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We use black holes with a negative cosmological constant to investigate aspects of the freeze-out 
temperature for hadron production in high energy heavy-ion collisions. The two black hole solutions 
present in the anti-de Sitter geometry have different mass and are compared to the data showing that 
the small black hole solution is in good agreement. This is a new feature in the literature since the 
small black hole in general relativity has different thermodynamic behavior from that of the large black 
hole solution. We find that the inclusion of the cosmological constant (which can be interpreted as the 
plasma pressure) leads to a lowering of the temperature of the freeze-out curve as a function of the 
baryochemical potential, improving the description previously suggested by Castorina, Kharzeev, and Satz.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In recent years relativistic heavy-ion collisions at high ener-
gies have become a laboratory for exploring new states of matter 
[1–4] and for testing exciting new ideas for the description of 
these novel states [5–9]. It is currently understood that in these 
reactions a strongly interacting quark–gluon plasma (QGP) forms 
and behaves like a nearly perfect liquid, i.e. the shear viscosity is 
very small [10,8]. However, the approach to apparent local equi-
librium is still under debate [11,12]. Current estimates of these 
effects are based on hydrodynamical modeling (mostly at vanishing 
baryochemical potential μB ) [13–16], lattice QCD [17,18] or, via 
gauge/gravity duality, on strongly coupled dual non-Abelian plas-
mas with a large number of colors [19,20].

Lattice QCD is the main non-perturbative technique that can 
be used to study strongly interacting QCD physics. However, when 
μB �= 0, lattice approaches are affected by the sign problem of 
the fermion determinant. Various alternative tools have been de-
veloped to address this issue, allowing one to investigate, at least 
in principle, small chemical potentials on the lattice (see for in-
stance [21–24]). It is therefore important to have other theoretical 
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ways to study QCD phenomena in the strongly coupled regime at 
nonzero T and μB .

Gauge/gravity duality has provided relevant insights into the 
study of real-time non-equilibrium dynamical phenomena (for a 
review see [25] and references therein). — The duality allows one 
to calculate physical quantities describing a strongly coupled gauge 
theory on the boundary of a d + 1 space with a gravitational 
theory. Holographic descriptions of strongly interacting systems 
(bottom-up models) cannot be obtained in general from top-down 
string theory constructions and are based on the conjectured va-
lidity of the duality under more general circumstances.

Here, however, we consider the analogy between gravity and 
gauge theories from another point of view, based on a concep-
tual framework proposed some time ago [26–28] and developed 
in more detail over recent years [29,30]. The analogy relies on the 
confinement property of QCD, i.e. the fact that QCD forbids col-
ored constituents to exist in the physical vacuum. It resembles in 
some way the phenomenon of gravitational confinement of matter 
inside a black hole. Indeed, a black hole can be regarded as a so-
lution to Einstein’s equations defined by a confining potential. The 
fate of matter near a black hole (within its innermost stable cir-
cular orbit) is to inevitably fall through the event horizon in the 
absence of countervailing forces. The application of the quantum 
mechanics to black holes resulted in the discovery of their ther-
mal emission [31]. Soon after Hawking’s pioneering work, Unruh 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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showed that an observer under uniform acceleration a experiences 
a thermal bath at temperature T = ah̄/2π [32].

In other words confining potentials in general lead (quantum 
mechanically) to an intrinsic temperature. This led to the pro-
posal that quarks in a confining potential are also associated with 
an effective temperature for hadrons [33]. More specifically, fol-
lowing the connection between gravitational properties and parti-
cle physics, a conjecture was put forward that color confinement 
causes the physical vacuum to form an event horizon for quarks 
and gluons that can only be crossed by quantum tunneling [29,
34]. In this sense hadron production corresponds to a form of 
Hawking–Unruh radiation in QCD.

This analogy is also supported by two additional facts in black 
hole physics:

(i) The metric of a system in uniform acceleration, the Rindler 
metric, is equivalent to the near-horizon approximation of the 
black hole metric if the acceleration is equal to the surface 
gravity κ ;

(ii) Hawking radiation is a quantum phenomenon associated with 
pair-creation near the event horizon and the tunneling of par-
ticles [35–37], in analogy with string breaking [38–40] and 
pair creation in systems with uniform acceleration.

Within the context of the above conjecture, one may consequently 
propose the following hypotheses: (a) the hadronic freeze-out tem-
perature at high energy is an Unruh temperature; (b) the associ-
ated Rindler horizon can be identified with a “color blind” horizon 
dynamically produced by the color charge confinement during the 
qq̄ production.

Previous approaches toward a concrete realization of this con-
jecture have been restricted to a charged black hole in an asymp-
totically flat background [41]. However (as well shall see) the 
freeze-out temperature obtained by this analogy does not describe 
the data at low T and large μB [41].

In this paper we enlarge the analogy presented in [29,42] to a 
charged black hole in anti-de Sitter spacetime (AdS). We vary the 
AdS curvature radius and see if it has a particular counterpart in 
the description of the freeze-out. The thermodynamics of an AdS 
black hole has features that we will see are important in the anal-
ogy, namely a minimum temperature Tmin, which occurs when the 
horizon radius is of the order of the characteristic radius of the 
AdS space [43]. Above Tmin there are two possible black hole solu-
tions with different radii. We find that the freeze-out temperature 
is well described by the Hawking temperature of the small AdS 
charged black hole, providing a very favorable fit to current data.

The sections are organized as follows: in Sec. 2 we review anti-
de Sitter spacetime and the hypothesis of interpreting a variable 
negative cosmological constant as pressure. In sec. 3 we review 
the connection proposed in [29,42] between black holes and QCD. 
Sec. 4 presents to our calculations and results. Finally, sec. 6 is 
dedicated to the conclusions.

2. Gravitational pressure

The study of black hole thermodynamics in the presence of 
a negative cosmological constant � (i.e. an AdS background) has 
exhibited very interesting properties [43], subsequently opening 
the way to further insights into string theory [44] and thermody-
namic phase transitions [45–47]. The notion that the cosmological 
constant itself might be considered as a dynamical variable was 
initially suggested by Teitelboim and Brown in [48,49], while the 
relative thermodynamic term was included only later into the first 
law of black hole thermodynamics [50]. The idea of associating the 
cosmological constant with pressure was then explored in different 
ways [51–53]. In contrast to an asymptotically flat Schwarzschild 
black hole, a black hole in an AdS background with sufficiently 
large radius (as compared to the AdS radius �) has positive specific 
heat and so can be in stable equilibrium at a fixed temperature 
(where the AdS space mimics a gravitational box). Depending on 
the temperature, it can also be subjected to a phase transition to 
pure radiation known as the Hawking–Page transition [43]. In the 
framework of the AdS/CFT duality, this transition was later asso-
ciated with a confinement/deconfinement phase transition in the 
field theory on the boundary [54]. The idea of associating the cos-
mological constant � and hence the AdS radius �, see Eq. (1), with 
a pressure (along with the notion of a conjugate thermodynamic 
volume) requires the generalization of the laws of black hole me-
chanics [53]. The pressure can be defined as

P = − �

8πG
= (d − 1) (d − 2)

16πG�2
, (1)

where d is the number of spacetime dimensions and G is the 
Newton constant. The resultant generalized first law of black hole 
thermodynamics is

δM = T δS + V δP + �δ J + �δQ (2)

where J is the black hole angular momentum and Q the charge. 
The quantity M is the conserved charge associated with the time-
translation Killing vector of the spacetime. The entropy is related 
to area of the black hole event horizon according to S = A/ (4h̄G)

and the Hawking temperature is T = h̄κ/ (2π) where κ , as men-
tioned before, is its surface gravity. The conjugate thermodynamic 
volume to the pressure is defined as V ≡ (∂M/∂ P )S,Q , J . From this 
viewpoint the confinement/deconfinement phase transition can be 
understood as a solid/liquid phase transition [55,56].

Because of the presence of the cosmological constant in Eq. (2), 
the mass M cannot be interpreted as usual as the internal energy 
of the system. Rather, M can be understood as the gravitational 
version of the chemical enthalpy [53], i.e., the total energy of a 
system containing both the energy P V needed to displace the vac-
uum energy of its environment and its internal energy E [55].

The definition of the cosmological constant as pressure will 
allow us to proceed with the study of the freeze-out tempera-
ture using the physical parameters M, Q , P of the extended phase 
space. Using the pressure in this way we introduce the correspond-
ing thermodynamic volume. Therefore, for each value of P we will 
consider the corresponding volume of the (regularized) spacetime 
at a fixed time slice that is the volume inside the black hole.

3. QCD and black holes

Classically, a black hole just absorbs matter. On the quantum 
level, however, matter inside the black hole (i.e., its constituents: 
hadrons, leptons and photons) has a non-vanishing probability to 
escape by tunneling through the barrier of the event horizon. The 
transmitted radiation is thermal and ensures color neutrality. The 
thermal behavior of black holes is fully encoded in the thermody-
namic description: Hawking radiation cannot give any information 
related to the internal state of the black hole.

In all collisions e+e− , pp, pp̄, π p, etc..., including nucleus–
nucleus scattering, particle production likewise exhibits thermal 
behavior that seems to occur at the same temperature [40,57–62]
(see also [63]). This feature motivated the proposal [29] that in 
relativistic heavy-ion collisions at large 

√
s, corresponding to zero 

baryochemical potential [61], the hadronic freeze-out temperature 
T is an Unruh temperature. Hadronization can be seen as the 
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QCD counterpart of Hawking radiation. Relativistic heavy-ion col-
lisions are expected to create a quark–gluon plasma, QGP, that 
goes through an expansion at close to the speed of light, emit-
ting radiation and then undergoing a deconfinement–confinement 
phase transition to a hadron gas. Experiments at RHIC and LHC in-
dicate that a thermalized QGP is formed in collisions between two 
heavy nuclei at center-of-mass energies of the order 100 GeV per 
nucleon [64–66]. Particle spectra in the expanding geometry (i.e., 
in the Bjorken or Milne coordinates) look analogous to those in 
Rindler coordinates. In this sense an event horizon is associated 
with hadron production in a similar spirit as horizon formation in 
analog gravity models, see e.g. [67].

In this picture hadrons produced in the collisions are assumed 
to be formed in equilibrium and to follow a thermal distribution as 
consequence of the random distribution of quarks and antiquarks, 
which are entangled in such a vacuum.

3.1. Charged black hole

From now on we set c = 1 and write the Einstein–Maxwell ac-
tion for a black hole charged under a Maxwell field F = dA as 
follows:

S E M [g, A] = 1

16πG

∫
d4x

√|g|
[

R − 4πG F 2
]

(3)

where R is the Ricci scalar and g the determinant of the metric. 
In these units, gμν is dimensionless and the electric charge is de-
fined:

Q = 1

8π

∫
S2∞

�F . (4)

Since the Maxwell equations are satisfied if the Einstein equations 
are, one has only to solve the latter with the trace subtracted

Rμν = 8πG

[
F ρ
μ Fνρ − 1

4
gμν F 2

]
(5)

plus the Bianchi identity. The static, spherically symmetric solution 
is the Reissner–Nordström (RN) solution

ds2 = f (r)dt2 − f −1 (r)dr2 − r2d�2 (6)

Ftr = Q

r2
(7)

f (r) = (r − r+) (r − r−)

r2
(8)

where r± = GM ±
√(

G2M2 − 4 πG Q 2
)

are the inner and outer 
horizons, Q is the electric charge normalized as in (4) and M is 
the ADM mass.

The first law (2), with angular momentum J = 0, takes into ac-
count the possible changes in the black hole mass due to changes 
in the charge. The temperature can be written as [68]

T (M, Q ) = T (M,0)
4
√

1 − 4π Q 2

GM2(
1 +

√
1 − 4π Q 2

GM2

)2
(9)

and, substituting in the previous equation (9) the value for the 
mass obtained from the horizon equation f (r) = 0, this can be 
expressed in the simple form

T (M, Q ) = T (M,0)
(

1 − G2�4
)

(10)
where � (r+) = q/r+ is the electrostatic potential on the horizon, 
with q = 4π Q .

The temperature T (M, Q ) satisfies the first law of black hole 
thermodynamics [69]

δM = T δS + �δQ (11)

where the entropy is S = πr2+/G . The Smarr formula (an integral 
version of (11)) takes the form M = 2T S + Q �.

The conjectured equivalence between gravitational confinement 
and color confinement maps the electric potential and the gravi-
tational constants to the baryochemical potential μ and the string 
tension σ . It takes the form [70,41]

{�, G} →
{
μ,

1

2σ

}
(12)

and the freeze-out parameters T f and μB (that we will simply 
call T and μ) can be calculated from (10). Using this equivalence 
and introducing a new constant μ̄ function of the string tension, 
eq. (10) can be expressed as

T (μ,σ ) = T0

[
1 −

(
μ2

μ̄2

)2]
, (13)

where T0 is the temperature of the black hole when the charge 
is zero. Note that in previous calculations [41], the Unruh mecha-
nism could a priori describe the freeze-out process only as long as 
μ � mproton. Also keep in mind that the comparison with a black 
hole can provide an explanation only for the production of new 
hadrons in high-energy collisions, while it does not describe the 
contribution of the nucleons that can be already present in the 
initial state of heavy-ion collisions [42].

However, assuming the relation (12) between the electrostatic 
potential on the horizon and the baryochemical potential [71], 
then the freeze-out parameters T and μ can be calculated and 
compared with the freeze-out parameters inferred from other 
models and from data.

In particular, in our analysis, we fix (i) the value of the bary-
ochemical potential at T = 0 to the value of the proton mass 
μ = μ̄ = 0.938 GeV (and we also re-scale the result from ref. [41]
to this value) and (ii) T0 to the lattice result T L = 0.155 GeV. The 
resulting freeze-out temperature for the case of a charged black 
hole in asymptotically flat spacetime [41] corresponds to the dot-
ted line in Fig. 2.

4. Charged black hole in AdS

The original analogy between color confinement and gravita-
tional confinement was proposed in the context of a Schwarzschild 
black hole [29]. However, this solution has uncommon thermody-
namic properties such as negative specific heat; it also does not 
exhibit a Hagedorn temperature. The analogy was later extended 
to a charged black hole [41]. Here we consider a further extension 
to a charged black hole in an anti-de Sitter background.

In Einstein–Maxwell–anti-de-Sitter theory the action can be 
written as

I = 1

16πG

∫
d4x

√|g|
[

R − 4 π G F 2 + 6

�2

]
(14)

with � = −3/�2, where � is the characteristic AdS length. The so-
lution to the Einstein–Maxwell–AdS equations corresponding to a 
d = 4 dimensional charged-AdS black hole is given by (6) but now 
with
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f (r) = 1 − 2GM

r
+ 4πG Q 2

r2
+ r2

�2
(15)

The temperature T = f ′ (r+) / (4π) is

T (r+, Q , P ) = 1

4πr+

[
1 + 8πG Pr2+ − 4πG Q 2

r2+

]
, (16)

where r = r+ , determined from f (r+) = 0, is the radius for the 
outer (event) horizon. The other thermodynamic quantities are

S = A

4G
= πr2+

G
, (17)

V =
(

∂M

∂ P

)
S,Q

= 4

3
πr3+, (18)

� =
(

∂M

∂ Q

)
S,P

= 4π
Q

r+
, (19)

and the Smarr relation is M = 2T S − 2P V + �Q .
In the case of charged AdS black hole, it is not possible to write 

a simple expression for the temperature as function of the physical 
parameters, like the mass M and the electrostatic potential �, as 
in Eq. (10). However, it is possible to evaluate the temperature as a 
function of � numerically once the couple (M, G) are fixed while 
the parameter P can vary in a certain range. Fixing the value of the 
temperature T̃0 for the uncharged AdS black hole and the value of 
the charge Q̃ to the value that gives zero temperature

T (M, P , Q = 0) ≡ T̃0, (20)

T (M, P , Q̃ ) = 0, (21)

allow us to calculate the couple (M, G). In contrast to the case of a 
charged black hole in a flat background presented in the previous 
section, the space of the parameters here is constrained.

Constraints from eq. (20) An uncharged black hole in an AdS back-
ground has a minimum temperature Tmin such that for T < Tmin

there is only thermal AdS. At fixed T̃0 this implies that not all val-
ues of P are allowed. The temperature for an uncharged AdS black 
hole as function of the horizon radius is

T (r+, P , Q = 0) = 1

4πr+

[
1 + 8πG Pr2+

]
, (22)

and the requirement T (r+, P , Q = 0) ≥ Tmin gives the constraint

T̃0 ≥ √
2G P/π. (23)

Once G is fixed, the inequality (23) bounds the allowed values of 
the pressure.

In an AdS background, above the minimal value of the temper-
ature T > Tmin there are always two black hole solutions: a large
black hole and a small black hole (depending on the value of the 
mass). Note, also, that the pressure P = −�/8πG as defined in 
Eq. (1) is a combination of both the Newton gravitational constant 
and the AdS radius.

Constraints from eq. (21) In the case of the extremal black hole 
(i.e., when the black hole temperature is zero while the other pa-
rameters are nonzero (P , Q , M, G �= 0)), it is possible to find a 
formula for the mass as a particular combination of the other pa-
rameters

M =
√

G�2 − 1
(
2G�2 + 1

)
6
√

2πG3/2
√

P
(24)

yielding another condition: � < G− 1
2 .
Fig. 1. The curves denote the parameter space where the conditions (21) (dashed) 
and (20) (solid) are satisfied. The temperature for the uncharged AdS black hole T0

in (20) is set to be T L . For P < P E , each dashed curve intersects with each solid 
curve at two different points. We denote these points as “small” and “large” black 
hole solutions, corresponding to the value of their mass. At P = P E there exist only 
one pair of values (G, M) (the dashed and solid green curves meet at one point). 
(For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

QCD parameters Fig. 1 depicts the curves where (20) and (21) are 
satisfied in the plane (G, M) for different values of the pressure. 
The intersection points are the values where both of the equations 
are satisfied; they can be obtained numerically.

As in the previous section, T̃0 = T (M, P , Q = 0) is the tem-
perature when the baryochemical potential is zero (i.e., an un-
charged AdS black hole) and can be fixed to be the lattice tem-
perature T L . Eq. (21), instead, is the condition that defines an 
extremal black hole (i.e. a black hole with zero temperature), ob-
tained when the chemical potential is of the order of the proton 
mass μ̄ = 0.938 GeV. This choice is motivated by the observed 
universal freeze-out curve 〈E〉/〈N〉 ≈ 0.94–1 GeV [73] and the fact 
that a nucleus dissolves at rather low excitation energies, setting 
the decoupling condition at T ≈ 0 to a value near μB ≈ mproton.

As noted above, and in contrast to what happens for an asymp-
totically flat charged black hole, the concurrent fulfillment of the 
conditions (20) and (21) at a fixed pressure P provides two so-
lutions, one, or no solutions for the couple (M, G). We maintain 
the nomenclature used for the uncharged AdS black hole, denot-
ing a large/small black hole as being one with large/small mass 
(even though the solutions have different values of G). In particu-
lar, there exists an extreme pressure P E where the two solutions 
collapse to one, bounding the allowed pressures 0 ≤ P ≤ P E .

These constraints are given by the AdS geometry and form an 
important point of our analysis: unexpectedly the intersections of 
the two constraint curves yield parameters in the range of the ex-
perimental data.

5. Analysis

In Fig. 2 we plot the freeze-out temperature as function of 
μ using the analogy (12) for the small mass (left) and the large
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Fig. 2. Freeze-out data in the statistical hadronization model reported in [72] compared with the criteria discussed in the text for the small AdS black hole solution (left 
panel) and for the large AdS black hole solution (right panel). The dashed curve is for the case P = 0 [41]. The other lines are the temperatures for different values of P (and 
corresponding values of (G, M)).
mass (right) solutions compared to the data [72]. Each curve cor-
responds to a different value of the pressure in the range 0 <
P/P E ≤ 1. We see that the introduction of a pressure P �= 0 moves 
the temperature curves below the curve at P = 0. The value of 
T L fixes the couple (M, G) defining, therefore, the small and large
black holes.

We see from the right-hand side of Fig. 2 that the large black 
hole solution is not continuously connected to the curve at P = 0
(the dashed line, inserted for reference). This is because the large 
uncharged black hole solution does not exist when P = 0. The large 
black hole temperature is, instead, always bounded by the extremal 
pressure P E . For a fixed G we could say that the large black hole is 
colder than the corresponding small black hole at the same value 
of the pressure.

However from the left-hand side of Fig. 2, we see that the tem-
peratures for the small black hole solutions are all bounded by the 
curve at extremal pressure P E (yellow line) and the curve at P = 0
(dashed line). The data are commensurate with 0.95 < P/P E <

0.75.
The parameters of the gravitational analog used in this work 

are fixed to reproduce two crucial relations: (i) the baryochemi-
cal potential at zero temperature is given by the proton mass and, 
(ii) the temperature T at zero baryochemical potential μ = 0 coin-
cides with the corresponding lattice QCD result (which is the same 
constraint that the Einstein-dilaton equations of the holographic 
dual satisfy).

Indeed, in the holographic gravitational models, there is a U (1)

charge to mimic the baryon charge and the corresponding chem-
ical potential μ while a real scalar field in the bulk is used to 
break the conformal invariance and therefore to take into account 
the effects from the QCD running coupling. In particular, a realistic 
description of a nonconformal QGP is given by a dilatonic grav-
ity dual [74] where there is a scalar field φ that is coupled to the 
metric gμν and that is responsible for breaking the conformal sym-
metry of the theory in the IR regime, reproducing the effects of a 
�Q C D generated dynamically (for some studies see [75,76]).

The map presented in (12) suggests that there could also be a 
corresponding quantity associated with the cosmological constant 
that can be varied. In particular, once the pressure is fixed to the 
Fig. 3. A plot of the Gibbs Free energy with respect to small and large solutions 
given by the various curves in Fig. 1. We see that the small black hole has a larger 
Gibbs free energy for small chemical potential.

best value that is in accord with the data (see Fig. 2) the corre-
sponding volume is also fixed, giving the radius of the black hole 
that is in agreement with the data. Since the QCD plasma pressure 
is isotropic within a 25% approximation during the relevant time 
scales [77], this suggests that � can be interpreted as the pressure, 
fitting with the P V interpretation in black hole thermodynamics.

That the small black hole provides a better fit to the data – the 
decay of an unstable QCD plasma – is consistent with it being the 
thermodynamically unstable gravitational configuration. In Fig. 3
we depict a comparison of the Gibbs Free energy with respect to 
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the two possible solutions given by the various curves in Fig. 2. 
This indicates that for small chemical potential, the small black 
hole has a greater Gibbs free energy than the large black hole. As 
the chemical potential increases, the Gibbs free energy of the large 
solution grows faster than that of the small one, and eventually 
the small solution becomes stable. Thus, the large black hole dom-
inates at the unstable solutions at large baryochemical potentials. 
It is also interesting to note in passing that the crossing point of 
the two Gibbs free energies, around μB ≈ 500 MeV [78–80] seems 
to coincide with the speculated position of the critical point of 
QCD.

The dual interpretation of � remains to be clarified. Here we 
present several possibilities. (1) � could be associated with the 
gluon pressure in hadrons in the context of the QCD bag model. 
This would mean that � is not associated with the gas of hadrons, 
but rather with each individual hadron. (2) � could be associated 
with a QCD chiral symmetry breaking scale. (3) � could be asso-
ciated with a QCD confinement scale. Further investigation will be 
required to see which of these provides the best dual description.

6. Conclusions

We have shown that the conjectured equivalence between grav-
itational confinement and color confinement, implemented for 
asymptotically flat charged black holes, can be fruitfully extended 
to include a negative cosmological constant. This quantity can be 
interpreted as a thermodynamic pressure P on the gravitational 
side. Constraints from the AdS geometry yield two possible solu-
tions in a phenomenological interesting region.

One, corresponding to the small charged black hole solution, 
yields a good fit with existing data in the T vs. μ plane for 0.95 <
P/P E < 0.75, where P E is the extremal pressure. The instability of 
the QCD plasma is consistent with the thermodynamic instability 
of the small black hole.

The next step of this analysis would be to study the critical 
phenomena that can happen in a hot dense systems of quarks and 
gluons. Indeed in gauge/gravity duality the Hawking–Page transi-
tion has been associated with a confinement/deconfinement tran-
sition.
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