be

described using just PC1 (grey ribbon), corresponding to the opening seen in panel d. Below, each simulation's progression is plotted along PC1.

Supplementary Fig. 6: Density of potassium ions over two 135 ns atomistic simulations. The purple mesh shows the K^+ ion densities over the course of the simulations, as computed with VMD's VolMap utility¹. Purple spheres indicate the potassium ions as found within the EM map. Views are as Fig. 4d-e. **c**, Contact between potassium ions with surrounding residues over the course of two 135 ns atomistic simulations. Contact defined as % of frames where residue-K⁺ distance is less than 0.4 nm. n=4 repeats, contacts from individual simulations as dot plots.

Supplementary Fig. 7: The cytoplasmic domain of KimA resembles the folding of PPAT. **a**, Cartoon representation of the phosphopantetheine adenylyltransferase (PPAT) (grey, 1GN8). Depicted in sticks are the ATP molecules. **b**, Structural comparison of the cytoplasmic domains of KimA (salmon and blue) and the PPAT (grey, 1GN8), with an RMSD of 3.7 Å.

Supplementary Fig. 8: KimA shows a LeuT fold. KimA structural repeats from **a**, TM helices 1 to 5 and **b**, TM 6 to 10 with discontinuities in TM helices 1 and 6, typical of the LeuT fold. TM helices are colored from blue to red. The second repeat was rotated 180° around the symmetry axis. **c**, Side view (left) and top view (right) of repeat 1 (rainbow) superimposed with repeat 2 (grey).

Supplementary Fig. 9: Activity of KimA variants in a heterologous complementation assay. *E. coli* strain LB2003 was transformed with plasmids encoding KimA wild-type or variants and growth at different potassium concentrations, ranging from 0.01 to 10 mM, was

assessed over 10 h. The growth rates μ were determined and plotted against the potassium concentrations. The concentration of the half maximal growth K_s for each KimA variant was determined by fitting with the Monod equation². **a**, KimA wild-type and variants that did not affect cell growth. **b**, KimA variants that led to reduced cell growth. **c**, KimA variants that were unable to restore cell growth. Source data are provided as a Source Data file.

Supplementary Fig. 10: Western blot analysis of the production of KimA wild-type and variants. a, His-tagged KimA variants were detected using an anti-polyHis antibody and a goat anti-mouse IgG HRP-conjugated antibody. All variants were produced in similar amounts, slight variations were not responsible for the lack of activity, since the least expressed KimA_{T230A} was as active as the wild-type. b, SDS-PAGE stained with Coomassie and used as a loading control, which is equivalent to the one used for transferring to the blot.

Supplementary Fig. 11: K⁺/Rb⁺ exchange via KimA into potassium-loaded *E. coli* LB2003. a, Time courses of the K⁺/Rb⁺ exchange of cells transformed with plasmids encoding wild type KimA (blue), KimA_{E233A} (green), KimA_{D36A} (orange) or with the empty vector pBAD24 (black). Solid lines represent experiments performed in the presence of 50 mM external Rb⁺. Dotted lines are negative controls in the presence of 50 mM external Na⁺. n=3 independent experiments; a representative experiment is shown. **b**, Initial rates of K⁺/Rb⁺ exchange given as means of three independent experiments; errors shown are s.d., individual exchange rates as dot plots. Full bars correspond to experiments performed in the presence of 50 mM external Na⁺. Source data are provided as a Source Data file.

		TM 1A	TM 1B	
BsKimA EcKup LIKup1 MaKup HAKCV AtKT2 HvHak2 HvHak1 SoHak1	YHSIKRFLIGKTKL STDNKQSLPATTL GYES	KALAMLSS ALS VAUGT TAAI EVVGOIGT SPLITL TAMI EVVGOIGT SPLITM SSMLVFCOIGT SPLITM SSLEVVFGOIGT SPLVV SSLEVVYGOIGT SPLVV SSLEVYGOIGT SPLVV SSLEAIYGOIGT SPLVV SSLEAIYGOIGT SPLVV	EQ <mark>I</mark> LIILATISAAAFWYSI RECLSGQFGF-GVER RS <mark>IVQGQGLERISE VIFLL-TRPTE PAI</mark> FGELR-HQPTE KSTFAEDID-YSDE SSTFPDGIKNR NS <mark>I</mark> KYPN-SSPTE	PIAV VI ILLIAL ILS RQ 83 DAVF FISLIEWLIFVVSIK LT 70 TSIIALSLIWTITLITVK VW 75 VHVIVLSLIWTITLITVK VW 84 NFIL VFSTIFWTITLVVLVK VW 88 EEIY VMSFVFWTITLVFLK VF 83 ATVF LFSLIFWTITLVFLK VF 70 DDLL VLSLIYTIIFWIK VF 103 EDIY AISIIFYLFFVIFK IL 117
				MAN -
BsKimA EcKup LIKup1 MaKup HAKCV AtKT2 HvHak2 HvHak1 SoHak1	IY-AY-PQGGAYIVSKENLGEK- FYNRA-DNAGEGILTHMSLAGRNTSAR LALKA-DNNEERIFSLFTURKYAK		PGLIAGCSLLVPYIFV VINGLIGGSFYGEVVIFP IIPAMIGGALLSDGANP TILAYIQYSLVGDGVIFP MGIVITCASLTMADGILPP LLLVIGTCAVIGDGLPP LLLVLIGTCAVIGDGTP FTLTILGTSMVIGDGTPP FTLTILGTSMVIGDGTPP	AVSISAGTDAITSAFPALH 141 ATSUMSITECTEIVAPQL139 AVTVTSSIECTRSIPAPHEAFGQQ 145 ATSILSAVECTRSIPAPHEAFGQQ 145 SISVISIVET IOPHTG
			6A TM	6B TM 7
BsKimA EcKup LIKup1 MaKup HAKCV AtKT2 HvHak2 HvHak1 SoHak1	-DYHVPLAIFLVLVIMILNLR LSESASILYYVYLFVVALLVLIAVELFKLMTGQIDQPAHHTS DWNIVPLSIV/TILMMICKH TAMVGKUFA-FIKL-TKFLILAGLURSILANFEVLH OLFIVITIALIAVILIQRFTSIVGKVFG-VMV-INFASLAFSILASIFYPFVLR NGAUMFLAGIAVALSVGSK TEEITWVFG-VMV-LWFASLAFSILASIFYPFVLR HDTVIFITIGILVGLSIGFL TGKVGVIIG-TKLVMVFNLSVVVNVTXMFQVRR QYAVIFITIGILVGLSIGFL TGKVGVIIG-TKLVMVFNLSGIITINIIGWNFHIYK NGWVULACVVLVGLALGHR THKVAFAFA-IVV-LULSIGIITINNIKWNFHVCL QTQVLIFVAILMUSVARTHKVGFVFA-IVV-LULSIGIITINNIKWNFHVCL QTQVLIFVAILMUSVARTHKVAFAFA-IVV-LULSIGIITINNIKWNFHVCL DVLAVSEVVLIVIFLOOF SNKISFTFA-HIF-LULGLIISIINNIVKFHPAVFK	LGT VAGITLFLL L-N MWAVHFFLE-YK- I-N YWAIHLLSPEN- I-SFFLH-NG- Y-S HYMYYFWEE-FGS L-ST TYMFWFLR-TR- L-SH IYKFFKI-TG- Y-N MYIVQYFIR-NG- L-S YYXIQLKH-SG-	KAFSSGCSALEVEA TVSFIALGAVULSIGVEA KAGIFVLGSVFLATUGAA FTGFFVLSSVFLATUGAA WEAFKLLGEVFLAIGVEA VSGWNSLGGILLCITUGAA ROGWISLGGILLCVTOTE KSGWVSLGGIILCVTOTE CIDVFSGAMLSITUTE	ISNAIPAFKNPPARNAARTLAMMG 258 IYADMGHGKFPIRLAMFTVULPS 254 IYSDLGHUGRNIHVSMP-VFVVC 260 IYADMGHLGREPILKAMR-LVF5A 251 IYADMGHLNANSIRIFSAIVVPS 290 HYADLGHFNYAAIQIAFTFLVYPA 308 WFADLGHFNYAAIQIAFTFLVYPA 308 WFADLGHFNIANULSFNGILFPS 328 WFADUGHFGRLPIQLITTLFYYPA 348
		18	V	TM 9
BsKimA EcKup LIKup1 MaKup HAKCV AtKT2 HvHak2 HvHak1 SoHak1	ILLAILFSGITVLAYGYGTAPKPDETVVSQIASETFGRNVFYYV-IQGVTS ITINYFGGALLKNPEA-IKNPFFLAPDWALIFLIIA IIISYCGAPILONRGKS-IGDINFFFAVLPQNLIFSVIAN IVINYLGGAPILN	SLILVL ANTGFSAFPOL ALATVI SOAVIS VYSL YLAAIIS SFTL TTATIIS OANIS MFSI SSAVISOALIT TFT LLASVVGSOAIIS TFSI SLAAVVGSOIISTFSI LLASVIS SISATFSI LLASIIS SOAMLS AFAI VLSTIIS OALIL VFST	AFNLARDQYM <mark>P</mark> RMFTVRGD TRQAVRLGYLSPMRITHTS VSGAIRLKLPRLRPFVS VYGGITTRIIPMLKIDYTS VQOMHANVPRVALFOYN INQSQSLGCPPRVKVIHTS KKQCLSLGCPPRVKVIHTS SKALSLGCPRVKVIHTS SKALSLGCPRVKVIHTS	RLGFSNGIIFLGFASIV 361 EMESGOITFFVNNMLVVAVU 352 ETFGOLY FAVNLGURLASF 360 GKLRSOITFGNNULLISULF 351 KKHAGOITFFUNNFLUVGSIS 397 KKHGOITFFINNILMILGIA 407 RWIYGOITFFINNILMILGIA 50 RWYGOITFFINNILMILGIASIV 26 KKYAGKVYTFAINNLLMIGUCA 450
			TM 12	www
BsKimA EcKup LlKup1 MaKup HAKCV AtKT2 HvHak2 HvHak2 HvHak1 SoHak1	LIIL GGQTEHLIPLÄAVGVFIPFTLSQTGMCMKWIKQKPKGWIGKMLINSCGALISFMVLS VVS -EBSSNLAAAVIAVTGVIJSILSTVARONWHMNXYFVALILIAFLCVD IVVY -QSSAHWEAAVIALITVTHIMUTTLIVVYLSHVGVKKVVUGLFSLFVVFI MIFE -RDSHRLAAAYGLAVTGTMSIIGLMMTLIF-YLKGRMFRSFVSLFVVTJDV VVLI -QSSSKIVSAVGFAVSIVVVLHIFFCIVL-HIQGRNKLFSFVFSLFVTVIDV VTG -RDINIIGNAVGLAVTGTMYTVTCITSIVVCUCHHPFI-LALAFLIFFGSIE VTG -RDINIIGNAVGLVCITVHYTVTCITSIVVCUCHHPFI-LALAFLIFFGSIE VTG -RDINIIGNAVGLVCITVHFYTVIMALVIIFVWKKIMIALAFLIFFGSIE TAG -RMSNNVTAAVGGITLDFLVTSSLIWCKTYVYNNLL-IPITYALIFLEE	LEVTKFNVVWPVLIFMP LPLFTANLDKLLSGGWLP SLFFAASAVKFMHGGYVV VPLLSNTYKIPHGGYWS LAFAASLTKIPHGAWS LLYFSASLTKFREGAMLP SAYLSASFIKVPOGGWTP JIVLSSIKKFIEGGYLP JIMVISNLKKITHGAMFP	UVLLFFAIKNHYTA- SIGTWFIUMTIKSERF VIIAAMILFWAIHKSDO IVIAAIAFSLIIIYTSGOK AAIGSALFFVSLWHRGHR LLSLFHIITHVWHYTTI IALAFVFMFIMYVWHYGTR CFALVVMSLMAAWHYVQV LCMSSIFMFLSFWRARS	VGEQLRIVDK- 466 RLIRRMHEH-GNSLEAMIASLEK- 467 LFYKYLISSNINDYKEMONKLEK- 476 KLYELMN-PMKIGDFLEKYKQV 462 MKVRYIKIN-RLSARQVF506 KKYEPDLQN-KVSLWHILALGES- 512 RKYLFDLQN-KVSLWHILALGES- 513 RRYWYELDH-IVPISEMTMLLEK- 541 RKVWQDFKT-RIRIGDLYPELKKQ 566
	ß	1	H1	
BsKimA EcKup LIKup1 MaKup HAKCV AtKT2 HvHak2 HvHak1 SoHak1		VPVAGV (MSRAAGV (LTARMDKEWI FFARDINV (PYNELIGG (FTDLTSG (YTELVTV) (YTELVTV) (YTELVQG (MNDSSVHTLNSPNT)	T-TVVQKSIHYAKSLSD P-FALMHNLKHNKVLHERV DRSILYSILDKRPKKAKVY P-RYISWWFENIIYEDN P-ANSAWFENIIYEDN P-ANSAFVTNLPAFHQIL P-ANSAFVTNLPAFHQIL P-PVFPRLIQKIPSVHSIF P-QVYGKLVSSFSSIPSVF	QUIAVHVSFDREQEKKFEKRW 520 ILLTLRTEDAPYHNVRRVQIEQL 529 WFVK WVDEPYTSEYEVDNLGT 541 IFISIIKCESPFGVKSS-FAKDLA 524 IVLSWRKMTIFVREQRFLITGY 568 VFVC KSVPVFYPADERVLIGRV 564 VFVC KSVPVFYPADERVLIGRT 575 IFMSIKHLPISRVPTERFIFQV 663 IFCSIRVLSIF
BsKimA EcKup LIKup1 MaKup HAKCV AtKT2 HvHak2 HvHak1 SoHak1	EELNNGVRLVTLHS-SIRSLVHPFDKELETVEA	SSRLAVIGTVAYE SGRMAVIHTTDATGTGLV. GD	IEDNLQPESVSIGFSTV MRDSNEGTSLTRSSKSGTL VSDALARP-RSTV -NNKCILT-KPCTI	552 562 562 562 552 553 554 555 555 555 555 555 555 555 555
		H4		ß5
BsKimA EcKup LIKup1 MaKup HAKCV AtKT2 HvHak2 HvHak1 SoHak1		AFL RVRLFWK VLL QRNALRAPDQF CRQIKKITASPARWFGLH SVIKKLSSFVQFY SL VKLSSWTTDTF (NF RRNCRGPDVAL (SF RKNCRGPSVL YTF RKNLTEGHKVL ?SPIYSDFQSNGKFL	KDIEI FSEVTVETVPLVLSDVKNL KL NT 	MVATLPYHFKK 607 PPNRVIELGTQVEI 622 EIHERISEENQGES 670 PSOKLHGVLTRFEM 603 PTSKLIFEASYEI 660 PPVSLLEVGMVYVV 772 PKDQLLKVGITYYEI 775 ESEKKMFLGGVVRI 821

Supplementary Fig. 12: Model-based sequence alignment of KimA with transporters belonging to the KUP family. KUP family members from bacteria (*Escherichia coli*,

Lactococcus lactis), archaea (Methanosarcina acetivorans), virus (Paramecium bursaria, Chlorella virus), plants (Arabidopsis thaliana, Hordeum vulgare) and fungi (Schwanniomyces occidentalis) are aligned. The model-based sequence alignment was done using Promals3d server. Sequence conservation is shown by coloring, red being fully conserved. The secondary structure of KimA is shown above the alignment. The red star indicates a residue potentially implicated in proton coupling, the purple stars indicate residues potentially involved in potassium binding within the substrate binding site and the orange star indicates residues potentially involved in potassium binding in the intracellular tunnel, and the half purple, half orange star indicates a residue involved in potassium binding in both the substrate binding site and within the intracellular tunnel. The figure was prepared using Jalview.

Supplementary Methods: List of primer pairs used for cloning in this article.

Cloning of *kimA* into vector pB24C3H:

bsKimApBC3H-RFfw

5'-GGGCTAGCAGGAGGAATTCACCATG TATCATTCAATCAAACGTTTTTTGATTGGG

bsKimApBC3H-RFrv

5'-GTGGACCTTGAAACAAAACTTCTAACTTTTTAAAATGATACGGCAGTGTGGC

Introduction of point mutations:

D36A_For

5'-GCTTTCCTCAGCTGCGCTGTCATCTGTC

D36A_Rev

5'-GACAGATGACAGCGCAGCTGAGGAAAGC

D36N_For

5'-GCTTTCCTCAAATGCGCTGTCATCTGTC

D36N_Rev

5'-GACAGATGACAGCGCATTTGAGGAAAGC

D117A_For

5'-GCGGTTCATTGCTTGTTGCTTATATTTTAACAG

D117A_Rev

5'-CTGTTAAAATATAAGCAACAAGCAATGAACCGC

D117N_For

5'-GCGGGCGGTTCATTGCTTGTTAATTATATTTTAACAG

D117N_Rev

5'-CTGTTAAAATATAATTAACAAGCAATGAACCGCCCGC

D117E_For

5'-GCGGGCGGTTCATTGCTTGTTGAATATATTTTAACAG

D117E_Rev

5'-CTGTTAAAATATATTCAACAAGCAATGAACCGCCCGC

T121A_For

5'-GCTTGTTGATTATATTTTAGCAGTAGCGGTAAGTATTTCC

T121A_Rev

5'-GGAAATACTTACCGCTACTGCTAAAATATAATCAACAAGC

T230A_For

5'-GGATGCTCAGCGTTGGCCGGGGTTG

T230A_Rev

5'-CAACCCCGGCCAACGCTGAGCATCC

E233A_For

5'-TGACCGGGGTTGCGGCCATTTCTAA

E233A_Rev

5'-TTAGAAATGGCCGCAACCCCGGTCA

E233Q_For

5'-GACCGGGGTTCAGGCCATTTCTAATGC

E233Q_Rev

5'-GCATTAGAAATGGCCTGAACCCCGGTC

Y377A_For

5'-CTTAATCCCGTTAGCTGCTGTGGGCGTATTTATTCC

Y377A_Rev

5'-GGAATAAATACGCCCACAGCAGCTAACGGGATTAAG

Y43A_For

5'-GCTGTCATCTGTCGCAGCTGGGACAGAAC

Y43A_Rev

5'-GTTCTGTCCCAGCTGCGACAGATGACAGC

S125A_For

5'-CAGTAGCGGTAGCTATTTCCGCAGGC

S125A_Rev

5'-GCCTGCGGAAATAGCTACCGCTACTG

SUPPLEMENTARY REFERENCES

- 1 Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. *J Mol Graph* **14**, 33-38, 27-38 (1996).
- 2 Monod, J. The growth of bacterial cultures. *Annu. Rev. Microbiol.* **3**, 371-394, doi:10.1146/annurev.mi.03.100149.002103 (1949).