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In this Letter, we report a realistic calculation of the magnetic field profile for the equation of state inside 
strongly magnetized neutron stars. Unlike previous estimates, which are widely used in the literature, we 
find that magnetic fields increase relatively slowly with increasing baryon chemical potential (or baryon 
density) of magnetized matter. More precisely, the increase is polynomial instead of exponential, as pre-
viously assumed. Through the analysis of several different realistic models for the microscopic description 
of stellar matter (including hadronic, hybrid and quark models) combined with general relativistic solu-
tions endowed with a poloidal magnetic field obtained by solving Einstein–Maxwell’s field equations in a 
self-consistent way, we generate a phenomenological fit for the magnetic field distribution in the stellar 
polar direction to be used as input in microscopic calculations.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
In recent years, several measurements have shed new light on 
the strength of magnetic fields on the surface and in the interior 
of neutron stars. While measurements using anharmonic preces-
sion of star spin down have estimated surface magnetic fields to 
be on the magnitude of 1015 G for the sources 1E 1048.1-5937 
and 1E 2259+586 [1], data for slow phase modulations in star hard 
x-ray pulsations (interpreted as free precession) suggest internal 
magnetic fields to be on the magnitude of 1016 G for the source 
4U 0142+61 [2]. Together, these estimates have motivated a large 
amount of research on the issue of how magnetic fields modify the 
microscopic structure (represented in the equation of state) and 
the macroscopic structure (obtained from the solution of Einstein–
Maxwell’s equations) of neutron stars.

In order to include the effect of magnetic fields in the equation 
of state to describe neutron stars, a profile for the strength of the 
field in a given direction has to be defined. Usually, this is done 
in two ways, both of which we will show to be incorrect. The first 
way is through the assumption of a constant magnetic field, which 
cannot be correct due to a simple magnetic field flux conservation 
assumption. The second, concerns assuming an ad hoc exponen-
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tial formula for the field profile as a function of baryon density 
or baryon chemical potential. As already pointed out by Menezes 
et al. in Ref. [3], ad hoc formulas for magnetic field profiles in 
neutron stars do not fulfill Maxwell’s equations (more specifically, 
Gauss law) and, therefore, are incorrect. In this Letter, we present 
a realistic distribution for a poloidal magnetic field in the stellar 
polar direction as a function of a microscopic quantity, the baryon 
chemical potential. In order to do so, the macroscopic structure 
of the star obtained from the solution of Einstein–Maxwell equa-
tions has to be taken into account. In this way, we can ensure that 
the magnetic field distribution in the star respects the Einstein–
Maxwell field equations.

In order to make our analysis as general as possible, in this 
work, we make use of three model equations of state for the mi-
croscopic description of neutron stars. They represent state-of-the-
art approaches that include different assumptions of population in 
the core of neutron stars, among other features. Two of them in-
clude magnetic field and anomalous magnetic moment effects, and 
we calculate (for each of these models) the equation of state as 
function of the magnetic field as an additional variable. In a sec-
ond step, through the solution of Einstein’s equations coupled with 
Maxwell’s equations, we determine the magnetic field distribution 
in an individual star (with a fixed dipole magnetic moment), and 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. (Color online) Magnetic field profile (in units of Bc = 4.414 × 1013 G) along 
the polar radius in a MB = 2.2 M� star obtained for the three equation of state 
models R, D and H. Each of these profiles is shown for a dipole magnetic moment 
μ = 3 × 1032 A m2 (curves on the top) and for a dipole magnetic moment μ =
1 × 1030 A m2 (curves on the bottom) including or not magnetic field effects in the 
equation of state. For the lower dipole magnetic moment, curves with and without 
effects in the equation of state completely overlap.

then translate that to a field profile in the polar direction for the 
microscopic equation of state of each model. Later, we generalize 
one profile by averaging the results from the different models. All 
three models presented in the following fulfill current nuclear and 
astrophysical constraints, such as the prediction of massive stars.

Note that, in this work, we are going to present results with-
out the influence of temperature or star rotation. See Refs. [4–6]
and references therein for studies of the relation of magnetic field 
strengths, temperature and rotation in the evolution of neutron 
stars. As has been discussed in Refs. [7–9], there is an important 
relation between magnetic field effects and star cooling, through 
the modification of the stellar population and the cooling processes 
themselves. The relations between rotation and magnetic fields in 
neutron stars have been studied in a general relativity approach in 
Refs. [10–13]. In addition, it has been shown that toroidal fields are 
important for the stability of stellar magnetic fields [14–26]. Nev-
ertheless, in this case, the correspondence between magnetic field 
profiles in the equation of state and in the star is not straight-
forward, since magnetic fields are always included only in one 
direction in the microscopic description of stellar matter.

The first model we use was obtained from Refs. [27,28] by 
Gomes et al. and it will be referred to as “G-model”. It is a 
hadronic model that simulates many-body forces among nucle-
ons by non-linear self-couplings and a field dependence on the 
interactions. The second model was obtained from Refs. [29,7] by 
Dexheimer et al. and it will be referred to as “D-model”. It includes 
nucleons, hyperons and quarks in a self-consistent approach and 
reproduces chiral symmetry restoration and deconfinement at high 
densities. The third model was obtained from Ref. [30] by Hatsuda 
et al. and it will be referred to as “H-model”. It is a version of the 
three-flavor NJL model that includes a repulsive vector–isoscalar 
interaction for the quarks, which is crucial for the description of 
astrophysical data (see Ref. [31] for an analysis of the repulsive 
quark interaction in neutron stars).

The general-relativistic formalism used to describe the macro-
scopic features of magnetic neutron stars determines equilibrium 
configurations by solving the Einstein–Maxwell’s field equations in 
spherical polar coordinates assuming a poloidal magnetic field con-
figuration. For this purpose, we use the LORENE C++ class library 
for numerical relativity [32,10,33–37]. In this approach, the field 
Table 1
Surface and central magnetic fields for the curves shown in the figures calculated 
for different baryonic mass stars, dipole magnetic moments and equations of state 
(without magnetic field effects in the equation of state, as they hardly change the 
field strength distribution).

MB (M�) μ (Am2) EoS Bsur f (G) Bcent (G)

2.2 3 × 1032 G 4.49 × 1017 8.33 × 1017

2.2 3 × 1032 D 4.73 × 1017 9.34 × 1017

2.2 3 × 1032 H 4.14 × 1017 1.33 × 1018

2.2 1 × 1030 G 1.34 × 1015 4.30 × 1015

2.2 1 × 1030 D 1.53 × 1015 6.03 × 1015

2.2 1 × 1030 H 1.87 × 1015 7.85 × 1015

1.6 2 × 1032 G 2.84 × 1017 5.81 × 1017

1.6 2 × 1032 D 2.87 × 1017 6.04 × 1017

1.6 2 × 1032 H 1.03 × 1017 5.31 × 1017

1.6 1 × 1030 G 1.34 × 1015 4.04 × 1015

1.6 1 × 1030 D 1.24 × 1015 4.40 × 1015

1.6 1 × 1030 H 4.84 × 1014 3.22 × 1015

is produced self-consistently by a macroscopic current, which is a 
function of the stellar radius, angle θ (with respect to symmetry 
axis), and dipole magnetic moment μ for each equation of state. 
The dipole magnetic moments shown in this work were chosen to 
reproduce a distribution with a central stellar magnetic field close 
to the upper limit of the code (maximum field strength that still 
reproduces a maximum density in the center of the star) and one 
to reproduce a surface magnetic field of about 1015 G, the maxi-
mum value observed on the surface of a star [1].

Fig. 1 shows the magnetic field profile obtained in the po-
lar direction (in units of the critical field for the electron Bc =
4.414 × 1013 G) for the three equation of state models including 
the self-consistent solution of Einstein–Maxwell’s equations. The 
values for the surface and central magnetic field strengths for the 
curves are shown in Table 1. The curves are shown for fixed val-
ues of the dipole magnetic moment μ including or not magnetic 
field effects in the equation of state for a star with baryonic mass 
MB = 2.2 M� . It is important to note that, even when magnetic 
field effects are not included in the equation of state, the mag-
netic field still appears in the energy–momentum tensor through 
the magnetic energy, momentum density flux, and magnetic stress 
(see Eqs. (4)–(8) of Ref. [38]). For the H-model, magnetic field ef-
fects could not be included in the equation of state due to the 
generation of a highly oscillating magnetization, as already pointed 
out in Refs. [39,40].

There are two main conclusions that can be drawn from Fig. 1. 
Firstly, whether or not one includes magnetic field effects in the 
equation of state of matter makes very little difference in the 
macroscopic magnetic field distribution of the star. It is impor-
tant to note that magnetic field effects in the equation of state 
are still relevant for other quantities, such as the particle popu-
lation and, consequently, the thermal evolution of neutron stars. 
Secondly, completely different equation of state models show dif-
ferent magnetic field strengths, but the respective profiles have 
approximately the same shape (when taking into account the log-
arithmic scale). The top curves of Fig. 1 are magnetic field profiles 
in the stellar polar direction for a higher dipole magnetic moment, 
while the bottom curves are profiles for a lower value of the dipole 
magnetic moment. In the latter case, whether or not one includes 
magnetic field effects in the equation of state makes no differ-
ence.

In Fig. 2, we translate the magnetic field profile from Fig. 1
into the thermodynamical quantity baryon chemical potential. The 
shape of the profiles obtained from the solution of Einstein–
Maxwell’s equations is well fit by a quadratic polynomial (and not 
exponential function). This allows us to fit one profile using the 
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Fig. 2. (Color online) Magnetic field profile in the polar direction in a MB = 2.2 M�
star as a function of baryon chemical potential obtained for the three equation of 
state models R, D and H. Each of these profiles is shown for a dipole magnetic 
moment μ = 3 × 1032 A m2 (curves on the top) and for a dipole magnetic moment 
μ = 1 × 1030 A m2 (curves on the bottom) including or not magnetic field effects 
in the equation of state. For the lower dipole magnetic moment, curves with and 
without effects in the equation of state completely overlap.

Table 2
Quadratic fit coefficients a, b, and c for Eq. (1) calculated for different baryonic mass 
stars.

MB (M�) a
(

G2

A m2

)
b

(
G2

A m2MeV

)
c

(
G2

A m2MeV2

)

2.2 −7.69 × 10−1 1.20 × 10−3 −3.46 × 10−7

1.6 −1.02 1.58 × 10−3 −4.85 × 10−7

average of the different equation of state models. It depends only 
on the baryon chemical potential μB and on the value chosen for 
the dipole magnetic moment μ

B∗(μB) = (a + bμB + cμ2
B)

B2
c

μ, (1)

with coefficients a, b, and c given in Table 2. In this case, μB
should be given in MeV and μ in A m2 in order to produce B∗
in units of the critical field for the electron Bc = 4.414 × 1013 G. 
Note that between Figs. 1 and 2 the order of the EoS model curves 
change order (with respect to B∗) as for model “H” the same ra-
dius corresponds to much larger baryon chemical potentials.

But, what about other (lighter) stars? Each one would have 
about the same shape of magnetic field profile (again when taking 
into account the logarithmic scale) but with different strengths, as 
can be seen in Fig. 3 for a MB = 1.6 M� star and different dipole 
magnetic moments. The values for the magnetic field strengths for 
the curves are shown in Table 1. Note that a MB = 1.6 M� star 
is approximately equivalent to a canonical MG = 1.4 M� star. In 
this case, the parameters of the profile fit in Eq. (1) are once more 
given in Table 2, where it can be seen by the values of the param-
eter “c” that the profiles for a larger star give on average a slightly 
more linear fit. Again, μB should be given in MeV and μ in A m2

in order to produce B∗ in units of the critical field for the elec-
tron Bc . Note that, for a less massive star (and less compact), all 
equations of state that contain baryons reproduce very similar re-
sults. This stems from the fact that they were fitted to reproduce 
nuclear physics constraints and the central densities in such a star 
do not reach values much larger than saturation (less than two 
times n0).

Only for comparison, we discuss now a figure (Fig. 4) containing 
the already mentioned ad hoc magnetic field strength exponential 
Fig. 3. (Color online) Same as Fig. 2 but for a MB = 1.6 M� star with a dipole 
magnetic moment μ = 2 × 1032 A m2 (curves on the top) and for a dipole magnetic 
moment μ = 1 × 1030 A m2 (curves on the bottom) including or not magnetic field 
effects in the equation of state. Many of the curves overlap.

profiles. The original ansatz was written as a function of baryon 
density nB

B∗(nB/n0) = Bsur f + B0

[
1 − e−β(nB/n0)γ

]
, (2)

with typical choices of constants β = 0.01 and γ = 3, surface mag-
netic field Bsur f and maximum field strength Bsur f + B0. This for-
mula was suggested for the first time in Ref. [41] but later rewrit-
ten as a function of baryon chemical potential (with the same 
structure) and subsequently used in about one hundred publica-
tions, among which the most cited ones are Refs. [42,39,43,7,44].

Fig. 4 shows a comparison of some of our results, the one re-
producing the largest magnetic field strength variation (equation 
of state H for a star with MB = 2.2 M� and μ = 3 × 1032 A m2), 
and the one reproducing the smallest magnetic field strength vari-
ation (equation of state G for a star with MB = 1.6 M� and 
μ = 1 × 1030 A m2) together with four ad hoc profiles generated 
from Eq. (2) (marked by symbols instead of lines). The ad hoc 
profiles were chosen to be two common ones (purple diamonds 
and red “x”’s) and two that match on the surface and asymptot-
ically the magnetic field strengths of our results (brown squares 
also shown in the inset and turquoise circles). The inset highlights 
the curves that reproduce lower magnetic field strengths. Clearly, 
none of the ad hoc exponential profiles coincide with our results 
(except maybe for one point), even the ad hoc profiles that were 
chosen to match our field strengths on the surface of the star and 
at asymptotically high chemical potentials.

It is important to note that the fit we provide allows one to 
include a magnetic field profile in the polar direction in any equa-
tion of state in a simple way. This will allow analyses of magnetic 
field effects in specific models studying, for example, changes in 
stiffness, changes in population, phase transitions, temperature (for 
fixed entropy per baryon), transport properties (thermal and elec-
tric conductivities), etc. A further inclusion of the obtained equa-
tions of state in a symmetric static isotropic solution for Einstein’s 
equations (TOV [45,46]) to obtain macroscopic star properties is 
not a realistic approach when dealing with strong magnetic fields. 
This is because the magnetic field distribution is different and 
more complicated in other directions of the star and the pure mag-
netic field contribution would have to be added in an isotropic 
manner, being either positive or negative. In reality, this con-
tribution has different signs in different directions and requires, 
therefore, a more advanced formalism (such as the one used in 
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Fig. 4. (Color online) Comparison of our results with larger magnetic field strength 
variation (H with MB = 2.2 M� and μ = 3 × 1032 A m2), smaller magnetic field 
strength variation (G with MB = 1.6 M� and μ = 1 × 1030 A m2) and four ad hoc 
profiles from Eq. (2) (marked by symbols instead of lines). The ad hoc profiles were 
chosen to be two common ones (purple diamonds and red “x”’s) and two that 
match on the surface and asymptotically the magnetic field strengths of our results 
(brown squares also shown in the inset and turquoise circles). The inset highlights 
the curves that reproduce lower magnetic field strengths.

this Letter) which solves Einstein–Maxwell’s field equations self-
consistently.

At this point, one might be wondering why we did not choose 
to study profiles of magnetic fields with respect to baryon density. 
The reason is that the baryon density is not a continuous quan-
tity in the presence of a first order phase transition (as a first 
derivative of the grand-potential) and, therefore, presents disconti-
nuities. One exception concerns the construction of a mixed phase 
but, even in the case of an extended mixed phase in the star (like 
the one generated by the model referred to as “D” in this work), 
a profile as a function of baryon density will present a change of 
slope at the mixed phase. The same argument can be applied to a 
magnetic field profile as a function of energy density, such as the 
one in Ref. [47]. In addition, different models present different re-
lations between baryon chemical potential and baryon density or 
energy density, which makes it harder to construct one universal 
magnetic field fit function. Nevertheless, we note that, if we use 
a hadronic model such as the one referred to as “G” in this work, 
the magnetic field profile calculated self-consistently as a function 
of baryon density will be a quartic polynomial but, still, not an 
exponential function.

In summary, we have provided a magnetic field profile as a 
function of baryon chemical potential (corresponding to the polar 
direction in a magnetized neutron star) which is to a large extent 
model independent. For this purpose, we have used three very dif-
ferent state-of-the-art equation of state models, built with differ-
ent assumptions and including different degrees of freedom. When 
combined with the solutions of the Einstein–Maxwell’s equations 
in a self-consistent way, this provided a formula to calculate how 
the magnetic field varies with baryon chemical potential, depend-
ing only on the dipole magnetic moment of choice and the stellar 
baryonic mass. A larger dipole magnetic moment produces a pro-
file with larger magnetic field strengths for any baryon chemical 
potential. The resulting fit is quadratic in form and not exponen-
tial as previously assumed. Our fit is presented for the two most 
relevant types of neutron stars, one with gravitational mass around 
2 M� and one around 1.4 M� (the baryonic mass correspondence 
varies slightly with model). The fit can be applied to any micro-
scopic description of magnetized neutron stars. In this way, one 
can produce an equation of state that includes magnetic field ef-
fects without the need for solving the Einstein–Maxwell equations 
(as long as one is not interested in stellar macroscopic properties) 
but, still, not violating Gauss law.

In order to further refine our calculations, in the future, we in-
tend to include temperature and rotation effects. In this way, we 
will be able to study the thermal evolution of magnetized proto-
neutron and neutron stars. As already mentioned, toroidal mag-
netic field components are important for the long-term stability 
of magnetized neutron stars. Work on expanding the microscopic 
formalism to allow a more complex correspondence for magnetic 
fields in different directions of the star is underway.
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