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German summary

In vielen physikalischen Systemen entwickelt sich ausgehend von einem ungeordnetem Zustand
mittels einer lokalen Wechselwirkung zwischen einzelnen Systemkomponenten eine interne Ord-
nung. Dieses Prinzip der Selbstorganisation benötigt keine externen steuernden Impulse, und ist
oft robust gegenüber Änderungen oder Störungen im System. Daher ist Selbstorganisation ein
eleganter Mechanismus, um mit einfachen Regeln Ordnung in einem komplexen System entste-
hen zu lassen.
Eines der komplexesten Systeme in unserer Umwelt ist das Gehirn. Es besteht aus hierarchisch
angeordneten kortikalen Arealen, welche sensorische Information verarbeiten und diese in bes-
timmtes Verhalten übersetzen. Ein kortikales Areal besteht aus bis zu 100 Millionen neuronaler
Zellen, die mittels eines komplexen Netzwerkes miteinander verknüpft sind. Interessanterweise
weist kortikale Aktivität in verschiedenen Gehirnarealen und Spezies oft zwei grundlegende
Merkmale auf. Erstens, bildet kortikale Aktivität Muster bestehend aus aktiven Domänen mit
einer typischen räumlichen Skala von 1 mm164,43,45,331,154,285,48,231,389. Wie die Ergebnisse dieser
Arbeit zeigen, bleibt diese räumliche Modulation der kortikalen Aktivität auch dann bestehen,
wenn sich das Gehirn in unterschiedlichen Zuständen befindet (anästhesiert und wach389), ist
schon früh in der kortikalen Entwicklung zu beobachten und ist in spontaner389 wie in sen-
sorisch evozierter231 Aktivität zu finden. Dies impliziert, dass diese beobachtete domänenartige
Struktur eine grundlegende Eigenschaft kortikaler Netzwerkaktivität ist. Jedoch fehlt bislang
ein biologisch plausibler Mechanismus, der die Bildung modular Aktivität beschreibt.
Zweitens sind Domänen, die mehrere Millimeter voneinander entfernt sind, in ihrer Aktivität
miteinander korreliert. Diese langreichweitige Korrelation erstreckt sich über mehrere Millime-
ter, sowohl bei spontaner389 als auch bei visuell evozierter Aktivität231. Im reifen Kortex lässt
sich diese langreichweitige Korrelationsstruktur durch langreichweitige laterale Verschaltungen
erklären. Jedoch zeigen meine Analysen in dieser Arbeit, dass schon der unreife Kortex, der
noch keine langreichweitigen Verschaltungen besitzt, eine Korrelationsstruktur mit gleicher Re-
ichweite aufweist. Dies motiviert die Frage, wie sich eine solche Korrelationsstruktur nur mit
Hilfe lokaler Wechselwirkungen bilden kann. Eine mögliche Erklärung ist, dass modulare und
langreichweitig korrelierte Aktivität mittels eines intrakortikalen Mechanismus entstehen. Dies
ist konsistent mit der Idee der Selbstorganisation und bildet den Kern der vorliegenden Arbeit.
Ein zentrales Problem in Computational Neuroscience ist zu verstehen, wie neuronale Aktivität
in kortikalen Netzwerken gebildet wird. Ein tieferes Verständnis wie die Aktivität zwischen Netz-
werkeinheiten wechselwirkt, könnte beispielsweise beleuchten wie Information von der Außenwelt
in der Form von neuronaler Aktivität zwischen Gehirnarealen übermittelt wird. Eine direkte An-
wendung dieser Einsicht könnte darin liegen Behandlungsansätze für neurologische Krankheiten,
die zu Abweichungen in normaler Gehirnaktivität führen, zu stimulieren.
Jüngste Weiterentwicklungen experimenteller Methoden haben neue Möglichkeiten geschaffen
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die Entwicklung der neuronalen Aktivität in kortikalen Schaltkreisen zu untersuchen. Hochempfind-
liche, genetisch codierte Kalziumindikatoren81 ermöglichen die zuverlässige Abbildung evozierter
und spontaner kortikaler Aktivität in vivo . Diese neue Familie von Kalziumindikatoren ermöglicht
es, eine große Anzahl von Neuronen390,388,375 chronisch über mehrere Wochen bis Monate81,375,389

abzubilden. In Kombination mit dem Einsatz von Frettchen, die in einem relativ frühen Sta-
dium ihrer Entwicklung geboren werden267, eignen sich diese Kalziumindikatoren gut, um die
frühe kortikale Entwicklung der neuronalen Aktivität zu erfassen. Die Möglichkeit die Aktivität
einer Vielzahl von Neuronen gleichzeitig aufzunehmen, erfordert in der vorliegenden Arbeit die
Entwicklung neuer Analyse- und Modellierungsmethoden. Zusammen mit den neuartigen ex-
perimentellen Techniken, könnten diese analytischen Instrumente es ermöglichen, die Prinzipien
aufzuklären, die der Entstehung und Reifung der kortikalen Aktivität zugrunde liegen.
Um die Entwicklung der kortikalen Aktivität zu untersuchen, ist der visuelle Kortex von Säuge-
tieren ein besonders gut geeignetes System. Dieses ist zuständig für die Verarbeitung visueller In-
formationen, die über die Retina in das Gehirn gelangen. Die funktionale Organisation im reifen
visuellen Kortex wurde eingehend untersucht und charakterisiert. Im primären visuellen Kor-
tex rufen orientierte kantenartige Reize starke neuronale Antworten hervor196. Diese kortikalen
Antworten sind in Primaten und Fleischfressern räumlich moduliert285,86,344,389. Durch eine sys-
tematische Variation der Orientierung dieser visuellen Reize wird eine geordnete Karte beste-
hend aus Orientierungsdomänen sichtbar, die über die Oberfläche des Kortex verteilt sind231.
Innerhalb einer Orientierungsdomäne antworten individuelle Neurone vorzugsweise auf die gle-
iche Orientierung. Diese Orientierungsdomänen bedecken quasi-periodisch mit einem typischen
Abstand zueinander den gesamten primären visuellen Kortex. Diese globale Organisation von
Orientierungsdomänen spiegelt die langreichweitige Korrelationsstruktur in der kortikalen Ak-
tivität wider. So sind beispielsweise weit entfernte Neurone mit ähnlicher Orientierungspräferenz
in ihrer evozierten Aktivität korreliert.
Im reifen Kortex fallen spontan koaktive Domänen häufig mit diesen funktionalen Domänen
zusammen344,235,327,389. In einer früheren Arbeit wurde gezeigt, dass im reifen visuellen Kortex
spontane Aktivitätsmuster zu einem gewissen Grad den Aktivitätsmustern ähneln, die durch vi-
suelle Stimuli evoziert wurden235,327. Die Autoren235 deuteten an, dass spontane und evozierte
Aktivitätsmuster sich über einen großen kortikalen Bereich ähneln. Anschließende theoretis-
che Arbeiten untersuchten, ob die Eigenschaften der spontanen Aktivität mit solch einer lang-
reichweitigen Ähnlichkeit vereinbar sind, führten jedoch zu keinem schlüssigen Ergebnis159.
Darüberhinaus bleibt es unklar, bis zu welcher feinen räumlichen Skala die Ähnlichkeit zwis-
chen spontaner und evozierter Aktivität besteht.
Eine große Anzahl an theoretischen und experimentellen Arbeiten hat Aufschluss darüber gegeben,
wie kortikale Verschaltungen Aktivitätsmuster beeinflussen. Insbesondere wurde in vielen Stu-
dien untersucht, ob kortikale Aktivität eher durch Feed-Forward-Input oder durch intrakortikale
Verschaltungen bestimmt ist. Theoretische Studien haben verschiedene Modelle betrachtet, um
die Fähigkeit und den Umfang von Feed-Forward-Inputs und intrakortikalen Mechanismen bei
der Gestaltung der räumlich-zeitlichen Eigenschaften der neuronalen Netzwerkaktivität zu unter-
suchen218,224,241,420. In ähnlicher Weise zielten experimentelle Arbeiten darauf ab, den Beitrag
von Feed-Forward-Inputs im Vergleich zu intrakortikalen Verschaltungen bei der Gestaltung der
Netzwerkaktivität zu analysieren303,352,389. Der Beitrag dieser verschiedenen Inputquellen zur
Bildung der lokalen und ausgedehnten Organisation der kortikalen Aktivität ist jedoch nach
wie vor unklar. Interessanterweise zeigen Experimente, die durch diese Arbeit motiviert und
beschrieben wurden, dass die modulare und weitreichende korrelierte Organisation der spon-
tanen kortikalen Aktivität nach Inaktivierung des vorgelagerten Hirnareals intakt bleibt389.
Dieses Ergebnis deutet an, dass diese fundamentalen Eigenschaften dem Kortex nicht durch
Feed-Forward-Inputs auferlegt werden.
Tatsächlich wurde in theoretischen Arbeiten umfangreich die Entstehung modularer Aktivität
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basierend auf einem intrakortikalen Mechanismus im Rahmen dynamischer Netzwerkmodelle
untersucht287,411,28,226,71,44,163. Ein solches neuronales Netzwerkmodell besteht aus einer Popu-
lation von Neuronen, die über wiederkehrende Verbindungen miteinander wechselwirken. Ty-
pischerweise beruht der intrakortikale Mechanismus auf lokaler Förderung und lateraler Un-
terdrückung der Aktivität, was in einem breiteren Kontext als Turing-Mechanismus bezeichnet
wird430,152,296. Eine einfache Möglichkeit diesen Mechanismus zu implementieren, besteht in
einer speziellen rekurrenten Verschaltung, die aus lokaler Exzitation und lateraler Hemmung
(manchmal als Mexican hat Profil bezeichnet) zusammengesetzt ist287,411,28,71,44. Die lokale Exz-
itation verstärkt lokal erhöhte Aktivitätsfluktuationen, während laterale Hemmung die räumliche
Ausbreitung dieser erhöhten Aktivität verhindert. Auf diese Weise entstehen benachbarte ak-
tive Domänen mit einem typischen Domänenabstand. Während es experimentelle Evidenz für
diese Art von rekurrenter Verschaltung gibt, deuten andere Studien darauf hin, dass die lat-
erale Reichweite inhibitorischer Verbindungen tendenziell kürzer ist als die der exzitatorischen
Verbindungen280,281,279,278,265.
Die Entstehung der langreichweitigen Korrelationsstruktur vor der vollständigen Entwicklung
anatomischer langreichweitiger Verbindungen wird in der vorliegenden Arbeit beschrieben389.
Aus diesem Grund liegen noch keine theoretische Arbeiten vor, die beschreiben, wie rein lokale
Schaltkreise langreichweitig korrelierte Netzwerkaktivität erzeugen können.
In dieser Arbeit versuche ich die oben genannten Lücken zu füllen und untersuche die Entstehung
von modularer und langreichweitig korrelierter spontaner Aktivität in kortikalen Netzwerken.
Im Einzelnen addressiere ich die folgenden drei Fragen:

� Wie kann ein Netzwerk mit einer biologisch plausiblen Architektur modulare Aktivität
erzeugen?

� Wie entsteht zu Beginn der Entwicklung eine weitreichende, langreichweitig korrelierte
Netzwerkaktivität?

� In welcher Beziehung stehen die weitreichenden Netzwerke im ausgereiften visuellen Kortex
zu seiner funktionalen Organisation?

Um diese Fragen zu beantworten, kombiniere ich mathematische Netzwerkanalyse und die A-
nalyse experimenteller Daten von neuronaler Aktivität im sich entwickelnden Kortex. Die
neuronalen Aktivitätsdaten wurden im Labor von David Fitzpatrick am Max Planck Florida
Institute aufgenommen. Gordon B. Smith und David E. Whitney führten die Experimente
unter der Betreuung von David Fitzpatrick durch. Um die Entstehung und Ausreifung der
weitreichenden funktionalen kortikalen Netzwerke zu untersuchen, wurde ein experimenteller
Aufbau benutzt, der die chronische Bildgebung von Populationsaktivität im visuellen Kortex
von Frettchen in vivo ermöglicht. Mit Hilfe des hochsensitiven Kalziumindikator GCaMP6s
konnte zuverlässig die spontane und visuell evozierte Aktivität in der kortikalen Schicht 2/3
aufgenommen werden. Frettchen erlauben, dank ihrer Geburt relativ früh in ihrer Entwicklung,
kortikale Aktivität im reifenden Kortex zu erfassen. Motiviert durch die Ähnlichkeit zwischen
spontaner und evozierter Aktivität im reifen Kortex, wird versucht mittels spontaner Aktivität,
die schon während der frühen kortikalen Entwicklung zu beobachten ist bevor zuverlässige kor-
tikale Antworten evoziert werden können, den Zustand von Netzwerkinteraktionen im unreifen
Kortex zu ermitteln. Dies erlaubt es auch die kortikale Netzwerkaktivität zu untersuchen, ohne
der Aktivität eine Struktur aufzuerlegen, die hauptsächlich durch Stimuli dominiert ist. Um
die reife funktionale Organisation ausgedehnter Netzwerke im Kortex zu untersuchen, wird die
Orientierungsselektivität aufgenommen.
In dieser Arbeit analysiere ich quantitativ die räumlich-zeitlichen Eigenschaften spontaner und
visuell hervorgerufener neuronaler Aktivität während der frühen Entwicklung des Kortex. Basierend
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auf dieser Quantifizierung entwickle ich dynamische und statistische Modelle, die mittels ein-
facher Mechanismen Schlüsseleigenschaften der beobachteten kortikalen Aktivität reproduzieren
können.
Zuerst zeige ich, dass spontane Aktivität im reifen Kortex aus räumlich ausgedehnten und mod-
ularen Aktivitätsmustern besteht. Kortikale Elemente sind in ihrer spontanen Aktivität über
mehrere Millimeter hinweg miteinander korreliert. Meine Analysen zeigen, dass diese lang-
reichweitige Korrelationsstruktur dem Layout der Orientierungsdomänen über das komplette
Sichtfeld bis hin zu räumlich feinen Strukturen sehr ähnlich ist. Diese hohe Ähnlichkeit un-
terstützt unsere Annahme spontane Aktivität stellvertretend für die Netzwerkinteraktionen zu
verwenden. Mittels der langreichweitigen Korrelationsstruktur ist es sogar möglich die lokale
funktionale Organisation über mehrere Millimeter hinweg genau vorhersagen. Selbst die fein-
sten topografischen Merkmale von Orientierungskarten - Frakturen oder Pinwheels - spiegeln
sich genau in den langreichweitigen Netzwerkwechselwirkungen wider, die sich aus der korre-
lierten spontanen Aktivität ergeben. Diese Ergebnisse zeigen zusammen mit der Stabilität von
Korrelationsmustern über Wach- und Narkosezustände hinweg einen außergewöhnlichen Grad
an funktionaler Kohärenz in kortikalen Netzwerken.
Die Prinzipien, die der funktionalen Organisation und Entwicklung von weitreichenden Netz-
werkinteraktionen im Neokortex zugrunde liegen, sind nach wie vor wenig verstanden. Zudem
ist noch wenig über die räumlich-zeitliche Struktur spontaner Aktivität in der frühen Entwick-
lung bekannt. Diese Arbeit zeigt zum ersten Mal, dass es bereits im unreifen Kortex modulare
Netzwerkkorrelationen gibt, die sich über Entfernungen erstrecken, die mit denen im reifen Ko-
rtex vergleichbar sind. Die Möglichkeit, dass derartige langreichweitige Korrelationen in diesem
frühen Entwicklungsstadium vorliegen, wurde noch nicht in Betracht gezogen. Angesichts der
starken Assoziation modularer Aktivitätsmuster mit der modularen Anordnung horizontaler,
langreichweitiger Verbindungen im reifen Kortex154,285,48 erscheint es überraschend, bereits 10
Tage vor Augenöffnung, einem Zeitpunkt an dem sich die horizontalen Verbindungen noch
nicht vollständig entwickelt haben46,122,364, robuste modulare Aktivitätsmuster mit großer Reich-
weite zu finden. Das Vorhandensein derartiger langreichweitiger modularer Korrelationsmuster
in Abwesenheit eines gut entwickelten horizontalen Netzwerks in Schicht 2/3 stellt damit die
Notwendigkeit monosynaptischer langreichweitiger Verbindungen zur Erzeugung ausgedehnter
modularer Netzwerkaktivität in Frage.
Die korrelierten Aktivitätsmuster in diesem frühen Entwicklungsstadium sind nicht identisch
mit den Mustern im reifen Kortex, sondern werden über einen Zeitraum von mehreren Tagen
vor Augenöffnung erheblich verfeinert. Tatsächlich spiegeln Veränderungen in den Mustern
der korrelierten Aktivität während der Entwicklung wahrscheinlich die fortschreitende Reifung
mehrerer Merkmale der Netzwerkorganisation wider, einschließlich der Entstehung langreich-
weitiger, horizontaler Verbindungen439.
Obwohl Netzwerkkorrelationen während der Entwicklung erheblich verfeinert werden, weisen sie
zu Beginn der Entwicklung ein modulares Muster auf, das die reife funktionale Organisation
vorhersagen kann. Bis zu 10 Tage vor Augenöffnung zeigt die spontane Aktivität schon einige
Signaturen der funktionalen Organisation des reifen Kortex. Die modularen Muster spontaner
Aktivität zu Beginn der Entwicklung und ihre Beziehung zur reifen Schaltkreisorganisation wur-
den zuvor nicht beschrieben. Die Ähnlichkeit früher Netzwerkkorrelationen mit dem ausgereiften
funktionalen Layout ist konsistent mit der Vorstellung einer selbstorganisierten kortikalen Ak-
tivität.
Es ist unklar, ob die langreichweitig korrelierten und modularen Aktivitätsmuster hauptsächlich
durch Feedforward-Input, über einen intrakortikalen Mechanismus oder durch Feed-Back-Input
erzeugt werden. Die von unserer Kollaboration im Labor von David Fitzpatrick durchgeführten
Inaktivierungsexperimente der Retina und des Thalamus zeigen, dass in der frühen Entwicklung
korrelierte spontane Aktivität vom visuellen Kortex erzeugt werden kann, selbst dann wenn
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kein Input von der Retina oder vom LGN vorliegt. Der beobachtete Rückgang in der Frequenz
spontaner Events nach der Inaktivierung vom LGN lässt darauf schließen, dass der LGN in-
trinsische kortikale spontane Events auslöst. Das Vorhandensein modularer Korrelationsmuster,
die sich über ähnliche Distanzen, wie diejenigen mit intakten Feedforward-Inputs erstrecken,
zeigt, dass bereits unreife kortikale Schaltkreise die Fähigkeit haben, modulare ausgedehnte
Muster zu erzeugen. Es ist wichtig zu betonen, dass diese Beobachtungen eine kausale Rolle für
den Feedforward-Input beim Aufbau einer modularen kortikalen Netzwerkstruktur nicht aus-
schließen. Muster der retinalen und genikulo-kortikalen Aktivität könnten eine kritische Rolle
bei der Steuerung der Entwicklung dieser kortikalen Aktivitätsmuster spielen (z.B.311,69,75,201),
aber sie sind eindeutig nicht für ihre Ausbildung erforderlich. Diese Ergebnisse zeigen, dass
frühe kortikale Schaltkreise strukturierte Korrelationen mit großer Reichweite erzeugen können.
Diese werden im Laufe der Entwicklung verfeinert, um reife, ausgedehnte funktionale Netzwerke
zu bilden, wodurch die funktionale Architektur auf kleiner räumlicher Skala mit der entfernten
Netzwerkorganisation gekoppelt wird.
Diese Ergebnisse werfen jedoch das Problem auf, wie langreichweitige Aktivität im frühen Kor-
tex durch intrakortikale Schaltkreise ohne langreichweitige horizontale Konnektivität erzeugt
werden kann. Ich addressiere dieses Problem, indem ich ein statistisches Modell untersuche,
welches ein Ensemble von räumlich ausgedehnten spontanen Aktivitätsmustern beschreibt. Ich
zeige, dass eine Reduzierung der Dimensionalität dieses Ensembles von Aktivitätsmustern zu
einer größeren Reichweite führt, über die die Domänen korreliert sind. Dies legt nahe, dass
ein Mechanismus im frühen kortikalen Netzwerk implementiert ist, der die Dimensionalität von
Aktivitätsmustern einschränkt, wodurch der frühe Kortex in der Lage ist, ausgedehnte Netz-
werkaktivität ohne anatomische langreichweitige Verbindungen zu erzeugen.
Aufbauend auf dieser Hypothese, studiere ich ein dynamisches Netzwerkmodell in welchem ein
Mechanismus implementiert ist, der die Dimensionalität der Aktivitätsmuster reduziert. Mit
Hilfe diesen Modells zeige ich, dass langreichweitige Korrelationen in heterogenen Schaltkreisen
durch multisynaptische lokale Wechselwirkungen entstehen können, indem sie bestimmte räumlich
ausgedehnte Aktivitätsmuster auf Kosten anderer begünstigen.
Da die spontane Aktivität schon im frühen visuellen Kortex modular ist, werden in diesem Netz-
werkmodell die lateralen Verbindungen so angenommen, dass sie die Bildung aktiver Domänen
unterstützen. Der dynamische Mechanismus, der zur Erzeugung modularer Aktivitätsmuster
angenommen wird, ist als Turing-Mechanismus bekannt: modulare Muster entstehen aus einem
räumlich homogenen Zustand, indem räumlich heterogene Störungen durch dynamische rekur-
rente Netzwerke verstärkt werden130. Da der Fokus dieses Modells auf den Mechanismen
liegt, Domänen über große Distanzen zu korrelieren, wurde eine generische lokale Verschal-
tung gewählt, um den Turing-Mechanismus zu implementieren: die sogenannte Mexican Hat
Konnektivität (lokale Exzitation mit lateraler Inhibition). In einigen Studien wurde Evidenz für
ein solches Motiv gefunden108, wohingegen andere Studien265 nahelegen, dass die Reichweite der
inhibitorischen Interaktion der Inhibition tatsächlich kleiner ist als die Reichweite der Exzita-
tion. Aus diesem Grund habe ich ein zweites dynamisches Netzwerkmodell untersucht, das aus
zwei Populationen besteht, die so verschaltet sind, dass ihre Konnektivität mit den aktuellen
experimentellen Daten übereinstimmt265.
Basierend auf früheren Arbeiten428,464,353, die gezeigt haben, dass Heterogenität im Netzwerk
die Dimensionalität des Ensembles der möglichen Aktivitätsmuster reduziert, habe ich in beiden
Netzwerkmodellen eine heterogene Konnektivität angenommen. Mit dem Grad an Heterogenität
konnte in beiden Netzwerkmodellen die Dimensionalität der Aktivitätsmuster kontrolliert wer-
den. Konsistent mit dem statistischen Modell, führt eine reduzierte Dimensionalität zu einer
langreichweitigen Korrelationsstruktur, die quantitativ mit derjenigen übereinstimmt, die in ex-
perimentellen Daten beobachtet worden ist. Die Beziehung zwischen der Dimensionalität des En-
sembles von Aktivitätsmustern und weiteren Eigenschaften spontaner Korrelationen legt nahe,
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dass eine niedrige Dimensionalität als Organisationsprinzip der kortikalen Aktivität fungieren
könnte. Das Modell sagt voraus, dass eine Zunahme der Heterogenität in den lokalen Verschal-
tungen die räumliche Ausdehnung der spontanen Korrelation erhöht. Zukünftige Experimente
könnten diese Vorhersage testen, indem die Heterogenität innerhalb des kortikalen Netzwerks
experimentell manipuliert wird. Durch die optogenetische Aktivierung weniger, zufällig aus-
gewählter Neuronen könnte die lokale Struktur der funktionalen lateralen Wechselwirkungen
heterogener werden. Die Idee, dass die langreichweitige Ordnung in kortikalen Netzen ihren Ur-
sprung in kurzreichweitigen Wechselwirkungen hat, wurde nach Kenntnis des Autors in früheren
Studien noch nicht vorgeschlagen.
Insbesondere erzeugt das dynamische Netzwerk mit lokaler Inhibition und räumlich ausgedehn-
ter Exzitation, welches im vorigen Absatz zur Beschreibung der Bildung langreichweitiger Ko-
rrelationen verwendet wurde, modulare Aktivitätsmuster. Im Gegensatz dazu haben frühere
klassische Netzwerkmodelle, die basierend auf einem intrakortikalen Mechanismus modulare Ak-
tivität ausbilden, entweder langreichweitige Inhibition129 oder Inhibition mit schneller Zeitkon-
stante346,226 benötigt. Diese Annahmen scheinen jedoch im Widerspruch zu aktuellen experi-
mentellen Daten zu stehen265,329. Überdies wurden diese früheren Modelle noch kaum experi-
mentell getestet. Ich zeige, dass eine räumlich lokalisierte Selbstinhibierung die Einschränkungen
in der genannten Modellklasse lockert, so dass biologisch plausible Netzwerkmotive, insbeson-
dere solche mit lokaler Inhibition, robust modulare Aktivität generieren. Ich wende eine lineare
Stabilitätsanalyse auf das Netzwerkmodell an, um die Grenzen des Parameterregimes für die Bil-
dung modularer Aktivität zu bestimmen. Darüberhinaus stelle ich mehrere Modellvorhersagen
vor, die im Hinblick auf neuartige Entwicklungen experimenteller Methoden die Modellklasse
experimentell testbar machen. Eine kritische Vorhersage unseres Modells ist, dass der typische
Abstand aktiver Domänen abnimmt, wenn die Gesamtstärke der Inhibition zunimmt. Dieses
Modell stellt damit einen neuartigen Mechanismus bereit, mit Hilfe dessen kortikale Netzwerke
mit kurzreichweitiger Inhibition modulare Aktivität formen können.
Zusammengenommen zeigen diese Ergebnisse, dass die experimentell beobachteten Merkmale
der kortikalen Aktivität schon während der frühen Entwicklung des Kortex vorhanden sind und
durch einfache Prinzipien in frühen kortikalen Netzwerken entstehen können.
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Abstract

Cortical circuits exhibit highly dynamic and complex neural activity. Intriguingly, cortical ac-
tivity exhibits consistently two key features across observed species and brain areas. First,
individual neurons tend to be co-active in spatially localized domains forming orderly arranged,
modular layouts with a typical spatial scale. Second, cortical elements are correlated in their
activity over large distances reflecting long-range network interactions distributed over several
millimeters. Currently, it is unclear how these two fundamental properties emerge in the early
developing cortical activity.
Here, I aim to fill this gap by combining analyses of chronic imaging data and network models
of developing cortical activity. Neural recordings of spontaneous and visually evoked activity
in primary visual cortex of ferrets during their early cortical development were obtained using
in vivo 2-photon and widefield epi-fluorescence calcium imaging. Spontaneous activity was used
to probe the early state of cortical networks as its spatiotemporal organization is independent
of a stimulus-imposed structure, and it is already present early in cortical development prior to
reliably evoked responses. To assess the mature functional organization of distributed networks
in cortex, the tuning of neural responses to stimulus features, in particular to the orientation of
an edge-like stimulus, was assessed. Cortical responses to moving gratings of varying orienta-
tions form an orderly arranged layout of orientation domains extending over several millimeters.
To begin with, I showed that spontaneous activity correlations extend over several millimeters,
supporting the assumption of using spontaneous activity to assess distributed networks in cortex.
Next, I asked how distributed networks in the mature visual cortex - assessed by spontaneous
activity correlations - are related to its fine-scale functional organization. I found that the spa-
tially extended and modular spontaneous correlation patterns accurately predict the fine spatial
structure of visually evoked orientation domains several millimeters away. These results suggest
a close relation between spontaneous correlations and visually evoked responses on a fine spatial
scale and across large spatial distances.
As the principles governing the functional organization and development of distributed network
interactions in the neocortex remain poorly understood, I next asked how long-range correlated
activity arises early in development. I found that key features of mature spontaneous activity in-
troduced in this work, including long-range spontaneous correlations, were present already early
in cortical development prior to the maturation of long-range, horizontal connections, and the
predicted mature orientation preference layout. Even after silencing feed-forward input drive by
inactivating retina or thalamus, long-range correlated and modular activity robustly emerged in
early cortex. These results suggest that local recurrent connections in early cortical circuits can
generate structured long-range network correlations that guide the formation of visually-evoked
distributed functional networks.
To investigate how these large-scale cortical networks emerge prior to the maturation and elab-
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oration of long-range horizontal connectivity, I examined a statistical network model describing
an ensemble of spatially extended spontaneous activity patterns. I found a direct relationship
between the dimensionality of this ensemble of activity patterns and the decay of its correlation
structure. Specifically, reducing the dimensionality of the ensemble leads to an increase in the
spatial range of the correlation structure.
To test whether this mechanism could generate a long-range correlation structure in cortical cir-
cuits, I studied a dynamical network model implementing a dimensionality reduction mechanism.
Based on previous work demonstrating that network heterogeneity reduces the dimensionality
of activity patterns, I showed that by increasing the degree of heterogeneity in the network,
the dimensionality of the ensemble of activity patterns decreases and in turn their correlations
extend over a greater range. A comparison to experimental data revealed a quantitative match
between the network model and the observations in vivo in several of the key features of the early
cortex including the spatial scale of correlations. Low dimensionality of spontaneous activity
thus might provide an organizational principle explaining the observed long-range correlation
structure in the early cortex.
Finally, I asked whether a network with a biologically plausible architecture can generate mod-
ular activity. Several classical models showed that modular activity patterns can emerge via an
intracortical mechanism involving lateral inhibition. However, this assumption appears to be in
conflict with current experimental evidence. Moreover, these network models were not experi-
mentally tested, so far. Here, I showed by using linear stability analysis that spatially localized
self-inhibition relaxes the constraints on the connectivity structure in a network model, such
that biologically more plausible network motifs with shorter ranging inhibition than excitation
can robustly generate modular activity. Importantly, I also provided several model predictions
to make the class of network models experimentally testable in view of recent technological ad-
vancements in imaging and manipulation of cortical circuits. A critical prediction of the model
is the decrease in spacing of active domains when the total amount of inhibition increases. These
results provide a novel mechanism of how cortical circuits with short-range inhibition can form
modular activity.
Taken together, this thesis provides evidence that the two described fundamental features of
neural activity are already present in the early cortex and shows that activity with those fea-
tures can be generated in network models with an architecture consistent with the early cortex
using basic principles.
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Chapter 1

Introduction

In many physical systems, internal order develops from an initially disordered state through local
interactions between the system’s components. This self-organization is not externally guided
but happens spontaneously, and it is robust against changes or perturbations in the system.
Self-organization is thus an elegant mechanism to form order in a complex system based only
on elementary rules.
A formidable example of a complex system is the brain which consists of hierarchically arranged
cortical areas that process sensory information to translate into behavioural motor output. A
cortical area consists of up to several hundred million neuronal cells interacting with each other
via an intricate wiring scheme. Intriguingly, neuronal activity across many different brain areas
and even species of carnivores and primates seems well-ordered on a mesoscopic scale consis-
tently exhibiting two prominent features.
First, in cortical activity individual neurons tend to be co-active in spatially localized domains
and these active domains form orderly patterns across the cortical surface with a typical spacing
between adjacent domains of roughly 1 mm164,43,45,331,154,285,48,231,389. As shown in this the-
sis, spatially modulated activity is observed in different states of the animal (anesthetized and
awake389), in neural activity that is either evoked by external stimuli43,389 or emerges sponta-
neously in the absence of experimental external stimuli235,327,389, and from an early stage in
development to adulthood389. The consistent and robust presence of modular activity through-
out various conditions implies that it is a fundamental property of the underlying cortical circuit.
Although several hypotheses have been put forward, it is still unclear by which mechanism brain
circuits generate modular activity. Understanding how patterns of cortical activity arise remains
therefore a key problem of current computational and systems neuroscience.
Second, cortical domains are correlated in their spontaneous389 and evoked231 activity over large
cortical distances of several millimeters. In mature cortical circuits the presence of long-range
lateral, anatomical connections provides the substrate for this long-range correlation structure.
However, as shown by the author long-range correlations are already present at an early stage
of cortical development, in particular prior to the maturation of long-range anatomical connec-
tions389. This naturally raises the question of how long-range correlations form in the presence
of purely local network interactions. A potential solution to this problem is that modular and
long-range correlated activity emerge via an intracortical mechanism consistent with the idea of
self-organisation. This hypothesis builds the core of this thesis.
Understanding how cortical circuits shape neural activity is a key problem in computational neu-
roscience287,19,434,433,57,307,182. Gaining a deeper understanding of how network units interact via
their activity can potentially illuminate how information from the environment is transmitted
in the form of neural activity between brain areas. A direct application of such an intuition
could possibly lie in stimulating new approaches to treatment for e.g. neurological disorders
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that exhibit in deviations from normal brain activity.
The recent advancement of novel experimental tools has created new opportunities to study
the development and maturation of neuronal activity in cortical circuits. Highly sensitive ge-
netically encoded calcium indicators have been developed81 that make it possible to reliably
image single trial responses and spontaneous activity in cortex. This new family of calcium
indicators allows to image large populations of neurons390,388,375 chronically over several weeks
to months81,375,389. In combination with the use of ferrets which are born at a relatively early
stage in their development267, these calcium indicators are well suited to record cortical activ-
ity early in life. The possibility to obtain those large-scale recordings of neuronal population
activity requires us to develop new analysis and modelling approaches in this thesis. Together
with recent experimental techniques, these novel analytical tools might enable us to elucidate
the principles underlying the emergence and maturation of cortical activity.
To study the development of cortical activity, the mammalian visual cortex is a particularly well-
suited system processing visual information entering the brain through the retina. The func-
tional organization in the mature visual cortex has been extensively studied and characterized.
In primary visual cortex, oriented edge-like stimuli robustly evoke strong neuronal responses196.
In carnivores and primates these cortical responses exhibit a modular layout285,86,344,389. Sys-
tematically varying the orientation of visual edge-like stimuli reveals an orderly arranged map
of orientation domains that are distributed across the visual cortex231. Within one orientation
domain nearby neurons preferably respond to the same orientation. These orientation domains
repetitively cover the entire primary visual cortex exhibiting a typical domain spacing. This
global organization of orientation domains reflects the long-range correlation structure in corti-
cal activity, e.g. distant neurons sharing a similar orientation preference are correlated in their
activity, and is a prime example for long-range correlated and modular activity. Still, little is
known about how the layout of orientation domains emerges during development.
Mature spontaneously co-active domains often coincide with those functional modules344,235,327,389.
In mature visual cortex instantaneous spontaneous activity patterns have been shown to resem-
ble to a certain degree stimulus evoked activity patterns235,327. The authors235 suggested that
spontaneous and evoked activity patterns are similar over a large cortical range. Subsequent
theoretical work investigated whether the properties of spontaneous activity are consistent with
a long-range similarity, but did not come to a conclusive result159. It also remains unclear up
to which fine spatial scale the similarity between spontaneous and evoked activity holds. As
spontaneous activity is already present prior to reliable evoked responses, together with its sim-
ilarity to the layout of evoked responses, makes it potentially well-suited to assess the state of
the functional organization of cortical circuits during development.
A tremendous amount of theoretical and experimental work has shed light on how brain cir-
cuits form cortical activity. In particular, many studies investigated whether cortical activity
is mainly driven by feed-forward inputs or whether its origin lies within cortex itself. Theo-
retical studies have introduced different modeling frameworks to study the ability and scope
of feed-forward input and intracortical mechanisms in shaping the spatiotemporal properties of
neuronal network activity218,224,241,420. Similarly, experimental work has aimed towards dissect-
ing the contribution from feed-forward inputs compared to intracortical mechanisms in shaping
network activity303,352,389. Yet, the contribution from these different input sources to the forma-
tion of the local and distributed organization of cortical activity remains elusive. Intriguingly,
experiments motivated by and described in this thesis show that the modular and long-range
correlated organization of spontaneous cortical activity remains intact after inactivation of the
upstream brain area389, demonstrating that this fundamental property is not imposed to the
cortex by feed-forward circuits.
In fact, there has been extensive theoretical work on modelling the emergence of modular ac-
tivity based on an intracortical mechanism within the framework of dynamical network mod-
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els287,411,28,226,71,44,163. Such a neural network consists of a population of neurons that interact
via recurrent connections. Typically, the intracortical mechanism relies on local facilitation
and lateral suppression of activity which is in a broader context known as the Turing mecha-
nism430,152,296. A straightforward way to implement this mechanism is through a specific from of
recurrent circuitry consisting of local excitation and spatially more extended inhibition (some-
times called a ’Mexican hat’ connectivity profile)287,411,28,71,44. Local excitation amplifies locally
elevated activity fluctuations whereas lateral inhibition suppresses activity nearby, such that
adjacent active domains can arise with a typical domain spacing. However, while there is some
experimental evidence for this type of organization108,80, other studies indicate that the lateral
extent of inhibitory connections tends to be shorter than excitatory connections280,281,279,278,265.
The emergence of the long-range correlation structure prior to the maturation of anatomical,
long-range connections has for the first time been described by the author389. For this reason
there is a lack of theoretical work describing how purely local circuits can generate distributed
network activity that is correlated between distant cortical areas.
In this thesis I aim to fill this gap and investigate the emergence of modular and long-range
correlated spontaneous activity in cortical circuits. Specifically, I address the following three
questions:

� How can a network with a biologically plausible architecture generate modular activity?

� How does distributed, long-range correlated network activity arise early in development?

� How are the distributed networks in the mature visual cortex related to its fine-scale
functional organization?

To approach these questions I use a combination of computational modelling and analysis of
experimental recordings of cortical activity. The neural recordings were obtained in the labo-
ratory of David Fitzpatrick at the Max Planck Florida Institute. Gordon B Smith and David
E Whitney performed the imaging experiments. To assess the emergence and maturation of
distributed functional cortical circuits, neural population activity in ferret primary visual cortex
was recorded in a chronic imaging setup using the highly sensitive calcium indicator GCaMP681.
Ferrets are used as the model system as their cortex maturates largely after their birth. To ex-
amine the emergence of distributed networks and their state in the mature animal, spontaneous
and visually evoked activity is imaged prior to after eye-opening. As spontaneous activity is
already present early in development, it is used to probe the state of neural activity during
early cortical development. Furthermore, spontaneous activity allows to probe cortical activity
without imposing an organization that is driven mainly by stimuli. So far, only little is known
about its spatiotemporal structure early in development.
In this thesis, I quantitatively characterize the spatiotemporal properties of spontaneous and
visually evoked activity during the early development. I find that mature spontaneous activity
shows a long-range correlation behaviour. Those long-range spontaneous correlations are tightly
related to the functional organization of visual cortex over several millimeters and on a fine spa-
tial scale much more than previously anticipated. Based on this close relationship I assess the
early state of cortical circuits using spontaneous correlations. Already at the earliest observed
stages in development prior to the elaboration of long-range anatomical connections the spon-
taneous correlations extend over a distance similar to the one in mature animals. To address
how cortical circuits with local connectivity generate long-range correlated activity, I develop
a heterogeneous network model based on elementary rules that is able to quantitatively match
key properties of the experimentally observed spontaneous activity. Consistent with the idea of
self-organizing network activity our network model shows that features of long-range network
behaviour can emerge from purely local lateral connections. Extending this network model I

17



1. Introduction

show that by introducing weak local self-inhibition modular activity can be generated with a
network architecture that appears consistent with current experimental data, in particular when
the excitatory interaction range exceeds the one of inhibition. Importantly, combining the two
network mechanisms I propose leads to long-range correlated and modular activity consistent
with experimental data. Together, these results suggest that the two key features of neural
activity - modularity and long-range correlations - emerge already early in cortical development
and can be generated by basic network mechanisms.
The organization of this thesis is as follows. Chapter 2 outlines the functional and anatomical
properties of the visual system and its maturation during early development highlighting spon-
taneous cortical activity. It further introduces previous relevant theoretical work on modelling
cortical activity and describes the main analysis methods used. In Chapter 3 I describe the
experimental setup used for recording the imaging data that is analyzed in this thesis, followed
by an overview about the basic analysis steps used in the signal processing. The chapter ends
by showing that spontaneous activity in the mature visual cortex exhibits a long-range corre-
lation structure and resembles locally and over extended distances the visually evoked activity.
In Chapter 4 I demonstrate that already early in development spontaneous activity is corre-
lated over large distances prior to the maturation of anatomical, long-range connections and I
present evidence that this activity can be intracortically generated. The properties of sponta-
neous activity necessary for the emergence of this long-range correlation structure is investigated
in Chapter 5, followed by introducing a mechanism that quantitatively captures core aspects
of the experimentally observed spontaneous activity resulting in distributed network activity.
Finally, in Chapter 6 I propose a mechanism that allows networks with a biologically plausible
architecture to generate modular activity patterns. A discussion of the main results is given in
Chapter 7.
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Chapter 2

Foundations

In this thesis we investigate how modular and long-range spontaneous activity in cortex emerges
during early development using data analysis and modeling approaches of cortical activity. The
experiments providing the data are performed in mammalian primary visual cortex which has
been extensively studied in the previous decades198,65,135. To help the reader to put this work into
context and to distinguish this thesis’ findings from previous research, we give in the following
a comprehensive overview about (1) the neuroanatomical and functional structure of the visual
system, (2) its development together with how spontaneous and evoked activity is organized
in the developing visual system, (3) previous approaches to model cortical activity and (4) the
main analysis tools used in this thesis.

2.1 Anatomical and functional organization of the visual
system

Visual information is transmitted to the mammalian brain via three major pathways. In the
first pathway information from the retina is relayed via the thalamus to the visual cortex where
information is processed for further visual perception (Fig. 2.1a). In the second pathway
information from the retina is sent to the pretectum. This pathway is mainly responsible for
the pupillary light reflex and the optokinetic reflex. In the third pathway information from the
retina is relayed to the superior colliculus, which is among others responsible for directing eye
movement. In the following we will elaborate on the anatomical and functional organization of
the first pathway. we will specifically focus on the primate and carnivoran visual system, as
these are most relevant to this thesis.

2.1.1 Retina

Visual information from the environment enters the eye through the lens and strikes the light-
sensitive retina at the back of the eye. The retina exhibits an orderly layered organization
of a small number of main cell types with stereotypical morphology120,404 (Fig. 2.1b). The
deepest layer furthest away from the incoming light consists of two types of light-sensitive photo
receptors, so-called rods and cones, that are arranged in a mosaic. They are responsible for
night and day time vision, respectively. Rods function in an environment with little light and
they are extremely light-sensitive in darkness. A single photon is already sufficient to evoke a
measurable signal in one of them371. Activating about seven rods suffices to evoke a conscious
sensation178. Cones on the other hand are responsible for day time vision and exhibit a large
dynamic range and detect subtle changes in contrast and color. There are about 100 Mio. rods
and 5 Mio. cones in the adult human retina106.
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The photoreceptors transmit information to bipolar cells which in turn are connected to Retinal
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Figure 2.1: Visual pathway and its three main stages. a Information is carried from the retina
(b) via the LGN (c) to the primary visual cortex (d), adapted from198. The brain is viewed
from below. The left part of each retina (indicated in black) projects via the LGN to the left
hemisphere of the visual cortex at the back of the brain (top of schematic). b The schematic
shows the five main cell types and their connections in the mammalian retina. Adapted from334.
c In primates, the LGN consists of 6 layers which receive eye-segregated input (ipsilateral input:
blue, contralateral input: red) and are divided into the magnocellular (striped area) and the
parvocellular pathway. d In mammals, the primary visual cortex consists of six layers of varying
neuron types and density. Adapted from64.

Ganglion Cells (RGCs) (Fig. 2.1b). Their bundled axons form the optic nerve fibers which
transmit signals from the retina to the next processing station which is the thalamus (Fig. 2.1a).
Two other main cell types are horizontal and amacrine cells which exhibit predominantly lateral
connections to RGCs and bipolar cells (Fig. 2.1b). Their lateral wiring scheme suggests that
they transmit and modify signals traveling through the retina. Amacrine cells and RGCs can
generate action potentials whereas the other three cell types produce only graded potentials.
These five major cell classes can be further subdivided according to differences in function and
structure.
In darkness the photoreceptors are depolarized and release the neurotransmitter glutamate.
Incoming photons can be absorbed by the molecules inside of the photoreceptor. These molecules
convert the energy of the photon into an electrochemical signal by changing their configuration
and in turn hyperpolarizing the photoreceptor. After hyperpolarization, the photoreceptor stops
releasing glutamate. This decrease in glutamate depolarizes (excites) ON bipolar cells, whereas
it hyperpolarizes (inhibits) OFF bipolar cells.
Incoming light only evokes a response in a bipolar cell if the light is confined to a small spot in
visual space that lies within the cell’s receptive field172,250. OFF bipolar cells have an off-center
receptive field, i.e. if the incoming light is confined to the center of the receptive field an OFF
bipolar cell is being hyperpolarized, whereas if the light has the form of a broader ring the OFF
bipolar cells is being depolarized. In contrast, ON bipolar cells exhibit an on-center receptive
field (hyperpolarization for ring-like illumination, depolarization for spot-like illumination)462.
RGCs connected to OFF bipolar cells (ON bipolar cells) similarly show an off-center (on-center)
receptive field. In ON-type RGCs the increase in light in the center of the receptive field or the
decrease of light in the surround of the receptive field causes an increase in the cell’s firing rate.
In OFF-type RGCs an increase (decrease) in light in the surround (center) of the receptive field
increases the cell’s firing rate. Diffuse, homogeneous light evokes only a weak response in RGCs;
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thus, RGCs encode the difference in the light level between the center and surround of their
receptive field. There are several types of RGCs. Parasol-type RGCs typically exhibit larger
receptive fields and respond well to motion379. Midget-type RGCs have smaller receptive fields.
They are color-sensitive and respond preferably to fine spatial details263,95.
At every stage in the visual system neuronal signals converge and diverge extensively. The
human eye contains approximately 100 Mio. photoreceptors, but only 1 Mio. optic nerve fibers
are connecting the retina to the thalamus435. This bottleneck indicates that the visual input is
already processed in the retina by compressing its information using in parts the specific form
of the center surround structure of the receptive fields implemented by bipolar cells and RGCs.
As an example, the receptive field structure decorrelates the incoming image of the visual world
and can approximately be thought of as applying an edge-detection filter.
The processed information from the retina is carried along the retinofugal optic fibers. The optic
fibers divide into two pathways at the optic chiasm (Fig. 2.1a). The left side of each retina
corresponds to the right part of the visual world due to the optical reversal by the lens, and
projects to the left cerebral hemisphere (pathway shaded in black in Fig. 2.1a). Information
from the left (right) visual field is carried by the right (left) optic tract to the lateral geniculate
nucleus (LGN) in the thalamus49.

2.1.2 Lateral geniculate nucleus

The LGN receives the major part of the output of the retina and is the main and direct relay
station between retina and visual cortex (Fig. 2.1a). The number of optic nerve fibers equals
roughly the number of geniculate cells. Nevertheless, geniculate cells receive convergent input
from several optic nerve fibers, and optic nerve fibers diverge to several geniculate cells.
The LGN is one of the nuclei of the thalamus. In primates including humans it is arranged
into six layers (Fig. 2.1c). Each layer receives information from only one eye. Layers 1, 4 and
6 receive information from the contralateral eye, whereas layers 2, 3 and 5 receive input from
the ipsilateral eye191. Layers 1 and 2 contain magnocellular cells which receive input from the
parasol-type RGCs in retina263,95, and thus form the magnocellular pathway. This pathway
contributes motion and depth information379, is sensitive to light/dark contrast348 and, thus,
helpful when detecting edges83 (see Section 2.1.3). Layers 3 to 6 contain parvocellular cells
which receive input from the midget-type RGCs, and form the parvocellular pathway. In this
pathway information about the fine detail of objects and color is carried263,95. Inbetween each
layer lies a zone of very small interlaminar or koniocellular cells95,181,72. They receive signals
from a heterogeneous group of RGCs in the retina and from neurons in the superior colliculus.
They are thought to relay short-wavelength visual information, and appear to be binocularly
driven461 in contrast to magnocellular and parvocellular cells.
The incoming optic fibers are ordered to form a retinotopic map in LGN. Neighbouring RGCs in
the retina project to neighbouring geniculate cells such that the receptive fields of neighbouring
neurons strongly overlap181,72. Thus, neigbouring geniculate cells receive inputs from a similar
region of the visual field, but from notably diverse classes of RGCs25. A general rule of thalamic
organization seems to be that neurons that are close to each other process similar information.
This orderly, anatomical architecture suggests a massively parallel processing of information in
the early visual system.
LGN receives strong feedback connections from visual cortex that are necessary for synchronized
firing in LGN384,147,437. Due to these feedback connections LGN is thought to be not only a
relay station in the visual system but capable of contextualizing incoming signals437.
In primates the major part of the output of LGN is being transmitted via the optic radiations
to primary visual cortex33,60 (Fig. 2.1a). This is unlike to carnivores where LGN also relays
information directly to higher cortical areas33,60.
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2.1.3 Visual cortex

LGN relays its output to visual cortex. The visual cortex is dedicated to process visual infor-
mation and is located in the occipital lobe of the brain (Fig. 2.1a). Information from LGN
first arrives in the primary visual cortex (V1) and is then sent to higher cortical areas where it
is thought to follow two different paths depending on its content161. Information about object
identification and recognition is sent along the ventral stream (also called the “what pathway”),
whereas information about an object’s spatial location follows the dorsal stream (“where path-
way”)161. V1 is the largest cortical area in the adult human brain with a surface area of ∼25 cm2

and about 140 Mio. neurons in each hemisphere261. In many species area V1 is located at least
partially close to the surface making it particularly accessible for various imaging methods, and
one of the most extensively studied areas in the brain.

Anatomical architecture

Similarly to LGN, V1 shows a very orderly and structured organization. Within the gray mat-
ter (containing cell bodies, dendrites, few myelinated axons and glial cells) it consists of six
layers (Fig. 2.1d) which vary in thickness and cell density64. In most large brained mammals,
primates and carnivorans, V1 (and the higher visual areas) is retinotopically organized which
means adjacent cortical cells have overlapping receptive fields. The positions of the receptive
fields form an orderly arranged map in visual cortex111,286. Moreover, nearby neurons share
similar functional properties, e.g. they respond similarly to specific visual features145,414.
Geniculate fibers projecting to visual cortex are excitatory15,305 and mostly project to layer
IV191,255,198. In primates, layer IV is further subdivided into the sublayers IVA, IVB, IVCα and
IVCβ72. IVCα receives most input from the magnocellular pathway, whereas IVCβ typically
receives input from the parvocellular pathway191,180,42. Thalamic input only provides a small
fraction of all synapses in layer IV of about 6% (in cat98,107). The majority of synapses is pro-
vided by other cortical neurons292,138,119. Thalamic synapses are comparable in their properties
(e.g. strength) to synapses coming from other cortical neurons9,37. Taken together these obser-
vations led to the hypothesis that thalamic input is “just enough“119,290 to drive activity in the
cortex and is then amplified by cortical circuits107,405,26,266,352.
In addition to this orderly feed-forward organization V1 exhibits a remarkably organized verti-
cal structure. First, neurons connect vertically different layers. Especially, layers II, III and V
receive input from other layers within cortex. Layer IV transmits signals to layers II/III which
in turn relay information to layers V and VI162.
The vertical organization is complemented by extensive long-range connections within the lay-
ers155,357,153,154,232,68. These extend up to 6-8 mm and reciprocally connect discrete and period-
ically organized clusters of neurons357,356,270,243. These clustered long-range connections are not
only found in primary visual cortex but throughout the brain, i.e. in higher visual areas, the
motor cortex, the prefrontal cortex, and the inferotemporal cortex315. The modular structure of
vertically organized cortical columns313,194 interconnected via long-range horizontal connections
suggests that neuronal columns might serve as computational units, i.e. process certain features
of the visual scene and then pass information on to other cortical regions.

Functional architecture

Neurons in V1 are typically characterized by their functional properties towards topological re-
lations inherited from retina and LGN, and towards specific features of the visual stimulus440. In
V1 the eye-segregated pathways from retina to LGN merge, and cortical neurons receive input
from both eyes simultaneously. Most neurons show a strong preference, ocular dominance, for
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the input of either one of the eyes272,20.
In a remarkable experiment Hubel and Wiesel revealed that neurons in V1 respond preferably
to edge-like stimuli194. The neurons exhibit either a simple or a complex receptive field. The
simple receptive field consists either of an extended narrow, oriented central area flanked by two
antagonistic regions, either excitatory or inhibitory, or is approximately rectangular with one
side being excitatory and the other being inhibitory. The optimal stimulus to drive a simple
cell is of a certain orientation and width. In contrast, a complex receptive field implements
the abstract concept of orientation preference without the strict reference to a spatial position.
Most of the simple cells are located in layers VI194,156,59 and IV, whereas most complex cells
are located in layers II,III and V. This layering is consistent with anatomical studies showing
that many complex cells lie within the range of axons from layer IV simple cells, but outside
the range of most thalamic axons18. Besides orientation selectivity and ocular dominance, neu-
rons in V1 show preference to direction413,382,436, spatial frequency415,414 and further stimulus
properties415,414.
Measuring the response of an orientation selective neuron as a function of stimulus orientation
shows that its firing rate increases as the oriented stimulus matches the neuron’s preferred ori-
entation (Fig. 2.2a). This is visualized by a tuning curve (Fig. 2.2b). The narrower the tuning
curve and the higher the response to the preferred orientation relative to the baseline response,
the more selective the neuron is to this particular orientation.
Initially, it was hypothesized that orientation selectivity is caused by thalamic inputs converg-
ing onto a cortical neuron such that their superimposed center-surround receptive fields form an
elongated receptive field as exhibited by a simple cell194. Several experiments are consistent with
this model, e.g. silencing cortical circuits either pharmacologically78 or by cooling139,78 while
leaving the thalamocortical inputs intact, leaves the tuning of cortical neurons stable indicat-
ing that thalamic input contributes substantially to cortical tuning. Similarly, optogenetically
silencing visual cortex demonstrated that the tuning of cortical neurons could be predicted by
the receptive field structure of their thalamic inputs217,266. This is remarkable considering that
only 6% of the synaptic connections to V1 neurons come from thalamocortical axons. However,
another series of experiments demonstrated the presence of certain properties of orientation
selectivity that cannot sufficiently be explained by thalamic inputs, such as contrast invari-
ance374,386,427, extraclassical receptive fields392,441,183, e.g. surround suppression192,40,246,326 and
contextual modulation438,154,467,112, and state-dependent modulation325,366. Further factors be-
sides thalamocortical projections that might potentially contribute to orientation selectivity
include spike threshold or nonlinearity, gain control and intracortical excitation and inhibition.
The organization of the neuron’s functional properties within V1 reflects its underlying precise
and orderly anatomical architecture. Recordings with electrodes placed orthogonal to the cor-
tical surface revealed that neurons with similar functional properties are placed close to each
other in a vertical, columnar organization195,199. Electrode recordings tangential to the cortical
surface demonstrated that preferred orientation and ocular dominance change smoothly across
cortex (in macaque monkey199). Follow-up experiments using the uptake of 2-deoxyglucose by
active cells visualized for the first time bands of highly active regions, ocular dominance columns,
as well as orientation columns in macaque monkey197 going through all layers (except for layers
IVc, and possibly I; in rhesus monkey236,391). Eventually, experiments using optical imaging
methods in living animals demonstrated that orientation columns are orderly arranged across
the cortical surface only interrupted by pinwheel centers. Pinwheel centers are discontinuities
in the otherwise smooth organization of orientation domains at which all orientations are rep-
resented43,164,45 (see also Fig. 2.2c,d). The spatial layout of orientation domains is precise and
almost continuous (except for pinhweels) on a single cell level331 (Fig. 2.2d). Although their
spatial layout has been described as ”complex” and ”unpredictable”43, the preferred orientation
varies on a typical spatial scale across cortex48,45,164,43,231,373 and the layouts of all examined

23



2. Foundations

species of the orders of carnivora and primates follow a common organizing principle231, termed
common design. As orientation selectivity is a well-studied, prominent and robust feature of
V1, we will use the orientation preference map to assess the functional organization of V1.

This robust and very orderly architecture of preferred orientation in the primary visual cor-
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Figure 2.2: Orientation selectivity and its layout. a Schematic of firing rate response of simple
cell in V1 to differently oriented stimuli. b The tuning curve shows an increase in firing rate for
the preferred orientation. A narrow (broad) tuning curve indicates a highly (weakly) selective
neuron. ((a) and (b) adopted from193) c Color-coded layout of smoothly changing orientation
preference domains with pinwheel centers in cat area 18 obtained by in vivo intrinsic signal
optical imaging (adapted from45). d Orientation preference in single neurons arranged around
an individual pinwheel center in cat visual cortex reveals a precise functional architecture331. e
The visual cortex in rat shows an interspersed layout331. Scale bar: 1 mm (c), 100 µm (d,e).

tex of carnivores and primates stands in stark contrast to the observed dispersed organization
of orientation preference in V1 of rodents and lagomorphs. Although neurons in primary vi-
sual cortex of rodents and lagomorphs can be highly orientation selective, electrode recordings
suggest an apparently disorganized layout of orientation preference (in rabbits318, mouse301,324,
rat157,337,331, gray squirrel432). Follow-up experiments using 2-photon imaging revealed an in-
terspersed, spatially irregular, salt-and-pepper like organization of orientation preference in ro-
dents331 (Fig. 2.2e).

Histological architecture

The visual cortex exhibits not only an orderly anatomical and functional organization, but is
also compartmentalized into regions with high and low metabolic demand. These regions can
be differentiated by staining with cytochrome oxidase (CO) which is an enzymatic marker for
long-term activity in neuronal cells, and is prevalent in cells with high metabolic activity. CO
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staining exhibits a distinct pattern of blobs (highly active regions) and interblobs (low metabolic
demand) in cortex. They are most prevalent in the upper cortical layers270.
Initially, CO blobs were thought to be only found in primate cortex, only later studies indicated
that CO blobs are also present in cortex of carnivores (in ferret103 and cat319). The formation of
CO blobs and their relationship to the functional cortical organization is still unclear. Differently
active regions are hypothesized to serve different functions. Early studies suggested that neurons
within blob regions exhibit low orientation selectivity whereas neurons outside are orientation
selective (in macaque and squirrel monkey116,190). However, following studies did not confirm
this relationship (in macaque monkey263). Other studies proposed that neurons within CO blobs
are unselective for orientations and instead selective for color270,271, but since CO blobs are also
found in colorblind nocturnal primates94,456,455 and cats319, it seems unlikely that CO blobs are
purely concerned with color signals.

2.2 Visually evoked and spontaneous activity during the
development of the visual system

The functional domains in the visual cortex are organized with single-cell precision over an
extended spatial scale ranging up to several millimeters. Naturally, the question arises how
this exquisite architecture emerges and maturates during development. Extensive research has
shown that the development of the visual system takes place over an extended period in time in
a stereotypical set of hierarchically ordered steps. The formation and maturation of the visual
system is driven by both activity independent as well as activity dependent mechanisms. Activ-
ity independent mechanisms involving axon guidance molecules construct a rough topographic
map which is then refined by activity dependent mechanisms to provide a precise set of in-
puts to a target cell. Activity dependent mechanisms rely on spontaneous and evoked activity.
Spontaneous or ongoing activity is not related to an external, experimentally given stimulus
but is internally generated, whereas evoked activity is a response elicited by a specific external
stimulus.
Spontaneous activity seems to play a prominent role in the development of cortical circuits espe-
cially early in development. At early stages in development external stimuli often do not reliably
or robustly elicit cortical responses as the feed-forward architecture from the sensory periphery
to sensory cortices is not established, yet. In cat, ferret and mice the eye-lids are still closed (al-
though pups might experience visual stimuli through closed eye lids249,439) and pups are typically
reared in a protected environment with limited sensory stimulation. In contrast, spontaneous
activity is present throughout the visual system already prior to birth and is therefore assumed
to play a role in shaping the maturation of cortical activity and cortical architecture especially
early in development. Due to its presence already at early stages in development, spontaneous
activity can also be used to probe the state and development of early cortical circuits without
additional stimulus specific contributions. In the following an overview about visually evoked
and spontaneous activity during the development of the anatomical and functional organization
of the visual system is given. In the main part of this thesis we will analyze imaging data of
spontaneous activity to read out the state of cortical activity throughout development and to
compare it to the mature functional organization assessed by visually evoked activity.

2.2.1 Early development of the visual pathway

The development of the visual system has been extensively studied in carnivores, especially in
cat and ferret (Mustela putorius furo) whose visual systems strongly resemble each other252.
The ferret belongs to the genus Mustela of the family Mustelidae (Fig. 2.3a). They are small
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a b

Figure 2.3: Ferret and its brain structure. a Ferret, photograph adapted by Alfredo Gutierrez,
distributed under a CC BY-SA 4.0 license. b Lateral view of the ferret brain (left : frontal lobe;
right : occipital lobe and brain stem) with the boundaries of the areas of the visual system where
areas A17 to A21 correspond to V1 to V4, respectively. Image taken from339.

carnivorous predators that are mostly active around dawn and dusk (crepuscular behaviour).
Their average gestation period is 41-42 days214 and they open their eyes only at around 30 days
after birth. Their litter consists of usually between 3 and 7 kits which are weaned after 3 to 6
weeks. They become sexually mature after around 6 months with an average life span of 7 to
10 years.
The ferret’s short gestation period and its birth relatively early during its cortical development

- it is born three weeks earlier in its development than the cat267 - makes it a superb animal
model for developmental studies. The ferret shows vigorous cortical responses and is physio-
logically robust compared to the cat at the equivalent developmental stage. Cortical responses
can be evoked as early as P23 in ferret which is equivalent to the day of birth in cats whereas
neuronal activity in kittens is hard to elicit at this age76.
The visual system of ferrets develops over an extended period from before birth until after
eye-opening (Fig. 2.4). Most processes relying on intrinsic mechanisms (activity-independent
mechanims or spontaneous activity) have maturated prior to eye-opening, whereas processes de-
pending on visual experience start to become more prevalent briefly after eye-opening (Fig. 2.4).
Similar to other species, in ferret the retina is maturating prior to the LGN which in turn mat-
urates before V1450,233. The number of RGCs in the retina has reached its mature level by
postnatal day 6 (P6)179. In the developing LGN the inputs from the two eyes are intermixed
and at birth the LGN is not laminated, yet381,396. Segregation of ipsilateral and contralateral
inputs within LGN emerges between embryonic day 39 (E39) and P4. The cellular lamination
in LGN begins to appear at around P13262,254,376. By P21 the retinogeniculate connections are
specific for eye, on/off contrast and layer396, and by P22 the LGN attains an essentially adult
architecture267, although the receptive fields in LGN still undergo refinement422,12. In contrast
to primates ferret LGN consists of two major layers A and A1 in between which are four C
laminae267 (comparable to those of cats355 and mink369).
Cortical neurons are generated within the ventricular zone (close to the brain’s ventricles) from
progenitor cells which divide to produce glial cells (non-neuronal brain cells) and neurons227

which later form the six cortical layers. During early development the transient fetal subplate is
located below the cortical plate248,220,221,227 and is responsible for the emergence and matura-
tion of thalamocortical projections228,276. The subplate consists of a heterogeneous population
of neurons and changes throughout development in size and cellular composition228,276 until
after birth the majority of subplate neurons disappear227.
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Figure 2.4: Schematic of the development of the ferret visual system. Top part indicates impor-
tant stages during the development of the anatomical architecture. The colored bars below the
timeline indicate periods in time when spontaneous (and visually evoked activity in V1) occurs
in different components of the visual system. The open bars (bottom) show the development of
functional properties of the visual system. Adapted from376,200.

Already at around E35 LGN axons reach the V1 subplate to establish a temporary link376. They
reach their final target layer IV at around P16410. The neurogenesis in visual cortex starts at
around E20 and continues until two weeks after birth214. The primary visual cortex can first be
discerned at around P14. Its neurogenesis follows an inside-out radial gradient, as observed in
primates and other mammals, where neurons of the deeper cortical layers are generated before
those of the superficial layers (except for layer I)214. Neurons of one layer are typically generated
over a period of several days, and migrate to their specific layer within one week214. Neurons of
layer II/III are mostly produced between P1 and P8 and by P21 most of them have completed
their migration214. At P33 the laminar distribution of V1 resembles the distribution of the
mature animal214. The imaging data used in this thesis was obtained between P21 to P37, so
after the establishment of layer II/III.

2.2.2 Spontaneous activity in the visual system during early development

Retinal waves

Spontaneous activity has been observed throughout the visual system already at early stages
in development. Most studies examined the properties of spontaneous activity and its influence
on the development of neuronal networks in the retina. RGCs generate bursts of spontaneous
action potentials that are spatially correlated and that spread across the retina in a wave-like
manner. These retinal waves start before the photo receptors are capable to react to incoming
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light, and they disappear at around eye-opening200. Retinal waves can be separated into three
stages occuring one after each other and differing in wave velocity, domain size and frequency
(Fig. 2.4). Waves of stage I start to appear prior to birth in ferrets297,200, are rather infrequent
(occur every 1-2 min) and require gap junctions to mediate activity416.
Stage II retinal waves start to appear at around birth402,416 and occur at a similar frequency
every 1-2 min at a time when eye-specific input is segregated in LGN (Fig. 2.4). These waves
do not travel across the entire retina, but are several 100 µm wide297. Since they occur relatively
infrequent, it is unlikely that RGCs in different eyes but at a similar position within the visual
field are active at the same time. This makes stage II waves suitable to relay instructive, eye-
specific information to higher brain regions297,126,62,63.
After about two weeks after birth stage III retinal waves appear and are present until around
eye-opening. These activity waves are correlated between RGCs with the same polarity, and
are, thus, capable of relaying information about ON vs OFF cells to areas in the brain449,320.

Spontaneous activity in LGN

Experiments studying the spontaneous activity in the developing LGN in vivo are limited.
Multi-electrode recordings in ferrets as early as one week prior to eye-opening (coinciding with
stage III retinal waves) showed that spontaneous activity in LGN is generated from interactions
between retina, thalamus and visual cortex437. Its spatiotemporal properties are modulated
by corticogeniculate feedback connections and retinogeniculate feedforward input437. Neurons
of the same polarity (on-center or off-center) are more correlated in their spontaneous activity
than neurons of different polarity. Spontaneous activity shows significant binocular correlations
if the corticogeniculate feedback connections are intact. The contralateral eye mainly drives
spontaneous activity in LGN. Cutting the optic nerve to the contralateral eye changes the
spontaneous activity patterns to shorter, more coherent and more frequent bursts437.

Spontaneous activity in V1

Only little is known about the spatiotemporal properties of spontaneous activity in the devel-
oping visual cortex of ferret. Electrode experiments in awake ferrets suggest that the spatial
layout of spontaneous activity in primary visual cortex prior to eye-opening (P22 to P28) is
patchy with a typical spatial scale of about 1 mm. This spatial pattern remains after LGN is
transiently blocked suggesting that spontaneous activity is generated intrinsically in cortex86.
Large parts of cortex in immature kittens at around birth are silent206,207. Only after a few
days after birth brief, synchronized and infrequent spontaneous activity is observed. With age
its frequency increases whereas its synchronicity decreases206,207. From the third week after
birth sustained spontaneous activity is observed which is inhibited by the animal’s arousal reac-
tions206,207. In the anaesthetized, adult cat spontaneous activity in V1 comprises dynamically
switching spatial activity layouts that resemble its evoked orientation preference map. These
spontaneous activity states extend over several millimeters429,235,327 and are coordinated be-
tween hemispheres327. It remains unclear from this work on which fine spatial scale and over
which distance the similarity between spontaneous and evoked activity holds. It is also unre-
solved how this similarity emerges during development.
In rodent neocortex different stages of spontaneous activity have been extensively studied. Al-
ready several days prior to birth spontaneous Calcium transients are observed in neocortical
slices of mice on a single cell and network level97. In neocortical slices from newborn rats large
scale network events - termed cortical early network oscillations (cENOs) - propagate over the
entire cortex (∼ 2mms )150. These activity patterns are similar to spontaneous Calcium waves
observed in vivo in awake mice7. Several days after birth spontaneous activity is dominated by
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cortical giant depolarizing potentials (cGDP) with a higher frequency, faster kinetics and only
partially affected by AMPA/NMDA receptor antagonists17. These cGDPs are hypothesized to
synchronize local neural assemblies277. At around P10-11 prior to eye-opening slow activity
transients (SATs) are observed in visual cortex of rats produced by the summation of rapid
oscillatory bursts93. In addition to these large-scale spontaneous patterns, spatially confined
gamma oscillations (30-40 Hz) are observed in cortex of neonatal rats458,309. Another type of
short and local network oscillation are spindle bursts (10-20 Hz) observed in primary visual and
somatosensory cortex of rats239,170,308,458,459 and similar to the spontaneous activity observed in
immature ferret visual cortex86,85. This spindle burst activity is synchronized across neuronal
populations and correlated with spontaneous musculuar twitches which are typically evoked
from bursts of activity in the spinal cord239.

2.2.3 The role of spontaneous activity in the development of neuronal
networks

In this thesis we use spontaneous activity as a read out for the state of cortical circuits early in
development. However, extensive research has shown that spontaneous activity together with
other mechanisms intrinsic to the brain, i.e. axon guidance molecules, and mechanisms that
involve externally driven activity plays an essential role in the development of the anatomical
and functional architecture of the visual system. We therefore give a brief overview about the
current state of the research on how spontaneous activity is generated in cortical circuits and
how it is involved in the development and maturation of the organization of the visual system
by giving specific examples.
It is still unresolved to which extent each one of these activity dependent and independent
mechanisms contributes to the formation of cortical circuits and how they interact. Neuronal
networks are formed by generating and refining correct connections between cells. Synaptic con-
nections are typically formed in three steps. First, during pathway selection, the growth cones
of neurons form and navigate through the cortex to find their target. Second, at the target
region growth cones contact a localized group of target neurons and establish an initial layout
of connections370. In the third step, this initial layout is refined to a precision on the level of
individual synapses by selectively removing and expanding connections162,245.
Activity-dependent mechanisms underlying the formation of neuronal networks can play an in-
structive, permissive or selective role376. Activity is instructive if it is not only required for the
establishment of a neuronal structure, but when its level or its pattern can be directly related
to the shape of the structure. Activity is permissive if a certain level of activity is required for
establishing a structure, but higher levels or patterns of activity do not influence the structure
of the neuronal networks. Activity is selective if it is required for the maintenance of a neuronal
structure, and a loss of activity would lead to a deterioriation of said structure.

Mechanisms underlying spontaneous network activity

Spontaneous activity is ubiquitously observed throughout the developing nervous system of all
species examined, so far. It consists of bursts of activity coordinated across space and time which
makes it a well-suited candidate for restructuring the developing brain circuits. The underlying
mechanisms of spontaneous activity within the different brain areas are highly similar.
Synchronized, spontaneous activity may be triggered by a specific brain area, or a group of
pacemaker neurons238. So far, it is unclear which neurons could function as pacemaker cells277.
At early stages of development most neurons are electrically coupled via gap junctions127. Ex-
periments in vivo and in vitro have shown that gap junctions mediate spontaneous activity
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around the time of birth460,225,73. This spontaneous activity is synchronized between a small
number of neurons. Together gap junctions and synchronized spontaneous activity can regulate
the formation of excitatory synapses238. Specifically, gap junctions contribute to the emergence
of stage I and III retinal waves73,451,416,13.
It is thought that in early development GABA and glycine act as excitatory neurotransmitters
because of an initially higher intracellular chloride concentration31,39. Since GABA and glycine
transmitters are typically present before glutamatergic synapses are established, early sponta-
neous activity in cortical circuits largely relies on them. During later stages of development
these two transmitters are thought to become inhibitory39, while simultaneously the spatial
pattern of spontaneous activity changes. In the retina, local inhibitory circuits desynchronize
the spontaneous activity between neurons with dissimilar functional properties13. In addition,
the formation of excitatory and inhibitory synapses seems to depend on GABA acting either
excitatory or inhibitory258,259,79,144,338,11. This indicates that the switch of GABA and glycine
plays an important role for forming balanced excitatory and inhibitory circuits. However, it has
recently been suggested that depolarizing GABAergic potentials are an effect of the conditions
of the in vitro experimental setup187,123 (and see127 and references therein). To fully understand
the complex chloride dynamics underlying the GABAergic potentials further experiments are
necessary.
Extrasynaptic neurotransmission such as the nonsynaptic release of transmitter or the escape
of transmitters from the synaptic cleft (termed spill-over) contributes to the formation of spon-
taneous activity, especially in networks with immature synaptic connections. Extrasynaptic
communication underlies the formation of stage II452,466 and stage III13,41,141 retinal waves, and
is observed in the brain stem380, hippocampus115,74 and neocortex17,238. A considerable amount
of the influence of excitatory GABA and glycine stems from the extrasynaptic transmission of
neurotransmitters.
The formation of transient cells and transient connections contributes to a large degree to gen-
erating and propagating early spontaneous activity. Specifically in the neocortex of placental
mammals, neurons within the subplate of the cortical, ventricular zone are among the first neu-
rons being generated16. They play a major role in the formation of thalamocortical connections,
and receive input mostly from LGN and from cortex121, while relaying signals to layer IV and via
feedback connections to LGN113. Subplate neurons are highly spontaneously active. Excitatory
feed-forward connections from retina relay retinal waves to them5, and due to strong feedback
loops and strong lateral connectivity they intrinsically generate spontaneous activity bursts121.
These neurons are eliminated when direct connections from thalamus to layer IV of V1 mat-
urate16. Transient excitatory connections are observed in the retina where they contribute to
stage II retinal waves143,465.
Remarkably, spontaneous activity is present throughout development, although its underlying
cortical substrate is constantly changing during this period of time. To compensate for these
changes caused by neuronal development, synapse formation and elimination and maturation of
synaptic connections, a homeostatic mechanism is expected to underly the formation of spon-
taneous activity not only on a single cell level, but on a network level41,238. Such a homeostatic
mechanism has been directly observed in the retina. The retina of transgenic mice that were
constructed to not exhibit cholinergic retinal waves generated after a few days compensatory
waves397,398,409. Similar experiments in spinal cord and hippocampus showed that perturbing
the mechanism that generates spontaneous activity leads to compensatory activity together with
a potential restructuration of the circuit88,102,385.
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Activity-dependent plasticity mechanisms

So far, a complete understanding of the mechanisms that can alter the wiring diagram driven
by neuronal activity is missing257. It has classically been assumed that neuronal activity af-
fects the wiring in a Hebbian-like way403,297,289,287,306. The Hebbian plasticity rule strengthens
connections between neurons that are correlated in their activity and weakens connections be-
tween neurons that fire uncorrelated177. Indeed, experiments in the visual system have found
evidence for Hebbian plasticity in the maturation of retinogeniculate projections where synapses
are strengthened via Long-Term Potentiation (LTP), and weakened via Long-Term Depression
(LTD)63. Subsequent experiments could relate developmental synapse pruning to balanced learn-
ing rules enabling both Long-Term Potentiation and Long-Term Depression at retinogeniculate
synapses256. It has recently been shown that spontaneous activity influences the connectivity
structure on a sub-cellular level at individual synapses245,448. Recent experiments revealed that
synapses that are not synchronized with their neighbours become depressed245,448. This local
plasticity mechanism requires precise pre- and postsynaptic firing and appears to be an appro-
priate candidate to restructure connectivity according to highly correlated spontaneous activity.
Although there is experimental evidence for competitive and activity-dependent mechanisms
underlying the development of cortical circuits in the visual system, it has been also shown that
several developmental processes require non-Hebbian learning rules which rely on the activation
of either the pre- or the post-synaptic cell but not both247,350. Indeed, theoretical studies have
shown that generic plasticity rules including Hebbian-like plasticity and homeostatic mecha-
nisms in a network model are sufficient to generate network activity with several key properties
of spontaneous activity observed in experimental data253,173. In summary, a combination of Heb-
bian and non-Hebbian plasticity mechanisms potentially varying between brain regions appears
to translate neuronal activity into changes in the anatomical wiring242.

Influence of spontaneous activity on the development of components of the visual
system

Retinotopic maps in LGN Initially, coarse retinotopic maps are instructed by molecular
guidance cues such as ephrin/Eph which guide projections from the LGN to V1 independently
of activity related mechanisms (in ferret69, in mouse and chick34). The refinement of the retino-
topic map depends on spatially correlated retinal activity (reviewed in91,162,200). Retinal waves
are capable of transmitting information about neighbouring cells to higher brain regions and,
thus, can refine the retinotopic maps. Blocking retinal waves or perturbing their correlated,
spatiotemporal pattern results in a reduced refinement (in ferret341, in mouse61,454; reviewed
in242,257) indicating an instructive role of spontaneous retinal activity.

Eye-specific segregation in LGN Eye-specific segregation in LGN develops in two main
steps. Early in development inputs from the two eyes to LGN are intermixed and neurons in
LGN obtain binocular input. At the time when stage II retinal waves occur267, the retinal con-
nections from the neuron’s less preferred eye are eliminated whereas the connections from the
preferred eye are strengthened and maintained until the characteristic left and right-eye laminae
have developed (Fig. 2.4).
Since stage II retinal waves occur independently in the two eyes, they are thought to segregate
the retinogeniculate axons. Experiments showed that by increasing retinal wave activity in one
eye, this eye’s ipsilateral projections strongly extend (in ferret341). When elevating retinal wave
activity in both eyes, the areas occupied by the two eyes in LGN remain normal (in ferret401).
These results suggest that eye-specific segregation is based on binocular competition.
Subsequent experiments demonstrated that perturbing the spatiotemporal properties of stage
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II waves does not impair the development of eye-specific segregation (ferret203,394, but see
mouse453), but an increase in the fraction of asynchronous RGCs spiking occurring outside
of burst activity perturbs normal eye-specific segregation. Similarly, optogenetically stimulating
both eyes synchronously disrupts the refinement of eye-specific segregation (in mouse463). These
results indicate, that normal eye-specific segregation requires only certain features of stage II
wave propagation as well as asynchronous bursty firing patterns between the two eyes (reviewed
in242).
Blocking stage II retinal waves in both eyes still yields eye-specific areas in LGN since stage III
retinal waves which occur later during development seem to compensate for the missing stage
II waves (mice314, ferret202). The eye-specific areas that are occuring under these conditions
are randomly distributed and vary strongly between individuals indicating that not only the
presence but also the timing of long-range stage II retinal waves is essential for the normal
development of eye-specific segregation. Other factors that are only present early in develop-
ment, i.e. the axon guidance cue Ephrin-As, may be required for the normal development200.
This suggests that spontaneous activity acts in concert with activity-independent mechanisms
to induce eye-specific segregation.

Horizontal long-range connectivity during early development Lateral excitatory and
inhibitory synaptic connections undergo substantial remodeling during development (see also
Fig. 2.4). Prior to eye-opening at around P21, but after the thalamocortical loop has been
established, uniformly distributed and few unbranched horizontal connections that extend up
to 1 mm have formed in V1364,122,46. Although such axons can extend up to 1 mm, neurons
exchange functional inputs mainly with their local neighbours109,322. Basal dendrites are short
and weakly branched prior to P2246. By P27-28 crudely clustered horizontal connections which
extend 1-2 mm are established (ferret122,364,46, cat275,67,66,174,149). At around P28 to P35 these
crude clusters are being refined and exhibit more elaborate branches with unbranched axons in
between them. Between P42 to P49 distinct clustered connections separated by areas free from
axons were visible122,364. At this age an adult-like level of specificity was attained by selectivitely
eliminating long-range horizontal connections that initially project to incorrect columns, and by
adding long-range lateral connections to correct columns122. Inhibitory connections appear to
become refined on a faster time scale than excitatory connections108.
After bilateral enucleation clustered horizontal connections in V1 still appear, whereas contin-
uously silencing V1 (TTX applied at P21 for two weeks) results in randomly, not-clustered
distributed axon collaterals (in ferret364). These results strongly indicate that the initial emer-
gence of clustered connections requires cortical activity, but not retinal activity. Potentially,
correlated spontaneous cortical activity drives the emergence of clustered long-range connec-
tions. Evidence for this was found at a later stage in development by inducing strabismus in
kittens and thus eliminating correlation in the activity between the two eyes273. This leads to
a perturbed distribution of horizontal connections which segregate based on ocular dominance
and indicates that normal patterns of visual activity are necessary for normal circuit formation
and refinement273.
Dark rearing and binocular deprivation permit the initial development of lateral connections,
but prevent their normal refinement since incorrect axons are not eliminated (in cat275,66). This
suggests that the pruning process depends on visual experience. Similarly, other studies showed
that lateral connections in mature cortex in dark reared and in lid-sutured animals is spatially
more constricted and shows less clustering than in normal animals (in ferret439).

Ocular dominance It is still unclear how ocular dominance bands are initially emerging. In
cats they are thought to form within one week after eye-opening99,100, but are refined further in
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development234. Experiments showed that these early ocular dominance patterns are not affected
by inducing an imbalance in retinal activity between the two eyes105. However, blocking stage II
retinal waves severely perturbs their formation (in ferret201). This suggests that stage II retinal
waves potentially shape the segregation of LGN axons at an early stage in development when
they are still connected to the subplate (in ferret200).

Orientation selectivity It is currently still unclear when and how the layout of orientation
domains in visual cortex of primates and carnivores develops. Already prior to eye-opening in-
dividual neurons show orientation selectivity (in ferret76,249). Cortical domains start to become
selective for certain orientations at around eye-opening and maturate over the following days
into orientation preference maps as seen in adults (in ferret77,439). Animals reared in a dark
environment (dark-rearing, that means animals are without any form of visual experience) still
show an orientation preference map but with a lower level of selectivity than normally reared
animals (in ferret439). In both normal and dark-reared animals the selectivity increases during
two weeks following eye-opening eventually plateauing. However, orientation selectivity in dark
reared animals remains lower than in normally reared animals. Nevertheless, this suggests that
experience independent mechanisms play a significant role in the emergence and maturation of
orientation selectivity. Moreover, applying binocular lid-suture leads to only rudimentary levels
of orientation selectivity in ferret visual cortex439 (but see in cat99,158). This indicates, that not
the presence of visually evoked responses alone but specific spatiotemporal properties of activity
are necessary for the maturation of orientation preference.
Blocking all cortical activity early in development disables the formation of orientation selectiv-
ity (in ferret76, but see mouse167). Experiments in which an animal was reared in an environment
with only one orientation present (stripe-rearing) revealed that the experienced orientation occu-
pied a larger area within the layout of orientation domains than other orientations (in cat377,419).
Nevertheless, some regions still preferred orientations that the animal had never seen arguing for
the contribution of an experience-independent mechanism for determining the tuning of neurons.
Together, these results suggest that intrinsic, spontaneous activity either from retina, LGN or
from cortical sources plays a role in the emergence of orientation preference maps.

2.2.4 Summary

Spontaneous activity is observed throughout the nervous system already at early stages in
development. It acts together with activity-independent mechanisms such as guidance molecules
and evoked activity to drive and maintain the anatomical and functional organization of the
visual system. The development of the visual system consists of multiple stages; the initial stage
seems to require a combination of spontaneous activity and activity-independent mechanisms,
whereas later stages of refinement typically rely more on visual experience. The presence of
spontaneous activity already early in development makes it a suitable tool for assessing the
state of cortical activity and its changes throughout development.
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2.3 Theoretical background

Cortical activity in primates and carnivores exhibits a modular and distributed correlation
structure. The goal of this thesis is to shed light on key mechanisms responsible for the formation
of these two observed properties by studying models of cortical circuits. However, cortical
circuits in vivo are highly complex and intricate. Dynamics on many different temporal and
spatial scales contribute to give rise to correlated activity within and even across different brain
regions. It is computationally highly demanding to capture these multi-level dynamics of cortical
circuits. To reduce the complexity in their description, we take advantage of the fact that the two
observed features of cortical activity emerge on the mesoscopic level. Therefore, we can consider
simplified descriptions of the full circuits, modelling cortical activity on the population level.
In the following, we will give an overview about neural network models and their limitations in
the descriptions of cortical activity. In the first part we will briefly describe classical network
models447,446,159,317,130,226,148,14 on which the models presented in Chapter 5 and Chapter 6 in
this thesis are based. In the second part we will provide an overview about concepts and tools
used in this thesis to analyze datasets of activity patterns obtained either from network models
or in imaging experiments.

2.3.1 Modelling dynamics of cortical activity

We aim towards describing the modular and long-range correlated structure of cortical activity
at early stages in development as described in the main part of this thesis. A well used approach
to describe this kind of population activity is by a network model consisting of simplified firing
rate units that are active if their integrated input crosses a certain threshold and interconnected.
One of the most influential firing rate network models is the Wilson-Cowan model447,446. This
model yields a coarse-grained desciption of the mean activities of two interacting, homogeneous
populations of excitatory (E) and inhibitory (I) neurons in a large-scale network. In the follow-
ing, we will briefly summarize how its network dynamics can be derived.
To derive the dynamics of the Wilson-Cowan model several simplifying assumptions are made.
The variety of neuron types observed in vivo is generalized to one excitatory and one inhibitory
population of units, neglecting differences in morphology, connectivity schemes, signal trans-
mission dynamics, etc. The model describes the time coarse-grained activity of excitatory and
inhibitory units. Therefore changes in activity on a time scale which is larger than the units’
membrane time constant τ can be investigated. To describe the refractory period of neurons
after an action potential, the fraction of units within the refractory period rE (excitatory units)
and rI (inhibitory units) is introduced. The network units are homogeneously distributed within
a two-dimensional plane with density ρE for excitatory and ρI for inhibitory units motivated by
the layer structure of cortex64, and by the two-dimensional receptive fields structure in which
sensory information is received in visual cortex172,250,181,72. In the network model the units
typically interact via recurrent lateral connections that only depend on distance. Thus, their
interaction is isotropic and homogeneous across the two-dimensional plane. Each unit’s output
activity is weighted by an interaction weight to yield the input to the postsynaptic unit. The
dynamics of the spatially structured population activity are then given by446

τ
∂

∂t
uE(x, t) = −uE(x, t) + (1− rEuE(x, t))SE [α(t)τ (ρEuE(x, t) ∗MEE(x, t)− (2.1)

ρIuI(x, t) ∗MEI(x, t) + P (x, t))] (2.2)

τ
∂

∂t
uI(t) = −uI(x, t) + (1− rIuI(x, t))SI [α(t)τ (ρEuE(x, t) ∗MIE(x, t)− (2.3)

ρIuI(x, t) ∗MII(x, t) +Q(x, t))] . (2.4)
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where ∗ denotes the convolution operator. Here uE(x, t) and uI(x, t) describe the time coarse-
grained activity of excitatory and inhibitory cells at time point t and location x. P (x, t) and
Q(x, t) denote the external input to excitation and inhibition, respectively, combining inputs to
cortex from feed-forward and feed-back sources. SE and SI denote nonlinear functions which
are typically chosen to be a sigmoidal function modeling the nonlinear threshold response of
neurons. α(t) is the membrane impulse response describing the response to a unit excitation.
MKL (with K,L ∈ E, I) denote the connectivity weights between units in population K and L
only depending on their distance.
Applying a phase-plane analysis reveals that the system provides three modes of behaviour
that can be related to activity in sensory cortex, thalamic nuclei and prefrontal cortex446. The
dynamical mode corresponding to sensory cortex involves transient responses. The dynamical
mode appropriate for thalamus shows non-linear oscillatory behaviour, whereas the mode for
prefrontal cortex exhibits spatially inhomogeneous stable steady states. Variants of this model
have been widely used when modeling neural networks to describe the activity of a population
of neurons32,226,8,14,389.

Ring model

One specific type of the Wilson-Cowan model is the ring model where the network units are
arranged on a one dimensional line with periodic boundary conditions32. Each unit is described
by its preferred orientation θ which is determined by its position on the ring. In the limit of a
large network, the mean activity m(θ, t) of excitatory and inhibitory units obeys the following
dynamics

τ0
dm(θ, t)

dt
= −m(θ, t) + g[h(θ, t)] (2.5)

with h(θ, t) =

∫ π/2

−π/2

dθ′

π
J(θ − θ′)m(θ′, t) + hext(θ − θ0) (2.6)

with the characteristic time constant τ0, a nonlinear function g and the total synaptic input
h(θ, t). J(θ− θ′) denotes the interaction between units θ and θ′ which is chosen such that units
with similar preferred orientations excite each other whereas units that are orthogonally tuned
inhibit each other. The external input hext(θ−θ0) models the input evoked by a bar of a certain
orientation θ0 and contrast c to a unit with preferred orientation θ. The input is modulated
such that for nonzero contrast it drives most strongly units with a preferred orientation close
to θ0. For zero contrast the input is homogeneous across units. This simple network model
allows to study the emergence of orientation selectivity via different mechanisms and is used for
modeling spontaneous activity (see below). In the case that orientation selectivity is shaped by
the recurrent connectivity in the presence of homogeneous external input, the model reproduces
characteristic properties of experimentally observed visually evoked cortical responses, such as
contrast invariant responses32. In the following we will give an overview about an extension of
the ring model aiming towards describing the dynamics of spontaneous activity.

Network model of spontaneous activity

Previous experimental studies in cat visual cortex have shown that spontaneous activity fluc-
tuates on a time scale of several tens of milliseconds235. During these fluctuations the spatial
layout of spontaneous activity changes such that a different layout of domains becomes active.
These layouts often resemble visually evoked response patterns235. The underlying mechanism
generating spontaneous activity with these properties has not been resolved, yet. Two mutually
exclusive scenarios of a network model have been proposed that both reproduce the similarity
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Figure 2.5: Phase diagram of network states in the ring model. a Phase diagram of the ring model
as a function of the strength of cortical interactions λ and the ratio of the mean feedforward drive
T to its standard deviation σn. H denotes the homogeneous phase, M denotes the marginal
phase and I denotes the instability phase. b Example of network input h in the homogeneous (H)
phase as a function of the preferred orientation θ. Network settings of simulation are marked
by diamond in (a; λ = 1.2, T/σn = −0.5). c Example input h in the marginal (M) phase.
Simulated for network settings marked by asterisk in (a; λ = 1.2, T/σn = 2). Reproduced
from159.

between the spatial layout of spontaneous activity and evoked responses159. To experimentally
test these two scenarios the authors159 provided several model predictions. In the following we
will describe both scenarios and how they can be distinguished based on the model predictions.
In their paper Goldberg and colleagues159 studied several scenarios of a dynamic network model
and determined statistics to experimentally test their models. To model spontaneous and stim-
ulus evoked activity in the mature visual cortex, the authors used an extension of the one-
dimensional ring model32. In their model they considered correlations in the feed-forward input,
cortical interactions that are spatially restricted and used a layout of orientation domains that
was experimentally obtained159. In addition, they considered a network representing several
stimulus features instead of only orientation selectivity as done in the ring model159.
The network model is based on the ring model as explained above. Each firing rate unit (corre-
sponding to a mini-column in visual cortex) presents a particular preferred orientation. In the
absence of visual stimuli the network is driven by Gaussian white noise to model spontaneous
activity.
To experimentally test the different scenarios of the network model, the authors investigated two
quantities measuring the similarity in the spatial layout of spontaneous activity and evoked re-
sponse. The similarity index (SI) is the correlation coefficient between an instantaneous sponta-
neous activity pattern and the response pattern evoked by a moving grating. The spike-triggered
SI measures the correlation between the spiking of an individual neuron and the global SI.
In the network model the evoked states correspond to activity bumps localized around one of
the orientation domains. The ensemble of evoked responses forms a circle embedded within a
two-dimensional subspace. In contrast, the spontaneous activity can be in either one of three
regimes depending on the strength of recurrent connections and the ratio between the mean of
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the spontaneous LGN drive and its standard deviation (Fig. 2.5a). The H regime (homogeneous
phase; weak recurrent connectivity; Fig. 2.5b), also termed the single state scenario, is domi-
nated by the noisy feed-forward input and the activity fluctuates around a spatially uncorrelated
solution corresponding to a resting or background state. The time constant of the fluctuations
is fast and on the order of the time constants of the synaptic currents. The single state scenario
generates high-dimensional (noise-driven) activity patterns that generally do not resemble the
orientation preference map and therefore lead to a low SI and a small bias in the spike-triggered
SI. The SI distribution is narrow and Gaussian shaped. In the M regime (marginal phase;
moderate levels of recurrency; Fig. 2.5c), also termed the multiple states scenario, the solution
is a localized bump in orientation space. Assuming that the underlying connectivity structure
shapes spontaneous activity such that it resembles the layout of evoked cortical responses, the
noisy cosine-shaped profile of spontaneous activity is very similar to the evoked state. In this
regime the network selectively amplifies certain patterns via its recurrent connectivity, such that
co-active units tend to excite themselves whereas units that are anti-correlated in their activity
tend to inhibit each other. The noise in the input causes the localization of the bump to slowly
move. In this regime spontaneous activity is described by dynamic transitions between different
attractor states intrinsic to the network. The fluctuations of spontaneous activity are slower
than the time constants of the synaptic currents due to the slow transitions. Spontaneous activ-
ity patterns are confined to a low-dimensional manifold and resemble to a high degree the evoked
response patterns, resulting in a high SI and a high bias in the spike-triggered SI. Due to be-
ing constrained to a low-dimensional manifold, the SI distribution can be highly non-Gaussian.
Lastly, in the I (instable) regime at high recurrency strengths the activity diverges.
Several model scenarios have been found to be consistent with previous experimental data of
spontaneous activity235, and could not be invalidated by the established measures. In this data
the SI distribution is Gaussian-like and the spike-triggered SI exhibits a positive bias235,159.
Both the H regime (corresponding to the single state scenario) and the M regime encoding
multiple stimulus features (corresponding to the multiple states scenario) match these exper-
imentally observed properties of spontaneous activity. However, these two network scenarios
differ in how the width of the SI distribution changes with the number of orientation columns
modeled. In the single state scenario (H regime) the input to the network is dominated by noise
which yields Gaussian distributed similarity indices. Moreover, the width of the SI distribution
decreases with the network size as 1/

√
N with N the numbers of columns in the network as

remote regions are independent from each other. In contrast in the multiple state scenario (M
regime) the similarity between spontaneous activity states and the orientation preference map
is independent of the number of orientation columns modeled due to the slow transitions from
one global state to another.
To experimentally distinguish these two scenarios, the width of the SI distribution as a function
of the observed region size should be analyzed. A recent study327 in anesthetized cat reported
that the width of the distribution of the similarity indices between spontaneous activity states
and the orientation preference map changes only little when comparing the distribution based on
a single hemisphere to the distribution based on both hemispheres. In Chapter 3 in this thesis,
we will test both proposed scenarious by systematically varying the region size over which the SI
is calculated to quantitatively assess the dependency of the width of the distributed similarity
indices as a function of the area size in the awake animal.
In the ring model the activity patterns emerge through selective amplification via recurrent con-
nectivity. Co-varying units excite each other and anti-correlated units inhibit each other, and
in turn the activity pattern is iterated and its decay rate is slowed down. In experimental data
only a limited slowing of the dynamics has been observed235 and instead spontaneous activity
appears to exhibit fast temporal fluctuations235,317. In the next section we briefly discuss an
alternative method termed balanced amplification that allows to amplify activity states without
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a slowing of the dynamics.
The ring model relies on being homogeneous and isotropic, e.g. it requires a uniform and ho-
mogeneous distribution of preferred orientations across the network units. In the case that the
stimulus features are heterogeneously distributed, the network’s line attractor disappears and a
low number of discrete attractor states remains. However, experiments have demonstrated that
cortex is highly heterogeneous in its distribution of represented stimulus features and also in
the properties across neurons. In the next section we briefly discuss consequences of taking into
account network heterogeneity. In Chapter 5 we will use network heterogeneity as a potential
mechanism to generate long-range correlation structure within activity patterns.
In summary, in this extension of the ring model spontaneous activity is described by activity
patterns that are driven by unstructured input and selectively amplified via the underlying con-
nectivity structure. This network model is able to reproduce experimentally observed features
of spontaneous activity, such as its similarity to the visually evoked response map, the timescale
of its fluctuations and the shape of the SI distribution.

Balanced amplification

The ring model selectively amplifies certain activity patterns via its recurrent connectivity by co-
varying units exciting each other and anti-correlated units inhibiting each other. In the absence
of the recurrent circuitry an activity state would decay on a time scale determined by cellular
and synaptic time constants. The recurrent circuitry slows the decay rate by iterating activity
states. The amplification can overcompensate the intrinsic decay rate and lead to the growth of
the activity states. However, in experimental data only a limited slowing of the dynamics has
been observed235.
An alternative mechanism which is termed balanced amplification for the selective amplification
of activity patterns from unstructured input noise relies on the balance between strong recurrent
excitation and strong feed-back inhibition317. Such a balance is theoretically hypothesized to be
present in cerebral cortex434,433 and experimental signatures of it have been observed168,27,444.
It is assumed that both excitation and inhibition are strong, and thus small spatially dependent
fluctuations in the net input drive to excitation and inhibition drive large, spatially modulated
fluctuations in the total activity of excitation and inhibition434,433,317. The key assumption in
this model is that the connectivity matrix is non-normal due to the characteristic structure of
neurons exhibiting either purely excitatory or inhibitory connections which leads to a hidden
feed-forward connectivity between activity patterns. Specifically, a sum pattern (of excitation
and inhibition) is amplified from a differentially driven excitation and inhibition pattern (dif-
ference pattern)317. Due to this feedforward structure the dynamics of neither the sum nor
the difference pattern are slowed down. This mechanism can enhance certain network states
while maintaining fast network dynamics as observed in the experimental data of spontaneous
activity235.

2.3.2 Influence of network heterogeneity on network activity

The network models32,159 described previously rely on the assumption that the interactions are
homogeneous and isotropic and each unit shares identical properties. An isotropic and homoge-
neous network exhibits a line attractor where it is possible to shift an activity pattern in space
and the result is a new stable pattern of the same shape but at a new location. Using this mech-
anism, a particular network location can encode e.g. a particularly oriented stimulus in a one to
one relation as shifting the orientation of the edge-like stimulus in visual space corresponds to
shifting the cortical response pattern in cortical space. However, in general cortical circuits are
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not homogeneous and isotropic and neurons differ in their properties. Cortical circuits are highly
heterogeneous, e.g. in their distribution of anatomical connections51, their single cell proper-
ties293,283 and their distribution of preferred orientation159. The brain consists of a large variety
of different cell types of inhibitory interneurons with potentially different electrophysiological
and anatomical properties140,426. Similarly, excitatory pyramidal cells show heterogeneous elec-
trophysiological properties293.
Previous studies have investigated the consequences of introducing heterogeneity into network
models. Already in the presence of small network heterogeneity the line attractor disap-
pears353 and the activity patterns within the network cluster into a small number of discrete
states464,428,408,353 with a relative large basin of attraction428. Network heterogeneity breaks
the network’s translation and rotation symmetry and constrains the set of continuous attractors
such that only a lower dimensional set of possible attractor states is reached. The speed with
which the activity state drifts away from the formerly stable state increases with the amount in
heterogeneity353. Heterogeneity in more than one network property further increases the drift
rate whereas increasing the system size diminishes the drifting353.
External input further changes the attractor landscape. Driving the network with non-uniform
input splits up the remaining few clustered states as the input drive potentially reaches attractor
states with a more confined basin of attraction428.
Based on the property of heterogeneity to reduce the dimensionality of the set of network activ-
ity patterns, we will formulate a network model that quantitatively reproduces features of the
experimentally observed spontaneous activity (see Chapter 5).

2.3.3 Modelling modular cortical activity

Figure 2.6: Growth of spatially heterogeneous modes of a typical domain spacing. From left to
right : A spatially heterogeneous perturbation to a network with Mexican hat connectivity in a
spatially homogeneous state (leftmost) leads to the growth of a pattern consisting of modes of
a finite spatial frequency.

In primates and carnivores spatially modulated cortical activity is often varying on a spatial
scale of approximately 1 mm. In visual cortex evoked responses and spontaneous activity form
a near regular pattern of active domains with a typical spacing of 0.5 to 2 mm86,231,373,389. This
modular activity is present in many species (cat194,45,330, macaque198,43, ferret389, tree shrew48,
marmoset358,294, owl monkey328,456, galago455, sheep89 and human457), in excitatory as well as
inhibitory cells444 and already at early stages in development389, but is not observed in all cor-
tical areas160,2, not for all response properties and generally not in rodents301,157,337,331,432,324.
The underlying mechanism that leads to this modular activity is at present unclear.
A hypothesis put forward by many different theoretical studies287,321,417,223,268,304 is that mod-
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ular activity is intracortically generated which is consistent with recent experimental evidence
provided in this thesis389. However, due to experimental limitations this model class has hardly
been experimentally tested, so far.
Classical models generating such activity patterns are based on competition between excitatory
and inhibitory population activity. The dynamical mechanism typically assumed for generating
modular patterns of activity is known as the Turing-mechanism430,152,296: modular patterns arise
from a spatially homogeneous state by amplifying spatially heterogeneous perturbations through
dynamical feedback loops mediated by the recurrent connections130 (Fig. 2.6). In this case the
network exhibits a finite wavelength instability such that the spatially homogeneous fixed point
state becomes unstable to spatially modulated fluctuations in a frequency band around a finite
frequency. A detailed derivation of the Turing mechanism is given in Chapter 6.
A generic local circuit motive known to implement the Turing-mechanism, is the so-called Mex-
ican hat connectivity (local excitation with lateral inhibition). With this kind of connectivity
excitation amplifies locally elevated activity fluctuations whereas lateral inhibition suppresses
activity at an intermediate distance (Fig. 2.6). For simplicity, this connectivity scheme is often
studied in a network with one population of units that can act both excitatory and inhibitory
on its neighbouring units55. In this thesis we use this simplified version as the basis for a net-
work model to describe the emergence of long-range correlations in the absence of anatomical
long-range connections (see Chapter 5). Variants of this mechanism have been used to describe
the emergence of the functional organization of various stimulus features represented in cor-
tex, such as the formation of ocular dominance stripes411,134 and the emergence of orientation
preference maps in visual cortex of carnivores and primates287,302, as well as the generation
of visual hallucination patterns130 and the formation of modular spontaneous activity148,389.
Yet, evidence for a Mexican hat like connectivity profile is limited and has only been observed
in cortical areas early in development108. Other studies using electrode recordings in mature
mouse cortex265 suggest that the spatial range of inhibition is in fact more constrained than the
range of excitation. Thus, although this model type has been successfully applied to various
activity layouts, it relies on the assumption of lateral inhibition which still needs to be experi-
mentally shown. Given this biological constraint effort has been put into investigating network
architectures whose connectivity does not require a connectivity motif with local excitation and
long-range inhibition but still leads to modular activity patterns346,14,226,21.
Modular activity can form in a network where inhibition is spatially more constrained than
excitation if inhibition acts with a faster time constant than excitation346,14,226,21. This can in-
tuitively be understood assuming instantaneous inhibition. In this case the range of the effective
inhibitory influence consists of the summed excitatory and inhibitory range via the disynaptic
path from the excitatory to the inhibitory unit and back to the excitatory unit. Experimen-
tal evidence for fast inhibition is, however, limited329. Rather the typical decay time constant
of the most abundant receptor in cortex GABAA is larger than the timescale of AMPA re-
ceptors335,136,90,219,47. Extending the two-population model by introducing an additional slow
excitatory population (potentially corresponding to neurons with slow NMDA receptors) into
the network resolves this issue, but at the cost of higher complexity within the network226.
Another recent study14 examined the formation of modular activity patterns around a spatially
homogeneous but temporally oscillating activity state. Again, the formation of modular net-
work activity either requires lateral inhibition or inhibition with a faster time constant than
excitation.
Other work studied the effect of dendritic structure on the formation of activity patterns and
demonstrated that the passive membrane properties of the dendritic tree can induce spatial
activity patterns in networks with local inhibition and long-range excitation53,54,56. This model
relies on the assumption that the average distance of a synapse from the soma increases with in-
creasing separation between the two connected neurons. However, experimental evidence rather
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suggests that the distance between synapse and soma is largely determined by neuron type140,426.
In summary, it is typically assumed that modular activity is intracortically generated through
a Mexican hat like connectivity profile with local excitation and lateral inhibition. An ef-
fective Mexican hat connectivity can be obtained when assuming a fast inhibitory time con-
stant. Experimental studies showing evidence for both of these two assumptions are lim-
ited265,335,136,90,219,47,329. Increasing the complexity of the network model, either by introducing
a third population of units or by specifically modeling the neurons morphology relaxes the con-
straints on the lateral connectivity such that wiring schemes that are biologically plausible may
lead to the formation of modular activity. In Chapter 6 we investigate in a network model alter-
native connectivity schemes that are consistent with current biological observations and allow
the network to form modular activity without adding further complexity to the network model.
In particular, we show that local self-inhibition is sufficient to robustly lead to the formation of
modular activity even in the absence of fast and lateral inhibition.
All in all, a key advantage of network models is that they can be analytically and numeri-
cally analyzed potentially leading to new insights into the underlying principles that generate
the described properties of cortical activity whereas more complex models might obscure these
principles.

2.3.4 Dimensionality of cortical activity
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Figure 2.7: Intrinsic and embedded dimensionality of simulated neural activity can differ. a-
c Top: 3d projection of simulated neural activity onto the first three principal components
(see following Section 2.3.5). Bottom: Explained variance of simulated activity for first six
components. Intrinsic (dintr) and embedded (dlin) dimensionality are varied and for comparison
the effective dimensionality deff (see Section 2.3.6) is determined for each case. Values are
dintr = 1, dlin = 2 (a), dintr ≈ 1, dlin > 2 (b) and dintr = 2, dlin = 3 (c).

With the advancement of large-scale imaging techniques allowing to record the activity
of a large population of neurons simultaneously, it becomes ever more important to develop
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methods to assess the complexity of neural activity and to potentially find an interpretable
low-dimensional structure in large datasets. Previous work has shed light on the complexity
of neural activity by investigating the dimensionality of spontaneous and evoked activity. In a
previous study spontaneous activity has been observed to outline the space of possible activity
patterns of evoked activity, thus, indicating that spontaneous activity is more high-dimensional
than evoked activity in sensory areas274. This is in line with other work showing that spon-
taneous activity explores a substantial part of state space407. Recently, a study showed that
visually evoked activity in mice V1 is high-dimensional with its correlation structure following
a power-law. This power-law decay suggests a smooth population code meaning that similar
stimuli are encoded by similar activity patterns406. All these experiments were performed in
mature animals. However, it is still an unresolved question of how the dimensionality of cortical
activity develops during development. In this thesis, we therefore assess the dimensionality of
visually evoked and spontaneous activity during development (see Chapter 4).
The activity of a population of neurons can be thought of as a trajectory in a high-dimensional
space (state space) where each axis represents the activity of an individual observed neuron.
The goal is then to describe the structure of the trajectory in this high-dimensional space. A
straightforward quantification is to determine the dimension of the manifold in which the activ-
ity is embedded termed linear dimension (dlin in Fig. 2.7). A complex trajectory might explore
a great part of the state space corresponding to activity with a high linear dimensionality. In
contrast, a trajectory that is confined to a subspace in state space corresponds to activity with
low linear dimensionality. Potentially, the dimensionality of the activity trajectory itself termed
intrinsic dimension can be smaller than the dimension of the subspace in which the trajectory
is embedded (Fig. 2.7; see also Fig. 4 in406).
High dimensional activity potentially allows for general and complex computations351,137. In con-
trast low-dimensional activity represented by trajectories confined to a low-dimensional manifold
in state space might be a signature of data compression or denoising351,137. In low-dimensional
activity individual neurons are more coordinated in their activity exhibiting higher correlations
between them.
The dimensionality and the components that span the manifold in which the cortical activity is
embedded can be determined by various methods. In this thesis we use methods based on the
covariance of neural activity between cortical locations. Intuitively, high dimensional activity
corresponds to little co-variance between individual neurons which in turn corresponds to an
almost diagonal covariance matrix with eigenvalues that are of similar magnitude. In contrast,
in the case of low dimensional activity, individual neurons co-vary leading to a block structure
in the covariance matrix, and to many of its eigenvalues being zero. To determine the dimen-
sionality, it is possible to quantify the shape of the eigenvalue distribution (see Section 2.3.6).
Another possibility is to use Principal Component Analysis to assess the dimensionality and to
obtain the principal components that explain the most variance of the data (see Section 2.3.5).

2.3.5 Principal Component Analysis

In principal component analysis (PCA) a dataset consisting of n observations of p variables is
decomposed into a set of uncorrelated variables - its principal components. The first component
is found by maximizing the dataset’s variance along this component, thus explaining the highest
amount of variance in the data. PCA is essentially a coordinate transformation from the original
coordinate system into a coordinate system where the first coordinate accounts for the greatest
variance along one direction, the second coordinate explains the second largest variance under
the constraint that it is orthogonal to the first coordinate and so on. It is therefore a suitable and
widely used tool to assess the complexity of neural activity by determining how many principal
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components are needed to sufficiently describe the original data. Moreover, it is used to reduce
the dimensionality of a dataset by only keeping the first l components that explain the largest
part of the dataset’s variance.
To describe the procedure of PCA, we consider a datasetX (centered around zero and with stan-
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Figure 2.8: Dimensionality reduction based on Principal component analysis explains larger
variance of dataset than naive transformation. a Data points (blue) are transformed naively onto
first coordinate (~w1,1 = (0, 1)T , pink dashed line; second component is given by ~w1,2 = (1, 0)T ,
gray dashed line). b Same data points as in (a) are transformed onto eigenvector with largest
eigenvalue of the covariance matrix (~w2,1 = 1√

2
(1, 1)T , pink dashed line; second component

is given by ~w2,2 = 1√
2
(1,−1)T , gray dashed line). Reconstruction error (pink solid line) for

transformation in (a) is larger compared to the one in (b). Similarly, the spread of the data
points along the principal component (explained variance) is smaller in (a) compared to (b).

dard deviation of 1) consisting of n = 50 observations in rows and p = 2 variables (Fig. 2.8). We
want to reduce its dimensionality and describe this two-dimensional dataset by a one-dimensional
representation. We apply two different transformations to the dataset - one of them the PCA
transformation - and compare which transformation represents the dataset better. In the first
transformation, we project X onto the first feature coordinate (Fig. 2.8a)

Y1 = X ~w1,1 ~w
T
1,1 (2.7)

with the principle component ~w1,1 = (0, 1)T . Each transformed data point Y1 is now represented
by only one number.
In the second transformation, we want to maximize the variance that we explain when we project
X onto a second vector ~w2,1

~w2,1 = argmax
|~w2,1|=1

(Var(Y2)) = argmax
|~w2,1|=1

(
|Y2|2

)
(2.8)

= argmax
|~w2,1|=1

(
|X ~w2,1|2

)
(2.9)

= argmax
|~w2,1|=1

(
~wT2,1X

TX ~w2,1

)
(2.10)

= argmax
|~w2,1|=1

(
n~wT2,1C ~w2,1

)
(2.11)

where C = 1
nX

TX is the covariance matrix. The last expression is maximal if ~w2,1 is the
eigenvector with the maximal eigenvalue of C. Therefore, to find the principal component of
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the second transformation, we diagonalize C

C =
1

n
XTX = UDU−1 (2.12)

where D is the diagonalized matrix and the rows of U contain the eigenvectors ~vi (i ∈ {1, 2})
of C. The eigenvector ~v1 with the maximal eigenvalue describes the principal component ~w2,1

which captures the maximal variance of the data in one dimension (Fig. 2.8b).
Comparing the two projections in Fig. 2.8 we note that the data transformed by PCA captures
more of the total variance than the naive transformation. Further we note that the projection
based on PCA exhibits a smaller reconstruction error r which is measured by the sum of the
squared difference between the original dataset X and the dataset projected onto the principal
component. In the following we show that maximizing the explained variance of the data
corresponds to minimizing the reconstruction error

r = tr|X − Y2|2 = tr|X −X ~w~wT |2 (2.13)

= tr
(
(XT − ~w~wTXT )(X −X ~w~wT )

)
(2.14)

= tr
(
XTX −XTX ~w~wT − ~w~wTXTX + ~w~wTXTX ~w~wT

)
(2.15)

= n tr (C)− tr
(
XTX ~w~wT

)
− tr

(
~w~wTXTX

)
+ tr

(
~w~wTXTX ~w~wT

)
(2.16)

= n tr (C)− 2tr
(
XTX ~w~wT

)
+ tr

(
XTX ~w~wT

)
(2.17)

= n tr (C)− tr
(
~wTXTX ~w

)
(2.18)

= n
∑
i

λi − n ~wTC ~w. (2.19)

For brevity we used here ~w instead of ~w2,1 to denote the principal component. In the derivation
we used that the eigenvectors are normalized such that ~wT ~w = 1. In the last line the expression
for the eigenvector from Eq. (2.11) appears with a minus sign. Thus, minimizing r corresponds
to maximizing the explained variance.
The remaining components are given by the remaining eigenvectors of C sorted by their eigen-
values, respectively. That is the second principal component is given by the eigenvector with
the second largest eigenvalue and so on. The eigenvalues describe the relative amount of the
explained variance per component. To reduce the dimensionality of a given dataset to k dimen-
sions the data is projected onto its k largest principal components. Typically k is chosen such
that the variance explained by all k components crosses a defined threshold. PCA determines
the linear dimensionality of the dataset (see Fig. 2.7).

2.3.6 Linear estimate of dimensionality based on eigenvalues of covariance
matrix

To estimate the linear dimensionality of neural activity, the eigenvalue distribution of its covari-
ance matrix can be examined. In particular, the following measure of the effective dimensionality
deff has been established30,347,1:

deff =

(∑N
a=1 λa

)2

∑N
a=1 (λ2

a)
(2.20)

where λa are the eigenvalues of the covariance matrix for the N locations (pixels) within the
ROI. This measure is maximal (deff = N) if all eigenvalues are equal whereas it becomes minimal
(deff = 1) if one eigenvalue is much larger than the rest.
This measure is not only used to assess the dimensionality of the subspace spanned by activity
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patterns1, but has been introduced in physical systems30 and also been widely used in economical
research347. In this thesis, we estimate the dimensionality deff of the subspace spanned by
spontaneous activity patterns (see also Fig. 2.7).
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Chapter 3

Organization of distributed networks
and their link to visual response

properties in mature cortex

The layout of spontaneous activity patterns has been shown to resemble to a degree the layout
of visually evoked responses. However, the cortical distance and fine spatial scale over which
this relationship holds remain unclear. Using in vivo wide-field and 2-photon calcium imaging
of spontaneous and visually evoked activity patterns in mature ferret visual cortex, we found
spatially extended and modulated spontaneous correlation patterns that accurately predicted
the fine spatial structure of visually evoked orientation domains several millimeters away. These
results suggest a tight relation between spontaneous correlations and visually evoked responses
on a fine spatial scale and across large spatial distances.
Gordon B. Smith and David E. Whitney performed all experiments under supervision of David
Fitzpatrick in this chapter and did the analysis of the 2-photon imaging data (Fig. 3.17).

3.1 Introduction

Spontaneous activity patterns have been shown to resemble to some degree the spatial layout
of visually evoked responses (in mice310,303, zebrafish215,361 and cat429,235,327). In particular,
spontaneous activity patterns in the visual cortex of mature, anesthetized cats are significantly
correlated to the average responses evoked by moving gratings235, and these patterns are synchro-
nized between hemispheres327. It has been argued that the resemblance in the layout between
spontaneous and visually evoked activity patterns extends over large distances235. A subsequent
theoretical study investigated in a network model whether the properties of the observed spon-
taneous activity are consistent with a long-range similarity to the orientation preference map
layout. However their results remained inconclusive159.
Here, we characterize mature spontaneous activity in ferret visual cortex and study its relation-
ship to visually evoked responses. We take advantage of a newly developed and highly sensitive
calcium sensor81 allowing to robustly image neuronal activity on a single trial level in vivo. Us-
ing in vivo wide-field and 2-photon calcium imaging of spontaneous and visually evoked activity
patterns in awake and anesthetized, mature ferret visual cortex, we find spatially extended and
modulated spontaneous correlation patterns that resemble the layout of orientation domains
over large cortical distances of several millimeters. These correlation patterns accurately pre-
dict the fine spatial scale of selectivity to visual stimulus features of distant cortical domains
demonstrating a tight relation between spontaneous correlations and visually evoked responses
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on larger and finer spatial scales than previously shown. Finally, we test the predictions made
by the previously suggested network model159. We show that the suggested scenarios159 do not
capture properties of the similarity between our observed spontaneous activity patterns and vi-
sually evoked responses. In particular, the scenarios fail to account for the observed long-range
correlation structure in spontaneous activity decaying over several millimeters. We conclude
that in the mature visual cortex the layout of spontaneous activity correlations resembles the
layout of orientation domains to a very fine spatial scale and over large cortical distances.

3.2 Experimental setup

3.2.1 Animals

All experimental procedures were approved by the Max Planck Florida Institute for Neuroscience
Institutional Animal Care and Use Committee and were performed in accordance with guidelines
from the US National Institutes of Health. 24 female ferret kits were obtained from Marshall
Farms and housed with jills on a 16 h light/8 h dark cycle. These sample sizes were similar to
those reported in previous publications77,388,390.

3.2.2 Viral injections

Viral injections were performed as described in388,390,387. Two weeks after birth (P13-14) after
neurons from layer 2/3 have largely finished migrating GCaMP6s was expressed in visual cortex
by injecting AAV2/1.hSyn.GCaMP6s.WPRE.SV40 (obtained from University of Pennsylvania
Vector Core). Animals were anaesthetized with ketamine (50 mg/kg), and then maintained with
isoflurane (1-2 %). The animals were given atropine (0.2 mg/kg) and bupivacaine, and animal
temperature was maintained at approximately 37 ◦C with a homeothermic heating blanket.
Animals were also mechanically ventilated and both heart rate and end-tidal CO2 were monitored
throughout the surgery. Using aseptic surgical technique, skin and muscle overlying visual cortex
were reflected and a small burr hole was made with a hand-held drill (Fordom Electric Co.).
The virus (≈1 µL) was injected over 20 min at 200 and 400 µm below the cortical surface. After
6-8 days GCaMP6s was expressed in a patch of around 3 mm x 3 mm around the injection site
in layer 2/3 (Fig. 3.1).
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Figure 3.1: Virally-mediated labelling of visual cortex with GCaMP6s. a Coronal section show-
ing widespread GCAMP6 expression in layer 2/3 neurons of primary visual cortex (Green -
GCAMP6s / Red - NeuN). b Expanded view of region indicated in (a) with GCaMP6s. Scale
bars were 1 mm (a) and 0.5 mm (b).

48



3.2. Experimental setup

3.2.3 Cranial window surgery

To allow repeated access to the same imaging field, a chronic cranial window was implanted in
each animal 0-2 days prior to the first imaging session. Animals were anesthetized and prepared
for surgery as described above. Using aseptic surgical technique, skin and muscle overlying visual
cortex were reflected and a custom-designed metal headplate was implanted over the injected
region with MetaBond (Parkell Inc.). Then both a craniotomy (∼5 mm) and a subsequent
durotomy were performed, and the underlying brain stabilized with a 2 % agarose plug and a
8 mm glass coverslip. In some animals, the agarose plug was substituted, and instead a clear
Kwik-Sil plug (World Precision Instruments, 3-4 mm diameter, ≈1 mm thickness) or a custom
glass coverslip (3 mm diameter, 1.4 mm thickness) was adhered to the 8 mm glass coverslip. The
headplate was hermetically sealed with a stainless steel retaining ring (5/1” internal retaining
ring, McMaster-Carr) and glue (VetBond, 3M). Unless the animal was immediately imaged after
a cranial window surgery, the imaging headplate was filled with a silicone polymer (Kwik-kast,
World Precision Instruments) to protect it between imaging experiments.

Primary
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(488nm LED,

15HZ frame rate)FerretBlank screen:
spontaneous activity

Moving grating
& wholefield
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Visual stimuli can
evoke activity in V1
Spontaneous
activity in V1
Migration layer
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PD0 PD10 PD20 PD30 PD40
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Horizontal
connections [2] 1mm

AAV1.hSyn.GCaMP6s
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Lightly anesthetized with isoflurane (0.5-0.75%)

Experimental setup

Figure 3.2: Experimental setup and overview of developmental timeline of ferret. Top: Overview
of stages in development of ferret in relation to imaging (purple) time line. Bottom: Sketch of
imaging setup. Ferret pups were injected with AAV1.hSyn.GCaMP6s at around 14 days after
birth (P14). Chronic imaging of primary visual cortex was performed starting at around P21
until around P45. Spontaneous activity and responses visually evoked by fullfield moving grat-
ings and fullfield luminance changes were imaged using wide-field epi-fluorescence microscopy
and single cell 2-photon microscopy.
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3.3 Wide-field epifluorescence and two-photon imaging

Wide-field epifluoresence imaging was achieved using a Zyla 5.5 sCMOS camera (Andor) con-
trolled by µManager39124. Images were acquired at 15 Hz with 4 x 4 binning to yield 640 x 540
pixels. Two-photon imaging was performed with a B-Scope microscope (ThorLabs) driven by
a Mai-Tai DeepSee laser (Spectra Physics) at 910 nm. The B-Scope microscope was controlled
by ScanImage (Vidreo Technologies) in a resonant-galvo configuration with single-plane images
(512 x 512 pixels) being collected at 30 Hz.
In animals imaged after eye opening, we applied phenylephrine (1.25-5 %) and tropicamide
(0.5 %) to the eyes to retract the nictitating membrane and dilate the pupil. The cornea was
protected with regular application of eye drops (Systane Ultra, Alcon Laboratories). Then the
silicon polymer plug overlying the sealed imaging chamber was gently peeled off. Whenever the
imaging quality of the chronic cranial window was find to be suboptimal, the chamber was opened
under aseptic conditions, regrown tissue or neomembrane was removed and a new coverslip was
inserted. In some cases, prior to imaging, animals were paralyzed with either vecuronium or
pancuronium bromide (2 mg/kg/h in lactated Ringer’s, delivered IV). This anesthetic regimen
produced highly stable heart rates of 280-330 b.p.m. for the duration of imaging, with end-tidal
CO2 levels stably maintained between 35-45 mmHg.
For imaging experiments in awake animals, animals were habituated to head fixation begin-
ning at least 2 days before imaging. During habituation animals were exposed to the fixation
apparatus for brief periods after which they were returned to their home cage. For imaging,
animals were head fixed and wide-field and two-photon imaging was performed as above. In
experiments where both awake and anesthetized imaging were performed, awake imaging was
always performed first, followed by anesthesia induction as described above.
For anesthetized, longitudinal imaging experiments, anesthesia was induced with either ketamine
(12.5 mg/kg) or isoflurane (4-5 %), and atropine (0.2 mg/kg) was administered. Animals were
intubated and ventilated, and an IV catheter was placed in the cephalic vein. In some imaging
sessions, it was not possible to catheterize the cephalic vein; in these cases, an IP catheter was
inserted. Anesthesia was then maintained with isoflurane (0.5-0.75 %).
Following imaging, animals were recovered from anesthesia and returned to their home cages.
During recovery, neostigmine was occasionally administered to animals that were paralyzed
(0.01-0.1 µL/kg per dose).

3.4 Visual stimulation

Visual stimuli were delivered on a LCD screen placed approximately 25-30 cm in front of the
eyes of the animals using PsychoPy340. For evoking orientation responses, stimuli were full-field
sinusoidal gratings at 100 % contrast, at 0.015-0.06 cycles per degree, drifting at 1 or 4 Hz,
and presented at one of eight directions of motion. Stimuli were randomly interleaved and were
presented for 5 s followed by a 5-10 s gray screen. Imaging experiments were performed every
1 to 3 days for each animal. At the beginning of the imaging session spontaneous activity (5
to 30 min) was recorded while the animal was sitting in a dark room looking at a black screen.
Following the recording of spontaneous activity visual stimuli (moving gratings, flash stimuli)
were shown to the animal to record visually evoked activity for about 1 to 3 hours.
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3.5. Signal preprocessing

3.5 Signal preprocessing

Imaging neuronal activity, especially in vivo is typically contaminated by noise from various
sources such as light scattering and absorption by tissue, movement artefacts, uneven expres-
sion of the activity indicator that is recorded, or photon shot noise. To increase signal to noise
ratio and reduce these imaging artefacts, we preprocessed the data prior to analyzing. In the
following the preprocessing pipeline consisting of image alignment to reduce motion artefacts,
baseline subtraction to reduce uneven expression of the calcium indicator and spatial filtering
to remove activity artefacts caused by neuropil is described. These steps were then followed
by detecting events in ongoing spontaneous activity, calculating the spontaneous correlation
structure, the orientation preference and ocular dominance maps, and registrating the imaging
data across days. Lastly, methods to generate surrogate datasets used for significance tests are
described.

3.5.1 Signal extraction for wide-field epifluorescence imaging
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Figure 3.3: Applying a rank filter to the fluorescence trace F of spontaneous activity yields
the baseline F0. We obtain F0 for each pixel independently by applying the rank filter to each
pixel’s fluorescence trace. The parameters of the rank filter - the window size and the rank -
depend on the frequency of high activity events (highlighted by gray background; for clarity
three randomly chosen events are marked) and are chosen such that the baseline captures the
slowly (slow compared to the time scale of events) changing underlying trend of the activity.

To correct for mild brain movement during imaging (especially in the awake state), we
registered each imaging frame by maximizing its phase correlation to a common reference frame
which was typically the first frame204. Following this alignment all imaging data acquired
on the same day were registered into one reference frame. The region of interest (ROI) was
manually drawn around the cortical region with high and robust visually evoked activity. The
baseline F0 for spontaneous activity for each pixel was obtained by applying a rank-order filter
to the raw fluorescence trace with the rank between 15 to 70 and the time window between 10
and 30 s (values chosen for each imaging session individually, depending on the strength and
frequency of spontaneous activity). The rank and time window were chosen manually such that
the baseline F0 followed faithfully the slow trend of the fluorescence activity. Following the
standard procedure the baseline corrected calcium signal was calculated as

∆F/F =
F − F0

F0
. (3.1)
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For the visually evoked activity the baseline F0,k for each pixel and stimulus k was obtained
by taking the last 1 s activity of the inter-stimulus interval immediately before stimulus onset
tonset,k averaged across the ROI. The evoked response to a moving grating was then calculated
as the average of the baseline corrected fluorescence F (t) over the full stimulus period (5 s) as

wk(~x) =

tonset,k+5s∑
t=tonset,k

F (t)− F0,k

F0,k
(3.2)

with F0,k =

tonset,k∑
t=tonset,k−1s

F (t). (3.3)

Here ~x = (x, y)T is the location within the ROI, index k denotes the stimulus orientation, and
the sum runs over time frames from either before or after stimulus onset.
To decrease the computing time and the amount of memory required for the data analysis the
imaging frames were scaled down by a factor of 2 from 640 x 540 pixels to 320 x 270 pixels.

3.5.2 Denoising of wide-field epifluorescence imaging data
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Figure 3.4: Denoising algorithm removes spatiotemporal high-frequency noise components in
neural dataset. a Example DF/F activity pattern at eye-opening (P31) showing high frequency
noise especially in background of image. b Denoised variant of activity pattern shown in (a).
Spatial component of high frequency noise is considerably reduced.

In Chapter 4 we determined the dimensionality of spontaneous and evoked activity. To test
how high-frequency components affect the estimation of the dimensionality, we applied a novel
denoising algorithm58 to the dataset and compared the dimensionality of the denoised data to the
original data. In contrast to the previous state of the art denoising methods this new empirical
approach takes advantage of the locality of the neuronal signal. It assumes that the neuronal
signal is localized in space and time, and that the noise components are spatially and temporally
uncorrelated. The method only depends on a low number of parameters, and the authors claimed
that its results are robust against changes in the parameter settings. In sequential steps the
method first separates the original baseline corrected signal Y into its denoised part Ŷ and
the noise component E (V ≈ Ŷ + E) and then compresses Ŷ ≈ UV into lower rank spatial
and temporal components U, V . To this end, the original data matrix Y is split into (possibly
overlapping) local patches which are subsequently decomposed using a factorization method that
enforces smoothness in the spatial and temporal domains of the estimated signal. Applying this
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method to the DF/F signal, it extracted the high-frequent noise across development (Fig. 3.4).
The bloodvessels were still clearly visible after denoising.
By removing high frequency noise from the imaging data, we expected the dimensionality of the
data to decrease. To estimate how strongly the estimate of the dimensionality is influenced by
the high-frequency components, we compared the dimensionality between data that were only
spatially filtered and data that were additionally denoised. We found that the dimensionality
changes only little after the denoising algorithm was applied to the spontaneous activity. In the
following we therefore used only spatially bandpass and highpass filtering (see following section)
to remove high frequency noise for the analysis shown in Chapter 3 and Chapter 4.

3.5.3 Spatial filtering of wide-field epifluorescence imaging
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Figure 3.5: Spatial high-pass filtering of modular spontaneous activity. Representative sponta-
neous events shown as ∆F/F (top) and after high-pass filtering (bottom). The modular nature
of spontaneous events is clearly evident already prior to filtering.

The spatial structure of spontaneous activity shown as ∆ F/F exhibited active domains with
a typical spatial scale which we termed in the following modular activity layout (Fig. 3.5a(top)).
To eliminate the neuropil signal inbetween active domains, we applied a spatial high-pass filter
on each frame. To minimize the influence of activity from the boundary region outside the ROI,
we first applied the ROI and afterwards the high-pass filter. We implemented the high-pass
filter as the difference between the image f(~x) of ∆ F/F and the image filtered by a Gaussian
kernel. To eliminate edge effects caused by applying the ROI, we normalized the filtered image
by the filtered image of the ROI. The high-pass filtered image is then given by

fhp(~x) = f(~x)−

∑
~y

(
f(~y) e

− (~x−~y)2

2σ2
high

)
∑

~y

(
fROI(~y) e

− (~x−~y)2

2σ2
high

) (3.4)
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where fROI is the image of the ROI (being 1 within the ROI and 0 outside), and the sum goes
over all locations ~y = (y1, y2)T within the ROI. Throughout the study we used σhigh=200 µm
(corresponding to 15 pixels within the 320x270 frame) except noted otherwise.

Band-pass filtering

To remove the fine line artefacts caused by bloodvessels, we applied a spatial band-pass filter. We
implemented the band-pass filter as the difference between the low-pass filtered image flp(~x) of ∆
F/F and the low-pass filtered image convolved with the high-pass Gaussian kernel. Additionally,
we normalized each filtered image by the filtered ROI to eliminate edge effects caused by the
ROI. The bandpass filtered image is given by

fbp(~x) = flp(~x)−

∑
~y

(
flp(~y) e

− (~x−~y)2

2σ2
high

)
∑

~y

(
fROI(~y) e

− (~x−~y)2

2σ2
high

) (3.5)

with flp(~x) =

∑
~y

(
f(~y) e

− (~x−~y)2

2σlow

)
∑

~y

(
fROI(~y) e

− (~x−~y)2

2σ2
low

) (3.6)

(3.7)

Throughout the study we used σlow=26 µm and σhigh=200 µm (corresponding to 2 pixels and
15 pixels in the 320x270 frame), respectively, except noted otherwise.

3.5.4 Signal extraction for 2-photon imaging

2-Photon images were corrected for in plane motion via a 2D cross correlation-based approach.
For awake imaging, periods of excessive motion were discarded and excluded from further analy-
sis. Cellular regions of interest (ROIs) were drawn using custom software (Cell Magic Wand445)
in ImageJ. Fluorescence was averaged over all pixels within one ROI and imported into Matlab.
Traces were converted to ∆F/F388 where the baseline fluorescence F0 was computed from a
filtered fluorescence trace. The raw fluorescence trace was filtered by applying a 60 s median
filter, followed by a first-order Butterworth high-pass filter with a cut-off time of 60 s.

3.6 Event detection

Spontaneous activity showed periods of high activity followed by periods of low activity (Fig. 3.3).
We called periods of high activity spontaneous activity events. In anesthetized animals events
could be well separated. To assess the frequency and size of events of high spontaneous activity,
we first applied a threshold to each pixel individually which was set to 5 times the standard de-
viation of the pixel’s fluctuations around its baseline (Fig. 3.6a,b). If a pixel’s activity crossed
this threshold we termed this an active pixel. A frame with high activity was detected when
at least 0.01 mm2 of connected pixels were active (Fig. 3.6c). Consecutive frames with high
activity were called an event. Start and end of an event were defined as the time points when
the region of active pixels falls below the threshold of 0.01mm2. Moreover, we defined a spatially
extended activity pattern for which at least 80% of the pixels in the ROI showed activity above
their threshold.
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Figure 3.6: Detecting events in spontaneous activity. a Distribution of DF/F values of one
pixel. Mean and standard devation (SD) of its fluctuations are determined from the Gaussian-
like distribution around zero neglecting the long tail. b Pixels are defined as active during the
period of time their DF/F value is above threshold (mean + 5 x SD), and inactive when DF/F
is below threshold. c An event consists of the series of successive frames which show a coherent
region of active pixels larger than 0.01mm2. Start and end of an event are defined when the
region of active pixels falls below the threshold of 0.01mm2.

Especially in awake animals, but also in anaesthetized more mature animals events defined like
this often did not decay back to low activity (below 0.01 mm2 of active pixels) but were quickly
followed by another high activity period with a different spatial layout. To differentiate these
different activity patterns, we further divided these long events containing different patterns
into shorter events separated by a valley in the average activity trace (Fig. 3.7).
The spatial layout during one event changed little (see Chapter 4). Generally, the spatial layout

of the activity pattern appeared within the first 0.1 to 0.3 s of the event and then increased in
intensity. Eventually, the pattern then decayed by decreasing intensity of the layout. Spatially
separated blobs of high activity might decay with different time scales. Thus, in order to assess
the extended spatial layout of each spontaneous activity event, we extracted the maximally ac-
tive frame for each event which is the frame with the highest activity averaged across the ROI
during the event.
Typically, the frequency of spontaneous events increased during development. In early develop-
ment, at around 10 days prior to eye-opening, animals exhibited at the order of 10 events per
10 to 20 min of imaging. The frequency increased to the order of 100 events per 10 to 20 min
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Figure 3.7: Timecourse of DF/F averaged across imaging frame to detect spontaneous events.
A new event starts (indicated by marker) either from an inactive state when the increasing
size of a coherent region of active pixels reaches the threshold of 0.01 mm2 (purple), or at the
minimum of the activity averaged across the ROI when the size of active regions has not fallen
below threshold between two successive peaks in the averaged activity (blue). Two subsequent
events separated by the latter method typically display different spatial patterns.

at around eye-opening (Fig. 3.8). This could be a consequence of anesthesia acting differently
at different age.

3.7 Registration for longitudinal imaging

The experiments were performed over a period in development of the animal when the cortex
was still growing. In addition changes, e.g. in bloodvessels were easily visible by eye between
experiments performed on successive days. In order to be able to compare cortical responses
between experiments performed on different days, we transformed the coordinate system of each
stack of imaging frames to align it to the reference coordinate system of an imaging experiment
performed at eye-opening204 (compare Fig. 4.12 in Chapter 4). We chose eye-opening as ref-
erence day since the days on which experiments were performed varied among animals, but for
each animal imaging was done on the day of eye-opening. We described the cortical growth by
an affine transformation, thereby taking into account rotation, scaling, translation and shear
mapping of the cortex:

~x′ = M~x+ ~h (3.8)

with ~x = (x, y)T , (3.9)

M =

(
a b
c d

)
(3.10)

and ~h = (e, f)T (3.11)
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Figure 3.8: Frequency of spontaneous activity events during development. The number of events
per 10 min recordings increases consistently over several orders of magnitude from prior to after
eye-opening (n=12 animals). One marker corresponds to a 10 minute recording of spontaneous
activity.

where e, f are parameters related to translation, and a, b, c, d describe rotation, scale and shear.
This transformation corrected for small displacements of the imaging field and expansions of
cortical tissue over the imaging period. Appropriate morphing parameters M and ~h were found
by minimizing the distance between landmarks determined for each day of experiment. Land-
marks were found by marking vertical bloodvessels, meaning bloodvessels which are oriented
orthogonally to the imaging plane by visual inspection (compare Fig. 4.11a in Chapter 4). We
used vertical bloodvessels as markers since they are assumed to remain fixed inside the tissue
during growth. The following expression was minimized to find the transformation parameters
from day t to the reference day tref (eye-opening)

N∑
a=1

(~xtref,a − ~x
′
t,a)

2 =
N∑
a=1

(~xtref,a −M~xt,a − ~h)2. (3.12)

with N landmarks in both coordinate systems at coordinates ~xtref,a in the reference coordinate
system, and the coordinates ~xt,a at day t. The number of landmarks N ranged between 10 to
30.
Constraining the affine transformation and only allowing rotation, scaling and translation to
describe cortical growth leads to similar results for the morphing parameters204. Similarly, mor-
phing parameters that were obtained by optimizing the similarity between either the spontaneous
correlation structure (see Section 3.8) or orientation preference maps (see Section 3.10.2) of suc-
cessive days lead to quantitatively similar results in the statistical properties of spontaneous and
evoked activity.

3.8 Spontaneous correlation patterns

To determine how spontaneous activity is correlated across space, we computed its spatial cor-
relation structure across spontaneous events. In other words, we computed spontaneous activity
correlation patterns from detected events by choosing a given seed point and computing its
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Figure 3.9: Correlation patterns based on all events are highly similar to those computed from
large events only. a Example correlation pattern calculated over only the maximally active
frames of large events (left) strongly resembles the correlation pattern from the same seed point
calculated over all frames of all events larger than 1 mm2 (right). b The average similarity
between all correlation patterns within the ROI are shown for n=12 animals, N=33 experiments
throughout development.

correlation in spontaneous activity with the remaining locations within the field of view. To
this end, we first applied a Gaussian spatial high-pass filter (with SD of Gaussian filter kernel
shigh=200 µm) to the maximally active frame in each event (see Section 3.6) and down-sampled
it by a factor of 2 to 160 x 135 pixels. The resulting activity patterns A were used to compute
the spontaneous correlation patterns as the pairwise Pearson’s correlation coefficient between
all locations ~x within the ROI to the seed point ~s (Fig. 3.9)

C(~s, ~x) =
1

N

N∑
i=1

(Ai(~s)− 〈A(~s)〉)(Ai(~x)− 〈A(~x)〉)
σ~s σ~x

. (3.13)

Here the brackets 〈·〉 denote the average over all events and σ~x (σ~s) denotes the standard devia-
tion of A over all events i at location ~x (~s). Throughout this work we used Pearson’s correlation
coefficient to calculate correlations.
High-pass filtering allowed us to extract the modular spatial structure of correlated domains, but
the results did not sensitively depend on the filtering. For instance, weaker high-pass filtering
using a kernel with shigh=520 µm resulted in a highly similar correlation structure. Note that
calculating the spontaneous correlation patterns over all frames of all events larger than 1 mm2

instead of selecting only the maximally active frame per large event preserves their spatial struc-
ture (Fig. 3.9).
To properly estimate correlations across spontaneous events a minimum number of events is re-
quired. To determine how many events are sufficient to still capture the correlation structure we
determined the correlation structure across a subsampled set of events, and compared it to the
correlation structure obtained across the full set of events. Subsampled correlation structures
based on only 10 events still resembled the original correlation structure (Fig. 3.10a,b). In
order to quantify the similarity between the correlation structure, we calculated their (second-
order) correlation coefficient for different numbers of subsampled patterns (Fig. 3.10c). Sub-
sampling only 10 events of >100 spontaneous events still resulted in a correlation similarity
of 0.5 (Fig. 3.10c). Plotting the correlation similarity as a function of the fraction of events
sampled showed that subsamples of 10 events asymptote at a similarity of approximately 0.5,
even for cases with a large number of events (in which the fraction of events sampled is very
low), indicating that 10 events is sufficient to capture major features of correlation structure.
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In the following, imaging sessions in which less than 10 spontaneous events were detected were
excluded from further analysis unless noted otherwise.

The ten-event threshold for inclusion was not applied to the LGN inactivation experiments
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Figure 3.10: Minimum number of spontaneous events required to estimate correlations. a Cor-
relation pattern from all events (393 events) for a seed point indicated in green. b Two example
correlation patterns produced by randomly subsampling 10 of 393 events. c Similarity (second
order correlation) of subsampled correlation structure to the correlation structure computed
from all events (n=6 experiments with >100 spontaneous events). Correlation similarity of 0.5
is reached with approximately 10 events. d Similarity of subsampled correlation structure to
complete correlation structure as a function of the fraction of events sampled for 5, 10, 20, 30, or
50 events (blue, orange, yellow, purple, and green curves respectively). Subsamples of 10 events
asymptote at a similarity of approximately 0.5, even for cases with a large number of events (in
which the fraction of events sampled is very low).

as, in 1 of 3 cases, fewer than ten events were recorded after LGN inactivation (see Chapter 4).
We compared pre- and postinactivation activity patterns using second-order correlations as de-
scribed for comparisons of awake and anesthetized activity in Section 3.10.1.
To compute spontaneous correlations of the 2-photon imaging data, we first identified frames
containing spontaneous events, which were defined as frames in which >10 % of imaged neurons
exhibited activity >2 standard deviations above their mean. Cellular activity on these frames
was then Z-scored using the mean and standard deviation of each frame. We then computed
the pairwise Pearson’s correlation coefficient across the event frames between all pairs of cells.
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3.9 Bootstrapping and surrogate data for statistical testing

3.9.1 Surrogate orientation preference map

To statistically test the similarity between orientation preference map and spontaneous corre-
lations, we obtained surrogate maps as similar as possible to the original maps, but lacking
any relation to the spontaneous activity patterns. Surrogate orientation preference maps were
generated by phase shuffling the original maps in the Fourier domain but keeping their spec-
trum231 yielding surrogate maps of the same two point statistics, but with domains distributed
in cortical space without relation to the original map.

3.9.2 Surrogate datasets of spontaneous activity

To statistically test properties of spontaneous activity and the similarity of their spatial layout to
orientation preference maps, we generated surrogate datasets of spontaneous activity patterns.
We used two different approaches to generate surrogate datasets. In the first approach, all
spontaneous activity patterns were randomly rotated (rotation angle drawn from a uniform
distribution between 0◦ and 360◦ with a step size of 10◦ ), translated (shifts drawn from a
uniform distribution between ±450 µm in increments of 26 µm, independently for x- and y-
direction) and reflected (with probability 0.5, independently at the x- and y-axis at the center
of the ROI), resulting in an equally large control ensemble with similar statistical properties of
individual patterns, but little systematic interrelation between patterns.
In the second method, spontaneous activity patterns were phase shuffled in the Fourier domain
but kept their spectrum231 yielding surrogate activity patterns of the same two point statistics,
as in the method above with domains distributed in cortical space without relation to the original
activity pattern.
We then computed surrogate correlation patterns from these ensembles as for the original activity
patterns described in Section 3.8. Both methods resulted in qualitatively similar results.

3.9.3 Bootstrapping tests

Bootstrapping is a method to resample a distribution, enabling to repeatedly calculate a statistic
of the resampled distributions and by this to assess the uncertainty of this statistic125. Boot-
strapping is typically used if the underlying distribution of the data is unknown. The theoreti-
cal distribution can be replaced by the empirical distribution obtained from the bootstrapping
method.
In this work we used the bootstrap test to assess if two datasets are drawn from the same
distribution function or from different distributions. The two datasets were either a set of mea-
sured data points and a surrogate dataset, or two groups of data points (e.g. grouped by age).
Typically, we compared the two distributions by comparing their mean or their median. Boot-
strapping one of the datasets gives an error estimate of this dataset’s mean (or median) which
allowed us to reject or accept the null hypothesis that both datasets are drawn from the same
distribution function.
In the following the bootstrap method we used is briefly outlined. Suppose we have a param-
eter P (in our case either mean or median) and an empirical estimate Ph for P . To obtain a
non-parametric bootstrap estimate PB of P , we generated a bootstrap sample by sampling with
replacement from the first dataset. We typically generated an ensemble of N=10000 bootstrap
estimates. To find the percentiles of Ph, we approximated the two-sided 100(1− 2α) confidence
interval for P with the interval [PB,(1−α), PB,(α)], where PB,(1−α) is the 100(1− α) percentile of
the PB values, and similarly PB,(α) is the 100α percentile. We then tested the null hypothesis
H0 that the parameter estimate of the second dataset Rh coincides with the estimate of the first
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dataset Ph against the hypothesis that Rh and Ph differ. Since by bootstrapping we generated
a confidence interval for P , we constructed an α level hypothesis test by simply accepting the
null hypothesis H0 if Rh is contained within the confidence interval [PB,(1−α), PB,(α)] for P , and
rejecting H0 if it is outside of this interval.

3.9.4 Statistical analysis

Throughout this thesis non-parametric statistical analyses were used. All tests were two-sided
unless noted otherwise. Bootstrapping and surrogate approaches were used to estimate null
distributions for test statistics as described above. Sample sizes were chosen to be similar to
prior studies using similar methodologies in non-murine species388,76,77,46,265. All animals in each
experiment were treated equivalently. No randomization or blinding was performed.

3.10 How does the long-range and fine-scale correlation
structure of spontaneous network activity relate to
evoked patterns of activity in the mature cortex?

3.10.1 Spatiotemporal properties of spontaneous activity at and after
eye-opening
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Figure 3.11: Spontaneous activity in awake ferret visual cortex is widespread and modular. a
Timecourse of spontaneous activity measured with wide-field epifluorescence in an awake ferret
(mean across locations in ROI). b Representative z-scored images of spontaneous events at times
indicated in (a). Scale bar is 1 mm (b).

In the awake visual cortex of ferrets around the time of eye-opening, wide-field epifluorescence
imaging revealed highly dynamic and spatially modulated patterns of spontaneous activity that
cover millimeters of cortical surface area (Fig. 3.11). Spontaneous activity was spatially pat-
terned such that active domains were arranged in a modular fashion which we will call modular
activity in the following. Typically, spontaneous activity showed periods of prominent activity
across the whole field of view intermitted by periods of low activity (Fig. 3.11a). High activity
domains became active either almost simultaneously or in a spatiotemporal sequence of a few
hundred milliseconds. This behaviour allowed to define periods of high activity as spontaneous
events, and subsequently, to determine individual large-scale spontaneous patterns within ongo-
ing spontaneous activity (Fig. 3.11b; see Section 3.6 ), which occurred frequently in the awake
cortex.

Cortical locations co-vary in their spontaneous activity

Spontaneous activity patterns exhibited a remarkably regular modular structure extending over
several millimeters. This might indicate a high degree of correlation in the activity of a specific
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Figure 3.12: Correlated spontaneous activity in awake ferret visual cortex reveals large-scale
modular distributed functional networks. Spontaneous activity patterns from around eye-
opening shown for three different seed points (green circle). Red shaded areas are positively
correlated with the seed point, whereas blue shaded areas are negatively correlated with the seed
point. Correlation patterns span millimeters; they show both rapid changes between nearby seed
points (left and middle) and long-range similarity for distant seed points (middle and right).
Scale bar is 1 mm.

subset of neurons that are part of this distributed network. To determine if active domains co-
vary, we computed the correlation structure across detected events in the spontaneous activity
by choosing a given seed point and calculating its correlation in spontaneous activity with
the remaining locations within the field of view (see Section 3.8). The correlation coefficients
showed a widespread and modular structure with patches of positively correlated domains being
interweaved with patches of negatively correlated activity (Fig. 3.12). The correlation patterns
were self-consistent such that seed points placed in regions that were negatively correlated exhibit
highly different spatial correlation patterns (Fig. 3.12, left and middle), while seed points
placed millimeters away in regions that were positively correlated showed quite similar spatial
correlation patterns (Fig. 3.12, middle and right). Systematically determining the correlation
pattern for each seed point across the cortical surface revealed a large diversity of patterns. This
impression was consistent with Principal component analysis (see Section 2.3.5 in Chapter 2)
showing that the overall number of relevant global variance components in spontaneous activity
patterns was typically larger than ten (Fig. 3.13; 13±3 PCs required to explain 75% variance,
mean±SD, n=10 animals).

Spatial correlations show long-range organization

Distributed networks might display a long-range correlation structure not only in their stimulus
evoked responses but also in their spontaneous activity. This notion seemed to be confirmed
visually as the correlation patterns for a given seed point showed a striking widespread modular
organization, with patches of positively correlated activity separated by patches of negatively
correlated activity (Fig. 3.12). To quantify the impression of long-range correlations within
spontaneous activity, we assessed the spatial scale over which the correlations decay. To this end,
we first determined the envelope of the spontaneous correlations decaying over the distance to
the seed point by identifying the local maxima (minimum separation between maxima 800 µm)
in the correlation pattern for each seed point (Fig. 3.14b). Second, to properly assess the
spatial range of spontaneous correlations we took care of spurious correlations caused by the
finite sample size and compare the correlation structure of the real ensemble of spontaneous
activity patterns from a given experiment with the correlation structure obtained from a control
ensemble in which most of the spatial relationship between the patterns was eliminated (see
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representative spontaneous activity patterns at eye-opening (EO). b Correlation pattern cal-
culated across all large events from EO for seed point shown in green. Local maxima (black
markers) of correlation patterns are used to assess the envelope of the decaying correlations
and plotted as a function of their distance to the seed point in (c). c Correlation values at
the maxima as a function of distance from the seed point show that the correlation amplitude
remains strong over long distances. Exponential fit (purple) with decay constant ξ = 1.1 mm
and baseline correlation c0 (cyan). d Spatial scale of correlations from N=14 experiments in
n=10 animals at and after eye-opening. Scale bar is 1 mm (a,b).

Section 3.9). We then fitted an exponential decay function

f(x) = e
−x
ξ (1− c0) + c0 (3.14)

to the correlation maxima as a function of distance x to the seed point (Fig. 3.14c; see also
Fig. 5.12a). Here ξ is the decay constant, named “spatial scale correlation” in Fig. 3.14c.
The baseline c0 accounts for the spurious correlations and was estimated as the average value of
maxima at least 2 mm away from the seed point in the surrogate correlation patterns. This was
the maximal distance for which we could robustly estimate the baseline value for most animals.
We found that spontaneous correlations decay over a distance of ξ=(0.9±0.1) mm (mean±SD)
(n=10 animals).
However, correlations extended significantly over more than 1 mm. To assess the statistical
significance of long-range correlations at ∼2 mm from the seed point, we compared the median
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correlation strength for maxima located (1.8-2.2) mm away against a distribution obtained
from the correlation structure of 100 ensembles of surrogate spontaneous activity patterns (see
Section 3.9). For individual animals, the p-value was taken as the fraction of median correlation
strength values from surrogate data greater than or equal to the median correlation strength for
real correlation patterns (bootstrap test). For 1 of 11 animals, the statistical significance of long-
range correlations could not be assessed, due to insufficient coverage in rotated and translated
surrogate activity patterns caused by a highly asymmetrically shaped ROI. This animal was
excluded from the analysis of long-range correlation strength. Correlation patterns exhibited
a significant long-range structure, with statistically significant correlations persisting for more
than 2 mm (Fig. 3.14c,d; p <0.01 vs. surrogate for example shown, p <0.01 for 10 of 10
animals imaged following eye-opening). The peak correlation values showed a large variability
as a function of distance and other functions such as a power law also captured its decay over
several millimeters. Therefore, the result of long-range correlation did not sensitively depend on
the fitting function.

Influence of brain state on correlation

To determine the impact of brain state and anesthesia on the spatial patterns of correlated
spontaneous activity, we imaged spontaneous activity in awake animals and animals under light
anesthesia (0.5-1% isoflurane). Although spontaneous activity in the awake cortex displayed a
shorter mean inter event interval than under anesthesia (inter-event interval in awake cortex:
2.1 (1.3 - 6.5) s; median and IQR; n=5 animals; in anesthetized cortex: 4.3 (2.6 - 7.1) s;
p < 0.0001 bootstrap test; Fig. 3.15a,c, Fig. 3.16b), the event duration did not show a
significant difference between awake (event duration: 0.9 (0.5-1.3) s; median and IQR) and
anesthetized animals (1.1 (0.7-1.6) s; Fig. 3.16a). Similarly, the spatial patterns of spontaneous
activity, both in extent, modularity, and correlation structure were remarkably similar across
states (Fig. 3.15e,f). To quantify this resemblance, the correlation similarity across awake and
anesthetized states was computed for each seed-point as the Pearson’s correlation coefficient of
the spontaneous correlations for that seed point across states. For each seed-point, correlations
within 400 µm were excluded from analysis in order to eliminate the local peak around the
seed point which would bias the correlation similarity towards positive values. These “second-
order correlations” (shown for each seed point in Fig. 3.15f) were then averaged across all
seed points within the ROI. To determine the significance of these second-order correlations
across state, we shuffled corresponding seed points across states 1000 times, and again computed
correlation similarity. Likewise, to obtain an estimate of the expected similarity for a well-
matched correlation structure, we computed the similarity of each state to itself. To this end,
correlation patterns were first separately computed for half of the detected events, and then
the two patterns were compared as above. The correlation similarity was high between the
correlation structures in the awake and anesthetized states (Fig. 3.15i; p=0.031 one-sided
Wilcoxon signed-rank test, with 5 of 5 experiments from 3 animals individually significant at
p <0.001 vs. shuffle). Given this strong similarity, we pooled across awake and anesthetized
recordings in the analyses presented in this thesis. In some experiments only anesthetized
recordings were performed. The stability of the large-scale correlation patterns across awake
and anesthetized states was consistent with previous work demonstrating that properties of
spontaneous activity are similar across states383.

Wide-field and cellular correlations are consistent

To test whether the modular structure of spontaneous activity observed with wide-field imag-
ing is also found on a single cell level, we performed 2-photon imaging with cellular resolution
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Figure 3.15: Spatial structure of spontaneous correlations is not affected by anesthesia. a Time-
course of spontaneous activity (mean frame ∆F/F) for awake animal. b Three representative
events at times indicated. c Timecourse of spontaneous activity in same animal under anesthesia
(0.5-1% isoflurane) d Representative events. e Three spontaneous activity correlation patterns
for awake activity (top) and under anesthesia (bottom). f Similarity of awake vs. anesthetized
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ilar to those in the awake cortex (number of animals n=5, grey: individual animals, black:
mean ± standard error of the mean (SEM=SD/

√
n)). Blue shaded region indicates within-state

similarity (mean±SEM).

in conjunction with wide-field imaging in the same animal. In the 2-photon imaging data we
found robust and spatially organized spontaneous activity at the cellular level. The duration
of events was similar to that observed with wide-field imaging (0.88 (0.54-1.32) s, median and
IQR; compare Fig. 4.2 in Chapter 4), and within an event the pattern of active cells was largely
consistent across time (frame-to-frame correlations >0.5 for one second around the peak frame
within an event, p <0.01 vs. random epochs, bootstrap test).
To compare the correlation structure obtained at the cellular level with that obtained via wide-
field imaging (Fig. 3.17), we first computed the correlation patterns for each cell as the pairwise
Pearson’s correlation coefficient, using the activity of all neurons on all active frames (see Sec-
tion 3.6).
Next, we corrected 2-photon images for in plane motion via a 2D cross correlation-based ap-
proach. We then aligned the 2-photon field of view (FOV) to the wide-field image using blood

65



3. Organization of distributed networks and their link to visual response
properties in mature cortex

anaesthetized awake

M
ed

ia
n 

ev
en

t d
ur

a
tio

n 
(s

)

0

1

2

3
a

M
ed

ia
n 

In
te

r 
ev

en
t i

nt
er

va
l (

s)

0

10

20
b

anaesthetized awake

Figure 3.16: Distribution of event duration and inter event interval of spontaneous events in
anesthetized and awake animals after eye-opening. a The distribution of median event duration
is similar between awake and anesthetized animals. b The median inter event interval is sig-
nificantly smaller in the awake animals compared to the comparable age group in anesthetized
animals (p < 0.0001, bootstrap test). Shaded area shows histogram of distribution with me-
dian denoted by circular marker. Vertical lines show errorbars of median from bootstrapping.
Horizontal lines mark interquartile range (25 to 75 percentile) of distribution.

0

0.2

0.4

0.6

Act
ual

Shuffl
e200 µm200µm

a b
Cellular vs.
widefield

S
im

ila
rit

y 
2-

ph
ot

on
vs

 w
id

ef
ie

ld
 c

or
re

la
tio

ns
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structure between subsampled sets of detected events).

vessel landmarks and applied an affine transformation to obtain the pixel coordinates of each
imaged neuron in the wide-field frame of reference. Correlation similarity was obtained as above
by computing the second-order correlation between the cellular correlation structure and that of
the corresponding wide-field pixels, using all cells >200 µm from the seed point. Shuffled second-
order correlations were obtained by randomly rotating and translating the 2-photon FOV within
the full wide-field ROI, 1000 times. To estimate the maximum expected degree of similarity,
we computed a second-order correlation within the cellular correlation structure itself by de-
termining the similarity of correlation structures computed using only 50% of detected events
(dashed line and blue bar in Fig. 3.17b). The modular organization of spontaneous activity
and the spatial correlation patterns observed in populations of individual layer 2/3 neurons was
well-matched to those found with wide-field imaging, demonstrating that the network structures
revealed with wide-field epifluorescence imaging reflect the spatial activity patterns of individual
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neurons in superficial cortex (Fig. 3.17b; p=0.031 one-sided Wilcoxon signed-rank test, with 4
of 5 experiments from 3 animals individually significant at p <0.05 vs. shuffle).

Summary

At around eye-opening ferret primary visual cortex exhibited strong, on-going spontaneous ac-
tivity. Spontaneous activity consisted of periods of high activity (events) intermitted by periods
of low activity without any apparent spatial structure. Spatial activity patterns during events
were modular exhibiting an orderly layout of active domains. This modular layout was also
visible with single cell resolution. Active domains co-varied; their correlation structure was
spatially modulated and extended up to at least 2 mm in cortex. These properties of sponta-
neous activity were conserved across states when comparing anesthetized and awake animals.
Taken together, these results indicate that neurons in layer 2/3 of visual cortex participate in
long-range modular networks.

3.10.2 Spontaneous activity resembles fine-scale structure of functional
cortical layout on a global range

Layout of spontaneous activity resembles functional maps

Previous experimental studies have shown that the arrangement of active domains in individual
spontaneous events in anesthetized, mature animals can resemble activity patterns evoked by
oriented stimuli235,327. We therefore sought to determine whether the correlated spontaneous
activity representing an average over many events and potentially revealing the underlying
network architecture, accurately reflects the structure of the visually evoked modular network
that represents stimulus orientation. In particular, we investigated if the similarity between
spontaneous correlations and evoked responses holds also on a fine spatial scale and over an
extended range.
First, we calculated the orientation preference map (Fig. 3.18a, Fig. 3.20a, Fig. 4.10a (right))
based on the trial-averaged responses to moving grating stimuli of eight directions equally spaced
between 0◦ and 360◦. Responses were Gaussian band-pass filtered (see Section 3.5.3) and the
orientation preference z(~x) = r(~x)e2iφ(~x) with selectivity r(~x) and preferred orientation φ(~x) was
computed by vector summation for each location ~x as

z(~x) =

8∑
k=1

wk(~x)e2iφk (3.15)

with ~x = (x, y)T (3.16)

where wk(~x) is the tuning curve at location ~x (see Section 3.5), i.e. the trial-averaged response
to a moving grating with direction φk at location ~x. φk is expressed in radians. The factor 2 in
the argument of the exponential function takes into account that orientation tuning is periodic
over 180◦ instead of 360◦ (stimuli whose directions are 180◦ apart share the same orientation).
The preferred orientation at ~x is then 0.5 arg(z(x)). Orientation contour lines in Fig. 3.18a,c,
Fig. 3.19b, Fig. 3.20b are the zero-levels of the 0◦ -90◦ difference map, obtained by using the
matplotlib.pyplot.contours routine.
Next, we compared the patterns of spontaneous correlations assessed after eye-opening to the
spatial layout of visually-evoked orientation domains in animals imaged five or more days after
eye-opening, when orientation selectivity was robust (Fig. 3.20a). To quantify how similar
patterns of correlated spontaneous activity were to the orientation preference map in visual
cortex, we computed the average pairwise magnitude of the Pearson’s correlation coefficient
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Figure 3.18: The correlation structure of spontaneous activity more closely resembles the func-
tional layout of iso-orientation domains than ocular dominance domains. a An orientation
preference map (OPM). The black-dotted line represents 0◦-90◦ zero contours. b An ocular
dominance map (ODM). The dark green line represents zero-contours separating contralateral
and ipsilateral domains. c,d The contours from the OPM in (c) better match the correlation
structure of spontaneous activity than the contours from the ODM in (d). The seed point in (c)
and (d) corresponds to a region preferentially driven by a contralaterally presented horizontal
grating. e,f For the example animal shown in (a-d), most spontaneous correlation patterns show
higher similarity to the layout of the OPM (e) than to the ODM (f). g On average, spontaneous
correlation patterns show significantly higher pairwise similarity to the OPM than the ODM
(p=0.02, Mann-Whitney U test, n=8 animals for orientation map and n=3 animals for ocular
dominance map; gray: individual animal; black: mean±SEM), but the mean pairwise similarity
to both the orientation preference and ocular dominance maps is significantly higher than to
control shuffled maps (p <0.0001, bootstrap test; dashed line with gray shaded area indicates
mean±SEM).

between the correlation pattern of each seed point in the ROI to the real (cardinal difference
map) and imaginary (oblique difference map) components of the orientation preference map z:

rOP(~x) =

√(
cov(Re(z(~y)), C(~x, ~y))

σRe z σCx

)2

+

(
cov(Im(z(~y)), C(~x, ~y))

σIm(z) σCx

)2

(3.17)

where C(~x, ~y) is the spontaneous correlation pattern between seed location ~x and location ~y, and
cov denotes the covariance. σCx , σRe(z), σIm(z) denote the standard deviation of the correlation
pattern and the difference maps, respectively. We observed individual spontaneous correlation
patterns that closely matched the layout of orientation domains up to several millimeters from
the seed point across the entire field of view (Fig. 3.18, Fig. 3.20b; average across seed points
of similarity of orientation vs. spontaneous: rOP=0.42±0.03; mean±SEM; n=8 animals). To
determine statistical significance, we obtained control datasets by phase shuffling the original
orientation preference map in the Fourier domain231 (see Section 3.9.1) and calculating the pair-
wise correlation coefficient between them and each spontaneous correlation pattern (Fig. 3.18g)
(see Section 3.9.3).
The resemblance was particularly high between correlation patterns of orientation selective seed
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points and the response to their respective preferred orientation. The correlation patterns of
seed points which were selective for cardinal orientations (0◦ and 90◦) strongly resemble the car-
dinal difference map (Fig. 3.19a,b,e) whereas correlation patterns of low-selective seed points
did not show this strong resemblance (Fig. 3.19b,e, right). For this reason, the second order
correlation between the cardinal difference map and the spontaneous correlation patterns re-
sembled the cardinal map (Fig. 3.19c). In Fig. 3.19 the similarity with the cardinal difference
map is shown and quantified, but quantitatively similar results were obtained when considering
the oblique difference map. To determine statistical significance, surrogate datasets were ob-
tained by phase shuffling the orientation preference map in the Fourier domain231, calculating
the pairwise correlation coefficient between their real part and each spontaneous correlation
pattern (Fig. 3.19d; see Section 3.9), and then comparing the resemblance to the surrogate
cardinal map.

To test if spontaneous activity encompassed more than only the orientation preference map,
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Figure 3.19: The correlation patterns of highly orientation selective seed points are particularly
similar to the layout of orientation domains. a Cardinal difference map from four days after
eye-opening (EO+4). White shaded regions prefer 90◦ , and black regions 0◦ oriented moving
gratings. b Examples of spontaneous correlation patterns from EO+4. Left: Seed point is
selective for 90◦ oriented stimuli and its correlation pattern resembles the layout of the cardinal
difference map shown in (a). Right : Seed point is not selective for cardinal orientations, and
the correlation pattern shows low similarity to the cardinal map. Gray contour lines denote
the zero level of the cardinal difference map shown in (a). For comparison seed points are also
shown in (a,c). c The correlation between the spontaneous correlation patterns and the mature
cardinal difference map is highest for patterns from seed points that are selective for cardinal
orientations. d. Each individual data point (open circle) shows significant higher correlation
between the cardinal map and the 2nd order correlation between each correlation pattern and the
cardinal map (p < 0.01, boostrap test, n=8 animals) than control (gray; Mean±SD). Average
across individual data points is indicated by black rectangle. e The cardinal selectivity (positive
values correspond to prefering 0◦ oriented stimuli) is correlated to the similarity between cardinal
map and correlation patterns. Same example as shown in (a-c). Scale bar: 1 mm (a-c).

we next assessed the similarity between the spontaneous correlation patterns and the ocular
dominance map mOD (Fig. 3.18b). Ocular dominance maps were calculated based on the trial-
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averaged responses evoked by presenting moving grating stimuli of eight directions Φk equally
spaced between 0◦ and 360◦ either to the contralateral or ipsilateral eye. The trial averaged
response to each stimulus condition was Gaussian band-pass filtered as described above for the
orientation map. Contralateral and ipsilateral response maps were computed by respectively av-
eraging together the trial-average responses to the stimuli presented either to the contralateral
or ipsilateral eye as described for the orientation map. The ocular dominance map mOD was
computed as the difference of the contralateral wcontra and ipsilateral (wipsi) response maps

mOD(~x) = wcontra(~x)− wipsi(~x) (3.18)

with wcontra/ipsi(~x) =
∑
k

wk,contra/ipsi(~x) (3.19)

where k denotes the index of the direction of the moving grating (see Eq. (3.15)). The similarity
of each spontaneous correlation pattern to the ocular dominance map was quantified by the
magnitude of the pairwise Pearson’s correlation coefficient (Fig. 3.18f)

rOD(~x) = |cov(mOD(~y), C(~x, ~y))

σmσCx
|. (3.20)

Contour lines of ocular dominance map in Fig. 3.18b, are the map’s zero-levels and obtained
by using the matplotlib.pyplot.contours routine.
We found a significantly weaker but above chance (p=0.02, Mann-Whitney test comparing sim-
ilarity of spontaneous activity to ODM and to OPM, n=3 animals) similarity of spontaneous
correlations to the ocular dominance map than to orientation preference maps (Fig. 3.18g,
mean similarity of ocular dominance vs. spontaneous: rOD=0.18±0.04; mean±SEM; n=3 an-
imals; p <0.0001 vs. surrogate for 3 of 3 animals tested). This limited similarity between
spontaneous correlations and ocular dominance map was consistent with previous multielec-
trode recordings in developing ferret85. To determine statistical significance control datasets
were obtained by phase shuffling the contralateral and ipsilateral orientation preference map in
the Fourier domain231 and calculating the pairwise correlation coefficient between the result-
ing control ocular dominance map and each spontaneous correlation pattern (Fig. 3.18g) (see
Section 3.9). Thus, this analysis indicates that spontaneous activity does not only contain infor-
mation about the orientation preference map but also to a weaker degree resembles the layout
of the ocular dominance map.

Similarity between spontaneous activity and evoked response extends over large
spatial range

Notably, the correlation patterns of certain seed points at around eye-opening showed a strong
similarity to the orientation preference across the whole field of view and not only localized
around the seed point (Fig. 3.20a,b). This robust long-range similarity suggests that the
orientation tuning at such seed points can be predicted from the tuning at remote locations that
are correlated in spontaneous activity. To test this idea, we predicted the tuning at a seed point
by computing the sum over tuning curves at distant locations weighted by their spontaneous
correlation with the seed point and compared this prediction wpred

k to the seed point’s actual
tuning curve wk (Fig. 3.20c, top left)

wpred
k (~s) =

∑
~x

wk(~x)C(~s, ~x) (3.21)

where ~s denotes the location of the seed point, the tuning curve wk(~x) gives the response of
location ~x for a moving grating of orientation k, and C(~s, ~x) is the correlation coefficient be-
tween ~s and ~x. The sum was taken over locations ~x outside a circular area centered at the seed
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Figure 3.20: Spontaneous correlation resembles orientation preference on a long-range scale
after eye-opening. a Orientation preference map from five days after eye-opening (EO+5). b
Spontaneous correlation pattern for indicated seed point (EO+5). Contour lines from vertical
selective domains from (a) reveal that spontaneous correlations globally resemble the layout
of orientation preference map. c Local orientation tuning for region within black circle in (a)
can be accurately predicted from the aggregate orientation tuning of distant cortical locations,
weighted by long-range correlations. Top left : Observed and predicted tuning for single pixel
shown below. Bottom left : Observed orientation tuning. Right : Accurate orientation predictions
based on increasingly distant regions of spontaneous correlations (excluding pixels within either
0.4, 1.2, or 2.4 mm from the seed point). d The prediction based on correlations >1.2 mm away
(excluding all correlations >1.2 mm from seed point) matches the actual preferred orientation
within the entire field of view (see (a)). e Across animals, the precision of predicted orientation
tuning remains high, even when based on restricted regions more than 2.4 mm away from the
site of prediction (see (c)) f Prediction error as function of exclusion radius (45◦ is chance level).
For (e,f): n=8 animal experiments with 5 days or more of visual experience; group data in (f)
is shown as mean±SEM.

point with radius 0.4, 1.2 or 2.4 mm. To assess the goodness of the prediction, we calculated
the angular difference between the predicted and the actual preferred orientation (Fig. 3.20f).
Low values indicate a high match, whereas 45◦ indicates chance level.
Correlated spontaneous activity predicted the preferred orientation in a small circular patch
of radius 0.4 mm highly accurately (Fig. 3.20c). Remarkably, the orientation predictions re-
mained precise even if only correlations were considered in regions more than 2.4 mm from the
circle’s center point (Fig. 3.20c,f, p <0.0001 vs. surrogate for all exclusion radii, with 8 of 8
individual animals significant at p <0.05 across all exclusion radii). This demonstrates a high
degree of long-range fidelity in the structure of spontaneously active networks and those evoked
by oriented visual stimuli. An accurate prediction was achieved for the most part of the im-
aged region (Fig. 3.20d,e) and remained fairly precise even when excluding all locations up to
2.4 mm from the predicted site (Fig. 3.20e), as demonstrated by the group data (Fig. 3.20f).
Both the predicted and the observed orientations showed a peak in their distribution around
the cardinal orientations 0 and 90◦ . This is consistent with the overrepresentation of cardinal
orientations in the field of view found in the majority of the animals.
Statistical significance (Fig. 3.20f) was determined by repeating this analysis for 100 surro-
gate orientation preference maps, obtained by phase shuffling in the Fourier domain231 (see
Section 3.9). For individual animals, the p-value was taken as the fraction of values equal or
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smaller than the value for the real orientation map. To pool across animals within an exclusion
radius (Fig. 3.20f), we then generated 10.000 surrogate group medians by randomly drawing
from the distributions of surrogate data points (one per animal), and the p-value was taken as
the fraction of group medians equal or smaller than the median value for the actual data (see
Section 3.9).

Spontaneous activity reflects fine-scale structure of layout of orientation domains
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Figure 3.21: Tight interrelation between long-range spontaneous correlation and the fine-scale
structure of orientation columns after eye-opening. a-b Fractures in correlated networks. Ad-
vancing the seed-point along the black line in (a) reveals a punctuated rapid transition in global
correlation structure (EO+5) expressed by a high rate of change in the correlation pattern
between adjacent pixels (b, bottom). c Locations with high rate of change form a set of lines
across the cortical surface, which we termed spontaneous fractures. d The layout of spontaneous
fractures (EO+5) precisely coincides with the high-rate of change regions in the orientation
preference map (EO+5). e Correlation fractures show selectivity for regions of high orientation
gradient. f Fracture location is independent of local correlation structure and remains stable
when only long-range correlations are included. For (e, f): n=8 animal experiments with 5
days or more of visual experience; group data in (f) is shown as mean±SEM. For (c, f) same
exclusion radii as in Fig. 3.20c).

Orientation preference changed with a highly heterogeneous rate across the cortical surface,
most notably at pinwheel centers43,45,332. Determining the magnitude of the gradient of the
orientation preference map revealed that orientation preference changes relatively little within
large domains, but strongly between domains. Thus the iso-orientation domains were surrounded
by narrow, elongated areas of high rate of change. Therefore an even more stringent test of the
relationship between the spontaneous activity and the fine spatial structure of the layout of
orientation domains is to assess whether spontaneous correlation patterns exhibit an analogous
heterogeneity in their rate of change that correlates with the orientation preference map. By
visual inspecting the correlation patterns of neighbouring seed points we found regions with
gradual changes in the correlation patterns that were interrupted by areas with abrupt shifts
in the large-scale pattern. We quantified this rate of change R of the correlation pattern when
moving the seed point a small distance by

R(~s) =
√
Rdx(~s)2 +Rdy(~s)2 (3.22)
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where Rdx (Rdy) denotes the x(y)-component of the rate of change of the correlation pattern at
seed point ~s. We approximated this rate of change by the (second-order) correlation between
two correlation patterns with seed points at adjacent pixels a distance d apart:

Rdi(~s) =
|1− Ci(~s)|

d
(3.23)

Ci(~s) =
cov (C(~s, ~x), C(~s+ d ~ei, ~x))

σCs σCs+d~ei
with i ∈ {x, y} (3.24)

where cov denotes the covariance calculated over all locations ~x normalized by the standard
deviation across the correlation pattern σCs , σCs+d~ei . ~ex (~ey) is a unit vector in x (y)-direction.
The subtraction from 1 in the numerator ensures R = 0 at seed point locations, around which
the correlation pattern does not change, whereas high values of R indicate high changes. We
used d=26 µm, the spatial resolution of the correlation patterns.
By computing the rate of change of the correlation pattern as the seed point is moved, we
observed peaks of large change over relative small distances (Fig. 3.21a-b). Systematically
computing the two-dimensional gradient across the cortical surface revealed a set of lines with
high gradient magnitude, which we termed spontaneous fractures (Fig. 3.21c). Moving the seed
point across any of these fractures led to changes in the global correlation pattern, whereas the
correlations changed relatively little when the seed point is moved within the regions between
the fractures.
To test whether spontaneous fractures reflected the correlation structure over remote distances
and not only in their local neighborhood, we computed R as described in Eqs. (3.22)-(3.24),
but excluding a circular region with radius 0.4, 1.2 or 2.4 mm, centered at the seed point ~s
(Fig. 3.21c,f). Notably, the layout of spontaneous fractures was stable even when only cor-
relations with remote locations (>2.4 mm from seed point) were used to determine the local
rate of change, demonstrating again the long-range correlation structure in spontaneous activity
(Fig. 3.21f ; correlation between fracture patterns for radius>0 mm vs. >2.4 mm: r=0.88±0.04,
mean±SEM, n=8 animals).
Strikingly, the spontaneous fractures followed closely the layout of heterogeneous rate of change
in the orientation preference map (Fig. 3.21c,d). To quantify the co-alignment between spon-
taneous fractures and high orientation gradient regions, we measured the fracture selectivity as
the difference between R(~x) at high orientation gradient locations (~xhigh, |~∇z(~x)| > π/5 radi-
ans/pixel) and locations far from high orientation gradients (~xlow, |~xlow − ~xhigh| >150 µm from
~xhigh):

FS =
〈R(~xhigh)〉 − 〈R(~xlow)〉
〈R(~xhigh)〉+ 〈R(~xlow)〉

(3.25)

where the brackets denote average over locations ~xhigh and ~xlow, respectively. A value of FS of 1
indicates co-alignment between the spontaneous fractures and the orientation gradient, whereas
a value near 0 indicates a lack of such an alignment. To assess significance we repeated this
analysis for 1000 surrogate orientation preference maps that were obtained by phase shuffling in
the Fourier domain231 (Fig. 3.21e). The p-value was the fraction of values equal or larger than
the value for the orientation map (see Section 3.9). The layout of spontaneous fractures in the
mature animal followed closely the heterogeneity in the rate of change in preferred orientation
(Fig. 3.21d), and often they appeared in tight register with one another (Fig. 3.21e; p=0.0078,
Wilcoxon signed-rank test, with 8 of 8 individual animals significant at p<0.001, bootstrap test).
To further test the relation between spontaneous fractures and changes in the orientation pref-
erence map, we compared the fractures to the position of pinwheel centers. Pinwheels mark
points in the orientation preference map where all preferred orientations converge and mark
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singularities in the otherwise smooth map. Their layout and density follow a common design231.
The positions of the pinwheel centers lied mostly on top of the spontaneous fracture lines which
further highlights the close relationship between the spontaneous correlation structure and the
evoked functional organization (Fig. 3.21c,d). Orientation pinwheel centers were estimated
as described in Refs.231,373. The Matlab routine provided by Schottdorf et al.373 was used
(Fig. 3.21c,d).

Summary

Around eye-opening the spatially modulated layout of the spontaneous correlation structure
resembled the orientation preference map and to a degree also the ocular dominance map. This
similarity held not only locally but over several millimters across the entire field of view. The
correlation structure exhibited a variety of different correlation patterns. The transition from
one pattern to another could occur over a relatively small cortical distance accompanied by
large-scale changes in the pattern. These large-scale changes were organized in the intricate
layout of spontaneous fractures. Its similarity to the gradient of the orientation preference map
revealed that both the fine- and large-scale organizations of correlated spontaneous activity were
closely aligned with the structure of the visually evoked orientation network.

3.10.3 Trial-to-trial variability in visually evoked responses in mature
cortex
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Figure 3.22: Low trial-to-trial variability in mature cortical responses to moving gratings. Cir-
cular variance (a) and standard deviation (b) of preferred orientations bootstrapped (1000 boot-
strap sampling ensembles) over 12 trials for all locations (n=36188 locations) within the ROI
is strongly biased towards low values indicating a low variability in responses between different
trials of the same stimulus. Responses from representative animal after eye-opening.

Previous studies have argued that naively comparing trial averaged responses with the lay-
out of spontaneous activity is compromised by a bias due to covariance in the trial-to-trial
fluctuations of the evoked responses406,407. In particular, the authors of these studies argued
that by naively estimating the signal correlation of evoked responses it contains a positive bias
due to the noise covariance between trials406,407. If strong enough this bias can impose its
structure on the signal correlation and subsequently distort analyses of said signal correlation.
The authors especially described the case when trial-to-trial variability in neural responses is
caused by ongoing, spontaneous activity as they observed in mouse visual cortex407. In this case
the naively calculated signal correlation contained components from the noise covariance that
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trivially resembled the spontaneous correlations. Therefore, a comparison between signal and
spontaneous correlations will show a high overlap although the actual signal correlations might
be unrelated to spontaneous correlations, as the bias due to noise covariance hides the actual
relationship between signal and spontaneous correlations. Here we test whether our observed
similarity between spontaneous correlations and orientation preference map is compromised by
covariance in the trial-to-trial fluctuations.
First, we show that after eye-opening moving grating evoked responses in ferret visual cortex
are highly reliable and exhibit low trial-to-trial variability on the mescoscopic scale. The spatial
layout of evoked responses showed only little change inbetween trials to the same stimulus. To
assess the variability in the orientation tuning, we determined for each location within the field
of view the uncertainty in its preferred orientation by bootstrapping from the observed responses
in different trials. We found that the preferred orientation can typically be assessed with a high
fidelity of a few degrees (see Fig. 3.22).
We further observed that the trial-to-trial variability in the visually evoked responses was cor-
related to the average responses. In other words the stronger the average response of a location
is to a certain stimulus the higher its response variability (Fig. 3.23a,b). We assess the trial-
to-trial variability by calculating the standard deviation (SD) of the responses across trials of
the same stimulus (Fig. 3.23b). The SD was correlated to the average response to the stimulus
(Fig. 3.23c). This finding is consistent with results based on networks consisting of Poisson
neurons342. In these networks the variability originates either from shared input, common gain
fluctuations or from recurrent connectivity. For the recurrent network the authors342 derived
analytical expressions for the noise and signal correlation revealing a close relationship which
they corroborated with numerical simulations (shown in their Figure 3342). Interestingly, the
similarity between average response and response variability was also observed in mouse audi-
tory cortex29,342.
Another way to assess the trial-to-trial varibility in cortical responses is to calculate their signal
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Figure 3.23: Similarity between average visually evoked response and variability in response. a
Response averaged across trials to 90◦ moving grating after eye-opening. b Standard deviation
of response over trials of same dataset as shown in (a). c Mean and standard deviation of
visually evoked response are correlated. Scale bar: 1 mm (a,b).

and noise correlation which are often defined as92

Csignal(~x, ~y) =
1

Nk

∑Nk
k=1 rk(~x)rk(~y)

σxσy
, (3.26)

Cnoise(~x, ~y) =
1

TNk

∑T
t=1

∑Nk
k=1(rt,k(~x)− rk(~x))(rt,k(~y)− rk(~y))

σxσy
(3.27)

where rk(~x) is the centered, i.e. has zero mean across all trials, trial averaged response to a
stimulus of orientation k at location ~x and rt,k(~x) is the response to stimulus k in trial t. σx, σy

75



3. Organization of distributed networks and their link to visual response
properties in mature cortex

denote the standard deviation of the responses at locations ~x, ~y across all stimuli k (and trials t
for the noise correlation). Nk denotes the number of different stimuli, and T denotes the number
of trials. Csignal measures how two locations co-vary in their average response across different
stimuli. In contrast, Cnoise quantifies how two locations co-vary in their fluctuations around the
average responses to different stimuli.
The bias in the signal correlation due to correlations in the trial-to-trial fluctuations can be
reduced by averaging across many trials, but cannot be eliminated. To eliminate this bias, the
signal correlation must be calculated between responses from different trials406. Assuming that
the noise in the observed neural responses has zero mean and is uncorrelated between trials,
shuffling the trials between all pairwise locations when computing the signal correlation averages
out the bias. We term this definition “shuffle signal correlation” in Fig. 3.24 and the following.
Consistent with our previous analyses, we found that spontaneous correlations were similar
in their structure to the naively estimated signal correlations (Fig. 3.24a, center left and
right). To test whether this similarity is caused by the noise covariance, we calculated the
shuffle signal correlation. We found that the shuffle signal correlations were highly correlated
to the naive signal correlations (Fig. 3.24a,b,f). Consistent with this result, we observed
that the shuffle signal correlations strongly resembled the noise and spontaneous correlation
structure (Fig. 3.24a,c,d) demonstrating that the similarity we observed between signal and
spontaneous correlations was not caused by noise correlations alone. This also indicates that
our observed visually evoked responses were only weakly affected by trial-to-trial variability (see
also Fig. 3.22). Interestingly, the spontaneous correlation structure resembled the signal and
the noise correlations to a similar degree (Fig. 3.24d,e). Together, these results indicate that
the similarity between signal and spontaneous correlations is not due to a bias due to the noise
covariance. Instead computing the revised shuffle signal correlations resembled the spontaneous
correlations to a similar degree.

3.10.4 Network model of spontaneous activity fails to capture long-range
correlations

Previous experiments indicated that cortical spontaneous activity dynamically switches between
global spatial patterns that resemble the layout of functional properties of cortex235 suggest-
ing that these spontaneous activity patterns reflect intrinsic states of the underlying cortical
circuit. Motivated by this hypothesis a network model has been suggested describing spon-
taneous activity by spatial patterns generated by amplifying weakly modulated input via the
network’s recurrent connectivity159 (see also Section 2.3.1 in Chapter 2). Two different network
scenarios159 were consistent with previous experimental data of spontaneous activity235. In the
first scenario spontaneous activity was modelled by fluctuations about a single “background”
state reflecting the idea that cortical activity in the absence of external stimuli relaxes to this
background state (the “single state scenario”). In the second scenario spontaneous activity was
described by wandering activity among multiple intrinsic “attractor” states representing differ-
ent stimulus features (the “combinatorial multiple features scenario”; see also Section 2.3.1 in
Chapter 2). Although the network model provided predictions to experimentally test these two
scenarios, it remains unclear if one of the two cases appropriately describes spontaneous cortical
activity.
Here we critically test the model predictions based on spontaneous and visual evoked activity in
mature ferret visual cortex. To distinguish both scenarios we first determine how the similarity
in the layout between spontaneous and evoked activity depends on the observed region size by
computing the distribution of the correlation coefficients between the orientation preference map
and the spontaneous activity patterns for varying region sizes (similarity index; see Section 2.3.1
in Chapter 2). Second, we determine the dimensionality of the spontaneous activity patterns
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Figure 3.24: Both noise and shuffle signal correlations are highly similar to spontaneous cor-
relations. a From left to right : Example pattern of shuffle signal correlations, (naive) signal
correlations, noise correlations and spontaneous correlations from five days after eye-opening
(EO+5). b Shuffle signal correlation is highly correlated with (naive) signal correlation with a
correlation coefficient ρ = 0.89 at EO+5. Shown is the Gaussian kernel density estimation of
the distribution of 20000 randomly sampled pairwise correlation coefficients. Shuffle signal cor-
relation is also correlated to c noise correlations and d spontaneous correlations. e Spontaneous
and noise correlations are similarly correlated. f The second order correlation between (naive)
and shuffle signal correlations is high for all tested animals (n=5 animals after eye-opening).
The example in (b) is shown in purple. Scale bar: 1 mm (a).

compared to a surrogate dataset. In the scenario increasing the size of the field of view increases
the number of independent degrees of freedom (since regions far away are expected to be only
weakly correlated) and thus, reduce the width of the SI distribution. In this case the width of
the model SI distribution decreases with ∼ 1/

√
N with N being the number of independent de-

grees of freedom (number of observed domains). Network activity is dominated by fluctuations
leading to a high dimensional spontaneous activity. In contrast, in the second scenario spon-
taneous activity switches between different global attractor states and, thus, globally resembles
the orientation preference map. Therefore the SI distribution is expected to be invariant against
changes in region size. In this scenario spontaneous activity wanders only between a limited
number of attractor states, therefore its dimensionality is low.

Width of distribution of the similarity index

We systematically varied the region size from the size of a cortical column (∼0.2 mm2) to
the full region of interest (∼4 mm2). We found that the SI distribution obtained from the
experimental data became narrower for increasing region size (Fig. 3.25b). This decrease
in width (assessed by the SD of each distribution) could be approximated by a power law
ab + const. where a denotes the region size and b is the fitted exponent. The exponent b of
the experimental data was significantly smaller than the exponents obtained from a surrogate
dataset demonstrating that spontaneous and evoked responses show a similarity over significantly
longer distances than expected by chance (p < 0.01, N=100 control datasets; Fig. 3.25c; see
also Section 3.9). The surrogate dataset was obtained by rotating and reflecting the original
spontaneous activity patterns (see Section 3.9). Quantitatively similar results were obtained
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Figure 3.25: Single and multiple state scenario are both inconsistent with experimental data.
a Top: Typical example of an oblique map (45◦ -135◦) from the day of eye-opening (EO0).
Bottom: Two typical examples of spontaneous activity patterns from EO0. The non-shaded
area indicates the parcellation of the ROI into smaller regions (here, region size is 1.4mm2)
across which the SI between difference map and spontaneous activity patterns are calculated.
b The histogram of the SI pooled across n=12 animals for all experiments after eye-opening
(P>EO) is shown for systematically varied region size. c The widths of the histograms shown
in (b), assessed by taking the SD of the distribution, decrease with increasing region size (red
markers). This decrease is fitted by a power law ab + const. yielding the exponent b = −0.17
(solid red) compared to SI width invariant against change in region size (light purple), and
decay in SI width proportional to 1/

√
N with N being the region size (proportional to number

of observed domains; dark purple). Gray lines show decay of SI width of control dataset (mean
and 95% percentile; N=100 control datasets).

when generating surrogate datasets by phase shuffling the spontaneous activity patterns in the
Fourier domain. The decay of the original data lied inbetween the decay expected by the single
state scenario and a constant expected by the multiple state scenario. This result demonstrates
that spontaneous activity patterns and evoked responses do not globally resemble each other,
but their similarity decreases on average with region size. Still, the similarity remained higher
with increasing region size than expected when remote domains are independent consistent
with our result that spontaneous activity patterns exhibit a long-range correlation structure of
a certain spatial extension (see Section 3.8 and Section 4.2.4 in Chapter 4) . In contrast, in
the multiple state scenario the correlations would be global. Thus, the experimental data were
neither consistent with a pure single-state scenario nor with the pure multiple states scenario and
instead we found that the similarity decays weakly with the observed region size as a powerlaw.
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Dimensionality of mature spontaneous activity patterns

Intimately related to the question of whether the similarity in the layout between spontaneous
activity and the orientation preference map is local or global is how high-dimensional sponta-
neous activity patterns are. In the first scenario the fluctuations around the background state
lead to high dimensional spontaneous activity. In contrast, the second scenario yields sponta-
neous activity of fewer dimensions with its variance contained within a low-dimensional subspace
which coincides with the subspace of evoked maps (assuming the network is constructed in this
way; see Section 2.3.1 in Chapter 2).
To assess whether the dimensionality of observed spontaneous activity agrees with one of these
two scenarious, we compared the dimensionality of the original dataset to those of surrogate
datasets and of visually evoked responses in mature cortex. The surrogate datasets were ob-
tained by phase shuffling the spontaneous activity patterns in the Fourier domain231 generating
activity patterns with the same domain spacing as the original patterns but without any relation
between the layout of active domains between patterns (see Section 3.9). Therefore, the dimen-
sionality of the surrogate dataset should correspond to the one in the first scenario for a given
number of activity patterns and a given Fourier spectrum (see also Section 5.2 in Chapter 5).
In the case that spontaneous activity represents global states corresponding to the orientation
preference maps and other features, its dimensionality should correspond to the one of relevant
features.
Computing the dimensionality based on the distribution of the eigenvalues of the activity’s co-
variance matrix30,347,1 (see also Section 2.3.6 in Chapter 2), we found that the original activity
patterns were notably lower dimensional than the surrogate dataset (see figure Fig. 4.14a in
Chapter 4). Thus, the observed spontaneous activity was constrained to a smaller subspace than
expected by random fluctuations around a single state. Moreover, spontaneous activity showed
a signifcantly higher dimensionality than visually evoked responses. Applying Principal compo-
nent analysis (see Section 2.3.5 in Chapter 2) to assess the dimensionality of the spontaneous
activity yielded similar results. 75% of the variance were distributed onto 13 ± 3 (mean±SD,
n=10 animals) components. These are more components than expected if spontaneous activity
would only replay grating evoked response patterns, but less than expected by spontaneous ac-
tivity fluctuating around one state. Still, the subset of principal components partially coincided
with the space spanned by the evoked orientation preference maps. It seems unlikely that noise
in the measurement led to the high dimensionality in spontaneous activity compared to evoked
responses. In fact, the dimensionality of the evoked responses was calculated over the single trial
responses and consistently yielded a dimensionality of four at a similar signal to noise ratio than
spontaneous activity. Even when removing high frequency temporal and spatial components by
denoising the neural data (see Section 3.5.2) the dimensionality changed only little. Together
these results demonstrate that spontaneous activity is higher dimensional than expected if only
representing grating evoked responses, but also lower dimensional than expected by the noise-
driven scenario. This is consistent with the previous result where the width of the SI distribution
changed weakly with region size inconsistent with either one of the two scenarios. All in all, both
scenarios fall short in describing the long-range correlation structure observed in spontaneous
activity.

3.11 Discussion

In this work we have been able to identify the precise local and large-scale organization of
cortical networks revealed through correlated spontaneous activity in the mature visual cor-
tex. Evidence supporting a fundamental modular structure for distributed network interactions
in visual cortex has been demonstrated in previous anatomical studies documenting clustered
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long-range horizontal connections specific to orientation154,285,48, and in studies using voltage
sensitive dyes to reveal the similarity of spontaneous activity to the modular patterns of re-
sponses evoked by grating stimuli235,327. Here the analysis of spontaneous activity in mature
visual cortex of ferrets extends these observations by showing the remarkable degree of precision
evident in the long-range spontaneous correlation structure, such that the correlation patterns of
a local cortical area accurately predict the structure of local functional architecture over broad
regions of cortex covering millimeters of surface area. The long-range network interactions ev-
ident from correlated spontaneous activity even reflect the finest-scale topographic features of
orientation maps: the fractures and pinwheel centers. A tight relation between spontaneous and
evoked activity is also found on a single cell resolution via 2-photon imaging. These results, to-
gether with the stability of large-scale correlation patterns across awake and anesthetized states,
demonstrate an exceptional degree of functional coherence in cortical networks and potentially
ensure reliable distributed neural representations of sensory input.
Here we focused on the analysis of spontaneous and evoked activity within layer 2/3 of visual
cortex in ferrets. Other work compared spontaneous and evoked activity across the laminar
structure in rat auditory cortex and find similar patterns in spontaneous and evoked activity
in layer 2/3 and 5365. In this study the authors also observed differences in the propagation of
activity. Spontaneous activity mostly spread upwards from deep layers (see also368), whereas
sensory responses are initialized in presumptive thalamorecipient layers. The authors argued
that this indicates a similarity in the local processing of activity but a difference in the flow of
information through cortex. It would be interesting to expand our analysis to deeper layers such
as layer 4. Layer 4 receives input from thalamus and analyzing its responses might also shed
light on the emergence of orientation selectivity.
In accordance with previous work in other cortical areas and different species186,235,169,274,35,327,
we observed that spontaneous events resemble sensory driven responses in their spatial struc-
ture. This stands in contrast to recent work in mouse visual cortex and areas of the forebrain
reporting that spontaneous activity was strongly correlated to behavioural motor output and
only shows similarity to sensory driven responses in one dimension407. In this study the authors
argued that this discrepancy in results might come from signal correlations that are distorted
by noise correlations and resemble the spontaneous correlations only due to this noise artefact.
In their data the authors observed strong ongoing sponanteous activity during visual stimula-
tion. Subsequently, their signal correlations were biased by noise correlations and seemingly
trivially resembled spontaneous correlations. Eliminating these noise correlations by computing
a shuffle signal correlation also removed its similarity to the spontaneous correlation structure.
Spontaneous and visually evoked activity overlapped in one dimension corresponding to a global
change in the mean firing rate. However, in our experimental data we observed little trial-to-
trial variability. Instead we observed highly consistent layouts in the grating evoked responses
after eye-opening for different trials of the same stimulus. Even when computing the shuf-
fle signal correlations they still resembled the layout of spontaneous correlations. We further
demonstrated that the structure of the noise correlations is in fact similar to the structure of the
signal correlations consistent with previous experimental and modeling work342. The difference
in results might stem from different experimental conditions. The previous study analyzed sin-
gle cell resolved and deconvolved neuronal activity traces obtained using 2-photon microscopy
in mouse visual cortex. In our work we analyzed mesoscopic (and not deconvolved) imaging
data from ferret V1 exhibiting robust and reliable responses across different trials to the same
stimulus. To test whether differences in the temporal or spatial resolution of the recordings
explain the apparent discrepancies, it would be instructive to analyze deconvolved, single cell
resolved cortical activity in ferret visual cortex.
Previous work showed that spontaneous activity in anesthetized cats roughly resembled func-
tional maps235 but it remained unclear over which spatial distance this similarity holds. Subse-
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quently, a theoretical study suggested two model scenarios predicting either a global similarity
between spontaneous and evoked activity in the case that spontaneous activity wanders between
different global attractor states, or a local similarity in the case when spontaneous activity fluc-
tuates around one attractor state. To distinguish between both scenarious, we determined how
the width of the SI distribution depends on the observed region size. We find that the SI dis-
tribution decreases weakly in its width for increasing region size following a power law whose
exponent is neither consistent with a pure single-state scenario nor with the pure multiple states
scenario. Consistent with this the dimensionality of spontaneous activity lies inbetween the
expected values for both scenarios. Together, these results are consistent with the observation
of a long-range correlation structure in spontaneous activity which is not explained by either of
the two scenarios.
Our analysis is based on calcium imaging data using wide-field microscopy. We studied a cortical
area of several mm2 and observed a distinct spatially modulated structure within the cortical
activity reflecting the underlying columnar structure of primary visual cortex in carnivores and
primates231,373. Since the wide-field imaging setup did not resolve individual neurons, we com-
plemented our recordings with single cell resolution 2-photon microscopy. These additional
recordings corroborated the observed modular activity and correlation structure of spontaneous
activity on a single cell level. Solely relying on 2-photon microscopy, however, would not have
enabled us to assess the long-range correlation structure of spontaneous activity due to the no-
tably smaller field of view of the recordings.
We used GCaMP6s as calcium indicator which in combination with wide-field microscopy al-
lowed us to assess the averaged activity of a local pool of neurons. GCaMP6s enabled us to
record single trial responses and spontaneous activity with high signal to noise ratio81. The high
signal to noise ratio and the ability to reliably record the cortical activity without the need to
average across several trials allowed us to assess spontaneous activity. Typically, calcium indica-
tors exhibit a fast rise in activity but a relative slow decay of several hundreds of milliseconds81.
This slow decay in the activity limits the temporal resolution and constrains our analyses to
timescales of a few hundreds of milliseconds. To potentially circumvent this limitation, other
work has investigated the application of a deconvolutional algorithm on the calcium imaging
data to eliminate the slow decay in the signal399. Following these deconvolution analyses it
might be possible to expand the data analysis to those analyses that require a finer temporal
resolution such as investigating state transitions from one layout of spontaneous activity to the
next, or comparing the temporal behaviour of spontaneous events and visually evoked responses.
However, deconvolving the mesoscopic imaging data might be a complex task and requires a
careful choice of parameters and comparison to ground truth data.
Although our data neither exhibited single cell resolution nor resolved distinct action potentials,
we observed a striking degree of spatial organization over several spatial scales within the cor-
tical circuit which might indicate that the cortical code encompasses also large spatial scales.
Here we focused on the properties of spontaneous activity and its resemblance to visually evoked
responses in the mature animal after eye-opening. However, currently, it is unclear how the spon-
taneous long-range correlation structure develops during the maturation of cortex, and how the
similarity to the orientation preference map on local and long-range scales evolves. Using a
longitudinal imaging setup we will address these two points in the next chapter.
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Chapter 4

Emergence of distributed cortical
networks

The principles governing the functional organization and development of long-range network
interactions in the neocortex remain poorly understood. We used in vivo wide-field and 2-
photon longitudinal calcium imaging to demonstrate that long-range spontaneous correlations
were present early in cortical development prior to the maturation of horizontal connections,
and predicted mature network structure. Early long-range correlated activity remained stable
even after silencing feed-forward input drive by inactivating retina or thalamus. These results
suggest that short-range recurrent connections in early cortical circuits can generate structured
long-range network correlations that may guide the formation of visually-evoked distributed
functional networks. Gordon B. Smith and David E. Whitney performed all experiments under
supervision of David Fitzpatrick in this chapter and analyzed the data for the retina and LGN
inactivation data (Fig. 4.16 and Fig. 4.17).

4.1 Introduction

Cortical networks in many brain areas exhibit an exquisitely ordered and coherent functional
organization. In mammalian auditory cortex such as humans360,205, non-human primates299,312,
carnivores10,349,38 and rats367 the dominant organizational feature is the gradient of frequency
selectivity (tonotopy) where neurons are ordered by their preferred frequency. Likewise, the
functional organization of the primary taste cortex in mice is topographically separated into
cortical fields for the basic taste qualities sweet, bitter, umami and salty, revealing a gustotopic
map82. In visual cortex the receptive fields of neighbouring neurons in visual cortex are orderly
arranged such that they are overlapping and sample the visual field in an orderly way (visuotopic
or retinotopic map). Moreover, in visual cortex of carnivores and primates orientation preference
maps show an almost continuous distribution of preferred orientations on a single cell level331.
Neighboring columns of neurons occupying a millimeter of cortical surface area represent the full
range of stimulus orientations at a specific visual field location and are anatomically linked into
distributed networks spanning several millimeters that share similar functional properties and
are arranged in a modular fashion43,45,331,154,285,48. In Chapter 3 we established that the spon-
taneous correlation structure reliably captures key aspects of the distributed networks evoked
by visual stimulation, namely long-range correlations and their similarity on a fine spatial scale
(20 µm) across a large field of view (several mm2). However, the emergence of these network
interactions that bridge the fine-scale functional architecture and distant network elements dur-
ing development remains unexplored.
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Here we used spontaneous correlations to shed light on the nature of these networks at earlier
stages of development and assessed how they evolve to their mature state. We took advantage of
spontaneous activity being observed already early in the development of primary visual cortex
prior to coherent visual responses86,437,395 and well before orientation tuning has fully matured
(compare Fig. 2.4 in Chapter 2; and see76). Using a chronic widefield imaging setup (see Sec-
tion 3.2 in Chapter 3) that allows us to record spontaneous activity from up to 10 days prior
to several days after eye-opening in primary visual cortex of awake and anesthetized ferret, we
show that already at the earliest observed time points spontaneous activity exhibits long-range
correlations over cortical distances comparable to those in mature animals. These early spon-
taneous correlation patterns are predictive of the mature layout of orientation domains, but
also reorganize their spatial layout during development and become more similar to the mature
layout of orientation preference maps. Moreover, we find that throughout development sponta-
neous activity is confined to a subset of possible patterns demonstrating that active domains are
not randomly distributed across cortex consistent with the finding of long-range correlations.
Intriguingly, we observe modular and long-range spontaneous correlations even after inactiva-
tion of feed-forward input to cortex suggesting an intracortical mechanism for the emergence
of these correlations. Together these results suggest that local recurrent connections in early
cortical circuits can generate modular long-range network correlations that appear able to guide
the formation of visually-evoked distributed functional networks.

4.2 Statistical analysis of spontaneous activity in early cortex

In the following chapter we analyzed longitudinally imaged activity recordings starting at around
postnatal day 21 (P21), 10 days prior to eye opening, and mapped all imaging data onto a
common reference frame for each individual animal via an affine transformation (see Section 3.7
in Chapter 3). This allowed us to track the development of the spatiotemporal structure of
spontaneous correlations. In order to make it simpler to detect potential trends in the analyses,
we grouped the datasets across all animals and experimental days into four age bins relative
to eye-opening (EO): EO-10≤P<EO-5, EO-5≤P≤EO-1, P=EO, P>EO where P denotes the
animal’s age relative to eye-opening. We chose the age groups such that they are approximately
equidistantly distributed across the observed developmental period, and that each age group
contains a similar number of experiments.

4.2.1 Duration of spontaneous events

From the earliest experimental time point on (at P21, 10 days prior to eye-opening) we ob-
served robust spontaneous activity exhibiting periods of high activity which we termed ’events’
and intermitted by intervals of low activity (see Section 3.6 in Chapter 3). We determined the
event duration as the time between event onset when the size of an area with high activity
crosses the threshold of 0.01 mm2 to event offset (see Section 3.6 in Chapter 3). To quantify the
frequency of spontaneous events, we calculated the inter-event interval as the time interval be-
tween successive large events in spontaneous activity. We found that spontaneous activity prior
to eye-opening displayed on average events with longer durations than after eye-opening (event
duration at -10<P<-5: 1.53 (0.9, 2.4) s; P>EO: 3.7 (2.3, 5.9) s; median and IQR; p=0.0001
based on bootstrap test; Fig. 4.1).
Fig. 4.2d). In the mature cortex the median duration of all large events from event onset to
end lied at 1 s (duration 1.0 [0.7, 1.5] s; median and inter-quartile range (IQR); n=12 animals,
widefield imaging; Fig. 4.2c) and the inter-event interval at around 4 s (inter-event interval:
4.3 [2.5, 7.0] s; median and IQR; n=12 animals; Fig. 4.2d). The frequency and duration of
spontaneous events was similar between widefield and 2-photon imaging data again bolstering
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the fact that widefield epifluorescence imaging captured the combined activity of individual neu-
rons (see also Section 3.10.1 in Chapter 3). The frequency and duration of spontaneous events
is reminiscent of synchronous states observed in LFP recordings from awake animals, appearing
distinct from both the desynchronized activity often observed during active attention, as well
as the oscillatory activity seen in slow-wave sleep and with certain types of anesthesia171.

4.2.2 High variability in how fast spontaneous activity spreads across cortex

During these spontaneous events the spontaneous activity patterns consist of a distributed set of
active domains which become active either near simultaneously or in a spatial-temporal sequence
spreading across the field of view within a few hundred milliseconds (Fig. 4.3, Fig. 4.4). In
order to quantify the temporal sequence of spontaneous activity, we made use of the fast rise of
the GCaMP6s signal rise (rise time of 0.18 s in Supplementary table 3 of81) and we estimated
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be distinguished from instantaneous/uniform rise of activity in our field of view. Events were
pooled across all animals with imaging days on and after EO (n=12 animals).

the velocity with which spontaneous activity expands across cortex after the onset of an event.
To this end, we determined the increase in size of the activated region (locations with activity
higher than threshold; see Section 3.6 in Chapter 3) as a function of time during an event.
Typically, this rise was well fitted by a sigmoidal function

s(t) =
s0

1 + e−(t−t0) a
(4.1)

where s0 is the maximal average activity of each event, t is the time starting at event onset, t0
denotes the time when the activity reaches half of the maximum activity, and a denotes the rate

of increase in activity. The slope
s0a

4
at half maximum value gives an estimate of the rate of

activity expansion. Both the rate of activity expansion and the time when half of the cortex is
activated varied broadly across events. The median velocity was ∼1 mm2/50 ms but expansion
rates faster than 1 mm2/10 ms were observed (Fig. 4.3b, right). Thus, while we cannot resolve
expansion rates larger than these, given that typically the field of view is roughly 10 mm2 large
and the frame rate is 15 Hz, this analysis shows that for two sites several millimeters apart
from each other often the rise of activity during a spontaneous event was not simultaneous, but
showed a lag that may vary from several tens to a few hundred ms.

Similar to after eye-opening, spontaneous activity prior to eye-opening varied widely in how
fast it spread across cortex (compare Fig. 4.3 after eye-opening and Fig. 4.4 during develop-
ment). Again, we captured the rate of expansion by fitting a sigmoid (Eq. (4.1)) to the cortical
area above an activity threshold during the time course of each spontaneous event (Fig. 4.4a)
and took the slope of the sigmoid at half maximum as an estimate for the velocity of activity
expansion across cortex. We observed that the velocity varied considerably across events over
one order of magnitude between 10 to 100 mm2 per second (Fig. 4.4b, right). The average
rate of activity expansion per mm2, meaning the time needed for the spontaneous activity to
activate 1 mm2 of cortex, changed little during development (Fig. 4.4c). Together, these results
show that throughout development two sites several millimeters apart from each other exhibit a
lagged rise of spontaneous activity varying from several tens to a few hundred ms during cortical

86



4.2. Statistical analysis of spontaneous activity in early cortex

a b

Time during event (s)
0.0 0.2 0.4 0.6 0.8

A
ct

iv
at

ed
 a

re
a 

(m
m

2 )

0

2

4

6

8

0

40

60

0.0 0.4 0.8 1.2 1.6 0 40 80 120 160

F
re

qu
en

cy

F
re

qu
en

cy

Time of half peak activity (s) Rate of activity spread (mm2/s)

Pooled across all animals with P<EOSigmoidal fit Fitted event

EO-7

100

101

102

10380

20

Individual events

-10≤P≤-5 -5≤P≤-1 P=EO
0

200

300

400

R
at

e 
of

 a
ct

iv
ity

 e
xp

an
si

o
n

pe
r 

m
m

2  (
m

s)

Age groups

500

100

c

P>EO

Figure 4.4: Spread of activity during an event prior to eye-opening differs broadly across events
similar to spontaneous activity after eye-opening. a Activated cortical area (gray; thresh-
old=80% of total size of ROI) as a function of time from event onset for sets of representative
events (gray lines) from an animal 7 days prior to EO. A sigmoidal function (red; see (4.1)) was
used to fit the traces (blue). All traces were fitted, but only randomly selected examples are
shown. b Distributions of time of half peak (t0; left) and rate of activity spread s0a

4 (right).
Rates >100 mm2/s can hardly be distinguished from instantaneous/uniform rise of activity in
our field of view. Events were pooled across all animals and imaging days prior to EO (n=12
animals). c Throughout development the median rate of activity expansion per mm2 changes
little and is skewed towards values of several hundred ms. Shown are distributions across four
age groups (EO-10≤P<EO-5, EO-5≤P≤EO-1, P=EO, P>EO). Median of distribution is de-
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development.

4.2.3 Early spontaneous activity is widespread across cortex

From the earliest experimental time point on we observed robust spontaneous activity exhibiting
modular patterns that extend over long distances across the cortical surface. Furthermore we
note that in immature animals the activation of domains across cortical surface is heterogeneous
over events but covers the whole field of view. Certain cortical regions are on average more
often active than other regions. We quantify the average activation within the field of view by
computing the mean of activity patterns over all observed spontaneous events (Fig. 4.5a). To
assess the variability in the average activity, we determine the standard deviation (SD) of the
mean activity across cortical surface (Fig. 4.5c). To quantify the variability in the activity for
an individual cortical location, we compute the SD across events for each location within the
field of view (Fig. 4.5b). We find that the average activity over all spontaneous events becomes
more homogeneous within the field of view (Fig. 4.5a,c) suggesting that the layout of active
domains becomes more evenly distributed over all events. Similarly, the SD of the activation in
different spontaneous events decreases for cortical locations demonstrating a decrease in vari-
ability across events (Fig. 4.5b,d). The SD itself also becomes more homogeneous across cortex
(Fig. 4.5e).
The observed increase in the homogeneity of the average activity and the decrease of its SD
during development cannot be trivially explained by the increase in the frequency of sponta-
neous events during development (see Fig. 3.8 in Chapter 3). Alternatively, the change could
either be explained by (1) an increase in the number of activity patterns with different layouts
of active domains corresponding to an increase in the dimensionality of spontaneous activity,
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during development. a Mean activity over spontaneous events during development. Average
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or by (2) a rearrangement of the layout of activity patterns such that the active domains are
more evenly distributed across cortical surface but the dimensionality remains stable. In fact
in Section 4.2.7 we find that the dimensionality of spontaneous activity changes only little with
age consistent with the latter hypothesis.

4.2.4 Distant network elements co-vary already prior to eye-opening

Importantly, we observed spatially extended, modular spontaneous activity patterns (Fig. 4.6a)
already at early stages in development reflected by correlation patterns that displayed pro-
nounced peaks even several millimeters away from the seed point (Fig. 4.6b), consistent with
electrophysiological recordings86. To assess the statistical significance of long-range correlation
strength at large distances (analogous to Chapter 3 we use a distance of 2 mm) across develop-
ment, we compared maxima of correlation patterns to those of surrogate correlation patterns as
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described in Chapter 3 and Chapter 3. To pool across animal experiments within an age group,
we generated 10.000 surrogate group medians by randomly drawing from the distributions of
surrogate data points (one per animal experiment), and the p-value was taken as the fraction
of group medians greater than the median value for the actual data. Indeed, the spatial scale
of spontaneous correlations remained stable during development and already 10 days prior to
eye-opening the correlations were nearly as extended as 5 days after eye opening (Fig. 4.6d,e;
correlation spatial scale: p=0.86, Kruskal Wallis H-test; correlation strength at 2 mm: p <0.0001
vs. surrogate for all groups; across groups: p=0.42, Kruskal Wallis H-test). Furthermore, pro-
nounced spontaneous fractures were already present at the earliest time points, indicating that
the early cortex already exhibits precisely organized long-range functional networks (Fig. 4.6c).
These observations seemed unexpected given the limited development of long-range horizontal
connections at this early stage in cortical development. Anatomical studies in ferret visual cor-
tex demonstrate that axons of layer 2/3 pyramidal cells exhibit only about two branch points
at P2246, extend only up to 1 mm122, and are still missing spatially clustered synaptic termi-
nals, which are distributed across several millimeters in the mature cortex439, but only start to
become evident at about P26-27122,364 (see Section 2.2.1 in Chapter 2).
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Figure 4.6: Early spontaneous activity exhibits long-range correlations similar in range to after
eye-opening. a Representative z-scored images of early spontaneous activity at P23, seven
days prior to eye-opening (EO). b-c. Early spontaneous activity shows hallmarks of mature
spontaneous activity, including long-range correlated activity (b) and pronounced spontaneous
fractures (c). d The spatial scale of correlations in spontaneous activity (decay constant ξ of
correlation maxima) does not change across ages. e The magnitude of long-range correlations
for maxima 2 mm from the seed point is statistically significant at all ages examined. For d,e:
n=10 chronically recorded animals; e: Asterisks indicate p <0.0001, actual vs surrogate data;
d,e: Group data is shown as mean±SEM.

4.2.5 Signatures of the mature evoked map are evident in early
spontaneous activity

We found that features of the modular distributed network, namely modular activity, long-range
correlations, and fractures, were already evident at the earliest time points. This suggests that
the basic structure of the early network might be similar to the network’s mature state. If this is
the case, then signatures of the mature orientation preference map might already be apparent in
the early spontaneous correlation structure. These signatures might then allow us to predict the
structure of the mature visually evoked network using early spontaneous correlations. To test
this, we first examined whether signatures of the mature orientation preference map are present
in early spontaneous correlations by determining their similarity in their layout. Next, we as-
sessed the quality of the prediction of the layout of orientation domains analogous to Chapter 3.
As shown in Chapter 3 especially spontaneous correlation patterns of orientation selective seed
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larly evident for highly selective seed points and increases during development. a Left: Example
of spontaneous correlation pattern (3 days prior to eye-opening (EO-3)), right : cardinal differ-
ence map (four days after EO) with reference point from left. Gray contour lines on left denote
the zero level of the cardinal difference map. b The similarity between the spontaneous correla-
tion patterns and the mature cardinal difference map is highest for patterns of seed points that
are selective for cardinal orientations. c. Already early in development the spontaneous correla-
tion patterns of selective seed points resemble most strongly the layout of orientation domains.
Individual data points (open), group average (solid black; EO-10≤P<EO-5, EO-5≤P≤EO-1,
P=EO, P>EO) across n=12 animal vs shuffle control (gray). Scale bar: 1 mm (a).

points resemble the layout of orientation domains. Here we tested whether we see a similar
behaviour already in the early correlation patterns. To this end, we quantified the second or-
der correlation of the similarity between spontaneous correlations and cardinal difference map
and the cardinal difference map (example shown in Fig. 4.7b). We found that the correla-
tion patterns of seed points that were selective for cardinal orientations (0◦ and 90◦) strongly
resembled the cardinal difference map (Fig. 4.7a,b) whereas correlation patterns of low orien-
tation selective seed points did not show such a strong resemblance (Fig. 4.7b). The similarity
between spontaneous correlations and orientation preference map increased with age but was
already present early on (Fig. 4.7c). Fig. 4.7 shows the similarity of the correlation patterns
to the cardinal difference map, but we obtained quantitatively similar results when considering
the oblique difference map instead. To determine statistical significance, we obtained control
datasets by phase shuffling the orientation preference map in the Fourier domain231, calculating
the pairwise correlation coefficient between the maps’ real part and each spontaneous correla-
tion pattern (Fig. 4.7c) (see Section 3.9 in Chapter 3), and then comparing the resemblance to
the surrogate cardinal map. Thus, signatures of mature visually evoked responses were already
evident in early spontaneous correlated activity.

Having established that already prior to eye-opening the spontaneous correlations contained
information about the mature layout of orientation domains, we visualized this trend by sorting
the spontaneous correlation structure according to the mature preferred orientation of the seed
points (Fig. 4.8a). Indeed after sorting the correlation matrices in this way a clear structure
appeared consisting of a stripe of positive correlations along the major diagonal and a stripe of
negative correlations on the minor diagonal. This structure demonstrates that cortical locations
with similar orientation tuning are likely positively correlated, whereas orthogonally tuned lo-
cations are on average negatively correlated. The structure became even more apparent when
only considering the most selective cortical locations (Fig. 4.8a,bottom), consistent with our
finding above that especially correlation patterns of highly selective seed points resemble the
layout of visually evoked responses. Considering only the correlations between the most selec-
tive locations revealed that already up to 10 days prior to eye-opening the early spontaneous
correlation structure showed signatures of this structure dependent on the mature orientation
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age and selecting only most selective locations. a Spontaneous correlations (right) are ordered
according to the seed point’s orientation tuning after eye-opening (EO; left). Top: All locations
within field of view. Bottom: 10% most selective locations outlined by white contour lines on
left. With age and for subset of most selective locations the spontaneous correlations improve
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coefficients between pairs with similar (black) and orthogonal (green) orientation tuning (±10◦).
b Average difference between correlations of similarly and orthogonally tuned locations of subset
of most selective locations. The average difference increases with (1) increasing the threshold
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tuning (Fig. 4.8,bottom), demonstrating that spontaneous correlations at the earliest observed
time points resembled to a degree the future evoked distributed networks. We quantified the
structure of the correlations along the diagonals by calculating the average difference between
the correlation coefficients between similarly tuned locations (major diagonal) and the correla-
tions between orthogonally tuned locations (minor diagonal) (Fig. 4.8b). With age the ordering
became more prominent (Fig. 4.8b,c). This effect was robust against changes in the definition
of tuning similarity when systematically varying the threshold of similarly tuned locations from
5 to 20◦ and the threshold for selectivity from the 5 to 30% most selective locations (Fig. 4.8b).
Note that in the example shown in Fig. 4.8b, the average difference in correlations does not
increase monotonically with age, but is highest for two days prior to eye-opening. This might
be due to a general increase in the magnitude of the correlation coefficients at this day (see
Fig. 4.8a,right). The magnitude of the correlation coefficients depend among others on the
number of events going into the correlations (see Section 3.8 in Chapter 3). Importantly, for the
selection of the 10% most selective locations the signature of the ordering was already significant
in the earliest age group (Fig. 4.8c, right ; p < 0.01, bootstrap test). Note further that the
increase in the difference in the correlation is due to both an increase in the positive correlations
between similarly tuned locations and a decrease in correlations between orthogonally tuned
locations, since on average the correlation coefficients remain centered around zero (light blue
markers in Fig. 4.8c).
To show that the results above are robust, we extended the comparison between early sponta-

neous and mature evoked activity beyond comparing the layout of the map and the correlation
structure by determining the pairwise tuning similarity between all locations within the field of
view in the mature cortex. Using a pairwise measure to describe the layout of tuning properties
allowed us to compare objects of the same dimensionality. To measure the tuning similarity
dtuning, we used the Euclidean distance between the values of the complex field at each two
locations ~x and ~y

dtuning(~x, ~y) = 1− |z̃(~x)− z̃(~y)|, (4.2)

with z̃(~x) =
z(~x)

rmax
(4.3)

where rmax denotes the maximal selectivity of a location within the field of view. If the tuning
similarity is close to 1, two locations ~x, ~y either have a similar selectivity and preferred orien-
tation or they are both unselective. Two locations ~x, ~y that differ either in their selectivity or
in their tuning share a low tuning similarity. Using this definition, we compared the complete
pairwise organization of the mature tuning similarity and the developing correlation structure by
computing the correlation coefficient between the correlation patterns and the patterns of tun-
ing similarity for each seed point. We found that early in development spontaneous correlations
loosely resemble the evoked tuning similarity (Fig. 4.9a,top). After eye-opening spontaneous
correlations seemed to be more tightly related to the tuning similarity (Fig. 4.9a,bottom). Al-
ready prior to eye-opening a large number of correlation patterns resembled the layout of the
orientation tuning (Fig. 4.9b,top). Several days after eye-opening this distribution shifted no-
tably to high correlation values demonstating that the majority of correlation patterns matched
the patterns of tuning similarity. Up to five days prior to eye-opening the resemblance was
signifcant but improved further with age (Fig. 4.9c), consistent with previous analyses (see
Fig. 4.8 and Fig. 4.10).
As shown in Fig. 3.19 the similarity between the spontaneous correlation patterns and the lay-
out of orientation tuning was especially strong for highly selective locations. Here we showed that
the resemblance between tuning similarity and spontaneous correlation structure was increas-
ingly correlated with age with the selectivity of the seed point (Fig. 4.9d; summary statistics
not shown, but similar behaviour to the example shown was observed in all n=12 animals).
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Figure 4.9: Relationship between spontaneous correlations and tuning is evident early on and
becomes closer with age. a Tuning similarity (Eq. (4.2)) and spontaneous correlations show weak
relationship two days prior to eye-opening (top) but are tightly correlated after EO (bottom).
b Correlating the layout of spontaneous correlations and tuning similarity for each seed point
shows increase in their resemblance during early development (same example as in (a)). Line
marks median of distribution of correlation coefficients. c With age the spontaneous correlations
become more correlated to the layout of the tuning similarity. Individual data points (open),
group average across n=12 animals (solid black; EO-10≤P<EO-5, EO-5≤P≤EO-1, P=EO,
P>EO) vs shuffle control (gray). Example in (a,b,d) is highlighted in green. d The more
selective a seed point, the higher the similarity between its correlation pattern and the layout
of its tuning similarity (same example as in (a)). (a,d) Shown is the Gaussian kernel density
estimation of the distribution.

This analysis demonstrates that by selecting a sub-population of all locations based on their
selectivity, any measure of similarity between spontaneous and visually evoked activity should
always improve compared to when considering all locations within the field of view. This seems
reasonable as the preferred orientation of weakly selective locations can only be estimated impre-
cisely, thus leading to a less accurate estimate of the similarty between evoked and spontaneous
activity. All in all, the comparison between the pairwise similarity of orientation tuning and
spontaneous correlations was consistent with the analyses above.
Since cortical circuits early in development displayed long-range correlations and a significant

similarity to the mature orientation preference map over large distances, we expect to be able to
predict the structure of the mature visually evoked network from the spontaneous activity corre-
lation patterns at these early time points. To test this, we obtained the prediction of the mature
local tuning from remote correlated locations using early spontaneous activity analogous to the
analysis in Fig. 3.20f in Chapter 3. We computed the orientation tuning predictions based on
the correlation pattern on a given day by weighting tuning curves measured after eye opening
using an exclusion radius of 400 µm. The predicted orientation preference map was compared
to the actual map (as described in Section 3.10.2 in Chapter 3) for both individual animals and
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Figure 4.10: Early spontaneous activity predicts future evoked responses. a Longitudinal imag-
ing of a chronically-implanted animal reveals that early spontaneous correlation patterns exhibit
signatures of the mature orientation map (right), despite considerable reorganization in corre-
lation structure. Contour lines indicate horizontal selective domains measured at EO. b The
structure of spontaneous correlations can predict the future mature orientation preference map
organization as early as 10 days before eye opening. c Spontaneous correlation structure predicts
orientation preference significantly better than chance, even at the youngest ages examined. For
b,c: n=11 chronically recorded animals; c: Asterisks indicate p <0.0001, actual vs surrogate
data; c: Group data is shown as mean±SEM (colored; from EO-10 to EO-6, EO-5 to EO-1, EO,
and >EO) over individual data points (gray).

group medians. The predictions remained accurate up to 5 days prior to eye-opening and were
above chance even for the youngest age group. Thus, even at this early developmental stage,
signatures of the future visually evoked distributed network are evident and predictive over large
distances (Fig. 4.10b,c; EO -10 to -5: p <0.0001 vs. surrogate, 4 of 5 individual data points
significant vs. surrogate at p <0.05).

4.2.6 Reorganization of spontaneous activity patterns during development

In several analyses we have consistently observed that the similarity between spontaneous corre-
lations and mature visually evoked responses increases with age. By way of example, the ability
of the spontaneous correlation patterns to predict the visually evoked layout of orientation do-
mains increased significantly with age (Fig. 4.10c; p=0.0004 that data from the four age groups
are different, Kruskal Wallis H-test; EO -10 to -5 vs. EO: p=0.004, Wilcoxon rank-sum) indicat-
ing that the structure of the distributed network changes over this time period. Indeed, we found
extensive reorganization of the correlation structure in all animals (Fig. 4.10a; Fig. 4.11b)
such that their layout became tightly matched to those of evoked responses after eye-opening.
The refinement during this period also involved a rearrangement of the spatial organization of
spontaneous fractures (Fig. 4.11c).
To quantify the degree of reorganization, we compared spontaneous correlation patterns across

development and calculated a second-order correlation (Fig. 4.11d,e) between the correlation
patterns on a given day and the reference day (eye-opening) with the same seed point. Changes
in correlation fractures over development were quantified as the second order correlation of frac-
ture patterns (Fig. 4.11f). In both cases fluctuations due to the finite number of spontaneous
activity patterns might lead to a less than perfect similarity and be interpreted as reorganiza-
tion. To take this into account, we computed an estimate of the expected degree of similarity by
first separately computing correlations and their corresponding fracture patterns for half of the
detected events, and then computing the second-order correlations with the other half at the
same day as above. Comparing the expected degree of similarity with the observed degree, we
found a significant reorganization of spontaneous correlation patterns and fractures from prior
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4.2. Statistical analysis of spontaneous activity in early cortex

Figure 4.11: Refinement of correlation structure during early development. a Registration
across days was achieved by matching radial (descending) blood vessels and computing an affine
transform. b Correlation patterns for same reference point over 8 days prior to eye-opening
(EO). c Spontaneous fractures. d Similarity of correlation patterns to the next imaging session
(top) or to final day (middle and bottom). e Similarity of correlation patterns to reference
day (eye-opening). Blue region indicates within-day similarity for subsampled reference day
correlations. f Similarity of spontaneous fracture patterns as a function of relative age. For
(e,f): n=12 chronically recorded animals; Group data (colored; from EO-10 to EO-6, EO-5 to
EO-1, EO, and >EO) is shown as mean±SEM over individual data points (gray). Scale bar is
1 mm (a-d).
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to after eye-opening.
Potentially, the observed increase in misalignment between spontaneous correlations with
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Figure 4.12: Refinement of correlation structure during development cannot be by purely ex-
plained by errors due to morphing. Left : Similarity based on second order correlations averaged
across correlation patterns between successive days confirms refinement of spontaneous cor-
relations especially during early development. Datasets were morphed to reference day with
parameters based on maximizing the similarity of the correlation structure between successive
days. Right : Same plot as shown on left but morphing is based on matching radial vessels. Cor-
relation similarity across development is highly similar between the different morphing schemes.
Group data (black; from EO-10 to EO-6, EO-5 to EO-1, EO, and >EO) across n=12 animals
is shown as mean±SEM over individual data points (gray).

increasing time lag could be caused by an inaccurate morphing of the correlation patterns.
The misalignment due to morphing issues might be larger for a longer period of time between
spontaneous correlations potentially leading to a similar increase in similarity as observed in
Fig. 4.11e,f. To test this, we determined an upper limit for the similarity in spontaneous
activity during development by computing the transformation parameters of the image registra-
tion based on maximizing the correlation coefficient between spontaneous activity patterns of
successive days. We found that the similarity based on the average second order correlation of
the correlation patterns between successive days changed only little for the datasets that were
morphed based on correlation structure compared to the datasets morphed based on radial ves-
sels (Fig. 4.12). Thus, the observed reorganization in spontaneous correlation structure during
development cannot be purely explained by errors in the registration for longitudinal imaging.
As a second check we computed the second-order correlations between spontaneous correlations
of successive days enforcing a similar time difference between the compared datasets. We found
a similar increase in similarity as shown in Fig. 4.11e further demonstrating that the observed
reorganization is not due to a morphing artefact.
Fig. 4.10a and Fig. 4.11b indicate that the spatial layout of the correlation pattern becomes

more detailed and refined during development. Indeed, we found that the domain spacing
of spontaneous activity decreased during development (Fig. 4.13; from EO≤P<-5 to P>EO
p=0.007, Wilcoxon rank-sum). In order to assess the spatial scale of spontaneous activity, we
first averaged over all correlation patterns centered around the seed point (Fig. 4.13a) and
then integrated over the radial dependency of the average correlation pattern, to obtain the
correlation coefficients as a function of distance to the seed point. Next, we fitted a Gabor
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Figure 4.13: Spatial scale of spontaneous activity decreases during development. a Correlation
pattern centered around seed point averaged across all patterns from day of eye-opening (EO). b
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a: scale bar is 1 mm; c: n=12 chronically recorded animals; Group data (black; from EO-10
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(gray).

function

g(x) = e−
x2

2σ2 cos

(
2π

Λ
x

)
(4.4)

(a Gaussian function modulated by a plane wave) to these correlation coefficients (Fig. 4.13b),
where σ describes the width of the decay of the envelope of the correlations over the distance x.
Λ gives an estimate of the domain spacing of the spontaneous correlations. Note, that we deter-
mined the correlation structure in the reference coordinate system of the reference day (typically
two days after eye-opening) which means that Λ was determined in the coordinate system of the
reference day. We found that the domain spacing decreases throughout development to about
1 mm (Fig. 4.13c). Determining the spatial scale in the not-registered data reduced the values
for Λ by about 10 to 20% for the earliest age group (data not shown), consistent with what we
would expect from the registration parameters (see Section 3.8 in Chapter 3).
Similarly, we assessed the domain spacing of the orientation preference maps at the reference
day. First we calculated the auto-correlation function across the map, integrated the correlation
function over their radial dependency, and then fitted the Gabor function g(x) (Fig. 4.13c,
right). Alternatively using the signal correlation of the single-trial responses to evaluate the
spatial scale of the grating evoked responses analogous to the spontaneous activity, led to quan-
titatively similar values of Λ. The domain spacing of visually evoked responses and mature
spontaneous activity patterns were similar (Fig. 4.13c) consistent with their similarity over
long distances shown before.

4.2.7 Spontaneous activity patterns are low-dimensional

Given the prominence of distributed patterns of spontaneous activity in the developing and ma-
ture cortex, we next asked what we can learn from them about the properties of their underlying
cortical circuits. The fact that these activity patterns exhibit such robust long-range correla-
tions suggests that cortical circuits are constrained to express a relatively small, low-dimensional
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Figure 4.14: Spontaneous activity patterns are low-dimensional with little change throughout
development. a During development dimensionality of spontaneous activity changes only little.
n=12 animals. Individual data points are shown in gray, average group averages are shown in
black (mean±SD; from EO-10 to EO-6, EO-5 to EO-1, EO, and >EO). Group data (black;
from EO-10 to EO-6, EO-5 to EO-1, EO, and >EO) is shown as mean±SEM over individual
data points (gray). b Spontaneous activity patterns (individual data points: gray; mean over
all experiments: black) are signifcantly lower-dimensional than shuffled controls throughout
development (p=1.3x10−6, Wilcoxon signed-rank test, n=29, pooled across animals and ages).

subset of all possible patterns. To test this hypothesis, we employed an empirical estimate of
the dimensionality of the spontaneous patterns30,347,1

deff =

(∑N
a=1 λa

)2

∑N
a=1 (λ2

a)
(4.5)

where λi are the eigenvalues of the covariance matrix of the N locations within the ROI.

To investigate whether the layout of active domains in spontaneous activity patterns is
random or is subject to certain constraints, we compare the dimensionality of the spontaneous
activity patterns to the dimensionality of surrogate activity patterns by computing the median
value of deff for 100 surrogate ensembles generated for each animal as described above (see
Section 3.9 in Chapter 3). Note that the number of event patterns observed (∼100) is not
sufficient to estimate all λa. Therefore the sum is truncated, i.e. does not run to N . We found
that on average ∼14 dimensions (14 ± 4, mean ± standard deviation) are sufficient to account
for all the patterns we observed (Fig. 4.14; see also Fig. 5.1a). Intriguingly, the dimensionality
changed only little during development (Fig. 4.14). In other words, any spontaneous activity
pattern can be expressed as a linear combination of only ∼14 different “base” patterns, a much
smaller number than obtained in sets of surrogate patterns with equal numbers of active domains
(Fig. 4.14; p=1.3x10−6, Wilcoxon signed-rank test, n=29). In surrogate activity patterns the
locations of active domains are randomly distributed across the field of view only constrained
by the domain spacing (same power spectrum as in actual data). We therefore conclude that
only specific activity patterns are supported by the cortical circuits.

Determining the dimensionality of spontaneous activity by the empirical estimate given in
Eq. (4.5), or by applying a Principal Component Analysis (PCA) and taking the number of
components necessary to explain a certain amount of variance led to qualitatively very similar
results.
To test how the dimensionality depends on the number of spontaneous events used for calculating
the covariance matrix, and on the size of the ROI (the number of locations N), we compared the
dimensionality of the spontaneous activity and an ensemble of surrogate datasets (see Section
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Figure 4.15: Dimensionality of spontaneous activity (blue) varies little during development (a),
for an increasing number of spontaneous events (b) and across animals with differently sized
ROIs (c). In contrast, dimensionality of surrogate datasets (purple) shows considerable increase
(a-c).

3.9.2 in Chapter 3) as a function of age, number of spontaneous events and area size of the
ROI (Fig. 4.15). We found that the dimensionality of spontaneous activity changed only
little with age (Fig. 4.15a) and with the number of events (Fig. 4.15b). In contrast, for
the surrogate datasets the dimensionality increased with both (due to the increasing number of
spontaneous activity events with age, see Fig. 3.8). This indicates that when calculating the
dimensionality we did not subsample spontaneous activity. Rather we obtained reliably a very
similar dimensionality value on average for very different number of spontaneous events from
10 to 150. This is also consistent with our previous result showing that already a low number
of spontaneous activity patterns is sufficient to yield a good approximation of the correlation
structure (see Section 3.8 in Chapter 3). This suggests that we can compare the dimensionality
values of experiments with different number of spontaneous events and need not compute the
dimensionality for the same number of events. The dimensionality of spontaneous activity was
similar for animals with different sizes of the ROI varying between 4 to 8 mm2 whereas the
dimensionality of the surrogate datasets slightly increased with area size. This suggests that
the dimensionality of animals with ROIs varying in size up to a factor of 2 can be compared
consistent with our observation of a long-range correlation structure in spontaneous activity.

4.2.8 Mechanisms generating large-scale distributed networks

Having demonstrated that the cortex exhibits large-scale modular networks (prior to the matu-
ration of horizontal connectivity) which are related to the layout of orientation domains in the
mature cortex, we next considered the potential circuit mechanisms capable of generating such
large-scale distributed networks in the early cortex. Here we aimed to distinguish between two
opposing mechanisms. On the one hand large-scale correlations might be mainly inherited by
feed-forward input, on the other hand they might be intrinsically generated by cortical circuits.
In the following we address this question by silencing the feed-forward drive to visual cortex and
measuring the correlation structure before and after silencing.
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Figure 4.16: Long-range correlations in spontaneous activity persist in the absence of retinal
activity. a Cortical spontaneous activity was measured before and after retinal inactivation via
intraocular injection of TTX. b Cortical responses (averaged across field of view) to full-field
luminance changes before (left) and after (right) retinal inactivation. Scale bars: 5 s, 0.5 ∆F/F.
c Time-course of spontaneous activity (averaged across field of view) before (top) and after
(bottom) inactivation. Scale bars: 30 s, 0.15 ∆F/F. d Representative spontaneous events (left ;
indicated by black marker in (c)) and correlation patterns (right) before (top) and after (bottom)
inactivation. e Similarity of correlation structure in representative experiment before and after
inactivation for all cortical locations. Scale bar: 1 mm (d,e). f The spatial structure of spon-
taneous events following inactivation of retina shows significantly more similarity across events
than compared to shuffled data. Group data (black) is shown as mean±SEM over individual
data points (gray).

Long-range correlations in early cortex remain stable despite silencing retina

Spontaneous retinal waves are a prominent feature of the developing nervous system22. They
are highly organized in their spatiotemporal structure and have been shown to propagate into
the visual cortex5. To assess whether retinal waves contribute to the emergence of long-range
correlations, we performed intraocular infusions of TTX, in conjunction with wide-field imaging
of spontaneous activity in the early cortex prior to eye-opening (Fig. 4.16a). For retinal inacti-
vation experiments, we implanted a cranial window over visual cortex as described in Section 3.2
in Chapter 3. After imaging spontaneous activity under light isoflurane anesthesia (0.5-1 %)
(described in Section 3.2 in Chapter 3), visually evoked responses were recorded in response to
full-field luminance steps388. Isoflurane levels were then increased and intraocular infusions of
tetrodoxin (TTX) were performed into each eye. For each intraocular injection, a small incision
was made just posterior to the scleral margin using the tip of a 30-gauge needle attached to a
Hamilton syringe. Each eye was then injected with 2-2.5 µL of 0.75 mM TTX solution (Tocris
Bioscience) to reach an intraocular dose of 21.45 µM that is roughly comparable to the dosage
used previously in the ferret101. Following infusion of TTX, isoflurane levels were reduced, and
the animal returned to a stable light anesthetic plane. The efficacy of TTX was tested by the
absence of visually evoked responses to full-field luminance steps. Following confirmation of
retinal blockade, spontaneous activity was imaged as above. After the collection of spontaneous
activity, retinal blockade was again confirmed through the absence of cortical responses to visual
stimuli.
Despite completely abolishing light-evoked responses (Fig. 4.16b; response amplitude, pre-
infusion: 0.357±0.061 ∆F/F, postinfusion: 0.023±0.028 ∆F/F, mean±s.e.m.; bootstrap test
versus baseline: preinactivation: p < 0.008, postinactivation: p = 0.365, n=3 animals, P22-
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P25), we continued to observe large-scale spontaneous events of similar frequency (Fig. 4.16c)
and spatial extension (Fig. 4.16d) as before inactivation. The spatial correlation structure
was significantly more similar to the structure prior to inactivation than would be expected by
chance (Fig. 4.16e-f ; similarity versus shuffle, p < 0.001 for 3 of 3 animals, bootstrap test).
Correlation similarity across pre- and post-silencing activity was computed for each seed-point
as the Pearson’s correlation coefficient of the spontaneous correlations for that seed point across
states. For each seed-point, correlations within 400 µm were excluded from the analysis. These
second-order correlations (shown for each seed point in Fig. 4.16e) were then averaged across
all seed points within the ROI. To determine the significance of these second-order correlations
across state, we shuffled corresponding seed points across states 1000 times, and again computed
correlation similarity. Likewise, to gain an estimate of the expected similarity for a well-matched
correlation structure, we computed the similarity of each state to itself. Correlation patterns
were first separately computed for half of the detected events, and then the two patterns were
compared as above. These results indicate that long-range correlations seem not to be generated
by retinal input drive.

Long-range correlations in early cortex remain stable despite silencing LGN
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Figure 4.17: Long-range correlations in spontaneous activity persist in the absence of thalamic
input. a Cortical spontaneous activity was measured before and following LGN inactivation
via targeted muscimol infusion. b Cortical responses (averaged across field of view) to full-field
luminance changes before (left) and after (right) LGN inactivation. Scale bars: 5 s, 0.5 ∆F/F .
c Time-course of spontaneous activity for mean of all pixels before (top) and after (bottom)
inactivation. Scale bars: 30 s, 0.5 ∆F/F . d Representative spontaneous events (left) and cor-
relation patterns (right) before (top) and after (bottom) inactivation. e Similarity of correlation
structure in representative experiment before and after inactivation for all cortical locations. f
Correlation structure was significantly more similar before and after inactivation than compared
to shuffled data (p<0.01, for 3 of 3 individual experiments, bootstrap test). g The spatial scale
of spontaneous correlations remains long-range following LGN inactivation. For (d,e): Scale
bar: 1 mm. For (f,g): Group data (black) is shown as mean±SEM over individual data points
(gray).

To test whether coordinated thalamic activity drives large-scale correlations in the early
cortex459, we infused muscimol into the LGN prior to eye-opening to silence feed-forward inputs
to the cortex (Fig. 4.17a), while simultaneously imaging cortical spontaneous activity using
wide-field microscopy. For LGN inactivation experiments, surgical preparation was as described
Section 3.2 in Chapter 3. A head-post was implanted near bregma, a craniotomy was made
over visual cortex, and sealed with a coverslip affixed directly to the skull with cyanoacrylate
glue and dental cement. A second craniotomy was then made over the approximate location of

101



4. Emergence of distributed cortical networks

the LGN (Horsley-Clarke coordinates: AP -1 mm, LM 6 mm). The LGN was typically located
at a depth of 5-8.5 mm, and its spatial position mapped by identifying units responsive to a
full-field luminance stimulus through systematic electrode penetrations. Once the LGN posi-
tion was determined, spontaneous activity in visual cortex was recorded as above, followed by
visually-evoked responses to luminance steps. A micropipette filled with muscimol (25-100 mM,
Tocris Biosciences) was lowered into the center of the LGN5, and infusions of ∼0.5 µL were
made at three depths along the dorsal-ventral extent of the penetration using a nanoliter in-
jector (Nanoject). The efficacy of thalamic inactivation was confirmed by the abolishment of
visually evoked activity prior to and following imaging of spontaneous activity in the cortex.
Muscimol completely blocked light-evoked responses (Fig. 4.17b; response amplitude, preinfu-
sion: 0.720±0.105 ∆F/F, postinfusion: 0.005±0.006 ∆F/F, mean±s.e.m.; bootstrap test versus
baseline: preinactivation: p = 0.0087, postinactivation: p = 0.2584, n=3 animals), and dramat-
ically decreased the frequency of spontaneous events in the cortex (Fig. 4.17c; <1 event per
min, with a 713±82% increase in the interevent interval, mean±s.e.m., n=3 animals). However,
the events remaining after geniculate inactivation still showed large-scale modular activity pat-
terns spanning several millimeters, and exhibited spatial correlation structures highly similar
to those observed prior to inactivation (Fig. 4.17d-f, similarity vs. shuffle: p <0.001 for 3
of 3 individual experiments, bootstrap test), consistent with prior experiments where silencing
was induced via optic nerve transection86 (where transection of both optic nerves abolishes all
LGN activity for ≈50 min437). Spontaneous activity was analyzed as described in Section 3.8 in
Chapter 3, with one exception: the 10 event threshold for inclusion was not applied to the LGN
inactivation experiments as in 1 of 3 cases <10 events were recorded following LGN inactivation.
Comparisons between pre- and post-inactivation patterns were made using second-order corre-
lations as described for comparisons of awake and anesthetized activity in Chapter 3 and for
silencing of the retina. Notably, the spatial extent of correlations was unchanged after thalamic
inactivation (Fig. 4.17g, control: 1.04±0.12 mm; inactivation: 1.13±0.20 mm, mean±SEM).
Following inactivation, the spatial layout of correlation fractures was also similar (fracture sim-
ilarity: 0.164±0.015, p = 0.04, bootstrap test, n=3 animals), suggesting that the fine-scale
structure of correlation patterns was also generated within cortical circuits. Together, these re-
sults demonstrate that feedforward drive cannot account for the spatial structure and extent of
the spontaneous correlation structure in the early cortex. They rather suggest that the modular
distributed networks are intrinsically generated by early cortical circuits.

Summary

Neither silencing retinal activity nor silencing activity in LGN prevents the formation of dis-
tributed, modular, cortical spontaneous activity. The spontaneous activity that is generated in
primary visual cortex after inactivation of feed-forward drive still exhibits a long-range correla-
tion structure. These results suggest that rather than being driven by feed-forward pathways,
the modular and distributed networks present in the early visual cortex are intrinsically gen-
erated by a cortical mechanism. In Chapter 5 we will explore a network model describing the
emergence of a long-range correlation structure in the presence of a purely local connectivity.

4.2.9 Local anisotropic correlation structure

In the following Chapter 5 we assess a dynamical network model of early spontaneous activity.
This model predicts that the local correlation domain around the seed point of a correlation
pattern is anisotropic. Indeed by describing the shape of the peak of a correlation pattern
around its seed point (see also Fig. 5.12g) by an ellipse, we confirmed this prediction with the
experimental data. We fitted an ellipse (least-square fit) with orientation Φ, major axis ζ1 and
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Figure 4.18: Throughout development the average anisotropy of the local correlation domain
around the seed point remains stable. Group data (black; EO-10≤P<EO-5, EO-5≤P≤EO-1,
P=EO, P>EO;) is shown as mean±SEM over individual data points (gray).

minor axis ζ2 to the contour line at correlation=0.7 around the seed point. The eccentricity ε
of the ellipse is defined as

ε =

√
ζ2

1 − ζ2
2

ζ1
(4.6)

Its value is 0 for a circle, with increasing values indicating greater elongation of the ellipse. The
local correlations were already anisotropic early in development and the degree of anisotropy
changed only little during development (Fig. 4.18). Similarly, the standard deviation of the
anisotropy across cortex remained stable during development (data not shown).

We next assessed whether spontaneous fractures - the transition lines from one correlation
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Figure 4.19: The local anisotropy is weakly affected by the organization of spontaneous fractures
in the earliest age group but seems to become independent later. a Example of eccentricity
distributions on fractures (teal) and about 100 µm away from fractures (orange) from 7 days
prior to eye-opening (EO-7). b Average eccentricity on (teal) and away from (orange) fractures
remain largely stable from prior (cross) to after eye-opening (circle) and c are only significantly
different from each other for the earliest age group. d The orientation of the local anisotropy
tends to but is not significantly aligned with the underlying fractures. For (b-d): Group data
(from EO-10 to EO-6, EO-5 to EO-1, EO, and >EO) is shown for individual data points (gray;
c).

pattern to another - affected the organization of the local anisotropy of the correlation pat-
tern. One might expect that near a fracture the local correlation domain is more elongated
and aligned with the direction of the fracture. To this end, we compared the distribution of
eccentricity values of seed points on fractures with values of seed points 100 µm away from
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4. Emergence of distributed cortical networks

fractures (Fig. 4.19a). We found that at the earliest stage in development (at around 10 to
7 days prior to eye-opening) the local correlations are significantly more elongated on fractures
than away from fractures (Fig. 4.19b,c; earliest age group: p<0.001, bootstrap test). Similarly,
the orientation of the local correlations tended to be weakly but not significantly aligned with
the underlying fractures (Fig. 4.19d). Thus, we conclude that the organization of spontaneous
fractures is weakly reflected in the spatial distribution of orientation and eccentricity of the lo-
cal correlation domains at the earliest observed stage in development but the eccentricity of the
local correlations seems to become nearly independent of the position of orientation fractures
with age.
Next, we asked whether spontaneous correlations and the mature tuning similarity also matched
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Figure 4.20: Similarity between spontaneous correlations and orientation tuning on local scale
increases with age, but is statistically insignificant early on. a Shown is the angle difference
between the orientation of the fitted ellipses to the local correlation layout and to the local
orientation domains after eye-opening (EO) averaged over seed points. Filled marker indicate
group average (from EO-10 to EO-6, EO-5 to EO-1, EO, and >EO; Mean ± SD) compared
to control datasets (gray; mean ± 95 percentile). b Shown is the normalized difference in
eccentricity between local correlation structure and orientation domains after eye-opening. The
difference remains constant across development, while the tuning eccentricity is only slightly
smaller than the eccentricity in the spontaneous correlations (cf. Fig. 4.18).

in the anisotropy of the local structure around their seed point. To address this question, we
first fitted ellipses to the local correlation structure and the local neighbourhood of the tuning
similarity (see Eq. (4.2)) as described above. We then tested whether the local neighbourhoods
are similarly oriented by computing the difference in their orientation averaged across all loca-
tions (Fig. 4.20a). We found that with age the orientation of the local domains of spontaneous
correlations and tuning similarity become significantly aligned (Fig. 4.20a). To test whether
the eccentricity between local correlations and local tuning similarity matches, we calculated
their relative difference (Fig. 4.20b). The ratio of the eccentricity between spontaneous corre-
lations and orientation tuning remained stable across development (Fig. 4.20b) reflecting the
stability of the eccentricity of the local correlations with age. Together, these results show that
spontaneous correlations and tuning similarity become increasingly matched with age even in
their local features.

4.3 Discussion

Patterned spontaneous activity allowed us to characterize the state of distributed network struc-
ture early in development. Given the strong association of modular, visually evoked activity
patterns with the modular arrangement of long-range horizontal connections in mature cor-
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tex154,285,48, we were surprised to find robust long-range modular patterns of correlated activity
as early as 10 days prior to eye opening, when horizontal connections are immature46,122,364.
The correlated activity patterns at this early stage in development were not identical to the
patterns found in the mature cortex, instead they underwent significant refinement prior to
eye opening. Indeed, developmental changes in the patterns of correlated activity are likely to
reflect ongoing maturation of multiple features of circuit organization including the emergence
of long-range horizontal connections. Our retinal and thalamic inactivation experiments bolster
previous work86,284, and establish that early correlated patterns of spontaneous activity cannot
be attributed to patterns of activity arising from retina or LGN. The presence of such long-range
modular correlation patterns in the absence of a well-developed horizontal network in layer 2/3
and in the absence of feed-forward drive challenges the necessity of long-range monosynaptic
connections for generating such distributed modular network activity.
Signatures of the mature orientation preference map were already evident in early spontaneous
correlations. However, it remains unclear whether early spontaneous correlations are already
similar to early evoked responses or whether their relationship becomes closer during develop-
ment. To address this question it would be necessary to not only chronically image spontaneous
activity but also visually evoked responses.
Similar to previous work274, we found that the layout of spontaneous activity patterns is confined
to a low dimensional manifold. This confinement was expressed in correlated activity between
cortical locations (similarly found in other brain areas151,468,298) potentially over a large spatial
range. Theoretically, it has been shown that already weak correlation coefficients between loca-
tions could be sufficient to notably constrain the set of patterns generated by neural circuits372.
Previous work found that retinal inactivation changed the event size distribution383. After enu-
cleation the number of small sized events decreased whereas the number of events in wich more
than 80% if neurons participated slightly increased. The authors argued that this might indicate
that small events are mainly triggered by retinal input whereas large events are intracortically
generated. It would be interesting to investigate whether our data shows a similar reduction
in small sized events of spontaneous activity after retinal inactivation compared to before in-
activation. Indeed we observed a notable drop in the frequency of spontaneous events after
LGN inactivation suggesting that LGN triggers intrinsic cortical spontaneous events284. This is
also consistent with previous work in cortical slices suggesting that cortical spontaneous activity
mainly depends on corticocortical connections368,423.
The finding of modular correlation patterns distributed over distances comparable to those
found with intact feedforward inputs indicates that immature cortical circuits have the capacity
to generate long-range correlated modular patterns. It is important to emphasize that these
observations do not rule out a causal role for feedforward inputs in establishing modular cortical
network structure. Patterns of retinal and geniculocortical activity could play a critical role in
guiding the development of these cortical activity patterns (e.g.311,69,75,201), but they are clearly
not required for their expression.
Taken together, our results suggest that early cortical circuits can intrinsically produce modular
long-range correlations that are refined in the course of development to form mature distributed
functional networks. This result, however, leads to the challenging puzzle of how the long-range
correlation structure in the early cortex is generated through intracortical circuits before the
long-range horizontal connectivity maturates. We will address this issue in the next chapter by
studying statistical and dynamical network models.

105





Chapter 5

Modelling long-range correlated
spontaneous activity

Key features of spontaneous activity in the mature cortex, such as the modular and long-range
correlation structure, are already present in the early cortex prior to eye-opening. Moreover,
the presence of these long-range correlation structure in the spontaneous activity even after the
inactivation of retina and LGN suggests that long-range correlations are intracortically gener-
ated. However, as these large-scale cortical networks are present prior to the maturation and
elaboration of long-range horizontal connectivity364,122,439,46, these results also present a conun-
drum.
To explore how a developing cortex lacking long-range connectivity could generate long-range
correlated patterns of activity, we studied an ensemble of spatially extended activity patterns of
a pre-defined dimensionality. We found that reducing the dimensionality of that ensemble led to
an increase of the spatial scale of its correlation structure. This could be a potential mechanism
generating a long-range correlation structure.
Building on this result, we next studied a dynamical network model of firing rate units446,
variants of which have been used previously to model spontaneous activity in the mature vi-
sual cortex159,44,148,317. In the model we took advantage of the observation that heterogeneity
within a network leads a line attractor to disappear and the activity patterns to cluster into
a small number of discrete states428,464,353. We assessed how network heterogeneity influences
the dimensionality of the ensemble of activity patterns generated by the network and found
that with increasing heterogeneity the dimensionality decreases and the range of its correlations
increases. The analysis of the model revealed a quantitative match between the network model
and the experimental observations in vivo in several features of the early cortex including the
spatial scale of correlations, the strength of spontaneous fractures and the anisotropy of local
correlations. The low dimensionality of the spontaneous activity patterns, thus, might provide
an organizational principle in cortex explaining among other things the observed long-range
correlation structure.

5.1 Introduction

In Chapter 4 we have shown that spontaneous correlations extend over large distances already
at a stage in cortical development when long-range lateral connections have not emerged yet389.
Inactivating feed-forward drive by silencing either retina or LGN leaves the long-range and
modular correlations intact indicating an intracortical mechanism for generating long-range
correlations. However, the mechanism generating long-range correlations in the absence of long-
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5. Modelling long-range correlated spontaneous activity

range lateral connections remains elusive. Here, we investigate whether constraining the set of
network activity patterns to a lower dimensional manifold might act as such a mechanism. The
rationale behind is that if an ensemble of activity patterns is constrained in its dimensionality its
active domains are not located randomly within cortical space but are confined in their layout.
This might lead to a co-variation in the activity of (distant) cortical elements possibly strong
enough to explain the emergence of long-range correlations. To investigate low dimensionality
as the underlying principle for long-range correlations, we first study the statistical properties of
an ensemble of modular activity patterns of systematically varying dimensionality and compare
those to experimental data. We find that for a sufficiently low dimensional ensemble of activity
patterns, it agrees quantitatively in the spatial scale of the correlations and in fracture strength.
Having established that low dimensionality generates the experimentally observed properties in
ensembles of activity patterns, we next study a dynamical network model that constrains the
dimensionality of its output activity by assuming a heterogeneously distributed connectivity
scheme. The heterogeneity in the network connectivity breaks the translation and rotation
symmetry of the network and in turn of its activity patterns confining the network activity to a
lower dimensional manifold. An analysis of the model shows that the statistical properties of the
network activity and the experimental data are in quantitative agreement. Finally, we show for a
simplified model with both excitatory and inhibitory units and a more advanced model consisting
of two separate population of excitation and inhibition that introducing network heterogeneity
successfully leads to activity patterns with properties as observed in experimental data. In
summary, we provide a powerful mechanism and its network implementation of generating a
long-range correlation structure in the absence of long-range anatomical connections.

5.2 Statistical model of spontaneous activity patterns

Here we aim towards describing the patterns of spontaneous activity events using a statistical
model. We generated in two different variants of the statistical model sets of modular activity
patterns with a domain spacing and a pre-defined dimensionality. We assumed a fixed domain
spacing which is determined by the experimental data presented in Chapter 3 and Chapter 4.
By systematically varying the dimensionality, we examined its influence on the properties of
the correlation structure of the activity patterns. We found that for a sufficiently small dimen-
sionality the activity patterns generated by the model are consistent with experimental data in
several key properties. In the following, we describe both variants of the model in detail and
compare their properties with data of early spontaneous activity.

5.2.1 Key features of spontaneous activity vary with dimensionality

Spontaneous activity patterns exhibit a low dimensionality (14±4, mean±SD; Chapter 4) which
is smaller than expected by control datasets with the same domain spacing and the same num-
ber of active domains (Fig. 5.1a). Thus, active domains in the spontaneous activity are not
randomly distributed in cortical space but are constrained in their positions. This raises the
possibility that low dimensionality could be an organizing principle that is sufficient to explain
the features of spontaneous activity patterns that are observed in the experimental data. To test
this idea, we studied the correlation structure in a statistical model of an ensemble of spatially
extended, modular activity patterns that were maximally random, but confined to a subspace
of predefined dimensionality k. In this model we generated k orthonormal basis patterns v from
an ensemble of real-valued Gaussian random fields matching the spectral width in the data231

(Fig. 5.1b). A random field is a generalized stochastic process whose parameter can take values
that are multi-dimensional vectors (in our case two-dimensional). A Gaussian random field Gm

is then a random field whose joint probability density is described by a multivariate normal
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Figure 5.1: Constraining activity patterns to low dimensionality generates long-range corre-
lations and pronounced fractures. a Spontaneous activity patterns are significantly more con-
strained to a low-dimensional subspace than shuffled surrogate patterns (gray: individual exper-
iments; black: population mean, n=29). b A statistical model of spontaneous activity generates
an ensemble of activity patterns with specified dimensionality k by a randomly weighted super-
position of k orthonormal basis patterns. c The strength of long-range correlations, fractures,
and the eccentricity of the local correlations all increase with decreasing dimensionality. Blue
lines (mean±SD) indicate the range of dimensionality in the data (a). d,e,f The correlation
pattern computed over an ensemble of N=10000 patterns and dimensionality d = 11 expresses
long-range correlations (d, left) and pronounced fractures (d, right). Example spontaneous cor-
relation pattern (left) and fractures (right) for dimensionality d = 3 (e), and d = 41 (f). Scale
bar is 1 Λ (d,e,f).

distribution3. Since a normal distribution is fully described by its mean and covariance, it is
sufficient to specify the first and second moments of the multivariate normal distribution to
determine the Gaussian random field. We assumed the first moment to be

〈vm〉 = 0

with m = (m1,m2)T and m1,m2 ∈ [0, L/M, . . . L− 1].
(5.1)

Here vm describes a specific realization of the Gaussian random field Gm of size LxL with M
lattice points in x and y-direction, respectively. The brackets 〈〉 denote the integral of the field
weighted by its probability density. Due to translational symmetry the second moment depends
only on the difference vector r = m− n:

〈vmvm+r〉 = Cr (5.2)
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Equivalently, we can write the second momentum in Fourier space as

〈vmvm+r〉 =
1

M2
〈
∑
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∑
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2πi
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∑
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e
2πi
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qr|ṽq|2. (5.7)

where ṽk denotes the Fourier transform of the Gaussian random field. Here we assumed that the
Gaussian random fields are real. This result shows that we can express the second momentum
as a function of the power spectrum of the Gaussian random fields |G̃k|2 which we assumed to
be

|ṽq|2 = |ṽqq′ |2 = e−
( 2π
L

√
q2+q′2−µ)

2

w2 (5.8)

where µ determines the domain spacing of the Gaussian random field and w denotes its spectral
width. Here we used ~q = (q, q′)T .
In the model, we then orthogonalized the basis patterns v by applying the Householder reflection
and normalized the patterns to zero mean and standard deviation of 1. By forming random
superpositions from these (fixed) k patterns using normal-distributed weights ζ (with mean 0,
SD σζ = 1), we generated an ensemble of N random patterns Ai (i = 1, 2, . . . N) spanning a
k-dimensional subspace in the high-dimensional space of all possible spatially extended, modular
patterns, thus mimicking the experimentally observed behaviour of spontaneous activity patterns

Aj =
1

k

k∑
i=1

ζjivi. (5.9)

Importantly, increasing the ensemble size N does not change its dimensionality as the dimen-
sionality is determined by the number of different base patterns vi. To study the relationship
between the dimensionality of the set of modular activity patterns and the spatial range of their
correlation structure, we calculated the cross-correlation between two locations m,n across the
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N patterns Aj . We used again Pearson’s correlation coefficient

Cmn =
1
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(5.10)
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where Ajm denotes the value of the j-th realization of the generated patterns at location m, σζ
denotes the standard deviation of the coefficients ζij and σAm denotes the standard deviation at
location m across realizations j of activity patterns Aj . We used here that in the limit of large
N the average value Ām vanishes since the coefficients ζ were drawn from a centered Gaussian
distribution. Note that for finite dimensions k the standard deviation depends on the specific
locations m,n as well as on the specific realizations.
This expression shows that for a small number of dimensions k - as observed in experimental
data - the correlation coefficient is calculated only over a small set of basis patterns v and is
therefore highly seed-point dependent and its spatial structure is dominated by the individual
realizations vl. For low values of dimensionality the correlation coefficients stay high across
large distances since a low number of different realizations of Gaussian random fields repeat
themselves in the activity patterns. Increasing the number of realizations N does not change
the dimensionality, we therefore kept N finite.
To explicitly show the behaviour of the correlation C for low k, we considered the two simplest
cases for k = 1, 2 (We consider the case k →∞ below):

k = 1 : Cmn =
v1mv1n

|v1m||v1n|
= (sgn(v1m) sgn(v1n)) (5.15)

k = 2 : Cmn =
v1mv1n + v2mv2n

(v2
1m + v2

2m)1/2 (v2
1n + v2

2n)1/2
(5.16)

For k = 1 the correlation coefficient is either ±1 depending on the sign difference between lo-
cations m,n. In this case, the peaks of the correlation coefficients are equal to 1 even if the
distance between m and n is large. This means there is a global correlation structure over
the set of activity patterns. In the case of k = 2 it is possible for certain realizations of v1, v2

that the two terms in the numerator (partially) cancel each other such that the peaks of the
correlation coefficients become small. However, typically the correlations remain high across
the field (compare also Fig. 5.1e for k = 3). Importantly, in this model the values at the
peaks of the correlations do not decay with distance to the seed point for low dimensionality.
Instead they quickly drop after about one domain spacing to an average value below 1 where
the correlations remain independent of distance (Fig. 5.2). Therefore, instead of determining
the spatial scale of the correlations, we determined the average value of the correlation peaks
at a distance of 2 Λ to the seed point when systematically varying the dimensionality k (see
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Chapter 3 and Chapter 4). Linearly increasing the dimensionality k led to a sublinear decrease
in the average correlations (Fig. 5.1c(left)). Similarly, increasing k also led to a decrease in
fracture strength and a decrease in the anisotropy of the local correlations around the seed
point (Fig. 5.1c(center, right). For increasing dimensionality the ensemble of activity patterns
becomes more variable and therefore leads to smaller correlation coefficients. An increase in
the dimensionality resulted in correlation patterns that were more symmetric around their seed
point due to averaging across a more diverse set of activity patterns (Fig. 5.1d-f) and to a
stronger drop in the average correlation. Averaging over a more diverse set of patterns also led
to correlation patterns that were more similar between neighbouring seed points which in turn
decreased the fracture strength (Fig. 5.1d-f).

Importantly, we noted above that we did not observe a decay in the correlations for small
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Figure 5.2: Peak values of correlation coefficients start to decay over spatial distance for suf-
ficiently high ensemble dimensionality. From left to right dimensionality increases. For d = 3
(left) a spatial decay of the correlations is not apparent. For d = 31 (center) and even more
for d = 99 (right) the envelope of the correlations tend to decay over the distance over several
domain spacings Λ.

dimensionalities. For increasing dimensionalities the correlations started to show a decay over
spatial distances similar to those observed in experimental data (Fig. 5.2). For low dimension-
ality the peak correlation coefficients were generally high and showed a high variability occluding
a spatial decay. Still for all dimensions the correlations decayed to a finite baseline value and
not to zero due to finite size fluctuations. In the next section we will consider another statistical
model describing an ensemble of activity patterns with a dimensionality that is sufficiently high
to show the experimentally observed decay behaviour and at the same time allows to systemat-
ically vary this dimensionality.
In summary, we examined the influence of dimensionality on the experimentally observed fea-
tures of correlated spontaneous activity. Intriguingly, we found that when the dimensionality is
relatively low, this simple statistical model not only produced correlations over large distances
and a network of pronounced correlation fractures but also anisotropic local correlations. All
these features became more pronounced the smaller the dimensionality in the model (Fig. 5.1c).
These results raise the possibility that low-dimensionality could be an organizing principle that
is sufficient to explain the observed features of correlated spontaneous activity.

5.2.2 For sufficiently high dimensionality correlations decay with spatial
distance

The observation that low-dimensional activity yields a long-range correlation structure suggests
that any mechanism that reduces the dimensionality of spontaneous activity could have a sim-
ilar effect on the spatial structure of correlated activity. To test this idea, we simplified the
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5.2. Statistical model of spontaneous activity patterns

statistical model presented above such that (1) it allowed us to complement numerical results
with analytical calculations and (2) to produce a spatial decay in its correlations. We modeled
spontaneous activity patterns by an ensemble of N realizations vi of two-dimensional Gaussian
random fields of a fixed size LxL (with M lattice points in x and y direction as above) that
are completely described by their power spectrum (see Eq. (5.8)). These realizations were not
orthogonalized, but for large field sizes L are expected to be approximately orthogonal and un-
correlated. For sufficiently large N the ensemble was high dimensional which (1) should result
in a spatial decay of the correlations and (2) allowed us to obtain a closed-form expression of
the correlation structure of the generated activity patterns. To investigate the influence of the
ensemble’s dimensionality on the correlation structure, we systematically varied the width w
of the power spectrum of the Gaussian random fields. An increase in the spectral width w
corresponds to a higher variability in the local domain spacing Λ of the activity patterns in turn
leading to a higher dimensionality of the ensemble. In this variant of the statistical model, we
tested whether increasing the dimensionality not only lowers the average correlations at large
distances as observed in the minimal statistical model but also leads to a decrease in the spatial
scale of the correlations.
First, we showed that increasing the spectral width w increases the dimensionality of the en-
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Figure 5.3: Realizations of Gaussian random fields exhibit seed point dependent correlation
patterns due to finite size effects. a Realizations of correlation patterns across N=100 realizations
of Gaussian random fields for two different seed points (green marker). The layout differs between
the two seed points. b Two correlation patterns across N=10000 realizations of Gaussian random
fields with a highly similar radially symmetric layout. Scalebar is 1Λ.

semble of Gaussian random fields. To this end, we used an estimate of the dimensionality of
the Gaussian random fields based on the distribution of eigenvalues of their covariance matrix
Ĉ (see Eq. (2.20)30,347,1; see also Section 2.3.6 in Chapter 2). In the following, we compared
analytical calculations with numerical realizations of Gaussian random fields and therefore con-
sidered discretized Gaussian random fields. We first determined the covariance matrix (see Eq.
(5.14))

Ĉmn =

N∑
i=1

vimvin (5.17)

where vim denotes the value of the realization i at location m = (mx,my)
T . Here we assumed

that the Gaussian random fields centered around zero. For a sufficiently large number of realiza-
tions N , we can further simplify this expression. In the limit of large N , the covariance becomes
identical for all locations (translation invariant) and only dependent on the distance between
locations m and n (Fig. 5.3; covariances are self-averaging). We thus replaced the average over
realizations i by the average over locations sharing the distance vector r = m−n assuming that
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5. Modelling long-range correlated spontaneous activity

the Gaussian field size L is sufficiently large and boundary effects can be neglected

Ĉmn =
M∑

m=1
n=m+r

vmvn (5.18)

= F{ṽqq′ ṽ∗qq′}m−n (5.19)

where ṽqq′ is the (two-dimensional) Fourier transform of the Gaussian random field v and ṽ∗qq′ is
its complex conjugate. Here we applied the cross-correlation theorem allowing us to express the
covariance as the Fourier transform of the power spectrum of the Gaussian random fields (see
also Eq. (5.7)). To take into account the translation invariance of the covariance, we rewrote
it as Ĉ(m,n) = Ĉ(m− n). By plugging the expression of the power spectrum of the Gaussian
random field (Eq. (5.8)) into the equation above, approximating the discrete Fourier transform
by its continuous form ((q, q′)→ (q/L, q′/L)) and transforming the frequency from cartesian to
polar coordinates ((q, q′)→ (qr, φ)), we obtained

Ĉ(m− n) =
1

M2

∑
q,q′

e
2πi
L

(q (mx−nx)+q′ (my−ny))e−
( 2π
L

√
q2+q′2−µ)2

w2 (5.20)

=
1

L2

∫
dq

∫
dq′e2πi(q (mx−nx)+q′ (my−ny))e−

(2πi
√
q2+q′2−µ)2

w2 (5.21)

=
1

L2

∫ 2π

0
dφ

∫ ∞
0

dqr qr e
2πi qr(cosφ (mx−nx)+sinφ (my−ny))e−

(2πqr−µ)2

w2 (5.22)

=
1

L2

∫ ∞
0

dqr qr J0(2π qr

√
(mx − nx)2 + (my − ny)2)e−

(2πqr−µ)2

w2 (5.23)

⇒ Ĉ(r) =
1

L2

∫ ∞
0

dqr qr J0(2πqrr)e
− (2πqr−µ)2

w2 (5.24)

where J0(x) denotes the Bessel function of zeroth order4 and r denotes the absolute difference
r =

√
(mx − nx)2 + (my − ny)2. To transform the discrete into the continous Fourier series we

let M →∞.
We corroborated this result numerically by generating N realizations of Gaussian random

fields and calculated their correlation structure. To show that correlation patterns become
independent of the seed point only in the limit of large N , we generated a set of N = 100 and
N = 10000 activity patterns. For N = 100 the correlation patterns varied across seed points and
were dominated by fluctuations around the mean (Fig. 5.3a). For N = 10000 the correlation
patterns became almost identical for all seed points and their magnitude depended only on the
distance to the seed point (Fig. 5.3b) consistent with the analytical result in Eq. (5.24). This
independence of the covariance pattern on the seed point reflects the homogeneity and isotropy
of the averaged realizations.
To determine the eigenvalues of Ĉ, we first rewrote the covariance matrix as a fourth order
tensor Ĉmx,my ,nx,ny . Since Ĉ only depends on the distance r (see Eq. (5.24)) it is a circulant
tensor and is fully determined by a second order tensor. Without loss of generality we took this
matrix to be cmx,my = Ĉmx,my ,0,0. The circulant tensor Ĉ can be diagonalized by applying the
discrete Fourier transform. Its eigenvalues are given by

λqq′ =

M−1∑
mx,nx=0

cM−mx,M−nx (ωq)
mx(ωq′)

nx = c̃qq′ = |ṽqq′ |2 (5.25)

where ωj = exp
(

2πij
L

)
. Note that the eigenvalues correspond to the spectrum of the Gaussian

random fields. To determine the dimensionality of the Gaussian random fields, we used Eq.
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Figure 5.4: Dimensionality increases with spectral width w of Gaussian random fields. a Dimen-
sionality of an ensemble of Gaussian random fields increases linearly with w (in units of spatial
frequency µ). Dimensionality of N = 10000 realizations of Gaussian random fields determined
from their covariance matrix (green markers) tends to be smaller than the dimensionality pre-
dicted by Eq. (5.30) (dashed line). The dimensionality calculated from the discrete spectrum of
the Gaussian random field (Eq. (5.28); black marker) matches the theoretical prediction. b Di-
mensionality (in units of theoretically predicted value) increases with the number of realizations
used to calculate the covariance matrix. Increasing w leads to a slower convergence towards
the theoretically predicted value (dashed line) indicating that the mismatch in (a) stems from
limited sample size N .

(2.20)30,347,1 and by taking the continuous limit we obtained

deff =

(∑M−1
q,q′=0 λqq′

)2

∑M−1
q,q′=0(λqq′)2

(5.26)

=

(∑M−1
q,q′=0 |ṽqq′ |2

)2

∑M−1
q,q′=0(|ṽqq′ |2)2

(5.27)

=

(∑M−1
q,q′=0 exp

(
− (2π

√
q2+q′2−µ)2

w2

))2

∑M−1
q,q′=0 exp

(
−2

(2π
√
q2+q′2−µ)2

w2

) (5.28)

=
w2

8π

(
M

L

)2

(
√
π µw
(
1 + Erf

( µ
w

))
+ e−

µ2

w2

)2

√
2π µw

(
1 + Erf

(√
2 µw
))

+ e−2 µ
2

w2

(5.29)

µ/ω>>1
=

√
2

π

µw

8π

(
M

L

)2

+ h.o.t. (5.30)

where Erf denotes the error function4. For µ/ω >> 1, the dimensionality scales linearly with
the spectral width w. As before, we corroborated these calculations by simulating N = 10000
realizations of Gaussian random fields and found that they match the theoretical prediction of the
dimensionality for small values of spectral width w (Fig. 5.4a). For large w the dimensionality
was affected by the finite size of the ensemble of the realizations and its estimated value was
biased towards smaller values (Fig. 5.4a). With increasing w more realizations were required
to properly assess the ensemble’s dimensionality (Fig. 5.4b). In summary, increasing w leads
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5. Modelling long-range correlated spontaneous activity

to a nearly linear increase in the dimensionality of an ensemble of activity patterns.
Having demonstrated that increasing the spectral width w leads to a higher dimensionality,
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Figure 5.5: Theory and simulation of correlation decay match over range of spectral widths.
The correlation coefficients across N = 10000 realizations of Gaussian random fields averaged
over angle (mean: green markers; SD: gray lines) is in agreement with the theoretical expression
(black; Eq. (5.34))

we next tested whether increasing dimensionality decreases the spatial scale of the correlation
structure as we would expect from the analysis of the minimal statistical model. To this end,
we first determined the correlation structure C(r). Since C(r) (Eq. (5.10)) is the normalized
covariance matrix Ĉ(r) (Eq. (5.24)), we only need to calculate the proper normalization factor
Cn such that C(0) = 1:

1
!

= C(0) =
Ĉ(0)

Cn
=

1

CnL2

∫ ∞
0

dq q J0(0) e−
(2πq−µ)2

w2 (5.31)

=
1

Cn

w2

L28π2

(√
π
µ

w

(
1 + Erf

(µ
w

))
+ e−

µ2

w2

)
(5.32)

⇒ Cn =
w2

L28π2

(√
π
µ

w

(
1 + Erf

(µ
w

))
+ e−

µ2

w2

)
. (5.33)

Thus, the correlation matrix is given by

C(r) =
8π2

w2

(
√
π µw
(
1 + Erf

( µ
w

))
+ e−

µ2

w2

) ∫ ∞
0

dq q J0(2πqr) e−
(2πq−µ)2

w2 (5.34)

Using this expression for the correlation coefficients, we next assessed the decay of the correla-
tions as a function of distance to the seed point. We found that consistent with the minimal
statistical model studied above with moderate dimensionality k, the correlation coefficients ex-
hibited a spatial decay over a broad range of spectral widths w (Fig. 5.5). The analytical result
matched the results from numerically obtained realizations (Fig. 5.5). Since the Gaussian
random fields exhibited a typical spatial scale the correlation coefficients showed an oscillation
under the decaying envelope (Fig. 5.5). The oscillatory behaviour can be interpreted as an
interference such that at the typical domain spacing of 1Λ the activity patterns result in a pos-
itive correlations whereas inbetween multiples of the domain spacing the activity patterns yield
negative correlations. The envelope of the correlation structure decays faster as the spectral
width w becomes broader (Fig. 5.5, left to right) which is also consistent with the results of the
minimal statistical model. This further highlights the close relationship between dimensionality
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5.2. Statistical model of spontaneous activity patterns

and the spatial scale of the correlations of an ensemble of activity patterns.
To compare whether the decay of the correlations in the model matches those observed in
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Figure 5.6: Correlation coefficients decay faster over distance to the seed point with increasing
spectral width w (a-c). The spectral width is varied from w = 0.1µ (a), w = 0.3µ (b) to
w = 0.6µ (c). The envelope of the decay of N = 100 Gaussian random fields with the same SD
of the power spectrum as observed in the data is shown in (c). d The magnitude of the fitted
decay constants ξ decreases with increasing spectral width w.

experimental data, we next examined the spatial scale of the correlations analogous to the anal-
ysis of the experimental data (see Section 3.10.1 in Chapter 3). We used N = 100 realizations
of Gaussian random fields to compute the correlation coefficients to be comparable to the size
in the experimental data. The peaks of the correlations decay over shorter spatial distances
for increasing w (Fig. 5.6a-c) as captured by the spatial scale of correlations (Fig. 5.6d).
Interestingly, the spatial scales of correlations were relatively large for small spectral widths w
and closely approached (but did not match) experimentally observed values (see Fig. 5.6a and
compare Fig. 4.6). Although in Fig. 5.6, this relative slow decay was not due to finite size
fluctuations as we quantified the decay relative to the baseline correlation at large distances (see
Section 3.10.1 in Chapter 3). The baseline was obtained from a surrogate dataset which like the
considered activity patterns consists of ensembles of Gaussian random fields.
To quantitatively compare the Gaussian random field model with the experimentally observed
spontaneous activity patterns during early development, we first matched their spectral width
to the experimental data (wexp = (0.62± 0.05) µ, mean±SD, n=40 experiments of 12 animals).
Note that the spectral width is expressed in units of the domain spacing µ. We obtained the
experimental spectral width by first calculating the angle averaged spectrum of the individual
spontaneous activity patterns. We then computed the average spectrum over all individual spec-
tra and approximated the width of the peak in the average spectrum by the standard deviation
of a fitted Gaussian profile (we fitted up to a frequency of 5.7 mm−1).
The dimensionality of an ensemble of Gaussian random fields of comparable spectral width was
notably higher than of the spontaneous activity observed in experiment (dGRF = 47 ± 1, n=3
sets of 100 realizations, vs dexp = (13± 6), n=5 experiments of 4 animals between 10 to 7 days
prior to eye-opening). Similarly, the correlation coefficients decayed significantly faster than
observed experimentally (spatial scale ξGRF=(0.55±0.05) Λ of n=3 sets of 100 realizations vs
ξexp=(0.93±0.14) mm of n=5 experiments of 4 animals; compare also Fig. 5.7e, Fig. 5.9 and
Fig. 5.12b). In fact, for a spectral width matched to the experimental data the correlation
coefficients have decayed to baseline after already one wavelength (Fig. 5.5) and no signature of
significant correlations was detected in the peak values (Fig. 5.6(right)). For this comparison
we identified 1 Λ with 1 mm, which is roughly the spatial scale of spontaneous patterns observed
in experiment. Consistent with the disagreement in spatial scale of the correlations the fractures
in the Gaussian random fields were less pronounced (average fracture strength fGRF=(5.0±0.1)

117



5. Modelling long-range correlated spontaneous activity

10−3 Λ−1 of n=3 sets of 100 realizations vs fexp=(14±7) 10−3 mm−1, n=5 experiments of 4 an-
imals). The disagreement in all four features between experimental results and values obtained
from Gaussian random fields demonstrates that spontaneous activity is not well described by an
ensemble of Gaussian random fields. It rather indicates that the location of active domains of the
spontaneous activity is more constrained than is achieved by imposing a domain spacing with a
certain width. Note that we came to the same conclusion when comparing the dimensionality
of the original data to a surrogate dataset consisting of a phase shuffled random ensemble of
activity patterns as those surrogate datasets correspond to ensembles of Gaussian random fields
Chapter 4.

5.2.3 Summary

In summary, we examined the relationship between the dimensionality and the spatial scale of
correlations of an ensemble of activity patterns modeled by Gaussian random fields. Our analyt-
ical and numerical analysis revealed a close relationship between those two features. Consistent
with the analysis of the minimal statistical model, a decrease in dimensionality due to a de-
crease in spectral width led to an increase in the spatial scale of correlations. This result further
highlights the interrelation between the dimensionality of an ensemble of activity patterns and
the spatial scale over which correlations show a decay.
The minimal statistical model (model 1) generated an ensemble of activity patterns whose di-
mensionality was determined by the underlying number of different base patterns. In particular,
increasing the number of activity patterns N in the ensemble did not increase the ensemble’s
dimensionality. For small dimensionality the peak values of the correlations abruptly dropped
to an average value of correlations smaller than 1. Only for a higher ensemble dimensionality
the envelope of the correlations with a spatial decay became apparent. In contrast, in the sec-
ond statistical model (model 2) the ensemble dimensionality was in general sufficiently high to
exhibit a decay in its correlations. By systematically varying the ensemble’s dimensionality with
the spectral width w, we showed that the spatial scale of the correlations increases for decreasing
dimensionality indicating that a network mechanism that reduces dimensionality might explain
the emergence of long-range correlations in the absence of long-range lateral connections.

5.3 Dynamical network model of early spontaneous activity

The close relationship between a low-dimensional ensemble of activity patterns and their long-
range correlation structure suggests that cortical circuits, even if limited to short-range con-
nections as in the early cortex122,364,439,46, could generate long-range correlations if they act to
reduce the dimensionality of the activity patterns supplied by their inputs. To study how a
mechanism which constrains the dimensionality of spontaneous activity patterns can be imple-
mented in a neuronal network, we examined dynamical network models of firing rate units446.
Variants of these network models have been used previously to model spontaneous activity in the
mature visual cortex159,44,148,317. In these models, modular patterns of activity arise via lateral
suppression and local facilitation. Such an interaction is commonly assumed to result from lat-
eral connections that are 1) identical at each position in cortex, 2) circularly symmetric, and 3)
follow a Mexican hat (MH; local excitation and longer-ranging inhibition) profile. Here, we show
explicitly that assuming a connectivity which satisfies these three conditions cannot generate
the experimentally observed long-range correlation structure. However, stimulated by previous
work428,464,353 reporting that heterogeneous connectivity can drastically reduce the space of pos-
sible activity patterns, we assume an anisotropic Mexican hat function, whose longer axis varies
randomly across the cortical surface. Introducing heterogeneity into the network connectivity
indeed yields long-range correlations that quantitatively match the experimental data. To the
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5.3. Dynamical network model of early spontaneous activity

network, we supply a constant drive, modulated only spatially by a high dimensional Gaussian
random field (Fig. 5.8b, left), as patterns were often fairly static during a spontaneous event
in the early cortex (see Chapter 4). For sufficiently strong connections, the network activity
evolves towards a modular pattern with alternating patches of active and non-active domains
(Fig. 5.8b, right). While the dimensionality of the input patterns is high, the dimensional-
ity of the produced set of activity patterns can be much smaller and approaches values close
to those observed in experiment in a regime of considerably heterogeneous connectivity and
moderate input modulation (Fig. 5.8g; Fig. 5.12a,b). In this regime the model produces
pronounced long-range correlations (Fig. 5.8c,d; Fig. 5.12c,d) and fractures (Fig. 5.12e,f)
in quantitative agreement with experiment (Fig. 5.8e). Moreover, the model predicts that the
spatial structure of the correlation peak around the seed point is anisotropic, which is confirmed
quantitatively by our data (Fig. 5.8f ; Fig. 5.12g,h). Thus, our dynamical model describes a
plausible mechanism for how the early cortex could generate low-dimensional spontaneous ac-
tivity that is correlated over large distances, even when long-range horizontal connections have
only immaturely developed.

5.3.1 Homogeneous Mexican hat network model

In the following, we demonstrate that the homogeneous network model with isotropic Mexican
hat connectivity is not sufficient to generate the long-range correlation structure observed in
experimental data. We modeled the early spontaneous activity by a two-dimensional firing rate
network obeying the following dynamics

τ
dr(~x, t)

dt
= −r(~x, t) +

γ∑
~y

M(~x, ~y)r(~y, t) + J(~x)


+

(5.35)

with [x]+ =

{
x if x > 0

0 else
(5.36)

where r(~x, t) is the average firing rate in a local pool of neurons at location ~x = (x1, x2)T , τ is
the neuronal time constant, M(~x, ~y) are the synaptic weights connecting locations ~x and ~y, J(~x)
is the input to location ~x, and γ a factor controlling the overall strength of synaptic weights.
The connectivity M was assumed to be short-range and follows a Mexican hat structure

M̃(~x, ~y) =
1

2πσ2
e−

(~x−~y)2

2σ2 − 1

2π(κσ)2
e
− (~x−~y)2

2(κσ)2 (5.37)

M(~x, ~y) =
M̃(~x, ~y)

Re
(
λmax(M̃)

) . (5.38)

Here σ denotes the SD of the smaller Gaussian. For the larger Gaussian the SD was scaled by a
factor κ ≥ 1. M was normalized such that the real part of its maximal eigenvalue is equal to 1.
For all simulations we set κ=2, τ=1 and γ=1.02 and used random initial conditions r(~x, t = 0)
drawn from a uniform distribution between -0.1 and 0.1.
In the case of isotropic Mexican hat connectivity the eigenvectors of M are plane waves and the
spectrum is peaked at the wavenumber k = 2π

Λ , where the spatial period Λ is given by the peak
within the spectrum of the Mexican hat which depends on the spatial scales as

Λ2 =
4π2σ2(κ2 − 1)

4 ln (κ)
. (5.39)
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Figure 5.7: Networks with homogeneous and isotropic connections generate modular and regu-
lar activity patterns, but do not account for the long-range correlations observed in early visual
cortex. a The spatial profile of lateral connections follows an isotropic Mexican hat in all neu-
rons. b With constant input drive, the activity converges to a regular hexagonal patterns (two
representative solutions are shown; simulations performed on a 100x100 grid. c Correlations
between remote sites are only moderate, owing to the fact that all translated and rotated hexag-
onal patterns are solutions as well (computed over 100 solutions). d Representative example
of a correlation pattern observed in ferret visual cortex 7 days prior to eye-opening. e For the
correlation patterns in the early cortex the peak values decay significantly slower with spatial
distance from the seed points (fits, dashed red; N=5) than in the model (104 patterns, p<0.0097;
black and gray shaded area: mean±95 percentile) and in an ensemble of randomly shifted and
rotated ideal hexagonal patterns (100 patterns, p<0.01; not shown). To assess significance we
used bootstrap tests for all three comparisons see Section 3.9 in Chapter 3. All correlations were
baseline corrected, see Section 3.10.1 in Chapter 3. Scale bars: domain spacing 1Λ (b,c); 1 mm
(d).

defining the spatial scale Λ used as reference in Fig. 5.8c-e. This spatial scale corresponds to
the typical spatial scale of activity patterns obtained in the model and, thus, for comparison
between model and data we identified 1 Λ with 1 mm, which is roughly the spatial scale of
spontaneous patterns observed in experiment.
The input drive J was assumed constant in time for simplicity and modulated in space using a
band-pass filtered Gaussian random field G with spatial scale Λ, zero mean and unit SD231

J̃(~x) = 1 + η G(~x). (5.40)

We varied the input modulation strength η such that the standard deviation of the input matrix
J varies systematically between 0 and 0.4.
To model a spontaneous event, we integrated Eq. (5.35) until a near steady state of the dynamics
was reached. The results in Fig. 5.8c-e were obtained for an integration time of 500τ , but
already a much shorter integration over 50τ resulted in similar solutions and nearly the same
level of long-range correlations and dimensionality. Different spontaneous events were obtained
by using different realizations of input drive J and initial conditions (same connectivity M).
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5.3. Dynamical network model of early spontaneous activity

To generate Fig. 5.7e, Fig. 5.8c,d,e, Fig. 5.9, Fig. 5.12b,d,f,h and Fig. 5.13(right) we
furthermore averaged over 10 realizations of connectivity M for each parameter setting.
We numerically integrated the dynamics using a 4th order Runge-Kutta method118 in a square
region of size 100 x 100 pixels using periodic boundary conditions. The time step was dt=0.15τ
and the spatial resolution 10 pixel per Λ. The simulations were performed on the GPUs GeForce
GTX TITAN Black and GeForce GTX TITAN X. The code was implemented in Python (version
2.7) and Theano (version 0.8.1).

5.3.2 Homogeneous network model fails to reproduce the experimentally
observed features of spontaneous activity

The homogeneous network leads to the formation of modular activity due to a wavelength in-
stability caused by a Turing bifurcation when the recurrent connectivity is stronger than the
exponential decay in the dynamics (γ > 1)430. In such an instability, the spatially homogeneous
activity state becomes unstable to the presence of weak, spatially heterogeneous perturbations
around a finite spatial frequency. Modular, spatially heterogeneous activity patterns with a
finite typical spatial scale Λ can form through dynamical feedback loops mediated by the recur-
rent connections130. The activity bumps of the forming patterns are arranged in a hexagonal
lattice structure130,52.
These hexagonal solutions cannot account for the empirically observed features of the correlation
structure of the early spontaneous activity, i.e. long-range correlations (Fig. 4.6d), the signif-
icant correlation strength above baseline at 2 mm (Fig. 4.6e), the dimensionality (Fig. 5.8a)
and the emergence of fractures (Fig. 4.6c). This is due to the translational and rotational in-
variance of the system which allows a high-dimensional set of continuous solutions. Due to this
high variability in the spatial layout between solutions there is only weak covariation between
distant locations and therefore their correlation structure decays rapidly as a function of dis-
tance from the seed point. The activity patterns generated by the homogeneous network model
decay significantly faster than the experimental data (n=104 patterns, p<0.0097; Fig. 5.7e and
Fig. 5.9). In addition, the set of continuous, hexagonal solutions of the homogeneous network
results in correlation patterns which are symmetric around the seed point and the same for each
seed point, whereas in the experimental data we observed a correlation structure in which the
spatial layout of a correlation pattern highly depends on the location of the seed point. The
seed-point independent correlation structure leads to weak rates of changes between correlation
patterns of neighbouring seed points and therefore fractures do not form (Fig. 5.9). Lastly,
although the network constrains the dimensionality of the output patterns compared to the
dimensionality of the input drive (due to their regular, hexagonal layout), the dimensionality of
the network activity patterns is still significantly higher than observed in experiment (Fig. 5.9).
As we tested in the previous section activity patterns that were composed of symmetrical hexag-
onal patterns and noise fields with a typical domain spacing did not reproduce the features of
early spontaneous activity patterns. In fact, as shown, the noise patterns further increased the
dimensionality of the set of activity patterns, and with this also decreased the spatial scale of
the correlation structure. This indicates that the pattern formation mechanism alone cannot
account for the widespread and diverse correlation patterns we observe in vivo. In addition,
the spatial layout of the correlation structure in the experimental data highly depends on the
location of the seed point and, thus, cannot be simply expressed by the auto-correlation function
of its activity patterns as could be done in the statistical model.
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Figure 5.8: (Caption next page.)

5.3.3 Heterogeneity within network model

The observation that different seed points display different correlation patterns suggests that
local network interactions might not be homogeneous across cortex. Instead variations in lo-
cal connections can bias the interactions between neighboring domains, such that some show
a stronger tendency to be co-active than others. Such biases can propagate through the net-
work via multi-synaptic connections and induce correlations even between remote locations
(Fig. 5.8a). Thus, local, but heterogeneous synaptic connections may channel the spread of
activity across cortex, thereby constraining the overall layout of activity patterns, and explain-
ing the observed pronounced correlations found between remote network domains.
To test the idea that heterogeneous local connections can produce long-range correlations by
constraining the dimensionality of the set of network activity patterns, we modeled cortical
spontaneous activity using a dynamical rate network159,44,317,148, in which model units (repre-
senting a local pool of neurons) receive recurrent input from neighboring units weighted by an
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5.3. Dynamical network model of early spontaneous activity

Figure 5.8: (Previous page.) Circuit mechanism for long-range correlations in early cortex. a
Homogenous local connections (arrow) induce moderate correlations with all nearby domains
(black dots), whereas heterogeneity introduces biases, favouring some correlations (large dots)
more than others (small dots). b A dynamical circuit model of spontaneous activity in the
early cortex: a constant input modulated spatially by filtered noise is fed into a recurrent
network with short-range, heterogeneous Mexican hat (MH) connectivity. It produces a set of
modular output patterns with typical spatial scale Λ determined by the MH size (average MH
size illustrated by the yellow circle). c Correlation pattern in model obtained for heterogeneity
H=0.8 and input modulation η=0.016 (SD of noise component) shows long-range correlations
in agreement with experiment (n=100 output patterns, 16% of modeled region shown). d
The scale of correlations also increases with decreasing input modulation. Red triangle in (d):
parameters used in (c). Blue circle in (d): isotropic, homogeneous connectivity, inconsistent with
the range of correlations in experiment (compare d, Fig. 4.6d and Fig. 5.7). e Pronounced
fracture pattern in the strongly heterogeneous regime (same parameters as in c). f Match
of empirical data to model predictions of local correlation eccentricity (same parameters as
in c). g Dimensionality of N = 100 output patterns produced by the model decreases with
increasing heterogeneity and decreasing input modulation. h In the parameter regime where
the spontaneous patterns of the model approach the empirically observed dimensionality, their
short- and long-range correlation structure is in quantitative agreement with the experimental
data. Shaded regions show parameter regimes in the model in which different properties lie
within the range (mean±SD) of the experimental values (using 1Λ=1mm, linear interpolation
between simulations). Scale bars: domain spacing 1Λ (b,c,e).

anisotropic Mexican hat function whose longer axis varies randomly across the cortical surface
(Fig. 5.8b), thus, breaking rotational and translational symmetry and drastically shrinking the
solution space of the activity patterns428,464,353. For this limited set of patterns the average over
ensembles is not exchangable with the average over space, and thus cannot be replaced by it
when calculating the correlation structure. This results in a seed point dependent correlation
structure as observed in experimental data.
As in the homogeneous and isotropic network, the firing rate units obey the dynamics given in
Eq. (5.35). Here the connectivity M was assumed to be short-range and follows an anisotropic
Mexican hat structure, modeled as the difference of two elongated Gaussians, whose axis of
elongation and scale vary discontinuously across space

M̃(~x, ~y) =
1

2πσ1σ2

(
exp

(
−1

2
(R(~x− ~y))TΣ−1R(~x− ~y)

)
−

1

κ2
exp

(
− 1

2κ2
(R(~x− ~y))TΣ−1R(~x− ~y)

))
, (5.41)

M(~x, ~y) =
M̃(~x, ~y)

Re
(
λmax(M̃)

) (5.42)

with

Σ =

(
σ2

1 0
0 σ2

2

)
, (5.43)

R =

(
cosφ − sinφ
sinφ cosφ

)
. (5.44)
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5. Modelling long-range correlated spontaneous activity

Here σ1 and σ2 (≥ σ1) denote the SDs of the smaller Gaussian in the direction of its major and
minor axis, respectively. For the larger Gaussian both SDs are scaled by a factor κ > 1. The
level sets of both Gaussians are ellipses whose larger (smaller) axis is proportional to σ1 (σ2)
and whose eccentricity ε measures the degree of elongation of the Mexican hat while the angle φ
determines its orientation. For brevity the dependence of these parameters on cortical space ~x is
suppressed in Eq. (5.41). M was normalized such that the real part of its maximal eigenvalue is
equal to 1. For all simulations we set κ=2, τ=1 and γ=1.02 and used random initial conditions
r(~x, t = 0) drawn from a uniform distribution between 0 and 0.1.
We introduced the heterogeneity parameter H to parameterize and systematically vary the
heterogeneity of the elongated Mexican hats across cortical space ~x. The eccentricity ε was
drawn from a normal distribution with mean 〈ε〉 and standard deviation σε both depending
linearly on H (〈ε〉=H, σε=0.13 H). The size of σ1 was drawn from a normal distribution with
SD 0.1〈σ1〉H and mean 〈σ1〉=1.8. The orientation φ of the Mexican hat axis was drawn from a
uniform distribution between 0◦ and 180◦. These three parameters were drawn independently
at each location.
As above, the input drive J was assumed to be constant in time for simplicity. J is modulated
in space using a band-pass filtered Gaussian random field G with spatial scale Λ, zero mean and
unit SD231

J̃(~x) = 1 + η G(~x). (5.45)

We varied the input modulation η between 0.004 and 0.4, the regime over which we observed
a smooth transition from an input-dominated system to a system dominated by the recurrent
connections. Different spontaneous events were obtained by using different realizations of input
drive J and different initial conditions (same connectivity M). All other parameters and the
numerical implementation were identical to the homogeneous isotropic model described in the
previous section.

5.3.4 Heterogeneous network model captures features of early spontaneous
activity

For sufficiently strong connections, the network activity evolved towards a modular pattern with
roughly alternating patches of active and non-active domains (Fig. 5.8b, right). In the regime
of a considerable heterogeneous connectivity and moderate input modulation, the model pro-
duced pronounced long-range correlations (Fig. 5.8c; Fig. 5.9; Fig. 5.12a,b) and fractures
(Fig. 5.8e) in quantitative agreement with experimental data (Fig. 5.12c,d; Fig. 5.9). While
the dimensionality of the input patterns to the network is high, the dimensionality of the gen-
erated set of activity patterns in the heterogeneous regime was much smaller and approached
values close to those observed in experiment (Fig. 5.9; Fig. 5.12e,f). In a similar regime the
model also matched the spatial scale of long-range correlations and the fracture strengths. These
results are consistent with the statistical model suggesting that low dimensionality, long-range
correlations and pronounced fractures are intimately connected (Fig. 5.1). Notably, the dynam-
ical network model predicts that the spatial structure of the correlation peak around the seed
point is anisotropic, which was confirmed quantitatively by our data (Fig. 5.8e; Fig. 5.12g,h;
see also Section 4.2.9 in Chapter 4). Thus, our dynamical model describes a plausible mecha-
nism for how the early cortex, even in the absence of long-range horizontal connections, could
produce spontaneous activity that is correlated over large distances.
The dynamical network model even reproduced qualitative aspects of the spatial distribution

of the anisotropic local neighbourhood of correlations around the seed point but failed to cap-
ture the decay of this distribution. In the experimental data, we observed that the eccentricity
and orientation of the ellipse which we fitted to the local correlation domain around each seed
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5.3. Dynamical network model of early spontaneous activity
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Figure 5.10: Dynamical network model reproduces overall structure qualitatively but fails to
capture correlation length of spatial distribution of local anisotropies. a-b Distribution of eccen-
tricity (saturation) and orientation (hue) of local correlation neighbourhood around seed point
varies across cortical space a in the experimental data (P23, seven days prior to eye-opening)
and b in the model. Gray values indicate that local correlations could not be adequately fitted
by ellipse. c In both model and experimental data the auto-correlation of the local anisotropies
decays exponentially with distance. The correlation length determined by an exponential fit
(straight line) to the decay differs between model (black) and experimental data (red). As com-
parison the decay of the eccentricity of the model connectivity (uncorrelated in space; gray) is
shown. Scale bar is 1 mm (a) and 1 Λ (b).

point varied smoothly across visual cortex (Fig. 5.10a). Notably, the spatial distribution of
these two properties did not show a typical spatial scale but instead the autocorrelation decayed
exponentially. The dynamical network model generated spatially distributed anisotropies that
resembled the experimental data (Fig. 5.10b) and also showed an exponential decay of the
autocorrelation (Fig. 5.10c) but with a longer correlation length. Thus, the model describes
the spatial distribution of the anisotropy of the local correlations only qualitatively.
The smooth change of the anisotropy of the local correlations is not inherited by the underlying
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5. Modelling long-range correlated spontaneous activity

heterogeneous network connectivity. The heterogeneity of the network connectivity was chosen
such that the eccentricity and orientation of the Gaussian connectivity profiles change uncorre-
lated from unit to unit. Thus, the auto-correlation of the anisotropy of the local connectivity
decays non-exponentially and on a significantly faster spatial scale (gray markers in Fig. 5.10c)
than the anisotropy of the local correlation domain.

5.3.5 Summary

-0.6

0.0

0.6

C
or

re
la

tio
n

η=0.3, ε=0.0

η=0.01, ε=0.0

η=0.3, ε=0.8

η=0.01, ε=0.8

E
ig

en
ve

ct
or

s 
so

rt
ed

 b
y 

ei
ge

nv
al

ue
(f

ro
m

 h
ig

h 
to

 lo
w

)

Activity patterns
0 100 0 100

a bReal part

Imaginary part

E
ig

en
ve

ct
or

 w
ith

 la
rg

es
t e

ig
en

va
lu

e

1Λ

M
ag

ni
tu

de

High

Low

(η=0.01, ε=0.8)

Figure 5.11: Network activity pattern show distributed overlap with system’s eigenvectors.
a Example of spatially localized real (top) and imaginary (bottom) part of eigenvector with
largest eigenvalue for η = 0.01, ε = 0.8. b Bottom: 100 activity patterns generated by using
different initial conditions are correlated in a distributed manner to the eigenvectors with larger
eigenvalues (top of matrix) independent of strength of network heterogeneity. Top: In networks
that are dominated by feedforward input activity patterns are less strongly correlated with
systems’ eigenvectors.

All in all, the dynamical model demonstrated that long-range correlations can arise in the
early cortex as an emergent property via multi-synaptic short-range interactions that tend to
favor certain spatially extended activity patterns at the expense of others. By confining the
space of possible large-scale activity patterns, long-range order was established in the form of
distributed coactive domains, explaining our observation of long-range spontaneous correlations
in the early visual cortex.
The dynamical network model was able to generate activity patterns which quantitatively agree
in several key features with the experimental data. In a regime of high heterogeneity and
intermediate input modulation the network model quantitatively matched the experimental
values of the dimensionality of the spontaneous activity patterns, the spatial scale of their
correlations, the fracture strength and the anisotropy of the local correlations.
The dynamical model captured certain aspects of the statistical model. First, in both model
types activity patterns are generated that were modular. In the statistical model modularity
was obtained by assuming that the spectrum of the Gaussian random fields exhibits a peak at
a certain frequency. In the dynamical model activity patterns with a domain spacing formed
due to a Turing instability. Note that in the dynamical network model we did not match the
spectral width of the activity patterns to the experimental data. Second, in model 1 of the
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5.3. Dynamical network model of early spontaneous activity

statistical model we assumed that a limited number of basis patterns underly the formation
of spontaneous activity patterns and determine their dimensionality. In the dynamical model
these basis patterns are approximately given by the patterns of the eigenvectors of the network
interaction matrix (Fig. 5.11a). The network activity patterns overlapped strongest with the
eigenvectors with the highest eigenvalues and only little with eigenvectors with low eigenvalues
(Fig. 5.11b). This distributed overlap can be interpreted as that the network activity patterns
are approximately superpositions of the eigenvectors with high eigenvalues. However, in contrast
to the basis patterns of the statistical model the eigenvectors of the interaction in the dynamical
network were localized in space for a moderate strength of heterogeneity (Fig. 5.11a). Moreover,
the network activity patterns also showed an overlap with the layout of the external input drive.
In contrast to model 2 of the statistical model where the active domains of the activity patterns
were maximally random distributed, the dynamical network model generated activity patterns
whose layout was largely dominated by the maximal eigenvectors and therefore the layout of
active domains is constrained to a subspace of all possible patterns.
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5.3. Dynamical network model of early spontaneous activity

Figure 5.12: (Previous page.) Comparison of early in vivo spontaneous data to dynamical
model. a,c,e,g: Model analysis; b,d,f,h: Comparison model vs. experiment (also compare
Fig. 5.8h). a Long-range organization of correlation patterns (left) is quantified by fitting
an exponential decay to the peaks (local maxima) in the correlation pattern as a function of
their distance to the seed point, using all correlation patterns. b Left : Shaded region in the
diagram with systematically varied heterogeneity and input modulation indicates the parameter
settings in which the model values for correlation pattern scale lie within the interval (mean±SD)
given by the experimental data (n=4 animals, 5 experiments). The parameter setting of the
example shown in Fig. 5.8c (marked by red triangle) is highlighted. Right : Comparison of
dimensionality for indicated model parameters and experimental data. c The geometrical layout
of correlation patterns (left) can change drastically over only a short distance (middle). Rate
of change reveals organization of fractures (right). Region of fractures shown is highlighted by
black box in correlation patterns (left). d Comparison of fracture magnitude with experimental
data. e Covariance matrix (middle) over 100 spontaneous activity events (left) shows that
different locations co-vary. A moderate number of components (right) is needed to explain 75%
of the variance indicating low dimensional activity patterns. f Comparison of dimensionality
for model with experimental data. g Left : The anisotropic structure of local correlation (i.e.
the peak around the seed point) is quantified by fitting an ellipse to the 0.7 contour line (least-
square fit) and computing its eccentricity. Right : The eccentricity of local correlation shows a
similar distribution in data and model. h Comparison of eccentricity of local correlation with
experimental data.
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5.3. Dynamical network model of early spontaneous activity

Figure 5.13: (Previous page.) Systematic overview over different variants of the two types
of circuit models studied, showing the correlation structure they produce. Columns (left to
right): schematic diagram of model, a typical activity pattern, a representative correlation
pattern, correlation fractures, and the spatial scale of correlations for the value of heterogeneity of
connections, H, used (open symbol) and for varying H (closed symbols). Rows (top to bottom):
(1) The model shown in Fig. 5.8 (Mexican hat connectivity, H=0.8, η=0.016). (2) As in (1), but
here the properties of the Mexican hat vary smoothly across space, on a spatial scale Λ marked by
the scale bar on the activity pattern. Results are similar to the discontinuous version (1). (3) The
model with two separate populations for inhibitory and excitatory neurons in the discontinuous,
heterogeneous regime, analogous to (1) (H=0.7, η=0.01). In the heterogeneous regime, all
three models (1-3) agree quantitatively with experiment. (4) Ideal hexagonal patterns, sampled
from the distribution known to be the solution set for isotropic, homogeneous Mexican hat
connectivity. Rows (5) and (6): Numerical solutions of the isotropic homogeneous versions
of models (1) and (3) respectively. For (4)-(6) the correlation structure is inconsistent with
experiment. The yellow circle on top of the activity patterns indicates the size of the average
local connectivity (MH models only). All scalebars are 1Λ.
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5. Modelling long-range correlated spontaneous activity

5.4 Long-range correlations from short-range connections
without Mexican hat profile

In the previous section we showed that lateral connections that are short-range but heterogeneous
can produce activity patterns that are correlated over an extended distance in space (Fig. 5.8c-
e). This mechanism provides a potential explanation for the long-range correlation structure
we observed in early ferret visual cortex at a stage in development before long-range anatomical
connections form. In our model the lateral connections were assumed such as to support the
formation of active domains, reflecting our observation that spontaneous activity in the early
visual cortex is always modular. The dynamical mechanism we assumed for generating modular
patterns of activity is in a broader context known known as the Turing-mechanism430,152,296:
modular patterns arise from a spatially homogeneous state by amplifying spatially heterogeneous
perturbations through dynamical feedback loops mediated by the recurrent connections130.
Since the focus of the network model lies on the mechanisms causing active modules to be cor-
related over larger distances, we chose a generic local circuit motive known to implement the
Turing-mechanism, the so-called Mexican hat connectivity (local excitation with lateral inhibi-
tion). Although there is evidence for such a motif from studies using glutamate uncaging in
slices of ferret visual cortex at developmental stages similar to those we examined108,80, other
studies using paired recordings in slices of adult rat cortex265, suggested that in fact the spatial
range of inhibition is smaller than the range of excitation. This raises two important questions,
to be addressed in the following. First, can lateral connections without a Mexican hat profile, i.e.
with inhibition that is more short-range than excitation, produce modular patterns of activity?
Second, would in this case heterogeneity in the lateral connections induce long-range correlations
as it does in the model based on Mexican hat connectivity which is studied in Fig. 5.8?
In the following, we first describe a network model based on previous work226,14 that produces
modular activity patterns from local connections that do not exhibit a Mexican hat profile. The
model consists of an excitatory and an inhibitory neural population and neurons are linked via
local lateral connections (with Gaussian profiles). We consider a regime in which the range
of connections formed by excitatory neurons is more than 30% larger than that of inhibitory
neurons. We show that this model produces activity patterns very similar to those obtained in
the one-population model with Mexican hat connectivity in Fig. 5.8.
In a second step, we ask whether this two-population model can produce long-range network
correlations despite its only local lateral connections. We find that it can indeed account quan-
titatively for all aspects of the spontaneous activity correlation structure that we observe in
the early visual cortex. It does so when the connectivity is sufficiently heterogeneous across
space, i.e. when the connectivity parameters vary considerably across neurons, analogous to
the heterogeneity assumed in the one-population model in Fig. 5.8. Both models produce very
similar results indicating that the effect of heterogeneity is largely independent from the specific
form of network interactions generating modular activity.

5.4.1 Modular activity through lateral connections without Mexican hat
profile

Here we show in numerical simulations that modular activity emerges within a network model
of two populations in the absence of lateral inhibition. Spontaneous activity in the early visual
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5.4. Long-range correlations from short-range connections without Mexican hat profile

cortex was modeled by the following rate dynamics:

τ
duE(~x)

dt
= −uE(~x) +

γ∑
~y

(MEE(~x, ~y)uE(~y)−MEI(~x, ~y)uI(~y)) + JE(~x)


+

, (5.46)

τ
duI(~x)

dt
= −uI(~x) +

γ∑
~y

(MIE(~x, ~y)uE(~y)−MII(~x, ~y)uI(~y)) + JI(~x)


+

, (5.47)

with [x]+ =

{
x if x > 0

0 else
(5.48)

where uE(~x) (uI(~x)) is the average firing rate of an excitatory (inhibitory) unit at location ~x in
a two-dimensional model of cortex. τ is the neuronal time constant and assumed to be the same
for excitation and inhibition. M(~x, ~y)KL are the synaptic weights connecting locations ~x and ~y
from populations L to K (where K,L ∈ {E, I}), JK(~x) is the input to location ~x in population
K and γ is a factor controlling the overall strength of synaptic weights. The sum goes over all
locations ~y within the network. The excitatory and inhibitory units are uniformly distributed
across the space with equal density.

The connectivity M(~x, ~y) consists of the four synaptic weight matrices MKL(~x, ~y) that were
assumed to be short-range and modeled by isotropic Gaussians:

M(~x, ~y) =
M̃(~x, ~y)

Re
(
λmax(M̃))

) (5.49)

M̃(~x, ~y) =

(
MEE(~x, ~y) MEI(~x, ~y)
MIE(~x, ~y) MII(~x, ~y)

)
, (5.50)

MKL(~x, ~y) =
aKL

2πσ2
KL

exp

(
−|~x− ~y|

2

2σ2
KL

)
. (5.51)

M(~x, ~y) was normalized such that the real part of its maximal eigenvalue is equal to 1. σKL
denotes the SD of the Gaussian and aKL denotes the connectivity strength. Note that the con-
nectivity is isotropic and identical for each unit. Thus, the network connectivity is rotation and
translation invariant.
For all simulations we set τ = 1, γ = 1.02 and used random intial conditions uE(~x, t =
0), uI(~x, t = 0) drawn from a Gaussian distribution of zero mean and SD of 1. The input
drive was assumed to be constant in time and space:

JE(~x) = JI(~x) = J = 1. (5.52)

We integrated the model dynamics until a near steady-state of the dynamics was reached (simula-
tion time T = 500τ). We obtained different spontaneous events by varying the initial conditions
and kept the same realization of the connectivity matrix and the input. To numerically integrate
the dynamics we used the fourth-order Runge-Kutta scheme with a time step dt = 0.15τ in a
square region of size 80x80 using periodic boundary conditions. As above, the simulations were
performed on GPUs (GeForce GTX TITAN Black and GeForce GTX TITAN X). The code was
implemented in Python and Theano.

The activity patterns produced by this model were modular and exhibited a regular, hexag-
onal structure, similar to the solutions obtained for the simpler model with isotropic Mexican
hat connectivity130,52 studied in Fig. 5.8 (compare Fig. 5.14b,e). The active modules for the
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Figure 5.14: A two-population network with homogeneous and isotropic connections generates
modular and regular activity patterns, but does not account for the long-range correlations ob-
served in early visual cortex. a An excitatory (E) and inhibitory (I) population. Connections
within E and from E to I both follow the same isotropic Gaussian profile. Connections from I
also follow Gaussian profiles, but have a shorter spatial range. b Representative solution of ex-
citatory (left) and inhibitory (right) population (parameter setting: aEE=22.2, aEI=aIE=21.6,
aII=20.8, σe=1.9, σEI= 1.4, σII=0.6; simulations performed on a 80x80 grid). c Correlation
pattern for the excitatory population across N = 100 activity patterns. d Representative exam-
ple of a correlation pattern observed in ferret visual cortex 7 days prior to eye-opening (same as
in Fig. 5.7d). e For the correlation patterns in the early cortex the peak values decay signifi-
cantly slower with spatial distance from the seed points (fits, dashed red; N=5) than in the model
(109 patterns, p<0.009; black and gray shaded area: mean±95 percentile) and in an ensemble
of randomly shifted and rotated ideal hexagonal patterns (100 patterns, p<0.01; not shown).
To assess significance we used bootstrap tests for all three comparisons see Section 3.10.1 in
Chapter 3. All correlations were baseline corrected, see Section 3.10.1 in Chapter 3. Scale bars:
domain spacing 1Λ (b,c); 1 mm (d).

excitatory population showed a similar orientation and phase as those of the inhibitory popula-
tion (Fig. 5.14e). Different solutions (obtained using different initial conditions) consisted of
translated and rotated versions of the same hexagonal pattern, reflecting the symmetries of the
connectivity structure. The formation of hexagonal patterns is typical for two-dimensional sys-
tems with Turing instability characterized by translation and rotation symmetry and a broken
z-symmetry (here the activity u)104. In our numerical simulations, hexagonal activity patterns
occurred for a broad range of connectivity parameters. In particular, we could also obtain this
type of solutions when setting σII to similar value as σEI , such that the range of connectivity
from inhibition to excitation is similar to that from inhibition to inhibition, and setting the
strengths aII and aEI such that the inhibition to excitation is comparable or slightly stronger
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Figure 5.15: Modular activity in a regime where inhibition (I) to excitation (E) has a similar
spatial range as inhibition to inhibition and slightly stronger magnitude. a The assumed radial
dependence of connectivity profiles MKL, with K,L in {E, I}, to study this regime (referred
to as connectivity regime 2): aEE=21.4, aIE=21.05, aEI=22.2, aII=20.8, σEE=2.0, σIE=2.2,
σEI=1.8, σII=1.8. b A representative steady state solution. c,d For comparison, the regime pre-
viously used in Fig. 5.14, referred to as connectivity regime 1 (aEE=22.2, aIE=21.6, aEI=21.6,
aII=20.8, σEE =1.9, σIE=1.9, σEI=1.4, σII =0.6): The connectivity profiles (c) and a repre-
sentative solution (d). Note that the solutions obtained for these two connectivity regimes are
qualitatively very similar. Note further that for both regimes the spatial range of excitation is
broader compared to inhibition, while the total sum of connectivity strength (integrated over
space) is similar for all four connectivities.

than inhibition to inhibition393,345 (Fig. 5.15). Thus, we conclude that lateral connections
can produce modular patterns of activity, even if inhibition extends over a shorter range than
excitation. In Chapter 6 we will consider in detail the mechanism underlying the formation of
spatially modulated activity in the absence of lateral inhibition.

5.4.2 Heterogeneity in the connections induces long-range correlations
consistent with the experimental data

Importantly, the correlation structure for an ensemble of solutions of the model described above
decays on a significantly shorter range, when compared to size-matched sets of activity patterns
measured in the early visual cortex (Fig. 5.14h). The reason for this is that the ensemble
of patterns this model produces reflects the symmetries of the underlying dynamics and thus
consists of all translated and rotated versions of a hexagonal pattern. The same applies to
the one-population model with Mexican hat connectivity (Fig. 5.7a and previous section) and
also to an ideal hexagonal ensemble, synthesized by applying (uniformly distributed) random
translations and rotations to a hexagonal solution of the model. Thus, while both models
can account for the fact that spontaneous activity is modular, their correlation structure is
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5. Modelling long-range correlated spontaneous activity

inconsistent with the experimental data (Fig. 5.9, Fig. 5.14d). Therefore, we next asked
whether introducing heterogeneity in the two-population model above (Eqs. (5.46) and (5.47))
induces correlations that are long-range, as in the case of the one-population Mexican hat model
in Fig. 5.8. As before, we introduced heterogeneity by making the Gaussian connectivity
matrices MKL anisotropic by varying the strength of elongation, the orientation and the size of
its axis across space (discontinuously, as in the one-population Mexican hat model):

M(~x, ~y) =

(
MEE(~x, ~y) MEI(~x, ~y)
MIE(~x, ~y) MII(~x, ~y)

)
, (5.53)

MKL(~x, ~y) =
aKL

2πσ1
KLσ

2
KL

exp

(
−1

2
(R(~x− ~y))TΣ−1

KLR(~x− ~y)

)
, (5.54)

with ΣKL =

(
(σ1
KL)2 0
0 (σ2

KL)2

)
, (5.55)

R =

(
cos (φ) − sin(φ)
sin(φ) cos (φ)

)
, K, L ∈ {E, I}. (5.56)

Here, MKL(~x, ~y) is the connectivity from location ~y in population n to location ~x in population
m. The quantities σ1

KL and σ2
KL denote the SD of the Gaussian in the direction of its major

and minor axis, respectively. The angle φ determines the orientation of the elongated Gaussian.
The dependence of these parameters on cortical space ~x is suppressed for clarity. aKL denotes
the connectivity strength.
To systematically study the effect of heterogeneity, we defined a heterogeneity parameter H and
used the eccentricity ε as the measure of the degree of elongation of the Gaussians, as above (see
Eq. (4.6) in Section 4.2.9 in Chapter 4). To construct the network connectivity, at each location
~x the eccentricity was drawn from a normal distribution with mean 〈ε〉 and standard deviation
〈σε〉 both depending linearly on H (〈ε〉 = H, 〈σε〉 = 0.025H). The σ1

KL were drawn from normal
distributions with average values σEE = σIE = 1.9, σEI = 1.4, σII = 0.6 respectively, and
identical SD equal to 0.003H. The orientation φ of the Gaussian was drawn from a uniform
distribution between 0◦ and 180◦. All parameters were drawn independently at each location ~x
and were, apart from the offsets σ1

KL, identical for all four Gaussians MKL(~x, ~y). Finally, each
synthesized matrix M was normalized such that the real part of its principle eigenvalue was
equal to 1.
To model a spontaneous event we applied to the excitatory and the inhibitory population the
input drive

JK(~x) = 1 + η GK(~x), K ∈ {E, I} (5.57)

which was constant in time and randomly modulated across space. G is Gaussian white noise
field band-pass filtered around the domain spacing Λ which is the dominant scale of activity
patterns for the homogeneous isotropic case (H = 0). The realization of the Gaussian noise GK
was different for the excitatory and inhibitory population. Different spontaneous events were
obtained by using different realizations of input drive JK and different initial conditions (same
connectivity M). We systematically varied the input modulation strength η between 0.0004 and
0.4. All other parameters and the numerical implementation were identical to the homogeneous
isotropic model described in the previous section.
We observed that introducing heterogeneity into this network yields results very similar to those
shown in Fig. 5.8 for the Mexican hat model. For high values of heterogeneity H and inter-
mediate input modulation η the heterogeneous two-population model accounted quantitatively
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for all aspects of the correlation structure that we observed in the early visual cortex (Fig. 5.9;
Fig. 5.13). We thus conclude that lateral connections that are short-range but heterogeneous
can produce modular patterns of activity that are correlated over an extended distance in space.
The effect of heterogeneity is to induce long-range network correlations and this mechanisms
appears independent from the specific form of network interactions that produce modular ac-
tivity.

5.5 Influence of long-range lateral connections on the spatial
scale of correlations

In the previous sections we presented and implemented a mechanism in a dynamical network
model to generate long-range correlations in the absence of long-range anatomical connections
as observed in our experimental data. In addition to the presence of long-range correlations al-
ready during the early development, we further observed that their spatial scale remained fairly
constant during development, although the growth and maturation of the excitatory long-range
lateral anatomical connections over the observed course of cortical development leads one to
expect that the spatial scale of correlations might increase. Here, we study the influence of long-
range connections on the spatial scale of correlations and incorporate them into the dynamical
Mexican hat model.
To generate a connectivity matrix with long-range connections, we first simulated a network
with only short-range connections. We then build a second network with long-range connec-
tions assuming that these long-range connections are proportional to the correlation structure of
the original network with only local connectivity (Fig. 5.16a,b). We introduced lateral connec-
tions only between locations which showed a larger absolute correlation than the baseline level
(see Section 3.8 in Chapter 3). To generate clustered long-range lateral connections as observed
experimentally48, we applied dilation and erosion on the thresholded correlation structure to re-
move noisy and localized correlations above threshold. We then applied a Gaussian filter (with
standard deviation of Λ/2) to further smoothen the regions above threshold. The strength of
the connections scaled linearly with the correlation coefficients such that positive correlations
between two locations lead to excitatory connections between those locations, whereas negative
correlations lead to inhibitory connections. Although, it has been observed that especially exci-
tatory neurons exhibit long-range connections48, there is also experimental evidence in carnivore
visual cortex (unlike to rodent V1211,265) demonstrating that also inhibitory neurons can form
long-range, intercolumnar connections291,359,444.

When taking into account long-range lateral connections, we found an increase in the spa-
tial scale of the correlation structure for fixed heterogeneity H and fixed input modulation η
(Fig. 5.16c). If in addition the input modulation was increased (Fig. 5.16d,e), the spatial scale
of the resulting correlations remained similar to the spatial scale observed in models with only
local connections, and matched the spatial scale observed in vivo (Fig. 5.16f). An increase in
input modulation would be consistent with the strengthening of feed-forward connections into
the cortex during development and might explain the consistency of the spatial scale of the
correlations throughout development. However, there are other fundamental changes in the cir-
cuit organization at this early stage in development, e.g. changes in inhibitory inputs, feedback
inputs, modulatory inputs and intrinsic properties of the neurons that could also influence the
spatial scale of the correlations.
All in all, these results demonstrate that the spatial scale of the spontaneous correlations does
not necessarily need to increase with growing lateral connections. Rather our experimental ob-
servations are in line with the behaviour of our network model assuming that together with the
maturation of lateral connectivity the input modulation is increasing. The Mexican hat model
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Figure 5.16: Extending the one-population model in Fig. 5.8 to include anatomical long-range
connections can produce a correlation range consistent with experiment, if the input modu-
lation is sufficiently large. a Schematic of model: long-range connections are assumed to be
proportional to the correlation structure of the model with local connectivity. b Activity and
correlation pattern in the model with only local connectivity (heterogeneity H = 0.8, input
modulation η = 0.016). c Activity and correlation pattern in the same model, but with long-
range connections (H = 0.8, η = 0.03). Note that the range of correlations has increased
considerably. d The same, after increasing the input modulation (H = 0.75, η = 0.1). The
range of correlations is now similar to (b) and to the value we observe in ferret visual cortex
after eye opening. e Similarly to the model in Fig. 5.8, the spatial scale in the network with
non-local connections increases with heterogeneity H and decreases with input modulation η.
The grey-colored area indicates the regime where all 100 simulated activity patterns (patterns
similar in their layout to example in (c), left) were nearly identical (dimensionality equal to
zero). f The regime in which the model with non-local connections matches the data lies at
higher input modulation compared to the network model with only local connections. Black
markers indicate the parameter settings used in b-d. Scale bar is 1Λ.

gives thus a simple explanation of the experimental results in vivo .

5.6 Network models are consistent with properties of activity
after silencing LGN

After inactivating LGN spontaneous activity was still prominently present in visual cortex and
showed a similar spatial correlation structure with a similar spatial scale as the spontaneous
activity prior of inactivation (see Chapter 4). Our observation that spontaneous activity in
the visual cortex is not completely abolished after silencing LGN suggests that spontaneous
activity is in parts also elicited by input sources that do not involve afferents from LGN, such
as other cortical areas, the non-specific thalamus, or the cholinergic system. Consistent with
this hypothesis, we observed that individual spontaneous events are diverse, not only in terms
of intensity and spatial extent (as described in Chapter 3 and Chapter 4), but also in terms of
the velocity with which the activity expands across the imaging field of view at the onset of an
event (Chapter 4). Importantly, the fact that the structure of spontaneous correlations remains
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largely intact after silencing LGN suggests that this structure is primarily determined by the
networks in visual cortex rather than by external input drive, as it is unlikely that these inputs
from different sources (including those from LGN) impose a similar correlation structure onto
the cortex.
Here, we study LGN inactivation in the framework of the dynamical Mexican hat model. In
our model, the effect of silencing LGN does not simply correspond to setting J(x) = 0 (i.e. zero
input) as there might be potential other input sources to visual cortex. However, assuming that
the LGN is involved in a considerable fraction of inputs to visual cortex driving spontaneous
events, it seems plausible to expect that silencing LGN reduces the external input drive J(x)
during an event (i.e. 0 < Jsilence(x) < J(x)). In the model reducing the input drive J(x) by
a simple scaling factor reduces the strength of the evoked activity patterns by a proportional
amount, but keeps the correlation structure unchanged, in line with the empirical observations
(compare Fig. 4.17g). This is because the neurons in the model operate at the threshold of
excitability, i.e. in the rectifier nonlinearity in Eq. (5.35) the threshold is set equal to zero.
Choosing a slightly different threshold than zero would only mildly change the structure of
correlations in our model. More strongly the range of correlations depends on the strength of the
spatial modulation η of the input, relative to its spatial average. However, currently, it is unclear
whether this relative input modulation is different for the different input drives prior to and after
LGN inactivation. The results from our silencing experiments, showing that correlation range is
largely unaffected by eliminating the inputs from LGN, may suggest different inputs to exhibit
comparable degrees of spatial modulation. Testing this hypothesis would require measuring the
spatial distribution of activity in axons with identified origin, which is beyond the scope of this
work. In summary, our finding that the spatial range of spontaneous correlations remains large
after silencing LGN is captured by the network model.

5.7 Discussion

In this chapter we shed light on the conundrum presented by our analysis of the early spontaneous
activity: long-range correlated activity in the early cortex is generated through intracortical cir-
cuits in the absence of long-range horizontal connectivity. Within a minimal statistical model
(variant 1) we first revealed a close relationship between the dimensionality of an ensemble of
activity patterns and its average values of peak correlations at large distances which indicated
that constraining the space of activity patterns might lead to long-range correlations. Setting
the dimensionality as a parameter of the model further showed that the correlation magnitude
at some distance to the seed point, the fracture strength and the eccentricity of the local cor-
relations all decreased with increasing dimensionality. These results generalize as shown in a
second variant of the statistical model where we intrinsically increased the dimensionality of an
ensemble of Gaussian random fields by increasing the spectral width which lead to a decrease
in the spatial scale of correlations. Our dynamical model used these results and suggests a
powerful solution by showing that long-range correlations can arise as an emergent property
in heterogeneous circuits via multi-synaptic short-range interactions that tend to favor certain
spatially extended activity patterns at the expense of others. By confining the space of possible
large-scale activity patterns to a low-dimensional subspace, long-range order is established in
the form of distributed coactive domains, explaining our observation of long-range spontaneous
correlations in the early visual cortex. Furthermore the activity patterns generated by the dy-
namical network model quantitatively matched the experimentallly observed values in fracture
strength, dimensionality and anisotropy of the local correlations. These results also suggest that
the high degree of local precision that is evident in mature distributed network interactions could
derive from the origin of network structure in early local interactions that seed the subsequent
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emergence of clustered long-range horizontal connections via Hebbian plasticity mechanisms.
The dynamical network model required two distinct mechanisms to generate activity patterns
that match the experimental data. First, the Turing mechanism for pattern formation yields
modular activity patterns of a typical spatial scale as observed in experimental data. Second,
considering the results from the statistical model demonstrating a close relationship between
dimensionality and scale of correlations, we introduced heterogeneity into the network based
on previous work that showed that network heterogeneity breaks the network’s line attrac-
tor428,464,353. Increasing heterogeneity led to a decrease in the dimensionality of the network
activity which in turn led to an increase in the spatial scale of the correlations. Importantly, the
network heterogeneity was essential for the emergence of long-range correlation structure as a
homogeneous network failed to generate long-range correlations. Intriguingly, when fitting the
spatial scale of correlations the heterogeneous network matched quantitatively the experimen-
tal data in its dimensionality, its strength of spontaneous fractures and its eccentricity of local
correlations over a broad range of parameters.
Networks with the distance dependent homogeneous Mexican hat (lateral inhibition and local
excitation) connectivity have a long history in modeling. They are typically used to describe
the emergence of functional maps411,134,287,302,226,163,21 as well as modular activity148. Here, we
used the Mexican hat as a simple connectivity to generate activity patterns that exhibit a spa-
tial modulation around a certain spatial frequency as it was observed in the experimental data.
However, the assumption of the Mexican hat connectivity which has yet to be experimentally
demonstrated was not critical for the emergence of long-range correlations. We showed in a
network with two populations that even if the interaction range of the inhibitory population is
spatially more confined than the excitatory interaction range, modular activity forms which is
consistent with recordings in mature cortical slices265. Moreover, a heterogeneous connectivity
scheme in this model that varies from unit to unit led to long-range correlations in the net-
work activity. Thus, similar to the Mexican hat model the two population model quantitatively
matched the experimental observations.
Previous work examined how heterogeneity shapes properties of the network dynamics and
showed that various kinds of heterogeneity ranging from the variability in neuronal parameters
to the unreliability of synapses can enhance speed, responsiveness and robustness of networks260.
Other work demonstrated that the information capacity of a heterogeneous network is not lim-
ited by noise correlations but scales linearly with the system size378. Recent work suggested to
distinguish between network heterogeneity (induced by coupling, e.g. differences in synaptic cou-
pling) and intrinsic heterogeneity (variability in cellular properties that exist without coupling
to other neurons, e.g. variability in spiking threshold)288,283. The relationship between these two
types of heterogeneity influenced the firing rate distribution in a network model283. Although
heterogeneity locks the system into only a low number of states, homeostatic mechanisms can
compensate for this heterogeneity by scaling the synaptic weights such that heterogeneity in
cellular excitability and synaptic inputs are balanced out251. Here, we used that network het-
erogeneity breaks the symmetry of the system and thus constrains the spatial layout of network
activity. Increasing the heterogeneity leads to an increased confinement of the activity to a
low-dimensional manifold. For an intermediate level of heterogeneity the dimensionality of an
ensemble of activity patterns is such that their long-range correlations quantitatively match the
experimental data.
Our observation that spontaneous activity in the visual cortex is not completely abolished after
silencing LGN suggests that spontaneous activity is in parts also elicited by other sources than
LGN. In the network model the effect of silencing LGN would therefore not correspond to set-
ting the input drive to zero. Assuming that the LGN is involved in a considerable fraction of
inputs to visual cortex driving spontaneous events, it seems plausible to expect that silencing
LGN has two effects: (1) a reduction of the frequency of spontaneous events and (2) a reduc-
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tion of external input drive during an event. The network model was not intended to address
the frequency of spontaneous events (effect 1), but to address the specific question of whether
long-range correlations can arise in a cortex comprising only local horizontal connections. An
extension of the model in which for example the strength of the input drive is not constant across
a simulation but distributed such that only in a certain fraction of events a spatial pattern is
forming could capture a reduction of the frequency of spontaneous events.
Similarly, the dynamical network model used here does not describe the temporal dynamics
within a spontaneous event nor how a spontaneous event is initialized from a low activity state.
Instead the network model was constructed to explain the emergence of long-range correlations
in the absence of long-range connections based on the assessment of the spatial layout of activ-
ity patterns. An extension of the network model would be required to additionally describe (1)
the dynamical switching from one event to another, and (2) the temporal dynamics within one
event.
We assessed the influence of long-range connections (of the order of several wavelengths) on the
formation of long-range correlations and showed that adding long-range connectivity does not
necessarily increase the correlation strength between two distant locations. We demonstrated
that multiple parameter regimes exist where the correlation strength remains constant. In par-
ticular, an additional increase in the input modulation together with a growing range in lateral
connectivity left the spatial scale of correlations unchanged. However, there are a number of
fundamental changes in circuit organization that occur during the developmental stage we are
considering, e.g. changes in feedforward inputs, inhibitory inputs, feedback inputs, modulatory
inputs, and intrinsic properties of the neurons that could influence the spatial scale of correla-
tions. Thus, although our dynamical model gives a simple interpretation of the experimental
observation, further changes in the cortical circuit might contribute to the stability of the spatial
scale of the correlations across age.
We assumed here an attractor-type network model. Previous work argued that the timescale of
attractor network models might be too slow to describe the seemingly fast dynamics of sponta-
neous activity235,317. Instead networks based on balanced amplification with a faster timescale
were proposed to model spontaneous activity317. However, here we focused on the confinement
of the spatial layout of the activity patterns and did not aim to describe the temporal dynamics
of spontaneous activity. To this end, an attractor-type network might be a sufficiently good
approximation to describe spontaneous activity patterns.
Previous work showed that networks describing spiking activity formed spatially modulated ac-
tivity patterns assuming long-ranging inhibition363,188. Here we used a network model of firing
rate units for (1) its simplicity and theoretical tractability, and (2) because we aimed to compare
the results of the rate model to imaging data whose signal is roughly proportional to the firing
rate of a population of neurons. It might still be instructive to study the influence of network
heterogeneity in a spiking network (e.g. as done in251 for dynamical balance of excitation and
inhibition) on the dimensionality of spiking activity and the spatial scale of its correlations.
Overall, we demonstrated that low dimensionality in the spontaneous activity could serve as an
organizing principle and be sufficient to explain the observed features of spontaneous activity.
Moreover, our results suggest that the formation of spatially modulated network activity does
not necessarily require fast inhibition or the interaction range of inhibition to be larger than the
one of excitation. In Chapter 6 we will systematically study under which conditions a network
with a biologically plausible connectivity can lead to the formation of modular cortical activity.
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Chapter 6

Modelling modular cortical activity

Cortical activity patterns in primates and carnivores typically comprise domains of coactive
neurons with an approximately regular spacing on the order of 1 mm. Such modular orga-
nization is seen in spontaneous activity early in the developing cortex and persists even after
deactivation of LGN suggesting a cortical origin389. In fact, several classical models have shown
that modular activity patterns can emerge from an intracortical mechanism involving lateral
inhibition. However, these network models could not be experimentally tested, so far. More-
over, their mechanism is either based on short-range excitation and longer-ranging inhibition
(Mexican hat connectivity)129 or relies on fast inhibition346,226 both of which appears to be in
conflict with current experimental evidence. Here we show by using linear stability analysis
that spatially localized self-inhibition relaxes the constraints on the connectivity structure in a
network model, such that biologically more plausible network motives with shorter ranging inhi-
bition than excitation robustly generate modular activity. Importantly, we also provide several
predictions from our model to make the class of network models experimentally testable using
recent technological advancements in imaging and manipulation of cortical circuits. A critical
prediction of our model is the decrease in spacing of active domains when the total amount of
inhibition increases. Indeed, consistent with an increase of inhibition in the developing visual
cortex440, we observe that the spacing of spontaneously active domains decreases with age in
early ferret visual cortex. Together, these results provide an experimentally testable mechanism
of how cortical circuits with short-range inhibition can form modular activity.

6.1 Introduction

Understanding how patterns of neural activity arise from neural circuits is a key problem of
current computational and systems neuroscience. A fundamental characteristic of the cortex of
primates and carnivores is that activity patterns are modular (columnar): individual neurons
tend to be co-active in spatially localized domains and these active domains form orderly pat-
terns across the cortical surface with a typical spacing between adjacent domains of roughly
1 mm. This mode of organization of cortical activity has been revealed in classical studies of
the functional architecture of visual cortex193,43,436,213. Moreover, it has been found that spon-
taneous activity in visual cortex is spatially modulated to a degree similar to visually evoked
activity429,344,235,146,310,327,389, and consistently so already at early stages in development389.
Despite its robust appearance fundamental to the functional organization of cortex, the mecha-
nism by which brain circuits produce modular cortical activity remains elusive.
Intriguingly, the modular organization of spontaneous cortical activity remains intact after si-
lencing spontaneous activity in the retina, and even after inactivation of LGN389, demonstrating
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that this fundamental property is not imposed to the cortex by feed-forward circuits. Alterna-
tively, its origin could lie within the cortex itself. In fact, several dynamical network mod-
els287,130,412,28,129,71,44 (see also Chapter 2) describe the formation of modular activity patterns
using an intracortical mechanism based on local facilitation and lateral suppression enabling the
network to robustly produce spatially modulated activity, and in a broader context is known as
the Turing mechanism430,152,296. A straightforward way to implement this mechanism is through
a specific from of recurrent circuitry consisting of local excitation and lateral inhibition (some-
times called a ’Mexican hat’ connectivity profile)287,412,28,71,44. Local excitation amplifies locally
elevated activity fluctuations whereas lateral inhibition suppresses activity nearby, such that
adjacent active domains can arise at a distance roughly twice the extent of lateral inhibition.
However, while there is some experimental support for this type of organization in early ferret
visual cortex108,80, several other lines of evidence indicate that the lateral extent of inhibitory
connections tends to be shorter than excitatory connections280,281,279,278,265. This issue could
potentially be resolved by disynaptic inhibition, involving an excitatory-to-inhibitory connection
followed by an inhibitory synapse to excitatory neurons. This alternative requires fast inhibi-
tion346,14,226,21, which again appears problematic, as the timescale of synaptic transmission of
inhibitory neurons is typically slower than that of excitatory neurons335,136,90,219,47.
Here we show that weak local self-inhibition can circumvent these problems, resulting in the
robust formation of modular activity, yet within a circuitry that does not suffer from the above
limitations and that appears consistent with current experimental evidence. Such local self-
inhibition could, for instance, be mediated by inhibitory autapses431, which are formed massively
by fast-spiking PV+ inhibitory interneurons in visual cortex418 and in barrel cortex24. Based
on the classical theoretical framework of rate units447,446, we first show using linear stability
analysis that local self-inhibition broadens considerably the parameter regime in which modular
activity arises. We then extend this minimal model by assuming a more realistic scheme of
self-inhibition and demonstrate that already weak local self-inhibition is sufficient to promote
spatially modulated activity. We confirm the proposed circuit mechanism and the analytically
derived boundaries of the pattern forming regime by simulating the system’s dynamics in one
and two dimensions. These analyses show that local self-inhibition is a plausible robust mecha-
nism for generating modular activity in the early developing cortex.
However, it is important to go beyond plausibility and to derive critical predictions of the mod-
eling framework that are testable in experiment. This appears particularly relevant, as recent
advancements in experimental techniques offer new opportunities to record and manipulate
neuron-type-specific cortical activity. Only recently, cell type specific and highly sensitive activ-
ity sensors81,185,209 in addition to optogenetical manipulation tools have been developed70,421,282.
It is now also possible to combine these two techniques into an all-optical approach allowing
to simultaneously readout and manipulate neuronal populations128,362,6. These technological
advancements start to provide an unprecedented opportunity to critically assess the validity of
not only the validity of the specific role of self-inhibition proposed here, but also general signa-
tures of the broad class of models explaining the emergence of modular activity through lateral
network connections.
To establish the prerequisites for performing such tests in future studies, we derive a set of spe-
cific predictions of the proposed network model. We show that applying a brief local input to
the model network reveals an effective MH in the transient lateral spread of excitation and inhi-
bition. Moreover, while domains of high excitatory activity are matched by co-localized domains
of inhibitory activity, their amplitude can be several-fold weaker, depending on the connectiv-
ity parameters. Also the domain spacing can vary considerably across parameter space, even
for a fixed width of the E to E connections, explaining the variability of the domain spacing
across cortical areas and species456,358,294,231,373. Finally, we show that the model predicts the
domain spacing to change when altering the strength of inhibition and suggest ways to perform
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such manipulations. We argue that current technological advancements in the field make it now
possible to experimentally test all these predictions and to critically study the mechanism and
modeling framework studied here.

6.2 Modular activity without Mexican hat connectivity
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Figure 6.1: Local self-inhibition leads to modular network activity when inhibition has shorter
range than excitation. a Schematic of network model of excitatory (E) and inhibitory (I) popula-
tion. The connections between individual units follows a Gaussian profile (light colored circles).
Self-inhibition (I to I; saturated blue) consists only of local connections. b-d Examples of sim-
ulated network solutions for excitatory (red) and inhibitory (blue) populations for the network
model shown in (a). b In the absence of local self-inhibition (aII = 0) the solution converges
to a spatially homogeneous state. c Local self-inhibition (here aII = 3) allows the network to
generate spatially modulated patterns of activity. d In two dimensions the active domains are ar-
ranged as an hexagonal lattice. Parameters used are (b) aEE = 1.95, aIE = 1.4, aEI = 0.9, aII =
0.0, σE = 1.3, σI = 1.2, (c) aEE = 4.95, aIE = 4.4, aEI = 3.9, aII = 0.0, σE = 1.3, σI = 1.2 and
(d) aEE = 4.95, aIE = 4.4, aEI = 3.9, aII = 0.0, σE = 1.7, σI = 1.5.

To investigate how networks without a Mexican hat-like connectivity can form modular ac-
tivity, we study a standard Wilson-Cowan type network model with rate units447,446,130,129,226,14

(see also Chapter 2). The network model contains two populations of excitatory (E) and in-
hibitory (I) rate units which are interconnected with each other446,129. Each excitatory unit is
connected to nearby (excitatory and inhibitory) units via a distance dependent Gaussian con-
nectivity profile (Fig. 6.1a). Each inhibitory unit is connected via a Gaussian connectivity
profile to nearby excitatory units and only locally coupled to itself (Fig. 6.1a; this restriction
will be dropped below). Each unit receives the same constant input J > 0 (Fig. 6.1a). The
system’s dynamics are then described by

τE
duE(~x, t)

dt
= −uE(~x, t) + f

(∫
d~y (aEEMEE(~x, ~y)uE(~y, t)− aEIMEI(~x, ~y)uI(~y, t)) + J

)
,

(6.1)

τI
duI(~x, t)

dt
= −uI(~x, t) + f

(∫
d~y (aIEMIE(~x, ~y)uE(~y, t))− aIIuI(~x, t) + J

)
(6.2)
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where uE(~x, t) (uI(~x, t)) is the average activity of an excitatory (inhibitory) unit in a column at
location ~x in the two-dimensional plane. MKL(~x, ~y) are the synaptic weight profiles connecting
locations ~x and ~y from population L to K (L,K ∈ {E, I}) and the integral is taken over all
locations ~y within the network. MKL(~x, ~y) are modelled by Gaussian kernels, apart from local
self-inhibition, which is modelled by a delta distribution:

M(~x, ~y) =

(
aEEMEE(~x, ~y) −aEIMEI(~x, ~y)
aIEMIE(~x, ~y) −aIIMII(~x, ~y)

)
, (6.3)

MKL(~x, ~y) = MKL(|~x− ~y|) =
1

2πσ2
L

exp

(
−|~x− ~y|

2

2σ2
L

)
, (6.4)

MII(~x, ~y) = δ(~x− ~y). (6.5)

Here σL denotes the standard deviation (SD) and aKL the amplitude of the Gaussian describing
the connectivity from population L to K, respectively. Note that the spatial range of excitatory
connections to inhibitory and excitatory units is identical. Note further that the connectivity
profiles and the inputs are isotropic and identical for all units, hence, the dynamical equations
are rotation and translation symmetric. As we are interested in the behaviour of the network as
a function of the range of inhibition relative to excitation, we introduce the ratio of the variances
r = σ2

I/σ
2
E . For r > 1 lateral inhibition extends further than excitation (Mexican hat connec-

tivity profile). For r < 1 inhibition is of shorter range than excitation, which can be argued is
the more relevant regime in cortex. For concreteness f is taken to be the rectifying function. τE
and τI describe the time constants for excitation and inhibition, respectively. In the following
we assume τE = τI = τ . The more general case where τE 6= τI is addressed below. Altogether,
the network has six connectivity parameters, which we combine below to a set of three effective
parameters determining the network’s behaviour in generating modulated activity.
The discretized network used for simulations consist of N (N2 in two dimensions) excitatory
and inhibitory firing rate units, respectively. The units are equally distributed in one dimension
along a line in the interval 0 ≤ x ≤ 1 and in two dimensions in a square of 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
The position of the j-th unit is then xj = j

N−1 (yj = j
N−1) where j ∈ 0, . . . , N − 1. For all

simulations we set J = 1 and use random initial conditions uE(~x, t = 0), uI(~x, t = 0) drawn from
a truncated Gaussian distribution of zero mean and SD of 0.1. To model an activity pattern, we
integrate the network dynamics until a near steady state of the dynamics is reached. The results
in Fig. 6.1 and Fig. 6.6g are obtained for an integration time of 500 τ . Often integration only
up to ≈ 50 τ resulted already in a near steady state solution. We integrated the dynamics using
a 4th order Runge-Kutta method either in a line of size N = 256 (1D) or in a square region
with N = 50 units (2D) using periodic boundary conditions. The time step was dt=0.15τ .
The simulations were performed on the GPUs GeForce GTX TITAN Black and GeForce GTX
TITAN X. The code was implemented in Python. We used standard libraries numpy and scipy.
In numerical simulations, we find that without local self-inhibition, the network typically re-
mains in a spatially homogeneous state when inhibition acts on a shorter scale than excitation
(Fig. 6.1b). In contrast with local self-inhibition, the network can robustly generate spatially
modulated activity patterns in one (Fig. 6.1c) and two dimensions (Fig. 6.1d). In two di-
mensions the active domains tile the plane in a regular, hexagonal grid (Fig. 6.1d). This is
consistent with previous work which has shown that hexagonal patterns are the solutions of a
two-dimensional network model with isotropic and homogeneous Mexican hat connectivity and
similar nonlinearity130,52. Note that the patterns emerging in the excitatory and the inhibitory
population exhibit the same phase in space but a slightly different amplitude in modulation.
This behaviour is studied in more detail below. Thus, local self-inhibition appears to have an
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important effect on the spatial structure of network activity, promoting the formation of mod-
ular activity patterns.

6.2.1 Local self-inhibition broadens the regime of modular activity

In the following we show that local self-inhibition broadens the parameter regime in which
modular activity forms. To determine this parameter regime, we follow the classical recipe
of first computing the spatially homogenous fixed points of the network dynamics and then
deriving the conditions under which these constant solutions become unstable towards spatially
modulated patterns430,130,133,131,132,129,226,14. To this end, we perform linear stability analysis
around the spatially homogeneous state.

Spatially homogeneous solutions

First, following the methods outlined in previous work (e.g.130,129,226,14) we derive the spatially
homogeneous fixed point and then study the conditions for which this solution is dynamically
unstable towards spatially structured perturbations. The spatially homogeneous fixed points
are obtained by setting the excitatory and inhibitory activities in Eqs. (5.46) and (5.47) to be
constant in time and space as

dūE
dt

!
= 0 = −ūE + [aEE ūE − aEI ūI + J ]+ , (6.6)

dūI
dt

!
= 0 = −ūI + [aIE ūE − aII ūI + J ]+ . (6.7)

Solving these equations for ūE and ūI we obtain the following spatially homogeneous stationary
solutions

ūE = J
1 + aII − aEI

(1 + aII)(1− aEE) + aEIaIE
(6.8)

ūI = J
1 + aIE − aEE

(1 + aII)(1− aEE) + aEIaIE
(6.9)

assuming aEIaIE > (aII + 1)(aEE − 1), (6.10)

aII + 1 > aEI , (6.11)

aIE + 1 > aEE . (6.12)

The constraints in Eqs. (6.10) to (6.12) ensure that the argument of the nonlinearity in Eqs.
(6.6) and (6.7) is positive for J > 0. Note that, a positive spatially homogeneous fixed point
solution exists also for flipped signs in conditions (6.10) to (6.12). However, in the following, we
will consider only the case when Eq. (6.10) holds. This ensures that the baseline activity in the
network does not diverge.
A negative input J changes the sign of the conditions in Eqs. (6.11) and (6.12). For J = 0 the
fixed point solutions are zero and the nonlinearity suppresses the growth of activity patterns.

Formation of activity patterns in network with local self-inhibition

To study the emergence of modular activity patterns in the network (Eqs. (5.46) and (5.47)),
we analyze the conditions for which the spatially homogeneous steady state solutions become
unstable against random perturbations430,129. In particular, we are interested in a stationary
instability without temporal oscillations in the activity. To this end, we consider the linearized
dynamics around the fixed points given in Eqs. (6.8), (6.9). We define uE(~x, t) = ūE + εwE(~x, t)
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and uI(~x, t) = ūI + εwI(~x, t) with ε � 1. Since the linear dynamics are translation invariant,
their eigenfunctions or modes are plane waves. We are considering a stationary instability of the
dynamics that results into spatially periodic and time invariant patterns by amplifying those
modes through the recurrent network that have positive eigenvalues. For simplicity, we limit
ourselves to the case where the baseline activity does not diverge in time which corresponds to
the eigenvalue being negative at zero frequency. The linearized dynamics are then given by

d

dt
wE(~x, t) =

(
−wE(~x, t) +

∫
d~y (aEEMEE(~x− ~y)wE(~y, t)− aEIMEI(~x− ~y)wI(~y, t))

)
(6.13)

d

dt
wI(~x, t) =

(
−(1 + aII) wI(~x, t) +

∫
d~y (aIEMIE(~x− ~y)wE(~y, t))

)
(6.14)

where the contributions from the fixed point vanish according to Eqs. (6.6) and (6.7) and ε is
cancelled out. The linearized dynamics are translation invariant, therefore their eigenfunctions
are plane waves. Thus we expand the perturbations (wE(~x, t), wI(~x, t))

T into their Fourier series,
since this allows us to study which modes are growing or decaying in the system. We use

(
wE(~x, t)
wI(~x, t)

)
=

1

(2π)d/2

∫
d~k e−i

~k~x

(
w̃E(~k, t)

w̃I(~k, t)

)
(6.15)

where d denotes the system’s dimension and ~k is the wave vector. Plugging these expressions
into Eqs. (6.13) and (6.14) of the dynamics yields

∫
d~k e−i

~k~x d

dt

(
w̃E(~k, t)

w̃I(~k, t)

)
= −

∫
d~k e−i

~k~x

(
w̃E(~k, t)

w̃I(~k, t)

)

+

∫
d~k

∫
d~y e−i

~k~y

(
aEEMEE(~x− ~y) −aEIMEI(~x− ~y)
aIEMIE(~x− ~y) −1− aII

)(
w̃E(~k, t)

w̃I(~k, t)

)
.

(6.16)

Since individual Fourier modes are orthogonal to each other, the equation above has to hold for
each mode independently. We solve the integral over ~y on the right hand side to

d

dt

(
w̃E(~k, t)

w̃I(~k, t)

)
=

(
aEEM̃EE(k)− 1 −aEIM̃EI(k)

aIEM̃IE(k) −1− aII

)(
w̃E(~k, t)

w̃I(~k, t)

)
= Bl

(
w̃E(~k, t)

w̃I(~k, t)

)

with M̃KL(k) = e−
k2σ2

L
2 , K, L ∈ {E, I}

(6.17)

and the wave number (spatial frequency) k = |~k|. M̃KL(k) is the Fourier transform of MKL(|~x−
~y|). In the above system of equations we define the matrix Bl (l stands for local self-inhibition)
combining the connection matrix and the decay terms. To solve this system of equations, we
diagonalize Bl and project the system into its eigenbasis

d

dt

(
w̃E(~k, t)

w̃I(~k, t)

)
= Bl

(
w̃E(~k, t)

w̃I(~k, t)

)
= S

(
λ1 0
0 λ2

)
S−1

(
w̃E(~k, t)

w̃I(~k, t)

)
(6.18)

·S−1

⇒ d

dt

(
ṽ1(~k, t)

ṽ2(~k, t)

)
=

(
λ1 0
0 λ2

)(
ṽ1(~k, t)

ṽ2(~k, t)

)
(6.19)
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where we have defined (ṽ1(~k, t), ṽ2(~k, t))T = S−1(w̃E(~k, t), w̃I(~k, t))
T . The columns of S consist

of the right eigenvectors (not normalized) of Bl, and S−1 being its inverse

S =

(
c1(k) + c2(k) c1(k)− c2(k)

1 1

)
, (6.20)

S−1 =
1

2c2(k)

(
1 −c1(k) + c2(k)
−1 c1(k) + c2(k)

)
(6.21)

with

c1(k) =
1

2aIEM̃IE(k)

(
aEEM̃EE(k) + aII

)
, (6.22)

c2(k) =
1

2aIEM̃IE(k)

√(
aEEM̃EE(k) + aII

)2
− 4aIEaEIM̃IE(k)M̃EI(k). (6.23)

The definition of S, S−1, c1 and c2 proves to be useful further below. The eigenvalues are denoted
by λ1, λ2 (with the larger eigenvalue being λ1) and are given by

λ1(k) =
1

2

(
T (k) +

√
T (k)2 − 4 D(k)

)
(6.24)

λ2(k) =
1

2

(
T (k)−

√
T (k)2 − 4 D(k)

)
(6.25)

with T (k) = aEEM̃EE(k)− 2− aII = λ1 + λ2, (6.26)

D(k) = (1− aEEM̃EE(k))(1 + aII) + aIEaEIM̃IE(k)M̃EI(k) = λ1λ2 (6.27)

where D denotes the determinant and T denotes the trace of Bl. The system in Eq. (6.19) can
be solved by an exponential Ansatz of the following form(

ṽ1(~k, t)

ṽ2(~k, t)

)
=

(
eλ1(k)t ṽ1(~k, t = 0)

eλ2(k)t ṽ2(~k, t = 0)

)
(6.28)

where ṽ1,2(~k, t = 0) denote the initial conditions of the system. By transforming this solution
back, we obtain the solutions for the Fourier coefficients w̃E , w̃I(

w̃E(~k, t)

w̃I(~k, t)

)
= S

(
ṽ1(~k, t)

ṽ2(~k, t)

)
=

(
(c1(k) + c2(k))ṽ1(~k, t) + (c1(k)− c2(k))ṽ2(~k, t)

ṽ1(~k, t) + ṽ2(~k, t)

)
. (6.29)

The full solution in state space is then given by(
wE(~x, t)
wI(~x, t)

)
=

1

(2π)d/2

∫
d~k ei

~k~x

(
ṽ1(~k, 0)

(
(c1(k) + c2(k))

1

)
eλ1(k)t+

ṽ2(~k, 0)

(
(c1(k)− c2(k))

1

)
eλ2(k)t

)
.

(6.30)

The coefficients describe whether individual modes in the perturbation wE/I(~x, t) grow or decay
during time. The expressions for wE/I(~x, t) contain two time dependent terms. Depending on
the sign of the eigenvalues λ1,2(k) these terms either grow (positive sign) or decay (negative
sign) with time. The system’s dominant modes at long times are those which grow maximally
and their frequencies are determined by the location of the maximum of the larger eigenvalue
λ1. Note that the dominant modes of excitation and inhibition share the same spatial frequency.
For the network to form modular activity, a mode at finite frequency k must have a positive
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maximal growth rate, while the zero frequency mode is unstable corresponding to a negative
eigenvalue at k = 0. In general, it would be sufficient to require that the eigenvalue at zero
frequency is smaller than the one at peak frequency. Here, we will consider only the former
case, but similar considerations can be given for the latter case.
In the following we determine how the sign of λ1 behaves as a function of k depending on
the network connectivity. To this end, we study the behaviour of trace and determinant as
their signs fully determine the sign of the eigenvalues and are analytically more tractable. The
condition that the eigenvalue must be negative at k = 0 corresponds to a positive determinant
at zero frequency. Note that we derived this condition already in the calculation of the positive
fixed points for positive input (Eq. (6.10)). For the determinant to be positive both eigenvalues
have to share the same sign. In the case that both eigenvalues are positive at zero frequency, the
trace must also be positive at k = 0. However, a positive trace at k = 0 leads to an oscillatory
instability from a spatially homogeneous equilibrium129,14, as the eigenvalues become complex,
whereas we are interested in a stationary instability. Thus, we consider only the case where
eigenvalue and trace at k = 0 are negative. As M̃KL(k = 0) = 1, the two requirements that the
trace is negative and the determinant is positive at k = 0 yield the following two constraints on
the connectivity parameters

aEE <
aEIaIE
1 + aII

+ 1 = s+ 1, (6.31)

aEE < 2 + aII (6.32)

where we introduced the effective parameter s =
aEIaIE
1 + aII

. The parameter s describes the

coupling strengths aEI , aIE between the excitatory and inhibitory population normalized by the
self-inhibitory connectivity strength aII . Note that for fixed aEE the condition in Eq. (6.32)
becomes a lower bound for the connectivity strength aII .
Second, we require that the determinant D becomes negative for an interval of finite frequencies,
such that one of the eigenvalues becomes positive (Fig. 6.6b-c). As D(k)→ 1 for k →∞, this
means that D needs to exhibit a negative minimum at a finite frequency. Setting the derivative
of D w.r.t. k to zero, we solve for the location of the minimum kmin. The equation for kmin is
cubic in k and leads to the following relevant solution

kmin =

√
2 log

(
(σ2
I+σ2

E)aEIaIE
(1+aII)aEEσ

2
E

)
σI

=

√
2 log

(
(r+1)s
aEE

)
σE
√
r

(6.33)

where we introduce the second effective parameter which is the squared ratio between the in-
hibitory and excitatory spatial scale r = σ2

I/σ
2
E . kmin is real (Fig. 6.6b) only if the argument

of the logarithm is greater than 1 which requires

aEE < s (1 + r). (6.34)

Next, plugging the expression for kmin into the determinant shows that the minimum at kmin is
negative only for

aEE > (1 + r)

(
s

1
r

r

) r
1+r

= (1 + r) s
1

1+r

(
1

r

) r
1+r

. (6.35)

Note that conditions in Eqs. (6.31), (6.34) and (6.35) only depend on the three effective variables
aEE , s and r. The conditions in Eqs. (6.31) and (6.34) describe an upper bound for aEE whereas
the condition in Eq. (6.35) describes a lower bound for aEE . Thus, these three conditions can
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only hold simultaneously if the right hand side of both conditions (6.31) and (6.34) is greater
than the right hand side of condition (6.35). To assess for which parameter settings this holds,
we first compare the right hand side of Eqs. (6.34) and (6.35)

s(1 + r) > (1 + r) s
1

1+r

(
1

r

) r
1+r

(6.36)

s
r

1+r >

(
1

r

) r
1+r

(6.37)

s >
1

r
. (6.38)

Thus, in the regime where modular patterns form, the effective parameters s and r need to satisfy
s > 1

r for the conditions in Eqs. (6.34) and (6.35) to simultaneously hold. Moreover, for s > 1
r

the right hand side of Eq. (6.34) is always larger than the one of Eq. (6.31). Thus, if Eq. (6.31)
holds, then Eq. (6.34) is also automatically satisfied. Generating modular network activity
therefore requires only the three conditions in Eqs. (6.31), (6.32) and (6.35) to be satisfied.
These conditions outline the pattern forming regime in the parameter space of the network
connectivity. Taken together, in the two previous sections we derived in total five conditions for
the six network parameters aEE , aEI , aIE , aII , σE and σI . These conditions can be divided into
two groups. The constraints in Eqs. (6.31) and (6.35) define the pattern forming regime. They
depend on three effective parameters aEE , s and r which is visualized and analyzed in Fig. 6.3.
The remaining three conditions in Eqs. (6.11), (6.12) and (6.32) guarantee the existence of a
constant and positive fixed point and specify values for the original parameters aIE , aEI and
aII . The ability of the network to form modular activity does not depend on the absolute values
of σE and σI , but only on their ratio r, as changing σE or σI independently can always be
compensated for by rescaling the network.
Moreover, for a given set of parameter values a∗EE , s

∗, r∗ within the pattern forming regime, we
can always find values for aEI , aIE , aII that satisfy the constraints in Eqs. (6.11), (6.12) and
(6.32), using the following recipe. First, we choose a value for aII = a∗II such that Eq. (6.32)
is fulfilled. Next, we choose a value for aEI = a∗EI satisfying Eq. (6.11). With this choice the

value of aIE is a∗IE =
s∗(1+a∗II)

a∗EI
. Using the conditions in Eqs. (6.11) and (6.31), we show that

this value in fact obeys the remaining condition (6.12)

a∗IE =
s∗(1 + a∗II)

a∗EI

Eq.(6.31)
>

(a∗EE − 1)(1 + a∗II)

a∗EI

Eq.(6.11)
> (a∗EE − 1). (6.39)

Thus, for all sets of values a∗EE , s
∗, r∗ in the pattern forming regime it is possible to obtain a

set of values for aEI , aIE , aII such that the additional conditions in Eqs. (6.11), (6.12) and
(6.32) are satisfied. Together, this leads to the following parameter regime that supports the
formation of modular activity (see also226)

aEE < 2 + aII , (6.40)

aEE < s+ 1, (6.41)

aEE > (1 + r) s
1

1+r r
−r
1+r (6.42)

The conditions in Eqs. (6.41) and (6.42) depend only on the three effective variables aEE , r and
s which are combinations of the original six connectivity parameters. Only Eq. (6.40) depends
explicitly on aII , relating it to the coefficient aEE . Thus, for a fixed value of aII condition
(6.40) defines the upper bound for aEE , and the two conditions in Eqs. (6.41) and (6.42) define
two other boundaries of the parameter regime in which spatially modulated activity can form.
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Figure 6.2: Increasing strength of self-inhibition aII leads to positive peak in the maximal
eigenvalue at finite frequencies. a Trace T (k) as a function of normalized wave number σEk
for increasing values of self-inhibition aII from 1 (black) to 3.0 (yellow) (other connectivity
parameters kept fixed). Gray dashed line marks zero. b The determinant D(k) is negative for
finite frequencies at intermediate values of aII . Further increasing aII leads to a negative value
of the determinant also at zero frequency. c The frequency intervals where the determinant is
negative coincide with a positive real part of the larger eigenvalue λ1(k), and thus a positive
growth rate for plane waves in this frequency band. The red and orange lines are within the
pattern forming regime, whereas the black and yellow lines lie outside. (a,b,c) Parameters used
are aEE = 2.9, aIE = 2.7, aEI = 2.3, r = 0.9.

Note also that if Eqs. (6.41) and (6.42) are satisfied, there is always a value aII for which Eq.
(6.40) holds. Thus, the linear stability analysis determines a region in parameters space which
in the following we call the pattern forming regime for which modular network activity can form.
Importantly, its boundaries are determined by the three effective parameters aEE , s and r.

Local self-inhibition extends the pattern forming regime into biologically plausible
parameter region

To systematically determine the influence of local self-inhibition on the size and location of
the pattern forming regime, we visualize its boundaries (Eqs. (6.41) and (6.42)) in the three-
dimensional space spanned by aEE , r, and the coupling strength aEIaIE (Fig. 6.3a). Here, we
use aEIaIE instead of the effective variable s to illustrate the difference in extension of the pattern
forming regime between networks with different strengths aII . In Fig. 6.3a the pattern forming
regime lies inbetween the red (corresponding to Eq. (6.41)) and the black surface (Eq. (6.42)).
Without self-inhibition (aII = 0), the pattern forming regime is limited to the parameter region
with r > 1 (see below). In this case modular activity only forms in a regime with Mexican
hat like connectivity consistent with previous results129,226,14. Intriguingly, adding local self-
inhibition (aII = 1) expands the pattern forming regime such that connectivity settings where
inhibition is of shorter range than excitation (r < 1) also lead to modular activity (Fig. 6.3a,
right). A cut through the three-dimensional pattern forming regime at fixed aII highlights the
notable increase in the relevant parameter regime where inhibition acts on a shorter range than
excitation from a network without self-inhibition (gray) to nonzero self-inhibition (blue; aII = 3;
Fig. 6.3b). For all networks we fix aII = aEE − 1.95 (compare to Eq. (6.40)) to be able to
compare them. Other parametrizations of aII hold qualitatively similar results.
Next, we quantify the increase in size of the pattern forming regime in the relevant parameter
regime (r < 1). To this end, we systematically increase aII and determine the area A between
the intersection point r∗ of the boundaries (Eqs. (6.41) and (6.42)) and r = 1 (e.g. dashed
region in Fig. 6.3c). If the pattern forming regime does not extend to values with r < 1
as is the case when the excitatory to excitatory interaction strength is below a minimal value
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6.2. Modular activity without Mexican hat connectivity
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Figure 6.3: Phase diagram of parameter regime allowing for the formation of spatially modulated
activity. a 3d phase diagram of the pattern forming regime. The two surfaces correspond to the
conditions given in Eqs. (6.41) (red) and (6.42) (black) and contain the pattern forming regime.
Left: without self-inhibition (aII = 0) the pattern forming regime is constrained to a parameter
region with lateral inhibition (σI > σE). Right : with self-inhibition (aII = 1.0) this regime
is extended such that connectivity settings with local inhibition (σI < σE) lead to spatially
modulated activity. The gray lines indicate when the spatial range of excitation equals that of
inhibition. Note that the pattern forming regime is plotted as a function of aEIaIE , to be able
to compare the regimes for different values of aII . b Two-dimensional cut through 3d phase
diagram shown in (a) for aEE = aII + 1.95. For aII = 0 the pattern formation regime (gray
colored region in the lower right) is constrained to a parameter regime with lateral inhibition
(σI > σE). Increasing self-inhibition (aII = 3) expands the pattern forming regime (blue shaded
area) such that connectivity settings with local inhibition allow for patterns to form. The two
markers identify parameter settings within (+) and outside (×) of the pattern forming regime,
whose simulated solutions are shown in Fig. 6.1. c Increasing the strength of self-inhibition aII
leads to an increase in size of the pattern forming regime A within the parameter region with
local inhibition. We quantify the size of the pattern forming regime by the integral A from the
intersection point r∗ of the two conditions given in Eqs. (6.41) and (6.42) to r = 1 (exemplary
dashed area for aII = 10). d Region A increases smoothly with increasing self-inhibition strength
aII . The cross denotes the size of the dashed area shown in (c).
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6. Modelling modular cortical activity

(aEE < 2; see Fig. 6.3d), we set A = 0. We observe that already very weak local self-inhibition
leads the pattern forming regime to extend into the parameter region where inhibition acts on
a shorter scale than excitation (Fig. 6.3d). This area A increases supralinearly as a power law
with exponent of 3.13± 0.02 (see inset in Fig. 6.3d) in the limit of large aII .
To derive those results, we assumed a Gaussian connectivity profile in the network. Using expo-
nential profiles leads to qualitatively very similar results (see below). Furthermore, we assumed
here that excitation and inhibition share the same time constant. Repeating the same analysis
as above for different time constants, shows that an inhibitory time constant that is greater
(smaller) than the excitatory time constant reduces (enlarges) the pattern forming regime in
the region of r < 1. This reduction can be compensated, however, by choosing a sufficiently
strong local self-inhibition (see below). Here, we assumed a Gaussian connectivity profile. Using
an exponential profile instead leads to qualitatively very similar results (Fig. 6.5). To obtain
modular activity patterns in a regime where inhibition is more short-ranged than excitation, we
assumed a purely local self-inhibition. Alternative connectivity schemes such as a motif where
the inhibitory to inhibitory connections are spatially more localized than the connections from
inhibitory to excitatory units, allow similarly the formation of modular activity patterns in the
absence of long-range inhibition389 (Methods).
In summary, the presence of local self-inhibition in the wiring diagram of the network extends the
pattern forming regime and relaxes the constraints on the connectivity parameters, especially
on the relative spatial scales of excitatory and inhibitory interactions. Importantly, a network
with short-range inhibition and an inhibitory time constant equivalent to the excitatory time
constant can form spatially modulated activity patterns. Thus, local self-inhibition consolidates
the requirements on the connectivity settings for forming modular network activity with exper-
imental data136,265.
A key difference between a network with and without local self-inhibition is that including self-
inhibition relaxes the constraint on the magnitude of self-excitation aEE < 2 + aII (see Eq.
(6.32)). We show that for a network without self-inhibition (aII = 0; aEE < 2) the pattern
forming regime is restriced to a parameter region where the range of inhibition exceeds excita-
tion (r > 1). Previously we found s > 1

r in the pattern forming regime. Thus, if r < 1, then
s > 1. With aEE < 2, condition (6.35) then implies

2 > (1 + r) s
1

1+r

(
1

r

) r
1+r

. (6.43)

To test whether values of r < 1 exist for which this condition holds, we use s > 1
r

2 >(1 + r) s
1

1+r

(
1

r

) r
1+r

(6.44)

> (1 + r) s
1

1+r

(
1

r

) r
1+r

∣∣∣∣∣
s=1/r

(6.45)

>1 +
1

r
(6.46)

⇒ r >1 (6.47)

Thus, this condition only holds for inhibition whose spatial range exceeds excitation. We there-
fore conclude that the network without self-inhibition does not form spatially modulated activity
patterns for r < 1 but requires inhibition of larger spatial range than excitation.
On the other hand if aII > 0 choosing aEE > 2 but satisfying the condition aEE < 2 + aII (Eq.
(6.32)), we show that there exists a regime where modular patterns with shorter inhibiton than
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6.2. Modular activity without Mexican hat connectivity

excitation (r < 1) form. To this end, we compare Eqs. (6.31) and (6.32) which for convenience
we state again here

aEE < s+ 1, (6.48)

aEE < aII + 2. (6.49)

For aII > 0, we can choose aEE > 2. To also satisfy Eq. (6.31), we require a value s > aEE−1 >
1 by assuming r < 1 which is consistent with s > 1

r . To test whether the remaining condition
(Eq. (6.35)) holds, we use as derived before

aEE > (1 + r) s
1

1+r

(
1

r

) r
1+r

(6.50)

> 1 +
1

r
(6.51)

which is consistent with Eq. (6.32) as s > 1
r . Thus, the conditions in Eqs. (6.31) to (6.35) are

simultaneously satisfied for a parameter setting where inhibition acts on a smaller spatial scale
than excitation (r < 1) for sufficiently large self-excitation (aEE > 2).

Influence of negative network input on pattern forming regime

So far, we discussed the case when the network input is positive (J > 0). Here we briefly
discuss how applying a negative input changes the conditions for the formation of modular
activity. First, when determining the spatially homogeneous fixed point solutions, two of the
three conditions (Eqs. (6.11) and (6.12)) on the connectivity parameters change their sign and
become

aII + 1 < aEI (6.52)

and aIE + 1 < aEE . (6.53)

Importantly, the sign of the input does not affect the derivation of the conditions for the pattern
forming regime based on the linear stability analysis. Therefore the size and location of the
pattern forming regime remains unchanged for J < 0. However, the conditions in Eqs. (6.52) and
(6.53) now lead to different connectivity parameters aKL. To find a complete set of connectivity
parameters that fulfills all five conditions, we first choose a value aII = a∗II satisfying Eq. (6.32),

and aIE = a∗IE satisfying Eq. (6.53). This leads to a∗EI =
s∗(1+a∗II)

a∗IE
fulfilling the remaining

condition (6.52)

a∗EI =
s∗(1 + a∗II)

a∗IE

Eq.(6.31)
>

(a∗EE − 1)(1 + a∗II)

a∗EI

Eq.(6.53)
> (a∗II + 1). (6.54)

Thus, in the pattern forming regime it is always possible to find a set of connectivity parameters
(aKL, σL) that satisfy all conditions, irrespective of whether the input J is positive or nega-
tive, as the fixed points are positive and allow for facilitation of local activity fluctuations and
suppression of fluctuations further away.

6.2.2 Influence of local inhibition on the formation of modular activity

In the main part of this work we demonstrated that a network with purely local inhibition
forms modular activity even if inhibition acts on a shorter range than excitation. However, in
cortical circuits inhibitory interneurons are not only coupled to themselves but also to their
neighbours following certain motifs345. Here we study an alternative form of self-inhibition by
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Figure 6.4: Robust formation of modular activity when spatial extent of self-inhibition is nonzero
and small. a Expansion terms of determinant. D0 (black) denotes zeroth order term exhibiting a
negative minimum at a finite frequency whereas second order term D1 (gray) shows at a similar
frequency a positive peak. b The determinant’s minimum becomes positive for increasing σII . c
Over a large regime of σII the determinant D exhibits a negative minimum until for sufficiently
large σII the minimum in the determinant first becomes positive and then vanishes. Parameters
used are aEE = 11.4, aIE = 11.0, aEI = 10.9, aII = 10.0, r = 0.8.

assuming that self-inhibitory connections are spatially extended. In the following we study how a
nonzero spatial range of self-inhibition influences the conditions for the pattern forming regime
derived above, and how large it can be to still allow for the formation of modular activity.
The network is based on the network model obeying the dynamics given in Eqs. (5.46) and
(5.47). The full inhibitory to inhibitory connectivity MII now consists of a spatially extended
term M s

II with Gaussian profile and width σII (analogous to Eq. (6.4)). We assume that the
inhibitory interaction range is more short-range than excitation (σEI , σII < σEE = σIE). The
trace (compare to Eq. (6.26)) of the linearized network dynamics is given by

T (k) = aEEM̃EE(k)− aIIM̃II(k)− 2 (6.55)

Note that for σII < σEE the trace has its maximal value at k = 0 independent of σII . Thus,
increasing σII neither changes the sign of the trace nor the conditions for the pattern forming
regime derived from the trace.

Next, we consider the influence of σII on the determinant of the linearized system. To form
modular activity the determinant is required to exhibit a minimum with negative value at a
finite frequency. Therefore, we examine how the existence of this minimum and its sign depend
on σII . To this end, we first expand the determinant in a Taylor series around σII = 0 up to
O(σ2

II) and then solve for the location of its minimum. For the expanded determinant we obtain

Dapprox(k) = D0(k) + σ2
IID1(k) (6.56)

with D1(k) =
aII
2

(−1 + aEEM̃EE(k))k2 (6.57)

where D0(k) corresponds to the determinant of the network with purely local self-inhibition
defined in Eq. (6.27), and M̃KL(k) is the Fourier transform of the connectivity profile from
population L to K with K,L ∈ {E, I}. As mentioned above D0(k) exhibits a negative minimum
at a finite frequency whereas the higher order term D1(k) shows a positive peak at similar
frequencies (Fig. 6.4a). We conclude, that increasing σII leads to a diminishment of the
negative peak eventually leading to positive values of the minimum. To confirm this intuition,
we next determine the location of the minimum which we assume to be given by kmin = k0+σ2k1.
k0 coincides with the location of the minimum in the network with purely local self-inhibition

156



6.2. Modular activity without Mexican hat connectivity

(see Eq. (6.33)), and k1 describes the change in peak location after increasing σII . Setting the
derivative of Dapprox(k) w.r.t the frequency to zero yields:

k0 = ±

√
2 log

(
s(1+r)
aEE

)
σEI

, (6.58)

k1 = −aII
r

(
−aEE +

(
s(1+r)
aEE

)1/r
)

+ aEE log
(
s(1+r)
aEE

)
√

2aEE(1 + aII)σ3
EIr

√
log
(
s(1+r)
aEE

) (6.59)

Plugging this expression for kmin into Dapprox(k) shows that the value of the determinant’s
minimum remains negative for increasing σII over a relatively long interval (Fig. 6.4b). For
sufficiently large σII it eventually becomes positive (Fig. 6.4b). Considering the full expression
of the determinant reveals that for increasing σII , initially the negative peak in the determinant
is preserved. However, as σII starts to approach the value of σEI , the peak first becomes positive
and eventually vanishes (Fig. 6.4c). A numerical analysis of a network with spatially extended
self-inhibition where inhibitory to inhibitory connections are spatially more constrained than
inhibitory to excitatory connections was given previously389.

6.2.3 Different time constants for excitation and inhibition

So far, we assumed that excitation and inhibition share the same time constant. However, the
decay time constant of the most abundant receptor in cortex GABAA is typically larger than the
time constant of AMPA receptors335,136,90,219,47. Therefore, we analyse here how different time
constants τE and τI affect the conditions for the formation of modular activity. Applying again
linear stability analysis around the spatially homogeneous fixed points, yields new conditions on
the connectivity parameters. The trace Tτ and determinant Dτ change to

Dτ (k) =
1

τ
D(k), (6.60)

Tτ (k) = T (k) +

(
1− 1

τ

)
(MII(k) + 1) (6.61)

setting τ = τI
τE

. D denotes the determinant and T the trace of the network with τE = τI
(see Eqs. (6.27) and (6.26)). The sign of the determinant and its derivative are unaffected by
introducing a different time scale for inhibition and excitation. Thus, the conditions which we
derived for the determinant in the previous section remain the same (see Eqs. (6.31), (6.34),
(6.35)). Requiring that the trace is negative for k = 0, however, leads to the following new
condition (compare to 129,226)

aEE < 1 +
1

τ
(aII + 1). (6.62)

For τ = 1 we recover the previously derived condition (see Eq. (6.32)). Irrespective of τ a
nonzero aII enlarges the range of possible aEE and thus the pattern forming regime. If τ < 1
(τE > τI) which is the configuration studied in226, the additional factor of 1

τ relaxes the constraint
on aEE and allows choosing larger values for aEE . In contrast, τ > 1 (τE < τI) reduces the
pattern forming regime, but this can always be compensated by choosing a sufficiently strong
local self-inhibition.
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Figure 6.5: Pattern forming regime in the network with exponential connectivity profile extends
to biologically plausible parameter region. a 3d phase diagram of the pattern forming regime
as a function of aEE , r and s which is bounded by the red surface (Eq. (6.65) and (6.67)) and
the black surface (Eq. (6.68)). b-d 2d projections of the 2d phase diagram in (b) with one
parameter fixed, respectively. Red (black) line corresponds to red (black) surface in (b). b
Phase diagram as a function of aEE and s for r = 0.8. Markers denote parameter settings that
were numerically simulated to test boundaries of pattern forming regime. Parameters used are
s = 10.9 and aEE = 7.2 (green), aEE = 7.4 (yellow). c Phase diagram as a function of aEE and
r for s = 11.4. d Phase diagram as a function of s and r for aII = 10.0, aEE = 11.4. Note that
modular activity also forms for r < 1.

6.2.4 Exponential connectivity profile

In the previous network we have modelled the connectivity between units assuming its distanced-
dependence in form of a Gaussian function. However, there is experimental evidence suggesting
that connection weights are better described by an exponental distribution359,80,108. To test the
influence of the specific spatial profile of the network connectivity on the formation of modular
activity, we consider here a network for which connection strength decays as an exponential
function of the distance between units. For simplicity we assume only local self-inhibition to
obtain closed form expressions for the boundaries of the pattern forming regime. Adding a
spatially extended self-inhibition leads to qualitatively similar results. The connectivity is then
assumed to be

MKL(~x− ~y) =
1

2σL
e
− |~x−~y|

σL for K,L ∈ {E, I}, (6.63)

MII(~x− ~y) = δ(~x− ~y). (6.64)

Linearizing the network dynamics around the fixed points (Eqs. (6.8) and (6.9)) yields the
following conditions analogous to Eqs. (6.31), (6.32), (6.34) and (6.35):

aEE <
aEIaIE
1 + aII

+ 1 = s+ 1, (6.65)

aEE < aII + 2, (6.66)

aEE(1− r) < aEIaIE
1 + aII

= s, (6.67)

aEE >
2
√
r s− 1 + r

r
. (6.68)

As before, we defined r = σ2
I/σ

2
E and s = aEIaIE

1+aII
. Note that the constraints for the zero

frequency mode k = 0 (in Eqs. (6.65), (6.66)) are unchanged compared to the network with
Gaussian connectivity profiles (see Eqs. (6.31) and (6.32)).
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6.3. Including spatially extended self-inhibition, already weak local self-inhibition allows for
modular activity

For completenes we give here the location of the minimum of the determinant (compare to Eq.
(6.33) for the network with Gaussian connectivity profile)

kmin =
1

σE
√
r

(
1− s

aEE
+

√
s

aEE

(
s

aEE
− 1 + r

)) 1
2

. (6.69)

Analogous to the network with a Gaussian connectivity profile, we test here whether all of these
four conditions can hold simultaneously. To this end, we compare the right hand sides of Eqs.
(6.67) and (6.68) which must satisfy

s >
2
√
r s− 1 + r

r
(1− r) (6.70)

⇒ s >
(r − 1)2

r
(6.71)

Next, we compare Eqs. (6.65) and (6.68) and obtain

s+ 1 >
2
√
r s− 1 + r

r
(6.72)

⇒ s >
1

r
(6.73)

This relation between s and r is analogous to the network with a Gaussian connectivity profile

(see Eq. (6.38)). For r < 2, it is 1
r >

(r−1)2

r , and the condition in Eq. (6.67) is trivially satisfied
if Eq. (6.65) holds. Thus, in the regime where inhibition acts on a shorter spatial range than
excitation, only the three conditions in Eqs. (6.65), (6.66) and (6.68) need to be considered
to find the boundaries of the pattern forming regime. This is analogous to the network with
Gaussian connectivity profile. As Fig. 6.5 suggests, the pattern forming regime also extends
into the region of connectivity parameters where inhibition is spatially more constrained than
excitation. We tested the analytically derived boundary conditions for the formation of modular
activity using numerical simulations. Parameter settings satisfying the conditions derived above
result in modular activity pattern whereas parameter settings outside of the pattern forming
regime yield either spatially homogeneous or diverging solutions (exemplary settings indicated
in Fig. 6.5b).

6.3 Including spatially extended self-inhibition, already weak
local self-inhibition allows for modular activity

In the previous section we showed that a network model with purely local self-inhibition robustly
forms modular activity even if inhibition is of shorter range than excitation. However, local self-
inhibition accounts only for a part of the total self-inhibitory connectivity. Here we study
a biologically more plausible network model by adding spatially extended self-inhibition and
assess how strong the local relative to the spatially extended self-inhibition must be to form
modular activity in the absence of Mexican hat-like connectivity. The network is based on the
network model with purely local self-inhibition obeying the dynamics given in Eqs. (6.1) and
(6.2). The full inhibitory to inhibitory connectivity MII now consists of a local term denoted
by M l

II and a spatially extended term M s
II with Gaussian profile and width:

MII(~x, ~y) = alIIM
l
II(~x, ~y) + asIIM

s
II(~x, ~y), (6.74)

M l
II(~x, ~y) = δ(~x− ~y), (6.75)

M s
II(~x, ~y) =

1

2πσ2
I

e
− (~x−~y)2

2σ2
I (6.76)
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Figure 6.6: Weak local self-inhibition in extended network model is sufficient for modular net-
work activity when inhibition has shorter range than excitation. a Schematic of extended
network model of excitatory (E) and inhibitory (I) population. The connectivity between indi-
vidual units follows a Gaussian profile (colored circles). The self-inhibition consists of a spatially
distributed term (purple) with strength asII and a local term (green) with strength alII . These
two terms combined give the total self-inhibitory strength atot

II (blue). The relative strength
of local self-inhibition is given by α. b 3d phase diagram of the pattern forming regime as
a function of aEE , r = σ2

I/σ
2
E and s = (aEIaIE)/(1 + atot

II ). The pattern forming regime is
contained between the red surface corresponding to condition (6.85), and the black surface
which is obtained numerically requiring that the eigenvalue of the linearized dynamics is pos-
itive around a finite frequency. Here α = 0.5. c-d 2d projections of the 3d phase diagram in
(b) with one parameter fixed, respectively. Red (gray) line corresponds to red (black) surface
in (b). c Phase diagram as a function of r and s for aEE = 11.4, atot

II = 10.0. Note that
modular activity can form when inhibition has shorter range than excitation (r < 1) for suffi-
ciently strong α. The dashed area A indicates the region of the pattern forming regime where
r < 1. d Phase diagram as a function of r and aEE for s = 11.4, atot

II = aEE − 1.4. e Phase
diagram for aEE = 11.4, atot

II = 10.0 showing the minimal relative autaptic strength α that is
required for the network to form modular activity. f With increasing relative strength α and
increasing total strength atot

II of self-inhibition, area A increases (with aEE = 1.4 + atot
II ). The

cross indicates the parameter setting shaded in (c). g Examples of simulated solutions of ex-
tended network for excitatory (top) and inhibitory (bottom) populations. Parameters used are
aEE = 11.4, aIE = 11.5, aEI = 10.9, atot

II = 10.0, α = 0.2, σE = 0.055, σI = 0.048.
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6.3. Including spatially extended self-inhibition, already weak local self-inhibition allows for
modular activity

where alII denotes the strength of the local self-inhibition and asII describes the strength of
the spatially extended self-inhibition. We assume the same spatial scale σI for inhibitory to
inhibitory and inhibitory to excitatory connections (Fig. 6.6a).
First, we investigate how the spatially extended self-inhibition influences the boundaries of the
pattern forming regime. In particular, we assess how the relative strengths of the two self-
inhibition terms, alII and asII , change the boundaries relative to r. To this end, analogous to
the model with purely local self-inhibition we determine the conditions for a finite wavelength
instability by applying linear stability analysis around the spatially homogeneous fixed point
solutions430,130,129,226,14. Spatially homogeneous fixed points are now given by

ūE = J
1 + alII + asII − aEI

(1 + alII + asII)(1− aEE) + aEIaIE
(6.77)

ūI = J
1 + aIE − aEE

(1 + alII + asII)(1− aEE) + aEIaIE
(6.78)

assuming that aEIaIE > (alII + asII + 1)(aEE − 1), (6.79)

alII + asII + 1 > aEI (6.80)

aIE + 1 > aEE (6.81)

Note that these fixed points are similar to the fixed points in the model with only local self-
inhibition except that the sum of the local and spatially extended self-inhibition replaces the
purely local term. For the eigenvalues λ1/2, trace T and determinant D we obtain

λ1/2(k) =
1

2

(
T (k)±

√
T (k)2 − 4 D(k)

)
(6.82)

with T (k) = aEEM̃EE(k)− asIIM̃ s
II(k)− alII − 2, (6.83)

D(k) = (1 + asIIM̃
s
II(k) + alII)(1− aEEM̃EE(k)) + aIEaEIM̃IE(k)M̃EI(k). (6.84)

Unlike in the minimal network model, the parameter region for the pattern forming regime
cannot be expressed in closed form. We can write down the conditions that the eigenvalue is
negative at k = 0 which corresponds to the trace T (k = 0) being negative and the determinant
D(k = 0) being positive at zero frequency

aEE < s+ 1, (6.85)

aEE < alII + asII + 2 (6.86)

where the normalized coupling strength is now defined as s = aEIaIE
1+asII+alII

. Note that the sum of

the strengths of the self-inhibitory connectivity asII +alII replaces the local self-inhibitory weight
aII in the corresponding condition of the model with only local self-inhibition. Analogous to
the case there, an increase in the total strength of self-inhibition atot

II = alII + asII relaxes the
upper limit on the interaction strength aEE . To differentiate between the relative contributions
of the local and the spatially extended self-inhibition, we parametrize the relative strengths of
both terms as

asII = (1− α) aII , (6.87)

alII = α aII . (6.88)

α tunes the strength of the local connections relative to the strength of the spatially extended
connectivity. For α = 0 the local connectivity term vanishes, for α = 1 the inhibitory to in-
hibitory connections consist only of the local connectivity term (corresponding to the minimal
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6. Modelling modular cortical activity

network model), and for α = 0.5 both terms are equally strong. Importantly, for all values of α
the sum of the self-inhibitory connectivity strengths atot

II remains the same. This parametrization
allows us to assess the influence of the total and the relative self-inhibitory strength, respectively,
on the formation of modular activity.
Next, we solve numerically for the remaining condition which requires the eigenvalue of the
system’s linearized dynamics to be positive for some interval around a finite frequency. Un-
like in the model with purely local self-inhibition, this condition depends directly on atot

II and
α. Thus, to visualize the pattern forming regime we use Eq. (6.86) to choose an appropriate
value for atot

II and systematically vary α. In Fig. 6.6b we combine the numerical results with
the analytically derived condition (Eq. (6.85)) to show the boundaries of the pattern forming
regime in the parameter space of the three effective parameters aEE , s and r, as before. The
red surface shows the analytically derived condition given in Eq. (6.85) and the black surface is
numerically obtained. The boundaries are shown for a network where the local and the spatially
extended self-inhibitory terms have equal strength (α = 0.5). With this setting the pattern
forming regime extends into the parameter region where inhibition has a shorter range than
excitation. This is not the case in the absence of local self-inhibition (α = 0, atot

II = asII = 10.0;
purple area in Fig. 6.6c), consistent with previous studies 226,14. However, a relative strength
of local self-inhibition of α = 0.1 - that means the local part provides 10% of the strength of
total self-inhibition - is already sufficient to considerably extend the pattern forming regime into
the parameter region where inhibition is of shorter range than excitation. Further increasing α
leads to a further extension of the pattern forming regime by shifting the second condition (gray
lines in Fig. 6.6c) even further into the regime of short range inhibition. The condition derived
for the zero frequency mode remains unchanged when increasing α (red line in Fig. 6.6c).
Furthermore, just as in the model with purely local self-inhibition, increasing the total strength
of self-inhibition atot

II while keeping the relative strength α fixed, also increases the size of the pat-
tern forming regime in the region where inhibition has shorter range than excitation (Fig. 6.6d).
The minimal strength of local self-inhibition decreases with an increase in the spatial range of
inhibition compared to excitation and with a decrease in the coupling strength s (Fig. 6.6e).
In a parameter region where inhibition has a noticable larger range than excitation (Mexican
hat regime) a local self-inhibition term is not required anymore to form modular activity (dark
blue colored region on the right side of Fig. 6.6e). To quantify the influence of α and atot

II

on the extension of the pattern forming regime into the region of short-range inhibition, we
determine the size A of this regime by integrating numerically from the intersection point of the
two boundaries of the pattern forming regime to r = 1 while systematically varying α and atot

II

(see shaded region in Fig. 6.6c and Fig. 6.6f). We find that both increasing the total strength
self-inhibition and only its local part increases A (Fig. 6.6f). Lastly, we corroborate the bound-
aries of the pattern forming regime with numerical simulations. For parameter settings within
the pattern forming regime the network generates modular and hexagonally arranged activity
domains in the excitatory and inhibitory populations (Fig. 6.6g) as in the model with purely
local self-inhibition.
To visualize the phase diagram and when estimating the size A of the relevant area of the pattern
forming regime, we set atot

II = aEE − 1.4 and choose a specific value for α to determine asII and
alII since the conditions we solve numerically not only depend on the three effective variables
aEE , s and r but also directly on asII and alII . The results shown in Fig. 6.6 are qualitatively
similar for different parametrizations of α and atot

II .
In summary, we find that already for weak local self-inhibition alII the network robustly gener-
ates modular activity even in a regime where inhibition has shorter range than excitation. Thus,
also in the presence of spatially distributed self-inhibition localized self-inhibitory connections
robustly support the formation of modular activity.
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6.4. Model predictions to test model class

6.4 Model predictions to test model class

The analyses above demonstrate that local self-inhibition facilitates the formation of modular
activity with a connectivity structure where inhibition is more short-range than excitation, thus
making this general model class a plausible candidate for explaining how modular activity arises
in the early cortex. In the remainder of this paper, we characterize the solutions of this model
further, study several implications and derive critical, experimentally testable predictions, to
provide the basis for a rigorous empirical test of this model class in the near future.

6.4.1 Effective Mexican hat profile in population activity

To begin with, we seek to obtain a better understanding of the basic mechanism that underlies
the formation of modular activity in our network model. As pointed out before129,226, even in
the absence of an anatomical Mexican hat, an effective Mexican hat can arise if the disynaptic
inhibition combining connections from E to I and from I to E extends further in space than
the connections E to E. However, this mechanism requires a fast time scale of inhibition, which
appears problematic given the relative slow dynamics associated with the synaptic transmission
of GABA-ergic neurons335,136,90,219,47. Local self-inhibition offers an alternative possibility, as
the following argument based on the linearized model equations shows. Local self-inhibition
effectively increases the linear decay term of the inhibitory dynamics to −(1 + aII)uI(~x, t).
Equivalently (after appropriately rescaling aKL and J) this reduces the effective inhibitory time
constant to τI/(1 + aII) such that the dynamics for inhibitory activity uI reads

τI
1 + aII

duI(~x, t)

dt
= −uI(~x, t) +

∫
d~y

(
aIE

1 + aII
MIE(~x, ~y)uE(~y, t)

)
+

J

1 + aII
(6.89)

This suggests that local self-inhibition decreases the effective inhibitory time constant to a point
that disynaptic lateral inhibition extends further than excitation, leading to the formation of
modular network activity even if inhibition has shorter range than excitation.
To make this argument more explicit and rigorous, we consider the impulse response of the
network with purely local self-inhibition, i.e. the transient response of the network to a brief,
localized input applied to the excitatory population, starting from a spatially homogeneous
fixed point. We observe that shortly after the application of the input, the activity spreads
laterally in both the excitatory and inhibitory population (Fig. 6.7a). However, the activity
of the inhibitory population spreads faster, resulting in a broader peak than in the excitatory
population over a transient period (Fig. 6.7b,c). Fig. 6.7b shows the difference in lateral
spread of activation between the excitatory and inhibitory population as a function of time.
The lateral spread is measured by the wavelength of the response, which we estimated both
in numerical simulations and from the analytical approximation derived above (Fig. 6.7a).
Over time, this difference approaches zero, i.e. the lateral spread in both populations becomes
matched (Fig. 6.7b). The difference in lateral spread between excitation and inhibition results
in a Mexican hat-like input to both populations (shown for excitation in Fig. 6.7d). If the
fixed point is unstable (the case shown in Fig. 6.7a-d) a spatially periodic (modular) pattern
forms (Fig. 6.7a,b). If the homogenous fixed point is stable (the case shown in Fig. 6.7e), the
amplitude of the inhibitory activity exceeds that of the excitatory activity and the activation
decays to zero. In both cases we observe that transiently the network generates a Mexican hat-
like response with a more localized activation in the excitatory population and a wider activation
of inhibitory units (Fig. 6.7).
In the following we briefly give the mathematical derivation of the impulse responses in the
network. We apply the pulse like input at time point t0 centered at x0 to the excitatory
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Figure 6.7: Effective Mexican hat-like activity to pulse-like stimulation. a Response of excitatory
(left) and inhibitory (right) population to a pulse like stimulus at t = 0 at two different time
points. The Gaussian approximation (cross; see Eqs. (6.103) and (6.104)) quantitatively agrees
with the activity obtained in a simulated network (line). b The impulse input evokes an initially
spatially localised response that is broader in inhibition (blue) than in excitation (red). Response
at t = 0.5τ . c The width of the inhibitory response (ΛI) is larger than of the excitatory response
(ΛE). Over time this difference approaches zero. The difference in response widths obtained
from the Gaussian approximation (green) agrees well for the linear regime of the nonlinear
network (black) and the linear network (gray). Here the difference of the response widths is
normalized by the wavelength Λ of the maximally amplified mode. In the simulations the
response widths ΛE/I are obtained by fitting a plane wave with wavelength ΛE/I weighted by
a Gaussian envelope to the responses (Eq. (6.106)). d Input to excitatory population has
Mexican hat profile. Input from excitation (purple) is more spatially localized than inhibitory
input (turquoise). e Impulse response for parameter settings outside of pattern forming regime.
Here inhibition dominates the responses and leads to the decay of activity in time. Parameters
used are aEE = 11.4, aIE = 11.0, aEI = 10.9, aII = 10.0, σE = 0.066, σI = 0.058 and α = 1
(a-d), α = 0.2 (e).

164



6.4. Model predictions to test model class

population around the spatially homogeneous fixed points. Since we are interested in the initial
response, we consider the linearized equations for the dynamics (see Eqs. (6.13) and (6.14))
which read in one dimension

d

dt

(
uE(x, t)
uI(x, t)

)
−
∫

dy

(
aEEMEE(x− y)uE(y, t) − aEIMEI(x− y)uI(y, t)
aIEMIE(x− y)uE(y, t) −aIIMII(x− y)uI(y, t)

)
−
(
uE(x, t) 0

0 uI(x, t)

)
=

(
1
0

)
δ(x− x0) δ(t− t0).

(6.90)

The system’s impulse response is given by the Green’s functions (GE(x, t), GI(x, t))
T . We solve

for GE(x, t), GI(x, t) by first applying a Fourier transformation to the system’s equations to
transform the convolution operator into a product between the Fourier transformed Green’s func-

tions ~̃G(k, t) = (G̃E(k, t), G̃I(k, t))
T and the Fourier transformed connectivity profiles M̃KL(k)

(with K,L ∈ {E, I}). Next, we diagonalize these set of equations and obtain

d

dt
~̃F (k, t)−

(
λ1(k) 0

0 λ2(k)

)
~̃F (k, t) =

√
2π S−1

(
1
0

)
e−ikx0 δ(t− t0) (6.91)

where we have used ~̃F (k, t) = S−1 ~̃G(k, t) with S−1 being defined previously. These dynamics
are solved by an exponential ansatz and requiring that the solution is constant prior to giving
the input pulse

~̃F (k, t) =
√

2π

(
ūE
ūI

)
δ(k)Θ(t0 − t) + ~a(~k)e

~b(~k)t Θ(t− t0)

=
√

2π

(
ūE
ūI

)
δ(k)Θ(t0 − t) +

√
2π

2c2(k)
e−ikx0

(
eλ1(k)(t−t0)

−eλ2(k)(t−t0)

)
Θ(t− t0).

(6.92)

Prior to stimulus onset at t0 the solution consists of a term that is constant in space, whereas
afterwards it consists of an exponentially decaying response in time. To assess the widths of the
inhibitory and excitatory response in cortical space, we consider the spatial form of the second

term. To this end, we transform ~̃F (k, t) back to the Green’s function of the excitatory and
inhibitory population in cortical space. For simplicity, we omit in the following the constant

term. We first transform ~̃F (k, t) from the eigenspace of the dynamics back to the space of the
excitatory and inhibitory populations:

~̃G(k, t) = S ~̃F (k, t)

=

√
2π

2c2
e−ikx0

(
(c1 + c2)eλ1(t−t0) − (c1 − c2)eλ2(t−t0)

eλ1(t−t0) − eλ2(t−t0)

)
Θ(t− t0).

(6.93)

Here we used S−1 in Eq. (6.21). c1, c2 are defined in Eqs. (6.22), (6.23). For brevity we omit
the dependencies on the frequency k of c1, c2, λ1, λ2 in the equations above. Next, to obtain the
Green’s functions in cortical space, we apply the inverse Fourier transform(

GE(x, t)
GI(x, t)

)
=

1√
2π

∫
dk ~̃G(k, t) eikx. (6.94)

As we are interested in the width of the excitatory and inhibitory responses, we consider in the
following only the time and frequency dependent first term in Eq. (6.93). To solve the integral

in the above equation, we apply two approximations to ~̃G(k, t). First, we assume that the larger
eigenvalue λ1(k) exhibits a positive peak at some finite frequency whereas λ2(k) < λ1(k) for all
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6. Modelling modular cortical activity

k (see Fig. 6.2). Second, we approximate the exponential function in Eq. (6.93) by a Gaussian
distribution.
Due to the first approximation, the terms in Eq. (6.93) that are proportional to eλ1(k)(t−t0)

will dominate the contribution to the Fourier integral. We therefore neglect the remaining term
that is proportional to eλ2(k)(t−t0). To simplify the expressions below, we define the following
functions

g(k) =
1

2c2(k)
, (6.95)

f(k) = g(k) (c1(k) + c2(k)). (6.96)

The Fourier transform of the Green’s function for the excitatory population then becomes

GE(x, t) =
1√
2π

∫
dk G̃E(k, t)eikx

≈ Θ(t− t0)

∫
dk eik(x−x0)eλ1(k)(t−t0) f(k)

= Θ(t− t0)

∫
dk eik(x−x0)eλ1(k)(t−t0)+log(f(k)).

(6.97)

The exponential function exhibits two peaks at kf and −kf . To solve this integral, we use
Laplace’s method and approximate these peaks with two Gaussian functions centered around
kf and −kf . Note that the argument of the exponential function is time-dependent and that
for sufficiently large times the logarithmic term only weakly alters this peak. For small times
the logarithmic term monotonically increases with frequency and dominates. Thus the Gaussian
function approximates the original function only poorly. To obtain the Gaussian approximation,
we expand the argument of the exponential function in a Taylor series up to second order
neglecting contributions from frequencies further away from kf ,−kf . Therefore the expression
simplifies to an integral over one Gaussian:

GE(x, t) = Θ(t− t0)

∫
dk

(
e
λ1(kf )(t−t0)+log(f(kf ))+ 1

2
(λ′′1 (t−t0)+ f ′′f−f ′2

f2 )|kf (k−kf )2

+ (6.98)

+ e
λ1(−kf )(t−t0)+log(f(−kf ))+ 1

2
(λ′′1 (t−t0)+ f ′′f−f ′2

f2 )|−kf (k+kf )2
)
eik(x−x0) (6.99)

= 2 Θ(t− t0)eλ1(kf )(t−t0)+log(f(kf )) Re

(∫
dk eik(x−x0) e

1
2

(λ′′1 (t−t0)+ f ′′f−f ′2

f2 )|kf (k−kf )2
)

+ h.o.t.

(6.100)

where we have used that the real part of the second term of the integral is point symmetric
to the first term whereas the imaginary part vanishes. The prefactor in the argument of the
exponential function is the variance of the Gaussian envelope of the response in cortical space(

σeff
E

)2
= −

(
λ′′1(k)(t− t0) +

f ′′(k)f(k)− f ′(k)2

f(k)2

)∣∣∣∣
kf

. (6.101)

Plugging this expression into the integral yields

GE(x, t) = 2 Θ(t− t0)eλ1(kf )(t−t0)f(kf ) Re

(∫
dk eik(x−x0)e

1
2

(k−kf )2(σeff
E )

2
)

+ h.o.t. (6.102)

=
2
√

2π

σeff
E

f(kf )Θ(t− t0) eλ1(kf )(t−t0) cos(kf (x− x0)) e−
1
2

(x−x0)2(σeff
E )
−2

+ h.o.t.

(6.103)
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Eq. (6.103) shows that the impulse response consists of a plane wave that is damped in space
by a Gaussian and exponentially decaying in time. The spatial frequency kf describes the width
of the excitatory response to a pulse like stimulus. The response width increases (kf decreases)
in time and depends via derivatives of λ1(k) and f(k) directly on the connectivity parameters.
The analogous calculation for the inhibitory response yields

GI(x, t) =
2
√

2π

σeff
I

g(kg) Θ(t− t0) eλ1(kg)(t−t0) cos(kg(x− x0)) e−
1
2

(x−x0)2(σeff
I )
−2

+ h.o. (6.104)

with
(
σeff
I

)2
= −

(
λ′′1(k)(t− t0) +

g′′(k)g(k)− g′(k)2

g(k)2

)∣∣∣∣
kg

. (6.105)

Here kg denotes the peak location of the argument in the exponential function of G̃I(k, t). Closed-
form expressions for kf and kg cannot be derived. Thus, also the variance of the responses of the

excitatory and inhibitory populations
(
σeff
E

)2
,
(
σeff
I

)2
are not analytically tractable. We therefore

numerically determine values for kf and kg and assess their difference as a function of time t− t0
(Fig. 6.7). To determine the widths of simulated excitatory and inhibitory impulse responses,
we fit a plane wave weighted by a distance-dependent Gaussian profile to the responses

pE/I(x) = cos(Λ−1
E/I(x− x0))e

− (x−x0)2

2σeff
E/I (6.106)

where ΛE (ΛI) denotes the fitted domain spacing of the excitatory (inhibitory) activity which
we take as the width in response in Fig. 6.7 and Fig. 6.8.
In the simulations we find that the inhibitory response is typically broader than the excitatory

response (Fig. 6.7a-c) leading to a Mexican hat shaped input to the excitatory population
(Fig. 6.7d). Although we cannot express kf and kg in closed form, we can show that within the
pattern forming regime the inhibitory response is always broader than the excitatory response.
To this end, we compare the equations defining kf (see Eq. (6.97)) and kg (see Eq. (6.93)) given
by the derivative of the arguments of the exponential function in the solution of the Green’s
functions. The frequencies are given by

d

dk

(
λ1(k)(t− t0) + log

(
c1(k) + c2(k)

2c2(k)

))∣∣∣∣
kf

!
= 0 (6.107)

d

dk

(
λ1(k)(t− t0) + log

(
1

2c2(k)

))∣∣∣∣
kg

!
= 0 (6.108)

As kf and kg depend on time, we will consider in the following how different time scales influence
both frequencies. First, in the limit of large times the term proportional to the time after
stimulus onset dominates each equation leading kf and kg to converge to the frequency of the
maximum in the eigenvalue. Thus, as kf and kg converge to the same value, the excitatory and
inhibitory response approach the same width as well. In contrast, for very small times after
stimulus onset, the terms independent of time dominate. These terms, however, do not show
a peak like behaviour as a function of frequency. Thus, the Gaussian approximation is valid
only after some time (approximated to be 0.1τ in Fig. 6.8). Next, we will therefore consider
an intermediate time scale where the first term proportional to t − t0 dominates such that the
left hand side exhibits a peak-like behaviour at a finite frequency. We note that, Eqs. (6.107)
and (6.108) only differ in the numerator of their logarithms. After applying the derivative, we
rewrite these two equations as

λ1(k)′(t− t0)− c2(k)′

c2(k)
=

{
− c1(k)′+c2(k)′

c1(k)+c2(k) for kf

0 for kg,
(6.109)
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Figure 6.8: Extended network model also generates effective Mexican hat-like response activity
to pulse like stimulation. a Response of excitatory (left) and inhibitory (right) population to a
pulse like stimulus at t = 0 for two different time points. The Gaussian approximation (cross)
quantitatively agrees with the activity obtained in a simulated network (line). b The impulse
input evokes an initially spatially localized response that is broader in inhibition (blue) than
in excitation (red). c Difference of width of the inhibitory response (ΛI) and the excitatory
response (ΛE) approaches zero over time. The difference in response widths obtained from
the Gaussian approximation (dashed green) agrees well for the linear regime of the nonlinear
network (black). Here the difference of the response widths is normalised by the wavelength Λ
of the maximally amplified mode. The response widths ΛE/I are obtained by fitting a plane
wave with wavelength ΛE/I weighted by a Gaussian envelope to the simulated responses. d
Input to excitatory population has Mexican hat profile. Input from excitation (purple) is more
spatially localized than inhibitory input (teal). e For different strengths of local self-inhibition α
the differential response width between excitation and inhibition varies only little. Parameters
used are aEE = 11.4, aIE = 11.0, aEI = 10.9, aII = 10.0, σE = 0.066, σI = 0.058; (a-d) α = 0.5.
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6.4. Model predictions to test model class

To gain an understanding of these terms, we use from the definitions of c1(k), c2(k) (Eqs. (6.22)
and (6.23)) that c1(k) > 0 and c2(k) > 0 for all k. Further, both functions c1(k), c2(k) rise

monotonically with k. Thus, − c1(k)′+c2(k)′

c1(k)+c2(k) < 0 for all k. Second, the left hand side in the
equation above must exhibit a change in sign from positive to negative reflecting the peak in its

antiderivativ. Per definition the left hand side reaches zero at kg, but reaches − c1(k)′+c2(k)′

c1(k)+c2(k) < 0
only at a higher frequency kf . This shows that kf > kg and yields the observed Mexican hat-
shape of the excitatory and inhibitory responses.
In the following, we demonstrate that the extended network model generates Mexican hat-like
responses to pulse-like stimuli analogous to the network with purely local inhibition. First, we
extend the previously obtained results to the network with local and spatially extended self-
inhibition by replacing the local self-inhibitory term aIIM̃II(~k) with the full term asIIM̃II(~k) +
alII . We find that the inhibitory and excitatory responses agree equally well with the Gaussian
approximation (Fig. 6.8a). Analogous to the network with purely local self-inhibition the
inhibitory response is broader than the excitatory response (Fig. 6.8b) and their difference
approaches zero over time (Fig. 6.8c). The input to the excitatory population shows a Mexican
hat-like profile (Fig. 6.8d). Intriguingly, the difference in response width between excitation and
inhibition remains fairly robust against varying the local self-inhibition strength α (Fig. 6.8e).
In the following we give an intuition why this is the case. In our approximation the frequencies
kf and kg are dominated by the location of the maximum of the eigenvalue which can be
approximated by the location of the minimum of the determinant. Dividing the determinant
explicitly in the terms dependent and independent of α yields:

D(k) = (1 + aII)
(
sM̃EI(~k)M̃IE(~k) + 1− aEEM̃EE(~k)

)
+

aII(α− 1)
(

(aEEM̃EE(~k)− 1)M̃II(~k) + 1− aEEM̃EE(~k)
)
.

(6.110)

From this we find that both parts are composed of very similar terms. Indeed, the second part
closely matches the shape of the first part only shifted by a constant depending on α (Fig. 6.9).
Thus, instead of modifying the location of the minimum, the second term effectively acts as a
multiplying factor to the first term. Therefore the location of the maximum of the maximal
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Figure 6.9: Peak in determinant remains stable when varying the strength of local self-inhibition.
Dividing the determinant into its α independent part (black solid line) and the part multiplied
by α (gray dashed line; compare Eq. (6.110)) shows that both terms exhibit their peak at
nearly the same frequency. The location of the local minimum of the entire determinant is
thus changed only little when varying α. Parameters used are aEE = 11.4, aIE = 11.0, aEI =
10.9, atot

II = 10.0, r = 0.8.
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6. Modelling modular cortical activity

eigenvalue also changes only little when varying α. This in turn leads to frequencies kf and kg
which remain robust against changes in α.

6.4.2 Intimate relationship between excitatory and inhibitory activity

From cortical studies it is currently unclear whether the activity of inhibitory neurons is modular
to a similar degree as has been observed for pyramidal neurons and whether the activity of in-
hibitory neurons is largest inside the domains showing high excitatory cell activity or in between
these domains231,445,444,389. Our model makes several specific and testable predictions about the
spatial relationship of domains of activity in excitatory and inhibitory neural populations as
well as the relative magnitude of spatial modulation of activity.

The active domains in the excitatory and inhibitory populations are aligned with
each other

The excitatory and inhibitory activity patterns are oriented such that their low and high activity
domains are aligned, respectively (Fig. 6.1; to be shown below). This behaviour is due to two
features of the dynamics. First, the dynamics ensure that the individual modes that form the
excitatory and inhibitory activity patterns differ only in amplitude but not in phase. Second,
as the activity patterns are dominated by the spatial frequency that is maximally amplified by
the recurrency the difference in amplitude is (approximately) the same for all modes. Taken
together, the activity patterns must then be co-localized with only a difference in amplitude and
baseline.
In the following we provide a formal argument for the co-alignment between excitation and
inhibition focusing on the case with only local self-inhibition. We assume that in general the
excitatory and inhibitory activities can be described by a sum of N Fourier modes with wave
vectors ~kj whose modulus is their spatial frequency kj . Considering the linearized dynamics
(Eqs. (6.13) and (6.14)), the activity is thus expressed by

uE(~x, t) =
N∑
j=1

cj e
λ1(kj)t cos(~kj~x), (6.111)

uI(~x, t) =

N∑
j=1

dj e
λ1(kj)t cos(~kj~x+ φj). (6.112)

where the term for the smaller eigenvalue λ2 has again been neglected assuming that λ1(kmax) >>
λ2(kmax) (compare to Eq. (6.93)). cj and dj are coefficients. We suppose that the activity pat-
terns grow around the spatially homogeneous fixed points ūE , ūI and are shifted to each other
by a constant phase φj = ~kj~x0 determined by the shift ~x0 in x, y space. To assess under which
phase shift φj the excitatory and inhibitory activity patterns can grow, we plug the expressions
for uE(~x, t) and uI(~x, t) into the dynamics of the linearized system (Eqs. (6.13) and (6.14)) and
obtain ∑

j

eλ1(kj)t

[
−λ1(kj)

(
cj cos(~kj~x)

dj cos(~kj~x+ φj)

)
−

(
cj cos(~kj~x)

dj cos(~kj~x+ φj)

)
+

+

(
aEEM̃EE(kj) −aEIM̃EI(kj)

aIEM̃IE(kj) −aII

)(
cj cos(~kj~x)

dj cos(~kj~x+ φj)

)]
= 0

(6.113)

where we solved the integral over the connectivity matrix. As cosine and sine are orthogonal to
each other for different ~kj , the set of equations must hold for each mode independently for all
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6.4. Model predictions to test model class

~x. Then, rewriting the cosine containing the phase shift as the weighted sum of a cosine and a
sine yields

0 = [(−λ1(kj) + aEEM̃EE(kj)− 1) cj − aEIM̃EI(kj) dj cosφj ] cos(~kj~x)+

+ aEIM̃EI(kj) dj sin(~kj~x) sinφj

0 = [aIEM̃IE(kj) cj + (−λ1(kj)− aII − 1)dj cosφj ] cos(~kj~x)−

− (−λ1(kj)− aII − 1)dj sin(~kj~x) sinφj

(6.114)

In the following, we determine how φj must be chosen such that the equations above are satisfied.

The terms proportional to sin(~kj~x) vanish only if either dj = 0 or φj = njπ with nj ∈ N. If

dj = 0, then the terms proportional to cos(~kj~x) only vanish for cj = 0. To obtain a nontrivial
solution with nonzero coefficients cj , dj the phase shift φj must therefore be a multiple of π.

Then, only the terms proportional to cos(~kj~x) are left and the coefficients must satisfy

0 = [−λ1(kj) + aEEM̃EE(kj)− 1] cj − aEIM̃EI(kj) dj(−1)nj (6.115)

0 = aIEM̃IE(kj) cj + [−λ1(kj)− aII − 1]dj(−1)nj . (6.116)

Next, by solving these equations for dj , we can relate the two coefficients by

dj(−1)nj = cj
−λ1(kj) + aEEM̃EE(kj)− 1

aEIM̃EI(kj)
(6.117)

dj(−1)nj = cj
aIEM̃IE(kj)

λ1(kj) + aII + 1
(6.118)

Using the expression for λ1(k) we show that the right hand sides of these equations are in fact
equivalent. Note that the fraction on the right hand side denotes the ratio of the amplitudes of
inhibitory to excitatory activity and is consistent with the formal derivation of the amplitude
ratio given in the next section. Plugging this result into the expression for the inhibitory activity
(Eq. (6.112)) yields

uI(~x, t) =
N∑
j=1

dj(−1)njeλ1(kj) cos(~kj~x)

=
N∑
j=1

cj
aIEM̃IE(kj)

λ1(kj) + aII + 1
eλ1(kj) cos(~kj~x).

(6.119)

Comparing this expression to the excitatory activity (Eq. (6.111)) shows that each Fourier mode
only differs in its amplitude, but importantly not by a phase shift. Assuming that the activity
patterns are dominated by the fastest growing mode with frequency kmax, the prefactor becomes
independent of j and the inhibitory activity pattern can be expressed by the excitatory activity
pattern

uI(~x, t) =
aIEM̃IE(kmax)

λ1(kmax) + aII + 1

N∑
j=1

cje
λ1(kmax) cos(~kj~x) (6.120)

=
aIEM̃IE(kmax)

λ1(kmax) + aII + 1
uE(~x, t) (6.121)

This result shows that the inhibitory activity does not exhibit a phase shift compared to exci-
tation but instead the active domains in the excitatory and inhibitory activity align and only

171



6. Modelling modular cortical activity

differ in their amplitude and baseline.
Simulations of the full dynamics suggest that this result also holds for the nonlinear case. More-
over, considering the nonlinear equations we can make a similar argument. Again we assume
that the excitatory and inhibitory patterns are dominated by modes with a frequency around
kmax. The argument of the rectifying nonlinearity is then the sum of these modes weighted by the
coefficients and the connectivity matrix plus a constant. These activity patterns can potentially
exhibit a phase shift compared to the activity patterns outside of the nonlinearity. However,
applying the rectification conserves the location of the domains of peak activity (assuming they
are positive). Further, the rectification conserves the peak frequency in the spectrum of the ac-
tivity patterns but also leads to modes with higher order frequencies of lower amplitude. Thus,
we can directly compare the phase of the pattern within the nonlinearity with the one outside
which leads to the same comparison as in the linear case. Moreover, an anti-phasic solution
where the excitatory activity pattern is shifted relative to the inhibitory activity by π is not
stable. In such a scenario the amplitude of the excitatory activity would grow because it is ex-
cited by excitatory units from within the peak region and is inhibited by inhibitory units in the
regions of low activity. In contrast the inhibitory activity would change such as to co-align with
the excitatory activity pattern. The peaks in the inhibitory activity that are shifted relative
to the peaks in the excitatory activity would decay due to the input from inhibitory units and
little input from excitatory units in this region whereas inhibitory activity would inrease at the
location of the excitatory activity peaks.

Amplitude ratio between excitation and inhibition

While in the model both the excitatory and inhibitory activity is always modular, the amplitude
of spatial modulation can be relatively weak in the inhibitory population depending on the
connectivity parameters. Fig. 6.10 suggests that the amplitudes of the spatial modulation
of excitatory and inhibitory activity can vary considerably across the pattern forming regime.
To obtain an approximate closed-form expression we consider the linear dynamics around the
unstable constant fixed point solution (with only local self-inhibition). Our estimate is based on
the fastest growing mode approximated by the frequency kmax. Following previous results the
solution of the linearized dynamics in Fourier space for any mode is given by(

ũE(~k, t)

ũI(~k, t)

)
= ṽ1(~k, 0)

(
c1(k) + c2(k)

1

)
eλ1(k)t (6.122)

where the term for the smaller eigenvalue λ2 has been neglected assuming that λ1(kmax) >
λ2(kmax) (compare to Eq. (6.93)). For sufficiently large times, the fastest growing mode for
both excitation and inhibition is given by kmax. In this limit, the ratio in amplitude between
excitation and inhibition is given by the following time-independent expression

uE(~k, t)

uI(~k, t)

∣∣∣∣∣
kmax

= c1(kmax) + c2(kmax)

=
1

2aIEM̃IE(k)

(
aEEM̃EE(k) + aII +

√(
aEEM̃EE(k) + aII

)2
− 4aIEaEIM̃IE(k)M̃EI(k)

)∣∣∣∣∣
k=kmax

=
1

2aIE

aEE + aII e
k2σ2

E
2 +

√(
aEE + aII e

k2σ2
E

2

)2

− 4aIEaEI e
k2(σ2

E
−σ2

I
)

2

∣∣∣∣∣∣
k=kmax

(6.123)
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Figure 6.10: Excitatory population displays higher amplitude modulation of its spatial pattern
than inhibition. a Network simulations with different connectivity settings leading to different
ratios between the amplitudes of the excitatory (red) and inhibitory (blue) activity. Parameter
settings used are aEE = 22.8, aEI = 22.4, aII = 21.4 and in left : aIE = 26.5, σE = 0.063, σI =
0.058 (r = 0.8), right : aIE = 22.7, σE = 0.053, σI = 0.035 (r = 0.4). b Ratio of amplitude
modulation obtained from solutions of linearized dynamics (circle) compared to simulations
(cross). Parameters used are same as in (a) right (blue) and left (orange). c 3d phase diagram
of amplitude ratio of activity between excitatory and inhibitory population for α = 1 (left) and
α = 0.2 (right). Values are only shown within pattern forming regime. d 2d phase diagram of
amplitude ratio for aII = aEE − 1.95, aIE = aEE − 0.99, aEIaIE = s (1 + aII) and aEE = 11.4
(solid) and aEE = 22.8 (transparent). e Ratio of baseline activity between excitation and
inhibition. f Amplitude ratio normalized by baseline activity.

With this expression we can systematically assess the modulation ratio as a function of the
three effective parameters aEE , s and r (Fig. 6.10). Since the ratio also explicitly depends on
aII , aEIaIE , σE and σI , we set σE = 1 and used aII = aEE − 1.95, aIE = aEE − 0.95. Other
parametrizations lead to qualitatively similar results. Note that this expression of the amplitude
ratio is consistent with the expression obtained in the formal derivation of the co-alignment be-
tween excitation and inhibition given above.
Comparing the spatial modulation of the excitatory and inhibitory activity patterns in our sim-
ulations, we find that they co-vary, but differ in the amplitude of their modulation (Fig. 6.10a).
We corroborate the ratio of their amplitudes from simulations (crosses in Fig. 6.10b) with an
analytical approximation (circles in Fig. 6.10b; from Eq. (6.123) above). Intriguingly, the
amplitude ratio varies notably up to a factor 6 across parameter space (Fig. 6.10c,d). It in-
creases with increasing coupling strength s, but decreases with aEE and with r (Fig. 6.10c,d).
Note that we normalized the amplitude modulation by the baseline activity of each population
(Fig. 6.10e,f), respectively, before calculating the modulation ratio, to provide a more robust
measure of comparison with experiment (see Discussion).

173



6. Modelling modular cortical activity

6.4.3 The spacing of active domains is consistent with experimental data

In the following we investigate how well the domain spacing of the network activity corresponds
to experimental data. The domain spacing is a feature of modular activity that can be very
precisely determined in experiments229,230,231. Applying this sensitive readout to patterns of
early spontaneous activity389 yields a precise measure of the experimentally observed domain
spacing.

Estimating the spacing between active domains

Fig. 6.11 suggests that within the pattern forming regime the spacing Λ of the active domains
in the modular pattern can vary considerably. Expressed in units of σE , the spatial wavelength
can be approximated by Λ = 2π/(kmaxσE) where kmax is the location of the frequency at the
maximum of the larger eigenvalue λ1(k) (Eq. (6.24); Fig. 6.11). We determine kmax by setting
the derivative of the maximal eigenvalue λ1 (Eq. (6.24); local self-inhibition) w.r.t. k to zero
which yields

aEIaIE (1 + r)2 M̃EI(k)− (1 + r) aEE aII − a2
EEr M̃EE(k)

∣∣∣
k=kmax

= 0. (6.124)

kmax is a function of aEIaIE , r, aEE , aII . This equation cannot be solved analytically for kmax.
Instead, to assess the boundaries within the parameter space that allows to form modular
activity, we solve it numerically by systematically varying the three effective parameters aEE , s
and r and fixing aII such that it satisfies constraint Eq. (6.32) which fixes the coupling strengths
to aEIaIE = s (1 + aII).

Comparing domain spacing between model and experimental data

First, we characterize the domain spacing Λ of the modular network activity. Interestingly, we
find that the domain spacing is not simply proportional to the interaction range of the excitatory
population σE , but can vary considerably for a given σE (Fig. 6.11a,b). We corroborate the
values of the domain spacing obtained in simulations (crosses in Fig. 6.11a, right) with the
theoretically expected value for the domain spacing based on the peak location of the maximal
eigenvalue of the linearized system (circles in Fig. 6.11a, right and Fig. 6.11b). To visualize
the range in domain spacing as a function of the network connectivity, we plot Λ as a func-
tion of the three effective variables aEE , s and r. We find that it varies at least by a factor
of 6 within the chosen parameter regime (Fig. 6.11). To visualize Λ we choose the following
parametrizations aII = aEE − 1.95, aEIaIE = s(1 + aII). We take care of the dependency on
σE , by expressing Λ in units of σE (Λ ⇒ Λ/σE). With this formulation we can express σI in
terms of r. Choosing a different parametrization of aII yields qualitatively similar results. A
cut through the 3d phase diagram of Λ for a fixed aEE shows that the wavelength increases with
increasing r and aEE , and with decreasing s (Fig. 6.11d).
Next, we compare the domain spacing Λ of the network model to experimental data. To as-
sess whether the model values for Λ are in agreement with experimentally observed values, we
compare them to the domain spacing observed in early ferret visual cortex normalized by the
measured width of excitatory connectivity. Importantly, we compare the model to data from
the early cortex since at early stages in development the anatomical long-range connections are
only immaturely developed, and therefore the horizontal connectivity is well described by local
connections as assumed in our network model. The typical spatial scale of activity patterns in
visual cortex of young ferrets is about 1 mm389, while the scale of excitatory connections lies
at around 250 µm80. This yields an experimentally observed domain spacing on the order of 4
σE which is consistent with model values in a broad parameter regime, in particular also in a
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Figure 6.11: Domain spacing varies considerably across phase diagram. a Different connectivity
settings lead to activity patterns (left) with different critical wavelengths (i.e. spacing between
active domains). Parameters used for simulations are aEE = 11.4, aEI = 10.9, atot

II = 10.0, α =
0.2, σE = 2.2, σI = 1.9 and top: aIE = 11.5 (orange), bottom: aIE = 10.8 (blue). Critical
wavelength Λ (right) obtained from peaks in spectrum of simulated solutions (cross) and from
the peak location of the real part of the larger eigenvalue λ1 of the linearized system (circle)
match. b Λ is analytically derived from the peak location of the real part of eigenvalue λ1

of the linearized system. c 3d phase diagram displaying Λ. Values are only shown within
pattern forming regime. The wavelength is plotted in units of σE . d 2d diagram of Λ for fixed
aEE = 11.4. The wavelength increases with increasing ratio of spatial scale σ2

I/σ
2
E and with

decreasing value of s. Note that the wavelength depends also directly on atot
II and the product

aEIaIE . Here, we set atot
II = aEE−1.95 and aEIaIE = s (1 +atot

II ). e When increasing inhibition
by a factor (aEI → faEI , a

tot
II → fatot

II ), Λ decreases. Same parameters used as in (a). f-g
Change in critical wavelength induced by change in inhibitory strength. Distribution taken over
parameter region shown in (c) up to r = 1 (f) and for 1 < r < 2 (g). Here α = 0.2.

regime where r < 1 (Fig. 6.11c,d).
The large range of values of the domain spacing in the model is itself consistent with the variabil-
ity observed in the domain spacing between different species and cortical areas, e.g. the domain
spacing varies between 0.5 mm in primary visual cortex of tree shrew231 and marmoset358,294

to 2 mm in secondary visual cortex of owl monkey456. Thus, changes in the connectivity pa-
rameters between species and cortical areas potentially explain the observed variability in the
domain spacing.

6.4.4 Manipulating inhibition and its effect on activity domain spacing

The spacing of active domains can be measured with high accuracy in experimental data
229,230,231. Using widefield calcium imaging, it could be assessed whether the domain spac-
ing changes when transiently altering connectivity parameters. For instance, systematically
changing the overall strength in inhibition is possible in the network and in experiment using
pharmacological 184 or optogenetical tools 70,421,282,84. We therefore investigate how Λ changes
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6. Modelling modular cortical activity

as a function of inhibition strength in the network. We increase (decrease) network inhibition
by increasing (decreasing) the connectivity strengths aEI and aII by a factor f . After system-
atically varying f we determine for each new setting the domain spacing. Increasing network
inhibition leads to a robust decrease in the critical wavelength Λ (Fig. 6.11e). By determining
the relative change in domain spacing over a broad regime of parameter settings (region used is
shown in Fig. 6.11c), we obtain a distribution over the change in Λ. This distribution allows to
determine the expected change in Λ for a given change in network inhibition, e.g. an increase in
inhibition by 50% yields a decrease in domain spacing by about 25% (Fig. 6.11f,g). Even with-
out the precise knowledge of the connectivity parameters in cortex we are able to compare the
experimentally observed change with the expected change in the model. This prediction cannot
distinguish between a network with Mexican hat-like connectivity and connectivity where the
inhibitory interaction range is greather than that of excitation, as the domain spacing Λ robustly
decreases with increasing inhibition independent on the specific parameter region (Fig. 6.11f,g).
Therefore, the prediction allows to test the network class.
The decrease in spacing of active domains when the total amount of inhibition increases is a
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Figure 6.12: The spacing between spontaneously active domains decreases with age in the early
ferret visual cortex. a Example of spontaneous activity pattern in ferret visual cortex at eye-
opening (EO). b 2D spatial correlation function of spontaneous activity averaged across all

locations within field of view. c Its radial average (gray) with fit g(x) = exp(− x2

2σ2 ) cos(2π
Λ x)

(red) to estimate the spacing of active domains Λ. d Λ decreases with age during period of
increasing inhibition440. Individual animals (red) and average across age groups (age<-5,<-
1,=EO,¿EO; black). Scale bar: 1 mm (a,b).

critical prediction of our model. Indeed, consistent with an increase of inhibition in the devel-
oping visual cortex440, we observe that the spacing of spontaneously active domains decreases
with age in early ferret visual cortex. In this analysis we determined the domain spacing in
spontaneous activity across development (compare Section 4.2.6 in Chapter 4). To this end, we
computed the correlation patterns for each seed point across the spontaneous activity patterns
and averaged these after centering each to its seed point (Fig. 6.12a,b). This average correla-
tion pattern was then integrated over its angular dependence to obtain the average correlation
as a function of distance to the seed point (Fig. 6.12c). Next, we fitted a Gabor function g(x)
(Eq. (4.4); a Gaussian function modulated by a plane wave) to these correlation coefficients.
Each fit yields a value for the domain spacing Λ (Fig. 6.12d). Consistent with the increase of
inhibition during the development of visual cortex, the domain spacing in spontaneous activity
decreases.

To experimentally test this prediction a combination of techniques for the read-out and
manipulation of cortical activity is required. There are several possible methods of how to
potentially achieve this. As described before, one possibility is to use an all-optical approach
combining fluorescence imaging and optogenetics with fluorescent markers and cell-type spe-
cific optogenetic actuators that are cross-talk free and highly sensitive443,354,189,336,210,240,110,209.
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Imaging cortical activity before and during optogenetical manipulation of inhibitory neurons
reveals potential changes in domain spacing. Alternatively, Neuropixels probes together with
optogenetical tools similarly allow to assess the change in domain spacing after manipulating
inhibition. Instead of an optogenetical manipulation it might also be possible to use pharma-
cological tools such as GABA enhancing benzodiazepines184, or inverse GABA agonists such as
DMCM184 or the antagonist picrotoxin323,333.
Combining these three experimental measurements of the amplitude ratio, the domain spacing
and the change in domain spacing after manipulating network inhibition, allows to test whether
the network model provides a parameter regime that is in agreement with all of these three
observables. In summary, we provided three clear predictions to critically test our suggested
network model. Using recent technological advancements in the field makes the predicted ob-
servables now experimentally accessible.

6.5 Discussion

Here we proposed a novel mechanism for the formation of spatially modulated (modular) activ-
ity patterns. To assess the plausibility of the mechanism, we studied a neural network consisting
of recurrently interconnected excitatory and inhibitory populations. We derived the boundaries
of the parameter regime in which modular activity patterns form and verified the derived results
with numerical simulations. We showed that self-inhibition broadens the regime in which the
network robustly and reliably displays modular activity patterns extending towards a region
where the spatial range of inhibition is smaller compared to excitation. While these calculations
were performed using Gaussian connectivity profiles, we showed that similar results are ob-
tained for exponential profiles. Moreover, by considering a biologically more plausible extension
of the minimal network which incorporated both local and spatially extended self-inhibition, we
demonstrated that already the presence of relatively weak local self-inhibtion led to the robust
formation of activity patterns. We observed the formation of patterns across a broad range
of connectivity settings including the regime in which excitatory connections to excitatory and
inhibitory neurons are equally strong, whereas inhibition connects more strongly to excitatory
than to inhibitory pools consistent with previous experimental results393,345.
Recurrent network models describing the formation of modular activity have been extensively
studied in the past and have been demonstrated to be able to generate modular activity assuming
specific network architectures. Most of these models assumed a Mexican hat-type connectivity
ensuring long-range inhibition and local excitation between units to generate activity patterns
(e.g.287,412,134,28,71,302,163). However, experimental evidence for an anatomical Mexican hat is
controversial. One of the few indications was based on glutamate uncaging experiments in slices
of visual cortex in young ferrets108. In contrast electrode recordings in auditory cortex of adult
mice indicate that the spatial scale of inhibition is more constrained than the one of excita-
tion, whereas the spatial range of excitatory connections to inhibitory and excitatory neurons
is similar265. Studies of layer 2/3 slices of ferret striate cortex show that the spatial extent of
inhibitory inputs shrinks during the development to 300 µm80 which is below the spatial range
of excitation of typically 500 µm108 in ferrets. Therefore, the anatomical studies appear incon-
sistent with a Mexican hat like distributed connectivity profile and it remains unclear whether
lateral connections in cortex support the formation of modular activity.
To circumvent this issue previous work suggested to introduce fast inhibition to enable the for-
mation of patterns in the absence of lateral inhibition346,226. These studies found that in the
regime of local inhibition (σI < σE) a network with a fast or instantaneous inhibitory timescale
amplifies spatial fluctuations and leads to the formation of modular activity patterns. In this
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setup modular activity forms since fast inhibitory units have a large effective spatial range via
a disynaptic path that exceeds the excitatory range, thus resulting in an effective Mexican hat
like connectivity profile. However, experimental evidence is inconsistent with the assumption
of fast inhibition. The typical decay time constant of the most abundant receptor in cortex
GABAA is larger than the timescale of AMPA receptors335,136,90,219,47. Further, in the case of
non-instantaneous inhibitory units the disynaptic path (E to I to E), leads to a transmission
delay compared to the monosynaptic E to E transmission which was shown to impair the for-
mation of modular activity316,21. Only carefully tuned transmission delays that are specific for
transmission from E to E, E to I and I to E lead to the formation of such activity21. Here we
argued that local self-inhibitory connections effectively shorten the inhibitory timescale. Thus,
by adapting the strength and range of self-inhibition modular activity can form even when the
timescale of inhibition is of the same order of magnitude as the one of excitation.
A plausible implementation of the proposed mechanism is provided by autapses on inhibitory
neurons. Anatomical studies have shown that autapses are abundantly present on inhibitory
fast-spiking PV+ basket cells in visual cortex of cat418 and somatosensory cortex of rat24. They
are functioning comparable to synapses24,96. So far, relatively little is known about the func-
tion of autapses and they are only rarely included into the wiring diagram431. Currently, they
are thought to play a role in maintaining spiking precision of neurons and contributing to the
pace of whole cortical circuits23. It has further been suggested that autapses are well suited to
self-control local excitability, or even control excitability on a sub-cellular level208,24. Autaptic
self-inhibition provides a simple and direct disinhibition scheme for pyramidal neurons and a
fast mechanism for feedback inhibition in inhibitory neurons114. Here we suggested a further
function of autapses, namely to provide the network with the ability to robustly form spatially
modulated activity patterns.
Our model analysis also allows us to derive several previously not described predictions, pro-
viding a critical test of the proposed model class. This appears particularly relevant, as recent
advancements in experimental techniques offer new opportunities to manipulate and record
neuron-type-specific cortical activity.
First, to illuminate the mechanism underlying the formation of modular activity, we assessed
the response property of the network by applying a pulse-like input to the excitatory population.
The response in inhibition spreads faster than in excitation resulting in a broader peak over a
transient period. Thus, transiently the network generates a Mexican hat-like activity with a more
localized response in the excitatory population and a wider response in inhibitory units. Using
modern methods that allow now increasingly precise experiments manipulating local groups of
neurons and their simultaneous imaging, it is possible to experimentally test for a Mexican hat-
like profile in cortical activity. To this end, one could locally perturb the activity of a single or
a small group of excitatory neurons, and record the response of neighbouring excitatory and in-
hibitory neurons. Optogenetical tools allow to specifically manipulate individual cells70,421,282,84

whose activity can be simultaneously imaged using fluorescence indicators with little spectral
overlap to the optogenetic actuators and advanced microscopies443,354,189,336,210,240,110,209. Since
we expressed the response widths of excitation and inhibition in terms of the domain spacing,
even a quantitative comparison to experimental data can be achieved. Importantly, testing this
effective Mexican hat in the population activity allows to illuminate the key underlying mecha-
nism of this class of network models.
Second, we found that the excitatory and inhibitory activity patterns are co-aligned consis-
tent with previous work 130, but may differ in the amplitude of their modulation. The current
technological advancements make it possible to measure co-alignment and amplitude ratio be-
tween inhibition and excitation. A potential approach would be to use widefield or 2-photon
imaging to assess the modular cortical activity in carnivores389 or primates375 of excitatory and
inhibitory neurons. To this end, Calcium indicators can be constructed to specifically target
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excitatory and inhibitory neurons117,176,295 and by using dual-color imaging to simultaneously
record both activities in two separate channels 210,110,209. Another approach would be to densely
label cortical neurons and to retrieve the information about cell type either by using a spectrally
separate fluorescent marker in one of the populations343, or by applying post-hoc a molecular
analysis of the imaged neurons237. Current approaches also allow to specifically label individual
subclasses of inhibitory interneurons176,295. Comparing the alignment of their activity to the
excitatory activity pattern might shed light on potential differences in their tasks. Moreover,
the newly developed high-density Neuropixels probes allow to readout the activity of several
hundreds of neurons with high sensitivity222. Previous studies suggest that cell types can be
inferred based on the densely sampled extracellular waveform216. Alternatively, the information
about cell types can be obtained by opto-tagging genetically identified neuron types222,400. The
Neuropixels recordings might allow to compare the alignment of excitation and inhbition along
one dimension with high temporal and spatial precision. Note, however, that when using flu-
orescent markers to assess the cortical activity several factors might confound the comparison
in the amplitude modulation of excitatory and inhibitory activity. Different expression levels of
the indicator in excitatory versus inhibitory neurons could lead to an artificial total increase in
one of the activities relative to the other. Similarly, the underlying transformation from an ac-
tion potential to the observed fluorescence signal might be different in excitatory and inhibitory
neurons.
Third, the spacing of active domains in this model is consistent with an estimate based on ex-
perimental data109,80,108,389. In order to compare the model values with the experimental data,
we determined the domain spacing of the activity patterns in units of the range of the excitatory
connectivity resulting in a domain spacing of about 4 σferret

E
109,108,389. This is consistent with

the range of the domain spacing in the model of 2 to 7 σE . Moreover, our model shows a wide
range of values of the domain spacing which is consistent with the high variability of domain
spacing in cortical activity of different species and cortical areas109,80,231,108,389.
Fourth, the model predicts that with increasing strength of network inhibition the domain spac-
ing of modular activity patterns decreases. It is possible to experimentally test this prediction
by estimating the domain spacing of cortical activity which can be robustly and reliably done by
analysing spontaneous activity already in early cortex389 using recently developed genetically
encoded and cell-type specific343,237 activity sensors with high sensitivity81,185,209. To assess
the influence of the strength of network inhibition on the domain spacing, inhibition in cor-
tex can be manipulated using either pharmacological or optogenetical methods70,421,282. Only
recently, the imaging of calcium or voltage sensors and optogenetical methods have been com-
bined into an all-optical approach allowing to simultaneously readout and manipulate neuronal
populations128,362. Thus, by simultaneously imaging cortical activity and activating244,166 or
inactivating442,87,444,36,175 inhibitory interneurons in cortex, a potential change in the domain
spacing can be measured as a function of the change in network inhibition and be compared to
the change in domain spacing as predicted by the model. In addition, combining the experimen-
tal measurements of the amplitude ratio, the domain spacing and its change after manipulating
network inhibition allows to test whether there is a parameter regime that quantitatively matches
all three of these observables.
In conclusion, we suggest a mechanism that extends the parameter regime such that the clas-
sically proposed model class succesfully forms modular activity patterns even when inhibition
is more short-ranged than excitation. Moreover, our predictions make this model class experi-
mentally testable.
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Chapter 7

Summary and Outlook

Cortical activity exhibits two key features across many different brain areas and species: it
is often modular and correlated between distant cortical regions. So far, it has been unclear
how activity with these two fundamental properties emerges during development. To address
this question, I analyzed chronic imaging data of spontaneous and visually evoked activity in
primary visual cortex of ferret. The data analysis was complemented by computational mod-
elling of neural networks investigating mechanisms for the emergence of modular and long-range
correlated activity in early circuits. In this thesis I showed that spontaneous activity in the
mature cortex exhibits a long-range correlation structure that is tightly related to the mature
functional organization over large distances and at a fine spatial scale. I then demonstrated that
distributed, long-range correlated network activity is already present in the early cortex prior to
the maturation of long-range lateral connections. I provided a solution to this apparent conun-
drum by showing in a network model that long-range correlations can emerge from purely local
lateral connections in the presence of network heterogeneity. Moreover, the empirical data I am
analyzing shows that cortical activity is modular early in development. I proposed a mechanism
which allows modular activity to form in a network with biologically plausible connectivity.
Combining both network models yields activity patterns that quantitatively match several char-
acteristic features of long-range network behaviour observed in our experimental data.
In previous studies anatomical evidence in support of a fundamental modular structure for
distributed network interactions in visual cortex has been demonstrated by documenting the
orientation specificity of long-range horizontal connections154,285,48. Such an organization has
also been suggested by the similarity of spontaneous activity to the modular patterns of activity
evoked with grating stimuli235,327 imaged with voltage sensitive dyes. However, it remained
unclear over which cortical range and up to which fine spatial scale the similarity between spon-
taneous and evoked activity holds159. Our analysis of spontaneous activity in mature visual
cortex extends these observations by showing that both the fine and large scale organization
of network interactions measured by the circuit’s correlation structure of spontaneous activity
closely resembles the layout of orientation domains in ferret visual cortex. A remarkable degree
of precision is evident in the correlated activity of long-range network interactions, such that
the activity patterns of a local cortical area accurately predict the structure of local functional
architecture millimeters away. Even the finest-scale topographic features of orientation maps -
fractures or pinwheel centers - are accurately reflected in the long-range network interactions
evident from correlated spontaneous activity. These results, together with the stability of large-
scale correlation patterns across awake and anesthetized states, demonstrate an exceptional
degree of functional coherence in cortical networks, a coherence that possibly transcends the
columnar scale and likely ensures reliable distributed neural representations of sensory input.
In this thesis we used spontaneous activity to probe distributed network early in their devel-
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opment. By analyzing spontaneous patterns of activity imaged prior to eye opening and prior
to the formation of the orientation preference map and the maturation of long-range horizontal
connections, I showed that modular network correlations already extend over distances compa-
rable to what is observed in the mature cortex. The possibility that such long-range correlations
would be present at these early stages of development has, to our knowledge, never been consid-
ered. Given the strong association of modular activity patterns with the modular arrangement
of long-range horizontal connections in mature cortex154,285,48, it seems surprising to find robust
long-range modular patterns of correlated activity as early as 10 days prior to eye opening, when
horizontal connections have not fully developed yet46,122,364. The correlated patterns of activity
at this developmental stage are not identical to the patterns found in the mature cortex, but
instead undergo significant refinement in the period prior to eye opening. Indeed, developmental
changes in the patterns of correlated activity are likely to reflect ongoing maturation of multiple
features of circuit organization including the emergence of long-range horizontal connections439.
Nevertheless, the presence of such long-range modular correlation patterns in the absence of a
well-developed horizontal network in layer 2/3 challenges the necessity of long-range anatomical
connections for generating distributed modular network activity.
Although network correlations refine considerably during development, they exhibit already
early in development a modular pattern that is predictive of the mature functional architec-
ture. Up to 10 days prior to eye-opening spontaneous activity is already modular and shows
some signatures of the functional organization of the mature cortex. The modular patterns of
spontaneous activity early in development and their relation to the mature circuit organization
has not been described before. The resemblance of early network correlations with the mature
functional layout is consistent with the idea of self-organized cortical activity.
It has been unclear whether the long-range correlated and modular activity patterns are gener-
ated mainly by feed-forward inputs, via an intracortical mechanism or by feed-back inputs. The
retinal and thalamic inactivation experiments performed by our collaborators in the laboratory
of David Fitzpatrick at the Max Planck Florida Institute establish that early correlated patterns
of spontaneous activity can be generated by visual cortex in the absence of input from retina or
LGN. The observed drop in the frequency of spontaneous events after LGN inactivation suggests
that LGN triggers intrinsic cortical spontaneous events (see also 284). This is consistent with
previous work in cortical slices demonstrating that slow cortical oscillations (∼0.1 Hz) can be
generated within cortex itself368,423. The presence of modular correlation patterns distributed
over distances comparable to those found with intact feedforward inputs provides evidence that
already immature cortical circuits have the capacity to generate long-range modular patterns
of activity. It is important to emphasize that these observations do not rule out a causal role
for feedforward inputs in establishing modular cortical network structure. Patterns of retinal
and geniculocortical activity could play a critical role in guiding the development of these cor-
tical activity patterns (e.g.311,69,75,201), but they are clearly not required for their expression.
Together, these results demonstrate that early cortical circuits generate structured long-range
correlations that are refined over development to form mature distributed functional networks,
thereby linking the fine-scale functional architecture with distant network organization.
These results, however, present a challenging puzzle: long-range correlated activity in the early
cortex is generated through intracortical circuits in the absence of long-range horizontal con-
nectivity. I addressed this conundrum by first formulating a statistical model describing an
ensemble of spatially extended, spontaneous activity patterns. I showed that decreasing the
dimensionality of this ensemble of activity patterns leads to an increase in the range over which
domains were correlated. Thus, it can be concluded that a low-dimensional ensemble of spa-
tially extended activity patterns exhibit a long-range correlation structure. This suggests that
a mechanism is implemented in the early cortical circuit that confines the dimensionality of ac-
tivity patterns thus providing the early cortex with the ability to generate distributed network
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activity in the absence of long-range anatomical connectivity.
Next, I implemented such a mechanism in a dynamical network model suggesting a simple and
robust solution by showing that long-range correlations can arise as an emergent property in
heterogeneous circuits. They emerge via multi-synaptic short-range interactions that tend to
favor certain spatially extended activity patterns at the expense of others. In the dynamical
network model we started by choosing the lateral connections such as to support the formation
of active domains, reflecting our observation that spontaneous activity in the early visual cortex
is always modular. The dynamical mechanism used for generating modular activity is known as
the Turing-mechanism430: modular patterns arise from a spatially homogeneous state by am-
plifying spatially heterogeneous perturbations around a typical spatial scale through dynamical
feedback loops mediated by the recurrent connections130. Since the focus of our study lies on the
mechanisms causing active modules to be correlated over larger distances, a generic local circuit
motive known to implement the Turing-mechanism, the so-called Mexican hat connectivity (lo-
cal excitation with lateral inhibition), was chosen. Although there is evidence for such a motive
from studies using glutamate uncaging in slices of ferret visual cortex at a developmental stage
similar to those I examine in this thesis80,108, other studies using paired recordings in slices of
adult rat cortex265, suggest that in fact the spatial range of inhibition is smaller than the range
of excitation. To address this issue I investigated a second dynamical network model consisting
of two populations which are connected with a wiring diagram that is consistent with current
experimental data (local inhibition and spatially more extended excitation)265. In both network
models introducing heterogeneity confines their output activity to a low dimensional subset of
possible activity patterns.
As predicted by the statistical model this low dimensionality leads to a long-range correlation
structure in the activity patterns that matches quantitatively that observed in experimental
data. The relation between the dimensionality of the ensemble of activity patterns and other
properties of spontaneous correlations, such as the eccentricity of the local correlations and their
fracture strength, suggest that low dimensionality acts as an organizational principle of the ac-
tivity in cerebral cortex. Both network models generate activity patterns with a long-range
correlation structure, indicating that the effect of heterogeneity is largely independent from
the specific form of network interactions generating modular activity. Importantly, the correla-
tion structure for an ensemble of solutions of the homogeneous model decays on a significantly
shorter range, when compared to size-matched sets of activity patterns measured in the early
visual cortex. The reason for this is that the ensemble of patterns the homogeneous model pro-
duces reflects the symmetries of the underlying dynamics and thus consists of all translated and
rotated versions of a hexagonal pattern. The model predicts that increasing the heterogeneity of
local connections increases the spatial extent of spontaneous correlations. Future experiments
could test this prediction by experimentally manipulating the amount of heterogeneity within
the cortical circuit. By optogenetically activating random sets of sparsely distributed neurons,
the local structure of funcitonal lateral interactions might become more heterogeneous. The
idea that long-range order in cortical networks has its origin in short-range interactions has to
the author’s knowledge not been suggested in previous studies.
Notably, the dynamical network with local inhibition and spatially more extended excitation
that was used to describe the formation of long-range correlated activity also generates modular
activity patterns. This stands in contrast to previous models which required a network to exhibit
either long-range or fast inhibition for it to form modular activity287,411,28,71,44,163,346,14,226,21.
However, experimental evidence for lateral or fast inhibition has been limited80,108,329. To shed
light on the underlying mechanism I systematically analyzed the requirements on the architec-
ture of the dynamical network model to form modular network activity. I showed that modular
activity patterns are generated when introducing local self-inhibition into a network with a bio-
logically plausible architecture where inhibition acts on a smaller spatial scale than excitation.
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Already with relatively weak local self-inhibition the network robustly and reliably displayed
modular activity patterns over a broad range of connectivity settings, including a regime where
the spatial scale of inhibition was smaller than the spatial scale of excitation, and when the time
scale of inhibition was equal to the one of excitation. Long range, disynaptic or fast inhibition as
suggested in previous studies411,28,71,163,134,287,302,226,14 were not required to produce this effect.
A natural way to implement local self-inhibition in cortical circuits are autapses431, i.e. synapses
formed between a neuron and a branch of its own axon. Autapses have been observed in large
numbers especially in visual cortex of cat418 and somatosensory cortex of rat24, both of which
exhibit modular activity. This suggests that the presence of a sufficient amount of autapses
leads to the emergence of modular activity patterns.
To critically test the proposed model class and the specific mechanism, I derived several pre-
viously not described predictions. Recent advancements in experimental techniques offer new
possibilities to manipulate and record neuron-type-specific cortical activity. First, to illuminate
the mechanism underlying the formation of modular activity, we assessed the network response to
a pulse-like input to the excitatory population. The response in inhibition spread faster than in
excitation resulting in a broader peak over a transient period, thus, generating a Mexican hat-like
activity with a more localized response in the excitatory population and a wider response in in-
hibitory units. Using methods that allow now increasingly precise manipulations of local groups
of neurons and their simultaneous imaging, it is possible to experimentally test for a Mexican
hat-like profile in cortical activity. To this end, one could locally perturb the activity of a single or
a small group of excitatory neurons, and record the response of neighbouring excitatory and in-
hibitory neurons. Optogenetical tools allow to specifically manipulate individual cells70,421,282,84

whose activity can be simultaneously imaged using fluorescence indicators with little spectral
overlap to the optogenetic actuators and advanced microscopies443,354,189,336,210,240,110. Second,
the model predicts that the domain spacing decreases with increasing strength of network inhbi-
tion. Measuring the domain spacing of cortical activity experimentally has been done for several
years231. In order to determine the domain spacing at a stage during development when lateral
long-range connections have not maturated yet, spontaneous activity could be used as a read-
out as it is present as a strong signal in e.g. immature ferret visual cortex86,389. Spontaneous
cortical activity can be reliably imaged by the recent development of highly sensitive genetically
encoded Calcium indicators which enable reliable single trial imaging of cortical activity81. Us-
ing state-of-the-art recording technology it becomes now possible to simultaneously measure the
domain spacing of cortical activity and manipulate cortical circuits such as to modulate inhibi-
tion strength128,362. Optogenetic methods offer the possibility to manipulate the activity in a
precisely targeted subset of neurons, e.g. in inhibitory interneurons70,421,282 to study the effect of
network inhibition on the domain spacing. Third, the model predicts that the activity patterns
of the excitatory and inhibitory population are co-aligned, and that the amplitude modulations
of excitatory and inhibitory activity can differ from each other. By imaging the excitatory and
inhibitory neuronal populations separately237,343,282 using, e.g. neuron type specific Calcium
indicators, it would be possible to study whether excitatory and inhibitory activity is co-aligned
or shifted to each other. In addition this might allow to test the potential difference in am-
plitude modulation between excitatory and inhibitory activity. Moreover, the range of values
of the domain spacing of the modular network activity was found to be consistent with values
from experimental data109,80,108,389. The domain spacing in the network model can vary by a
factor of about 5. This variability is consistent with the broad range of values found in different
cortical areas and species varying from 0.5 to 2 mm86,231,373,389. Together, I provided a network
mechanism that generates modular activity with a biologically plausible network connectivity
and several predictions to critically test this mechanism.
Thus, in this thesis I showed that early cortical circuits exhibit quantitatively similar properties
to the mature network. This finding suggests that the high degree of local precision that is
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evident in mature distributed network interactions could originate from the network structure
in early local interactions that seed the subsequent emergence of clustered long-range horizontal
connections via activity-dependent, e.g. Hebbian plasticity mechanisms. This would be consis-
tent with previous experimental work in ferret visual cortex showing that spontaneous activity
in the early cortex is required for the maturation of orientation selectivity76. However, it re-
mains unclear whether the patterns of ongoing activity play an instructive role in this process
or if they are permissive.
I took first steps to understand how the spatial layout of the orientation preference map is form-
ing and how the structure of spontaneous correlations is reorganized. From a self-organizational
point of view there are several hypothesis of how the layout of network activity is shaped during
development. Potentially spontaneous activity could drive the development of network activity
via plasticity mechanisms or, alternatively, visually evoked activity might dominate its devel-
opment. A third possibility is that the influence of spontaneous and evoked activity on the
development of cortical activity could be interrelated269. To disentangle these scenarios the
first step in a future experiment could be to chronically image spontaneous and visually evoked
activity over the period of prior to after eye-opening. These simultaneous recordings allow to
study if spontaneous activity contains information not only about the current immature orga-
nization of orientation selectivity but also about the future layout of orientation domains that
is not reflected in its early structure. Preliminary results indicate that spontaneous activity in-
deed contains signatures of the mature orientation map that are not yet present in early evoked
responses indicating that spontaneous activity supports shaping mature cortical activity.
Based on the hypothesis that cortical activity self-organizes during development, a dynamic
network model could be used to approach the question whether and how spontaneous activity
influences map development. To test the hypothesis that spontaneous activity shapes mature
cortical activity, spontaneous correlations could be used to describe the interactions between
cortical locations as they can be interpreted as the average cortical activity over long times.
This assumption is consistent with previous theoretical work demonstrating that spontaneous
dynamics can form and maintain neuronal assemblies269. Preliminary results show that this
model captures aspects of the reorganization in orientation preference observed in vivo, suggest-
ing that the early patterns of spontaneous cortical activity shape the development of orientation
selectivity in the visual cortex.
To validate this result the structure of early spontaneous activity correlation could be perturbed
to study potential consequences for the layout of the mature orientation preference map. Taking
advantage of the advancement of optogenetic tools it might be possible to increase spontaneous
correlations between a specifically targeted subset of neurons by increasing their synchronous
activity and test whether this subset’s similarity in orientation preference increases as predicted
by the correlation-based model. A combination of perturbation experiments and computational
modeling might be able to address the question of how spontaneous activity influences the de-
velopment of the mature functional cortical organization in the future.
In summary, in this thesis I first analyzed imaging data to quantitatively describe properties of
spontaneous activity during development. In the second step I used self-organizational network
models that are based on simple interactions between units to shed light on the underlying
mechanisms for the emergence of observed properties in the experimental data, in particular
the long-range correlation structure in spontaneous activity in early development prior to the
maturation of long-range anatomical connections and its modular organization in the absence
of lateral inhibition. In addition, I provided several predictions to make these network models
experimentally testable.
As the main interest in this thesis lies in the emergence of features of population activity, I
considered models that approximated cortical circuits on a network level by coarse-graining and
decreasing their complexity. Approximations included modeling the firing rate instead of individ-
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ual action potentials, neglecting the neuronal morphology, neglecting differences in the various
types of inhibitory interneurons which differ in morphology, connectivity, dynamics, etc., and
simplifying the feed-forward and feedback input structure. These approximations allowed us to
determine key mechanisms underlying experimental observations, and make simple predictions
to test these mechanisms. However, those simplified network models stand in stark contrast
to the complex and heterogeneous nature of cortical circuits and their activity and further ex-
periments are required to test our proposed mechanisms. Alternatively, we could describe the
complex cortical circuits as precisely as possible by building a complicated model with many pa-
rameters and obtaining numerical predictions. Typically, this approach leads to a large number
of parameters which cannot be all faithfully measured, and to complex sets of equations which
are generally not analytically solvable. These results cannot be easily interpreted due to their
complexity and large number of parameters. Importantly, to understand the mechanism behind
a model we need to simplify the system but still preserve its essential features by constraining
the number of parameters to only a few factors264,165. However, it is currently unclear which
features are important and how many to faithfully describe brain activity.
Describing a complex system by a simplified model has proven to be exceptionally effective in
physics. An often cited success story is the Ising model for magnetic systems212. It describes
the phase behaviour of a magnet qualitatively correct, and is even quantitatively correct near
the critical point. The reason a simplified description is successful in physical systems is that
microscopic models generally flow towards simpler models when coarse-grained and eventually
converge142 with increasing scale to a fixed point. Their large-scale behaviour, which in the
Ising model is the magnetization, is then described by those fixed points. This transition to-
wards simple macroscopic descriptions of a system is formalized by the renormalization group
which systematically investigates the changes of a system when viewed at different scales. Using
renormalization group the system’s observables can be determined to be relevant or irrelevant for
the description of the system’s macroscopic behaviour. An observable is said to be relevant if its
magnitude increases during the progress of coarse-graining, whereas the observable is irrelevant
if its magnitude decreases. Remarkably, most observables in physical systems are irrelevant and
the large scale behaviour is dominated by only a small set of observables. Often microscopically
different models flow towards the same large-scale behaviour by sharing the same relevant ob-
servables and only differing in their irrelevant observables. These models are part of the same
universality class.
Currently there is ongoing work to study if and how these techniques from physics can be applied
to problems in neuroscience to potentially find a low-dimensional description of neural activity
that can be understood. Recent studies investigated the scaling behaviour in e.g. network mod-
els of cortical circuits424,425. Their goal is to determine whether network models have effectively
a low dimension or can be described by a small set of relevant parameters similar to physical
systems. In an alternative approach renormalization group was directly applied to experimental
data50,300. The authors suggested an empirical method that aims to provide a framework that
not only interprets but also predicts and stimulates new experiments. Nevertheless, further the-
oretical and experimental work is required to illuminate if the dynamics of cortical activity can
be understood in terms of basic principles. Here we added but one building block contributing
to our understanding of the intricate brain activity. We characterized spontaneous and visu-
ally evoked activity and extracted quantifiable features. Based on these results we investigated
fundamental mechanisms that can reproduce these features and proposed predictions to experi-
mentally test them. The great advantage of a model is to provide a way of how to think about an
observation or a mechanism. Ideally this leads to generating new hypotheses and ideas resulting
in further advancement of understanding. Taken all this combined it might be desirable to try
to formulate effective theories to illuminate the mechanisms underlying the complex system of
the brain.
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[75] B Chapman and I Gödecke. “Cortical cell orientation selectivity fails to develop in the ab-
sence of ON-center retinal ganglion cell activity.” In: Journal of Neuroscience 20 (2000),
pp. 1922–1930. arXiv: NIHMS150003.

[76] B Chapman and MP Stryker. “Development of orientation selectivity in ferret visual
cortex and effects of deprivation.” In: Journal of Neuroscience 13 (1993), pp. 5251–5262.

[77] B Chapman, MP Stryker, and T Bonhoeffer. “Development of orientation preference
maps in ferret primary visual cortex.” In: J Neuroscience 16 (1996), pp. 6443–6453.

[78] B Chapman, KR Zahs, and MP Stryker. “Relation of cortical cell orientation selectivity to
alignment of receptive fields of the geniculocortical afferents that arborize within a single
orientation column in ferret visual cortex.” In: J Neuroscience 11 (1991), pp. 1347–1358.

[79] B Chattopadhyaya, G Di Cristo, CZ Wu, G Knott, S Kuhlman, Y Fu, RD Palmiter,
and ZJ Huang. “GAD67-Mediated GABA Synthesis and Signaling Regulate Inhibitory
Synaptic Innervation in the Visual Cortex”. In: Neuron 54 (2007), pp. 889–903. arXiv:
NIHMS150003.

[80] B Chen, K Boukamel, JPY Kao, and B Roerig. “Spatial distribution of inhibitory synaptic
connections during development of ferret primary visual cortex”. In: Experimental brain
research. 160 (2005), pp. 496–509.

[81] TW Chen, TJ Wardill, Y Sun, SR Pulver, SL Renninger, A Baohan, ER Schreiter, RA
Kerr, MB Orger, V Jayaraman, LL Looger, K Svoboda, and DS Kim. “Ultrasensitive
fluorescent proteins for imaging neuronal activity”. In: Nature 499 (2013), pp. 295–300.
arXiv: arXiv:1011.1669v3.

[82] X Chen, M Gabitto, Y Peng, NJP Ryba, and CS Zuker. “A gustotopic map of taste quali-
ties in the mammalian brain”. In: Science 333 (2011), pp. 1262–1266. arXiv: NIHMS150003.

193

http://arxiv.org/abs/NIHMS150003
http://arxiv.org/abs/NIHMS150003
http://arxiv.org/abs/NIHMS150003
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/NIHMS150003


Bibliography

[83] A Cheng, UT Eysel, and TR Vidyasagar. “The role of the magnocellular pathway in
serial deployment of visual attention”. In: European Journal of Neuroscience 20 (2004),
pp. 2188–2192.

[84] SN Chettih and CD Harvey. “Single-neuron perturbations reveal feature-specific compe-
tition in V1”. In: Nature 567 (2019), pp. 334–340.

[85] C Chiu and M Weliky. “Relationship of correlated spontaneous activity to functional ocu-
lar dominance columns in the developing visual cortex”. In: Neuron 35 (2002), pp. 1123–
1134.

[86] C Chiu and M Weliky. “Spontaneous activity in developing ferret visual cortex in vivo.”
In: Journal of Neuroscience 21 (2001), pp. 8906–8914.

[87] BY Chow, X Han, AS Dobry, X Qian, AS Chuong, M Li, MA Henninger, GM Belfort,
Y Lin, PE Monahan, and ES Boyden. “High-performance genetically targetable optical
neural silencing by light-driven proton pumps”. In: Nature 463 (2010), p. 98.

[88] N Chub and MJ O’Donovan. “Blockade and recovery of spontaneous rhythmic activity
after application of neurotransmitter antagonists to spinal networks of the chick embryo.”
In: Journal of Neuroscience 18 (1998), pp. 294–306.

[89] PG Clarke and D Whitteridge. “The cortical visual areas of the sheep.” In: J Physiology
256 (1976), pp. 497–508.

[90] JD Clements, RA Lester, G Tong, CE Jahr, and GL Westbrook. “The time course of
glutamate in the synaptic cleft”. In: Science 258 (1992), pp. 1498–1501.

[91] H Cline. “Sperry and Hebb: Oil and vinegar?” In: Trends in Neurosciences 26 (2003),
pp. 655–661.

[92] D Cohen and M Segal. “Network bursts in hippocampal microcultures are terminated by
exhaustion of vesicle pools”. In: J Neurophysiology 106 (2011), pp. 2314–2321.

[93] MT Colonnese and R Khazipov. “Slow activity transients in infant rat visual cortex:
a spreading synchronous oscillation patterned by retinal waves”. In: J Neuroscience 30
(2010), pp. 4325–4337.

[94] GJ Condo and VA Casagrande. “Organization of cytochrome oxidase staining in the
visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis): I.
Adult Patterns”. In: Journal of Comparative Neurology 293 (1990), pp. 632–645.

[95] M Conley and D Fitzpatrick. “Morphology of retinogeniculate axons in the macaque”.
In: Visual Neuroscience 2 (1989), pp. 287–296.

[96] WM Connelly and G Lees. “Modulation and function of the autaptic connections of layer
V fast spiking interneurons in the rat neocortex”. In: Journal of Physiology 588 (2010),
pp. 2047–2063.

[97] R Corlew, MM Bosma, and WJ Moody. “Spontaneous, synchronous electrical activity in
neonatal mouse cortical neurones”. In: Journal of Physiology 560 (2004), pp. 377–390.

[98] NM da Costa and KAC Martin. “Selective targeting of the dendrites of corticothalamic
cells by thalamic afferents in area 17 of the cat.” In: Journal of Neuroscience 29 (2009),
pp. 13919–13928.

[99] MC Crair, DC Gillespie, and MP Stryker. “The Role of Visual Experience in the Devel-
opment of Columns in Cat Visual Cortex”. In: Science 279 (1998), pp. 566–570.

[100] MC Crair, JC Horton, A Antonini, and MP Stryker. “Emergence of ocular dominance
columns in cat visual cortex by 2 weeks of age.” In: J Comparative Neurology 430 (2001),
pp. 235–249.

194



Bibliography

[101] KS Cramer and M Sur. “Blockade of afferent impulse activity disrupts on/off sublam-
ination in the ferret lateral geniculate nucleus”. In: Developmental Brain Research 98
(1997), pp. 287–290.

[102] V Crépel, D Aronov, I Jorquera, A Represa, Y Ben-Ari, and R Cossart. “A Parturition-
Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus”. In:
Neuron 54 (2007), pp. 105–120.

[103] HS Cresho, LM Rasco, GH Rose, and GJ Condo. “Blob-like pattern of cytochrome oxidase
staining in ferret visual cortex”. In: Soc Neurosci Abstract 18 (1992), p. 298.

[104] MC Cross and PC Hohenberg. “Pattern-Formation Outside of Equilibrium”. In: Reviews
of Modern Physics 65 (1993), pp. 851–1112.

[105] JC Crowley and LC Katz. “Early development of ocular dominance columns”. In: Science
290 (2000), pp. 1321–1324.

[106] CA Curcio, KR Sloan, RE Kalina, and AE Hendrickson. “Human photoreceptor topog-
raphy”. In: Journal of Comparative Neurology 292 (1990), pp. 497–523.

[107] NM Da Costa and KAC Martin. “How Thalamus Connects to Spiny Stellate Cells in the
Cat’s Visual Cortex”. In: J Neuroscience 31 (2011), pp. 2925–2937.

[108] MB Dalva. “Remodeling of inhibitory synaptic connections in developing ferret visual
cortex”. In: Neural Development 5 (2010), p. 5.

[109] MB Dalva and LC Katz. “Rearrangements of synaptic connections in visual cortex re-
vealed by laser photostimulation”. In: Science 265 (1994), pp. 255–258.

[110] H Dana, B Mohar, Y Sun, S Narayan, A Gordus, JP Hasseman, G Tsegaye, GT Holt,
A Hu, D Walpita, R Patel, JJ Macklin, CI Bargmann, MB Ahrens, ER Schreiter, V Ja-
yaraman, LL Looger, K Svoboda, and DS Kim. “Sensitive red protein calcium indicators
for imaging neural activity”. In: eLife 5 (2016), e12727.

[111] PMM Daniel and D Whitteridge. “The representation of the visual field on the cerebral
cortex in monkeys”. In: The Journal of Physiology 159 (1961), pp. 203–221.

[112] A Das and CD Gilbert. “Topography of contextual modulations mediated by short-range
interactions in primary visual cortex”. In: Nature 399 (1999), pp. 655–661.

[113] Ja De Carlos and DD O’Leary. “Growth and targeting of subplate axons and estab-
lishment of major cortical pathways.” In: Journal of Neuroscience 12 (1992), pp. 1194–
1211.

[114] C Deleuze, A Pazienti, and A Bacci. “Autaptic self-inhibition of cortical GABAergic neu-
rons: Synaptic narcissism or useful introspection?” In: Current Opinion in Neurobiology
26 (2014), pp. 64–71.
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[220] M Judaš, G Sedmak, and M Pletikos. “Early history of subplate and interstitial neurons:
From Theodor Meynert (1867) to the discovery of the subplate zone (1974)”. In: Journal
of Anatomy 217 (2010).
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