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Look, matey,
I know a dead parrot when I see one,

and I’m looking at one right now.
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Preface

There are certainly one or two things about cryptography I have learned during
my Ph.D. time. One thing I have noticed is that trapdoor commitments are a
remarkable catalyst for the design of provably secure cryptographic protocols. The
thesis reflects this. It is the result of my Ph.D. time at Professor Schnorr’s group
at the Johann Wolfgang Goethe-University of Frankfurt, Germany, from July 1997
till December 2001, suspended due to my community service from March 1998 till
April 1999.

Introduction

Informally, commitment schemes can be described by lockable steely boxes. In
the commitment phase, the sender puts a message into the box, locks the box and
hands it over to the receiver. On one hand, the receiver does not learn anything
about the message. On the other hand, the sender cannot change the message
in the box anymore. In the decommitment phase the sender gives the receiver
the key, and the receiver then opens the box and retrieves the message. One
application of such schemes are digital auctions where each participant places his
secret bid into a box and submits it to the auctioneer.

In this thesis we investigate trapdoor commitment schemes. Following the
abstract viewpoint of lockable boxes, a trapdoor commitment is a box with a
tiny secret door. If someone knows the secret door, then this person is still able
to change the committed message in the box, even after the commitment phase.
Such trapdoors turn out to be very useful for the design of secure cryptographic
protocols involving commitment schemes.
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vi Preface

Overview

In the first part of the thesis, we formally introduce trapdoor commitments and
extend the notion to identity-based trapdoors, where trapdoors can only be used
in connection with certain identities. We then recall the most popular construc-
tions of ordinary trapdoor protocols and present new solutions for identity-based
trapdoors.

In the second part of the thesis, we show the usefulness of trapdoors in commit-
ment schemes. Deploying trapdoors we construct efficient non-malleable commit-
ment schemes which basically guarantee indepency of commitments. Furthermore,
applying (identity-based) trapdoor commitments we secure well-known identifica-
tion protocols against a new kind of attack. And finally, by means of trapdoors,
we show how to construct composable commitment schemes that can be securely
executed as subprotocols within complex protocols.

About This Thesis

The first part of the thesis mainly uses known facts to guide the reader to
trapdoor commitments. Still, we also introduce the new notion of identity-based
trapdoor commitments and present previously unpublished constructions of such
trapdoors. The second part, exemplifying how to apply trapdoor commitments
in order to devise secure protocols, is based on three papers done during my
Ph.D. time: Chapter 4 about non-malleable commitment schemes is taken from a
joint work with Roger Fischlin [FF00], published at Crypto 2000. The secure reset-
table identification part, Chapter 5, is extracted from a joint paper [BFGM01] with
Mihir Bellare, Shafi Goldwasser and Silvio Micali presented at Eurocrypt 2001.
The part here has been added to the earlier proposal of Bellare, Goldwasser and
Micali how to achieve secure resettable identification with other techniques. Fi-
nally, Chapter 6 about universally composable commitments is almost a verbatim
copy of the extended version of a paper with Ran Canetti [CF01] appearing at
Crypto 2001.

The other papers published during (or before) my Ph.D. time do not resurrect
in this thesis. Most of the papers deal with the design of efficient cryptographic
protocols [F97a, F97b, F99, F01a, FF02] and some discuss more theoretical stuff
[F97c, F01b, F00, F02]. Although [FF02] partly deals with trapdoor commit-
ments, too, due to space reasons only the construction of a trapdoor commitment
scheme in that paper is briefly presented here.
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Chapter 1

Introduction

The classical issue in cryptography is encryption: how do I privately send a mes-
sage to another person? At the present time we indeed know satisfactory solu-
tions for this challenging task. But modern cryptography also supplies reliable
constructions to many other areas, like digital signatures, identification, message
authentication, electronic cash, electronic voting etc. Among others, commitment
schemes make up an important building block for these solutions.

1. Commitment Schemes

Instructively, one can describe a commitment scheme with a lockable steely box.
In the so-called commitment phase, one party, the sender, puts a message into
a box, locks the box and gives it to the other party, the receiver. On one hand,
the receiver cannot open the box to learn the message, and on the other side,
the sender cannot change the message anymore. The former property is called
secrecy, the latter unambiguity or binding property. In the decommitment phase,
the sender gives the key to the receiver to open the box and to disclose the message.

An obvious application of commitment schemes are sealed-bid auctions. Each
participant puts his bid into his box and submits the box to the auctioneer. After
having collected all bids the auctioneer requests the keys from the participants,
opens the boxes publicly and announces the winner. The important aspects of
commitment schemes, secrecy and unambiguity, are reflected in this example: the
actual bid should be kept secret until the bidding phase is over, and no bidder
should be able to change his value after seeing a previously disclosed opponent’s
bid.

The auction case reveals another, more subtle requirement a commitment
schemes must have in this setting. This requirement is not covered by secrecy
and unambiguity and is not immediate if one visualizes commitment schemes as
solid boxes. Namely, it should be infeasible for a bidder to “build” an appropriate
box containing a bid b + 1 after seeing the locked box with an unknown bid b

1



2 1. Introduction

of another participant. While this seems to be irrational in the context of steely
boxes, it is a real threat if we implement commitment schemes digitally: the box
corresponds to a bit string which —unlike hardware— can be easily copied and,
for most known commitment schemes today, the encapsulated value can be incre-
mented by external modification of the bit string. One part of this thesis presents
efficient constructions of such non-malleable commitment schemes withstanding
transformations. We will occassionally return to this motivating example in the
course of introduction.

2. Trapdoor Commitment Schemes

In this thesis we investigate trapdoor commitment schemes. These are commit-
ment schemes for which knowledge of a special information, the trapdoor, allows
to overcome the binding property and to open a commitment ambiguously. At
first glance this may be surprising: one of the important aspects of commitments
is that they cannot be opened ambiguously, yet the trapdoor enables to bypass
this. But we stress that ambiguous decommitments are only possible given this
special information; without, a commitment is still solidly binding.

We explain the efficacy of trapdoors in commitment schemes on the basis of
non-malleable commitments. Roughly, a commitment scheme is non-malleable
if giving the adversary the original commitment of the honest party does not
significantly increase his success probability of finding a commitment of a related
message (e.g., a higher bid), compared to the case that the adversary does not have
access to the honest party’s commitment at all. Intuitively, the setting where the
adversary does not get to see the other commitment describes the highest security
level we can expect: the adversary’s choice is made independently of the original
message. Non-malleability now demands that the commitment scheme meets this
high standard and thus provides indepency of commitments. In particular, it
follows that a non-malleable commitment is transformation-resilient.

We next outline how to construct non-malleable commitments using trapdoors.
Consider the auction case again, where an honest sender submits a bid to the
auctioneer and the adversary’s goal is to overbid this party by sending a higher
value to the auctioneer. More precisely, the adversary first sees the commitment
of the other sender and is supposed to output his commitment to a higher bid
afterwards.

Assume that the honest sender’s commitment contains a trapdoor but the
adversary’s commitment does not. Then, on one hand, the honest party’s bid can
still be altered by the trapdoor property in principle, even after the adversary
has submitted his value. On the other hand, the adversary’s commitment does
not have a trapdoor and his value thenceforth is pinned down due to the binding
property. Specifically, performing a gedankenexperiment, suppose that we hold
the trapdoor information. Then we may give the adversary a fake commitment
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to 0 on behalf of the honest party in the first place, and seclusively change this
commitment to the actual value of the honest sender after the adversary has
irrevocably committed to his bid. In this case, at the moment when the adversary
prepares his binding commitment and unambiguously decides upon his bid, the
only information available to him is the redundant commitment to 0. This means
that the adversary’s success probability cannot depend on the sender’s initial
commitment, as required for non-malleability.

Note, however, that we only perform a gedankenexperiment. But from the
adversary’s point of view the experiment and an actual attack are indistinguish-
able, because it is imperceptible for the adversary that we initially set the value
to 0 and change it later via the trapdoor. Hence, the adversary’s success proba-
bility in a real attack is the same as in the experiment, and so the fiction that the
adversary’s success probability is independent of the original commitment becomes
real.

The problem with the approach above is that the honest party and the ad-
versary usually use the same brand of box, say, the one the auctioneer announces
for sending in commitments to the auction. Hence, either the box of the hon-
est sender and the one of the adversary include a trapdoor, or neither one does.
But then the argument above that the adversary irrevocably commits given only
an alterable dummy commitment is no longer valid. The remedy is to run the
protocol with tailor-made individual boxes. Then we may pass the sender a box
containing a secret trapdoor, whilst the adversary receives a solidly binding box,
and the aforementioned idea works again.

In other words, we seek a trapdoor commitment scheme where the trapdoor
can only be used in connection with a certain identity, for instance, with the
unique IP address of the computer of the honest bidder. Therefore, we introduce
the notion of identity-based trapdoor commitments in this thesis, a refinement of
ordinary trapdoor protocols, and examine how to construct and where to apply
such identity-based trapdoors. For instance, our constructions of efficient non-
malleable commitments apply both kinds of trapdoors simultaneously.

It would be too presumptuous to believe that we only benefit from trapdoors
in commitment schemes. There are also disadvantages. Usually, trapdoor commit-
ment schemes are less efficient than ordinary ones, or require the help of a trusted
third party in the protocol, or need specific assumptions like the RSA assumption
instead of more general ones like the existence of arbitrary hard-to-invert functions.
Still, trapdoors facilitate the design of protocols or even make solutions possible
at all. Thus, the additional requirements for trapdoor commitments sometimes
pay off.
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3. Trapdoor Commitments in Cryptography

Trapdoors in commitment protocols have already been considered and constructed
in the past; they are also called equivocable commitment schemes or chameleon
blobs in the literature. We recall some of the areas in which they are deployed.

One important field of applications of trapdoor commitments are zero-knowl-
edge proofs. A zero-knowledge proof is a protocol between two parties, the prover
and the verifier, in which the prover tries to convince the verifier that a certain
statement is true or that he knows a secret to some public information. The verifier
should be sure that the prover can only convince him if the statement is indeed
true or if the prover really knows the secret. This is called soundness. On the
other side, the prover’s privacy should guarantee that nothing beyond the truth of
the statement or the fact that he possesses a secret is revealed, e.g., the prover’s
secret itself should not be disclosed. We say the protocol is zero-knowledge.

Trapdoor commitment schemes have been used to construct zero-knowledge
proofs [BCC88], there under the name chameleon blobs, constant-round zero-
knowledge proofs in which the prover and verifier exchange only a constant num-
ber of messages [FS89, BCY91, BMO90], concurrent zero-knowledge protocols
where the verifier talks to several instances of the prover in parallel [DO99,
D00] and resettable zero-knowledge [CGGM00] where the verifier is even allowed
to reset the prover to some previous step of the protocol. Similarly, Bellare
et al. [BFGM01] realize secure resettable identification protocols via trapdoor
commitments (although these identification protocols are not known to be zero-
knowledge) —see Chapter 5 for details. Moreover, trapdoor commitments give
rise to communication-efficient zero-knowledge protocols [CD97].

Trapdoor commitments also have an important impact on the design of non-
malleable commitment protocols. As mentioned before, basically, for non-malleable
commitment schemes one cannot change a commitment’s content by external mod-
ifications. Trapdoors have been introduced in this context by Di Crescenzo et
al. [DIO98] under the terminology of equivocable commitments. Subsequently,
Fischlin and Fischlin [FF00, FF02] (see also Chapter 4) and Di Crescenzo et
al. [DKOS01] applied number-theoretic constructions of trapdoor commitments
to derive more efficient non-malleable systems.

Additionally, trapdoor commitments play an important role for the construc-
tion of secure signature schemes. They have been helpful in the design of se-
cure signature schemes without relying on the strong random oracle assumption
[GHR99, CS00]. Also, they turn out to be quite useful for the construction of
secure undeniable signatures [KR99] where signature verification is only possible
with the active help of the signer but such that the signer cannot deny a valid sig-
nature. Shamir and Tauman [ST01] deploy trapdoor commitments for signature
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schemes where most of the work can be done off-line, i.e., before the message to
be signed is known.

Further applications of trapdoor commitments include the design of secure
multi-party computations with low communication complexity [CDN01]. Jakobs-
son et al. [JIS96] apply trapdoor commitments to derive designated verifier proof
systems in which the prover shows to the verifier the truth of a statement, but
such that the verifier cannot use this given proof to convince another person of the
validity of the statement. Finally, Canetti and Fischlin [CF01] as well as Damgȧrd
and Nielsen [DN01] construct universally composable commitments, i.e., commit-
ments which can be securely composed with other secure protocols, by means of
trapdoor commitments (cf. Chapter 6).

4. Organization of Thesis

In Chapter 2 we introduce the basics; our approach is strongly influenced by
Goldreich’s book [G98]. In Section 1 of the chapter we settle some standard no-
tations. Section 2 deals with basic cryptographic definitions. Among others, we
define one-way functions and discuss standard assumptions related to RSA, fac-
toring and the discrete logarithm problem. Further cryptographic primitives are
discussed in the course of this thesis when presenting the corresponding protocols.
In Section 3 we take the first step towards defining commitment protocols by in-
troducing interactive protocols. The notation and formalization is then applied in
the main section of this chapter, Section 4, defining commitment schemes rigor-
ously. Given this, trapdoor commitment schemes are then quite straightforward
to define, as done in Section 5. The concluding Section 6 of this chapter deals
with the notion of identity-based trapdoor commitments for which the trapdoor
is linked to a special identifier, e.g., a unique IP address of a computer. Even with
knowledge of this trapdoor information, commitments related to other identifiers
(e.g., to other IP addresses) are still binding.

We usually pursue a stepwise approach to formal definitions by gradually
adding insight to the topic. Yet, Chapter 2 is still heavily loaded with complex
technical parts and details. Readers who are primarily interested in grasping the
idea of trapdoor commitment schemes may only study Sections 1 and 2 about the
basics as well as the short introduction to commitment schemes in Section 4.1 and
then proceed to Chapter 3 describing examples of trapdoor commitment protocols.

We present the presumably most popular constructions of trapdoor commit-
ment schemes in Chapter 3. In Section 1 we recall number-theoretic protocols
based on the discrete logarithm problem, the RSA assumption, and on the hard-
ness of factoring numbers. Section 2 then turns to constructions based on general
one-way functions and using arbitrary statistically-secret commitment schemes.
We present identity-based trapdoor systems in Section 3 of this chapter.
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Chapter 4 shows the application of trapdoor commitment schemes for the de-
sign of efficient non-malleable commitment schemes. The non-malleable protocols
we devise, using both trapdoor and identity-based trapdoor commitments based
on the discrete-logarithm or RSA problem, require only three rounds of commu-
nication between the sender and the receiver in the commitment phase and a few
modular exponentiations. This holds under the reasonable condition that the net-
work provides publicly available parameters generated by a trusted party. We
also elaborate on different notions of non-malleability in the literature: one defi-
nition demands from a non-malleable commitment scheme that one cannot find a
commitment of a related message, the other one says that one might be able to
find such a commitment but then one is not able to open this commitment with
a related message. We show that the second definition is strictly weaker under
cryptographic assumptions.

In Chapter 5 we bring trapdoor commitments and identification protocols
together. With an identification protocol the prover tries to convince the verifier
that he is the holder of the secret key to a public key. The aim of an adversary is to
pretend to the verifier to be that prover without actually knowing the secret key.
So far, identification has been considered with respect to active attacks where the
adversary first runs serial executions with the prover by impersonating the verifier
in order to deduce something about the secret key. Then the adversary tries
to intrude on behalf of the prover. As for the resettable setting, the adversary
may now run concurrent executions with the prover before or while trying to
impersonate. Additionally, the adversary may reset the state of the prover. By
means of (identity-based) trapdoor commitments we present a general efficient
transformation of well-known identification protocols into schemes withstanding
reset attacks.

Chapter 6 introduces the issue of universally composable commitments. Usu-
ally, commitments are merely designed as stand-alone primitives providing secrecy
and unambiguity. The non-malleability problem, for example, arises if we run sev-
eral instances of the same commitment protocol. In other words, the fact that the
commitment scheme is composed with other protocols may cause an unpleasant
side effect. Universally composable commitments overcome this problem as they
can be securely executed together with other securely composable protocols, may it
be commitment, encryption or signature schemes, even if the protocol executions
are arbitrarily interleaved. In particular, universally composable commitments
wipe out the non-malleability problem. However, compared to our non-malleable
schemes in Chapter 4, we pay with a loss in efficiency for this stronger security re-
quirement. Once more, trapdoors in commitments enable us to build such securely
composable commitments.



Chapter 2

Definitions

In this chapter we introduce the cryptographic basics and define (trapdoor) com-
mitment schemes. For a broader introduction to the foundations of cryptography
we refer to [G98]. Once more, we emphasize that in order to get the basic idea
of trapdoors in commitments it suffices to have a rough understanding of crypto-
graphic basics like the discrete-log or RSA assumption and commitment schemes
(all covered in Sections 1, 2 and 4.1). Then the reader may skip the more technical
parts in this chapter and look at the examples of trapdoor commitment schemes
in the next chapter instead.

1. Notations

Let A be a probabilistic algorithm, or more formally, a Turing machine with a
random tape. We say that A is polynomial-time if there exists a polynomial p(n)
such that A takes at most p(n) steps on inputs of length n. Algorithm A runs in
expected polynomial-time if A is polynomial-time on the average, the expectation
taken over the internal random coins.

For a deterministic algorithm A let a = A(x) be the output a of A on input
x. If A is a probabilistic algorithm then we denote by A(x) the random variable
that describes the output of A on input x. The probability space is defined by
the internal coin tosses of A. In this case, we write [A(x)] for the support of A
on input x. By a← A(x) we denote the process of sampling an output a of A on
input x.

For ease of notation, we sometimes view a probabilistic polynomial-time algo-
rithm as a deterministic one, where a sufficient number of coin tosses is provided
as part of the input. Then A(x, r) is the output of algorithm A on input x with
random bits r; which portion of the input is considered as random will be clear
from the context. Unless stated otherwise, it is understood that a polynomial-
time algorithm is deterministic; else we call it a probabilistic polynomial-time
algorithm.

7



8 2. Definitions

In addition to Turing machines, we briefly introduce other models of computa-
tion. We refer to [BDG95] for more about such models. A polynomial-size circuit
family is a sequence C = (Cn)n∈N of circuits Cn with the property that the total
number of gates of Cn, including the input gates, is polynomially bounded in n.
Unless stated differently we always refer to probabilistic circuits.

The bit length of a string x ∈ {0, 1}∗ is given by |x|, and 1n stands for n
in unary, i.e., the string that consists of n bits ’1’. For two strings x, y of equal
length we denote by x⊕ y the bitwise exclusive-or. By x ∈R {0, 1}n we refer to
a uniformly chosen n-bit string x. In general, if not annotated differently, any
random choice is made independently of any other sampling.

For n ∈ N we identify the set Zn with the integers between 0 and n − 1. We
sometimes switch between integers and their standard binary encoding. Especially,
we embed a string x ∈ {0, 1}m in Zn by identifying x with the corresponding
integer between 0 and 2m − 1 (where 2m ≤ n), and more generally we write
X ⊆ Zn if all strings x ∈ X ⊆ {0, 1}∗ can be embedded in this way. By x ∈R Zn

we denote a uniformly chosen sample x from Zn, depending on the context viewed
either as an integer or as a bit string.

A function δ : N→ R
+
0 is called negligible (in n) if it vanishes faster than any

polynomial fraction. More formally, δ is negligibe if for any polynomial p : N→ R
+

there exists an n0 ∈ N such that δ(n) < 1/p(n) for all n ≥ n0. In the rest of this
thesis, we abbreviate “there exists n0 ∈ N such that . . . for all n ≥ n0” by the
expression “. . . for all sufficiently large n.” The function δ(n) is noticeable (in n)
if it is not negligible. We say that δ(n) is overwhelming if 1− δ(n) is negligible.

For example, the function δ(n) = 2−n in negligible. It is easy to see that
with δ(n) the product δ(n) · p(n) with any positive polynomial p(n) is also negli-
gible. Additionally, if δ(n) is negligible and f(n) is noticeable, then f(n) − δ(n)
is noticeable, too.

For a sequence X = (Xn)n∈N of random variables we denote by x ← Xn a
sample x of the random variable Xn. The sequence X is said to be efficiently
samplable if there exists a probabilistic polynomial-time algorithm A such that
Xn and A(1n) are identically distributed for all n ∈ N. Observe that the input 1n

enables algorithm A to run in polynomial time in the input length |1n| = n.
Two sequences X = (Xn)n∈N and Y = (Yn)n∈N of random variables are called

computationally indistinguishable, X
c
≈ Y , if for any probabilistic polynomial-time

algorithm D the advantage

AdvX,YD (n) = |Prob[D(1n, x) = 1]− Prob[D(1n, y) = 1]|

of D is negligible, where the probabilities are taken over the coin tosses of D and
the random choice of x← Xn and y ← Yn, respectively. Roughly, interpreting D’s
output 1 as a guess that the input is sampled from Xn, then a negligible advantage
indicates that D almost makes the same prediction in both cases and cannot tell
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the variables Xn, Yn apart. Note that giving D the parameter n in unary on one
hand tells D the complexity of the sample, and on the other hand allows D to run
(at least) in polynomial time in n, even if the samples are much shorter.

We have chosen a uniform model for defining distinguishers. An alternative
way is to adopt the non-uniform model and demand that for any probabilistic
polynomial-size circuit family C = (Cn)n∈N the advantage

AdvX,YC (n) = |Prob[Cn(x) = 1]− Prob[Cn(y) = 1]|

is negligible, where x ← Xn and y ← Yn for the sequences X = (Xn)n∈N and
Y = (Yn)n∈N. Here, the additional input 1n is redundant as circuit Cn already
depends on n and the circuit’s size is polynomially bounded in n anyway. For sake
of simplicity we usually adhere the uniform notation in this thesis.

The sequences X = (Xn)n∈N and Y = (Yn)n∈N of random variables are called
statistically close or statistically indistinguishable, X

s
≈ Y , if

1
2 ·
∑
s∈Sn

|Prob[Xn = s]− Prob[Yn = s]|

is negligible, where Sn is the union of the supports of Xn and Yn. If they are
identically distributed, we write X d= Y .

Obviously, identical distributions imply statistical indistinguishability, and
statistically close variables are also computationally indistinguishable. The con-
verse does not hold in general.

2. Cryptographic Primitives and Assumptions

We review the cryptographic assumptions related to the discussions in this thesis.
We start with a very general notion of a one-way function, i.e., a function which is
easy to compute but hard to invert on a random value. The existence of one-way
functions is necessary for any kind of “non-trivial” cryptography [IL89, OW93]:

Definition 2.1 (One-Way Function). A function f : {0, 1}+ → {0, 1}+ is a
one-way function if

• efficient evaluation: there exists a polynomial-time algorithm Eval such
that Eval(x) = f(x) for all x ∈ {0, 1}+

• one-wayness: for any probabilistic polynomial-time algorithm A the inver-
sion probability

InvfA(n) = Prob
[
A(1n, f(x)) ∈ f−1(f(x))

]
is negligible in n, where the probability is taken over x ∈R {0, 1}n and the
coin tosses of A.

If additionally f({0, 1}n) = {0, 1}n for all n ∈ N we say that f is a one-way
permutation.
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The reason for providing A with n in unary is that otherwise a function f
which maps x ∈ {0, 1}n to the rightmost log n bits would be one-way, simply
because writing down a preimage would take exponential time. Yet, one would
not consider this function to be “hard to invert” in an intuitive sense.

Why do we demand that algorithm A runs in strict polynomial time instead
of allowing it to perform an expected polynomial number of steps? Intuitively, an
algorithm inverting the function f with noticeable success in reasonable time on
the average would also be considered to refute the one-wayness of f . Fortunately,
Definition 2.1 is robust with respect to such expected polynomial-time inverters.
Namely, suppose an algorithm A inverts f with expected running time p(n) and
success probability 1/q(n) for infinitely many n’s, where p and q are polynomials.
Then, by Markov’s inequality, A inverts f in strict polynomial time 2q(n)p(n) and
noticeable success probability 1/2q(n) for infinitely many n’s, and proves that f
is not one-way. Therefore, in the sequel we usually restrict ourself to inversion
algorithms running in polynomial time in the worst case.

The definition of one-wayness can also be given with respect to non-uniform
polynomial-size circuits: for any probabilistic polynomial-size circuit family C =
(Cn)n∈N the probability InvfC(n) = Prob

[
Cn(f(x)) ∈ f−1(f(x))

]
is negligible. All

the following assumptions in this section can be stated for circuits, too. Analo-
gously to the uniform approaches these non-uniform counterparts are also widely
accepted.

A putative instantiation of a one-way function is the well-known RSA function
[RSA78]. Given an integer N = pq of distinct n/2-bit primes p, q and an integer
e relatively prime to Euler’s totient function ϕ(N) = (p− 1)(q − 1), the function
value for x ∈ Z∗N is RSAN,e(x) = xe mod N . Note that this is a permutation over
Z
∗
N . We also remark that without knowledge of the factorization of N one is still

able to efficiently compute the inverse r−1 ∈ Z∗N and the power re ∈ Z∗N to a given
r ∈ Z∗N and some polynomially bounded e.

The RSA function does not fit into Definition 2.1 since, instead of having a
single function f , we deal with a set of functions indexed by N and e. Also, the
domain and range Z∗N depend on this index. Nevertheless, we do not consider
such indexed one-way functions (aka. collections of one-way functions) rigorously
because the formalization is more complicated. Basically, one augments Defini-
tion 2.1 by an index generation algorithm that outputs a random index i (e.g.,
random N and e), and the probability of A(1n, i, fi(x)) returning a preimage is
taken over the choice of the index i, the uniform choice of x in the domain, and
A’s random coins.

Let us formally state the assumption that RSA is one-way. To this end, we
assume that there is some efficient algorithm IndexGen(1n) that outputs N, e as
described above; we do not specify exactly how the algorithm does that, e.g., if
the primes p, q have a special form like p = 2p′ + 1, q = 2q′ + 1 for other primes
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p′, q′, how large e is, etc. Some care must be taken [B99], but this is beyond our
scope, and does not give useful insight in the constructions solely applying the
RSA function in a “black-box” manner:

Definition 2.2 (RSA Assumption). For any probabilistic polynomial-time algo-
rithm A the inversion probability

InvRSA
A (n) = Prob[A(1n, N, e, xe mod N) = x]

is negligible in n, where the probability is taken over the choice of (N, e) ←
IndexGen(1n), x ∈R Z

∗
N and A’s internal random coins.

One reason for RSA being a good candidate for a one-way function is the
random-self-reducibility property of RSA [AFK89]. Roughly, this means that
computing the e-th root of any y is as hard as computing it for a random y.
More formally, assume that there exists some probabilistic polynomial-time algo-
rithm inverting a random y = xe mod N for (N, e) ← IndexGen(1n) with some
probability δ(n) taken over the choice of (N, e) and x and the coin tosses. Then
there is an efficient algorithm that inverts in comparable time any y ∈ Z∗N for
(N, e) ← IndexGen(1n) with the same probability δ(n); this time, the probability
space is defined by the choice of (N, e) and the internal random coins. The latter
algorithm chooses r ∈R Z

∗
N , computes y′ = yre mod N and runs the former algo-

rithm on input (y′, N, e). Now y′ is uniformly distributed in Z∗N . If the inverter
returns a preimage x′ of y′, then x = x′r−1 mod N is a preimage of y.

Apparently, the RSA assumption implies that factoring is intractable; oth-
erwise one could simply compute ϕ(N) and d = e−1 mod ϕ(N) to derive x =
(xe)d mod N . The other direction, intractability of factoring implies one-wayness
of RSA, is not known to hold (and there is some indication that this might not be
true [BV98]).

To present the factoring assumption we again presume that there is some
algorithm IndexGen(1n) that returns a random modulus N = pq of n/2-bit primes
p, q. Note that we consider the factoring problem with respect to RSA-like moduli:

Definition 2.3 (Factoring Assumption). For any probabilistic polynomial-time
algorithm A the inversion probability

InvFact
A (n) = Prob[A(1n, N) = (p, q)]

is negligible in n, where the probability is taken over the choice of N = pq ←
IndexGen(1n) and A’s internal random coins.

Calling the probability of A factoring N the inversion probability refers to the
fact that one can view the mapping of two random primes p, q to the product
N = pq as a one-way function.
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Though being around for more than twenty years now, RSA still is essentially
unbroken. Another presumable one-way function that withstood virtually all at-
tacks so far is based on the intractability of computing logarithms in groups like
Z
∗
p or elliptic curves [DH76]. We simplify and consider the discrete-log problem

with respect to prime order subgroups of Z∗p only. Unless stated otherwise all as-
sumptions and results can be transferred to other prime order groups like elliptic
curves.

Suppose once more that there is an efficient algorithm IndexGen(1n) generating
a random prime p, an n-bit prime q with q|p− 1, and a generator g of a subgroup
Gq of order q. Again, details on this process are omitted. The one-wayness
assumption says that it is hard to find the discrete logarithm x ∈ Zq given g and
gx:

Definition 2.4 (Discrete Logarithm Assumption). For any probabilistic polynomial-
time algorithm A the inversion probability

InvDL
A (n) = Prob[A(1n, p, q, g, gx mod p) = x]

is negligible in n, where the probability is taken over the choice of (p, q, g) ←
IndexGen(1n), x ∈R Zq and A’s internal random coins.

Similar to RSA, the discrete-logarithm problem is random-self-reducible: given
p, q, g and y ∈ Z∗p choose r ∈R Zq and set y′ = ygr mod p such that y′ is uni-
formly distributed; the discrete logarithm x′ = logg y′ yields the discrete logarithm
logg y = x′ − r mod q to element y.

In the sequel, we sometimes omit the reductions modN and modp if they are
clear from the context and write for instance gx instead of gx mod p.

3. Interactive Protocols

In this section we introduce the model of joint computations. Instead of dipping
into the technical details of interactive Turing machines (see [G98], for example)
we rather stick to a more intuitive viewpoint of algorithms that are somehow
connected and can interchange messages.

In an interactive protocol between two parties, Alice and Bob, both parties
are activated alternatingly. In each activation the corresponding party performs
a local computation and then either stops or sends a message to the other party
upon which that party is activated and the sender goes idle. If one party stops we
assume that the other party is activated once more before halting. Both parties
may then give a private output.

Let w be a common input to Alice and Bob and x and y be the private
inputs to the parties. Assume that Alice starts the protocol (the case that Bob

begins is symmetric). Denote Alice’s first message by a1, Bob’s reply by b1,
Alice’s second message to Bob by a2 and so on. Note that a1, b1, a2, b2, . . . are
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random variables (over the random coins α and β of Alice and Bob) that de-
pend on the inputs and the previously received messages. We therefore write
a1 = Alice(w, x, α), b1 = Bob(w, y, β, a1), a2 = Alice(w, x, α, a1, b1) etc., where
we suppose a prefix-free encoding of the communication for simplicity. It is under-
stood that a1 ← Alice(w, x), b1 ← Bob(w, y, a1), a2 ← Alice(w, x, a1, b1), . . .
refers to an ordered sampling process, i.e., a party’s message is picked with respect
to the same random coins as the previous ones.

We write viewAlice(x),Bob(y)(w) for the random variable describing a tuple of
five entries: the messages communicated between both parties on inputs w, x and
w, y, the random bits of each party, and some private output of each party. We
call a sample

v = (vmsg, vrnd,Alice, vrnd,Bob, vout,Alice, vout,Bob)← viewAlice(x),Bob(y)(w)

of this variable an augmented view ; it consists of the view vmsg representing the
communication between the parties, the random bits vrnd,Alice and vrnd,Bob and
the additional outputs vout,Alice and vout,Bob of the parties. Notationally, we adopt
a C++-like style and denote the components of a sample u← viewAlice(x),Bob(y)(w)
for example by umsg, urnd,Alice and so on.

An adversary may, for instance, impersonate Alice’s part in a predetermined
protocol between Alice and Bob in order to fool Bob. In this case we usually
mark adversarial controlled parties with an asterisk, e.g., by writing Alice

∗ and
v ← viewAlice

∗(x),Bob(y)(w), vrnd,Alice
∗ , vout,Alice

∗ etc.
Occassionally, we allow another party Carrol to participate in a preprocess-

ing step and to generate another input σ for the parties by sampling it when
running on common input w and private input z.1 For instance, Carrol, on
input 1n, may pick a random n-bit RSA-modulus N and place it into σ. This
value σ is prepended to the augmented view and the entry for a sample v ←
viewAlice(x),Bob(y),Carrol(z)(w) is denoted by vσ. The probability space is defined
over the the random coins of all three parties. Typically, it is presumed that
Carrol cannot be corrupted and is thus called a trusted third party and named
T ; the string σ is said to be a public string, common reference string or a public
parameter, and the model is called the common reference string model or public
parameter model.

1We grant Carrol access to the common input w of Alice and Bob. Sometimes it is
preferable to let Carrol generate σ without knowing w. This can always be accomplished
by putting w into Alice’s and Bob’s private inputs x, y instead; nonetheless, in all examples
discussed in this thesis, we let Carrol’s input z be empty and w be the security parameter in
unary, which is accessible by all parties anyway.
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4. Commitment Schemes

We transfer the intuition of the box setting into a formalization of commitment
schemes. Our somehow “minimal” definition captures only the secrecy and bind-
ing property. That is, in contrast to the more sophisticated definition of a uni-
versally composable commitment protocol we will consider in Chapter 6, we ne-
glect the issue of interdependency of protocol executions causing for example the
non-malleability problem. There are two reasons for this. First, the basic ap-
proach here is easier to understand and gives a good intuition about commit-
ments schemes. Second, in some settings the basic notion is sufficient, e.g., we are
able to derive non-malleable commitments from certain schemes obeying only the
“minimal” definition here.

4.1. Outline

As discussed earlier, a commitment scheme is an interactive protocol between
two parties, the sender S holding a message, and the receiver R. In some com-
mitment protocols a trusted third party assists by publishing public parameters
at the outset of the protocol execution; both parties, the sender and the receiver,
have then access to this string.

The whole protocol is divided into the commitment phase and the decommit-
ment stage. In the commitment phase, the sender gives some jumbled information
about the message to the receiver such that, on one hand, even a malicious receiver
R∗ does not gain any information about the message of the honest S (secrecy), and
on the other hand, a possibly dishonest sender S∗ cannot find matching openings
for different messages for a given commitment to R (unambiguity).

In the decommitment phase, the sender is supposed to transmit the key to
“unscramble”. In the algorithmic setting, this boils down to sending the original
message and some evidence that the commitment really jumbles this message.
Usually, the sender’s random coins form this evidence, because the receiver can
recompute the sender’s commitment from the original message and the coins in
order to check the correctness. Although there are some examples where the
sender computes the evidence differently, here we adopt the simplification that
the sender transmits all random coins used during the commitment phase; almost
all protocols we discuss have this property. We remark that this implies that
the decommitment can be done with a single transmission from the sender to the
receiver, whereas the commitment phase is an interactive process in general.

In addition to secrecy and unambiguity, we also demand that a commitment
scheme is complete. This means that if both parties honestly obey the protocol
description then the receiver should accept the commitment and decommitment
of the sender as a valid execution. Concerning secrecy and the binding property,
there are two fundamental kinds of commitment schemes:
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• a scheme is statistically binding and computationally secret if any arbitrary
powerful malicious S∗ cannot open a valid commitment ambiguously ex-
cept with negligible probability, and two commitments are computation-
ally indistinguishable for any probabilistic polynomial-time (possibly ma-
licious) R∗. If the binding property holds unconditionally and not only
with high probability, then we call the scheme unconditionally binding or
perfectly binding.

• a scheme is computationally binding and statistically secret if it satisfies
the “dual” properties, that is, if the distribution of the commitments are
statistically close for any arbitrary powerful R∗, and yet opening a valid
commitment ambiguously contradicts the hardness of some cryptographic
assumption. If the distribution of the commitments of any messages are
identical, then a statistically-secret scheme is called perfectly secret.

It is not hard to see that a commitment scheme cannot be statistically binding
and statistically secret simultaneously.2 It hence suffices if we say that a commit-
ment scheme is statistically secret or statistically binding; it is then clear that the
other property is achievable in a computational sense only. Both categories share
the subset of commitment protocols that are merely computationally binding and
computationally secret.

To limit the power of adversaries in two-party protocols it is usually assumed
that both parties verify structural properties of the incoming messages (if possible
at all). For example, the receiver should check that a value of the sender belongs
to a certain interval, that an element g really generates a group of prime order q
etc. Normally, it is obvious what and how the parties should check for structural
correctness and we thus do not mention such verifications explicitly. We call a
commitment valid if the receiver does not reject the sender’s commitment due to
an error in such a verification step.

4.2. Statistically-Binding Commitment Schemes

For clarity, we present the definitions of the fundamental notions for com-
mitment schemes individually. In both cases we include a trusted third party T
supplementing a public string σ at the outset of the execution. If this third party
is not needed then let it stay idle and let σ be empty.

Which messages can be committed to? The protocol specifies the message
space in form of a sequence M = (Mn)n∈N of sets Mn ⊆ {0, 1}∗. We presume that
the length of messages is bounded polynomially in n, i.e., there is a polynomial
p(n) such that |mn| ≤ p(n) for any sequence (mn)n∈N of messages mn ∈ Mn. If

2For perfect secrecy and unambiguity this is easy to see since perfect secrecy implies that
for a commitment there is a valid decommitment for any message, contradicting the perfect un-
ambiguity demanding that no commitment can be opened with distinct messages. For statistical
security the argument is only slightly more involved.
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the parties run a protocol execution for security parameter n then the sender is
allowed to commit to any message m ∈ Mn. For instance, in a bit commitment
scheme we have Mn = {0, 1} for all n and the security paramter only determines
the level of secrecy and unambiguity.

Figure 1. View of Execution of Commitment Protocol

Sender S public parameter vσ Receiver R

message m
random tape vrnd,S random tape vrnd,R

commitment phase:

S in mode comm R in mode comm

transcript vmsg

−−−−−−−−−−−→
←−−−−−−−−−−−
−−−−−−−−−−−→

(possible output vout,S) (possible output vout,R)

decommitment phase:

S in mode decom R in mode decom

m, vrnd,S−−−−−−−−−−−→
accept or reject

There is a subtle point on defining commitment schemes: by construction they
consist of two stages, while we introduced interactive protocols as single-phase
processes. We use the following trick to overcome this problem: we think of S (and
also of R) as two algorithms combined in one. One algorithm is activated when
receiving the distiniguished symbol comm as input, and then runs the commitment
phase with the other party. The other incorporated algorithm merely processes the
decommitment phase when getting decom (and some input from the commitment
stage) as input. For ease of notation, we also adopt this notation for dishonest
parties and simulators.

Figure 1 depicts the situation and notation. Further discussions succeed the
definition.
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Definition 2.5 (Statistically-Binding Commitment Scheme). A tuple (S,R, T )
of probabilistic polynomial-time algorithms S,R, T is called a statistically-binding
M-commitment scheme if

• completeness: for all n ∈ N, any message mn ∈ Mn, any augmented view
v ∈ [viewS(comm,mn),R(comm),T (1n)] we have

R(decom, 1n, vσ, vmsg, vrnd,R,mn, vrnd,S) = accept.

• secrecy: for any sequences (mn)n∈N, (m′n)n∈N of messages mn,m
′
n ∈ Mn

and any probabilistic polynomial-time algorithm R∗ the random variables

vmsg defined by v ← viewS(comm,mn),R∗(comm,mn,m′n),T (1n)

and

v′msg defined by v′ ← viewS(comm,m′n),R∗(comm,mn,m′n),T (1n)

are computationally indistinguishable.
• unambiguity: for any (possibly unbounded) algorithm S∗ the probability

that for v ← viewS∗(comm),R(comm),T (1n) we have

(mn,m
′
n, s, s

′) = S∗(decom, 1n, vσ, vmsg, vrnd,S∗)

for different messages mn,m
′
n ∈ Mn and counterfeits s, s′ of the random

coins of the honest sender such that

R(decom, 1n, vσ, vmsg, vrnd,R,mn, s)

= R(decom, 1n, vσ, vmsg, vrnd,R,m
′
n, s
′) = accept

is negligible (over the internal random coins of all parties). If the proba-
bility is zero, then we call the scheme perfectly binding.

Some remarks follow. In the opening step, the receiver R gets the sender’s
message and random coins as well as the view from the commitment stage, includ-
ing his own random coins. This enables us to define R(decom, ·) as a deterministic
algorithm, since coin tosses for this algorithm can already be placed into vrnd,R.
The receiver in the opening step returns a self-explanatory decision accept or
reject. This decision can also be based on the structural verification steps in the
commitment phase, and lead to rejection only later.

In our definition the sender passes all the random coins from the commitment
phase to the receiver in the opening step. Sometimes the sender S may not want
to reveal all random bits but only some evidence that the commitment really
encapsulates the message. Indeed, we will touch such protocols in Chapter 3.
If so, we let the sender compute with some (wlog. deterministic) function such
an evidence from the message, his random coins and the communication, and
let the sender hand this evidence together with the message to the receiver as
decommitment. For simplicity though, we do not include this in the upcoming
definitions either.
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The secrecy requirement should hold for any adversarial receiver, even if the
receiver knows the alternatives mn and m′n to which S commits, and no mat-
ter how this receiver deviates from the protocol specification —recall that the
honest sender is supposed to stop the execution if he detects misbehavior, hence
the adversary’s possibility to deviate is limited to the case that his messages are
somewhat indistinguishable from the ones of R.

Secrecy as we have defined it comes in a non-uniform flavor. That is, the
secrecy requirement demands that there are no sequences of messages for which
the receiver can distinguish the commitments. In other words, a protocol pro-
viding secrecy disallows the pure existence of such messages (although these se-
quences may not be efficiently computable). A uniform approach would be to let
the receiver R∗ pick the messages mn and m′n after learning the public param-
eters for security parameter 1n. This implicitly defines two efficiently samplable
sequences of random variables describing the messages. Similar to the case of
uniform and non-uniform inverters for one-way functions, all results concerning
computationally-secret commitments can be put in the uniform setting as well,
although we stick to this non-uniform version for simplicity.

An attack on the binding property is described by letting a malicious sender
S∗ first execute the commitment stage with the honest receiver, and then decide
how to fool the receiver with distinct, valid openings. Observe that, although S∗
combines two algorithms, if we run S∗ in mode decom and give it vσ, vmsg, vrnd,S∗

from the commitment sample, then all information gathered by S∗ in mode comm is
available to S∗(decom, ·), too. Analogously to R∗(decom, ·), we presume wlog. that
S∗(decom, ·) works deterministically.

4.3. Statistically-Secret Commitment Schemes

As for statistically-secret commitments recall that, concerning information-
theoretical security, the roles of unambiguity and secrecy are swapped. Besides
this, the definition is very similar to the one of a statistically-binding scheme:

Definition 2.6 (Statistically-Secret Commitment Scheme). A tuple (S,R, T ) of
probabilistic polynomial-time algorithms S,R, T is called a statistically-secret M-
commitment scheme if

• completeness: for all n ∈ N, any message mn ∈ Mn, any augmented view
v ∈ [viewS(comm,mn),R(comm),T (1n)] we have

R(decom, 1n, vσ, vmsg, vrnd,R,mn, vrnd,S) = accept.

• secrecy: for any sequences (mn)n∈N, (m′n)n∈N of messages mn,m
′
n ∈ Mn

and any (possibly unbounded) algorithm R∗ the random variables

vmsg defined by v ← viewS(comm,mn),R∗(comm,mn,m′n),T (1n)
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and

v′msg defined by v′ ← viewS(comm,m′n),R∗(comm,mn,m′n),T (1n)

are statistically close; if they are identically distributed we say that the
scheme provides perfect secrecy.

• unambiguity: for any probabilistic polynomial-time algorithm S∗ the prob-
ability that for v ← viewS∗(comm),R(comm),T (1n) we have

(mn,m
′
n, s, s

′) = S∗(decom, 1n, vσ, vmsg, vrnd,S∗)

for different messages mn,m
′
n ∈ Mn and counterfeits s, s′ of the random

coins of the honest sender such that

R(decom, 1n, vσ, vmsg, vrnd,R,mn, s)

= R(decom, 1n, vσ, vmsg, vrnd,R,m
′
n, s
′) = accept

is negligible (over the internal random coins of all parties).

4.4. Expanding the Message Space

We remark that given a commitment scheme for message space M = (Mn)n∈N
it is easy to devise a commitment scheme for messages M

p(n)
n for any polynomial

p(n). Namely, for parameter n repeat p(n) independent executions of the original
protocol in parallel. Obviously, the derived scheme also provides secrecy and
unambiguity, inheriting the corresponding statistical property. In particular, one
can extend a bit commitment scheme to a protocol that allows to commit to
polynomially bounded messages.

Another solution to derive commitment protocols for large messages are so-
called collision-intractable hash function. Loosely speaking, these are functions H
compressing large inputs to small outputs, but such that it is infeasible to find
collisions x 6= x′ with H(x) = H(x′). Given such a hash function mapping long
messages to the original space Mn, the sender first applies the hash function to
his message and then runs the commitment protocol on this smaller hash value.
For statistically-binding commitment schemes, though, this reduces the unambi-
guity to computational unambiguity, whereas for statistically-secret schemes the
combined protocol also hides the message information-theoretically. In fact, colli-
sion intractable hash function suffice to construct statistically-secret commitment
schemes [NY89, DPP93, HM96].

4.5. Discrete-Logarithm-Based Example

Let us consider an example of a perfectly-secret and computationally-binding
commitment scheme based on the discrete logarithm problem; further examples



20 2. Definitions

follow when presenting constructions of trapdoor commitment schemes. This ex-
ample here will also serve as a base for explaining trapdoor and identity-based
trapdoor commitments in the following sections.

Let p and q be a large primes such that q|(p − 1). Let g be a generator of
the group Gq ⊆ Z∗p of order q. The discrete logarithm assumption states that,
given p, q, g and h = gx mod p for random x ∈R Zq, it is infeasible to compute the
discrete logarithm x of h to base g. Under this assumption we now construct a
secure commitment protocol.

We assume that a trusted third party chooses and publishes p, q, g and h at
the outset of the protocol (we also assume that h 6= 1 such that h is also a
generator of Gq). For the commitment to a message m ∈ Zq the sender S selects
a random r ∈R Zq and computes M = gmhr mod p and transmits this value M
to the receicer R, who simply checks that M ∈ Gq by verifying M ∈ Z∗p and
M q = 1 mod p. In the decommitment step, S hands m, r to the receiver. The
receiver checks that m, r ∈ Zq and that M = gmhr mod p for the commitment M .

The scheme is perfectly secret: if the sender follows the prescribed program
then M is just a random group element. This is so because the random element
hr hides the factor gm information-theoretically.

The scheme is computationally binding: if a malicious sender finds valid open-
ings m, r ∈ Zq and m′, r′ ∈ Zq with m 6= m′ to the previously given commitment
M , then gmhr = M = gm

′
hr
′

mod p and therefore gm−m
′

= hr
′−r mod p. Since

m 6= m′ we have r 6= r′ and the inverse (r′ − r)−1 to r′ − r in Zq exists; but
then the discrete logarithm of h to g equals x = (m −m′)(r′ − r)−1 mod q. Put
differently, ambiguous decommitments imply that the sender is able to solve the
discrete logarithm problem, which, by assumption, is infeasible.

Note that the discussion above hides the asymptotic character of a commit-
ment scheme. Namely, we have defined the scheme with respect to a single in-
stantiation of p, q, g, h. The asymptotic parameter n is implicit, and formally we
demand for parameter n that q = q(n) is an n-bit prime, such that the message
space Mn ⊆ Zq(n) grows with n, etc. Transferring a description as above to asymp-
totic notion is usually straightforward, and we keep on disregarding this technical
nuisance.

5. Trapdoor Commitment Schemes

Our notion of the trapdoor property in commitment schemes follows the zero-
knowledge approach (cf. [G98]): there is an efficient simulator whose description
of the commitment phase (i.e., the public string, the communication and the coin
tosses) is indistinguishable from executions with the honest parties, yet this sim-
ulator is also able to output some additional trapdoor information which enables
to adapt the openings to the commitment for any given messages.
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The indistinguishability implies that the whole protocol execution with the
simulator could have taken place involving the honest parties. Thus, no adversary
impersonating the receiver will be able to detect whether it is run “in the real
world” with the third party and the sender, or in an emulation with the simula-
tor. But this is what we seek in order to come up with a security reduction: if an
adversary breaks a cryptographic protocol involving commitments, then the ad-
versary’s behavior does not change noticeably if we replace the actual commitment
execution with a simulated one; otherwise the cases would be distinguishable. Yet,
in contrast to the honest parties being tied to their commitment in a true execu-
tion, in such a simulated execution we can now open commitments ambiguously,
lending us more power and possibly enabling us to prove security of the complex
protocol.

Recall the example of the perfectly-secret commitment scheme based on the
discrete logarithm problem. There, the trusted party publishes primes p, q|(p− 1)
and two generators g, h of the group Gq ⊆ Z∗p of prime order q. To commit to
message m ∈ Zq the sender hands M = gmhr mod p for random r ∈R Zq to the
receiver, and reveals m, r in the opening phase. We have seen that this scheme is
perfectly secret and computationally binding.

The discrete-logarithm scheme also includes a trapdoor. Let the simulator
pick p, q and g as the trusted party, and let it generate h = gx mod p for random
x ∈R Z

∗
q . The simulator publishes these values. Basically, the value x, or more

precisely, the inverse x−1 in Z∗q , is the trapdoor because if the simulator commits
on behalf of the sender to some message m0 by sending M = gm0hr0 mod p for
random r0 ∈R Zq, then the simulator can open this commitment with any message
m ∈ Zq by computing r = r0 − (m−m0)x−1 mod q. In this case,

M = gm0hr0 = gm0hr+(m−m0)x−1
= gm0hrgm−m0 = gmhr mod p.

Formally, we define all values necessary to adapt the decommitment as the trap-
door, i.e., here (x,m0, r0) form the trapdoor. In the definition below, we do not
specify that the simulator first generates a commitment in the prescribed way
and knows the message m0 explicitly. In general, the simulator may rather pick
an appropriate string M counterfeiting a commitment, but such that M can be
opened with any message later on.

Observe that, even for a malicious receiver, the simulator’s behavior in this
example is identical to the one of the honest parties: the public parameters are
identically distributed, and so is the commitment M as well as the adapted de-
commitments m, r (note that r is uniformly distributed because r0 is). Hence, this
is an example of a so-called perfectly-simulative trapdoor commitment.

In the following definition, we consider arbitrary commitment schemes, either
statistically secret, statistically binding or computationally with respect to both
properties.
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Definition 2.7 (Trapdoor Commitment Scheme). Let (S,R, T ) be an M-commit-
ment scheme. Then the scheme is called a trapdoor M-commitment scheme if for
any probabilistic polynomial-time algorithm R∗ there exists an expected polynomial-
time algorithm Sim such that for any sequence (mn)n∈N of messages mn ∈ Mn the
following holds:

on input (comm, 1n) the simulator Sim outputs a tuple

(wσ, wmsg, wrnd,R∗ , wout,Sim)← Sim(comm, 1n)

such that given wout,Sim and the message mn the simulator returns

(wrnd,S , wout,S , wout,R∗) = Sim(decom, 1n,mn, wout,Sim)

with the property that (wσ, wmsg, wrnd,S , wrnd,R∗ , wout,S , wout,R∗) is
indistinguishable from viewS(comm,mn),R∗(comm),T (1n).

We say that the trapdoor scheme is

• perfectly simulative if the distributions are identical,

• statistically simulative if the random variables are statistically close,

• computationally simulative if the random variables are computationally
indistinguishable.

We call the simulator’s output wout,Sim a trapdoor.

Our definition is kept on a rather simple level. More generally, one could
concede the simulator a small error for not finding appropriate values. We do not
include this here as the simulations we deal with are errorless. Also note that
everything in the opening step is determined by the augmented view, hence it
suffices to demand indistinguishability with respect to these outputs, including
the random bits and the message.

Also, we remark that our simulator has to prepare an ambiguously open-
able commitment for a single message only. Alternatively, the simulator could
be obliged to output several dummy commitments and to open them later prop-
erly after seeing the messages. This can in principle be accomplished with the
single-commitment case by letting both parties run independent executions for
each message. However, most examples of trapdoor commitment protocols in the
next chapter consist of a set-up phase in which the sender and the receiver install
parameters that can be applied for several commitments. In this case it usually
suffices that the simulator generates the parameters such that it gets to know some
secret value (sometimes also called trapdoor). Then the simulator can generate a
sequence of dummy commitments and adapt the openings with this secret value.

Another point is that we restrict the receivers to polynomial-time, although
they are allowed to have unlimited power in statistically-secret commitment pro-
tocols. We explain the motivation for this. The simulator should have comparable
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complexity as the honest parties, and is thus supposed to run in expected polyno-
mial time. This implies that if the malicious receiver is unbounded, then there is
no possibility for the simulator to use this receiver as an efficient subroutine. How-
ever, emulating R∗ in subprocedure calls is the common technique to “fake” the
augmented view. Nonetheless, there are cases where the receiver is all-powerful
and yet there is an efficient simulator, e.g., if the receiver passively obtains a single
messages during the commitment phase, like in the discrete-logarithm example.

Our notion of a trapdoor commitment scheme neglects side information avail-
able to R∗ about the message mn, for example if this message has been used in
another subprotocol before. This side information is captured by a probabilistic
polynomial-time computable function Hist(·). In comparison to Definition 2.7, the
comm-part of the simulator gets as additional input a sample h← Hist(1n,mn); this
sample is also given toR∗. Basically, providing Sim with the same side information
as R∗ is necessary because the receiver and the simulator should have equal possi-
bilities of basing their messages on this side information. The decom-part of Sim al-
ready gets mn as input and the actual sample h may be repeated as part of the sim-
ulator’s output wout,Sim of the commitment stage. The augmented view generated
by this simulator should be indistinguishable from viewS(comm,mn),R∗(comm,h),T (1n),
with respect to the parties’ coin tosses and h ← Hist(1n,mn). Formally, we de-
mand that for any efficient R∗ there is some simulator Sim such that for any
probabilistic polynomial-time computable function Hist(·) the above holds.

Finally, it is worth mentioning that Definition 2.7 is robust with respect to
parallel repetitions of the basic commitment protocol or concerning the hash-and-
commit paradigm. Both approaches have been discussed in the previous section
in order to enlarge the message space.

6. Identity-Based Trapdoor Commitments

For ease of presentation and since the examples we discuss in the next chapter
achieve this, we restrict ourself to non-interactive commitment schemes in the pub-
lic parameter model for defining identity-based trapdoor commitments. In such a
non-interactive commitment protocol, either trapdoor or not, public parameters
are published by a trusted party T and the sender sends a single commitment
message to the receiver. That is, the commitment function, parameterized by the
public data, maps a message and random coins to a commitment. In particular,
the role of the receiver in the commitment phase is limited to the one of a passive
observer. We may therefore assume that the receiver does not need coin tosses at
all and does not output anything except for the decision.

We first extend the notion of an ordinary commitment scheme to one of an
identity-based commitment in the non-interactive case. Such an identity-based
commitment takes an aditional identifier as input besides the message, typically
this is a random bit string. Specifically, we assume that there is an efficiently
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samplable sequence ID = (IDn)n∈N of random variables IDn over s(n)-bit strings
(where s(n) is some polynomial specified by the commitment protocol). For pa-
rameter n we let the sender use some of the random bits for the commitment to
sample an identifier idn ← IDn and let the sender append this sample idn to the
commitment in clear. We remark that the commitment itself may also depend on
idn. Then the definitions of statistically-binding and statistically-secret commit-
ment schemes carry over to such identity-based (ID,M)-commitment schemes. To
underline the role of the identifiers we itemize them explicitly in the commitment
message in the following definition, and write for example vmsg, idn instead of vmsg

for the view.
For a trapdoor in an identity-based commitment the simulator gets as input a

random id0 ← IDn and then generates the public parameters on behalf of T . The
simulator also outputs a trapdoor information that allows to open commitments
involving the identifier id0 ambiguously. However, it is still infeasible —or even
impossible— to find commitments and ambiguous openings under the simulator’s
public parameters for some id different than id0. This holds even if one is given
the trapdoor information of the simulator. Put differently, the trapdoor is tied to
this specific identifier id0 and does not help to overcome the binding property for
other identifiers.

As an example of an identity-based protocol we return to the commitment
scheme based on the discrete-logarithm problem. Instead of publishing only two
generators g, h of a group Gq, this time the trusted party announces three gener-
ators g1, g2 and h. A sender with identity id ∈ {0, 1}s ⊆ Zq computes his com-
mitment to m ∈ Zq by M = (gid

1 g2)mhr mod p and sends (id,M) to the receiver.
Instructively, the identity determines the generator g := gid

1 g2 and the parties run
the well-known protocol on the generators g and h. We omit the details that this
is indeed an identity-based trapdoor protocol and refer the reader to Chapter 3.

Note that if there are only a few users and the number of identities is small,
then there is a trivial solution to derive identity-based trapdoor schemes from
ordinary trapdoor systems. Specifically, for each identity id place an independent
instance of the basic trapdoor commitment scheme like gid, hid into the public
string and let the sender with identity id use the corresponding instance when
committing. The trapdoor simulator also picks an instance for each identity but
such that the simulator knows the trapdoor for id0 only (e.g., loggid0

hid0). Clearly,
this is an identity-based trapdoor commitment scheme. Nonetheless, this solutions
becomes impractical if the number of identities is too large: a public string of 2s

instances is inacceptable for large s. Hence, we are looking for more sophisticated
solutions, like the aforementioned one based on the discrete-logarithm problem.

If we adopt an abstract viewpoint and regard commitments as lockable steely
boxes, then in identity-based trapdoor commitments only a certain box has got a
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trapdoor while the other boxes provide unambiguity. In particular, the trivial solu-
tion sketched above can be viewed as giving each party an individual “box” gid, hid,
and only the box of the party with identity id0 contains a trapdoor. However, as
pointed out, individual boxes are too cumbersome. Rather than customizing each
box, we envision a general construction kit which is completely assembled on the
sender’s side by assimilating the sender’s identity. Then we can incorporate a
“personal” trapdoor to the kit that works only for identity id0 but not for any
other id. In the example above with commitment M = (gid

1 g2)mhr mod p the
construction kit consists of the components g1, g2, h and a sender with identity id
first assembles gid := gid

1 g2 and then uses the “box” gid, h to commit.

Definition 2.8 (Non-Interactive Identity-Based Trapdoor Commitment Scheme).
Let (S,R, T ) be a non-interactive identity-based (ID,M)-commitment scheme. The
scheme is called an identity-based trapdoor (ID,M)-commitment scheme if there ex-
ists an expected polynomial-time algorithm Sim such that for any sequence (mn)n∈N
of messages mn ∈ Mn the following holds:

on input (comm, 1n, id0) where id0 ← IDn the simulator Sim outputs
a tuple

(wσ, wmsg, id0, wout,Sim)← Sim(comm, 1n, id0)

such that given wout,Sim, id0 and the message mn the simulator
returns

(wrnd,S , wout,S) = Sim(decom, 1n, id0,mn, wout,Sim)

with the property that (wσ, wmsg, id0, wrnd,S , wout,S) is indistinguish-
able from viewS(comm,mn),R∗(comm),T (1n).

We say that the trapdoor scheme is

• perfectly simulative if the distributions are identical,

• statistically simulative if the random variables are statistically close,

• computationally simulative if the random variables are computationally
indistinguishable.

We call the simulator’s output wout,Sim together with id0 a trapdoor.
Furthermore, if the scheme (S,R, T ) is computationally binding then the following
holds:

for any probabilistic polynomial-time algorithm S∗ the probabil-
ity that for (wσ, wmsg, id0, wout,Sim) output by Sim(comm, 1n, id0) for
random id0 ← IDn we have

(mn,m
′
n, s, s

′, vmsg, idn)← S∗(decom, 1n, wσ, wmsg, id0, wout,Sim)
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for different messages mn,m
′
n ∈ Mn and idn ∈ [IDn] different than

id0 and strings s, s′ such that

R(decom, 1n, wσ, vmsg, idn,mn, s)

= R(decom, 1n, wσ, vmsg, idn,m′n, s
′) = accept

is negligible (over the internal random coins of all parties),

If the scheme (S,R, T ) is statistically or perfectly binding then the following hods:

for any (possibly unbounded) algorithm S∗ the probability that for
(wσ, wmsg, id0, wout,Sim) output by Sim(comm, 1n, id0) for random id0 ←
IDn we have

(mn,m
′
n, s, s

′, vmsg, idn)← S∗(decom, 1n, wσ, wmsg, id0, wout,Sim)

for different messages mn,m
′
n ∈ Mn and idn ∈ [IDn] different than

id0 and strings s, s′ such that

R(decom, 1n, wσ, vmsg, idn,mn, s)

= R(decom, 1n, wσ, vmsg, idn,m′n, s
′) = accept

is negligible for statistically-binding (S,R, T ), and zero for perfect-
ly-binding (S,R, T ) (over the internal random coins of all parties).



Chapter 3

Constructions of Trapdoor
Commitment Schemes

This chapter introduces several constructions of trapdoor commitment schemes.
We distinguish between number-theoretic constructions applying the discrete-
logarithm or RSA problem for instance, and complexity-based solutions using
general cryptographic assumptions like the existence of one-way functions. We
also present constructions of identity-based trapdoor commitments in the conclud-
ing section. We remark that we do not discuss the recently announced trapdoor
commitment schemes by Barak [B01] which, unlike our solutions, neither rely on
the public parameter model nor proofs of knowledge.

1. Number-Theoretic Constructions

All constructions of trapdoor commitments in this section rely on the chameleon
blobs presented in [BCC88]. They are all perfectly simulative (which means that
the output produced with knowledge of the trapdoor looks exactly like a correctly
generated commitment and opening) and they satisfy the definition of a trapdoor
scheme with side information (i.e., the receiver will not be able to notice the dif-
ference to an honest commitment and opening even if he already knows something
about the message).

1.1. Discrete-Logarithm-Based Construction

We start by presenting the basic non-trapdoor commitment due to Pedersen
[P91] and discuss afterwards how to transform it into a trapdoor protocol.

The receiver samples a random group (description) by running IndexGen(1n)
and obtains a subgroup Gq ⊆ Z∗p of prime order q generated by some g. Group
operations in Z∗p are efficiently computable and it is easily verifiable that g indeed
generates the subgroup Gq. Any other groups with these properties and for which
the discrete-logarithm problem is presumably hard work as well.

27
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The receiver picks a secret x ∈R Z
∗
q , computes h = gx and sends g, h as well

as the group description (p, q, g) to the sender who checks the correctness of the
parameters (i.e., that p, q are prime, that q|(p− 1), that g, h ∈ Z∗p − {1} and that
gq = hq = 1). The sender now chooses r ∈R Zq at random, and for m in the
message space Mn ⊆ Zq he computes and sends M = gmhr. This concludes the
commitment phase.

In the decommitment phase, the sender transmits m, r and the receiver checks
that this is a proper representation of M , i.e., that m, r ∈ Zq and that M = gmhr.
If so, the receiver accepts, and rejects otherwise.

Obviously, this commitment scheme is perfectly secret since M is a random
group element. On the other side, if the sender finds two openings (m, r), (m′, r′)
for m 6= m′ (and thus r 6= r′) of the same M , then

logg h = (m−m′)(r′ − r)−1 mod q

where (r − r′)−1 is the inverse of r − r′ 6= 0 in Zq. Hence, under the discrete-log
assumption it is infeasible to find different openings.

Ambiguous decommitments imply that one knows the discrete logarithm of h
to g. Vice versa, and this is the essential trapdoor information, knowledge of this
discrete logarithm enables to find distinct valid openings: if one has committed
to some M = gm0hr0 then in order to decommit to any m ∈ Zq the holder of the
trapdoor logg h computes

r = r0 + (m0 −m)(logg h)−1 mod q

It is readily verified that (m, r) is a correct opening to M , too.
Alternatively to letting the receiver select the group and the generators, these

values may be chosen and given to both the sender and the receiver by some
trusted third party before the actual commitment starts. In this case the sender
does not need to verify the correctness of the parameters, because the trusted
third party follows the sampling procedure honestly.

All that remains is to guarantee that a simulator is able to get to know the
discrete logarithm x of h to base g (remember that the receiver chooses x secretly).
For example, this can be achieved by letting some trusted party publish the group,
g and h at the beginning. The simulator, faking the public string too, generates
a group by sampling IndexGen(1n) and h as gx for random, but known x ∈R Z

∗
q .

The simulator also outputs M = hr0 for random r0 ∈R Zq as a commitment for
m0 = 0 and returns the trapdoor (x, r0). Given some message m the simulator
can open M with m, r = r0 − mx−1 mod q; the distribution of the public data,
the commitment M and the opening are identically distributed to the case of an
execution with a trusted party and the honest sender, even if R∗ has some side
information about the message.
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Another possibility to let the simulator learn the trapdoor logg h and forgoing
a trusted party is to let the receiver give a zero-knowledge proof of knowledge
for x. Such a proof of knowledge guarantees that the simulator can extract x
in expected polynomial time, usually this is accomplished by repeating several
executions with the receiver. Although the simulator may be able to extract x
from such a proof of knowledge, it follows from the zero-knowledge property that
a dishonest sender in a real execution, on the other side, does not learn anything
useful about x (e.g., because this sender is not allowed to repeat protocol runs).
Thus, for the malicious sender finding ambiguous decommitments is still as hard
as without such a proof.

Once the group and generators have been established, either via the public
parameter model or by an interactive process, the same parameters can be used
to commit to several values. In this case, the trapdoor simulator is also able to
open a sequence of given commitments M1 = hr0,1 ,M2 = hr0,2 , . . . ambiguously
if it knows the discrete logarithm of the generators by opening each commitment
accordingly. The resulting output is still perfectly simulative.

1.2. RSA-Based Construction

The RSA-based trapdoor commitment scheme is based on Okamoto’s ordinary
RSA commitment [O92] and is similar to the discrete-log one. Namely, running
IndexGen(1n) the receiver chooses an n-bit RSA-modulus N = pq and a prime
exponent e ≥ 2n+1; by this choice, the exponent e is relatively prime to ϕ(N) <
2n+1 and this fact is publicly verifiable without knowledge of the factorization of
N . The receiver also picks a random x ∈R Z

∗
N , computes g = xe mod N and

hands N, e, g to the sender who checks that e is a prime larger than 2n+1 and that
g ∈ Z∗N . The sender now selects r ∈R Z

∗
N at random, computes M = gmre mod N

and commits to m ∈ Mn ⊆ Ze by sending M . In order to decommit, the sender
transmits m, r and the receiver checks the correctnes of these values.

Since e is relatively prime to ϕ(N) taking elements to the e-th power is a
permutation on Z∗N and thus the commitment M is a uniformly distributed ele-
ment in Z∗N and reveals nothing about the message. Finding (m, r), (m′, r′) with
m 6= m′ (and thus |m−m′| ∈ Ze − {0}) to the same M yields the equation

gm−m
′

= (r′r−1)e

from which the e-th root x of g can be easily computed by the formula

x = ga(r′r−1)b where a, b satisfy ae+ b(m−m′) = 1

The values a, b are easily computable via the extended Euclidean algorithm for
relatively prime e and m−m′. It follows that coming up with ambiguous decom-
mitments is infeasible under the RSA assumption.

The trapdoor information is the e-th root x of g together with the random
string r0 used to compute a commitment M = re0 mod N for message m0 = 0. It
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is worth noticing that the trapdoor does not necessarily include the factorization
of N . With the help of (x, r0) one can easily transform the commitment M = re0
into one of m by letting r = x−mr0 mod N . Then, gmre = gm(x−m)ere0 = re0 =
M mod N .

Again, in order to let a simulator know x one can either put N, e, g in the public
string, in which case the simulator selects a random x ∈ Z∗N and sets g = xe mod N
and thus simulates the honest sender perfectly, or we let the receiver give a zero-
knowledge proof of knowledge. If the RSA parameters are placed into the public
string then we may choose smaller prime exponents e relatively prime to ϕ(N);
after all, it is guaranteed that the trusted party chooses e correctly. The choice
of a smaller exponent is preferable since it speeds up the exponentiation in the
commitment phase.

Analogously to the discrete-logarithm case, the parameters can be applied to
commit more than once. If the simulator knows the e-th root of g then it can
modify the openings to a set of given commitments.

1.3. Factoring-Based Construction

The construction in this section resembles the RSA solution and a slightly
more restrictive version without reference to trapdoors has appeared in [D95]. For
a thorough discussion see [FF02].

We briefly explain the underlying number theory. Let N = pq be an n-bit
RSA modulus and let η ∈ {1, 2, . . . , n} denote the smallest integer such that 2η+1

neither divides p−1 nor q−1. Squaring is a permutation over the 2η-th powers of
Z
∗
N , that is, squaring is a one-to-one mapping on the group {z2η |z ∈ Z∗N}. More

generally, squaring permutes the 2n-th powers for any odd n-bit integer N , not
necessarily being an RSA modulus.

Let the integer t ≥ 1 bound the length of the messages that can be committed
to. The receiver generates a random n-bit RSA-modulus N = pq and computes
and integer τ that upper bounds η − 1. He also calculates g = x2τ+t

mod N for
random x ∈R Z

∗
N and hands (N, τ, t, g) to the sender. To commit to a message m ∈

Mn ⊆ Z2t , the sender picks r ∈R Z
∗
N at random, computes M = gmr2τ+t

mod N
and sends M to the receiver.

Since τ + t ≥ η and squaring is a permutation over the 2η-th powers the value
M = gmr2τ+t

is a uniformly distributed 2η-th power if r is selected at random.
The message m is therefore perfectly hidden (as long as N, τ and g are properly
chosen; we will discuss this issue at the end of this section). Finding openings
(m, r) and (m′, r′) for the same commitment implies that

(
r′r−1

)2τ+t

= gm−m
′

=
(
g2i
)(m−m′)/2i
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where i < t is the maximum value such that m,m′ coincide on the i least signif-
icant bits. Since the exponents 2τ+t and (m − m′)/2i are relatively prime, one
can compute a 2τ+t-th root of g2i with the same technique as in the RSA case.
Taking into account τ + t − i ≥ τ + 1 ≥ η we thus derive a 2η-th root y of g. If
instead of giving the sender g = x2τ+t

we send the identically distributed g = x2η ,
then the sender’s success probability of finding ambiguous openings remains un-
changed. But this time the root y together with x yields the factorization of N
with probability at least 1/2.

Secrecy relies on the fact that g is indeed a 2η-th power in Z∗N . This can either
be achieved by letting a trusted party place these values into the public string, or
by letting the sender commit to

M =
(
g2n
)m

r2τ+t+n
mod N

for the n-bit modulus N (and by checking that N is odd). For any odd integer
N of n bits squaring is a permutation on the 2n-th powers. Therefore, by this
choice, M is distributed independently of m and perfect secrecy is guaranteed,
no matter how N, τ and g are chosen. This trick appears in [H99]. Unambiguity
follows analogously to the previous case.

A simulator for the trapdoor property (in the public parameter model) chooses
g as g = x2τ+t

mod N for random x ∈R Z
∗
N such that it knows a 2τ+t-th root of

g. The trapdoor consists of the 2τ+t-th root x of g and the random string r0

to compute a commitment M = r2τ+t

0 mod N of message m0 = 0. To derive
a commitment of m for value M , set r = x−mr0 mod N such that gmr2τ+t

=
gm(x−m)2τ+t

r2τ+t

0 = r2τ+t

0 = M mod N . If there is no public string and the
receiver chooses (N, τ, t, g) —and we use the trick of raising the elements to their
2n-th power first— then we add a zero-knowledge proof of knowledge of a 2τ+t-th
root x of g. The simulator is able to extract this root and to proceed as in the
public parameter model. In both cases, the parameters can also be used for more
than a single commitment, both for honest parties and the trapdoor simulator.

2. Complexity-Based Constructions

Next we address trapdoor protocols based on more general assumptions.

2.1. Constructions Based on One-Way Functions

We present two fundamental approaches to trapdoor commitment schemes
based on one-way functions. One approach works in the public parameter model
where a trusted third party generates a public string at the outset of the execution,
whereas the other one in the plain model does not require such a set-up mechanism.
Both approaches are computationally simulative, i.e., the behavior of the trapdoor
simulator is computationally indistinguishable from the one of the honest parties.
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Public Parameter Model. The ingeniuos approach we present originates in
[DIO98] and is based on Naor’s commitment scheme [N91]. In Naor’s bit commit-
ment protocol it is assumed that a pseudorandom generator is available. Pseu-
dorandom generators are efficient deterministic algorithms that stretch a short
random seed into a longer output; this output is computationally indistinguish-
able from a truly random string of the same length. Pseudorandom generators
exist if and only if one-way functions exist [HILL99].

Let G be pseudorandom generator stretching n bits inputs to 3n bits output.
The receiver first chooses a random 3n-bit string σ and sends it to the sender. To
commit to bit b the sender selects a seed r ∈R {0, 1}n at random and returns G(r)
if b = 0 or G(r)⊕σ for b = 1. Decommitting is done by sending (b, r), and the
receiver verifies that these values match the previously given commitment.

From the pseudorandomness of the generator it follows that the receiver cannot
distinguish both cases b = 0 and b = 1 significantly, i.e., the scheme is computa-
tionally secret. As for unambiguity, valid openings (0, r) and (1, r′) require that
G(r) = G(r′)⊕σ. But since {G(r)⊕G(r′) | r, r′ ∈ {0, 1}n } has at most 22n ele-
ments, the probability that a random σ ∈ {0, 1}3n hits this set is at most 2−n.
Except for such “bad” σ the commitment is perfectly binding. Overall, the pro-
tocol provides statistical unambiguity.

Now assume that the string σ is put into the public random string. Then
the simulator “cheats” by selecting σ as G(r0)⊕G(r1) for random r0, r1 ∈ {0, 1}n
and committing to G(r0). The trapdoor is the pair (r0, r1) because in order to
open G(r0) as 0 simply send (0, r0), and to open as 1 transmit (1, r1). The former
opening is obviously correct. In the latter case the receiver learns that indeed
G(r1)⊕σ = G(r0) equals the commitment of the first stage. The output of the
simulator however is computationally indistinguishable from the honest case as it
is infeasible to tell apart a random string σ and a pseudorandom oneG(r0)⊕G(r1).
Unlike in the case of the number-theoretic construction in the previous section the
parameter σ here can only be used for a single trapdoor-changeable commitment.

Another possibility of accomplishing trapdoor commitments in the public pa-
rameter model is discussed by Feige and Shamir in [FS89].1 As opposed to the
previous example, this approach allows more flexibility concerning secrecy as it
supports both computational and statistical secrecy (we address the statistically
secret version in the next section). Yet, the commitment only provides computa-
tional unambiguity, and the protocol is less efficient.

The public string in the scheme by [FS89] consists of a graph containing a
directed Hamiltonian cycle. It should be infeasible to find a cycle in this graph
and, therefore, we present a method to generate such a graph such that finding a
cycle is as hard as inverting a one-way function. Namely, the graph is generated

1In fact, [FS89] do not present their protocol in the public parameter model but rather in
the plain model. However, this adaption here is straightforward.
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as follows: first, pick a random x ∈R {0, 1}n and apply a one-way function f
to x. Then reduce the function value f(x) via standard Karp reductions to an
instance H of the NP-hard problem Directed Hamiltonian Cycle. Although Karp
reductions are only designated to solve language problems, if we apply standard
reductions then going the reduction steps backwards allows us also to recover a
preimage of f(x) given a cycle in H. In other words, a witness for the graph yields
an efficiently computable witness for f(x), and is therefore hard to find.

The sender commits to bit 0 by permuting the graph H randomly and com-
mitting to each bit of the adjacency matrix of this permuted graph individually.
This is done with a standard (not necessarily trapdoor) commitment scheme, say,
with Naor’s non-interactive scheme based on any one-way function in the public
parameter model. To commit to bit 1 the sender individually commits to the
bits of an adjacency matrix that describes a graph with a random Hamiltonian
cycle only and without further edges. Again, this is done with some standard
commitment protocol.

To decommit to 0 the sender reveals the permutation and decommits to each
standard commitment and the receiver verifies the correctness. That is, the re-
ceiver checks that the decommitments are valid and that they match the permuted
graph. For an opening to 1 the sender only discloses the decommitments to bits
describing the random directed Hamiltonian cycle in the otherwise empty graph.

An ambiguous decommitment to 0 and 1 yields a directed Hamiltonian cycle
in H, because the 1-decommitment reveals a cycle in the committed graph and
the permutation of the 0-opening discloses the positions in the original graph H.
Ambiguous openings are therefore infeasible to find. On the other hand, secrecy
of the standard commitment scheme implies secrecy of the trapdoor commitment.
The (reusable) trapdoor is a cycle in H, since an honestly generated 0-commitment
can later be opened with 1, too, by revealing the cycle in the permutation of H
only.
Plain Model. The ideas of the previous section work in the plain model, too.
Di Crescenzo and Ostrovsky [DO99] present an interactive version of the trapdoor
scheme in [DIO98] which does not need public parameters. There, the receiver
first commits to a random 3n-bit string α. Then the sender announces a random
string β ∈R {0, 1}3n, and the receiver opens the commitment to α. The string σ
is defined as σ := α⊕β and the sender commits to a bit by using σ as in Naor’s
scheme.

The trapdoor simulator biases the outcome of the first phase by announcing a
random string β after having learned the commitment to α, and completing this
phase including the step where the receiver reveals α. The simulator rewinds the
execution to the step after the receiver has committed to α and, this time, sends
β := α⊕G(r0)⊕G(r1). Since this β is indistinguishable from random and because
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the receiver’s commitment is binding, the receiver is likely to send α again. But
then σ = G(r0)⊕G(r1) and a commitment G(r0) can be opened both as 0 and 1.

For the Hamiltonian cycle scheme in the plain model the receiver generates
the graph H as described in the public parameter case and sends it to the sender
at the outset, and also gives a zero-knowledge proof of knowledge that he knows
a directed Hamiltonian cycle (in fact, the weaker notion of a witness-hiding proof
of knowledge is sufficient, see [FS89] for details). The binding property follows as
above since the proof is zero knowledge and does not help to find the cycle. But a
simulator is able to extract the cycle from the proof of knowledge efficiently and
to get to know the trapdoor which is applicable to several commitments.

2.2. Statistically-Secret Trapdoor Commitments

The solutions here work with any statistically-secret commitment protocol, for
instance, with the non-interactive one using collision-intractable hash functions
[NY89, DPP93, HM96].

The first solution is a modification of the Hamiltonian cycle example above.
There, the sender commits to each bit of the adjacency matrix of either a permuta-
tion of the graph H or of the matrix describing a trivial graph with a random cycle.
This is done with a basic commitment scheme. Now, if we take a statistically-
secret commitment system for this, then we obtain a statistically-secret trapdoor
scheme, either in the public parameter or plain model. Also, this trapdoor scheme
is statistically simulative (and even perfectly simulative in the public string model
if the underlying commitment protocol is perfectly secret). Also, the trapdoor can
be reused in several commitments.

An alternative approach which does not require the detour of the reduction
to the Directed Hamiltonian Cycle problem is to start with any statistically-
secret bit commitment protocol, not necessarily a trapdoor one. The existence
of statistically-secret commitment schemes implies that one-way functions exist
[IL89], and according to the previous section, we therefore have a non-interactive
statistically-binding trapdoor bit commitment scheme in the public parameter
model. Alternatively, we may take the interactive equivocable scheme due to
[DO99] and obtain an interactive trapdoor commitment scheme. For the presen-
tation here we stick to the non-interactive version in the public parameter model.

Our statistically-secret trapdoor bit scheme is the combination of the compu-
tationally-hiding trapdoor scheme and the ordinary statistically-hiding one. That
is, in order to commit to a bit b the sender first computes a commitment B of this
bit under the trapdoor protocol. This can be done without interaction. Instead
of sending this value B, the sender and the receiver run the statistically-secret
commitment protocol for each bit of B in parallel. In the decommitment phase
the sender gives all the random coins and the bit b to the receiver.
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Apparently, the combined protocol is statistically secret because the outer pro-
tocol hides B statistically. Since the inner scheme is statistically binding, finding
ambiguous openings still requires to break the unambiguity of the statistically-
secret protocol. However, the assembled protocol inherits the trapdoor property
of the inner scheme: if we can output some B which can be opened with any value
for b, then the transformation of B under the statistically-secret commitment is
also openable with any bit b. This also implies that the scheme is computationally
simulative. Unfortunately, the set up can be exploited only once by the trapdoor
simulator to produce a universally openable commitment.

3. Identity-Based Trapdoor Commitments

We extend the number-theoretic and complexity-based schemes of the previous
sections to identity-based ones. Recall that such identity-based trapdoor commit-
ments link the possibility of finding ambiguous openings with the trapdoor to a
special given identifier, say, a user’s name. Even if someone else knows this trap-
door information and the special identifier, faking the opening of a commitment
for some other identifier is still infeasible or impossible (e.g., for a different login
name).

While the constructions of such identity-based trapdoor commitments under
specific assumptions are perfectly simulative, the solutions using one-way functions
are merely computationally simulative.

3.1. Number-Theoretic Constructions

Our solutions rely once more on the discrete-logarithm, RSA and factoring
assumption. We remark that, besides the message, the commitment now also
depends on an identifier id which is sent in clear together with the actual commit-
ment of the message.
Discrete-Logarithm. For the discrete-logarithm setting the public parameters
consist of a group Gq ⊆ Z∗p of prime order q generated by some g1 and of two
further generators g2, g3 of Gq. To commit to m ∈ Zq with id ∈ {0, 1}s ⊆ Zq the
sender picks r ∈R Zq and computes

M :=
(
gid

1 g2

)m
gr3

and sends M together with id to the receiver.
To set up the identity-based trapdoor the simulator picks Gq ⊆ Z∗p and g1, g3

at random. Given the special identifier id0 ∈ Zq the simulator selects x ∈R Zq

and computes g2 as g2 := g− id0
1 gx3 . With this choice the public parameters are

distributed independently of id0, and because gid0
1 g2 = gx3 and x = log

g
id0
1 g2

g3 it

is easy to adapt a decommitment to M := gr03 for message m0 = 0 to any other
message m for this value id0. Altogether, the scheme is perfectly simulative.
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The trapdoor property is linked to id0. That is, given the trapdoor (id0, x) it
is still infeasible to find a commimtent M = (gid

1 g2)mgr3 and ambiguous decommit-
ments (m, r), (m′, r′) for the same id different than id0. Because this would imply
that (

gid
1 g2

)m
gr3 = M =

(
gid

1 g2

)m′
gr
′

3

or equivalently,

g
(id− id0)(m−m′)
1 = g

(r′+xm′)−(r+xm)
3 .

Since id− id0,m − m′ 6= 0 mod q one can easily compute logg1
g3, contradicting

the discrete-log assumption.
RSA. For the RSA version the public parameters include a modulus N , a prime
exponent e as in the basic RSA case and two random elements g, h ∈ Z∗N . A
commitment to message m ∈ Ze with id ∈ Ze is given by

M := (gidh)mre mod N.

The trapdoor simulator selects N, e and g as before and to some id0 ∈ {0, 1}s ⊆ Ze
it computes h := g− id0xe for random x ∈R Z

∗
N . Then the simulator knows the

e-th root x of gid0h = xe and is able to decommit accordingly for this value id0.
The scheme is perfectly simulative.

Given (id0, x), distinct valid openings (m, r), (m′, r′) for the same commitment
M and some id 6= id0 yield the e-th root of g: we have(

gidh
)m
re = M =

(
gidh

)m′(r′)e
and therefore

g(id− id0)(m−m′) = (xm
′−mr−1r′)e.

Since id− id0,m−m′ 6= 0 mod e one can easily compute an e-th root of g.
Factoring. The factoring-based system requires (N, τ, t, g) as in the basic scheme
and another random 2τ+t-th power h ∈ Z∗N . The commitment to id ∈ Z2t and
message m ∈ Z2t is given by

M := (gidh)mr2τ+2t
mod N

for random r ∈R Z
∗
N . Note that we raise r to the 2τ+2t-th power, not the 2τ+t-th

power.
To build in a trapdoor the simulator chooses (N, τ, t, g) as before and produces

h as h := g− id0x2τ+2t
mod N for the given id0. By this, the simulator obtains a

2τ+2t-th root x of gid0h = x2τ+2t
. On the other hand, for id 6= id0 a commitment

(gidh)mr2τ+2t
= M = (gidh)m

′
(r′)2τ+2t

for different m 6= m′ reveals a root of g:

g(id− id0)(m−m′) = (xm
′−mr−1r′)2τ+2t

.
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As id− id0,m−m′ 6= 0 mod 2t and the absolute value of the product is less than
22t the fact that this gives a root of g and the factorization of N with probability
at least 1/2 follows as in the basic case.

3.2. Complexity-Based Construction

Recall the trapdoor commitment scheme in Section 2 where the public string
contains a uniformly distributed string σ ∈ {0, 1}3n and where the sender trans-
mits G(r) or G(r)⊕σ, and the simulator sets σ as G(r0)⊕G(r1) and commits by
G(r0).

The public parameters in our identity-based trapdoor commitment scheme are
2s uniformly chosen bit strings σi,a ∈R {0, 1}3n+s for i = 1, 2, . . . , s and a ∈ {0, 1}.
Additionally, suppose that there is pseudorandom generator stretching n to 3n+s
bits. To commit to a bit b the sender first picks id ∈ {0, 1}s. This determines a
(3n+ s)-bit string

σ :=
s⊕
i=1

σi,idi

where idi denotes the i-th bit of id. To commit to b now select a random r ∈R

{0, 1}n, compute y := G(r) for b = 0 and y := G(r)⊕σ for b = 1. Transmit the
pair (id, y).

This new schemes inherits the basic properties of Naor’s protocol. Namely, it
is computationally hiding and, since the probability that there exist (id, y) with
ambiguous decommitments is at most 22n+s/23n+s = 2−n over the choice of the
σi,a’s, the scheme is statistically binding.

The trapdoor installation is similar to the basic case. Given id0 ∈ {0, 1}s in
advance, choose all σi,a’s at random except for σs,id0,s . This value is chosen as

σs,id0,s := G(r0)⊕G(r1)⊕
s−1⊕
i=1

σi,id0,i

for random r0, r1 ∈R {0, 1}n. The simulater commits to a dummy bit by sending
(id0, G(r0)) and is able to open this commitment both for b = 0 and b = 1. For any
id 6= id0, however, the same statistical binding property as before holds. Since the
way how the simulator prepares the σi,a’s is indistinguishable from a truly random
choice, the scheme is computationally simulative.

A drawback of the previous solution is that the trapdoor can only be used
once. A more complex solution using the Hamiltonian cycle approach establishes
a reusable trapdoor. We next outline this construction.

Let G be a pseudorandom generator expanding n bits to, say, 3n bits; the
output length must be large enough to ensure that a random string of the same
length is in the range of the generator with negligible probability only.
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Similar to the reduction of the image f(x) of a one-way function f to a graph
H in Section 2, we can map a 3n-bit string (either truly random or an image of
the generator G) to a graph H. The corresponding language problem is to decide
if a graph has a directed Hamiltonian cycle. In particular, if the string is random
then, unless this string accidentally falls into the range of the pseudorandom gen-
erator G, the derived graph does not contain a cycle. Conversely, if the string is
pseudorandom then the graph has a cycle, and a cycle can be computed from the
reduction if a preimage of the string under G is known. Furthermore, if one is
given a graph that resulted either from a pseudorandom or a truly random string,
it is infeasible to decide with significant advantage if there is a cycle. Else one
could distinguish the generator’s output from random.

The identity-based trapdoor bit commitment scheme works as follows. Gen-
erate 2s graphs Hi,a for i = 1, . . . , s and a ∈ {0, 1} by picking 2s random 3n-bit
strings and reducing each string to a graph problem. Put these graphs into the
public string.

To commit to a bit b under identity id ∈ {0, 1}s the sender takes Hi,idi for i =
1, . . . , s and uses each graph to commit to b with the aforementioned Feige-Shamir
protocol [FS89]. Namely, for each i the sender commits to a random permutation
of Hi,idi if b = 0 and to a trivial graph containing a random Hamiltonian cycle
if b = 1. The sender transmits all these s commitments to the receiver, together
with the identity. Decommitting is done accordingly, in particular, the receiver
checks that the sender has taken the right graph Hi,idi of the pair (Hi,0,Hi,1) and
that each of the s decommitments is valid and for the same bit b. Depending
on the kind of commitment used for committing to the adjacency matrices, the
overall scheme is either statistically binding and computationally secret, or it is
computationally binding and statistically (or even perfectly) secret.

How do we incorporate a trapdoor? For given id0 ∈ {0, 1}s we generate the
graph Hi,id0,i

by running the pseudorandom generator G on a random string ri,
and reducing the output to derive Hi,id0,i

. Note that ri yields a Hamiltonian cycle
in Hi,id0,i

. We generate the other graphs from randomly chosen strings.
For identity id0 knowledge of a cycle in each Hi,id0,i

allows to adapt commit-
ments, whereas for id 6= id0 at least one graph Hi,idi contains no cycle with over-
whelming probability and thus provides unambiguity of the whole commitment.
On the other side, generating the graphs Hi,id0,i

“pseudorandomly” is indistin-
guishable from the real initialization. Therefore, the scheme is computationally
simulative, but the trapdoor for identity id0 is reusable.

We remark that both approaches in this section can be turned into protocols
in the plain model, requiring no public parameters. This is accomplished as in
the case of basic trapdoors by using interactive coin-flipping protocols to generate
the strings σi,a or the strings from which the graphs Hi,a are derived, respectively.
That is, the receiver first commits to a random string αi,a, the sender transmits
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random strings βi,a and the receiver opens αi,a. The outcome is σi,a = αi,a⊕βi,a
(or the string which determines the graph Hi,a). By rewinding the execution, the
trapdoor simulator is able to bias the outcome as desired.





Chapter 4

Efficient Non-Malleable
Commitment Schemes

In this chapter we discuss non-malleable commitment schemes. An extended ab-
stract of some of the results has been published in [FF00]. This version here does
not include the part about the proof of knowledge using the Chinese Remainder
Theorem, and, in particular, the improvement from RSA to factoring mentioned
in [FF02]. The chapter should be intelligible without the other parts of the thesis,
provided that the reader is familiar with the concept of commitments.

We are indebted to Cynthia Dwork for discussions about non-malleability. We
also thank the participants of the Luminy 1999 crypto workshop for stimulating
discussions, as well as the Crypto 2000 reviewers and program committee, es-
pecially Shai Halevi. We are also grateful to Yehuda Lindell and to Jonathan
Katz for informing us about their works. Finally, we thank Rosario Gennaro, Tal
Rabin and Alon Rosen for discussions and pointing out a gap in the main proof,
and Claus Schnorr for drawing our attention to problems with the previously given
definitions of non-malleability in the proceedings version of our paper.

1. Introduction

Loosely speaking, a commitment scheme is non-malleable if one cannot transform
the commitment of another person’s secret into one of a related secret. Such non-
malleable schemes are for example important for auctions over the Internet: it is
necessary that one cannot generate a valid commitment of a bid b + 1 after see-
ing the commitment of an unknown bid b of another participant. Unfortunately,
this property is not achieved by commitment schemes in general, because ordi-
nary schemes are only designated to hide the secret. Even worse, most known
commitment schemes are in fact provably malleable.

41
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The concept of non-malleability has been introduced by Dolev et al. [DDN00].
They present a non-malleable public-key encryption scheme (based on any trap-
door permutation) and a non-malleable commitment scheme with logarithmically
many rounds based on any one-way function. Yet, their solutions involve cum-
bersome non-interactive and interactive zero-knowledge proofs, respectively. Fur-
ther non-malleable encryption schemes with improved efficiency under various
assumptions have appeared since then [BR93, BR94, CS98]. As for commitment
protocols, Di Crescenzo et al. [DIO98] present a non-interactive and non-malleable
commitment scheme based on any one-way function in the common random string
model. Though being non-interactive, their system is rather theoretical as it ex-
cessively applies an ordinary commitment scheme to non-malleably commit to a
single bit. Other non-malleable commitment protocols have been suggested after
the proceedings version of our paper [FF00] had been published; we review these
schemes at the end of this introduction.

Here, we present efficient perfectly-secret non-malleable commitment schemes
based on standard assumptions, such as the RSA assumption or the hardness of
computing discrete logarithms. Our schemes are designed in the public parameter
model (aka. auxilary string model). That is, public parameters like a random
prime p and generators of some subgroup of Z∗p are generated and published by
a trusted party. We stress that, in contrast to public-key infrastructure, this
model does not require the participants to put any trapdoor information into the
parameters. The public parameter model relies on a slightly stronger assumption
than the common random string model. Yet, the difference is minor as modern
networks are likely to provide public parameters for standard crypto systems.
Moreover, as for the example of the discrete logarithm, the public parameter
model can be formally reduced to the common random string model if we let
the participants map the random string via standard procedures to a prime and
appropriate generators.

In our schemes the sender commits to his message using an ordinary, possi-
bly malleable discrete-log- or RSA-based commitment scheme and performs an
efficient three-round witness-independent proof of knowledge, both times using
the public parameters. While the straightforward solution of a standard proof of
knowledge fails (because the adversary may in addition to the commitment also
transform the proof of knowledge), we force the adversary to give his “own” proof
of knowledge without being able to adapt the one of the original sender. Simi-
lar ideas have also been used in [DDN00]. In our case, the proof of knowledge
guarantees that the adversary already knows the message he has committed to.
This means that he is aware of some information about the related message of the
original sender, contradicting the secrecy property of the ordinary commitment
scheme.
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We also address definitional issues. According to the definition of Di Crescenzo
et al. [DIO98], a scheme is non-malleable if the adversary cannot construct a
commitment from a given one, such that after having seen the opening of the
original commitment, the adversary is able to correctly open his commitment
with a related message. But the definition of Dolev et al. [DDN00] demands
more: if there is a one-to-one correspondence between the commitment and the
message (say, if the commitment binds unconditionally), then they define that such
a scheme is non-malleable if one cannot even generate a commitment of a related
message. We call schemes having the latter property non-malleable with respect to
commitment. For these schemes to contradict non-malleability it suffices to come
up with a commitment such that there exists a related opening. Schemes satisfying
the former definition are called non-malleable with respect to decommitment or, for
sake of distinctiveness, with respect to opening. In this case, the adversary must
also be able to open the modified commitment correctly given the decommitment
of the original commitment. The scheme in [DDN00] achieves the stronger notion,
whereas we do not know if the scheme in [DIO98] is also non-malleable with respect
to commitment.

A commitment scheme which is non-malleable in the strong sense is non-
malleable with respect to opening, too.1 We stress that the other direction does
not hold in general. That is, given a statistically-secret commitment scheme which
is secure with respect to opening, we can devise a commitment scheme satisfy-
ing the weak notion, but not the strong definition. Since our statistically-secret
schemes based on standard assumptions like RSA or discrete-log achieve non-
malleability with respect to opening, both notions are not equivalent under any
of these standard assumptions.

We believe that non-malleability with respect to opening is the appropriate
notion for perfectly- and statistically-secret schemes. The reason is that for such
schemes virtually any commitment can be opened with any message in principle.
Hence, finding a commitment of a related message to a given commitment is easy:
any valid commitment works with very high probability. Although there is at
least one application of non-malleable commitment schemes in the context of au-
thenticated key-exchange where non-malleability with respect to commitment is
necessary [GL01], non-malleability with respect to opening still seems to be ade-
quate for most applications. For instance, recall the example of Internet auctions.
The commitments of the bids are collected and then, after a deadline has passed,
are requested to be opened. Any secret which is not correctly revealed is banned.
Therefore, security with respect to opening suffices in this setting.

1Although this seems to follow directly from the requirements, it heavily depends on the
subtleties of the definitions. Indeed, compared to [DDN00], we strengthen the requirements for
non-malleablity with respect to commitment in order to imply the notion of non-malleability
with respect to opening. The scheme in [DDN00] also satisfies our more stringent definition.
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Following the publication of the proceedings version of our work [FF00], several
other non-malleable commitment schemes have been proposed. Di Crescenzo et
al. [DKOS01] present more practical variants of the system in [DIO98] relying
on the RSA or discrete-log assumption and the public parameter model; see also
[FF02] for improved versions of these protocols resulting in more efficient schemes
than the ones here. These schemes achieve perfect secrecy and non-malleability
with respect to opening. Yet, in contrast to our solution here, all these protocols
are not known to provide non-malleability if the adversary is additionally given
some useful side information about the message for which it tries to find a related
commitment, e.g., if the message is used in other subprotocol executions.

In [DKOS01] it is also pointed out that secure public-key encryption is suffi-
cient for non-malleable commitments. Basically, the public parameters contain a
public key of a secure encryption scheme and in order to commit the sender en-
crypts the message and hands it to the receiver. Hence, using potentially stronger
assumptions like the decisional Diffie-Hellman assumption and the encryption
scheme in [CS98], or non-standard assumptions like the random oracle methodol-
ogy, one derives alternatives to the solutions here and in [DKOS01, FF02]. Yet,
the encryption-based approach provides only computational secrecy and the latter
may be insufficient in some settings, especially since knowledge of the secret key to
the public key from the public parameters enables to decrypt the message. Also,
using random oracles there is a simpler approach to accomplish non-malleable
commitments. We sketch this solution in Section 6. More non-malleable (but less
efficient) commitment schemes in the broader context of universally composable
commitments have been constructed by Canetti and Fischlin [CF01] and subse-
quently by Damgȧrd and Nielsen [DN01]. We discuss the protocols of Canetti and
Fischlin in Chapter 6 of this thesis.

The chapter is organized as follows. In Section 2 we define non-malleable
commitment schemes. Section 3 separates the notions of non-malleability with
respect to commitment and opening. In Section 4 we present efficient schemes in
the public parameter model based on the discrete-log assumption, and in Section
5 we turn to the RSA case. Finally, in Section 6 we show how to construct non-
malleable schemes in the random oracle model.

2. Non-Malleability

As mentioned in the introduction, different notions of non-malleability have been
used implicitly in the literature. To highlight the difference we give a formal defi-
nition of non-malleable commitment schemes, following the approach of [DDN00].

2.1. Scenario

For non-interactive commitment schemes, all the adversary can do is modify
a given commitment. In the interactive case, though, the adversary might gain
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advantage from the interaction. We adopt this worst-case scenario and assume
that the adversary interacts with the original sender, while at the same time he is
trying to commit to a related message to the original receiver.

A pictorial description of a so-called person-in-the-middle attack (PIM attack)
on an interactive protocol is given in Figure 1. The adversary A intercepts the
messages of the sender S. Then A may modify the messages before passing them
to the receiver R and proceeds accordingly with the answers. In particular, A
decides to whom he sends the next message, i.e., to the sender or to the receiver.
This is the setting where A has full control over the parties R1 and S2 in two sup-
posedly independent executions 〈S1,R1〉(m), 〈S2,R2〉(m∗) of the same interactive
protocol. Here and in the sequel, we usually mark values sent by the adversary
with an asterisk.

Figure 1. Person-In-The-Middle Attack on Interactive Protocols

S A R
s1−−−−−−−−−−−−−−−−→

s∗1−−−−−−−−−−−−−−−−→
r1←−−−−−−−−−−−−−−−−
s∗2−−−−−−−−−−−−−−−−→
r2←−−−−−−−−−−−−−−−−

r∗1←−−−−−−−−−−−−−−−−
s2−−−−−−−−−−−−−−−−→ . . .

Apparently, the adversary can always commit to the same message by forward-
ing the communication. In many applications, this can be prevented by letting
the sender append his identity to the committed message. The messages of the
sender and the adversary are taken from a space M. Abusing notations, we view M
also as an efficiently computable distribution, and write m ∈R M for a randomly
drawn message according to M.

The adversary is deemed to be successful if he commits to a related message,
where related messages are identified by so-called interesting relations: a proba-
bilistic polynomial-time algorithm R taking inputs from M ×M and returning a
bit is called an interesting relation if R(m,m) = 0 with probability 1 for all m ∈ M
(to exclude copying). Moreover, we let the interesting relation on the second argu-
ment accept the undefined symbol ⊥, capturing the case that the adversary does
not produce a valid commitment or decommitment; in this case we set m∗ = ⊥
and we demand R(m,⊥) = 0 with probability 1.
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We assume that M generates the sender’s message m and also a value Hist(m)
representing the a-priori information that the adversary has about m. For in-
stance, Hist(m) could represent an additional hash value of the sender’s message
m, or information gathered from other protocol executions where the sender uses
m. In comparison to [DDN00] where Hist is a separate function, attributing Hist
to M admits an easy way to include information about the sampling process of m
into Hist(m). For ease of notation we write both m ∈R M and (m,Hist(m)) ∈R M.

Since we work in the public parameter model, we extend the input of M and
R by adversarial parameters AdvPar that the adversary produces after having
learned the the public parameters PubPar. The value AdvPar may for example
include the public parameters PubPar. The motivation for this is that it should
be infeasible for the adversary to find a suitable relation or distribution on the
messages even if the publicly available parameters are given. For the same reason,
we base the relation R also on the side information Hist(m). In summery, we
denote the message space and distribution as M(AdvPar) and the relation by
R(AdvPar,Hist(m), ·, ·).

2.2. Definition

The definition on non-malleable commitments follows the well-known idea of
defining secure encryption, namely, we will demand that for any adversary A
transforming the sender’s commitment successfully, there should be an adversary
A′ that finds a commitment to a related message with almost the same probability
as A but without the sender’s help.

We describe the attack in detail. First, the public parameters PubPar are gen-
erated by a trusted party according to a publicly known, efficiently samplable dis-
tribution (if a protocol does not need public information then this step is skipped).
On input PubPar the adversary A then picks the adversarial parameters AdvPar
for M and R. The sender S is initialized with m ∈R M(AdvPar). Now A, given
Hist(m), mounts a PIM attack with S(m) and R. Let πcom(A,M,R) denote the
probability that, at the end of the commitment phase, the protocol execution be-
tween A and R constitutes a valid commitment for some message m∗ satisfying
R(AdvPar,Hist(m),m,m∗). Let πopen(A,M,R) denote the probability that A is
also able to successfully open the commitment after S has decommitted.

In a second experiment, a simulator A′ tries to commit to a related message
without the help of the sender. That is, A′ gets as input random public parame-
ters PubPar, generates adversarial parameters AdvPar′ and then, given Hist(m)
for some (m,Hist(m)) ∈R M(AdvPar′), it commits to R without interacting with
S(m). Let π′com(A′,M,R) denote the probability that this is a valid commit-
ment to some related message m′ under public parameters PubPar with respect
to relation R(AdvPar′,Hist(m), ·, ·). By π′open(A′,M,R) we denote the probability



2. Non-Malleability 47

that A′ additionally reveals a correct decommitment. Equivalently, we may de-
fine π′open(A′,M,R) as the probability that A′ simply outputs a related message
(without reference to public parameters, commitment and decommitment).

Note that all probabilities are implicit functions of a security parameter. The
probability space in each case is taken over the randomness of all algorithms.

It is now tempting to define non-malleability with respect to commitment and
with respect to opening by comparing πcom(A,M,R), π′com(A′,M,R) as well as
πopen(A,M,R), π′open(A′,M,R) and asking for small differences. In the former case
this would agree with the definition in [DDN00] and in the other case this would
extend it straightforwardly to non-malleability with respect to opening. But,
surprisingly at first, for non-malleability with respect to commitment we even
oblige the simulator to open his commitment and contrast πcom(A,M,R) with
π′open(A′,M,R). The are two reasons for this. First, otherwise any statistically-
secret commitment protocol would be non-malleable with respect to commitment,
because if the simulator merely outputs a commitment of some fixed message this
is also a commitment of a related message with high probability. However, this
would certainly contradict the intuition of non-malleable systems, in particular,
since we know provably malleable statistically-secret protocols. The other reason
is that, even in the case of statistically-binding schemes, we were unable to show
that the presumably stronger non-malleability notion a la [DDN00] implies the
weaker one. With our approach here this trivially follows from the definition,
because the requirements for the simulator in both cases are identical while the
adversary trying to refute non-malleability with respect to commitment even faces
a simpler task.

For sake of completeness we include the original definition of Dolev et
al. [DDN00] and call this non-malleability with respect to DDN. We remark that
the commitment scheme in [DDN00] also satisfies “our” notion of non-malleability
with respect to commitment.

Definition 4.1. A commitment scheme is called

a) non-malleable with respect to commitment if for every adversary A there
exists a simulator A′ such that for any message space M and any interest-
ing relation R the difference πcom(A,M,R)− π′open(A′,M,R) is negligible.2

b) non-malleable with respect to opening if for every adversary A there exists
a simulator A′ such that for any message space M and any interesting
relation R the difference πopen(A,M,R)− π′open(A′,M,R) is negligible.

2Here we allow a very liberal definition of negligible functions: the function may also be
negative at some value n, in which case it is certainly less than p(n) for any strictly positive
polynomial p(·). In our case this means that the simulator does even better than the adversary
and, thus, this still reflects our intuition of non-malleability.
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c) non-malleable with respect to DDN if for every adversary A there exists
a simulator A′ such that for any message space M and any interesting
relation R the difference πcom(A,M,R)− π′com(A′,M,R) is negligible.

If M and R are clear from the context we usually abbreviate the success prob-
abilities by πcom(A), π′com(A′), πopen(A) and π′open(A′), respectively.

Some remarks about the experiment of A′ follow. The simulator A′ does not
have the power to choose the public parameters PubPar for the commitment to
R. This is so because the simulator is obliged to produce a correct commitment to
R under the same honestly chosen public data PubPar as the sender and the ad-
versary. This rules out counterintuitive solutions proving obviously transformable
commitments non-malleable. Nonetheless, A′ picks his own AdvPar′, not nec-
essarily related to A’s selection AdvPar. But since the relation R depends on
these adversarial parameters AdvPar and AdvPar′, it is clear that the relation
can rule out significantly diverging choices of A′, and hence AdvPar′ is likely to
be indistinguishable from AdvPar.

Slightly relaxing the definition, we admit an expected polynomial-time simu-
lator A′. In fact, we are only able to prove our schemes non-malleable with this
deviation. The reason for this is that we apply proofs of knowledge, so in order
to make the success probability of A′ negligibly close to the adversary’s success
probability, we run a knowledge extractor taking expected polynomial-time.3 Fol-
lowing the terminology in [DDN00], we call such schemes liberal non-malleable
with respect to commitment, opening and DDN, respectively.

Consider a computationally-binding and perfectly-secret commitment scheme.
There, every valid commitment is correctly openable with every message (it is,
however, infeasible to find different messages that work). Thus, we believe that
non-malleability with respect to opening is the interesting property in this case.
On the other hand, non-malleability with respect to commitment is also a con-
cern for statistically-binding commitment schemes: with overwhelming probability
there do not exist distinct messages that allow to decommit correctly. This holds
for any dishonest sender and, in particular, for the person-in-the-middle adversary.
We can therefore admit this negligible error and still demand non-malleability with
respect to commitment.

2.3. The Multi-Party Setting

Our definition captures the simple setting of three parties. In the auction case,
for instance, usually more parties participate and the adversary’s intention may be

3The same problem occurs in [DDN00]. Alternatively, the authors of [DDN00] also propose a
definition of ε-malleability, which basically says that for given ε there is a strict polynomial-time
simulator (polynomial in the security parameter n and ε−1(n)) whose success probability is only
ε-far from the adversary’s probability.
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to overbid only a certain opponent to ensure that this person does not win. Hence,
we may let A talk to several senders S1, . . . ,Spoly with (probably dependent)
messages m1, . . . ,mpoly generated by M(AdvPar) together with side information
Hist(m1, . . . ,mpoly). The relation now takes AdvPar, Hist(m1, . . . ,mpoly) and
poly + 1 messages as input and it is required that the (poly + 1)-st message m∗

is different from any other message mi, and that the relation is never satisfied if
m∗ = ⊥. We remark that all our protocols remain secure in this multiple-sender
setting.

A problem occurs if we let the adversary commit in several executions with
R to messages m∗1, . . . ,m

∗
poly and extend the relation accordingly, both in the

single- or multiple-sender case. Dolev et al. [DDN00] show that this scenario is
not reducible to the single-adversary case in general and suggest an alternative
definition where the adversary is supposed to announce a subset i1, . . . , ik of the
executions with the receiver in the commitment phase, inducing a set of messages
m∗i1 , . . . ,m

∗
ik

for which he tries to be successful. We return to the multi-party case
at the end of Section 4.3 when discussing this issue for our schemes.

3. On the Relationship of Non-Malleability Notions

Clearly, non-malleability with respect to commitment implies non-malleability
with respect to opening and with respect to DDN. On the other hand, we show
that (under standard cryptographic assumptions) the converse does not hold in
the public parameter model. To this end, we construct a bit commitment scheme
that does not even achieve the DDN notion, but is non-malleable with respect to
opening.

To separate the notions we consider Naor’s bit commitment scheme [N91] in
the public parameter model. Let G be a pseudorandom generator expanding n bits
random input to 3n bits pseudorandom output. That is, the variables (Xn)n∈N
and (Yn)n∈N are computationally indistinguishable, where Xn equals G(r) for a
random r ∈ {0, 1}n and Yn is the uniform distribution on {0, 1}3n.

Let σ be a random 3n-bit string put into the public parameters. In order to
commit to a bit b in Naor’s protocol the sender chooses a random r ∈ {0, 1}n and
transmits y = G(r) for b = 0 or y = G(r)⊕σ if b = 1. The decommitment consists
of (b, r). Not only is this scheme computationally secret and statistically binding,
it is also strongly malleable, i.e., given a commitment y of a bit b one can always
derive a commitment of b⊕ 1 by sending y⊕σ.

Next, we construct an assembled commitment scheme (in the public param-
eter model) which consists of a combination of Naor’s scheme and an arbitrary
statistically-secret system Comsecret which is non-malleable with respect to open-
ing. To commit to bit b, independently execute the statistically-secret protocol
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and Naor’s scheme on b, either in parallel or sequentially. Opening is done by
decommitting for both schemes in parallel.

Obviously, this assembled scheme is computationally secret and statistically
binding. We show that this scheme only achieves the weaker non-malleability prop-
erty. The intuition is that the assembled scheme inherits non-malleability with
respect to opening from the statistically-secret protocol, and the strong malleabil-
ity of Naor’s scheme (together with the fact that virtually any statistically-secret
commitment is in principle openable with any value) inhibits non-malleability with
respect to commitment.

Theorem 4.2. If there is a statistically-secret bit commitment scheme that is non-
malleable with respect to opening, then there exists a statistically-binding commit-
ment scheme in the public parameter model that is non-malleable with respect to
opening, but not with respect to commitment and not with respect to DDN.

Theorem 4.2 also holds for liberal non-malleable statistically-secret protocols
in the public parameter model.

Proof. Since one-way functions exist if commitment schemes exists [IL89], and
one-way functions imply pseudorandom generators [HILL99], Naor’s scheme and
therefore the assembled system above is realizable given the statistically-secret bit
commitment scheme.

We first show that the assembled scheme is not non-malleable with respect to
DDN (and therefore not with respect to commitment). Define the relation R to
consist of the pairs (b, b⊕ 1) and the message space to be the uniform distribution
on {0, 1}, i.e., both M and R are independent of the adversarial parameters. Let
Hist(b) be empty.

Given access to a sender committing to an unknown random bit b ∈R {0, 1}
we run a PIM attack and relay all messages between the receiver and the sender
for Comsecret. Additionally, we alter Naor’s part of the sender’s commitment to a
commitment of b∗ = b ⊕ 1 by the strong malleability property and forward it to
the receiver (Figure 2).

Since Comsecret is statistically secret, with overwhelming probability that part
of the sender’s commitment can be opened as 0 and 1. Hence, with probability
negligibly close to 1 we are able to construct a valid commitment of b∗ = b ⊕
1 for the assembled scheme and to satisfy the relation R. On the other hand,
any simulator not seeing the commitment of the random bit b cannot output
a commitment of b′ = b⊕ 1 with a probability exceeding 1/2 by more than a
negligible amount (this negligible amount is due to the binding error of Naor’s
protocol). Thus, the assembled scheme is not non-malleable with respect to DDN.

The fact that the combined scheme is non-malleable with respect to opening
follows from the non-malleability of the statistically-secret system. Specifically, let
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Figure 2. Malleability With Respect to Commitment

sender S adversary A receiver R

message b ∈ {0, 1} public: σ

commitment phase:

execute Comsecret
←−−−−−−−−→ relay messages ←−−−−−−−−→ execute Comsecret

pick r ∈R {0, 1}n
compute y := G(r)
set y := y⊕σ if b = 1

y−−−−→ y∗ := y⊕σ y∗−−−−→

A be an adversary attacking the assembled system. We have to present a simulator
that —“out of the blue”— outputs a related message with essentially the same
probability πopen(A) as A for all M,R. In an intermediate step we construct an
adversary Asecret from A such that Asecret attacks the non-malleability property
of Comsecret.

Consider the adversary Asecret that commits and decommits to a related mes-
sage for the protocol Comsecret. Asecret mounts a PIM attack interacting with the
sender Ssecret and receiver Rsecret of Comsecret on (possibly empty) public param-
eters PubParsecret. Asecret also runs a virtual copy of A attacking the assembled
scheme. Basically, Asecret uses A to generate a related commitment and open-
ing for Comsecret by adding the steps of Naor’s scheme. For this, Asecret exploits
the equivocable version of Naor’s scheme presented in [DIO98]. Informally, such
an equivocable commitment enables the sender to prepare a dummy commitment
which can be later opened with any value, yet this process is indistinguishable
from a true execution. This means, instead of letting σ be a random string, we
choose σ as G(r0)⊕G(r1) for random r0, r1 ∈ {0, 1}n. Then, to commit to a
dummy value, send y = G(r0); to open it with 0 reveal r0 or transmit r1 for a
decommitment to 1.
Asecret emulates A by choosing σ = G(r0)⊕G(r1) and passing

(PubParsecret, σ) to A. Adversary A returns parameters AdvPar which Asecret

uses in his attack on Comsecret, too. This defines a distribution M(AdvPar) on
{0, 1} as well as a relation R(AdvPar, ·, ·, ·) for bothA’s andAsecret’s attack. Asecret

next feeds all messages of Ssecret and Rsecret of the execution of Comsecret into A
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and also forwards all replies of A. Additionally, Asecret submits a dummy com-
mitment y = G(r0) on behalf of the sender to A in the simulation. Later, when
Asecret learns Ssecret’s decommitment of bit b it forwards this decommitment to A
and opens the dummy commitment y in A’s simulation accordingly. Output the
part of A’s opening for Comsecret and stop. See Figure 3.

Figure 3. Non-Malleability With Respect to Opening

Ssecret Asecret Rsecret

message b ∈ {0, 1} public: PubParsecret

a) commitment phase: run copy of A

pick r0, r1 ∈R {0, 1}n
σ = G(r0)⊕G(r1)

Comsecret
←−−−−−−−−−−−−−−→ ←−−−−−−→ A←−−−−−−→ ←−−−−−−−−−−−−−−→ Comsecret

G(r0)→ A→ y∗

b) decommitment phase:

b, rsecret−−−−−−−→ (b, rsecret, rb)→ A→ (b∗, r∗secret, r
∗) b∗, r∗secret−−−−−−−→

As for the analysis, first note that Asecret’s success probability poducing a
valid commitment and decommitment of a related messages is negligibly close to
πopen(A). This follows from the fact that a fake σ is indistinguishable from a hon-
estly chosen one, i.e., otherwise it would be easy to derive a successful distinguisher
contradicting the pseudorandomness of G’s output.

More formally, assume that A’s success probability drops noticeably when run
on a fake string in the simulation. Then we construct a distinguisher for the
pseudorandom generator G as follows. We are given 1n and z ∈ {0, 1}3n and are
supposed to tell whether z is truly random or has been derived by running G.
Pick random r ∈ {0, 1}n and set σ = G(r)⊕ z. Next, start A’s attack on the
assembled scheme by presenting (PubParsecret, σ). Sample (b,Hist(b)) according
to the distribution M(AdvPar) and continue A’s attack by impersonating the
honest parties in the execution of Comsecret. Also, let the sender commit in Naor’s
protocol execution by sending y = G(r) if b = 0 and z if b = 1. In the opening
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phase, decommit to this part by revealing (b, r). Output 1 exactly if A succeeds,
that is, if R(AdvPar,Hist(b), b, b∗) = 1 for a valid opening of A to b∗.

Observe that if z is really random we output 1 with probability πopen(A),
because the distribution of the data in the simulation is the same as in an actual
attack on the assembled scheme. If z is pseudorandom then we output 1 with the
probability that Asecret is victorious. By assumption, this is noticeably smaller
than πopen(A), and therefore we distinguish random and pseudorandom inputs
with noticeable advantage. This, however, refutes the pseudorandomness of G.

Altogether, we have constructed an adversaryAsecret that succeeds in attacking
Comsecret for public parameters PubParsecret virtually with the same probability
that A succeeds in attacking the assembled scheme on PubParsecret and truly
random σ. By assumption, for Asecret there is a simulator A′secret succeeding
in outputting a related message essentially with the same probability as Asecret.
But then this algorithm A′secret is also an appropriate simulator for adversary A
attacking the assembled scheme. �

Applying our constructions we conclude:

Corollary 4.3. Under the discrete-log or RSA assumption, there is an interactive
commitment scheme in the public parameter model that is liberal non-malleable
with respect to opening, but not with respect to commitment and not with respect
to DDN.

4. Discrete-Logarithm-Based Non-Malleable Commitments

In this section we introduce our discrete-log based commitment schemes which are
non-malleable with respect to opening; the RSA case is discussed in Section 5.

In Section 4.1 we start with an instructive attempt to achieve non-malleability
by standard proof-of-knowledge techniques. We show that this approach yields
a scheme which is only non-malleable with respect to opening against static ad-
versaries, i.e., adversaries that try to find a commitment after passively observing
a commitment between the original sender and receiver. In Section 4.2 we de-
velop out of this our scheme which is non-malleable against the stronger PIM
adversaries. The formal proof of non-malleability appears in Section 4.3.

4.1. Non-Malleability with Respect to Static Adversaries

Consider Pedersen’s well-known discrete-log-based perfectly-secret scheme
[P91]. Let Gq be a cyclic group of prime order q and g0, h0 two random generators
of Gq. Assume that computing the discrete logarithm logg0

h0 is intractable (e.g.,
if Gq is an appropriate elliptic curve or subgroup of Z∗p). To commit to a message
m ∈ Zq, choose r ∈R Zq and set M := gm0 h

r
0. To open this commitment, reveal m

and r. Obviously, the scheme is perfectly secret as M is uniformly distributed in
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Gq, independently of the message. It is computationally binding because opening
a commitment with distinct messages requires computing logg0

h0.
Unfortunately, Pedersen’s scheme is malleable: given a commitmentM of some

message m an adversary obtains a commitment for m+1 mod q by multiplying M
with g. Later, the adversary reveals m+ 1 mod q and r after learning the original
decommitment m, r. This holds even for static adversaries. Such adversaries do
not try to inject messages in executions, but rather learn a protocol execution of S
and R—which they cannot influence— and afterwards try to commit to a related
message to R. As for non-malleability with respect to opening, the adversary
must also be able to open the commitment after the sender has decommitted.

A possible fix that might come to one’s mind are proofs of knowledge showing
that the sender actually knows the message encapsulated in the commitment. For
the discrete-log case such a proof of knowledge consists of the following steps
[O92]: the sender transmits a commitment S := gs0h

t
0 of a random value s ∈R Zq,

the receiver replies with a random challenge c ∈R Zq and the sender answers
with y := s + cm mod q and z := t + cr mod q. The receiver finally checks that
SM c = gy0h

z
0.

If we add a proof of knowledge to Pedersen’s scheme we obtain a protocol
which is non-malleable with respect to opening against static adversaries. This
follows from the fact that any static adversary merely sees a commitment of an
unknown message before trying to find an appropriate commitment of a related
message. Since the proof of knowledge between S and R is already finished at
this point, the static adversary cannot rely on the help of S and transfer the proof
of knowledge. We leave further details to the reader and focus instead on the
non-malleable protocol against PIM adversaries in the next section.

4.2. Non-Malleability with Respect to PIM Adversaries

The technique of assimilating a proof of knowledge as in the previous section
does not thwart PIM attacks. Consider again the PIM adversary committing to
m+ 1 mod q by multiplying M with g. First, this adversary forwards the sender’s
commitment S for the proof of knowledge to the receiver and hands the challenge
c of the receiver to the sender. Conclusively, he modifies the answer y, z of the
sender to y∗ := y + c mod q and z∗ := z. See Figure 4. Clearly, this is a valid
proof of knowledge for m+ 1 mod q and this PIM adversary successfully commits
and later decommits to a related message.

Coin-flipping comes to rescue. In a coin flipping protocol one party commits
to a random value a, then the other party publishes a random value b, and finally
the first party decommits to a. The result of this coin flipping protocol is set to
c := a⊕ b or, in our case, to c := a+ b mod q for a, b ∈ Zq. If at least one party is
honest, then the outcome c is uniformly distributed (if the commitment scheme is
binding and secret).
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Figure 4. PIM Attack on Pedersen’s Commitment Scheme with
Proof of Knowledge

sender S adversary A receiver R

message m ∈ Zq public: Gq, g0, h0

a) commitment phase:

pick r, s, t ∈R Zq

set M := gm0 h
r
0

set S := gs0h
t
0

M,S−−−−−−→ S∗ := S
M∗ := gM

M∗, S∗−−−−−−→ choose c ∈R Zq
c←−−−−−−

c∗ := c
c∗←−−−−−−

y := s+ c∗m (q)
z := t+ c∗r (q) y, z−−−−−−→ z∗ := z

y∗ := y + c (q) y∗, z∗−−−−−−→ verify that

S∗(M∗)c != gy
∗

0 hz
∗

0

b) decommitment phase:
m, r−−−−−−→ r∗ := r

m∗ := m+ 1 (q) m∗, r∗−−−−−−→ verify that

M∗
!= gm

∗
0 hr

∗
0

The idea is now to let the challenge in our proof of knowledge be determined
by such a coin-flipping protocol. But if we also use Pedersen’s commitment scheme
with the public generators g0, h0 to commit to value a in this coin-flipping protocol,
we do not achieve any progress: the adversary might be able to commit to a related
a∗ and thus bias the outcome of the coin-flipping to a suitable challenge c∗.

The solution is to apply Pedersen’s scheme in this subprotocol with the com-
mitment M as one of the generators, together with an independent generator h1

instead of g0, h0; for technical reasons we rather use (g1M) and h1 for another
generator g1. As we will show, since the coin-flipping in the proof of knowledge
between A and R is based on generators g1M

∗ and h1 instead of g1M,h1 as in
the sender’s proof of knowledge, this prevents the adversary from adapting the
sender’s and receiver’s values and therefore to transfer the proof of knowledge.
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The reader may think of this as identity-based trapdoor commitments with “iden-
tities” M and M∗, respecively, and compare this to the construction in Section 3
of Chapter 3 (page 35). There, we applied the similar idea using g1g

id
2 and h1 for

the generators instead of g1M and h1. Here, M and M∗ replace the identities gid
2

of the sender and gid∗
2 of the adversary.

We describe the protocol given in Figure 5 which combines the aforementioned
ideas. The public parameters are (a description of) a cyclic group Gq of prime
order q and four random generators g0, g1, h0, h1 of Gq. Basically, the sender S
commits to his message m ∈ Z∗q with Pedersen’s scheme4 by computing M = gm0 h

r
0

and proves by a proof of knowledge (values S, c, y, z in Figure 5) that he is aware
of a valid opening of the commitment. The challenge c in this proof of knowledge
is determined by a coin-flipping protocol with values A, a, u, b.

Figure 5. Discrete-Log-Based Non-Malleable Commitment Scheme

Sender S Gq, g0, g1, h0, h1 Receiver R

message m ∈ Z∗q

a) commitment phase:

choose a, r, s, t, u ∈R Zq

set M := gm0 h
r
0

set A := (g1M)ahu1
set S := gs0h

t
0

M,A, S−−−−−−−−−−−−−−→ choose b ∈R Zq

b←−−−−−−−−−−−−−−
set c := a+ b mod q
set y := s+ cm mod q
set z := t+ cr mod q a, u, y, z−−−−−−−−−−−−−−→ set c := a+ b mod q

check A != (g1M)ahu1
check SM c != gy0h

z
0

b) decommitment phase:
m, r−−−−−−−−−−−−−−→ check M != gm0 h

r
0

It is clear that our protocol is computationally binding under the discrete-
log assumption, and perfectly secret as the additional proof of knowledge for m

4Note that as opposed to Pedersen’s scheme we require that m 6= 0; the technical reason is
that in the security proof we need to invert the message modulo q.
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is witness independent (aka. perfectly witness indistinguishable) [FS90], i.e., for
any challenge c the transmitted values S, y, z are distributed independently of the
actual message [O92].

Proposition 4.4. The commitment scheme in Figure 5 is perfectly secret and,
under the discrete-log assumption, computationally binding.

In the next section we stringently prove that our scheme is indeed non-
malleable. By now, we already remark that the non-malleability property of our
scheme also relies on the hardness of computing discrete logarithms. This depen-
dency is not surprising: after all, any adversary being able to compute discrete
logarithms with noticeable probability also refutes the binding property of Peder-
sen’s scheme and can thus decommit for any related message with this probability.

A rough idea why our protocol is non-malleable can be described as follows.
Given a commitment M of some unknown message m (together with a witness-
independent proof of knowledge described by S, c, y, z) with respect to parameters
p, q, g0, h0 we show how to employ the PIM adversaryA to derive some information
about m. Namely, if we are able to learn the related message m∗ of the adversary
by extracting it via his “self-employed” proof of knowledge, then we know that m is
related to m∗ for the relation R. This, of course, contradicts the perfect secrecy of
the commitment M . We remark that the formal proof of non-malleability requires
to come up with a simulator generating a related message without the help of the
sender. However, as we will show, the essential part of the simulator is made out
of such an extraction procedure. For details and further discussion we refer to the
next section.

Theorem 4.5. Under the discrete-logarithm assumption, the scheme in Figure 5
is a perfectly-secret commitment scheme which is liberal non-malleable with respect
to opening.

It is worthwhile to point out that we cannot hash longer messages to Z∗q before
applying our non-malleable commitment scheme. Because then we extract the
hash value and not the message m∗ itself. But this could be insufficient, since it
might be impossible to deduce anything about m via R(AdvPar,Hist(m),m,m∗)
given solely the hash value of m∗. The same disadvantage occurs in the RSA case.
A solution for this using so-called a-posteriori verifiable proofs of knowledge relying
on the Chinese Remainder Theorem appears in [FF00]. There, one can first hash
the message as the proof of knowledge operates on the original message instead of
the hash value.

4.3. Formal Proof of Non-Malleability

We present the proof of non-malleability of the protocol in the previous section
first from a bird’s eye view and progressively fill in more details. The main part of
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the proof consists of the construction of an extraction procedure that enables us to
extract the adversary’s message related to the original message. We start with an
outline of this procedure, then analyze it with respect to restricted attacks and,
subsequently, supplement the remaining steps for full-fledged attacks. Finally,
we discuss that the required non-malleability simulator can be derived from the
extraction procedure. At the end of this section we turn to the multi-party setting.
Outline of Extraction Procedure. In this outline here, we make some sim-
plifications concerning the adversary: first, we assume that the PIM adversary
always catches up concerning the order of the transmissions, i.e., sends his first
message after learning the first message of S and answers to S after having seen
R’s response etc. Second, let the adversary always successfully commit and de-
commit to a related message, rather than with, say, small probability. Third, we
presume that M is independent of the adversarial parameters. All restrictions will
be removed in the following passages.

To learn the adversary’s message m∗ we use the proof of knowledge in our
commitment protocol. Intuitively, a proof of knowledge guarantees that the prover
knows the message, i.e., one can extract the message by running experiments with
the prover. Specifically, we inject values p, q, g0, h0,M, S, c, y, z into a simulated
PIM attack with A and impersonate S and R. Additionally, we choose g1 at
random and set h1 := (g1M)w for a random w ∈R Zq. We also compute random
a0, u0 ∈R Zq and insert g1, h1 and A := (g1M)a0hu0

1 into the experiment with
A. We start with the extraction procedure by committing to m, s, a0 via M,S,A
on behalf of the sender. Then, by the predetermination about the order of the
transmissions, the adversary sends M∗, S∗, A∗ (possibly by changing M,S,A and
without knowing explicitly the corresponding values m∗, r∗ etc.). See Figure 6 on
page 61 for a pictorial description.

We play the rest of the commitment phase twice by rewinding it to the step
where the receiver chooses b and sends it to the adversary A. To distinguish the
values in both repetitions we add the number of the loop as subscript and write
a1, a

∗
1, a2, a

∗
2 etc.

The first time, the adversary upon receiving b1 passes some b∗1 to the (sim-
ulated) sender S, and expects S to open the commitment for a and supplement
the proof of knowledge for M with respect to the challenge a1 + b∗1 mod q. By the
trapdoor property of Pedersen’s commitment scheme [BCC88] we are able to open
A with any value for a1 since we know log(g1M) h1. That is, to decommit A with
some a1 reveal a1 and u1 = u0 + (a0 − a1)/ log(g1M) h1 mod q; it is easy to verify
that indeed A = (g1M)a1hu1

1 . In particular, we choose a1 such that a1 + b∗1 mod q
equals the given value c. Hence, y and z are proper values to complement the proof
of knowledge for M . Finally, the adversary answers with the decommitment a∗1, u

∗
1

for A∗ and the rest of the proof of knowledge for M∗ with respect to challenge
a∗1 + b1 mod q.
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Now we rewind the execution and select another random challenge b2. The
adversary then decides upon his value b∗2 (possibly different from his previous
choice b∗1) and hands it to S. Again, we open A with a2 such that c = a2+b∗2 mod q.
The adversary finishes his commitment with a∗2, u

∗
2 as opening for A∗ and the

missing values for the proof of knowledge.
The fundamental proof-of-knowledge paradigm [FFS88, FS89, BG92] says that

we can extract the message m∗ if we learn two valid executions between A and
R with the same commitment M∗, S∗, A∗ but different challenges. Hence, if the
adversary’s decommitments satisfy a∗1 = a∗2 and we have b1 6= b2 (which happens
with probability 1−1/q), then this yields different challenges a∗1 +b1, a∗2 +b2 in the
executions between A andR and we get to know the message m∗. We are therefore
interested in the event that the adversary is able to “cheat” by presenting different
openings a∗1 6= a∗2. In Section 4.3 we prove that the adversary cannot find different
openings for commitment A∗ too often, else we would derive a contradiction to the
intractability of the discrete-log problem. Hence, under the discrete-log assump-
tion this event hardly occurs and we extract m∗ with sufficiently high probability.

Note that that in the repetitions we force the coin-flipping protocol between S
and A to result in the same challenge both times. The latter is necessary because
if we were able to answer a different challenge than c then we could extract the
unknown message m and would thus know m (which is of course not the case).
Extraction With Respect to Restricted Attacks. We address a more formal
approach to the extraction procedure, still considering a slightly restricted attack.
Namely, as in the outline, we too adopt the convention that the adversary A
does not “mix” the order of messages but rather catches up. We also presume for
simplicity that the messages space M is independent of the adversarial parameters.
Call this a restricted attack. We afterwards explain how to deal with full-fledged
attacks.

Before we jump into restricted attacks, we first remark that the history value
Hist(m) can be neglected for the analysis of the extraction procedure for both
restricted and full-fledged attacks. We omit mentioning it since we use only black-
box simulations to extract the adversary’s message, hence, any value Hist(m) given
to A′ is simply forwarded to A in order to run the black-box simulation. Only
the conclusive construction of the non-malleability simulator from the extraction
procedure requires a more careful look at the history value.

Our aim is to extract the adversary’s message from his commitment within a
negligibly close bound to the adversary’s success probability πopen(A). To this end,
we repeat some basic facts about proofs of knowledge and knowledge extractors
[FFS88, FS89, BG92]; we discuss them for the example of Okamoto’s discrete-log-
based proof of knowledge (see [O92] or Section 4.1) for a given M = gm0 h

r
0.

The knowledge extractor interacting with the prover works in two phases.
Namely, it first generates a random conversation S, c, y, z by running the prover
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to obtain S, by selecting c and by letting the prover answer with y, z to S, c. If
this communication in the initial run is invalid, then the extractor aborts. Else
the extractor also stops with probability 1/q. Otherwise it extracts at all costs.
That is, the extractor fixes this communication up to the challenge, and then loops
(till success) to seek another accepting conversation with the same communication
prefix S and different c. This is done by rewinding the execution to the choice
of the challenge and reselecting other random challenges. The extractor runs in
expected polynomial time and outputs a representation of M with respect to g0, h0

with probability π − 1/q. Here, π denotes the probability that the prover makes
the verifier accept, and 1/q is called the error of the protocol.

Assume that we communicate with some party C which is going to commit
to an unknown message m ∈R M. We choose a group Gq and two generators
g0, h0 and send them to C. Party C selects r, s, t ∈R Zq and sends M := gm0 h

r
0,

S := gs0h
t
0. We answer with a random challenge c ∈R Zq and C returns y :=

s + cm, z := t + cr mod q. Finally, we check the correctness. Put differently, we
perform all the steps of the sender in our protocol except for the coin flipping.

We describe our knowledge extraction procedure. The aim is to get the mes-
sage m∗ of the PIM adversary when the adversary faces C’s commitment. For
this, the extractor chooses additional generators g1, h1 by setting g1 := gv0 and
h1 := (g1M)w for random v, w ∈R Z

∗
q , and computes A := (g1M)a0hu0

1 accord-
ing to the protocol description for random a0, u0 ∈R Zq.5 Then the extractor
starts to emulate the PIM attack by pretending to be S and R and with values
Gq, g0, g1, h0, h1,M, S,A. A description is shown in Figure 6.

Because of the assumption about the order of messages, the adversary commits
then to M∗, S∗, A∗. Next, we use the same stop-or-extract technique as in [FS89,
BG92]. In our case, the rewind point (if we do rewind) is the step where the
receiver sends b. In each repetition, we send a random value bi ∈R Zq —the
subscript denotes the number i = 1, 2, . . . of the loop— on behalf of the receiver
and the adversary hands some value b∗i to the simulated sender. Knowing the
trapdoor w = log(g1M) h1 we open A with ai, ui = u0 + (a0 − ai)/w mod q such
that ai+b∗i equals the given value c, and send the valid answer y, z to the challenge
c in the proof of knowledge for M . The adversary replies with a∗i , u

∗
i , y
∗
i , z
∗
i to the

receiver. Again, see Figure 6.
An important modification of the knowledge extractor in comparison to the

one in [FS89, BG92] is that, once having entered the loop phase, not only does our
extractor stop in case of success; it also aborts with no output if in some repetitions
i, j the adversary both times successfully finishes the commitment phase —which
includes a correct decommitment of A∗— but opens A∗ with distinct values a∗i 6=
a∗j . We say that A wins if this happens. In this case, the extractor fails to extract

5Clearly, the choice of the generators requires that M and therefore m and M are determined
before the adversary is presented PubPar and selects AdvPar.
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Figure 6. Knowledge Extraction

simulation of S adversary A simulation of R

given parameters:

Gq, g0, h0

M,S, c, y, z

additional parameters:

choose a0, u0, v, w ∈R Zq

set g1 := gv0
set h1 := (g1M)w

set A := (g1M)a0hu0
1

frozen simulation: Gq, g0, g1, h0, h1

M,A, S−−−−−−−−−→
M∗, A∗, S∗−−−−−−−−−→

rewind point (loop i = 1, 2, . . . ): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

choose bi ∈R Zq

bi←−−−−−−−−−
b∗i←−−−−−−−−−

set ai := c− b∗i mod q
set ui := u0 + (a0 − ai)/w mod q

ai, ui, y, z−−−−−−−−−→
a∗i , u

∗
i , y
∗
i , z
∗
i−−−−−−−−−→

a message. We remark that we are only interested in the case that A sends distinct
openings of A∗ in accepting executions, because the extractor only relies on such
executions.

Our first observation is that our knowledge extractor stops (either with success
or aborting prematurely) in expected polynomial-time. This follows as in [FS89,
BG92].
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To analyze the success probability of our extractor let π denote the probability
of A completing the commitment phase with R successfully. The basic extraction
paradigm says that we are able extract with probability π−1/q− ε(n), where ε(n)
denotes the probability that A wins (n is the security parameter). The reason
for this is that, given A does not win, the adversary’s openings a∗i1 = a∗i2 =
. . . in the valid commitment conversations are all equal. But then the values
bij + a∗ij mod q for j = 1, 2, . . . of challenges in the proof of knowledge between
A and R are independently distributed. Analogously to [FS89, BG92] it follows
that the extractor finds a message with probability π − 1/q − ε(n) in this case.

Recall that we would like to guarantee that we extract with probability ap-
proximately πopen(A). Apparently, π upper bounds πopen(A), and it would thus
suffice to show that ε(n) roughly equals π − πopen(A), or put differently, that
δ(n) = ε(n) − (π − πopen(A)) is negligible. One may think of the difference
π − πopen(A) describing the probability of executions in which A successfully
commits but never finds a related, valid opening (e.g., if A simply duplicates
all messages of S in the commitment phase).

It remains to bound the probability δ(n). We will prove that δ(n) is negligible
under the discrete-log assumption.

Lemma 4.6. The probability that A wins is negligibly close to π − πopen(A).

We remark that the proof of this lemma makes use of two important aspects.
On one hand, we exploit that the message space is fixed before the adversarial
parameters are chosen. On the other hand, we apply the fact that we merely
demand non-malleability with respect to opening, i.e., that A also reveals a valid
decommitment.

Proof. We show that if the claim of Lemma 4.6 does not hold this contradicts the
intractability of the discrete-log problem. We are given a group Gq, a generator
g, and a value X ∈ Gq for which we are supposed to compute loggX. We show
how to use A to do so.

Instead of using the commitment M of the third party C, this time we run
the knowledge extraction procedure incorporating the given values Gq, g,X, but
generating the same distribution as the extractor. That is, select a message m ∈R

M, as well v, w ∈R Z
∗
q , set

g0 := g−1/mX, g1 := g, h0 := Xv, h1 := Xw,

and compute M,A, S, c, y, z according to the protocol description. Wlog. assume
that X 6= 1 and Xm 6= g, else we already know the discrete log of X. Then g0,
g1, h0 and h1 are random generators of the subgroup Gq. Furthermore, g1M =
ggm0 h

r
0 = Xm+rv and thus log(g1M) h1 = (m+ rv)/w mod q.

Next we emulate A on values Gq, g0, g1, h0, h1 and M,A, S by running the ex-
traction procedure above —with the exception that this time we enter the rewind
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phase only if the adversary successfully commits and also reveals a valid decom-
mitment (m∗, r∗) to a related message after learning our decommitment (m, r) in
the initial execution.

Once we have entered the rewind phase, whenever the extractor is supposed
to open A to determine the challenge c in the loop, we also open the commitment
such that the coin flipping protocol always yields the same value c. This is possible
as we know log(g1M) h1 and are therefore able to open A ambiguously.

Unlike in the case of an actual extraction process, here we sometimes suspend
before looping although the adversary’s initial commitment is accepted (because
we also stop if the adversary’s decommitment in the initial execution is invalid
or unrelated). This restriction decreases the probability of A winning at most by
π−πopen(A). We call runs in which A also opens correctly in the initial execution
good.

Observe that the communication in good experiments here is identically dis-
tributed to the one in the extraction procedure. Hence, given that A wins with
probability ε(n) = π−πopen(A) + δ(n) in the actual extraction procedure, A finds
some a∗i 6= a∗j for two accepting executions i, j with probability at least δ(n) in a
good run here. By assumption, δ(n) is noticeable, so it suffices to prove that if A
wins in a good extraction then we can compute the discrete logarithm of X.

Let u∗i , u
∗
j denote the corresponding portions of the decommitment to a∗i and

a∗j for A∗ in loops i and j. In a good run we have obtained some m∗, r∗ satisfying
the verification equation M∗ = gm

∗
0 hr

∗
0 from the adversary by revealing m, r in

place of the sender in the initial execution. Particularly, we have:

(g1M
∗)a
∗
i h

u∗i
1 = A∗ = (g1M

∗)a
∗
jh

u∗j
1

and therefore

h
(u∗i−u∗j )/(a∗j−a∗i )

1 = g1M
∗ = g1g

m∗
0 hr

∗
0 = g1−m∗/mXm∗+r∗v

Since h1 = Xw we can transform this into

g1−m∗/m = X∆ for ∆ = w(u∗i − u∗j )/(a∗j − a∗i )− (m∗ + r∗v) mod q

Observe that ∆ is computable from the data that we have gathered so far. From
m∗ 6= m we conclude that 1 − m∗/m 6= 0 mod q and therefore ∆ 6= 0 mod q
has an inverse modulo q. Thus the discrete logarithm of X to base g equals
(1−m∗/m)/∆ mod q. �

In summery, with probability πopen(A)− 1/q − δ(n) (which is negligibly close
to the adversary’s success probability) we extract some message m′. The final
step is to show that indeed m′ equals the adversary’s decommitment m∗ except
with negligible probability (or, more precisely, that m′ is at least an appropriate
substitution for m∗ insofar as it also satisfies R often enough). Denote by πopen(E)
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the probability that the extraction procedure returns m′ that is related to m under
R.

Lemma 4.7. The probabilities πopen(A) − 1/q − δ(n) and πopen(E) are negligibly
close.

Again, this lemma relies on the fact that the message space is independent of
the adversarial parameters.

Proof. Similar to Lemma 4.6 if this were not the case we could compute the
discrete logarithm of X to g in group Gq. Namely, define g0 := g and h0 := X and
run the extraction procedure as before, only this time compute M,S, c, y, z for
yourself, in particular, sample m ∈R M, r ∈R Zq and set M := gm0 h

r
0, and choose

g1 at random and set h1 := (g1M)w for a random w ∈R Z
∗
q .

In the initial run of the extraction procedure, if the adversary has finished the
commitment phase successfully, hand the decommitment of M to the adversary
and try to elicit the opening m∗, r∗ of M∗. If the adversary refuses to decommit
to M∗ correctly, then stop; else continue the extraction. According to Lemma 4.6
the extraction yields a representation m′, r′ of M∗ with probability πopen(A) −
1/q− δ(n). We are interested in the probability that m′ also satisfies the relation.

Suppose that πopen(A)−1/q−δ(n) and πopen(E) have noticeable difference. In
particular, we conclude that m′ 6= m∗ with noticeable probability. But this implies
that sufficiently often we obtain distinct representations (m∗, r∗), (m′, r′) of M∗.
We are thus able to compute the discrete logarithm of h0 = X to base g0 = g
with noticeable probability. Hence, under the discrete logarithm assumption, the
probability that the extraction procedure returns m′ that stands in relation to the
sender’s message is negligibly close to πopen(A)− 1/q − δ(n). �

Thwarting Full-Fledged Attacks. Our first observation is that the order of the
messages in the PIM attack does not violate any of the discussions above. This is
quite easy to see since any message on the sender’s side can be predetermined at
the outset of the knowledge extraction procedure.

So the final step is to remove the assumption about the message space. We
have used three times the fact that M can be determined before the adversarial
parameters are presented to the adversary. First, we have set h1 equal to g1M ,
i.e., generated h1 after seeing the commitment of m ∈R M in the extraction pro-
cedure. Second, in the proof of Lemma 4.6, we have sampled m ∈R M and then
incorporated it into the generators. Third, Lemma 4.7 also requires to choose M
before the adversary generates AdvPar. We solve the former point first, and then
show how to deal with the latter problems. In any case, this boils down to select
the public parameters PubPar before sampling m, because AdvPar is a random
variable depending on PubPar only. Note that we do not change our protocol, but
only the extraction and simulation procedures.
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In the knowledge extraction procedure, recall that we copy the commitment
M,S, c, y, z of party C into the extraction procedure and then set h1 := (g1M)w for
random w. To remove the dependency of a preselected message space, we modify
M,S before using it in the proof of knowledge. That is, one first selects a group
Gq and Mfake ∈R Gq. Then we present Gq, g0, h0, g1, h1 to the adversary, where
g0, h0, g1 are random generators and h1 := (g1Mfake)w. This also determines M =
M(AdvPar) and we invoke C on Gq, g0, h0 and M to obtain M,S, c, y, z. Instead
of using M,S in the extraction procedure, we run the knowledge extractor with
Mfake and Sfake := S(MM−1

fake)
c as well as c, y, z. Clearly, these values satisfy the

verification equation SfakeM
c
fake = gy0h

z
0. Moreover, they are identically distributed

to honestly generated ones, and hence the extractor achieves the same success
probability. It is instructive to think of Mfake and Sfake as rerandomized versions
of M,S.

The solution for the problem in Lemma 4.6 is similar to the previous case.
There, we have chosen a group Gq and g0 := g−1/mX, g1 := g, h0 := Xv and
h1 := Xw. By this, we have possessed the discrete logarithm of h1 = Xw to base
g1M = g1g

m
0 h

r
0 = X(m+rv). Instead, we now select Gq, choose a dummy message

m0 ∈R Z
∗
q and set g0 := g−1/m0X, g1 := g, h0 := (g−1/m0X)v and h1 := Xw

and M := gm0
0 . The values Gq, g0, g1, h0, h1 fix M = M(AdvPar) and enable us to

choose now the genuine message m ∈R M. Since we know v = logg0
h0 we can find

an appropriate r with m+ vr = m0. Thus, g1M = g1g
m
0 h

r
0 = Xm+rv and, again,

log(g1M) h1 = (m + rv)/w. Except for the case that m + rv = 0 in Lemma 4.6,
which happens with probability 1/q, this way of selecting the public parameters
is identical to the generation there.

We discuss that the proof carries over to the modification for Lemma 4.6.
In the proof of Lemma 4.6 we finally find ∆ with g1−m∗/m = X∆ and are able
to compute the discrete logarithm of X to g since m∗ 6= m. Here, we obtain
the equation g1−(m∗+vr∗)/(m+vr) = X∆. If we would have m∗ + vr∗ = m + vr
with noticeable probability, then from m∗ 6= m it would follow that the adversary
finds a different representation m∗, r∗ of M = gm0 h

r
0 to base g0, h0 with noticeable

probability. Specifically, given Gq, g0 := g, h0 := X select random g1, h1 and then
sample a message m ∈R M(PubPar). Compute the commitment M = gm0 h

r
0 for

random r as well as the values S,A for the proof of knowledge. Run only the initial
commitment and decommitment phase of Lemma 4.6. If the adverary sends b∗

for the coin-flipping subprotocol in this initial run, then open the commitment
for A with the previously selected values a, u and evaluate y, z for the proof of
knowledge for S, c = a⊕ b∗. Finally, reveal m, r to the adversary to obtain m∗, r∗.

Note that we do not need to know the discrete logarithm of h1 to g1M here,
since we do not loop, but merely run the initial phase. By assumption, m∗ +
r∗ logg0

h0 = m + r logg0
h0 with noticeable probability. This, in turn, yields the

discrete logarithm of h0 = X to g0 = g. Hence, under the discrete logarithm
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assumption this happens with negligible probability only, and by analogy with
Lemma 4.6 we therefore derive that the probability of A winning does not exceed
π − πopen(A) noticeably.

Finally, to adapt Lemma 4.7, we need to show that extracting m′ different
than m∗ is infeasible, even if we have to publish the public parameters ahead of
the choice of M. Remember that in Lemma 4.7 we have used the adversary to
find distinct representations (m∗, r∗), (m′, r′) of M∗ and to compute the discrete
logarithm of h0 = X to g0 = g in Gq. Here, given Gq, g,X we make the following
selection for random r, v, w ∈ Zq:

g0 := g, g1 := gv0h
−r
0 , h0 := X, h1 := gw0 ,

These parameters pin down M = M(AdvPar). We sample m ∈R M and let M :=
gm0 h

r
0 for the preselected value r; the values of the proof of knowledge are computed

honestly. It is easy to see that all values have the correct distribution (unless g1 = 1
or h1 = 1, in which case we simply abort). Furthermore, we know the discrete
logarithm w/(v +m) of h1 with respect to g1M .

This completes the analysis of the extraction procedure with respect to full-
fledged attacks.
Extraction Implies Non-Malleability. A general construction of a non-
malleability simulator A′ from an extraction procedure has already appeared in
[DDN00] (for the plain model, but it is straightforward to adapt it to the public
parameter model, as done below). We briefly review the construction of A′ for
our case.

The non-malleability simulator A′ prepares the public parameters as required
for the extraction procedure, invokes the adversary A to obtain AdvPar and sets
AdvPar′ := AdvPar. Then the honest sender S is given a secret message m ∈R

M(AdvPar′) and A′ receives Hist(m) (which is forwarded to A for the black-box
simulation).

For the extraction procedure, A′ also has to prepare a commitment M of m
together with a proof of knowledge S, c, y, z, but without actually knowing the
secret message m of the sender. We let A′ simply take an arbitrary message
m0 ∈ M(AdvPar′) and compute M,S, c, y, z from this message m0 instead. Since
the commitment M is perfectly secret and S, c, y, z are distributed independently
of m0, these values are equivalent to genuine values. This holds even if m0 does
not match the a-priori information Hist(m) the adversary has about the sender’s
message.6

Finally, the simulator A′ outputs the message it extracts from the PIM ad-
versary. The results about the extraction procedure in the previous sections show

6In fact, a slightly more sophisticated argument shows that this would also be true if the
commitment scheme was only computationally secret [DDN00].
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that the success probability of A′ is at most negligibly smaller than the probability
of the PIM adversary. This completes the proof.
The Multi-Party Case. It is not hard to see that non-malleability in the
multiple-sender scenario follows from the single-sender case for our protocols.
Nevertheless, if we grant the adversary the possibility to commit in several ex-
ecutions then we are not aware if our proof technique still works. To bypass
this dilemma we use the proposal from [DDN00] that the adversary announces
some subset of indices i1, . . . , ik in the commitment phase. The adversary is
then called successful if he finds valid openings for these commitments and if
m∗i1 , . . . ,m

∗
ik

stand in relation to m. That is, we can view R as a restricted re-
lation R(AdvPar,Hist(m),m,m∗i1 , . . . ,m

∗
ik

). It follows straightforwardly that, if
we let the adversary in our case announce the subset after having sent all the
commitments M∗1 , . . . ,M

∗
poly, then our scheme becomes liberal non-malleable with

respect to opening in the multiple-sender/multiple-adversary setting.

5. Non-Malleable Commitments Based on RSA

In this section, we present the protocols based on RSA. The basic ideas remain:
add a proof of knowledge to a commitment of the message, where the challenge
is determined by a coin-flip subprotocol which involves the commitment of the
message. Some slight adjustments have to been done, though.

Let N be an RSA modulus, i.e., the product of two large primes. An RSA
exponent for N is an integer e which is co-prime to the Euler totient function
ϕ(N) and satisfies e 6≡ 1 (mod ϕ(N)). The RSA assumption says that computing
g1/e mod N for a random g ∈R Z

∗
N is intractable.

The RSA-based non-malleable commitment scheme is built on the function
(m, r) 7→ gmre mod N for m ∈ Ze, r ∈ Z∗N and e prime [O92]. A commitment of
m ∈ Ze is given by M := gmre mod N for a random r ∈R Z

∗
N . This commitment

scheme is perfectly secret (as taking e-th powers is a permutation on Z∗N ) and com-
putationally binding, and it supports an efficient three-round witness-independent
proof of knowledge similar to the discrete-log case. Furthermore, it also gives rise
to a trapdoor property. If (and only if) one knows the trapdoor g1/e mod N , then
one can open the commitment with arbitrary messages. Finally, we notice that one
can efficiently compute an e-th root of h from k, h,∆, N, e satisfying the equation
hk = ∆e mod N for k 6= 0 mod e.

For our protocol we also require a family of universal one-way hash functions
[NY89]. This is a sequence H = (Hn)n∈N of function sets Hn := {Hk,n | k}, where
each Hk,n maps elements from the common domain Dn to a common range Rn.
Additionally, the family is target-resistent, i.e., for any probabilistic polynomial-
time algorithm A the probability that A(1n) generates some x ∈ Dn and, after
some function Hk,n has been chosen uniformly from Hn and has been presented
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Figure 7. RSA-Based Non-Malleable Commitment Scheme

Sender S N, e, g,G, h0, h1 Receiver R
H : Z∗N → Ze

message m ∈ Ze

a) commitment phase:

select R ∈R Z
∗
N

let x := H(GmRe)

choose a, s ∈R Ze

choose r, t, u ∈R Z
∗
N

set M := gmre

set A := (hx0h1)aue

set S := gste
x,M,A, S−−−−−−−−−−−−−−→ choose b ∈R Ze

b←−−−−−−−−−−−−−−
set c := a+ b mod e
set y := s+ cm mod e
set z := trcgb(s+cm)/ec mod N a, u, y, z−−−−−−−−−−−−−−→ set c := a+ b mod e

check A != (hx0h1)aue

check SM c != gyze

b) decommitment phase:
m, r,R−−−−−−−−−−−−−−→ check M != gmre

check x != H(GmRe)

to A, then A returns x′ 6= x with Hk,n(x) = Hk,n(x′), is negligible. In particular,
every collision-intractable hash function is also universal one-way. In the following,
we usually refer to an instance Hk,n simply as H.

We describe our non-malleable commitment in Figure 7. The public pa-
rameters consist of a random RSA instance N, e and four random elements
g,G, h0, h1 ∈R Z

∗
N together with a universal one-way hash function H : Z∗N → Ze.

To commit to m ∈ Ze, choose r ∈R Z
∗
N and set M := gmre. Furthermore, compute

x := H(GmRe) for random R ∈R Z
∗
N and select a ∈R Ze, r, u ∈R Z

∗
N to calculate

A := (hx0h1)aue for the coin-flipping protocol. We remark that, in constrast to
the discrete-log case where A = (g1M)ahu1 , here a commitment of the message
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enters A vicariously by means of hx0 for the hash value x of yet another commit-
ment GmRe of the message. In addition to the computations above, execute the
proof of knowledge protocol given in [O92] for M . Clearly, the derived scheme is
computationally binding and perfectly secret.

In comparison to the discrete-log case, we have to perform some extra work.
Namely, we give two commitments of m and we use a universal one-way hash
function H. The reason for this basically stems from the lack of symmetry: in
the discrete-log case we use two generators and two exponents, whereas here the
party selects one exponent and a single value raised to the e-th power. Indeed,
the second commitment GmRe is only necessary if the message space depends on
the adversarial parameters. Otherwise one could hash M to x and still achieve
non-malleability with respect to such an “independent” message space.

It remains to prove non-malleability. The proof is very similar to the one of
the discrete-log case, so we only sketch the necessary adaptions of the main steps.
We again begin with the extraction procedure with respect to restricted attacks
where the message space is independent of the adversarial parameters and then lift
it to full-fledged attacks. Once more, the order of the messages in the executions
between the sender and the adversary, and the adversary and the receiver is irrel-
evant to the discussion. Also, the construction of the non-malleability simulator
from the extraction procedure is quasi identical to the discrete-log case and we do
not address this part of the proof here.
Restricted Attacks. We first describe the extraction procedure in the RSA case.
Given N, e, g and a commitment M = gmre for an unknown messages m ∈ M
together with a proof of knowledge, select v ∈R Z

∗
N and set G := ve mod N . Also,

let x := H(Re) for random R ∈ Z∗N and define h0 ∈R Z
∗
N as well as h1 := h−x0 we

for w ∈R Z
∗
N . With these choices the e-th root of hx0h1 equals w, hence the coin-

flip commitment A := (hx0h1)aue is openable with any value a, and the extraction
process is therefore identical to the discrete-log case.

The extraction works as long as the adversary does not find ambiguous decom-
mitments for the commitment A∗. In Lemma 4.6 it is shown that this probability
is negligible close to π − πopen(A) under the discrete-log assumption. Basically,
the technique is to choose appropriate parameters to be able to mimic the extrac-
tion procedure and to use the ambiguous opening to A∗ to compute the discrete
logarithm of X with respect to g in group Gq.

In an intermediate step, we first show that we can essentially restrict ourselves
to the case that the adversary sends a different hash value x∗ 6= x. If the adversary
would be able to find a related opening with noticeable probability for x∗ = x, this
would contradict either the one-wayness of H or the RSA assumption. Namely,
given N, e and a random X ∈ Z∗N let G := X and compute the other public
parameters correctly, and sample m ∈R M and compute M := gmre and GmRe.
Then, given the universal one-way hash function H(·), compute x := H(GmRe)
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and run the adversary on these parameters. If the adversary chooses x∗ = x
and later reveals a correct decommitment m∗, r∗, R∗ after learning m, r,R, we
either have GmRe = Gm

∗
(R∗)e from which we can compute the e-th root of

G = X, or we have GmRe 6= Gm
∗
(R∗)e yielding a collision H(GmRe) = x =

x∗ = H(Gm
∗
(R∗)e) for H(·). Hence, the adversary succeeds for x = x∗ only with

negligible probability. Observe that this argument even holds if the message space
depends on the adversarial parameters.

From now on we condition on the event that the adversary always selects
x∗ 6= x. Transferring Lemma 4.6 means that we are given N, e,X and try to
compute the e-th root of the random value X ∈ Z∗N . For this, we copy N, e,
sample m ∈R M, compute M := gmre and x := H(GmRe) for r, g,G,R ∈R Z

∗
N

and, again, set h1 := h−x0 we for random w ∈R Z
∗
N and h0 := X. Analogously

to Lemma 4.6 we run the extraction procedure (with the opening step in the
initial execution to obtain m∗, r∗, R∗). Under this assumption, and following the
approach in Lemma 4.6, from an ambiguous decommitment for a∗ for the values
chosen above, we finally derive the equation

h
(x∗−x)(a∗i−a∗j )

0 = ∆e mod N

for known ∆, x∗ 6= x, a∗i 6= a∗j . Since (x∗ − x), (a∗i − a∗j ) 6= 0 mod e we can
compute an e-th root of h0 = X. Hence, under the RSA assumption the extraction
procedure succeeds with probability πopen(A)−1/e−δ(n), where δ(n) is negligible.

The final step in the proof of the discrete-log case is Lemma 4.7, where we
show that the extracted messages m′ is (at least) a suitable replacement of m∗.
In that lemma, we prove that if this were not true, then we could compute dis-
crete logarithms. The analogous proof here is the same as in the the adaption of
Lemma 4.6: given N, e,X, choose m ∈R M, set g := X and compute M := gmre

as well as x := H(GmRe) for random G,R ∈R Z
∗
N . Moreover, let h0 ∈R Z

∗
N and

h1 := h−x0 we. Run the extraction procedure (with an initial decommitment step to
get m∗, r∗, R∗) to obtain m′, r′, R′ with M∗ = gm

∗
(r∗)e = gm

′
(r′)e; since m∗ 6= m′

this yields the e-th root of g = X.
Full-Fledged Attacks. Here, the messages space is not independent of the ad-
versarial data anymore. Similar to the discrete-log case we have to ensure that
we are able to produce appropriate public parameters before we get to know the
message space.

For the extraction procedure we choose the same rerandomizing technique as
in the discrete-log case. To adapt the modification of Lemma 4.6 we select G :=
ve mod N for a random v ∈R Z

∗
N and precompute x := H(Re0) for R0 ∈R Z

∗
N ; since

we know the e-th root ofG is easy to find an appropriate value R matching x for the
afterwards chosen message m ∈R M(AdvPar). Choose the parameters g, h0 ∈R Z

∗
N

honestly, and set h1 := h−x0 we mod N for random w ∈R Z
∗
N . Conditioning again

on the adversary sending x∗ 6= x the proof goes through in this case as well.
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Finally, we have to prove that the extracted message equals the adversary’s
one (or, more precisely, satisfies the relation). Similar to the previous step, we
select G as G := ve mod N such that we are able to preselect the value x. The
rest of the proof is as before, i.e., we finally derive different openings of M yielding
the e-th root of g.

Theorem 4.8. If the RSA assumption holds and if H is a family of universal one-
way hash functions, then the protocol in Figure 7 is a perfectly secret commitment
scheme which is liberal non-malleable with respect to opening.

Although without practical significance, one can in principle construct colli-
sion-intractable hash functions and thus universal one-way hash functions under
the RSA assumption. We may therefore reduce the prerequisite of the theorem to
the RSA assumption solely.

6. Non-Malleable Commitments via Random Oracles

The random oracle methodology [FS86, BR93] exploits the very strong assumption
that a hash function behaves like a truly random function. In this model, where all
parties have oracle access to such a random function H, we devise non-interactive
non-malleable commitments in the plain model. However, we remark that the
random oracle heuristic provides only some evidence that the scheme is indeed
secure if one uses appropriate instantiations for H. It might well be that there is
no secure implementation in practice at all [CGH98].

The definition of non-malleability transfers to the random oracle model if we
augment each party S,R,A and A′ as well as M and R with the same oracle H
representing a random function with infinite domain and fixed output length. The
probability that A and A′, respectively, succeed is then taken over the random
choice of H, too.

Let Comsecret be the non-interactive statistically-secret commitment scheme
described in [NY89, DPP93, HM96]. The protocol goes like this: first, the sender
hashes the message m to a short string M with some collision-intractable hash
function. Then the sender picks a pairwise independent function h and a value
x such that h(x) = M . It computes the hash value y of x under the collision-
intractable hash function and sends (y, h) to R. We omit further details.

Since the protocol Comsecret merely requires a collision-intractable hash func-
tion and random oracles have this property by construction, we may use H as
the collision-intractable hash function in the scheme. Then ComH

secret is indeed
non-intractive and still provides statistical secrecy as well as computational unam-
biguity. We claim that this scheme is even non-malleable with respect to opening
in the random oracle model.

Basically, the protocol is non-malleable because any adversary A sending a
commitment (y∗, h∗) and later a correct decommitment (m∗, x∗), each time after
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having seen the sender’s values (y, h) and (m,x), must have obtained the answers
M∗ = H(m∗) and y∗ = H(x∗) from the oracle queries to H. Otherwise the
probability that A finds a good decommitment is negligible, because predicting H
on a new value is infeasible. But then A already “knows” a related message m∗

to m in the commitment phase, contradicting the secrecy.
It is now easy to formalize the intuition and define the simulator. A′ first sends

a dummy commitment (y, h) on behalf of the sender to A, say, by committing to
the all-zero string. Then it records all queries of A to oracle H and the answers
—this is possible as A′ simulates A and sees all queries of A before forwarding it
to H. Since all hash values of H are distinct with overwhelming probability we
may assume that every image has a unique preimage in the list of recorded pairs.
If finally A sends some commitment (y∗, h∗) then the simulator looks up y∗ in the
list and obtains the corresponding query x∗ yielding y∗. This gives the unique
M∗ = h∗(x∗) and another search reveals the preimage m∗ of M∗ under H. Let
A’ output m′ := m∗. Clearly, the probability that A′ returns a related message is
negligibly close to A’s success probability.



Chapter 5

Identification Protocols Secure
Against Reset Attacks

This chapter describes how to secure identification protocols by means of trapdoor
commitments against so-called reset attacks. This result has been stimulated by a
preprint of Bellare, Goldwasser and Micali [BGM00] about secure resettable iden-
tification and how to achieve it with the help of secure signature and encryption
schemes. Both approaches have been merged for Eurocrypt 2001 in [BFGM01].
For space reasons we merely present a rewritten version of the part related to
trapdoor commitments. I thank Mihir Bellare, Shafi Goldwasser and Silvio Micali
for their cooperation, and Ran Canetti for discussions about resettable protocols.

Once more, if the reader is familiar with basic notions then this chapter should
be apprehensible without the other chapters. Yet, for more background about
trapdoor commitment protocols we refer to Chapter 3.

1. Introduction

A naive attack on an identification scheme is to try to intrude as another user and
pass the examination of the verifier with knowledge of the user’s public key only.
A more sophisticated attack is to attempt to elicit information about the secret
key from the key-owner prior to the identification attempt. That is, pretending to
be the verifier and possibly deviating from the verifier’s protocol, the adversary
first sequentially performs several protocol executions with the prover. In each
execution the prover’s incarnation is assigned a new random tape, yet the secret
key is the same in all runs. Based on this gathered knowledge the adversary then
tries to successfully identify himself as the prover to an honest verifier. This is
called an active attack.

Unfortunately, active attacks may be insufficient to capture real threats. As-
sume that the prover’s procedure is somehow vulnerable to errors, say, because of

73
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an instable system due to attacks on the prover’s environment. Then the adver-
sary can use even more powerful attacks. For instance, the adversary may now
be able to reset the prover to some previous message of the same execution and
repeat the run with the same prefix but different outcome. More formally, in the
resettable setting the adversary has parallel access to many copies of the prover,
yet, depending on the adversary’s choice, the prover can be resetted and be forced
to use the same random tape in a rewound execution. The adversary tries to
successfully identify to the verifier after finishing these experiments (CR1 attack)
or even during this phase (CR2 attack).

The most popular identification protocols today follow the proof-of-knowledge
paradigm of Fiat-Shamir [FS86]. Although Canetti et al. [CGGM00] point out
that proofs of knowledge must leak the witness in the resettable setting and there-
fore cannot be “secure”, for proof-of-knowledge-based identification schemes this
argument does not apply offhandedly: although resembling to this pattern, such
identification schemes are not per se proofs of knowledge. This phenomenon also
occurs when proving security against active (but not resetting) adversaries. Let
us discuss this seemingly contradiction in more detail.

To demonstrate security of an identification scheme against active, non-reset-
ting adversaries, one usually invokes a simulator that chooses a random secret key,
computes the public key and then, by impersonating the honest parties, emulates
an attack of an allegedly successful adversary. This simulation indeed includes
rewinding techniques in order to extract some matching secret key from the ad-
versary. Typically, the extracted secret key is different from the chosen one, and
this property is used to refute an underlying cryptographic assumption like the
intractability of computing discrete logarithms or factoring numbers.

In comparison to proofs of knowledge —if the prover passes the test then a
witness can be extracted for any fixed input [FFS88, BG92]— security proofs
for identification schemes merely signify that passing the check without knowing
the secret key is infeasible for a random public key under some cryptographic
assumption. Still, the proof-of-knowledge concept reflects the same paradigm in
the context of identification: for proofs of knowledge, extracting a witness (alias
secret key) for a given input (alias public key) implies that the prover either knows
the secret, or that the prover is able to compute it from the public data. The
latter, however, is only believed to be intractable and to provide security against
infiltrators if the key is randomly generated according to some cryptographically
strong distribution.

Nowadays, there are several well-known identification protocols which are se-
cure against active adversaries but which are provably insecure in the resetting
model. Among these schemes are the protocols of Feige-Fiat-Shamir [FFS88]
(based on factoring), Ong-Schnorr [OS90, S96] (factoring), Okamoto-Guillou-
Quisquater [GQ88, O92] (based on RSA), Okamoto-Schnorr [S91, O92] (discrete
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log), Brickell-McCurley [BM92] (discrete log/factoring) and Shoup [S99] (factor-
ing). These schemes are divided into two groups. One group includes the schemes
that not only withstand active attacks, but also infiltrations where the adversary
is allowed concurrent instead of serial executions with the prover while or be-
fore attempting to impersonate —under an additional technical restriction on the
adversary in case of a simultaneous intrusion; the details are beyond the scope
of this introductory discussion.1 The protocols of Feige-Fiat-Shamir, Okamoto-
Guillou-Quisquater, Okamoto-Schnorr, Brickell-McCurley and, for some system
parameters (cf. [S96]), Ong-Schnorr belong to this group. The other group con-
sists of schemes that do not seem to enjoy this additional property (Shoup and,
for some parameters, Ong-Schnorr). For reasons that will become apparent soon,
our transformation into identification protocols withstanding reset attacks merely
applies to schemes of the former group in general.

For our transformation we exploit fundamental techniques introduced in the
work by Canetti et al. [CGGM00] about resettable zero-knowledge. The idea is
to adjust the methods in [CGGM00] to coordinate them with the ones providing
security against active attacks for the corresponding identification scheme. We
explain how to accomplish this.

The aforementioned proof-of-knowledge-based identification schemes all come
in canonical commitment-challenge-response structure. That is, the prover first
commits to a random value, then the verifier sends a random challenge, and the
prover responds to this challenge according to his secret key and the initial com-
mitment.

We would like to ensure that the adversary does not gain any advantage from
resetting the prover. To this end, we insert a new first round into the identification
protocol in which the verifier non-interactively commits to his challenge. The
parameters for this commitment scheme become part of the public key. This keeps
the adversary from resetting the prover to the challenge-message and completing
the protocol with different challenges —a step that would compromise the security
of all protocols above.

In addition, we let the prover determine the random values in his commitment
(the first move in the original scheme) by applying a pseudorandom function to
the verifier’s commitment. Now, if the adversary resets the prover (with the same
random tape) to the outset of the protocol and commits to a different challenge
then the prover likewise answers with a commitment of a virtually independent
random value, although having the same random tape. On the other side, using

1Apparently, without another restraint all schemes are insecure against adversaries talking to
the prover while identifying, e.g., the man-in-the-middle-adversary simply forwarding messages
of the verifier and the prover would mount such an attack and would break all schemes. Among
others, the technical restriction excludes this adversary.
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pseudorandom values instead of truly random coins does not weaken the original
identification protocol noticeably.

The modifications above essentially prune the resetting adversary to an active,
non-resetting intruder which is still allowed parallel runs with the prover while or
before trying to intrude (and which, as we will show, also satisfies the additional
technical property in case of a simultaneous intrusion). This is the reason for
demanding security against such nested attacks for the basic scheme.

Recall that security proofs against active and interlacing adversaries normally
require the simulated verifier to rewind the adversary and to repeat the adversary’s
identification attempt with different challenges. But we have just pinned down the
verifier’s challenge with the non-interactive commitment to overcome adversarial
reset attacks! The way out are trapdoor commitment schemes: if one knows the
trapdoor of such a commitment scheme then one can open any commitment with
any value, but if one lacks knowledge of the trapdoor then the scheme is still
binding. The idea is to let the simulator use the trapdoor, but not the adversary.

In the CR1 setting where the adversary finishes the executions with the prover
before talking to the verifier it is easy to guarantee that the adversary will not
abuse “our” trapdoor (basically, because he would have to do so before we disclose
the trapdoor and deploy it ourself). To prevent the adversary from benefitting
from our trapdoor in the CR2 model where the adversary’s infiltration and prover
executions run concurrently, we utilize something that we need anyway to define
and show security in this setting: session IDs [BPR00]. A session ID assigns each
execution of the identification protocol a unique number, and an adversary is only
called successful if he passes the verification for a fresh session ID (where IDs in a
protocol execution between the prover and the adversary are considered as used
up).

In the CR2 setting we make the trapdoor in our commitment scheme depend
on the session ID in the adversary’s identification attempt. This basically means
that either the adversary forgos using the trapdoor at all, or cannot complete a
successful attack according to the definition if he uses this ID in a run with the
prover. If he does not use the trapdoor ID, then all his initial commitments are
binding and the argument before applies.

Efficient trapdoor commitment schemes for our prupose exist for example un-
der the discrete-log assumption, the RSA assumption or intractability of factoring
(see Chapter 3). Thus, we can build them from the same assumptions that the
corresponding identification schemes rely on. The computational complexity of
the assembled scheme roughly doubles compared to the original protocol.
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2. Definitions

In this section we define secure resettable identification protocols and pseudoran-
dom functions and briefly recall identity-based trapdoor commitments.

2.1. Resettable Identification Protocols

An identification protocol is an interactive protocol between two parties, the
prover P and the verifier V. At the beginning a random key pair (sk,pk) is
generated according to some efficiently samplable distribution, and the prover is
given both the secret key sk as well as the public key pk as input, whereas the
verifier only gets the public key pk. At the end of the execution, the verifier either
outputs accept or reject, indicating a successful identification or failure.

A passive attacker on an identification protocol replaces the prover P in an
execution with the honest verifier V, but is given only the publik key pk and not
the secret key sk. The aim of the attacker is to make V accept and impersonate
as the prover. An active adversary may first perform sequential executions with
the prover before enaging in a run with the verifier in order to deduce some
information facilitating the intrusion. These two adversary types and further ones
are summerized in Figure 1.

Figure 1. Adversary Types for Identification Schemes

adversary type interactions interactions with P session IDs
with prover P before/while intrusion

passive none — no

active sequential before no

non-resetting CR1 concurrent before no

non-resetting CR2 concurrent while yes

CR1 concurrent & resettable before no

CR2 concurrent & resettable while yes

In the resetting model the adversary is allowed to reset any execution with
the prover. By this, the prover keeps the same random tape as in the previous
run, but otherwise the protocol starts from scratch with one party sending the
initial message. Formally, we allow the adversary to send a message reset to the
prover (and appending an initial message if the adversary in the role of the verifier
starts identifications). Consequently, the prover restarts the protocol having the
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same random tape. Note that in this model the adversary can indirectly reset
the prover to any round of an execution by resetting the prover to the outset and
submitting the same communication up to this round again.

A CR1 adversary is an active adversary that is granted concurrent and re-
settable executions with the prover before starting the intrusion attempt. If the
adversary never submits a reset-message to the prover then he is called a non-
resetting CR1 adversary. Again, see Figure 1.

As explained in the introduction, for the CR2 setting we incorporate session
IDs into identification protocols. That is, the verifier assigns each run a session
ID of bit length s such that the probability that the same ID appears twice is very
small, e.g., it should be negligible in a polynomial number of executions. Hence,
theoretically, session IDs should be about the size of the security parameter when
selected at random. In practice, for fixed security parameter, 80 bits should be
enough, or, if the verifier is stateful, then a counter or the current time will work.

We assume that, upon stopping, the prover and verifier output either reject,
indicating an error, or accept together with an s-bit value sid. In a good exe-
cution, both parties should accept and agree on the same value sid. That is, in
an execution between the honest prover P and the honest verifier V, the verifier
always outputs accept and both parties output the same value sid.

Next we define the adversary’s success probability. In the sequel, let RID be
an identification protocol and A an adversary attacking the protocol in one of
the ways described above. Denote by Intrcr1

RID(A) the probability that, finally, the
verifier outputs accept in a CR1 attack and the adversary successfully intrudes.
Write Intrcr2

RID(A) for the corresponding probability in the CR2 model, where the
adversary is only said to intrude victoriously if the verifier outputs accept and
a session ID sid which no prover instance has ever output together with accept
during the attack.2 Denote by Intrnrcr1

RID (A) and Intrnrcr2
RID (A) the adversary’s success

probability in a non-resetting CR1 and CR2 attack, respectively. Note that all
algorithms and all probabilities implicitly depend on a security parameter.

Definition 5.1 (Secure Identification Protocol). An identification protocol RID
is called

• non-resetting CR1-secure if Intrnrcr1
RID (A) is negligible for any probabilistic

polynomial-time non-resetting CR1 adversary A,

2Bellare et al. [BGM00] let both the prover and verifier determine the session ID and call
the adversary also successful if he manages to make different copies of the prover-adversary
interactions end up with the same ID. We do not consider this a successful attack, because the
verifier’s list of session IDs (maintained with respect to all interactions in a multi-user network) is
not affected by such ID-collisions between the prover and the adversary. For example, protocols
like SSL and TLS [T00] confirm this viewpoint: only the server, alias verifier, determines the
session ID (although the ID serves rather administrative purposes in SSL and TLS).
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• non-resetting CR2-secure if Intrnrcr2
RID (A) is negligible for any probabilistic

polynomial-time non-resetting CR2 adversary A,

• CR1-secure if Intrcr1
RID(A) is negligible for any probabilistic polynomial-time

CR1 adversary A,

• CR2-secure if Intrcr2
RID(A) is negligible for any probabilistic polynomial-time

CR2 adversary A.

We sometimes refer to the time complexity t and query complexity q of adver-
sary A attacking an identification scheme. Then t reflects to the number of steps
in some computational model like the Turing machine model. It also includes the
steps of the prover and verifier since in an actual attack the adversary has to wait
for the other parties’ replies, too. The query complexity denotes the number of
runs with the prover, counting each new or reset execution individually.

Note that in the descriptions of the attacks above the adversary tries to pass
the examination of a single verifier in a single try. More generally, we could allow
v parallel accessible verifier incarnations. A CR2-secure protocol remains secure
in this case: an adversary in the multiple-verifier case can be transformed into one
for the single-verifier setting, although the success probability drops by a factor
1/v2 at most.

Extending the notions of reset attacks, we could introduce a CR3 model in
which the adversary is allowed to reset the verifier(s), too. While the CR2-secure
schemes in [BGM00] also satisfy this stronger notion, our protocols are not known
to remain secure in this case. Thus, we leave out further discussions about this
model.

2.2. Pseudorandom Functions

One of the primitives we utilize for our transformation are pseudorandom
functions. These are the practical counterparts to truly random functions mapping
each input to an independent random output. And while random function must
have exponential description complexity, pseudorandom functions are efficiently
computable.

We keep the definition as simple as possible for our purpose. A function
family is a function PRF(eval, ·, ·) in two arguments. For security parameter n
the first argument, called the key, has n bits and defines in a straightforward
way a function PRF(eval, κ, ·) for any κ ∈ {0, 1}n. For every κ ∈ {0, 1}n the
function PRF(eval, κ, ·) has input and output length inl(n) and outl(n) and can
be efficiently computed given κ and the input. The actual choices of inl(·) and
outl(·) depend on the application and can be varied given arbitrary pseudorandom
functions with certain input/output size [BCK96].

We adopt the definition of pseudorandom functions being indistinguishable
from random functions [GGM86], i.e., it should be infeasible to detect whether
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one communicates with a pseudorandom or a truly random function. For an
algorithm D with oracle access consider the following random variables:

• Dprf equals the single bit output by D given oracle access to a function
PRF(eval, κ, ·) for random κ ∈ {0, 1}n and where D is allowed to adaptively
query the oracle,
• Drand is the single bit returned by D if instead a truly random function

with input/output length inl(n) and outl(n) is given as oracle.

Define the distinguishing advantage of D as

DistPRF(D) :=
∣∣Prob

[
Dprf = 1

]
− Prob

[
Drand = 1

]∣∣
and let D’s time and query complexity denote the running time of D and the
maximal number q of queries that D makes in either experiment. Intuitively, since
pseudorandom functions are supposedly indistinguishable from random functions,
the advantage should be very small:

Definition 5.2. A pseudorandom function family PRF is a function family such
that DistPRF(D) is negligible for any probabilistic poylnomial-time algorithm D.

We also set maxDistPRF(t, q) to be the maximum DistPRF(D) over all D with
time complexity t and query complexity q.

2.3. Trapdoor Commitment Schemes

A non-interactive trapdoor commitment scheme TDC specifies a key gen-
eration algorithm (pkTDC, skTDC) ← TDC(keygen), a commitment algorithm
tdcom ← TDC(commit,pkTDC, c) for value c, and a faking algorithm (c′, r′),←
TDC(fake, skTDC, c, r, c

′) that allows to open a commitment with any value c′ given
the secret key (and the value c and the randomness r used to produce the original
commitment). We demand that a commitment and such a faked opening is identi-
cally distributed to a commitment with the correct opening for the same value c′,
i.e., the trapdoor scheme is perfectly simulative. In particular, this implies that
the commitment scheme provides perfect secrecy, in other words, a commitment is
distributed independently of the actual value. Without knowing the secret trap-
door a commitment is still solidly binding, i.e., it should be infeasible to find (c, r)
and (c′, r′) that map to the same commitment under pkTDC but such that c 6= c′.

For an identity-based trapdoor commitment scheme the key generation al-
gorithm additionally returns a uniformly distributed string idTDC as part of the
secret key. Yet, the public key is distributed independently of this string idTDC.
The commitment algorithm TDC(commit,pkTDC, ·) now takes as input a string
id, a value c and randomness r and returns a commitment.

Security for identity-based trapdoor commitment schemes is defined with re-
spect to a collision-finder that gets pkTDC, skTDC and idTDC as input and is con-
sidered to win if he outputs a commitment with valid openings for two different
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values c, c′ and the same id, where id is different from the output idTDC of the key
generation algorithm. The probability that any efficient algorithm wins should be
negligible. Put differently, the trapdoor property is tied to idTDC and does not
help to overcome the binding property for other IDs.

Both for ordinary as well as for identity-based trapdoor schemes, write
CollTDC(C) for the probability of collision-finder C outputting a commitment with
ambiguous decommitments (in the identity-based case for id different than idTDC).
For a trapdoor commitment TDC scheme we demand that this probability is neg-
ligible for any efficient collision-finder C. Let maxCollTDC(t) be the maximum over
CollTDC(C) for all algorithms C running in time t.

As an example of an identity-based trapdoor commitment scheme we review
the discrete-log-based solution of Section 3 in Chapter 3. The public key consists
of a group of prime order q and two random generators g1, g2 of the group, as
well as another generator g3. The latter generator is defined by g3 = g

−idTDC
1 gz2

for random idTDC and random z ∈ Zq. Clearly, g3 hides idTDC information-
thereotically. A commitment to (id, c, r) is defined by (gid

1 g3)cgr2. The trapdoor
skTDC equals idTDC and z. Because gidTDC

1 g3 = gz2 it is easy to adapt the opening
for any commitment involving idTDC by the discrete-log trapdoor property. On
the other side, for distinct c 6= c′ an ambiguous decommitment (c, r), (c′, r′) for
the same id different than idTDC yields logg1

g2, contradicting the discrete-log
assumption.

3. Secure Identification in the CR1 Setting

As discussed in the introduction, proof-of-knowledge-based identification protocols
of the Fiat-Shamir type cannot be secure against reset attacks. In this section,
however, we present a general transformation of such identification schemes into
secure ones in the CR1 setting.

3.1. Canonical Identif ication Protocols

We start with identification schemes that consists of three moves, an initial
commitment com of the prover, a random challenge ch ∈ {0, 1}chl of chl bits of
the verifier, and a conclusive response resp from the prover. We call a protocol
obeying this structure a CID-identification scheme, and we denote the algorithms
generating the commitment, challenge and response message by CID(commit, . . . ),
CID(chall, . . . ), CID(resp, . . . ) and the verification step by CID(verify, . . . ). See
Figure 2. It is crucial to our construction that the challenge depends only on the
public key but not the prover’s commitment.

Loosely speaking, we will assume that the underlying CID-scheme is secure
against non-resetting attacks in the CR1 model, i.e., against attacks where the ad-
versary merely runs concurrent sessions with prover without resets before engaging
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Figure 2. Canonical Identification Protocol CID

Prover P public key pkCID Verif ier V

secret key skCID

pick randomness rCID

com := CID(commit, skCID, rCID)

com−−−−−−−−−−−−−−→

ch← CID(chall,pkCID)

ch←−−−−−−−−−−−−−−

resp := CID(resp, skCID,com,ch, rCID)

resp−−−−−−−−−−−−−−→

return CID(verify,pkCID,com,ch,resp)

in a verification. In addition to the Feige-Fiat-Shamir system [FFS88], most of
the well-known practical identification schemes achieve this security level, for ex-
ample Ong-Schnorr [OS90, S96] for some system parameters, Okamoto-Guillou-
Quisquater [GQ88, O92] and Okamoto-Schnorr [S91, O92]. Nonetheless, there
are also protocols which are only known to be secure against sequential attacks
(e.g. [S99]).

3.2. Construction of CR1-Secure Scheme

Our solution originates from the work by Canetti et al. [CGGM00] about
resettable zero-knowledge. Recall from the introduction that, in order to decrease
the power of a CR1 adversary to the one of a non-resetting CR1 adversary, we
let the verifier commit to the challenge in a new initial step and let the prover
compute the randomness for the execution by applying a pseudorandom function
to the verifier’s commitment. The remaining three rounds are as before, except
that now the prover also checks the validity of the verifier’s decommitment before
sending the final response. The scheme is displayed in Figure 3.

For the verifier’s commitment to the challenge, we use use a trapdoor commit-
ment scheme TDC. This enables us to reduce an intrusion try of an impersonator
A in the derived scheme RID to one for the CID-protocol. If A initiates a session
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with the verifier in RID then we can first commit to a dummy value 0chl without
having to communicate with the verifier in CID. When A then takes the next step
by sending com, we forward this commitment to our verifier in CID and learn the
verifier’s challenge. Knowing the secret key skTDC for the trapdoor scheme we
can then find a valid opening for our dummy commitment with respect to the
challenge. Finally, we forward A’s response in our attack.

Figure 3. Secure Identification Protocol RID in the CR1 model

Prover P pk = (pkCID,pkTDC) Verif ier V

secret key sk = skCID

random tape = key κ for PRF

ch← CID(chall,pkCID)

pick randomness rTDC for TDC
tdcom :=

TDC(commit,pkTDC,ch, rTDC)

tdcom←−−−−−−−−−−−−−−

rCID := PRF(eval, κ,tdcom)
com := CID(commit, skCID, rCID)

com−−−−−−−−−−−−−−→
ch, rTDC←−−−−−−−−−−−−−−

if tdcom
!= TDC(commit,pkTDC,ch, rTDC)

then resp := CID(resp, skCID,com,ch, rCID)
else resp := ⊥

resp−−−−−−−−−−−−−−→

return CID(verify,pkCID,com,ch,resp)

Note that the public key in our identification scheme consists of two inde-
pendent parts, pkCID and pkTDC. For concrete schemes the key generation may
be combined and simplified. For instance, for Okamoto-Schnorr the public key
of the identification protocol describes a group of prime order q, two generators
g1, g2 of that group and the public key X = gx1

1 gx2
2 for secret x1, x2 ∈ Zq. The
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prover sends com = gr11 g
r2
2 and replies to the challenge ch ∈ Zq by transmitting

yi = ri + ch · xi mod q for i = 1, 2. In this case, the public key for the trapdoor
commitment scheme could be given by g1, g3 = gz1 for random trapdoor z ∈ Zq,
and the commitment function maps a value c and randomness r to gc1g

r
3.

3.3. Security Analysis

The discussion in the previous section indicates that any adversary A for RID
does not have much more power than a non-resetting impersonator attacking CID
and security of RID follows from the security of CID. We now state and prove
this formally, where we consider both concrete as well as asymptotic security:

Theorem 5.3. Let CID be a CID-identification protocol. Also, let PRF be a
pseudorandom function family and denote by TDC a perfectly-simulative trap-
door commitment scheme. Let RID be the associated identification scheme as per
Figure 3. If A is a CR1 adversary of time complexity t and query complexity q
attacking RID then there exists a non-resetting CR1 adversary ACID attacking CID
such that

Intrcr1
RID(A) ≤ q ·maxDistPRF(t, q) + maxCollTDC(t) + Intrnrcr1

CID (ACID)

Furthermore, ACID has time complexity t and query complexity q.

The notion of concrete security allows to deduce the exact security level by
plugging in the corresponding figures of the underlying primitives. Concerning
asymptotic behavior, for polynomially bounded t = t(n) and q = q(n) the terms
q ·maxDistPRF(t, q) and maxCollTDC(t) are negligible for secure pseudorandom func-
tions and trapdoor commitments, therefore:

Corollary 5.4. Let PRF be a pseudorandom function family and let TDC be a
perfectly-simulative trapdoor commitment scheme. If CID is a non-resetting CR1-
secure CID-identification protocol, then the associated identification scheme RID
in Figure 3 is CR1-secure.

Proof (of Theorem 5.3). Figure 4 shows the adversary ACID attacking the
CID-identification protocol in the non-resetting CR1 model (some details are omit-
ted in the figure and are explained below). This algorithm gets pkCID as input
and tries to pass the verifier’s examination by running the adversary A for RID
as a subroutine.

Algorithm ACID basically simulates the CR1-adversary A with the CID-
protocol by assimilating all additional steps of RID. Specifically, ACID generates
a random key pair (pkTDC, skTDC) of the trapdoor commitment scheme and starts
the simulation of A on pkCID and pkTDC. If this algorithm A commits to some
tdcom in some instance with the prover then ACID calls the prover in CID to ob-
tain com and passes this commitment on to A. If A opens a commitment tdcom

then ACID checks the correctness; if the opening is valid then forward the challenge
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Figure 4. Non-Resetting CR1 adversary for CID from A

PCID ACID(pkCID) VCID

generate (skTDC,pkTDC)
simulate A on (pkCID,pkTDC)

P A V

tdcom←−−−−−−−
com−−−−−−−→

com−−−−−−−→
ch, rTDC←−−−−−−−

check commitment
ch←−−−−−−−

resp−−−−−−−→
resp−−−−−−−→

tdcom =commit to 0chl

tdcom←−−−−−−−
com−−−−−−−→

com−−−−−−−→
ch←−−−−−−−

fake tdcom to ch, rTDC

ch, rTDC←−−−−−−−
resp−−−−−−−→

resp−−−−−−−→

to the prover and hand the answer to A. If the decommitment is incorrect then
return ⊥ to A without involving the prover. For a correct decommitment ACID

fetches the prover’s response for the challenge and hands it to A.
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When A finishes the phase with the prover and starts an execution with the
verifier, ACID commits to a dummy value 0chl . Then A sends a commitment
to the verifier which ACID passes to the verifier in CID to obtain a challenge
ch from the verifier. Exploiting the trapdoor property and knowledge of skTDC,
adversary ACID finds an appropriate opening for this challenge chV for the dummy
commitment. Note that this decommitment is identically distributed as if ACID

would have committed to ch right away. ACID gives this decommitment to A and
returns the answer to the verifier in CID.

In contrast to the prover in protocol RID, the prover in CID uses random coins
instead of a pseudorandom function. The first step is to verify that pseudorandom
values rCID := PRF(eval, κ,tdcom) instead of truly random rCID do not helpA too
much. To this end, we recall the hybrid model of [CGGM00] in which we replace
the pseudorandom function by a random one. Namely, given protocol RID in the
CR1 setting we denote by RIDrand the identification scheme in which each prover
instance, instead of applying a pseudorandom function to tdcom, evaluates a
random function on this value, where an independent function is selected for each
prover incarnation. Although random functions are not efficiently computable,
they can be simulated by assigning each new argument an independent random
string, and by repeating previously given answers for the same queries. The next
claim relates the advantage the adversary A might gain in RID compared to
RIDrand to the pseudorandomness of PRF:

Claim 1: Let RID be the identification protocol in Figure 3 and let PRF be a
pseudorandom function family. If A is an adversary of time complexity t and
query complexity q attacking RID in the CR1 setting then

Intrcr1
RID(A) ≤ q ·maxDistPRF(t, q) + Intrcr1

RIDrand(A).

Proof. Given an adversary A we construct a distinguisher D for the pseudoran-
dom function ensemble PRF as follows. D essentially plays the role of the honest
parties, i.e., the prover and verifier, but is given oracle access to a sequence of
functions f1, . . . , fq which are either pseudorandom or truly random. D generates
a random key pair (pk, sk) for RID and starts to emulate the attack. This is done
by performing all steps of the prover’s incarnations and the verifier as defined
by the protocol, except for the step where some prover instance i is supposed to
compute rCID := PRF(eval, κ,tdcom). Instead, algorithm D replies by querying
oracle fi about tdcom and continuing this prover’s simulation for the answer rCID.
The distinguisher outputs 1 if and only if the adversary is successful.

Clearly, if f1, . . . , fq is a sequence of pseudorandom functions then D outputs
1 exactly if the adversary breaks RID. On the other hand, if the functions are
truly random then D outputs 1 if and only if the adversary breaks RIDrand. The
running time of D is bounded by t and the number of queries is at most q. An
hybrid argument now shows that this yields an algorithm distinguishing a single
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pseudorandom function from PRF and a random one; the distinguishing advantage
drops by a factor q at most (see [BCK96]). �

Hence, if the adversary A never queries a prover copy for the same prefix twice,
then the hybrid scheme corresponds to the setting where runs with the prover (even
reset ones) involve an independent random tape, like the prover instances in CID.
Because such double queries can be easily eliminated by table-lookup techniques,
we assume in the sequel for simplicity that A never sends the same message to
the same prover instance twice.

Next we bound the probability that A finds distinct openings to a commitment
tdcom sent to the prover in RIDrand by the maximal probability maxCollTDC(t) of
an algorithm finding a commitment with ambiguous decommitments and running
in time t. If this does not happen then A virtually mounts a non-resetting CR1
attack on RIDrand, and therefore ACID a corresponing attack on CID.

Claim 2: If A is an adversary of time complexity t and query complexity q
attacking RIDrand in the CR1 setting then for ACID attacking CID as defined in
Figure 4 we have

Intrcr1
RIDrand(A) ≤ maxCollTDC(t) + Intrnrcr1

CID (ACID).

Proof. Conditioning on the event Unambiguity that the impersonator A does
not send tdcom with two valid decommitments to some prover incarnation, it is
clear that A runs a non-resetting CR1 attack only. In this case, adversary ACID

wins whenever A wins. It therefore suffices to bound the probability of event
¬ Unambiguity.

We claim that Prob[¬ Unambiguity] is at most maxCollTDC(t). This can be
seen as follows. Given a public key pkTDC of the trapdoor commitment scheme
we choose a pair (pkCID, skCID) for the identification protocol and run an attack
of A on RIDrand by impersonating the honest prover and verifier. If A outputs a
commitment tdcom with distinct openings with respect to pkTDC then we output
this commitment with the openings, too. Apparently, the probability that we find
such ambiguous decommitments equals the probability Prob[¬ Unambiguity], and
the running time of our algorithm is bounded by t. This completes the proof. �

Collecting the probabilities from Claims 1 and 2 yields the theorem. �

4. Secure Identification in the CR2 Setting

We modify the CR1-secure identification scheme in Section 3 to achieve CR2-
security. Recall that this requires session IDs and that the only way for the
adversary to win is by passing the verifier’s examination for a fresh session ID.
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4.1. Construction of CR2-Secure Scheme

The key to accomplish CR2-security lies in the extension of the trapdoor com-
mitment scheme to an identity-based one where we use the session IDs of the
identification protocols as the IDs in the trapdoor commitments. Roughly, an
identity-based trapdoor commitment schemes links a session ID to the trapdoor
property. So if we simulate the adversary A to derive an impersonater for ACID,
as done in the CR1 setting, we can later use the previously generated sidTDC

in the adversary’s intrusion attempt. This means that the adversary cannot use
this session ID in its executions with the prover (otherwise the adversary is not
considered victorious according to the definition). But if the impersonator forgos
using sidTDC then all his commitments for other session IDs are binding and a
similar argument to the one in the CR1 model applies. Since the public key of the
trapdoor scheme hides sidTDC perfectly, we can later claim that the verifier has
chosen sidTDC only then. The protocol is shown in Figure 5.

4.2. Security Analysis

The difference to the CR1 setting is that the impersonator A may now inter-
leave the execution with the verifier and the ones with prover. Although CID-
protocols fail to be secure against such attacks in general, e.g., the man-in-the-
middle adversary breaks such schemes in this setting, luckily they are still secure
under a technical restriction on the adversary. Therefore, we will still be able to
reduce security to CID-protocols.

To specify the condition under which CID-schemes remain secure, consider an
execution of an impersonator ACID attacking CID in a non-resetting CR2 attack.
At some step the verifier sends a random challenge chV to ACID and the adversary
then finishes the attack, either successfully or not. The subscript V indicates that
this is the challenge sent by V in an execution with the adversary. Define a
challenge repetition to be the following action: reset the state of the prover, the
adversary and the verifier to the point before sending chV ; then transmit another
random ch

′
V instead and continue the adversary’s attack on this new challenge.

The reason for considering such challenge repetitions is that they are normally
used to prove security for CID-schemes, see for example [FFS88] for details.

Next we look at what happens on the prover’s side in challenge repetitions.
We are especially interested in so-called pending executions in which the prover
had sent a commitment com before the adversary has received chV , and in which
the impersonator has answered with some challenge ch in that execution with
the prover after the verifier had sent chV . This implies that after a challenge
repetition the adversary may now decide to send a different challenge ch

′ instead
of ch. Figure 6 depicts the situation. We say that the impersonator never fin-
ishes an execution with the prover ambiguously if this never happens. We say
that the impersonator ACID is chr-challenge-repeatable if ACID never finishes an
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Figure 5. Secure Identification Protocol RID in the CR2 model

Prover P pk = (pkCID,pkTDC) Verif ier V

secret key sk = skCID

random tape = key κ for PRF

select random session ID sid

ch← CID(chall,pkCID)

pick randomness rTDC for TDC
tdcom :=

TDC(commit,pkTDC, sid,ch, rTDC)

tdcom, sid←−−−−−−−−−−−−−−

rCID := PRF(eval, κ,tdcom, sid)
com := CID(commit, skCID, rCID)

com−−−−−−−−−−−−−−→
ch, rTDC←−−−−−−−−−−−−−−

if tdcom
!= TDC(commit,pkTDC, sid,ch, rTDC)

then resp := CID(resp, skCID,com,ch, rCID)
else resp := ⊥

resp−−−−−−−−−−−−−−→

if resp = ⊥ output reject return CID(verify,pkCID,com,ch,resp)
else output accept, sid if accept output sid

execution with the prover ambiguously, even if chr challenge repetitions occur. It
is understood that a challenge-repeatable non-resetting CR2-secure CID-protocol
refers to security against any polynomially-bounded, non-resetting CR2-adversary
ACID which is chr -challenge-repeatable for any polynomial chr(n).

To clarify the notion we consider two examples. No CID-scheme is even 2-
challenge-repeatable for the man-in-the-middle adversary. The reason is such an
adversary duplicates all messages of the prover and the verifier and if we execute
a challenge repetitions then the adversary imitates this, too. In contrast, for any
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Figure 6. Pending Executions in Challenge Repetitions for CID

Prover P Adversary A Verif ier V

not pending:

com−−−−−−−→
ch←−−−−−−−

resp−−−−−−−→

pending:

com−−−−−−−→
com−−−−−−−→

point for challenge repetitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
chV←−−−−−−−

ch←−−−−−−−
resp−−−−−−−→

not pending:

com−−−−−−−→
ch←−−−−−−−

resp−−−−−−−→
resp−−−−−−−→

non-resetting CR1-adversary any CID-protocol is challenge-repeatable because the
executions with the prover are already finished when the intrusion try starts.

In comparison to the CR1-secure scheme, here the verifier chooses a random
session ID and the identity-based trapdoor scheme is applied to commit to the
challenge with the session ID at the beginning of an execution. The session ID is
also transmitted in clear together with the commitment and the prover applies the
pseudorandom function on both the verifier’s trapdoor commitment and the ses-
sion ID. Except for these modifications the rest of the protocol remains unchanged.
The common session ID is set to the verifier’s choice sid.
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Theorem 5.5. Let CID be a CID-identification protocol. Also, let PRF be a pseu-
dorandom function family and denote by TDC a perfectly-simulative identity-based
trapdoor commitment scheme. Let RID be the associated identification scheme
as per Figure 5. If A is a CR2 adversary of time complexity t and query com-
plexity q attacking RID then for any chr there exists a chr-challenge-repeatable
non-resetting CR2 adversary ACID attacking CID such that

Intrcr2
RID(A) ≤ q ·maxDistPRF(t, q) + maxCollTDC(t · chr) + Intrnrcr2

CID (ACID).

For polynomially bounded chr = chr(n) we have:

Corollary 5.6. Let PRF be a pseudorandom function family and let TDC be
a perfectly-simulative identity-based trapdoor commitment scheme. If CID is a
challenge-repeatable non-resetting CR2-secure CID-identification protocol then the
associated identification scheme RID in Figure 5 is CR2-secure.

Proof (of Theorem 5.5). Because of the identity-based trapdoor commitment
scheme the proof is almost identical to the one for the CR1 case. As long as
the attacker A uses sid 6= sidTDC in the executions with the prover, the initial
commitment is binding. If A sends an initial commitment involving sidTDC to the
prover, e.g., after learning this session ID in the execution with the verifier, and
later opens this initial commitment correctly, then this session ID is considered as
used up and A cannot win anymore. Hence, if ACID stops whenever A transmits
such a valid decommitment then ACID’s success probability is not affected by this.

If we consider at most chr challenge repetitions then ACID only finishes an
execution with the prover ambiguously if A finds an ambiguous decommitment
for some commitment given to the prover with respect to sid 6= sidTDC. The
probability that this happens is at most maxCollTDC(t · chr), because otherwise
we could easily devise an algorithm simulating A and performing chr challenge
repetitions, each repetition taking time at most t, and outputting a commitment
with distinct, valid openings for some sid 6= sidTDC. �





Chapter 6

Universally Composable
Commitments

This chapter deals with securely composable commitments schemes. It is a joint
work with Ran Canetti; an extended abstract has been presented at Crypto 2001
[CF01]. We remark that this chapter does not discuss the recently announced
constructions of such composable commitments by Damgȧrd and Nielsen [DN01].

We thank Yehuda Lindell for suggesting to use non-malleable encryptions for
achieving non-malleability of commitments in the common reference string model.
This idea underlies our scheme that allows to reuse the common string for mul-
tiple commitments. (The same idea was independently suggested in [DKOS01].)
We would also like to thank Roger Fischlin for help with the oblivious element
generation in case of non-erasing parties.

1. Introduction

Commitment is one of the most basic and useful cryptographic primitives. On top
of being intriguing by itself, it is an essential building block in many cryptographic
protocols, such as Zero-Knowledge protocols (e.g., [GMW91, BCC88, D89]), gen-
eral function evaluation protocols (e.g., [GMW87, GHY87, G00]), contract-signing
and electronic commerce, and more. Indeed, commitment protocols have been
studied extensively in the past two decades (e.g., [B82, N91, DDN00, NOVY98,
B96, DIO98, FF00, DKOS01] ).

The basic idea behind the notion of commitment is attractively simple: A
committer provides a receiver with the digital equivalent of a “sealed envelope”
containing a value x. From this point on, the committer cannot change the value
inside the envelope, and, as long as the committer does not assist the receiver in
opening the envelope, the receiver learns nothing about x. When both parties
cooperate, the value x is retrieved in full.

93
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Formalizing this intuitive idea is, however, non-trivial. Traditionally, two quite
distinct basic flavors of commitment are formalized: unconditionally binding and
unconditionally secret commitment protocols (see, e.g., [G98]). These basic def-
initions are indeed sufficient for some applications (see there). But they treat
commitment as a “stand alone” task and do not in general guarantee security
when a commitment protocol is used as a building-block within other protocols,
or when multiple copies of a commitment protocol are carried out together. A
good first example for the limitations of the basic definitions is the selective de-
commitment problem [DNRS99], that demonstrates our inability to prove some
very minimal composition properties of the basic definitions.

Indeed, the basic definitions turned out to be inadequate in some scenarios,
and stronger variants that allow to securely “compose” commitment protocols
—both with the calling protocol and with other invocations of the commitment
protocol— were proposed and successfully used in some specific contexts. One
such family of variants make sure that knowledge of certain trapdoor informa-
tion allows “opening” commitments in more than a single way. These include
chameleon commitments [BCC88], trapdoor commitments [FS90] and equivoca-
ble commitments [B96]. Another strong variant is non-malleable commitments
[DDN00], where it is guaranteed that a dishonest party that receives an unopened
commitment to some value x will be unable to commit to a value that depends on
x in any way, except for generating another commitment to x. (A more relaxed
variant of the [DDN00] notion of non-malleability is non-malleability with respect
to opening [DIO98, FF00, DKOS01].)

These stronger measures of security for commitment protocols are indeed very
useful. However they only solve specific problems and stop short of guaranteeing
that commitment protocols maintain the expected behavior in general crypto-
graphic contexts, or in other words when composed with arbitrary protocols. To
exemplify this point, notice for instance that, although [DDN00] remark on more
general notions of non-malleability, the standard notion of non-malleability con-
siders only other copies of the same protocol. There is no guarantee that a mali-
cious receiver is unable to “maul” a given commitment by using a totally different
commitment protocol. And it is indeed easy to come up with two commitment
protocols C and C′ such that both are non-malleable with respect to themselves,
but an adversary that plays a receiver in C can generate a C′-commitment to a
related value, before the C-commitment is opened.

This work proposes a measure of security for commitment protocols that guar-
antees the “envelope-like” intuitive properties of commitment even when the com-
mitment protocol is concurrently composed with an arbitrary set of protocols. In
particular, protocols that satisfy this measure (called universally composable (uc)
commitment protocols) remain secure even when an unbounded number of copies
of the protocol are executed concurrently in an adversarially controlled way; they
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are resilient to selective decommitment attacks; they are non-malleable both with
respect to other copies of the same protocol and with respect to arbitrary commit-
ment protocols. In general, a uc commitment protocol successfully emulates an
“ideal commitment service” for any application protocol (be it a Zero-Knowledge
protocol, a general function evaluation protocol, an e-commerce application, or
any combination of the above).

This measure of security for commitment protocols is very strong indeed. It is
perhaps not surprising then that uc commitment protocols which involve only the
committer and the receiver do not exist in the standard “plain model” of compu-
tation where no set-up assumptions are provided. (We formally prove this fact.)
However, in the common reference string (crs) model things look better. (The
crs model is a generalization of the common random string model. Here all par-
ties have access to a common string that was chosen according to some predefined
distribution. Other equivalent terms include the reference string model [D00] and
the public parameter model [FF00].) In this model we construct uc commitment
protocols based on standard complexity assumptions. A first construction, based
on any family of trapdoor permutations, uses a different copy of the crs for each
copy of the protocol. Said otherwise, this construction requires the length of the
reference string to be linear in the number of invocations of the protocol through-
out the lifetime of the system. A second protocol, based on any claw-free pair
of trapdoor permutations, uses a single, short reference string for an unbounded
number of invocations. The protocols are non-interactive, in the sense that both
the commitment and the decommitment phases consist of a single message from
the committer to the receiver. We also note that uc commitment protocols can
be constructed in the plain model, if the committer and receiver are assisted by
third parties (or, “servers”) that participate in the protocol without having local
inputs and outputs, under the assumption that a majority of the servers remain
uncorrupted.

1.1. On the new Measure

Providing meaningful security guarantees under composition with arbitrary
protocols requires using an appropriate framework for representing and arguing
about such protocols. Our treatment is based in a recently proposed such general
framework [C01]. This framework builds on known definitions for function eval-
uation and general tasks [GL90, MR91, B91, PW94, C00a, DM00, PW01], and
allows defining the security properties of practically any cryptographic task. Most
importantly, in this framework security of protocols is maintained under general
concurrent composition with an unbounded number of copies of arbitrary proto-
cols. We briefly summarize the relevant properties of this framework. See more
details in Section 2.1 and in [C01].
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As in prior general definitions, the security requirements of a given task (i.e.,
the functionality expected from a protocol that carries out the task) are captured
via a set of instructions for a “trusted party” that obtains the inputs of the par-
ticipants and provides them with the desired outputs. However, as opposed to the
standard case of secure function evaluation, here the trusted party (which is also
called the ideal functionality) runs an arbitrary algorithm and in particular may
interact with the parties in several iterations, while maintaining state in between.
Informally, a protocol securely carries out a given task if running the protocol
amounts to “emulating” an ideal process where the parties hand their inputs to
the appropriate ideal functionality and obtain their outputs from it, without any
other interaction.

In order to allow proving the concurrent composition theorem, the notion of
emulation in [C01] is considerably stronger than previous ones. Traditionally, the
model of computation includes the parties running the protocol and an adver-
sary, A, and “emulating an ideal process” means that for any adversary A there
should exist an “ideal process adversary” (or, simulator) S that results in similar
distribution on the outputs for the parties. Here an additional adversarial entity,
called the environment Z, is introduced. The environment generates the inputs to
all parties, reads all outputs, and in addition interacts with the adversary in an
arbitrary way throughout the computation. (Allowing the environment to freely
interact with the adversary is crucial for the composability properties ot he defini-
tion.) A protocol is said to securely realize a given ideal functionality F if for any
adversary A there exists an “ideal-process adversary” S, such that no environment
Z can tell whether it is interacting with A and parties running the protocol, or
with S and parties that interact with F in the ideal process. (In a sense, here Z
serves as an “interactive distinguisher” between a run of the protocol and the ideal
process with access to F . See [C01] for more motivating discussion on the role of
the environment.) Note that the definition requires the “ideal-process adversary”
(or, simulator) S to interact with Z throughout the computation. Furthermore,
Z cannot be “rewound”.

The following universal composition theorem is proven in [C01]. Consider
a protocol π that operates in a hybrid model of computation where parties can
communicate as usual, and in addition have ideal access to (an unbounded number
of copies of) some ideal functionality F . Let ρ be a protocol that securely realizes F
as sketched above, and let πρ be the “composed protocol”. That is, πρ is identical
to π with the exception that each interaction with some copy of F is replaced with
a call to (or an invocation of) an appropriate instance of ρ. Similarly, ρ-outputs
are treated as values provided by the appropriate copy of F . Then, π and πρ have
essentially the same input/output behavior. In particular, if π securely realizes
some ideal functionality G given ideal access to F then πρ securely realizes G from
scratch.
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To apply this general framework to the case of commitment protocols, we
formulate an ideal functionality Fcom that captures the expected behavior of an
“ideal commitment service”. Universally Composable (uc) commitment protocols
are defined to be those that securely realize Fcom. Our formulation of Fcom is
a straightforward transcription of the “envelope paradigm”: Fcom first waits to
receive a request from some party C to commit to value x for party R. (C and
R are identities of two parties in a multiparty network). When receiving such a
request, Fcom records the value x and notifies R that C has committed to some
value for him. When C later sends a request to open the commitment, Fcom sends
the recorded value x to R, and halts. (Some other variants of Fcom are discussed
within.) The general composition theorem now implies that running (multiple
copies of) a uc commitment protocol π is essentially equivalent to interacting with
the same number of copies of Fcom, regardless of what the calling protocol does.
In particular, the calling protocol may run other commitment protocols and may
use the committed values in any way. As mentioned above, this implies a strong
version of non-malleability, security under concurrent composition, resilience to
selective decommitment, and more.

The definition of security and composition theorem carry naturally to the crs

model as well. However, this model hides a caveat: The composition operation
requires that each copy of the uc commitment protocol will have its own copy
of the crs. Thus, applying the composition theorem to protocols that securely
realize Fcom as described above is highly wasteful of the reference string. In
order to capture protocols where multiple commitments may use the same short
reference string we formulate a natural extension of Fcom that handles multiple
commitment requests. We call this extension Fmcom.

We remark that the definition allows uc commitment protocols to be com-
putationally secret and computationally binding only, achieving neither property
unconditionally. In fact, one of the constructions presented here merely attains
this computational security level but is indeed universally composable.

1.2. On the Constructions

At a closer look, the requirements from a uc commitment protocol boil down
to the following two requirements from the ideal-process adversary (simulator)
S. (a). When the committer is corrupted (i.e., controlled by the adversary), S
must be able to “extract” the committed value from the commitment. (That
is, S has to come up with a value x such that the committer will almost never
be able to successfully decommit to any x′ 6= x.) This is so since in the ideal
process S has to explicitly provide Fcom with a committed value. (b). When the
committer is uncorrupted, S has to be able to generate a kosher-looking “simulated
commitment” c that can be “opened” to any value (which will become known only
later). This is so since S has to provide adversary A and environment Z with the
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simulated commitment c before the value committed to is known. All this needs
to be done without rewinding the environment Z. (Note that non-malleability is
not explicitly required in this description. It is, however, implied by the above
requirements.)

From the above description it may look plausible that no simulator S exists
that meets the above requirements in the plain model. Indeed, we formalize and
prove this statement for the case of protocols that involve only a committer and a
receiver. (In the case where the committer and the receiver are assisted by third
parties, a majority of which is guaranteed to remain uncorrupted, standard tech-
niques for multiparty computation are sufficient for constructing uc commitment
protocols. See [C01] for more details.)

In the crs model the simulator is “saved” by the ability to choose the ref-
erence string and plant trapdoors in it. Here we present two uc commitment
protocols. The first one (that securely realizes functionality Fcom) is based on
the equivocable commitment protocols of [DIO98], while allowing the simulator to
have trapdoor information that enables it to extract the values committed to by
corrupted parties. However, the equivocability property holds only with respect to
a single usage of the crs. Thus this protocol fails to securely realize the multiple
commitment functionality Fmcom.

In the second protocol (that securely realizes Fmcom), the reference string
contains a description of a claw-free pair of trapdoor permutations and a public
encryption key of an encryption scheme that is secure against adaptive chosen
ciphertext attacks (CCA) (as in, say, [DDN00, RS91, BDPR98, CS98]). Commit-
ments are generated via standard use of a claw-free pair, combined with encrypting
potential decommitments. The idea to use CCA-secure encryption in this context
is taken from [L00, DKOS01].

Both protocols implement commitment to a single bit. Commitment to ar-
bitrary strings is achieved by composing together several instances of the basic
protocol. Finding more efficient uc string commitment protocols is an interesting
open problem.
Applicability of the Notion. In addition to being an interesting goal in their
own right, uc commitment protocols can potentially be very useful in construct-
ing more complex protocols with strong security and composability properties.
To demonstrate the applicability of the new notion, we show how uc commit-
ment protocols can be used in a simple way to construct strong Zero-Knowledge
protocols without any additional cryptographic assumptions.
Related Work. Pfitzmann et. al. [PW94, PW01] present another definitional
framework that allows capturing the security requirements of general reactive
tasks, and prove a concurrent composition theorem with respect to their frame-
work. Potentially, our work could be cast in their framework as well; however, the
composition theorem provided there is considerably weaker than the one in [C01].
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Organization. Section 2 shortly reviews the general framework of [C01] and
presents the ideal commitment functionalities Fcom and Fmcom. Section 3 demon-
strates that functionalities Fcom and Fmcom cannot be realized in the plain model
by a two-party protocol. Section 4 presents and proves security of the proto-
cols that securely realize Fcom and Fmcom. Section 5 presents the application to
constructing Zero-Knowledge protocols.

2. Defining Universally Composable Commitments

Section 2.1 shortly summarizes the relevant parts of the general framework of
[C01], including the general framework for defining security and the composition
theorem. Section 2.3 defines the crs model. Section 2.4 defines the ideal commit-
ment functionalities, Fcom and Fmcom.

2.1. The General Framework

As sketched in the Introduction, protocols that securely carry out a given task
(or, protocol problem) are defined in three steps, as follows. First, the process of
executing a protocol in the presence of an adversary and in a given computational
environment is formalized. Next, an “ideal process” for carrying out the task at
hand is formalized. In the ideal process the parties do not communicate with each
other. Instead they have access to an “ideal functionality”, which is essentially an
incorruptible “trusted party” that is programmed to capture the desired require-
ments from the task at hand. A protocol is said to securely realize a task if the
process of running the protocol “emulates” the ideal process for that task. In the
rest of this subsection we overview the model for protocol execution (called the
real-life model), the ideal process, and the notion of protocol emulation.
Protocol Syntax. Following [GMR89, G98], a protocol is represented as a sys-
tem of interactive Turing machines (ITMs), where each ITM represents the pro-
gram to be run within a different party. Specifically, the input and output tapes
model inputs and outputs that are received from and given to other programs
running on the same machine, and the communication tapes model messages sent
to and received from the network. Adversarial entities are also modeled as ITMs;
we concentrate on a non-uniform complexity model where the adversaries have an
arbitrary additional input, or an “advice”.
The Adversarial Model. [C01] discusses several models of computation. We
concentrate on a model where the network is asynchronous without guaranteed
delivery of messages. The communication is public (i.e., all messages can be seen
by the adversary) but ideally authenticated (i.e., messages cannot be modified
by the adversary). In addition, parties have unique identities.1 The adversary

1 Indeed, the communication in realistic networks is typically unauthenticated, in the sense
that messages may be adversarially modified en-route. In addition, there is no guarantee that
identities will be unique. Nonetheless, since authentication and the guarantee of unique identities
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is adaptive in corrupting parties, and is active (or, Byzantine) in its control over
corrupted parties. Any number of parties can be corrupted. Finally, the adversary
and environment are restricted to probabilistic polynomial time (or, “feasible”)
computation.
Protocol Execution in the Real-life Model. We sketch the process of exe-
cuting a given protocol π (run by parties P1, ..., Pn) with some adversary A and
an environment machine Z with input z. All parties have a security parameter
k ∈ N and are polynomial in k. The execution consists of a sequence of acti-
vations, where in each activation a single participant (either Z, A, or some Pi)
is activated. The activated participant reads information from its input and in-
coming communication tapes, executes its code, and possibly writes information
on its outgoing communication tapes and output tapes. In addition, the envi-
ronment can write information on the input tapes of the parties, and read their
output tapes. The adversary can read messages off the outgoing message tapes
of the parties and deliver them by copying them to the incoming message tapes
of the recipient parties. (It is stressed that only messages that were generated by
parties can be delivered. The adversary cannot modify or duplicate messages.)
The adversary can also corrupt parties, with the usual consequences that it learns
the internal information known to the corrupted party and that from now on it
controls that party.

The environment is activated first; once activated, it may write information
on the input tape of either one of the parties or of the adversary. That entity
is activated once the activation of the environment is complete (i,e, once the
environment enters a special waiting state.) If no input tape was written into
then the execution halts. Once a party completes its activation the environment
is activated again. Whenever the adversary delivers a message to some party P in
some activation, then this party is activated next. Once P ’s activation is complete,
the environment is activated again. If in some activation the adversary delivers
no messages then the environment is activated as soon as the adversary completes
its activation. Notice that this mechanism allows environment and the adversary
to exchange information freely using their input and output tapes, between each
two activations of some party. The output of the protocol execution is the output
of Z. (Without loss of generality Z outputs a single bit.)

Let realπ,A,Z(k, z, ~r) denote the output of environment Z when interacting
with adversary A and parties running protocol π on security parameter k, input
z and random input ~r = rZ , rA, r1 . . . rn as described above (z and rZ for Z, rA
for A; ri for party Pi). Let realπ,A,Z(k, z) denote the random variable describing
realπ,A,Z(k, z, ~r) when ~r is uniformly chosen. Let realπ,A,Z denote the ensemble
{realπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

can be added independently of the rest of the protocol, we allow ourselves to assume ideally
authenticated channels and unique identities. See [C01] for further discussion.
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The Ideal Process. Security of protocols is defined via comparing the protocol
execution in the real-life model to an ideal process for carrying out the task at
hand. A key ingredient in the ideal process is the ideal functionality that captures
the desired functionality, or the specification, of that task. The ideal functionality
is modeled as another ITM that interacts with the environment and the adversary
via a process described below. More specifically, the ideal process involves an
ideal functionality F , an ideal process adversary S, an environment Z on input z
and a set of dummy parties P̃1, ..., P̃n. The dummy parties are fixed and simple
ITMS: Whenever a dummy party is activated with input x, it forwards x to F ,
say by copying x to its outgoing communication tape; whenever it is activated
with incoming message from F it copies this message to its output. F receives
information from the (dummy) parties by reading it off their outgoing communi-
cation tapes. It hands information back to the parties by sending this information
to them. The ideal-process adversary S proceeds as in the real-life model, except
that it has no access to the contents of the messages sent between F and the par-
ties. In particular, S is responsible for delivering messages from F to the parties.
It can also corrupt dummy parties, learn the information they know, and control
their future activities.

The order of events in the ideal process is the same as in the real-life process,
with the exception that here, if a dummy party P̃ is activated by an input value
coming from the environment then (this value is copied to the outgoing commu-
nication tape of P̃ and) the ideal functionality is activated next. Once the ideal
functionality completes its activation (having perhaps sent messages to the ad-
versary or dummy parties), P̃ is activated one again. It is stressed that in the
ideal process there is no communication among the parties. The only “commu-
nication” is in fact idealized transfer of information between the parties and the
ideal functionality.

Let idealF ,S,Z(k, z, ~r) denote the output of environment Z after interacting
in the ideal process with adversary S and ideal functionality F , on security pa-
rameter k, input z, and random input ~r = rZ , rS , rF as described above (z and
rZ for Z, rS for S; rF for F). Let idealF ,S,Z(k, z) denote the random variable
describing idealF ,S,Z(k, z, ~r) when ~r is uniformly chosen. Let idealF ,S,Z denote
the ensemble {idealF ,S,Z(k, z)}k∈N,z∈{0,1}∗ .
Securely Realizing an Ideal Functionality. We say that a protocol ρ securely
realizes an ideal functionality F if for any real-life adversary A there exists an
ideal-process adversary S such that no environment Z, on any input, can tell with
non-negligible probability whether it is interacting with A and parties running ρ
in the real-life process, or it is interacting with A and F in the ideal process. This
means that, from the point of view of the environment, running protocol ρ is ‘just
as good’ as interacting with an ideal process for F . (In a way, Z serves as an
“interactive distinguisher” between the two processes. Here it is important that
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Z can provide the process in question with adaptively chosen inputs throughout
the computation.)

Definition 6.1. Let X = {X(k, a)}k∈N,a∈{0,1}∗ and Y = {Y (k, a)}k∈N,a∈{0,1}∗ be
two distribution ensembles over {0, 1}. We say that X and Y are indistinguishable

(written X
c
≈ Y) if for any c ∈ N there exists k0 ∈ N such that |Pr(X(k, a) =

1)− Pr(Y (k, a) = 1)| < k−c for all k > k0 and all a.

Definition 6.2 ([C01]). Let n ∈ N. Let F be an ideal functionality and let π
be an n-party protocol. We say that π securely realizes F if for any adversary A
there exists an ideal-process adversary S such that for any environment Z we have
idealF ,S,Z

c
≈ realπ,A,Z .

2.2. On the Composition Theorem

The Hybrid Model. In order to state the composition theorem, and in partic-
ular in order to formalize the notion of a real-life protocol with access to an ideal
functionality, the hybrid model of computation with access to an ideal functionality
F (or, in short, the F-hybrid model) is formulated. This model is identical to the
real-life model, with the following additions. On top of sending messages to each
other, the parties may send messages to and receive messages from an unbounded
number of copies of F . Each copy of F is identified via a unique session identifier
(SID); all messages addressed to this copy and all message sent by this copy carry
the corresponding SID. (The SIDs are chosen by the protocol run by the parties.)

The communication between the parties and each one of the copies of F mim-
ics the ideal process. That is, once a party sends a message to some copy of F ,
that copy is immediately activated and reads that message off the party’s tape.
Furthermore, although the adversary in the hybrid model is responsible for deliv-
ering the messages from the copies of F to the parties, it does not have access
to the contents of these messages. It is stressed that the environment does not
have direct access to the copies of F . (Indeed, here the security definition will
require that the environment will be unable to tell whether it is interacting with
the real-life model or the hybrid model.)
Replacing a Call to F With a Protocol Invocation. Let π be a protocol
in the F-hybrid model, and let ρ be a protocol that securely realizes F (with
respect to some class of adversaries). The composed protocol πρ is constructed by
modifying the code of each ITM in π so that the first message sent to each copy
of F is replaced with an invocation of a new copy of π with fresh random input,
and with the contents of that message as input. Each subsequent message to that
copy of F is replaced with an activation of the corresponding copy of ρ, with the
contents of that message given to ρ as new input. Each output value generated
by a copy of ρ is treated as a message received from the corresponding copy of F .
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Theorem Statement. In its general form, the composition theorem basically
says that if ρ securely realizes F then an execution of the composed protocol πρ

“emulates” an execution of protocol π in the F-hybrid model. That is, for any
real-life adversary A there exists an adversary H in the F-hybrid model such that
no environment machine Z can tell with non-negligible probability whether it is
interacting with A and πρ in the real-life model or it is interacting with H and π
in the F-hybrid model:

Theorem 6.3. Let F be an ideal functionality. Let π be a protocol in the F-hybrid
model, and let ρ be a protocol that securely realizes F . Then for any real-life ad-
versary A there exists a hybrid-model adversary H such that for any environment
machine Z we have realπρ,A,Z

c
≈ hyb

F
π,H,Z .

A more specific corollary of the general theorem states that if π securely realizes
some functionality G in the F-hybrid model, and ρ securely realizes F in the real-
life model, then πρ securely realizes G in the real-life model. (Here one has to
define what it means to securely realize functionality G in the F-hybrid model.
This is done in the natural way.)

Theorem 6.4 ([C01]). Let F ,G be ideal functionalities. Let π be an n-party
protocol that realizes G in the F-hybrid model and let ρ be an n-party protocol that
securely realizes F . Then protocol πρ securely realizes G.

2.3. The Common Reference String (crs) Model

In the common reference string (crs) model it is assumed that all the par-
ticipants have access to a common string that is drawn from some specified dis-
tribution. (This string is chosen ahead of time and is made available before any
interaction starts.) In the present framework we re-cast the crs model framework
as a hybrid model with ideal access to a functionality Fcrs, that is parameterized
by a distribution D and described in Figure 1 below.

Figure 1. The Common Reference String functionality
Functionality Fcrs

Fcrs proceeds as follows, when parameterized by a distribution D.
1. When activated for the first time on input (value, sid), choose a value
d ∈R D and send d back to the activating party. In each other activa-
tion return the value d to the activating party.

Notice that this formalization has the usual properties of the crs model.
Specifically:

• In the real-life model of computation the parties have access to a common
and public string that is chosen in advance according to some distribution
(specified by the protocol run by the parties).
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• In the ideal process for some functionality (say, for Fcom defined below)
there is no use of the random string. Consequently an ideal process ad-
versary that operates by simulating a real-life adversary may play the role
of Fcrs for the simulated adversary. This means that the ideal process
adversary may choose the common string in any way it wishes.

Furthermore, since the ideal process makes no use of the random string, the
validity of the ideal process is not affected by the fact that the protocol runs in the
Fcrs-hybrid model. We are thus guaranteed that our notion of security remains
valid.
Protocol Composition in the crs Model. Some words of clarification are in
order with respect to the composition theorem in the crs model. It is stressed
that each copy of protocol ρ within the composed protocol πρ should have its own
copy of the reference string, i.e. a separate instance of Fcrs, (or equivalently uses
a separate portion of a long string). If this is not the case then the theorem no
longer holds in general. As seen below, the security requirements from protocols
where several copies of the protocol use the same instance of the reference string
can be captured using ideal functionalities that represent multiple copies of the
protocol within a single copy of the functionality.

2.4. The Commitment Functionalities

We propose ideal functionalities that represent the intuitive “envelope-like”
properties of commitment, as sketched in the introduction. Two functionalities are
presented: functionality Fcom that handles a single commitment-decommitment
process, and functionality Fmcom that handles multiple such processes. Recall that
the advantage of Fmcom over Fcom is that protocols that securely realize Fmcom

may use the same short common string for multiple commitments. (In contrast,
applying the composition theorem to protocols that realize Fcom requires using a
different common string for each commitment.) Indeed, realizing Fmcom is more
challenging than realizing Fcom. Some further discussion on the functionalities
and possible variants appears at the end of this section.

Both functionalities are presented as bit commitments. Commitments to
strings can be obtained in a natural way using the composition theorem. It is
also possible, in principle, to generalize Fcom and Fmcom to allow commitment
to strings. Such extensions may be realized by string-commitment protocols that
are more efficient than straightforward composition of bit commitment protocols.
Finding such protocols is an interesting open problem.

Functionality Fcom, described in Figure 2, proceeds as follows. The commit-
ment phase is modeled by having Fcom receive a value (Commit, sid , Pi, Pj , b),
from some party Pi (the committer). Here sid is a Session ID used to distinguish
among various copies of Fcom, Pj is the identity of another party (the receiver),
and b ∈ {0, 1} is the value committed to. In response, Fcom lets the receiver
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Figure 2. The Ideal Commitment functionality for a single commitment
Functionality Fcom

Fcom proceeds as follows, running with parties P1, ..., Pn and an adversary S.
1. Upon receiving a value (Commit, sid , Pi, Pj , b) from Pi, where b ∈
{0, 1}, record the value b and send the message (Receipt, sid , Pi, Pj)
to Pj and S. Ignore any subsequent Commit messages.

2. Upon receiving a value (Open, sid , Pi, Pj) from Pi, proceed as fol-
lows: If some value b was previously recoded, then send the message
(Open, sid , Pi, Pj , b) to Pj and S and halt. Otherwise halt.

Pj and the adversary S know that Pi has committed to some value, and that
this value is associated with session ID sid . This is done by sending the message
(Receipt, sid , Pi, Pj) to Pj and S. The opening phase is initiated by the commit-
ter sending a value (Open, sid , Pi, Pj) to Fcom. In response, Fcom hands the value
(Open, sid , Pi, Pj , b) to Pj and S.

Functionality Fmcom, presented in Figure 3, essentially mimics the operation
of Fcom for multiple commitments. In addition to the session ID sid , function-
ality Fmcom uses an additional identifier, a Commitment ID cid , that is used to
distinguish among the different commitments that take place within a single run
of Fmcom. The record for a committed value now includes the Commitment ID,
plus the identities of the committer and receiver. To avoid ambiguities, no two
commitments with the same committer and verifier are allowed to have the same
Commitment ID. It is stressed that the various Commit and Open requests may
be interleaved in an arbitrary way. Also, note that Fmcom allows a committer to
open a commitment several times (to the same receiver).

Figure 3. The Ideal Commitment functionality for multiple commitments
Functionality Fmcom

Fmcom proceeds as follows, running with parties P1, ..., Pn and an adversary S.
1. Upon receiving a value (Commit, sid , cid , Pi, Pj , b) from Pi, where
b ∈ {0, 1}, record the tuple (cid , Pi, Pj , b) and send the mes-
sage (Receipt, sid , cid , Pi, Pj) to Pj and S. Ignore subsequent
(Commit, sid , cid , Pi, Pj , ...) values.

2. Upon receiving a value (Open, sid , cid , Pi, Pj) from Pi, proceed as fol-
lows: If the tuple (cid , Pi, Pj , b) is recorded then send the message
(Open, sid , cid , Pi, Pj , b) to Pj and S. Otherwise, do nothing.
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Definition 6.5. A protocol is a universally composable (uc) commitment protocol
if it securely realizes functionality Fcom. If the protocol securely realizes Fmcom

then it is called a reusable-crs uc commitment protocol.

On Duplicating Commitments. Notice that functionalities Fcom and Fmcom

disallow “copying commitments”. That is, assume that party A commits to some
value x for party B, and that the commitment protocol in use allows B to commit
to the same value x for some party C, before A decommitted to x. Once A
decommits to x for B, B will decommit to x for C. Then this protocol does not
securely realize Fcom or Fmcom. This requirement may seem hard to enforce at
first, since B can always play “man in the middle” (i.e., forward A’s messages to
C and C’s messages to A.) We enforce it using the unique identities of the parties.
(Recall that unique identities are assumed to be provided via an underlying lower-
level protocol that also guarantees authenticated communication.)
On the difference between Fcom and Fmcom. Securely realizing Fmcom is con-
siderably more demanding than securely realizing Fcom. In particular, a protocol
that securely realizes Fcom does not need to explicitly guarantee “independence”
(or, “non-malleability”) among different commitments: this independence is taken
care of by the general composition theorem. In contrast, in order to securely real-
ize Fmcom a protocol has to explicitly guarantee independence among the different
commitments handled by the same copy of Fmcom. Independence from other copies
of Fmcom and from other protocols is guaranteed via the general composition the-
orem.
Some Variants of Fcom and Fmcom. Functionalities Fcom and Fmcom capture
one standard variant of commitment protocols. Other variants are possible, pro-
viding different security properties. We sketch a few:

1. The functionalities can be modified so that the adversary does not receive
the opened value x. This captures the concern that the opening of the
commitment should be available only to the receiver.

2. The functionalities can be modified so that the receiver of the commit-
ment provides the functionality with acknowledgments for obtaining the
commitment and the opening, and the functionality forwards these ac-
knowledgments to the committer. This may be useful in cases where the
committer has to make sure that the receiver accepted the commitment
and/or the opening.

3. The functionalities can be modified so that the adversary receives no mes-
sages whatsoever. This captures the concern that the adversary does not
learn whether a commitment protocol took place at all. (This requirement
has a flavor of protection against traffic analysis.)
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4. Functionalities Fcom and Fmcom don’t specify an “error message,” to be
generated by the receiver, in case where the committer provides the re-
ceiver with an invalid opening of some committed value. (Instead, the
current specification instructs the receiver to ignore invalid decommit-
ments.) An alternative formulation would instruct the functionality to
notify the receiver when it receives an invalid (Open,...) message from
the committer.

3. Impossibility of UC Commitments in the Plain Model

This section demonstrates that in the plain model (i.e., without access to some
ideal functionality) there cannot exist universally composable commitment proto-
cols that do not involve third parties in the interaction and allow for successful
completion when both the sender and the receiver are honest. This impossibility
result holds even under the more liberal requirement that for any real-life adver-
sary and any environment there should be an ideal-model adversary (i.e., under
a relaxed definition where the ideal-model simulator may depend on the environ-
ment).

We remark that universally composable commitment protocols exist in the
plain model if the protocol makes use of third parties (namely, servers), as long as
a majority of the servers remain uncorrupted. This follows from a general result
in [C01], where it is shown that practically any functionality can be realized in
this setting.

Say that a protocol π between n parties P1, . . . , Pn is bilateral if all except two
parties stay idle and do not transmit messages. A bilateral commitment protocol
π is called terminating if, with non-negligible probability, the honest receiver Pj
accepts a commitment of the honest sender Pi and outputs (Receipt, sid, Pi, Pj),
and moreover if the honest receiver, upon getting a valid decommitment for a
message m and sid from the honest sender, outputs (Open, sid, Pi, Pj ,m) with
non-negligible probability.

Theorem 6.6. There exist no bilateral, terminating protocol π that securely re-
alizes functionality Fcom in the plain model. This holds even if the ideal-model
adversary S is allowed to depend on the environment Z.

Proof. The idea of the proof is as follows. Consider a protocol execution between
an adversarially controlled committer Pi and an honest receiver Pj , and assume
that the adversary merely sends messages that are generated by the environment,
and relays to the environment the messages sent to Pi. The environment secretly
picks a random bit b at the beginning and generates the messages for Pi by running
the protocol of the honest committer for b and Pj ’s answers. In order to simulate
this behavior, the ideal-model adversary S must be able to provide the ideal
functionality with a value for the committed bit. In other words, the simulator has
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to “extract” the committed bit from the messages generated by the environment,
without the ability to rewind the environment. However, as will be seen below, if
the commitment scheme allows the simulator to successfully extract the committed
bit, then the commitment is not secure in the first place (in the sense that a
corrupted receiver can obtain the value of the committed bit from interacting
with an honest committer).

More precisely, let the bilateral protocol π take place between the sender Pi and
the receiver Pj . Consider the following environment Z and real-life adversary A.
At the outset of the execution the adversary A corrupts the committer Pi. Then,
in the sequel, A has the corrupted committer send every message it receives from
Z, and reports any reply received by Pj to Z. The environment Z secretly picks
a random bit b and follows the program of the honest sender to commit to b, as
specified by π. Once the the honest receiver has acknowledged the receipt of a
commitment, Z lets A decommit to b by following protocol π. Once the receiver
outputs (Open, sid, Pi, Pj , b′), Z outputs 1 if b = b′ and outputs 0 otherwise.

Since the receiver outputs a receipt before the decommitment starts, an ideal-
model adversary S for the pair A,Z must send (Commit, sid, Pi, Pj , b′) to Fcom

before learning the bit b in the decommitment step. However, the honest receiver
outputs the bit b′ it gets in the opening step from Fcom, and this implies that a
successful S must come up with the true bit b already at the commitment step,
which contradicts the secrecy of the commitment protocol.

Formally, suppose that there is an ideal-model adversary S such that
realπ,A,Z≈idealFcom,S,Z . Then we construct a new environment Z ′ and a new
real-life adversary A′ for which there is no appropriate ideal-model adversary for
π. This time, A′ corrupts the receiver Pj at the beginning. During the execution
A′ obtains messages form the honest committer Pi and feeds these messages into
a virtual copy of S. The answers of S, made on behalf of an honest receiver, are
forwarded to Pi in the name of the corrupted party Pj . At some point, S creates a
submission (Commit, sid, Pi, Pj , b′) to Fcom; the adversary A′ outputs b′ and halts.
If S halts without creating such a submission then A′ outputs a random bit and
halts.

The environment Z ′ instructs the honest party Pi to commit to a randomly
chosen secret bit b. (No decommitment is ever carried out.) Conclusively, Z ′
outputs 1 iff the adversary’s output b′ satisfies b = b′.

By the termination property, we obtain from the virtual simulator S a bit b′

with non-negligible probability. This bit is a good approximation of the actual
bit b, since S simulates the real protocol π except with negligible error. Hence,
the guess of A′ for b is correct with 1/2 plus a non-negligible probability. But
for a putative ideal-model adversary S ′ predicting this bit b with more than non-
negligible probability over 1/2 is impossible, since the view of S ′ in the ideal
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process is statistically independent from the bit b. (Recall that the commitment
to b is never opened). �

4. UC Commitment Schemes in the crs Model

We present two basic approaches for constructions of uc commitment protocols in
the common reference string (crs) model. The protocol presented in Section 4.1
securely realizes functionality Fcom, i.e., each part of the public string can only
be used for a single commitment. It is based on any trapdoor permutation. The
protocol presented in Section 4.2 securely realizes Fmcom, i.e., it reuses the pub-
lic string for multiple commitments. This protocol requires potentially stronger
assumptions (either the existence of claw-free pairs of trapdoor permutations or
alternatively secure encryption and non-interactive perfectly-secret trapdoor com-
mitments). Nonetheless, in the presence of an adaptive adversary this solution
only works if the honest players faithfully erase some parts of their internal ran-
domness. In Section 4.3 we give sufficient conditions under which data erasure
can be avoided, and show that these conditions can be met under the Decisional
Diffie-Hellman assumption for example.

4.1. One-Time Common Reference String

The construction in this section works in the common random string model
where each part of the commitment can be used for only one commitment. It is
based on the equivocable bit commitment scheme of Di Crescenzo et al. [DIO98],
which in turn is a clever modification of Naor’s commitment scheme [N91].
Preliminaries. Let G be a pseudorandom generator stretching n-bit inputs to
4n-bit outputs. For security parameter n the receiver in [N91] sends a random
4n-bit string σ to the sender, who picks a random r ∈ {0, 1}n, computes G(r)
and returns G(r) or G(r)⊕σ to commit to 0 and 1, respectively. To decommit,
the sender transmits b and r. By the pseudorandomness of G the receiver cannot
distinguish the two cases, and with probability 2−2n over the choice of σ it is
impossible to find openings r0 and r1 such that G(r0) = G(r1)⊕σ.

In [DIO98] an equivocable version of Naor’s scheme has been proposed. Sup-
pose that σ is not chosen by the receiver, but rather is part of the common random
string. Then, if instead we set σ = G(r0)⊕G(r1) for random r0, r1, and let the
sender give G(r0) to the receiver, it is later easy to open this commitment as 0
with r0 as well as 1 with r1 (because G(r0)⊕σ = G(r1)).. On the other hand,
choosing σ in that way in indistinguishable from a truly random choice.
Description of Commitment Scheme. We describe a uc bit commitment pro-
tocol UCCOneTime (for universally composable commitment scheme in the one-time-
usable common reference string model). The idea is to use the [DIO98] scheme
with a special pseudorandom generator that has a trapdoor property. Specifically,
we use the Blum-Micali-Yao generator but with trapdoor permutations instead
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ofone-way permutations [Y82, BM84]. Let KGen denote an efficient algorithm
that on input 1n generates a random public key pk and the trapdoor td . The key
pk describes a trapdoor permutation fpk over {0, 1}n. Let B(·) be a hard core
predicate for fpk . Define a pseudorandom generator expanding n bits to 4n bits
with public description pk by

Gpk (r) =
(
f

(3n)
pk (r), B

(
f

(3n−1)
pk (r)

)
, . . . , B

(
fpk (r)

)
, B(r)

)
where f (i)

pk (r) is the i-th fold application of fpk to r. An important feature of this
generator is that given the trapdoor td to pk it is easy to tell whether a given
y ∈ {0, 1}4n is in the range of Gpk .

The public random string in our scheme consists of a random 4n-bit string σ,
together with two public keys pk0, pk1 describing trapdoor pseudorandom gener-
ators Gpk0

and Gpk1
; both generators stretch n-bit inputs to 4n-bit output. The

public keys pk0, pk1 are generated by two independent executions of the key gen-
eration algorithm KGen on input 1n. Denote the corresponding trapdoors by td0

and td1, respectively.

Figure 4. Commitment Scheme in the One-Time-Usable Com-
mon Reference String Model

Commitment scheme UCCOneTime

public string:

σ — random string in {0, 1}4n

pk0, pk1 — keys for generators Gpk0
, Gpk1

: {0, 1}n → {0, 1}4n

commitment for b ∈ {0, 1} with SID sid:

compute Gpkb(r) for random r ∈ {0, 1}n
set y = Gpkb(r) for b = 0, or y = Gpkb(r)⊕σ for b = 1
send (Com, sid , y) to the receiver
Upon receiving (Com, sid , y) from Pi,

Pj outputs (Receipt, sid , cid , Pi, Pj)

decommitment for y:

send b, r to the receiver

receiver checks y ?= Gpkb(r) for b = 0, or y ?= Gpkb(r)⊕σ for b = 1.
If the verification succeeds then Pj outputs (Open, sid , Pi, Pj , b).

In order to commit to a bit b ∈ {0, 1}, the sender picks a random string
r ∈ {0, 1}n, computes Gpkb(r), and sets y = Gpkb(r) if b = 0, or y = Gpkb(r)⊕σ
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for b = 1. The sender passes y to the receiver. In the decommitment step the
sender gives (b, r) to the receiver, who verifies that y=Gpkb(r) for b = 0 or that
y = Gpkb(r)⊕σ for b = 1. See also Figure 4.
Basic Properties. Clearly, the scheme is computationally hiding and statisti-
cally binding. An important observation is that our scheme inherits the equivo-
cability property of [DIO98]. In a simulation we replace σ by Gpk0

(r0)⊕Gpk1
(r1)

and therefore, if we transmit y = Gpk (r0) to a receiver, then we can later open
this value with 0 by sending r0 and with 1 via r1.

Moreover, if we are given a string y∗ generated by the adversary, and we know
the trapdoor td0 to pk0, then it is easy to check if y∗ is an image under Gpk0

and therefore represents a 0-commitment. Unless y∗ belongs to the range of Gpk0

and, simultaneously, y∗⊕σ belongs to the range of Gpk1
, the encapsulated bit is

unique and we can extract the correct value with td0. (We stress, however, that
this property will not be directly used in the proof. This is so since there the crs

has a different distribution, so a more sophisticated argument is needed.)
Security. To summarize, our commitment scheme supports equivocability and
extraction. We are now ready to prove that the protocol securely realizes func-
tionality Fcom:

Theorem 6.7. Protocol UCCOneTime securely realizes functionality Fcom in the
crs model.

Proof. We describe the ideal-model adversary S. This adversary runs an exe-
cution with the environment Z and, in parallel, simulates a virtual copy of the
real-life adversary A in a black-box way. That is, S acts as an interface between
A and Z by imitating a copy of a real execution of π for A, incorporating Z’s
ideal-model interactions and vice versa forwarding A’s messages to Z. More pre-
cisely,

1. At the outset the simulator S prepares σ by selecting key pairs
(pk0, td0)←KGen(1n) and (pk1, td1)←KGen(1n) and setting σ =
Gpk0

(r0)⊕Gpk1
(r1) for random r0, r1 ∈ {0, 1}n. We call this a fake string

σ with respect to preselected values pk0, pk1, Gpk0
(r0) and Gpk1

(r1). Next,
S starts the simulation of A and the execution with Z on the fake string
σ and pk0, pk1.

2. If at some point in the execution the environment Z writes a message
(Commit, sid, Pi, Pj , b) on the tape of the uncorrupted party P̃i, and P̃i
copies this to the functionality Fcom, then the ideal-model simulator —
who cannot read the actual bit, but is informed about the commitment by
receiving (Receipt, sid, Pi, Pj)— tells A that Pi has sent y = Gpk0

(r0) to
Pj .
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3. If at some point in the execution Z instructs an uncorrupted party P̃i
to decommit and this party has previously correctly committed to some
secret bit b. Then the ideal-model adversary S must have sent the value
y = Gpk0

(r0) on behalf of Pi in the black-box simulation of A. In the ideal
model, S now learns b from P̃i via Fcom and opens y in the simulation of
A accordingly, using the equivocability property.

4. If the simulated adversary A lets some corrupted party Pi send
(Com,sid,y∗) to an honest party Pj then S verifies with the help of the
trapdoor td0 whether y∗ is in the range of Gpk0

(·) or not. If so, S sends a
message (Commit, sid, Pi, Pj , 0) on behalf of the party to the functionality;
else S sends (Commit, sid, Pi, Pj , 1) to Fcom.

5. If A tells a corrupted party Pi to open a valid commitment y∗ correctly
with bit b∗, then S compares b∗ to the previously extracted bit and stops
if they differ; otherwise S sends (Open, sid, Pi, Pj) in the name of the party
to Fcom. If Pi is supposed to decommit incorrectly, then S also sends an
incorrect opening to the functionality.

6. Whenever the simulated A demands to corrupt a party, S corrupts this
party in the ideal model and learns all internal information of the party.
Now S first adapts possible decommitment information about a previously
given but yet unopened commitment of this party, like in the case of an
honest party decommitting. After this, S gives all this adjusted informa-
tion to A.

In order to show that the environment’s output in the real-life model is indis-
tinguishable from its output in the ideal-process, we consider the following three
random variables:2

Real/Genuine: The output of Z in a real-life execution with parties running
the protocol and adversary A. This amounts to choosing a uniformly
distributed σ and random pk0, pk1 by running KGen and publishing this
as the public string; then run the protocol in the real-life model with A
and Z on this string.

Real/Fake: The output of Z from the following interaction. Choose a fake
string σ together with random pk0, pk1, like the simulator, involving pres-
elected values Gpk0

(r0) and Gpk1
(r1). Run the real-life protocol with A,Z

on the fake string; if an honest party is supposed to commit to a bit b
let this party compute the commitment by using the preselected values:
y = Gpk0

(r0) if b = 0 and y = Gpk1
(r1)⊕σ for b = 1. If the honest party

is later asked to decommit, then the opening is done by sending b and the
value rb. At the end of the execution, output whatever Z returns.

2 Abusing notation, the same symbols will be typically used to refer to the output of Z from
an experiment and to the experiment itself.
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Ideal/Fake: The output of Z in an execution in the ideal process with S and
Fcom (on a fake public string chosen by S).

Indistinguishability of Real/Genuine and Real/Fake. Let us presume, for sake
of contradiction, that Z tells apart the hybrids Real/Genuine and Real/Fake with
non-negligible probability. From this, we construct an algorithm deciding if an
input is truly random or pseudorandom. Details follow.

We are given the security parameter n, a random public key pk of a trapdoor
pseudorandom generator Gpk : {0, 1}n → {0, 1}4n together with a string z ∈
{0, 1}4n, either chosen at random or produced by applying Gpk . We are supposed
to predict in which way z has been generated.

To distinguish a random z and a pseudorandom z we use the environment
Z distinguishing Real/Genuine and Real/Fake. For this, we generate a string σ
similar to the procedure of S, but we deploy the given string z. Then we basically
emulate a real-life execution simulating all honest parties; in particular, we read
all the incoming messages from Z. More specifically,

• generation of public string:
– pick a bit c at random and set pk1−c = pk for the given public key

(the bit c is our guess for the bit of an honest party committing)
– generate another key pair (pk c, td c)←KGen(1n)
– select rc ∈ {0, 1}n at random and set σ = Gpkc(rc)⊕ z

• emulation:
– simulate the real-life protocol with A,Z on σ, pk0, pk1

– if an uncorrupted party Pi is told by Z to commit to a bit b, then we
stop immediately with output 0 if b 6= c (i.e., our guess is wrong). In
the case b = c we send Gpkc(rc) for b = c = 0 and z for b = c = 1 in
the name of Pi and continue the simulation; when Z later instructs
Pi to decommit, we transmit b(= c) and rc. Analogously, we present
b, rc to A if this party is corrupted before decommitting.

– if the adversary A corrupts the sender Pi before this party is giving
the commitment, then we stop with probability 1/2 (this provides
symmetry to the first case and simplifies the analysis); otherwise we
go on with the real-life simulation.

• output:
– given that we have not stopped yet, simply copy Z’s output.

To analyze the advantage of our algorithm we start with the case that z is
a uniformly distributed 4n-bit string. Then σ is also random and our prediction
c is hidden information-theoretically from A and Z at the outset of the execu-
tion. Therefore, the probability that we stop prematurely with output 0 is 1/2,
independent of the fact whether A plays the committer or lets an honest party
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commit. Conditioning on that we enter the final output step, it is easy to see that
Z’s output is identically distributed to a sample of Real/Genuine.

Now let z be produced by sampling Gpk (·). In this case σ corresponds to a fake
string. Also, the public string does not reveal anything to A and Z about c. We
conclude again that we stop early with probability 1/2, regardless of who commits.
Additionally, given that we reach the final step, Z’s output is distributed like a
sample from Real/Fake.

Hence, in both experiments Real/Genuine and Real/Fake we output 1 with
half the probability that Z returns 1. It follows that if Z’s advantage separating
Real/Genuine and Real/Fake equals

ε(n) = |ProbZ outputs 1 in experiment Real/Genuine

− ProbZ outputs 1 in experiment Real/Fake| ,
then our advantage distinguishing pseudorandom from random inputs equals
ε(n)/2. In particular, if ε(n) is non-negligible, so is ε(n)/2, and this contradicts
the pseudorandomness of the generator.
Indistinguishability of Real/Fake and Ideal/Fake. Obviously, given that A does
not manage to send some y∗ in the range of Gpk0

and to open this value later
correctly with b∗ = 1, the two experiments are identical. Thus, it suffices to
bound the probability for such a mismatch. We show that this probability is
negligible because of the pseudorandomness of the generators.

Suppose that the probability in experiment Ideal/Fake that A commits for a
corrupted party to y∗ such that y∗ and y∗⊕σ are images under Gpk0

and Gpk1
,

respectively, is not negligible. Construct the following algorithm: the input to
the algorithm is n, a public key pk and a 4n-bit string z, and the output is a bit
indicating whether z is random or pseudorandom.

1. set pk1 = pk , generate another random key pair (pk0, td0) and define
σ = Gpk0

(r0)⊕ z for random r0 ∈ {0, 1}n.
2. emulate the Ideal/Fake experiment with S,Z on σ, pk0, pk1; abort if an

honest party is instructed to commit.
3. if A lets a corrupted party commit to y∗, check —with the help of td0— if
y∗ is an image under Gpk0

. If this corrupted party then also gives a correct
opening of y∗ for b∗ = 1, then stop and output 1.

4. in any other case, return 0.

Observe that this algorithm merely returns 1 if the verification with td0 yields a
preimage r∗0 under Gpk0

and if the adversary also reveals r∗1 such that

Gpk0
(r∗0) = y∗ = Gpk1

(r∗1)⊕σ = Gpk1
(r∗1)⊕Gpk0

(r0)⊕ z
But for random z the probability that

z ∈
{
Gpk0

(r0)⊕Gpk0
(r∗0)⊕Gpk1(r∗1)

∣∣ r0, r
∗
0, r
∗
1 ∈ {0, 1}

n}
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is at most 2−n. Thus, in this case, our algorithm outputs 1 with exponentially
small probability only. On the other hand, if z is pseudorandom then our algorithm
outputs 1 with the same probability as the adversary A produces a mismatch
in the experiment Ideal/Fake. By assumption, this probability is non-negligible.
Therefore, the overall advantage of our algorithm is non-negligible, too, refuting
the fact that the generator is pseudorandom. This concludes the proof. �

4.2. Reusable Common Reference String: Erasing Parties

The drawback of the construction in the previous section is that a fresh part
of the random string must be reserved for each committed bit. In this section, we
overcome this disadvantage under a potentially stronger assumption, namely the
existence of claw-free trapdoor permutation pairs. We concentrate on a solution
that only works for erasing parties in general, i.e., security is based on the parties’
ability to irrevocably erase certain data as soon as they are supposed to. In the
next section we present a solution that does not require data erasure.
Preliminaries. Basically, a claw-free trapdoor permutation pair is a pair of trap-
door permutations with a common range such that it is hard to find two elements
that are preimages of the same element under the two permutations. More for-
mally, a key generation KGenclaw outputs a random public key pk claw and a trap-
door td claw. The public key defines permutations f0,pk claw

, f1,pk claw
: {0, 1}n →

{0, 1}n, whereas the secret key describes the inverse functions f−1
0,pk claw

, f−1
1,pk claw

. It
should be infeasible to find a claw x0, x1 with f0,pk claw

(x0) = f1,pk claw
(x1) given only

pk claw. For ease of notation we usually omit the keys and write f0, f1, f
−1
0 , f−1

1

instead. Claw-free trapdoor permutation pairs exist for example under the as-
sumption that factoring is hard [GMR88]. For a more formal definition see [G98].

We also utilize an encryption scheme E = (KGen,Enc,Dec) secure against
adaptive-chosen ciphertext attacks, i.e., in the notation of [BDPR98] the encryp-
tion system should be IND-CCA2. On input 1n the key generation algorithm
KGen returns a public key pkE and a secret key skE . An encryption of a message
m is given by c←EncpkE (m), and the decryption of a ciphertext c is DecskE (c). It
should always hold that DecskE (c) = m for c←EncpkE (m), i.e., the system supports
errorless decryption. Again, we abbreviate EncpkE (·) by Enc(·) and DecskE (·) by
Dec(·). IND-CCA2 encryption schemes exist for example under the assumption
that trapdoor permutations exist [DDN00]. A more efficient solution, based on
the decisional Diffie-Hellman assumption, appears in [CS98]. Both schemes have
errorless decryption.
Description of the Commitment Scheme. The commitment scheme
UCCReUse (for universally composable commitment with reusable reference string)
is displayed in Figure 5. The (reusable) public string contains random public
keys pk claw and pkE . For a commitment to a bit b the sender Pi obtains a value
y by applying the trapdoor permutation fb to a random x ∈ {0, 1}n, computes
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Figure 5. Commitment Scheme with Reusable Reference String
Commitment scheme UCCReUse

public string:

pk claw — public key for claw-free trapdoor permutation pair f0, f1

pkE — public key for encryption algorithm Enc

commitment by party Pi to party Pj to b ∈ {0, 1} with identifier sid, cid:

compute y = fb(x) for random x ∈ {0, 1}n;
compute cb←Enc(x, Pi) with randomness rb;
compute c1−b←Enc(0n, Pi) with randomness r1−b;
erase r1−b;
send (Com, sid , cid , (y, c0, c1)), and record (sid , cid , b, x, rb).
Upon receiving (Com, sid , cid , (y, c0, c1)) from Pi,

Pj outputs (Receipt, sid , cid , Pi, Pj)

decommitment for (Pi, Pj , sid , cid , b, x, rb):

Send (Dec, sid , cid , b, x, rb) to Pj .

Upon receiving (Dec, sid , cid , b, x, rb), Pj verifies that y ?= fb(x),
that cb is encryption of (x, Pi) under randomness rb
where Pi is the committer’s identity
and that cid has not been used with this committer before.

If the verification succeeds then Pj outputs (Open, sid , cid , Pi, Pj , b).

cb←EncpkE (x, Pi) and c1−b←EncpkE (0
n, Pi), and sends the tuple (y, c0, c1) to the

receiver. The sender is also instructed to erase the randomness used for the en-
cryption of (0n, Pi) before the commitment message is sent. This ciphertext is
called a dummy ciphertext.

To open the commitment, the committer Pi sends b, x and the randomness
used for encrypting (x, Pi). The receiver Pj verifies that y = fb(x), that the
encryption randomness is consistent with cb, and that cid was never used before
in a commitment of Pi to Pj .
Basic Properties. We remark that including the sender’s identity in the en-
crypted strings plays an important role in the analysis. Essentially, this precau-
tion prevents a corrupted committer from “copying” a commitment generated by
an uncorrupted party.
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The fact that the dummy ciphertext is never opened buys us equivocability.
Say that the ideal-model simulator knows the trapdoor of the claw-free permuta-
tion pair. Then it can compute the preimages x0, x1 of some y under both functions
f0, f1 and send y as well as encryptions of (x0, Pi) and (x1, Pi). To open it as 0
hand 0, x0 and the randomness for ciphertext (x0, Pi) to the receiver and claim
to have erased the randomness for the other encryption. For a 1-decommitment
send 1, x1, the randomness for the encryption of (x1, Pi) and deny to know the
randomness for the other ciphertext. If the encryption scheme is secure then
it is intractable to distinguish dummy encryptions from fake ones. Hence, this
procedure is indistinguishable from the actual steps of the honest parties.

Analogously to the extraction procedure for the commitment scheme in the
previous section, here an ideal-process adversary can also deduce the bit from an
adversarial commitment (y∗, c∗0, c

∗
1) if it knows the secret key of the encryption

scheme. Specifically, decrypt c∗0 to obtain (x∗0, P
∗
i ); if x∗0 maps to y∗ under f0 then

let the guess be 0, else predict 1. This decision is only wrong if the adversary has
found a claw, which happens only with negligible probability.
Security. We are now ready to prove that protocol UCCReUse securely realizes
functionality Fmcom:

Theorem 6.8. Protocol UCCReUse securely realizes functionality Fmcom in the crs

model.

Proof. As in the proof of Theorem 6.7 we present an ideal-process adversary S
simulating a virtual copy of the real-life adversary A and relaying messages of A
and the environment Z. The ideal-process adversary is defined by the following
actions:

1. the simulator S chooses keys (pk claw, td claw)←KGenclaw(1n) and
(pkE , skE)←KGenE(1n), defines the public string to be the pair pk claw, pkE ,
and simulates an execution of A with Z on pk claw, pkE .

2. If during this execution the environment Z lets an uncorrupted party P̃i
send a message (Commit, sid, cid, Pi, Pj , b) to the functionality then the
ideal-model simulator is informed about the commitment but not the bit it-
self. The simulator picks a random x0 ∈ {0, 1}n, computes y = f0(x0) and
x1 = f−1

1 (y) as well as encryptions c0←Enc(x0, Pi) and c1←Enc(x1, Pi).
Tell A that party Pi has sent sid, cid, (y, c0, c1).

3. If an uncorrupted party P̃i is instructed by Z to open a commitment to
some bit b, then the ideal-model adversary learns b from Fmcom. Pre-
tend in the simulation of A that the previously sent (y, c0, c1) equals a
b-commitment by sending b, xb and the randomness to encrypt cb; claim
that the randomness for the other encryption has been deleted.
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4. If the simulated A lets some corrupted party Pi commit to an honest party
Pj by sending (Com, sid∗, cid∗, (y∗, c∗0, c

∗
1)), then S decrypts c∗0 with skE to

(x∗, P ∗i ) and checks whether P ∗i = Pi and if cid∗ has not been used in a
commitment of Pi to Pj before; if either condition is violated then ignore
this message. Else, S sends a message (Commit, sid∗, cid∗, Pi, Pj , b) on be-
half of Pi to the functionality, where the bit b is determined as follows. If
c∗0 was previously used in a (simulated) commitment (y, c∗0, c1) or (y, c0, c

∗
0)

of Pi when Pi was still uncorrupted, then the bit b is set to the bit that
this previous commitment was opened to (either by an instruction of Z or
upon corruption of Pi); otherwise, if f0(x∗) = y∗ then b = 0, else b = 1.

5. If A tells a corrupted party Pi to open a commitment
(Com, sid∗, cid∗, (y∗, c∗0, c

∗
1)) correctly with bit b∗, then S compares b∗

to the previously extracted bit for these IDs and aborts if the bits are
different; in case of equality S sends (Open, sid, cid, Pi, Pj) in the name of
the party to Fmcom. If A lets Pi give an incorrect opening, then S can
ignore this message because the functionality does not open it.

6. Assume that A demands to corrupt a party in the black-box simulation.
Then S gets all internal information from this party by corrupting it in the
ideal model. S modifies all decommitment information about unopened
commitments of this party to match the received data and hands this
modified internal information to A.

The proof that the Z’s output in the real-life is indistinguishable from its out-
put in the ideal process is in the line of the proof for Theorem 6.7. We investigate
again three hybrid variables:

Real/Genuine: The output of Z of an interaction in the real-life model with
adversary A and parties running the protocol.

Real/Fake: The output of Z from the following hybrid interaction in the real-
life model with adversary A. The interaction is identical to Real/Genuine,
except that honest parties use the following way to commit to a bit b:
instead of sending correct values (y, c0, c1) the honest player now sends
y = f0(x0) for random x0, cb←Enc(x0, Pi) and c1−b←Enc(x1, Pi) where
x1 = f−1

1 (y). (The randomness used for generating c1−b is erased.) The
opening for this commitment consists of b, xb and the randomness used to
encrypt cb.

Ideal/Fake: The output of Z in an execution in the ideal process with S and
Fmcom.

Suppose that the extreme hybrids Real/Genuine and Ideal/Fake are distinguish-
able. This means either that the hybrids Real/Genuine and Real/Fake iare distin-
guishable or that the hybrids Real/Fake and Ideal/Fake are distinguishable. We
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will show that this leads to a contradiction to the claw-freeness or to the chosen
ciphertext security of the encryption scheme.
Real/Genuine and Real/Fake are Indistinguishable. Assume that the variables
Real/Genuine and Real/Fake are distinguishable. The only difference between the
two executions is that honest parties in Real/Fake send encryptions of claws instead
of encryptions of 0n. But since the encryption scheme is secure this difference
should be negligible. We prove this rigorously.

We remark that our analysis uses an alternative (but equivalent) formaliza-
tion of IND-CCA2 security. This formalization has been introduced by Bellare
et al. [BDJR97] in the private-key setting under the name left-or-right security
against chosen ciphertext attacks, and has been shown to be equivalent to IND-
CCA2 in the public-key model in [BBM00]. Basically, security is defined as follows:
the adversary gets a public key pkE and is allowed to query adaptively a so-called
left-or-right encryption oracle for pairs of messages (m0,m1). This left-or-right
oracle answers with an encryption of mCB under EncpkE (·), where the secret chal-
lenge bit CB is randomly chosen at the beginning but is fixed throughout the whole
attack. The adversary is also given access to the decryption oracle DecskE (·); as
usual, the adversary is not allowed to query the decryption oracle for ciphertexts
obtained from the left-or-right encryption oracle. Finally, the adversary is sup-
posed to output a guess for CB. For such an LR-CCA2 scheme the prediction
probability of any polynomially-bounded adversary should not exceed 1/2 by a
non-negligible amount.

Given environment Z that distinguishes between Real/Genuine and Real/Fake,
we construct a successful distinguisher for the LR-CCA2 property of the encryp-
tion scheme E ; in fact, this distinguisher never queries the decryption oracle, so
left-or-right security against chosen plaintext attacks (CPA) [BBM00] suffices in
this step.

Distinguisher DCPA gets 1n and a random public key pkE obtained by running
KGenE(1n) as input. Let CB be the random bit that determines if the left-or-right
encryption oracle returns ciphertexts of the left (CB = 0) or the right (CB = 1)
messages. DCPA tries to predict CB by simulating a real-life execution:

1. DCPA picks (pk claw, td claw)←KGenclaw(1n)

2. DCPA imitates a real-life execution of A with Z on pk claw, pkE . In partic-
ular, DCPA plays all honest parties and reads all the messages sent from
Z to the other parties.

3. if an honest party Pi is told to commit to a bit b then DCPA —who knows
b— selects xb ∈ {0, 1}n at random, and computes y = fb(xb), x1−b =
f−1

1−b(y) as well as cb←Enc(xb, Pi). Then, DCPA gives the pair (0n, Pi),
(x1−b, Pi) (in this order) to the left-or-right encryption oracle. Denote the
answer by c1−b. Send (y, c0, c1) on behalf of the honest party.
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4. if the honest party is asked to decommit (or, similarly, is corrupted before
decommitting) then DCPA presents b, xb and the randomness for producing
cb.

5. at the end, copy Z’s output

If the left-or-right oracle always encrypts the left message (0n, Pi) then DCPA

simulates a real-life execution with correctly behaving honest parties. We conclude
that the probability that DCPA outputs 1 in this case equals the probability that
Z returns 1 in experiment Real/Genuine. Also, if the oracle has encrypted all
the right messages (x1−b, Pi) then DCPA simulates the experiment Real/Fake and
outputs 1 exactly if Z gives output 1 in this experiment. Hence,

ProbDCPA outputs CB

= ProbCB = 1∧Z outputs 1 + ProbCB = 0∧Z outputs 0

= 1
2 · ProbZ outputs 1 in experiment Real/Fake

+1
2 · ProbZ outputs 0 in experiment Real/Genuine

= 1
2 · ProbZ outputs 1 in experiment Real/Fake

+1
2 · (1− ProbZ outputs 1 in experiment Real/Genuine)

= 1
2 + 1

2 · (ProbZ outputs 1 in experiment Real/Fake

− ProbZ outputs 1 in experiment Real/Genuine)

DCPA’s prediction probability is therefore bounded away from 1/2 by a non-
negligible function, contradicting the left-or-right property of the encryption
scheme E .
Real/Fake and Ideal/Fake are Indistinguishable. The only point in which the
two experiments could diverge is if during the simulation S hands Fmcom a value
b in the name of some corrupted party, and later this corrupted party manages to
successfully decommit to b∗ 6= b. More precisely, define the following bad event B:
Event B occurs if during the run of S the following happens: (a) The simulated A
generates a commitment (Com, sid , cid , (y, c0, c1)) in the name of some corrupted
party Pi, (b) S hands Fmcom a value (Commit, sid , cid , b), and (c) The simulated
A later generates a valid opening of (Com, sid , cid , (y, c0, c1)) to a value b∗ 6= b.
Then, as long as event B does not occur the view of Z in experiment Real/Fake
is identical to its view in Ideal/Fake. So it remains to demonstrate that event B
occurs with negligible probability.

We would like to demonstrate that last statement via reduction to the secu-
rity of the claw-free pair (f0, f1). However, a direct reduction does not seem to
work. We thus first show that if event B occurs in Ideal/Fake with non-negligible
probability, then this should also be true if we replace the simulated commitments
of honest parties in A’s simulation with commitments where we correctly put a
dummy ciphertext into the tuple instead of an encryption of (x1−b, Pi). Call this
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new experiment Ideal/Genuine. That is, experiment Ideal/Genuine is identical to
experiment Ideal/Fake with the exception that in Ideal/Genuine the simulator S
‘magically knows’ the real values committed to by the uncorrupted parties, and
generates genuine commitments for these values. We show that if the probabil-
ity of event B in the two experiments differs by non-negligible amount then it is
possible to break the CCA security of the encryption scheme E .

Claim 3: The probability of event B in experiment Ideal/Fake differs from the
probability of event B in experiment Ideal/Genuine by at most a negligible amount.

Proof. We first observe that in order for event B to happen, the simulated ad-
versary A must generate a message (Com, sid , cid , (y, c0, c1)) such that c0 decrypts
to (x0, Pi), c1 decrypts to (x1, Pi), f0(x0) = f1(x1) = y, and cid was never used
before for a commitment of Pi to Pj . If this event occurs then we say that A has
found a claw.

Assume towards contradiction that there exist an environment Z and adver-
sary A such that the probabilities that A finds a claw in the two interactions
differ by a non-negligible amount. From this we devise a distinguisher DCCA for
E that works similarly to the distinguisher DCPA above, but runs an adaptive
chosen ciphertext attack against the left-or-right security. DCCA gets 1n and a
random public key pkE obtained by running KGenE(1n) as input, together with
oracle access to a left-or-right encryption oracle initialized with random bit CB,
and to the decryption oracle Dec(·).

1. DCCA generates (pk claw, td claw)←KGenclaw(1n)

2. DCCA follows the pattern of a ideal-model execution of S with Z on keys
pk claw, pkE ; DCCA also executes a black-box simulation of A. In contrast
to S, who cannot read Z’s messages to honest parties, DCCA gets to know
all messages.

3. Whenever an uncorrupted party Pi commits to a value b, DCCA does the
following: first select a random xb ∈ {0, 1}n and compute y = fb(xb),
x1−b = f−1

1−b(y) and cb←Enc(xb, Pi). Next the distinguisher queries the
left-or-right encryption oracle about (x1−b, Pi) and (0n, Pi) in this order
and stores the answer in c1−b. Finally, DCCA sends (y, c0, c1) in the name
of the honest party.

4. If an uncorrupted party Pi is asked to decommit (or corrupted before
opening) then DCCA presents the corresponding values of b, xb and the
randomness for cb.

5. If the simulated A lets some corrupted party Pi commit to an honest party
Pj by sending (Com, sid∗, cid∗, (y∗, c∗0, c

∗
1)), then DCCA proceeds as follows:
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(a) If c∗0 has not been returned from the left-or-right encryption oracle of
DCCA before, then DCCA asks its decryption oracle to decrypt c∗0 and
proceeds like the ideal-model adversary S.

(b) Otherwise, if c∗0 has been returned from the left-or-right encryption
oracle, then DCCA has sent this value in a commitment (y, c∗0, c1)
or (y, c0, c

∗
0) in the name of some honest party. If this has been a

different party than Pi then ignore the adversary’s message. Else (c∗0
appeared in a commitment of Pi before Pi was corrupted), recall the
corresponding bit from the previous commitment and proceed like the
ideal-model adversary S.

6. If A tells a corrupted party to open a commitment
(Com, sid∗, cid∗, (y∗, c∗0, c

∗
1)) correctly with bit b∗, then DCCA com-

pares b∗ to the previously extracted bit for sid∗, cid∗ and halts with
output 1 if they are distinct; Otherwise DCCA proceeds as the ideal-model
adversary.

7. If A halts without finding a claw then output 0 and halt.

The analysis of DCCA is almost identical to the case of distinguisher DCPA

above and is omitted. This completes the proof of Claim 3. �

It remains to prove that A finds claws in experiment Ideal/Genuine with negligible
probability only. But this follows from the claw-freeness of the trapdoor permuta-
tion pair. To be more precise, given an environment Z and adversary A that find
claws in Ideal/Genuine, we construct an algorithm that finds claws in the claw-free
pair: Given 1n and a random pk claw, generate (pkE , skE); simulate the experiment
Ideal/Genuine by reading Z’s commitment instructions to honest parties and giv-
ing a correct commitment, involving a dummy encryption. For A committing in
the black-box simulation extract the bit using the secret key skE . If at some step
A generates a claw by outputting a preimage xb∗ under fb∗ for some y∗ for which
we have extracted a preimage x1−b∗ under f1−b∗ before, then we output this pair
and stop. If this event would occur with non-negligible probability it would render
the claw-freeness wrong. �

Relaxing the Need for Claw-free Pairs. The above scheme was presented
and proven using any claw-free pair of trapdoor permutations. However, it is easy
to see that the claw-free pair can be substituted by chameleon (aka. trapdoor)
commitments a la [BCC88]. That is, any non-interactive perfectly-secret trapdoor
commitment works. Such commitments exist for instance under the hardness
of the discrete logarithm or factoring problem. Further relaxing the underlying
hardness assumptions is an interesting open problem..
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4.3. Reusable Common Reference String: Non-Erasing Parties

A careful look at the proof of Theorem 6.8 shows that, instead of letting the
sender generate a ciphertext and erase the randomness, it is sufficient to enable
the parties to obliviously generate a “ciphertext-like” string without knowing the
plaintext, but such that a simulator can produce a correct ciphertext and a fake
random string suggesting that the ciphertext has been obtained by the oblivious
sampling procedure. Then the honest parties can use the sampling mechanism to
produce the dummy ciphertext, while the simulator is still able to place the fake
encryption into the commitment and to find fake randomness making it look like
a dummy ciphertext. We show how this can be done under certain conditions,
and show that these conditions can be met if the encryption scheme in use is that
of [CS98].
Preliminaries: Obliviously Samplable Encryption Scheme. We formalize
the requirement for the oblivious sampling procedure of the encryption scheme in
the following definition:

Definition 6.9. A public-key encryption scheme E = (KGen,Enc,Dec) is obliv-
iously samplable with respect to chosen-plaintext attacks if there are probabilistic
polynomial-time algorithms sample, fake such that for any probabilistic polynomial-
time algorithm A the probability that ExperimentA(1n) = 1 is negligibly close to
1/2, where
ExperimentA(1n):

• a secret random bit CB ∈ {0, 1} is chosen

• generate a key pair (pk , sk)←KGen(1n)

• invoke A on pk to obtain a message m

• generate the challenge:
– if CB = 0 then sample a pseudo-ciphertext csample←sample(pk , 0|m|)

(with randomness rsample) and return (csample, rsample) to A. (Note:
this case corresponds to the adversary’s view when the committer is
honest.)

– if CB = 1 then encrypt m to c←Enc(pk ,m), calculate
rfake←fake(pk , c) and hand (c, rfake) to A (Note: this case corresponds
to the adversary’s view when the committer is played by the simula-
tor.)

• output 1 if and only if A’s output equals CB

If the probability for ExperimentA(1n) = 1 remains negligibly close to 1/2 even if A
is additionally allowed to query the decryption oracle Dec(sk , ·) during the attack
for any values different than the challenge, then the scheme is called obliviously
samplable with respect to chosen-ciphertext attacks.
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In particular, it should hold that sample maps to c under randomness rfake

for fake’s output (c, rfake) with overwhelming probability, i.e., the fake output
should look like an oblivious sample. Note that the sample algorithm gets the
length of m as additional input, since the length of a message can be deduced
from the ciphertext. Also note that an obliviously samplable encryption scheme
is semantically secure against the corresponding type of attack.
Example of Obliviously Samplable Encryption Scheme. In the Cramer-
Shoup encryption scheme [CS98] the public key consists of a group G of prime
order q, two generators g1, g2 of G and three group elements c, d, h as well as a
universal one-way hash function H. To encrypt a message m ∈ G compute

u1 = gr1, u2 = gr2, e = hrm, α = H(u1, u2, e), v = crdr

and output the ciphertext (u1, u2, e, v).
Let us assume that p = qw + 1 for some w not divisible by q, and that G is

a subgroup of order q in Z∗p (and that w is public). Then in order to obliviously
sample a random group element in G we first generate a random element in Z∗p by
picking a random bit string of length 2|p| and interpreting it as a number between
1 and p−1 by reduction modulo p of the bit string viewed as an integer. Then we
raise this element to the w-th power and return it. We remark that this element is
statistically close to a uniformly chosen one from G. We call this sampling process
the oblivious element generation for G.

The oblivious element generation for G is invertible in the sense that, given
a random group element h ∈ G we can efficiently generate a random element
hp in Z∗p (and a corresponding bit string of length 2|p|) mapping to h if raised
to the w-th power. Namely, let g be a generator of Z∗p. Solve the equation
xw = 1 mod q for x, pick a random integer i between 0 and w − 1 and define the
element hp := hxgiq mod p. Since the giq’s are w-th roots of unity, it is readily
verified that indeed hwp = h mod p and that hp is uniformly distributed among the
preimages of h under exponentiation with w. Adding for random j between 0 and
p− 1 the value jp to hp over the integers gives a 2|p|-bit string whose distribution
is statistically close to the uniform distribution on bit strings mapping to h with
the oblivious element generation.

We describe our algorithms sample and fake. Algorithm sample on input
pk , 0|m| simply generates four random group elements u1, u2, e, v with independent
executions of the element generation procedure for G and returns them, together
with all the randomness for these executions. Algorithm fake, on the other side,
given pk and a correct ciphertext c = (u1, u2, e, v), runs the inverse process to
the element generation for G as described above for each element and returns the
derived bit strings.

The fact that the outputs of sample and fake are indistinguishable under the
Decisional Diffie-Hellman assumption follows from the proof in [CS98]. This is
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true even if the adversary has access to the decryption oracle. Altogether, the
Cramer-Shoup scheme is obliviously samplable with respect to chosen-ciphertext
attacks.
Description and Security of Commitment Scheme. Besides being obliv-
iously samplable with respect to adaptive chosen-ciphertext attacks, we again
presume that the encryption scheme E is uniquely decipherable. Modify the
scheme UCCReUse insofar as the sender does not compute the dummy cipher-
text c1−b←Enc(0n, Pi) and then erases the randomness, but rather samples
c1−b←sample(pkE , 0`) (where ` denotes the length of (0n, Pi)) with randomness
rsample obliviously. In the decommitment step or if corrupted, the sender reveals
rsample for this part of the commitment. Call this scheme UCCReUse/NotErase.

Theorem 6.10. Protocol UCCReUse/NotErase securely realizes functionality Fmcom

in the crs model.

Proof. The proof of the theorem is almost identical to the one in the case of
erasing parties. Only this time the ideal-model simulator works slightly different
when an uncorrupted party commits or is corrupted or decommits. Namely, for
a commitment the simulator in Theorem 6.8 sends encryptions of (x0, Pi) and
(x1, Pi) in the name of this party; after having learned the actual bit b in case of
corruption or decommitment, the simulator there then claims to have erased the
randomness for the wrong value x1−b. In our case, the simulator also encrypts
both values in the commitment phase, but in the reveal step it invokes algorithm
fake on public key pkE and the ciphertext for the wrong value x1−b to produce a
fake random string. Besides the true randomness used to produce the encryption
of xb, the simulator hands the fake randomness to the adversary in order to prove
that the ciphertext for x1−b has been sampled obliviously.

In the proof of Theorem 6.8, the indistinguishability of the simulator’s way
to commit and decommit on behalf of honest parties and the behavior of the
actual sender relies on the indistinguishability of fake and dummy encryptions.
Specifically, we have reduced indistinguishability of simulations twice to the left-
or-right security of the encryption system, one time in a chosen-plaintext attack
and the other time in a chosen-ciphertext attack. In these reductions the left-or-
right oracle encrypts either all left messages (0n, Pi) or all right messages (x1−b, Pi).
Which messages are encrypted, the left or right ones, corresponds to the behavior
of honest parties or the simulator.

Except for the reductions to left-or-right security the proof of Theorem 6.8
remains unchanged. In particular, the behavior of S in case that the committer is
corrupted remains unchanged. The simulation remains valid since the encryption
scheme remains uniquely decipherable.

To adapt the proof to the simulation here it is sufficient to extend the notion
of left-or-right security to obliviously samplable encryption schemes. Namely, the
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so-called sample-or-encrypt oracle is initialized with a challenge bit CB and the
adversary is given the public key pk and is allowed to hand messages m to the
oracle and either receives a sample (csample, rsample) if CB = 0 or a ciphertext c of
m with fake randomness rfake if CB = 1. The adversary is supposed to predict CB

with non-negligible advantage. If for any efficient adversary mounting a chosen-
plaintext attack the advantage predicting CB is negligible, then the scheme is
called sample-or-encrypt secure against chosen-plaintext attacks. If the adversary
is also allowed to submit queries to the decryption oracle —all different from the
answers of the sample-or-encrypt oracle— then the scheme is said to be sample-
or-encrypt secure against chosen-ciphertext attacks.

In analogy to the proof in [BBM00] it follows that the encryption scheme is
sample-or-encrypt secure against chosen-plaintext attacks if the encryption system
if obliviously samplable with respect to chosen-plaintext attacks. Additionally, if
the encryption scheme is obliviously samplable with respect to chosen-ciphertext
attacks, then the system is sample-or-encrypt secure against such attacks.

Here, instead of passing (0n, Pi) and (x1−b, Pi) to the left-or-right oracle, we
forward the message (x1−b, Pi) to the sample-or-encrypt oracle to obtain either an
oblivious sample csample and the randomness rsample, or a ciphertext of the message
(x1−b, Pi) together with a fake random string. Denote the answer by (c1−b, r1−b)
and let the simulator transmit c1−b as part of the commitment. Later, in the
decommitment phase or upon corruption, the simulator reveals r1−b on behalf of
the sender. As the choice of the sample-or-encrypt oracle determines whether we
simulate honest parties (if the oracle returns oblivious samples) or the simulator
(if the oracle produces correct ciphertexts and fake randomness), it is easy to see
that the proof of Theorem 6.8 carries over to this case. �

5. Application to Zero-Knowledge

In order to exemplify the power of UC commitments we show how they can be used
to construct simple Zero-Knowledge (ZK) protocols with strong security proper-
ties. Specifically, we formulate an ideal functionality, Fzk, that implies the notion
of Zero-Knowledge in a very strong sense. (In fact, Fzk implies concurrent and
non-malleable Zero-Knowledge proofs of knowledge.) We then show that in the
Fcom-hybrid model (i.e., in a model with ideal access to Fcom) there is a 3-round
protocol that securely realizes Fzk with respect to any NP relation. Using the
composition theorem of [C01], we can replace Fcom with any uc commitment pro-
tocol. (This of course requires using the crs model, unless we involve third parties
in the interaction. Also, using functionality Fmcom instead of Fcom is possible and
results in a more efficient use of the common string.)

Functionality Fzk, described in Figure 6, is parameterized by a binary relation
R(x,w).. It first waits to receive a message (verifier, id, Pi, Pj , x) from some
party Pi, interpreted as saying that Pi wants Pj to prove to Pi that it knows a value
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w such that R(x,w) holds. Next, Fzk waits for Pj to explicitly provide a value
w, and notifies Pi whether R(x,w) holds. (Notice that the adversary is notified
whenever either the prover or the verifier starts an interaction. It is also notified
whether the verifier accepts. This represents the fact that ZK is not traditionally
meant to hide this information.)

Figure 6. The Zero-Knowledge functionality, Fzk

Functionality Fzk

Fzk proceeds as follows, running with parties P1, ..., Pn and an adversary S.
The functionality is parameterized by a binary relation R.

1. Wait to receive a value (verifier, id, Pi, Pj , x) from some party Pi.
Once such a value is received, send (verifier, id, Pi, Pj , x) to S, and
ignore all subsequent (verifier...) values.

2. Upon receipt of a value (prover, id, Pj , Pi, x′, w) from Pj , let v = 1
if x = x′ and R(x,w) holds, and v = 0 otherwise. Send (id, v) to Pi
and S, and halt.

We demonstrate a protocol for securely realizing FR
zk

with respect to any NP
relation R. The protocol is a known one: It consists of n parallel repetitions of the
3-round protocol of Blum for graph Hamiltonicity, where the provers commitments
are replaced by invocations of Fcom. The protocol (in the Fcom-hybrid model) is
presented in Figure 7.

It will be seen that the Fcom-hybrid model the protocol securely realizes Fzk

without any computational assumptions, and even if the adversary and the envi-
ronment are computationally unbounded. (Of course, in order to securely realize
Fcom the adversary and environment must be computationally bounded.) Also,
in the Fcom-hybrid model there is no need in a common reference string. That is,
the crs model is needed only for realizing Fcom.

Let FH
zk

denote functionality Fzk parameterized by the Hamiltonicity relation
H. (I.e., H(G, h) = 1 iff h is a Hamiltonian cycle in graph G.)

Theorem 6.11. Protocol hc securely realizes FH
zk

in the Fcom-hybrid model.

Proof (Sketch). Let A be an adversary that operates against protocol hc in the
Fcom-hybrid model. We construct an ideal-process adversary (i.e., a simulator) S
such that no environment Z can tell whether it is interacting with A and hc in
the Fcom-hybrid model or with S in the ideal process for FH

zk
.

Simulator S runs a simulated copy of A. Messages received from Z are for-
warded to the simulated A, and messages sent by the simulated A to its environ-
ment are forwarded to Z. In addition:
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Figure 7. The protocol for proving Hamiltonicity in the Fcom-
hybrid model

Protocol Hamilton-Cycle (hc)
1. Given input (Prover, id, P, V,G, h), where G is a graph over nodes

1, ..., n, the prover P proceeds as follows. If h is not a Hamiltonian cy-
cle in G, then P sends a message reject to V . Otherwise, P proceeds
as follows for k = 1, ..., n:
(a) Choose a random permutation πk over [n].
(b) Using Fcom, commit to the edges of the permuted graph. That

is, for each (i, j) ∈ [n]2 send (Commit,(i, j, k), P, V, e) to Fcom,
where e = 1 if there is an edge between πk(i) and πk(j) in G, and
e = 0 otherwise. (Here the value (i, j, k) serves as the session ID
for the commitment.)

(c) Using Fcom, commit to the permutation πk. That is, for l =
1, ..., L send (Commit,(l, k), P, V, pl) to Fcom where p1, ..., pL is a
representation of πk in some agreed format.

2. Given input (Verifier, id, V, P,G), the verifier V waits to re-
ceive either reject from P , or (Receipt,(i, j, k), P, V ) and
(Receipt,(l, k), P, V ) from Fcom, for i, j, k = 1, ..., n and l = 1, ..., L.
If reject is received, then V output 0 and halts. Otherwise, once all
the (Receipt,...) messages are received V randomly chooses n bits
c1, ..., cn and sends to P .

3. Upon receiving c1, ..., cn from V , P proceeds as follows for k = 1, ..., n:
(a) If ck = 0 then send (Open,(i, j, k), P, V ) and (Open,(l, k), P, V )

to Fcom for all i, j = 1, ..., n and l = 1, ..., L.
(b) If ck = 1 then send (Open,(i, j, k), P, V ) to Fcom for all i, j =

1, ..., n such that the edge πk(i), πk(j) is in the cycle h.
4. Upon receiving the appropriate (Open,...) messages from Fcom, the

verifier V verifies that for all k such that ck = 0 the opened edges
agree with the input graph G and the opened permutation πk, and for
all k such that ck = 1 the opened edges are all 1 and form a cycle. If
verification succeeds then output 1, otherwise output 0.

1. If A, controlling a corrupted party P , starts an interaction as a prover
with an uncorrupted party V , then S records the values that A sends
to Fcom, plays the role of V (i.e., S provides A with a random set of
bits c1, ..., cn), and records A’s responses. Now S simulates V ’s decision
algorithm and if V accepts then S finds a Hamiltonian cycle h in G and
hands g to FH

zk
. Else S hands an invalid cycle h′ in G (say, the all-zero

cycle) to FH
zk

. It remains to describe how S finds a Hamiltonian cycle h in
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G. This is done as follows: S looks for a k such that ck = 1 and the cycle
h decommitted to by A, combined with the committed permutation πk,
point to a Hamiltonian cycle in G. If such a k is not found then S aborts;
but, as claimed below, this will occur only with probability 2−n/2.

2. If an uncorrupted party P starts an interaction with a corrupted party V
then S learns from FH

zk
whether V should accept or reject, and simulates

the view of A accordingly. Notice that S has no problem carrying out the
simulation since it simulates for A an interaction with Fcom where Fcom

is played by S himself. Thus, S is not bound by the “commitments” and
can “open” them in whichever way it pleases.

3. If two uncorrupted parties P and V interact then S simulates for A the
appropriate protocol messages. This case is very similar to the case of
corrupted verifier, since this is an Arthur-Merlin protocol.

4. Party corruptions are dealt with in a straightforward way. Corrupting the
verifier provides the adversary with no extra information (again, since the
protocol is Arthur-Merlin). When the prover is corrupted S corrupts the
prover in the ideal process, obtains w, and generates an internal state of
the prover that matches the protocol stage and whether R(x,w) holds.
Generating such a state is not problematic since S is not bound by any
“commitments”, and it can freely choose π1, ...πk to match the (simulated)
conversation up to the point of corruption.

Given that S does not abort in Step 1, the validity of the simulation is straight-
forward. We show that S aborts with probability at most 2−n/2. Say that index
k ∈ [n] is valid if applying the kth committed permutation to the input graph G
results in the kth committed graph. If less than n/2 of the indices are valid then
V accepts with probability at most 2−n/2. However, if at least n/2 of the indices
are valid then with probability at least 1 − 2−n/2 V has ck = 1 for at least one
valid index k. In this case, S will not fail since V accepts only if the decommitted
cycle h, together with the permutation πk, points to a Hamiltonian cycle in G. �

Remark. Notice that Theorem 6.11 holds even if the environment and the real-
life adversary are allowed to be computationally unbounded. In this case, the
complexity of S is polynomial in the complexity of A (and is independent of the
complexity of Z). This means that the only place where cryptographic assump-
tions are needed is in realizing Fcom.
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[CD97] R. Cramer, I. Damgȧrd: Linear Zero-Knowledge: A Note on Efficient Zero-
Knowledge Proofs and Arguments, Proceedings of the 29th Annual ACM Symposium
on the Theory of Computing (STOC), pp. 436–445, ACM Press, 1997.
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[D00] I. Damgȧrd: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model,
Advances in Cryptology — Proceedings of Eurocrypt 2000, Lecture Notes in Com-
puter Science, Vol. 1807, pp. 418–430, Springer-Verlag, 2000.
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Kapitel A

Zusammenfassung

Die klassische Fragestellung der Kryptographie behandelt Praktikabilität und
Sicherheit von Verschlüsselungsverfahren. Allerdings rücken mit der zunehmenden
Digitalisierung auch andere Gebiete wie digitale Unterschriften, Identifikation,
elektronisches Geld, elektronische Wahlen etc. in den Vorderung. Ein möglicher
Baustein zum Entwurf sicherer Lösungen stellen Hinterlegungsverfahren dar.

1. Hinterlegungsverfahren

Hinterlegungsverfahren lassen sich durch abschließbare Kästen veranschaulichen.
In der Hinterlegungsphase des Protokols legt der Sender eine Nachricht in den
Kasten, schließt ihn ab und übergibt ihn dem Empfänger. Einerseits erhält
der Empfänger zwar keine Informationen über die Nachricht, aber andererseits
kann der Sender die so hinterlegte Nachricht nicht mehr verändern. Die erste
Eigenschaft nennt man Geheimhaltung, die zweite Eindeutigkeit. In der Aufdeck-
phase schickt der Sender dem Empfänger den Schlüssel des Kastens, so dass der
Empfänger die Nachricht entnehmen kann.

Digital implementieren kann man ein Hinterlegungsverfahren beispielsweise
unter der Diskreten-Logarithmus-Annahme (DL-Annahme). Sei p prim und g ein
Generator ein Untergruppe Gq von Z∗p mit primer Ordnung q. Dann besagt die
DL-Annahme, dass man zu gegebenem h = gx für zufälliges x ∈ Z∗q den diskreten
Logarithmus x = logg h von h zu g nicht effizient berechnen kann. Das Hin-
terlegungsverfahren sieht damit wie folgt aus: Gegeben g, h und die Nachricht
m ∈ Zq wählt der Sender ein zufälliges r ∈ Zq, berechnet M = gmhr und schickt
diesen “Kasten” M als Hinterlegung an den Empfänger. Später in der Aufdeck-
phase öffnet der Sender den Kasten, indem er dem Empfänger m, r übergibt. Der
Empfänger überprüft dann, dass m, r ∈ Zq und dass diese Werte tatsächlich auf
die Hinterlegung M abgebildet werden.
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Das Gruppenelement M is unabhängig von der Nachricht m uniform in Gq
verteilt und hält damit m geheim. Während die Nachricht somit informations-
theoretisch geschützt ist, wird die Eindeutigkeit durch die DL-Annahme impliziert.
Denn um ein M = gmhr später mit einer anderen Nachricht m′ 6= m und r′

aufdecken zu können, muß der Sender die DL-Annahme widerlegen. Für solche
Werte m, r und m′, r′ gilt nämlich

gmhr = M = gm
′
hr
′

bzw. gm−m
′

= hr
′−r.

Damit ist logg h = (m − m′)(r′ − r)−1 mod q, wobei (r′ − r)−1 das Inverse zu
r′ − r 6= 0 in Zq ist (da m 6= m′ gilt auch r 6= r′).

Hinterlegungsverfahren kann man beispielsweise bei Auktionen mit geheimen
Geboten verwenden. Jeder Teilnehmer hinterlegt zunächst sein Gebot beim Auk-
tionator. Nachdem alle Gebote eingegangen sind, öffnen alle Teilnehmer ihre
Hinterlegungen und der Auktionator verkündet den Gewinner. Die beiden grund-
legenden Eigenschaften von Hinterlegungen spiegeln sich hier wider: Geheimhal-
tung garantiert, dass kein Teilnehmer die Gebote der anderen Teilnehmer in der
ersten Phase erfährt, und Eindeutigkeit erlaubt es keinem Teilnehmer, sein Gebot
in der Aufdeckphase nachträglich zu ändern.

Allerdings benötigt man im Auktionsfall eine weitere, zusätzliche Eigenschaft
neben Geheimhaltung und Eindeutigkeit: die Robustheit. Diese Eigenschaft besagt
unter anderem, dass man aus einer gegebenen Hinterlegung keine Hinterlegung
einer verwandten Nachricht erzeugen kann. Im Fall der Auktion verhindert dies
beispielsweise, dass man aus der Hinterlegung eines Gebots die Hinterlegung eines
höheren Wertes machen kann. In diesem Fall würde der zweite Teilnehmer stets
den ersten Teilnehmer überbieten.

Das oben vorgestellte Hinterlegungsprotokol basierend auf dem diskreten Log-
arithmus ist nicht robust. Gegeben die Hinterlegung M = gmhr eines Teilnehmers
kann ein Angreifer die Hinterlegung M∗ = gM = gm+1hr erzeugen, ohne m zu
kennen. Öffnet nun der erste Teilnehmer der Auktion seine Hinterlegung M mit
m, r, so kann der Angreifer seine Hinterlegung M∗ mit m∗ = m+1 und r aufdecken
und überbietet damit das Gebot m.

2. Hinterlegungsverfahren mit Geheimtür

In der vorliegenden Arbeit befassen wir uns mit Hinterlegungsverfahren mit Ge-
heimtüren. Informell sind dies Kästen, bei denen jeweils eine kleine geheime Tür
eingebaut wurde. Wer diese Tür kennt, kann dadurch später die Nachricht ändern
und die Eindeutigkeitseigenschaft aushebeln. Zunächt scheint dies zu implizieren,
dass die Eindeutigkeit damit ad absurdum geführt wird. Jedoch ist diese kleine
Tür geheim, und nur wer dieses Geheimnis kennt, kann sie benutzen. Ohne Ken-
ntnis dieser Tür bleibt die Eindeutigkeitseigenschaft erhalten.
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Als Beispiel betrachten wir erneut das Verfahren basierend auf dem diskreten
Logarithmus. Hier ist M = gmhr und um eine solche Hinterlegung zu ändern,
genügt die Kenntnis des diskreten Logarithmus x = logg h von h zu g. Denn dann
kann man M für jede Nachricht m′ mit r′ = r + (m−m′)x−1 mod q öffnen:

M = gmhr = gmhr
′−(m−m′)x−1

= gmhr
′
gm
′−m = gm

′
hr
′
.

Hinterlegungsverfahren mit Geheimtüren erweisen sich als sehr nützlich für
den Entwurf sicherer kryptographischer Protokolle. Wir erläutern dies am oben
angeführten Beispiel von robusten Hinterlegungsverfahren. Ein Hinterlegungsver-
fahren heißt robust, wenn es gleichgültig ist, ob der Angreifer zunächst die Hinter-
legung der ursprünglichen Nachricht sieht oder nicht: seine Erfolgsaussicht z.B. ein
höheres Gebot abzugeben, wird dadurch nicht beeinflußt. Dies bedeutet, dass
ein robustes Hinterlegungsverfahren Unabhängigkeit zwischen den Hinterlegungen
garantiert.

Wie können wir nun robuste Hinterlegungsverfahren mit Hilfe von
Geheimtüren konstruieren? Angenommen im Auktionsbeispiel gibt der Teil-
nehmer sein Gebot durch eine Hinterlegung mit Geheimtür ab, während die des
Angreifers keine solche Geheimtür besitzt. Im folgenden Gedankenexperiment
kennen wir die Geheimtür und präsentieren dem Angreifer zunächst eine Hinter-
legung des Gebots 0 im Namen des ehrlichen Senders. Der Angreifer gibt sein
Gebot ab, und wir ändern —unsichtbar für den Angreifer— durch die Geheimtür
anschließend die ursprüngliche Hinterlegung auf den korrekten Wert. Der An-
greifer kann sein Gebot nicht mehr abändern, da keine Geheimtür existiert und
die Hinterlegung eindeutig ist. Zusammenfassend erhält der Angreifer bei diesem
Experiment zum Zeitpunkt, zu dem er sein Gebot unwiderruflich festlegt, nur eine
Hinterlegung des Wertes 0 als einzige, redundante Information über das Gebot des
ersten Teilnehmers. Da für den Angreifer dieses Experiment und ein wirklicher
Protokollablauf nicht zu unterscheiden sind, ist die Erfolgswahrscheinlichkeit des
Angreifers in beiden Fällen gleich. Dies deutet an, dass das Verfahren robust ist.

Bei Auktionen verwenden allerdings alle Teilnehmer den selben Kastentyp, so
dass entweder die Kästen aller Teilnehmer eine Geheimtür besitzen, oder aber kein
Kasten. Dadurch ist das obige Argument nicht mehr ohne weiteres anwendbar.
Dies zeigt auch das Beispiel des diskreten Logarithmus: dieses Hinterlegungsver-
fahren besitzt zwar eine Geheimtür, ist aber trotdem nicht robust. Die Lösung
ist es, individuelle Kästen zu verwenden, so dass der erste Teilnehmer einen Kas-
ten mit Geheimtür erhält, während der Angreifer einen ohne verwenden muß. In
diesem Fall ist das Argument wieder gültig. Mit anderen Worten, wir suchen
Hinterlegungsverfahren mit einer Geheimtür, die nur in Verbindung mit einer bes-
timmten Identität benutzt werden kann, etwa mit der des ersten Teilnehmers.
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In der vorliegenden Arbeit führen wir solche Hinterlegungsverfahren mit iden-
titätsabhängiger Geheimtür ein, beschreiben Konstruktionen und betrachten An-
wendungen, z.B. für den Entwurf robuster Hinterlegungen.

Das Beispiel des diskreten Logarithmus läßt sich auf Hinterlegung mit iden-
titätsabhängiger Geheimtür fortsetzen. Statt zweier Generatoren g, h stehen dies-
mal drei Generatoren g1, g2, h zur Verfügung. Um eine Nachricht m ∈ Zq unter
seiner Identität id ∈ Zq zu hinterlegen, wählt der Sender wieder r ∈ Zq zufällig
und berechnet

M = (gid
1 g2)mhr.

Er sendet diesen Wert M and den Empfänger und deckt später erneut mit m, r
auf.

Sei x der Logarithmus von h zu gid0
1 g2 für eine feste Identität id0. Dann ist

die Geheimtür x an diese Identität id0 gebunden, denn aus M = (gid0
1 g2)mhr

kann man wie vorher eine Hinterlegung für M = (gid0
1 g2)m

′
hr
′

erzeugen. Für
andere Identitäten id 6= id0 gilt allerdings nachwievor die Eindeutigkeit, denn eine
korrekte Aufdeckung der Hinterlegung M durch m, r und m′ 6= m, r′ impliziert:

(gid
1 g2)mhr = (gid

1 h
xg−id0

1 )mhr = g
m(id−id0)
1 hr+xm

= M =(gid
1 g2)m

′
hr
′

= (gid
1 h

xg−id0
1 )m

′
hr
′

= g
m′(id−id0)
1 hr

′+xm′

und damit
g

(m−m′)(id−id0)
1 = h(r′−r)+x(m′−m).

Dies widerspricht selbst bei Kenntnis von x der DL-Annahme, da logg1
h wegen

m−m′, id− id0 6= 0 mod q daraus berechenbar ist.

3. Übersicht

In Kapitel 2 der Arbeit führen wir die kryptographischen Grundlagen wie die DL-
Annahme ein und definieren Hinterlegungsverfahren mit und ohne Geheimtür,
sowie mit identitätsabhängiger Geheimtür. Kapitel 3 behandelt dann die Kon-
struktion solcher Hinterlegungsverfahren mit (identitätsabhängiger) Geheimtür,
basierend auf kryptographisch schwierigen Problemen wie Brechen der RSA- oder
DL-Annahme.

3.1. Effiziente Robuste Hinterlegungsverfahren

In Kapitel 4 stellen wir effiziente robuste Hinterlegungsverfahren basierend auf
dem diskreten Logarithmus und der RSA-Annahme vor. Das DL-Protokoll ist in
Abbildung 1 dargestellt. Dabei führt der Sender eine nicht-robuste Hinterlegung
M = gm0 h

r
0 aus, und beweist zusätzlich mit einem interaktivem Beweis, dass er

die “versteckte” Nachricht m in M wirklich kennt (Werte A,S, a, b, c, s, t, u, y, z).
Versucht ein Angreifer nun beispielsweise eine solche Hinterlegung zu modifizieren,
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und mit m + 1 den anderen Teilnehmer zu überbieten, so kann er zwar M mod-
ifizieren, den interaktiven Beweis allerdings nicht. Dies liegt im wesentlichen an
der identitätsbasierten Geheimtür der Hinterlegung A := (g1M)ahu1 , bei der M die
Rolle der Identität übernimmt. Daher muß der Angreifer einen “unabhängigen”
interkativen Beweis führen, dass er m+ 1 und damit m kennt —dies widerspricht
allerdings der Geheimhaltung der Hinterlegung M .

Abbildung 1. Robustes Hinterlegungsverfahren

Sender Gq, g0, g1, h0, h1 Empfänger

Nachricht m ∈ Z∗q

a) Hinterlegungsphase:

wähle a, r, s, t, u ∈R Zq

setze M := gm0 h
r
0

setze A := (g1M)ahu1
setze S := gs0h

t
0

M,A, S−−−−−−−−−−−→ wähle b ∈R Zq

b←−−−−−−−−−−−
setze c := a+ b mod q
setze y := s+ cm mod q
setze z := t+ cr mod q a, u, y, z−−−−−−−−−−−→ berechne c := a+ b mod q

überprüfe A != (g1M)ahu1
überprüfe SM c != gy0h

z
0

b) Aufdeckphase:
m, r−−−−−−−−−−−→ überprüfe M != gm0 h

r
0

Ferner wird in Kapitel 4 die Definition von Robustheit untersucht. Soll der
Angreifer nicht in der Lage sein, eine Hinterlegung einer verwandten Nachricht
zu erzeugen, oder ist dies zulässig, aber dann soll der Angreifer seine Hinter-
legung nicht korrekt aufdecken können? Beide Möglichkeiten wurden implizit in
der Literatur verwendet, und wir arbeiten die Unterschiede heraus und zeigen
unter kryptographischen Annahmen, dass der zweite Begriff nur ein schwächeres
Sicherheitsniveau garantiert.

Die Ergebnisse dieses Kapitels stammen aus einer gemeinsamen Arbeit mit
Roger Fischlin, erschienen auf der Konferenz Crypto 2000 [FF00].
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3.2. Zurücksetzbare Identifikation

In Kapitel 5 betrachten wir Identifikationsprotokolle. Durch ein Identifi-
kationsprotokoll beweist ein Proponent P dem Opponenten V seine Identität,
indem er zeigt, dass er den geheimen Schlüssel zu einem öffentlichen Schlüssel
kennt. Als Beispiel ist das Okamoto-Schnorr-Identifikationsprotokoll in Abbil-
dung 2 angegeben.

Abbildung 2. Okamoto-Schnorr-Identifikation

Proponent P öffentlicher Schlüssel: Gq, g0, g1, X Opponent V

geheimer Schlüssel:
x1, x2 ∈ Zq mit X = gx1

1 gx2
2

wähle r1, r2 ∈R Zq

setze R := gr11 g
r2
2

R−−−−−−−−−−−→ wähle c ∈R Zq
c←−−−−−−−−−−−

setze y1 := r1 + cx1 mod q

setze y2 := r2 + cx2 mod q y1, y2−−−−−−−−−−−→ überprüfe RXc != gy1
1 g

y2
2

Ein passiver Angreifer versucht, sich als der Proponent P auszugeben, und sich
ohne Kenntnis des geheimen Schlüssels gegenüber V zu identifizieren. Ein aktiver
Angreifer führt zunächst eine Experimentierphase aus, bei der er einige Protokoll-
abläufe mit dem ehrlichen Proponenten P in der Rolle des Opponenten ausführt.
Dadurch kann der aktive Angreifer versuchen, Informationen über den geheimen
Schlüssel zu erhalten, um so die Identifikation mit dem ehrlichen Opponenten V
leichter zu bestehen.

Eine stärkere Sicherheitsanforderung erlaubt es dem aktiven Angreifer nun
sogar, Ausführungen mit dem Proponenten zurückzusetzen. So kann der Angreifer
in der Experimentierphase beim Angriff auf das Okamoto-Schnorr-Verfahren etwa
eine Ausführung mit Daten (R, c, y1, y2) zurücksetzen und diese Ausführung mit
dem gleichen Initialwert R aber anderem c′ (und damit anderer Antwort y′1, y

′
2)

beenden. Das Okamoto-Schnorr-Protokoll ist zwar sicher gegen aktive Angriffe,
aber beweisbar unsicher gegen Angriffe mit Zurücksetzen. In diesem Kapitel
stellen wir basierend auf Hinterlegungen mit Geheimtüren eine allgemeine Modi-
fikation vor, wie dieses und andere bekannte Protokolle sicher gegen solche Angriffe
werden.

Um das Zurücksetzen unwirksam zu machen, lassen wir im modifizierten Pro-
tokolle den Opponenten den Wert c zunächst durch C = gchs hinterlegen (siehe
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Abbildung 3. Zurücksetzbare Okamoto-Schnorr-Identifikation

Proponent P öffentlicher Schlüssel: Gq, g0, g1, X, g, h Opponent V

geheimer Schlüssel:
x1, x2 ∈ Zq mit X = gx1

1 gx2
2

wähle c, s ∈R Zq

berechne C := gchs

C←−−−−−−−−−−−
wähle r1, r2 ∈R Zq

setze R := gr11 g
r2
2

R−−−−−−−−−−−→ wähle c ∈R Zq
c, s←−−−−−−−−−−−

überprüfe C != gchs

wenn Fehler, dann stoppe,
sonst fahre fort

setze y1 := r1 + cx1 mod q

setze y2 := r2 + cx2 mod q y1, y2−−−−−−−−−−−→ überprüfe RXc != gy1
1 g

y2
2

Abbildung 3). Dadurch kann der Opponent in seinem zweiten Schritt nur einen
gültigen Wert c aufdecken, und der oben angeführte Angriff mit Zurücksetzen und
Senden von c′ versagt.

Durch das Einführen einer Hinterlegung von c kann man allerdings auch den
ursprünglichen Sicherheitsbeweis gegen aktive Angreifer nicht auf den zurück-
setzbaren Fall übertragen. Dieser Beweis beruht nämlich auf der Eigenschaft,
dass man in der Ausführung zwischen Angreifer (als Proponent) und Opponent
zurücksetzen kann. Durch die Hinterlegung ist dies auch im Beweis nicht mehr
möglich. Wählen wir aber stattdessen ein Hinterlegungsverfahren mit Geheimtür
(wie in Abbildung 3 bereits mit dem Diskreten-Logarithmus-Verfahren geschehen),
kann der Angreifer einerseits nicht zurücksetzen, im Beweis können wir dies je-
doch durch die Geheimtür. Der Sicherheitsbeweis vom aktiven Fall überträgt sich
dann unmittelbar. Dies gilt allerdings nur für Angreifer, die sich als Proponent
ausgeben, nachdem die Experimentierphase vorbei ist. Soll der Angreifer sogar
seinen Einbruchversuch während der Experimentierphase starten dürfen, leisten
Hinterlegungen mit identitätsabhängigen Geheimtüren Abhilfe.

Die hier vorgestellte Lösungen wurden mit anderen Ansätzen in einer gemein-
samen Arbeit mit Mihir Bellare, Shafi Goldwasser und Silvio Micali auf der Eu-
rocrypt 20001 vorgestellt [BFGM01].
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3.3. Hinterlegung als Sicheres Unterprotokoll

Im Auktionsfall zeigt das Beispiel der Robustheit, oder genauer: der fehlen-
den Robustheit, dass Abhängigkeiten zwischen Protokollausführungen ungewollte
Nebeneffekte verursachen können. Der Grund dafür ist die übliche Definition
von Hinterlegungsverfahren als isolierte Protokolle. In Kapitel 6 betrachten wir
daher Hinterlegungen im Zusammenhang mit anderen Protokollen. Dazu führen
wir eine Definition von Hinterlegungen ein, die es erlaubt, solche Verfahren als
Unterprotokolle in anderen sicheren Protokollen einzusetzen, so dass die Sicher-
heit des gesamten Protokolls erhalten bleibt. Wir zeigen, dass diese Definition im
Fall, dass lediglich zwei Teilnehmer, Sender und Empfänger, aktiv werden, nicht
zu erfüllen ist. Hilft allerdings ein zusätzlicher Teilnehmer aus, so könen wir ef-
fiziente Verfahren angeben. Diese Lösungen beruhen erneut auf Hinterlegungen
mit Geheimtüren.

Dieses Kapitel stellt die Ergebnisse einer gemeinsamen Arbeit mit Ran Canetti
dar. Die Arbeit wurde auf der Konferenz Crypto 2001 vorgestellt [CF01].
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