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We investigate viscous effects on the dynamical evolution of QCD matter during the first-order phase 
transition, which may happen in heavy-ion collisions. We first obtain the first-order phase transition 
line in the QCD phase diagram under the Gibbs condition by using the MIT bag model and the hadron 
resonance gas model for the equation of state of partons and hadrons. The viscous pressure, which 
corresponds to the friction in the energy balance, is then derived from the energy and net baryon number 
conservation during the phase transition. We find that the viscous pressure relates to the thermodynamic 
change of the two-phase state and thus affects the timescale of the phase transition. Numerical results 
are presented for demonstrations.
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1. Introduction

A phase diagram separates phases and determines conditions, 
at which different phases coexist at thermal equilibrium. The com-
pletion of the QCD phase diagram [1] is an ongoing task and 
essential for understanding the matter under strong interaction. 
Lattice QCD calculations [2] showed that the QCD phase transi-
tion at small baryon chemical potential is a crossover rather than 
a real phase transition. At high baryon chemical potential, theory 
predicts a first-order phase transition line [3] ending at a QCD 
critical point [4]. The phase transition of QCD matter can be inves-
tigated in experiments of heavy-ion collisions, where quark–gluon 
plasma (QGP) cools down due to expansion and hadronizes at cer-
tain temperature and baryon chemical potential. One major goal of 
the beam energy scan program at Relativistic Heavy Ion Collider 
(RHIC) [5–8] is to locate the critical point in the QCD phase dia-
gram.

Usually, a phase transition is defined when two coexisting 
phases are in thermal equilibrium. The QCD matter produced in 
heavy-ion collisions possesses, however, a nonzero viscosity [9–11]
and deviates from thermal equilibrium. If the system is not far 
away from thermal equilibrium, one can still define thermody-
namic quantities such as temperature, pressure, and chemical po-
tential, as done in viscous hydrodynamic calculations. With these 
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thermodynamic quantities one can also identify the first-order 
phase transition for the expanding QGP, if the Gibbs condition 
holds. In this paper we consider nonzero viscosities of QCD matter 
and investigate viscous effects on the dynamical evolution of QCD 
matter during the first-order phase transition.

In Sec. 2 we first calculate the first-order phase transition line 
under the Gibbs condition for phase equilibrium by using MIT bag 
model and hadron resonance gas model for the equation of state 
(EoS) of the parton and hadron phase. We then show in Sec. 3
how the shear and bulk viscosity affect the phase transition of the 
QCD matter produced in heavy-ion collisions. Two different expan-
sion geometries are applied to the evolution of the QCD matter. In 
Sec. 4 further discussions are given.

2. Phase diagram

Since lattice QCD results of EoS at finite baryon chemical poten-
tial are not yet available, we use the EoS from model calculations. 
Based on these, we present in this section the first-order phase 
transition line in the temperature–baryon chemical potential dia-
gram.

The parton phase is considered as a system of massless quarks 
and gluons, which interactions are described by perturbative QCD 
(pQCD) up to g2

s terms [12–14]. The pressure and energy density 
are

P p = a(T ,μq, gs)T 4 − B , (1)
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ep = 3a(T ,μq, gs)T 4 + B , (2)

where B is the bag constant with B1/4 = 200 MeV and

a(T ,μq, gs)

= π2
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μi is the chemical potential of a quark flavor. n f is the number 
of quark flavors. We consider u, d, s quarks (n f = 3) and assume 
μu = μd ≡ μq , μū = μd̄ = −μq , and μs = μs̄ = 0. The running 
coupling is given by [12–14].

αs = g2
s

4π
= 12π

33 − 2n f

(
ln

0.8μ2
q + 15.6T 2

�2
Q C D

)−1

(4)

with �Q C D = 100 MeV. From the pressure we obtain the net 
baryon number density, which is one third of the net quark num-
ber density,

nBp = 1

3

∂ P p

∂μq
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T

≈ 1

3
n f

(
1 − 2αs

π

)(
μq T 2 + 1

π2
μ3

q

)
. (5)

Here we neglect the logarithmic dependence of αs on μq .
The hadron phase is described by the hadron resonance gas 

model (HRG) [15–17]. Baryons, mesons, and their resonances hav-
ing masses up to 2 GeV are included. The pressure and energy 
density of hadrons and the net baryon number density are given 
by

Ph =
∑

i P 0
i

1 + ∑
i n0

i vi
+

∑
j P̄ 0

j
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j n̄0

j v j
+
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m , (6)
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nBh =
∑
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i vi
−

∑
j n̄0

j

1 + ∑
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j v j
, (8)

where i, j, and m denote baryon, antibaryon, and meson, respec-
tively. P 0

k , e0
k , and n0

k are the pressure, energy density, and number 
density of a hadron species k, when assuming a non-interacting 
hadron gas,

P 0
k (T ,μh

k) = dk

6π2

∫
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where dk is the degeneracy factor and
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⎡
⎢⎣exp

⎛
⎜⎝

√
p2 + m2

k − μh
k

T

⎞
⎟⎠ ± 1

⎤
⎥⎦

−1

. (12)

+ sign is for baryons and − sign is for mesons. mk denotes the 
hadron mass and μh denotes the hadron chemical potential, which 
k
Fig. 1. The QCD first-order phase transition line from model calculations.

Fig. 2. The ratio sp/nBp and sh/nBh along the first-order phase transition line. The 
dashed straight line and dotted curve show the trajectory of sm/nBm during the 
first-order phase transition in an ideal and viscous hydrodynamic expansion, re-
spectively. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

relates to the quark chemical potential as μh
k = νkμq , where νk is 

the net quark number in hadron k. Thus, μh
k = 0 for mesons and 

μh
k̄

= −μh
k when k̄ denotes the antiparticle of k.

We take short range repulsive interactions among (anti)baryons 
into account [15,18–20]. This is indicated in the denominators of 
the terms in Eqs. (6)–(8), where vi( j) = 4πr3

i( j)/3 is the eigen vol-
ume of baryon i or antibaryon j. We assume a same hard sphere 
radius for all baryons.

During the first-order phase transition the Gibbs condition 
holds. The pressure, temperature and baryon chemical potential of 
both parton and hadron phase are equal. Equating the pressures 
from Eqs. (1) and (6) with the same temperature T and baryon 
chemical potential μB = 3μq , we obtain the phase boundary curve, 
which is shown in Fig. 1. The hard-core radius ri( j) of (anti)baryons 
is set to be 0.6 fm [15]. The calculated curve is similar as those 
given in [15,21,14].

For the later use the entropy density is given below,

si = ei + Pi − μinBi

T
, (13)

where the subscript i can be p and h denoting the parton and 
hadron phase, respectively. We calculate sp/nBp and sh/nBh along 
the first-order phase transition line. The results are shown in Fig. 2. 
We see that sp/nBp is larger than sh/nBh and both are decreasing 
with increasing μB .
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3. Viscous effects during the first-order phase transition

In this section we show how the QCD matter in heavy-ion col-
lisions crosses the first-order phase transition line. For vanishing 
viscosity the total entropy is conserved. With the conservation 
of the net baryon number the ratio of the entropy density over 
the net baryon number density is conserved too. This means that 
sh/nBh at the end of the phase transition should be equal to sp/nBp
at the beginning of the phase transition. From Fig. 2 we realize 
that sp/nBp is always larger than sh/nBh at any given μB . There-
fore, μB (and T ) cannot keep constant during the first-order phase 
transition. Since in addition sh/nBh increases with decreasing μB , 
μB of the two-phase state will change and move continuously to 
a smaller value along the first-order phase transition line (see the 
dashed line in Fig. 2), while T will accordingly move to a larger 
value [22]. The first-order phase transition will end up at a smaller 
μB (or a larger T ). In the following we will study viscous effects 
on the dynamical evolution of QCD matter during the first-order 
phase transition. Obviously, μB (or T ) along the first-order phase 
transition line will end up at even smaller (larger) value (see the 
dotted curve in Fig. 2), since more entropy will be produced due 
to nonzero viscosities.

We consider an expanding system of partons, which is undergo-
ing the first-order confinement phase transition and hadronizing. 
There should be a clear spatial separation between the parton and 
hadron phase. Hadron bubbles will be formed. However, the de-
scription of the nucleation process is still a challenging issue [23,
24]. We can imagine that due to the statistical nature, some of 
the bubbles are disappearing, while the others are growing and 
merging until the hadronization is complete. In this article we 
get around the fluctuating bubble picture in the nucleation pro-
cess and describe the hadronization on an ensemble average. To 
this end we assume that each volume element, no matter how 
small it is, contains separated parton and hadron volumes. Sup-
pose V is the volume of an expanding element in its local rest 
frame at proper time τ . We denote V p and Vh as the volume 
of the parton and hadron phase, respectively. The fraction of the 
parton phase is then f p = V p/V = V p/(V p + Vh). The time depen-
dence of f p describes the hadronization on an ensemble average. 
The main conclusion of our study that we will present now shows 
that the effect of nonzero viscosity is to accelerate the decrease of 
μB and to slow down the first-order phase transition.

The energy density and the net baryon number density of the 
two-phase system in the local rest frame of the considered ex-
panding volume element are

em = ep f p + eh(1 − f p) , (14)

nBm = nBp f p + nBh(1 − f p) , (15)

where ep , eh , nBp , and nBh are functions of μB . (Corresponding T
are determined by the first-order phase transition line shown in 
Fig. 1.) f p and μB are changing with time. Since em and nBm can 
be solved from the hydrodynamic equations according to the en-
ergy and net baryon number conservation, we can determine f p
and μB at each time point. The viscosity affects the time evolu-
tion of em and, thus, affects f p and μB too. The following are the 
details for determining f p and μB .

Taking time derivative of Eq. (14) gives

∂em

∂τ
= (ep − eh)

df p

dτ
+

[
dep

dμB
f p + deh

dμB
(1 − f p)

]
∂μB

∂τ
. (16)

The left-hand side of the above equation can be obtained from the 
hydrodynamic equation for the energy density [25,26]

Dem = −(em + Pc + �m)∇μUμ + π
μν
m ∇<μUν> , (17)
where Uμ is the fluid four-velocity, �m = �p f p + �h(1 − f p) is 
the total bulk pressure, and πμν

m = π
μν
p f p + π

μν
h (1 − f p) is the 

total shear tensor. Since we use the Landau’s definition of the fluid 
four-velocity, there is no heat flow term in Eq. (17). Other symbols 
in this equation are defined as follows:

D ≡ Uμ∂μ , (18)

	μν ≡ gμν − UμUν , (19)

∇μ ≡ 	μν∂ν , (20)
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μ
τ
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We have then

∇μUμ = ∂μUμ + �
μ
αμUα , (22)
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2
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2
(	μαUβ�ν
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where �μ
αβ ≡ 1

2 gμν(∂β gαν −∂α gνβ −∂ν gαβ) denotes the Christoffel 
symbol. By introducing the shear pressure

π̃m = −π
μν
m ∇<μUν>

∇μUμ
, (24)

Eq. (17) changes to

Dem = −(em + Pc + �m + π̃m)∇μUμ . (25)

In the local rest frame, where Uμ = (1, 0, 0, 0), we have Dem =
∂em/∂τ and

∇μUμ = 1

V

dV

dτ
. (26)

By equating the right-hand side of both Eqs. (16) and (25) we ob-
tain

df p

dτ
= −em + Pc + �m + π̃m

ep − eh

1

V

dV

dτ

− 1

ep − eh

[
dep

dμB
f p + deh

dμB
(1 − f p)

]
∂μB

∂τ
. (27)

Analogously to the derivation from Eqs. (14) and (17) to 
Eq. (27), we can also derive df p/dτ from the net baryon num-
ber density (15) and its hydrodynamic evolution

DnBm = −nBm∇μUμ , (28)

which indicates the net baryon number conservation. In the 
present study we have neglected the diffusion current induced by 
the heat conduction. We have then

df p

dτ
= −

(
nBh

nBp − nBh
+ f p

)
1

V

dV

dτ
− 1

nBp − nBh

×
[

dnBp

dμB
f p + dnBh

dμB
(1 − f p)

]
∂μB

∂τ
. (29)

Equating Eq. (27) and Eq. (29) gives

�m + π̃m = nBh(ep − eh)

nBp − nBh
− (eh + Pc) + C1

1
1
V

dV
dτ

∂μB

∂τ
, (30)

where
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C1 =
(

ep − eh

nBp − nBh

dnBp

dμB
− dep

dμB

)
f p

+
(

ep − eh

nBp − nBh

dnBh

dμB
− deh

dμB

)
(1 − f p) . (31)

In the first-order theory of hydrodynamics, the bulk pressure and 
shear stress tensor are proportional to the bulk and shear viscosity 
[25,27,28],

�m = −ξm∇μUμ , (32)

π
μν
m = 2ηm∇<μUν> . (33)

ηm and ξm are the shear and bulk viscosity of the two-phase sys-
tem and ηm = ηp f p +ηh(1 − f p) and ξm = ξp f p +ξh(1 − f p), where 
ηp and ηh (ξp and ξh) are the shear (bulk) viscosity of the parton 
and hadron phase respectively. If all the viscosities and the fluid 
velocity are known, we can solve μB(τ ) from Eq. (30) and then 
f p(τ ) from Eq. (27) or Eq. (29).

As stated at the beginning of this section, μB should decrease 
along the first-order phase transition line. However, from Eq. (30)
it is not obvious that ∂μB/∂τ is negative even for vanishing vis-
cosities. We now look at the entropy of the two-phase system, 
which is

sm ≡ em + Pc − μBnBm

T
= sp f p + sh(1 − f p) (34)

according to Eqs. (14) and (15), and the definition (13). The time 
evolution of sm is obtained from the time evolution of em and nBm , 
namely Eqs. (17) and (28). We have

∂sm

∂τ
= −sm∇μUμ + �2

m

ξm T
+ πm,μνπ

μν
m

2ηm T
(35)

for the first-order viscous hydrodynamics. Analogously to the 
derivation of Eq. (27) we get

df p

dτ
= − T sm + �m + π̃m

T (sp − sh)

1
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− 1
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[
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dμB
f p + dsh

dμB
(1 − f p)

]
∂μB

∂τ
. (36)

Equating Eq. (36) with Eq. (29) gives then

�m + π̃m = T

(
sp

nBp
− sh

nBh

)
nBpnBh

nBp − nBh

+C2
T

1
V

dV
dτ

∂μB
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, (37)

where

C2 =
(

sp − sh

nBp − nBh
− dsp

dnBp

)
dnBp

dμB
f p

+
(

sp − sh

nBp − nBh
− dsh

dnBh

)
dnBh

dμB
(1 − f p) . (38)

With the Gibbs–Duhem equation dP = sdT + ndμ one can prove 
that Eqs. (30) and (37) are identical. Since both sp/nBp and sh/nBh

decrease with increasing μB (see Fig. 2), i.e., d(sp/nBp)/dμB < 0
and d(sh/nBh)/dμB < 0, one obtains easily dsp/dnBp < sp/nBp and 
dsh/dnBh < sh/nBh . We have then

C2 >

(
sp

nBp
− sh

nBh

)[
nBh

nBp − nBh

dnBp

dμB
f p

+ nBp

nBp − nBh

dnBh

dμB
(1 − f p)

]
> 0 (39)
for sp/nBp > sh/nBh (see Fig. 2). From Eq. (37) we realize that 
∂μB/∂τ is always negative and its absolute value becomes larger 
for increasing viscosity. [Remember that �m and π̃m are negative 
for the first-order viscous hydrodynamics when the system is ex-
panding and they are proportional to the bulk and shear viscosity 
according to Eqs. (24), (32), and (33).] The viscous effect leads to 
a stronger decrease of μB during the first-order phase transition, 
compared to the ideal hydrodynamic expansion. Moreover, accord-
ing to Eq. (29) the decrease of f p slows down in the viscous case. 
The larger the viscosity, the longer will the phase transition take.

For demonstrating the viscous effects we now calculate explic-
itly the time evolution of μB and f p during the first-order phase 
transition with given fluid velocity and viscosities. We compare the 
results with nonzero viscosities to those with zero viscosities.

To this end we use the analytical solutions of Uμ from one-
dimensional Bjorken expansion [29] and three-dimensional Gub-
ser expansion [30,31]. Be Uμ = γ (1, v) with γ = 1/

√
1 − v2 in 

the space time coordinate (t, r). With the time τ̃ = √
t2 − z2, the 

space time rapidity η = (1/2) ln(t + z)/(t − z), the transverse radius 
ρ = √

x2 + y2 and the azimuthal angle φ, the fluid velocity can be 
transformed into the coordinate (τ̃ , η, ρ, φ) as follows [32]:

U τ̃ = γ (coshη − vz sinhη) ,

Uη = γ

τ̃
(vz coshη − sinhη) ,

Uρ = γ (vx cosφ + v y sinφ) ,

Uφ = γ (v y cosφ − vx sinφ) . (40)

Uμ in Bjorken expansion is given in the coordinate (t, r) [29],

vx = v y = 0 , vz = z

t
, (41)

while Uμ in Gubser expansion is given in the coordinate
(τ̃ , η, ρ, φ) [30,31],

U τ̃ = cosh k , Uρ = sinh k , Uη = Uφ = 0 , (42)

where

tanh k = 2τ̃ ρ

a2 + τ̃ 2 + ρ2
. (43)

Different from the Bjorken expansion, the Gubser expansion in-
cludes transverse expansion. The parameter a is set to be 4.5 fm. 
A similar value has been used to describe the hydrodynamic evo-
lution of QGP in Au+Au collisions at RHIC with 

√
sN N = 200 GeV

[30,33]. In addition we choose ρ = 0 in our calculations. The phase 
transition in volume elements with larger transverse radius ρ will 
occur earlier. For Bjorken expansion and for Gubser expansion at 
ρ = 0, τ̃ is equal to the proper time in the local rest frame, τ .

Although there are calculations and model-to-data analyses on 
the shear and bulk viscosity of the parton and/or hadron phase in 
heavy-ion collisions [34–41], the shear and bulk viscosity of both 
phases during the first-order phase transition are not yet fixed 
so far. We assume for simplicity that the shear and bulk viscos-
ity in the parton phase are equal and the shear and bulk viscosity 
in the hadron phase are twice as much as those in the parton 
phase. Moreover, we set ηp T /hp = ξp T /hp to be constant during 
the phase transition. hp = ep + Pc is the enthalpy density of par-
tons. At μB = 0, hp/T is equal to the entropy density. ηp T /hp and 
ξp T /hp are more relevant to characterize the viscous effect in slow 
expansion [42] as will happen in heavy-ion collisions with lower 
colliding energies.

In Fig. 3 the time evolution of μB and f p are presented with 
three different values of viscosities, ηp T /hp = ξp T /hp = 0, 0.2, 0.4, 
and with two different expansion dynamics, Bjorken and Gubser 
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Fig. 3. Time evolution of μB , f p , and volume increase for ideal and viscous hydro-
dynamic expansion. We set τc = 1.5 fm/c and μB (τc) = 0.5 GeV.

expansion. As an example, the starting time of the phase transi-
tion τc was set to be 1.5 fm/c and μB at τc has been chosen to 
be 0.5 GeV. With these settings we obtain nBp = 0.1948/fm3 and 
sp/nBp = 20 at τc .

First we see that the results agree with the qualitative analy-
ses done before. Compared with those with zero viscosities, the 
results with increasing viscosities show that the decrease of μB

becomes stronger, the phase transition takes longer, and thus μB

ends up with smaller final values, when the phase transition in the 
considered volume is complete. Second, the final value of μB in 
ideal hydrodynamic expansion does not depend on the expansion 
geometry, because both the entropy and net baryon number are 
conserved. In viscous expansion the entropy production depends 
on the expansion geometry. Therefore, the final value of μB in the 
Bjorken expansion is different from that in the Gubser expansion. 
Third, compared to the Bjorken expansion, the transverse expan-
sion in the Gubser expansion leads to a stronger decrease of μB

and faster phase transition.
In addition, we show in the last panel of Fig. 3 the vol-

ume increase during the phase transition, V (τ )/V (τc). The points 
mark the volume increase at different end times of the phase 
transition. The rate of the volume increase is stronger in three-
dimensional Gubser expansion than in one-dimensional Bjorken 
expansion. However, since the phase transition proceeds faster in 
Gubser expansion than in Bjorken expansion, the volume increase 
at the end of the phase transition is stronger in Bjorken expansion 
than in Gubser expansion.

The trajectory of sm/nBm during the first-order phase transition 
is plotted in Fig. 2 for an ideal expansion (dashed straight line) and 
a viscous Bjorken expansion with ηp T /hp = 0.2 (dotted curve).

Our results of the viscous effects on the dynamical evolution 
of QCD matter during the first-order phase transition could be re-
fined, if more reliable EoS and transport coefficients of the parton 
and hadron phase were available and more realistic hydrodynamic 
expansion of QCD matter had been calculated at large baryon 
chemical potential. The present study is the basis for a further de-
velopment of the dynamic transport simulation of the QCD phase 
transition in heavy-ion collisions [43].

4. Further discussions

In this section we discuss (or speculate) how the first-order 
phase transition will proceed with much larger viscosities, with 
which calculations using the first-order hydrodynamics may be in-
valid.

Recalling Eq. (16) at the starting time of the phase transition 
τc , where f p = 1, we have

∂em

∂τ
= (ep − eh)

df p

dτ
+ dep

dμB

∂μB

∂τ
. (44)

For an expanding system ∂em/∂τ is always negative, while its ab-
solute value depends on the form of the expansion (Uμ) and vis-
cosity. The larger the viscosity, the smaller is |∂em/∂τ |. If the sec-
ond term on the right hand side of Eq. (44), (dep/dμB)(∂μB/∂τ ), 
is positive, df p/dτ should be negative, which indicates that the 
first-order phase transition will always proceed with any large 
viscosity, unless the viscous hydrodynamics breaks down. On the 
other hand, if (dep/dμB)(∂μB/∂τ ) is negative, df p/dτ could be 
(mathematically) positive for sufficient large viscosity and slow ex-
pansion. A positive df p/dτ at τc is not physical, which indicates 
that large viscosity may forbid the occurrence of first-order phase 
transition.

Both the signs of dep/dμB and ∂μB/∂τ are determined by the 
EoS of the parton and hadron phase. For the EoS used in this work, 
both dep/dμB and ∂μB/∂τ are negative. Thus, df p/dτ at τc is al-
ways negative.

We have to note that for large viscosity the friction heat will be 
so large, that ∂em/∂τ becomes positive when using the first-order 
hydrodynamics [see Eqs. (32), (33), and (17)]. A positive ∂em/∂τ
can lead to a positive df p/dτ at τc according to Eq. (44). How-
ever, positive ∂em/∂τ is impossible for an expanding system. In 
this case the first-order hydrodynamics is invalid and higher order 
terms have to be included in the hydrodynamic description of the 
phase transition.

The phase transition for τ > τc seems more complicated. It can-
not be proven from Eq. (16) that df p/dτ is always negative with 
the used EoS, because deh/dμB is positive. Thus, with sufficient 
large viscosity and slow expansion (slower than Bjorken and Gub-
ser expansion), df p/dτ may become positive and a transition of 
the net baryon number from the hadron phase to the parton phase 
may happen. However, this will not lead to the disappearance of 
the hadron phase, since df p/dτ will be negative again at least at 
f p = 1, as proven before. Thus, we expect that for large viscosity 
and slow expansion, the time evolution of f p trends to decrease 
from 1 to 0, but maybe has some humps in between.

We note that at μB being smaller than the value at the criti-
cal point, the QCD phase transition is a crossover. Our formalism 



B. Feng et al. / Physics Letters B 782 (2018) 262–267 267
developed in the previous section does not work in the crossover 
region. Although the exact position of the critical point connecting 
the crossover and first-order phase transition line is not known 
yet [3,4,7,8], various theoretical calculations suggest that its most 
probable location is in the μB interval between 200 and 400 MeV 
[44,45]. For large viscosity, the moving (μB , T ) point along the 
first-order phase transition line may pass the critical point. Then 
critical phenomena are expected to occur.

The whole derivations in the previous section from Eq. (14)
to Eq. (39) are also valid for the first-order phase transition in a 
contracting medium, where dV /dτ is negative. In this case, μB in-
creases with time along the first-order phase transition line. We 
then describe a transition from the hadron phase to the parton 
phase.

In heavy-ion collisions the produced QCD matter expands on 
the whole. But locally on a small spatial scale, expansion as well 
as contraction exist due to density fluctuations. Our study provides 
a potential hydrodynamic framework to describe the nucleation of 
partons.
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