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We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum 
Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the ap-
pearance of the characteristic infrared feature known as ‘zero crossing’, the origin of which is intimately 
connected with the nonperturbative masslessness of the Faddeev–Popov ghost. The appearance of this 
effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin 
is discussed in the framework of Schwinger–Dyson equations. The effective coupling in the momentum 
subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of 
the effective interaction at the exact location of the zero crossing.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One notable aspect of the ongoing intense exploration of the 
infrared (IR) sector of Quantum Chromodynamics (QCD) has been 
the detailed scrutiny of the fundamental Green’s functions of the 
theory using large-volume lattice simulations [1–8], together with 
a variety of continuum approaches [9–30]. Even though off-shell 
Green’s functions are not physical quantities, given their explicit 
dependence on the gauge-fixing parameter and the renormaliza-
tion scheme, they encode valuable information on fundamental 
nonperturbative phenomena such as confinement, chiral symme-
try breaking, and dynamical mass generation, and constitute the 
basic building blocks of symmetry-preserving formalisms that aim 
at a veracious description of hadron phenomenology [14,31–38].

The most important findings of the aforementioned studies are 
related with the two-point sector of the theory. Specifically, it is 
now firmly established that, in the Landau gauge, the gluon propa-
gator, �(q2), reaches a finite value in the deep IR, whilst the ghost 
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propagator, D(q2) remains massless, but with an IR finite dressing 
function, F (q2) [note that D(q2) = F (q2)/q2]. This characteristic 
behavior has led to the critical reassessment of previously estab-
lished theoretical viewpoints, and has sparked a systematic effort 
towards a ‘top-down’ derivation of the ingredients that enter in the 
dynamical equations describing the properties of mesons [38].

The aforementioned results have been interpreted by employ-
ing a variety of distinct formalisms, such as the refined Gribov–
Zwanziger scenario [22,23], or differently truncated versions of the 
Schwinger–Dyson equations (SDEs) of the theory [11,13]. One par-
ticular approach within this latter framework [39] advocates that 
(a) the gluon acquires dynamically an effective mass [40], through 
a subtle realization of the Schwinger mechanism, and (b) the ghost 
is transparent to this mechanism, and remains massless; however, 
its dressing function is protected by the gluon mass, that tames 
any possible IR divergence and enforces its finiteness at the origin.

This profound difference in the IR behavior between gluons and 
ghosts induces characteristic effects to other Green’s functions [but 
also to �(q2)], essentially due to the inequivalence between loops 
containing ‘massive’ gluons or massless ghosts [41,42]. Specifically, 
while the former are ‘protected’ by the gluon mass, m, yielding 
IR finite contributions of the type log(q2 + m2), the latter are 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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‘unprotected’, yielding (potentially) IR divergent terms of the type 
log q2.

In the case of �−1(q2), the ghost-loop contained in its self-
energy generates a term q2 log q2, and therefore remains IR finite; 
however, the first derivative of �−1(q2) diverges at the origin, pre-
cisely as an unprotected logarithm.

The corresponding effect on the three-gluon vertex is particu-
larly striking. Specifically, in certain special kinematic limits, some 
of the vertex form factors are dominated in the IR by the corre-
sponding ghost-loop diagram, the leading contribution of which, 
by virtue of the Slavnov–Taylor identity (STI), turns out to be pro-
portional to the derivative of �−1(q2). Thus, the form factors re-
verse sign for sufficiently small momenta, displaying finally a log-
arithmic divergence at the origin. The transition from positive val-
ues (at intermediate and large momenta) to a negative divergence 
at the origin is associated with the so-called ‘zero crossing’: at some 
finite energy scale, in the deep IR, the form factors in question van-
ish. The weak nature of the divergence makes the effect difficult 
to observe in lattice simulations. Indeed, SU(2) studies [1,2] found 
the expected pattern in three space–time dimensions (where the 
IR divergence behaves as 1/q), but were less conclusive in four di-
mensions.

We emphasize that independent analyses within the SDE for-
malism, employing a variety of techniques and truncation schemes, 
have confirmed these claims in the three-point [43–46] and the 
four-point [47,48] gluon sector. In addition, unquenching tech-
niques, such as those developed in [49,50], coupled with the lattice 
results of [7], show that the presence of light quarks slightly mod-
ifies the behavior of the gluon and ghost two-point sector only 
at the quantitative level; therefore, the expected IR pattern ‘zero 
crossing plus logarithmic IR divergence’ for n-point gluon Green’s 
functions seems to constitute a robust prediction for QCD.1

In this letter, we present new results for the three-gluon vertex 
obtained from SU(3) lattice simulations in large four-dimensional 
volumes. We restrict our analysis to the tensorial structure corre-
sponding to that of the three-gluon vertex, which is obtained as 
a particular projection of the full lattice three-point function, af-
ter the amputation of the external gluon legs. The results strongly 
support the appearance of a zero crossing in the case of one of 
the two kinematic configurations considered (‘symmetric’ config-
uration). On the other hand, in the case of the second kinematic 
choice (‘asymmetric’ configuration), the presence of a zero crossing 
cannot be clearly discerned. The theoretical origin of this special 
feature is reviewed within the framework of the SDEs, and the 
three-gluon running coupling, defined in the momentum subtrac-
tion (MOM) scheme, numerically extracted from the data. Finally, 
the limitations of the semiclassical approach in accounting for the 
observed behavior of the three-gluon vertex in the IR are briefly 
discussed.

2. Three-gluon vertex, renormalization, and effective charge

The connected three-gluon vertex is defined as the correlation 
function2 (q + r + p = 0)

Gabc
αμν(q, r, p) = 〈Aa

α(q)Ab
μ(r)Ac

ν(p)〉 = f abcGαμν(q, r, p), (1)

1 Notice, however, that, at least in the case of the three-gluon vertex, recent the-
oretical studies [51,52] show that light quarks will shift the zero crossing deeper in 
the IR, which might render it undetectable in current full QCD lattice simulations.

2 In general, the SU(3) vertex contains also terms proportional to the completely 
symmetric group structure dabc ; however, all such terms will be annihilated upon 
their contraction with the f abc that multiplies the projectors W entering in Eqs. (7)
and (9).
where A denotes the gauge field with sub (super) indices rep-
resenting Lorentz (color) indices, and the average 〈·〉 indicates 
functional integration over the gauge space. In terms of the usual 
1-particle irreducible (1-PI) function, one has

Gαμν(q, r, p) = g�α′μ′ν ′(q, r, p)�α′α(q)�μ′μ(r)�ν ′ν(p), (2)

with g the strong coupling constant. In the Landau gauge, the 
transversality of the gluon propagator, viz.,

�ab
μν (q) = 〈Aa

μ(q)Ab
ν(−q)〉 = δab�(p2)Pμν(q), (3)

where Pμν(q) = δμν − qμqν/q2, implies directly that G is totally 
transverse: q ·G = r ·G = p ·G = 0.

There are only four totally transverse tensor structures that can 
be constructed out of three Lorentz indices and two linearly inde-
pendent four-vectors, which are also compatible with the required 
Bose symmetry of the vertex [53]. One of them can be always 
taken to be proportional to the tree-level form

λtree
αμν(q, r, p) = �

(0)

α′μ′ν ′(q, r, p)Pα′α(q)Pμ′μ(r)Pν ′ν(p). (4)

The remaining tensors will be then chosen depending on which 
of the two special momenta configurations, studied in the ensuing 
analysis, will be considered.

The first configuration will be the so-called symmetric config-
uration, in which q2 = r2 = p2 and q · r = q · p = r · p = −q2/2; 
in this case, there is only one possible extra independent tensor, 
namely [54,55]

λS
αμν(q, r, p) = (r − p)α(p − q)μ(q − r)ν/r2. (5)

Then, indicating with Ssym and T sym (respectively, �sym
S and �sym

T ) 
the corresponding form factors in the decomposition of G (re-
spectively, �) in this momentum configuration, Eq. (2) implies the 
relation

T sym(q2) = g �
sym
T (q2)�3(q2),

Ssym(q2) = g �
sym
S (q2)�3(q2). (6)

In particular, the T sym form factor can be projected out through

T sym(q2) = W abc
αμν(q, r, p)Gabc

αμν(q, r, p)

W abc
αμν(q, r, p)W abc

αμν(q, r, p)

∣∣∣∣∣
sym

, (7)

with W abc
αμν = f abc(λtree

αμν + λS
αμν/2).

The second configuration will be the so-called asymmetric con-
figuration, which is defined by taking the q → 0 limit, while im-
posing at the same time the condition r2 = p2 = −p · r. In this 
case, no tensor other than the tree-level form can be constructed, 
with Eq. (4) reducing in this case to [54,55]

λtree
αμν(0, r,−r) = 2rα Pμν(r). (8)

Thus, one is left with a single form factor, which can be projected 
out through

T asym(r2) = W abc
αμν(q, r, p)Gabc

αμν(q, r, p)

W abc
αμν(q, r, p)W abc

αμν(q, r, p)

∣∣∣∣∣
asym

= g �
asym
T (r2)�(0)�2(r2), (9)

where now W abc
αμν = f abcλtree

αμν .
All the quantities defined so far are bare, and a dependence on 

the regularization cut-off must be implicitly understood. Within a 
given renormalization procedure, the renormalized Green’s func-
tions are calculated in terms of the renormalized fields AR =
Z−1/2 A, so that
A
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Fig. 1. (Color online.) Lattice results for the renormalized connected form factor T R in the symmetric (left) and asymmetric (right) momentum configuration. For both data 
sets the renormalization point μ = 4.3 GeV was chosen. The same scale is used in both plots which reveals the similar behavior of the two form factors.
�R(q2;μ2) = Z−1
A (μ2)�(q2),

T sym
R (q2;μ2) = Z−3/2

A (μ2)T sym(q2), (10)

and similarly for the asymmetric configuration. Within the MOM 
scheme that we will employ, one then requires that all the Green’s 
functions take their tree-level expression at the subtraction point, 
namely

�R(q2;q2) = Z−1
A (q2)�(q2) = 1/q2,

T sym
R (q2;q2) = Z−3/2

A (q2) T sym(q2) = gsym
R (q2)/q6. (11)

The first equation yields the renormalization constant Z A as a 
function of the bare propagator, which when substituted into the 
second equation provides a definition of the μ-independent three-
gluon MOM running coupling [54,55]:

gsym(q2) = q3 T sym(q2)

[�(q2)]3/2
= q3 T sym

R (q2;μ2)

[�R(q2;μ2)]3/2
. (12)

In the asymmetric configuration the relation is slightly different, as 
in this case one has

T asym
R (r2; r2) = Z−3/2

A (r2) T asym(r2) = �R(0;q2) gasym
R (r2)/r4,

(13)

implying the μ-independent definition

gasym(r2) = r3 T asym(r2)

[�(r2)]1/2�(0)
= r3 T asym

R (r2;μ2)

[�R(r2;μ2)]1/2�R(0;μ2)
.

(14)

Finally, in both cases the above equations yield for the 1-PI form 
factors the relation

gi(μ2)�i
T, R(�2;μ2) = gi

R(�2)

[�2�(�2;μ2)]3/2
, (15)

where i indicates either the symmetric or the asymmetric momen-
tum configuration, and, correspondingly, �2 = q2, r2.

This latter result is of special interest because it establishes 
a connection between the three-gluon MOM running coupling, 
which many lattice and continuum studies have paid attention 
to, and the vertex function of the amputated three-gluon Green’s 
function, a fundamental ingredient within the tower of (truncated) 
SDEs addressing non-perturbative QCD phenomena. In fact, these 
quantities are related only by the gluon propagator �, which, after 
the intensive studies of the past decade, is very well understood 
and accurately known.
3. Lattice set-up and results

The lattice set-up used for our simulations is that of [56], where 
quenched SU(3) configurations for different bare couplings β and 
lattice volumes were obtained employing the tree-level Symanzik 
gauge action. In particular, we use 220 configurations at β = 4.20
for a hypercubic lattice of length L = 32 (physical volume of 
4.54 fm4) and 900 configurations at β = 3.90 and L = 64 (physical 
volume of 15.64 fm4). The data extracted from these new gauge 
configurations have been supplemented with the one derived from 
the old configurations of [57], obtained using the Wilson gauge ac-
tion at several β (ranging from 5.6 to 6.0), lattices (from L = 24 to 
32) and physical volumes (from 2.44 to 5.94 fm4).

In Fig. 1 we plot the form factor T renormalized at μ = 4.3 GeV
for both the symmetric (left panel) and asymmetric (right panel) 
momentum configuration. In the symmetric case T sym

R displays a 
zero crossing located in the IR region around 0.1–0.2 GeV, after 
which the data seems to indicate that some sort of divergent be-
havior manifests itself. In the asymmetric case the situation looks 
less clear as data are noisier, as a result of forcing one momentum 
to vanish.

4. SDE analysis

As was shown in some of the literature cited above (most no-
tably [41,42]), the nonperturbative ghost loop diagram contributing 
to the SDE of �(q2) is the source of certain noteworthy effects, the 
underlying origin of which is the masslessness of the propagators 
circulating in this particular loop. In the present section we briefly 
review known results, focusing on the aspect needed for the inter-
pretation of the new lattice results presented here.

Specifically, employing a nonperturbative Ansatz for the gluon–
ghost vertex that satisfies the correct STI, the leading IR contribu-
tion, denoted by 
c(q2), is given by [42]


c(q
2) = g2C A

6
q2 F (q2)

∫
k

F (k2)

k2(k + q)2
, (16)

where C A is the Casimir eigenvalue in the adjoint representation, 
and 

∫
k ≡ με/(2π)d

∫
ddk is the dimensional regularization mea-

sure, with d = 4 − ε and μ is the ’t Hooft mass; evidently, in the 
limit q2 → 0, the above expressions behave like q2 log q2/μ2. Even 
though this particular term does not interfere with the finiteness 
of �(q2), its presence induces two main effects: (i) �(q2) displays 
a mild maximum at some relatively low value of q2, and (ii) the 
first derivative of �−1(q2) diverges logarithmically at q2 = 0. The 
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Fig. 2. (Color online.) IR fit of the gluon propagator at μ = 4.3 GeV. The actual data 
fitted, are the semitransparent ones, which are obtained by applying a cubic smooth 
spline with roughness penalty procedure to the original data [58]. The band indi-
cates the variation of the fit between L = 72 and L = 96, L = 80 being somewhere 
in between. Notice also that after the dashed vertical line the scale becomes linear, 
to expose the propagator behavior at the origin.

form of the renormalized gluon propagator that emerges from the 
complete SDE analysis may be accurately parametrized in the IR 
by the expression

�−1
R (q2;μ2) =

q2→0
q2

[
a + b log

q2 + m2

μ2
+ c log

q2

μ2

]
+ m2,

(17)

with a, b, c, and m2 suitable parameters, which captures explicitly 
the two aforementioned effects. Note that �−1

R (0;μ2) = m2, and 
that the ‘protected’ logarithms stem from gluonic loops.

Higher order n-point functions (n > 2) are also affected in no-
table ways by the presence of ghost loops in their diagrammatic 
expansion.3 If the external legs correspond to background gluons 
(as was the case in [42]), the leading IR behavior of projectors such 
as (7) and/or (9) is proportional to the derivative of the inverse 
gluon propagator, by virtue of the Abelian STIs [42]. Thus, even-
tually, a logarithmic divergence appears, which drives the afore-
mentioned projectors from positive to (infinitely) negative values, 
causing invariably the appearance of a zero crossing. Use of the 
‘background quantum’ identities [59,60], which relate background 
Green’s functions with quantum ones, reveals that the same be-
havior is expected for quantum external legs, modulo a (finite) 
function determined by the ghost–gluon dynamics [42]. The ex-
act position of the zero crossing is difficult to estimate, because it 
depends on the details of all finite contributions that are ‘compet-
ing’ against the logarithm coming from the ghost loop; however, it 
is clear that the tendency, in general, is to appear in the deep IR.

In particular, for the form factors under scrutiny, one expects 
the (configuration independent) IR behavior

�i
T, R(�2;μ2) �

�2→0
F (0;μ2)

∂

∂�2
�−1

R (�2;μ2), (18)

where F (0) ≈ 2.9 at μ = 4.3 GeV [5].
To see if indeed the lattice data conform to the expected be-

havior, we start by estimating the propagator’s parameters a, b, c
and m2 by fitting the lattice data of [5]. The results are shown in 
Fig. 2, with the parameter values obtained for the available data 

3 We refer to ghost loops that exist already at the one-loop level. Ghost loops 
nested within gluon loops do not produce particular effects, because the additional 
integrations over virtual momenta soften the IR divergence.
Table 1
Best fit parameters for the IR propagator (17) obtained using the SU(3) data of [5]
for β = 5.7 and L = 72, 80 and 96 lattices.

Parameter L = 72 L = 80 L = 96

a −0.471 −0.151 −1.146
b −0.546 −0.458 −0.922
c 0.362 0.352 0.546
m2 0.151 0.154 0.157

sets listed in Table 1. In what follows we will not distinguish be-
tween these different fits; rather we will use a single curve with 
bands representing its ‘uncertainty’.

At this point we can use Eq. (18) and the relation (6) to deter-
mine the expected IR behavior of the connected form factors T sym

and T asym, and compare with the data.4 The results are shown 
in Fig. 3. While it is evident that in the symmetric case a good 
description of the IR data is achieved, in the asymmetric case the 
positive excess in the data coupled to the large errors make it 
more difficult to discern the low momentum behavior of T asym

R and 
�

asym
T, R .

There is an interesting conclusion one might draw from the be-
havior of these form factors. As discussed in detail in [56], when 
quantum fluctuations can be either neglected or suppressed, gluon 
correlation functions appear to be dominated by a semiclassical 
background described in terms of a multi-instanton solution. In 
particular, specializing to the symmetric configuration, one has in 
this case

gsym(μ2)�
sym
T, R (q2;μ2) �

√
2

9np2
[
�(p2;μ2)

]3
, (19)

where n = 7.7 fm−4 is the instanton density in the semiclassi-
cal background. The resulting curve is shown by the dashed line 
in the lower left panel of Fig. 3. Then, we see that while the 
approximation (19) appears to be justified for momenta roughly 
below q ∼ 1 GeV [56,57], it fails in the deep IR region, around 
q ∼ 0.2–0.3 GeV. This can be understood once we notice that at 
such low momenta (where the zero crossing takes place), the dy-
namics is entirely dominated by massless ghosts; plainly, this is a 
quantum effect that cannot be captured within the framework of a 
semiclassical approach.

Next, using Eqs. (12) and (14), we can construct the effec-
tive coupling αi(�2) = gi2(�2)/4π both from the lattice data and 
the determined IR behavior. In particular, the αi derived from the 
three-gluon vertex is proportional to the square of the form factor 
�T , and displays a striking behavior: αi is forced to vanish at the 
zero crossing, and then ‘bounces’ back to positive values, as can 
be clearly seen in Fig. 4. According to this result, the part of the 
amplitude ‘gluon + gluon → gluon + gluon’ that is mediated by 
the (fully dressed) one-gluon exchange diagram vanishes at some 
special IR momentum; to be sure, this is not true for the entire 
physical amplitude, since additional diagrams (such as ‘boxes’) will 
furnish nonvanishing contributions.

5. Conclusions

We have presented new lattice results for the three-gluon ver-
tex form factor T proportional to the tree-level tensor structure. 
The data were obtained from large 4-dimensional configurations 
generated for an SU(3) Yang–Mills theory gauge fixed in the Lan-
dau gauge, and the form factor evaluated in the so-called sym-
metric and asymmetric momentum configurations. The IR behavior 

4 Subleading terms are collectively taken into account by adding an extra constant 
in (18) the value of which is then determined by refitting the data (only for this 
parameter).
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Fig. 3. (Color online.) Comparison between the lattice results for the renormalized connected and 1-PI form factors T R and g�T, R and the SDE prediction in the symmetric 
(left panels) and asymmetric (right panels) configurations. The band, as in Fig. 2, appears bounded by the results obtained with the fits of the lattice propagators for L = 72
and L = 96, and aims at giving an indication of the variation of the results. To ease the comparison, left and right panels have the same scale. Zero crossing happens at 190
and 220 MeV respectively. For the quantity �sym

T, R (lower left panel) we also plot (dashed line) the semiclassical approximation (19).

Fig. 4. (Color online.) Comparison between the lattice results for the three gluon effective coupling and the SDE prediction in the symmetric (left) and asymmetric (right) 
configuration. Notice that on the y axis scale switch from logarithmic to linear at the location of the dashed gray line (and then back to logarithmic for y < 0); while this 
choice exaggerates the error bars, it has the advantage of exposing the vanishing of the coupling at a nonvanishing momentum value.
of T was then scrutinized in detail and contrasted with (model-
independent) SDE predictions finding good agreement. In doing 
so, we have discussed the failure of a semiclassical picture based 
on instantons, due to the quantum effects associated to massless 
ghost loops. It would be interesting to improve the statistics of the 
asymmetric configuration, in an attempt to discern the zero cross-
ing, which is expected to appear on theoretical grounds, and has 
indeed been established in three-dimensional SU(2) simulations 
[1,2]. In addition, a cleaner look at the positive excess observed 
in the low momentum region of this configuration might help us 
disentangle contributions characteristic to a particular gluon mass 
generation mechanism, proposed recently in [61].
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