
GOETHE UNIVERSITY
Information Systems Engineering

A thesis presented for the Master of Science Degree

App ecosystem out of balance:

An empirical analysis of update interdependence

between operating system and application software

March 31, 2020

Author:

Phillip Schneider

Supervisor:

Daniel Franzmann

Examiners:

Roland Holten

Wolfgang König

Abstract

Software updates are a critical success factor in mobile app ecosystems. Through pub-

lishing regular updates, platform providers enhance their operating systems for the benefit

of both end users and third-party developers. It is also a way of attracting new customers.

However, this platform evolution poses the risk of inadvertently introducing software

problems, which can severely disturb the ecosystem’s balance by compromising its foun-

dational technologies. So far, little to no research has addressed this issue from a user-

centered perspective. The thesis at hand draws on IS post-adoption literature to investi-

gate the potential negative influences of operating system updates on mobile app users.

The release of Apple’s iOS 13 update serves as research object. Based on over half a

million user reviews from the AppStore, data mining techniques are applied to study the

impact of the new platform version. The results show that iOS 13 caused complications

with a large number of popular apps, leading to a significant decline in user ratings and

an uptrend in negative sentiment. Feature requests, functional complaints, and device

compatibility are identified as the three major issue categories. These issue types are com-

pared in terms of their quantifiable negative effect on users’ continuance intention. In

essence, the findings contribute to IS research on post-adoption behavior and provide

guidance to ecosystem participants in dealing with update-induced platform issues.

Keywords: App ecosystem, mobile platforms, software updates, IS continuance, IS

post-adoption

- I -

List of contents

1 Introduction ... 1

2 Theoretical background and literature review .. 4

2.1 Mobile app ecosystems .. 4
2.1.1 App Store and iOS platform ... 7
2.1.2 Studies related to mobile app ecosystems .. 9

2.2 Software updates .. 10
2.2.1 Overview of different update types .. 11

2.2.2 Studies related to software updates .. 12

2.3 Information systems continuance model ... 14

3 Development of hypotheses .. 17

3.1 Adverse effects of update-induced issues on continuance intention 17

3.2 Manifestation of distinct update issue types in user reviews 17

3.3 Magnitude of influence of issue types on continuance intention 18

4 Research methodology .. 19

4.1 Study design ... 19

4.2 Data collection ... 21

4.2.1 Sample definition ... 21
4.2.2 Data scraping process ... 23

4.3 Data preparation ... 25

4.3.1 Data set construction .. 25
4.3.2 Text preprocessing ... 26

4.4 Data processing .. 28

4.4.1 Sentiment detection .. 28
4.4.2 Review classification .. 29
4.4.3 Topic modeling .. 33

4.5 Data evaluation .. 35

5 Empirical analysis and results ... 37

5.1 Assessment of classification models ... 37

5.2 Statistical summary of classified reviews .. 40

5.3 Rating and sentiment analysis ... 43

5.4 Evaluation of topic model and update issue types ... 46

6 Discussion ... 52

7 Conclusion .. 57

7.1 Summary of key findings ... 57

7.2 Theoretical and practical implications ... 58

7.3 Limitations and future research ... 60

Literature ... 62

Appendix ... 70

- II -

List of figures

Figure 1: Conceptual model of mobile app ecosystems ... 6

Figure 2: Information systems continuance model .. 15

Figure 3: Schematic diagram of study design .. 20

Figure 4: Plate notation for latent Dirichlet allocation ... 34

Figure 5: Boxplots of cross validation accuracy scores ... 37

Figure 6: Extract from decision tree of random forest classifier 39

Figure 7: Distribution of iOS 13 reviews across app categories 41

Figure 8: Linear relationship between rating and sentiment scores 43

Figure 9: Rank-biserial correlation analysis results ... 44

Figure 10: Weekly rating and sentiment scores of Gmail app 45

Figure 11: Topic model coherence and perplexity ... 46

Figure 12: Intertopic distance map and topic grouping.. 48

Figure 13: Rating histograms for update issue types ... 49

- III -

List of tables

Table 1: Extract from mobile app sample ... 22

Table 2: Comparison of raw and preprocessed review text .. 27

Table 3: Performance metrics for classification model assessment............................ 38

Table 4: False positive predictions of random forest classifier 38

Table 5: Descriptive statistics of classified reviews ... 40

Table 6: Breakdown of reviews across country and ranking dimensions 40

Table 7: Top 20 apps with highest percentage of iOS 13 reviews.............................. 42

Table 8: Temporal changes in rating and sentiment scores of iOS 13 reviews 45

Table 9: Top 15 most relevant terms per modeled topic .. 47

Table 10: Kruskal-Wallis test results .. 50

- IV -

List of abbreviations

ANOVA Analysis of variance

API Application programming interface

CSV Comma-separated values

ECT Expectation-confirmation theory

ETL Extract-transform-load

GB Great Britain

H Hypothesis

HTTP Hypertext transfer protocol

IDC International Data Corporation

ISCM Information systems continuance model

JSON JavaScript object notation

KDD Knowledge discovery in databases

LDA Latent Dirichlet allocation

NB Naïve Bayes

NLP Natural language processing

NLTK Natural language toolkit

OTA Over the air

PC1 Principal component 1

PCA Principal component analysis

RQ Research question

RSS Rich site summary

SDK Software development kit

TF-IDF Term frequency-inverse document frequency

URL Uniform resource locator

US United States

VADER Valence aware dictionary and sentiment reasoner

XML Extensible markup language

- V -

List of symbols

𝐶𝑗 Class 𝑗

𝑝𝑗(𝑤) Fraction of class 𝑗 presence for word 𝑤

𝑤𝑠,𝑡 TF-IDF weighting factor for term 𝑠 in document 𝑡

𝑥1, 𝑥2, … , 𝑥𝑛 Feature vector

𝑥𝑖 Feature 𝑖
𝛽𝑖 Regression coefficient for feature 𝑖
ⅆ𝑓𝑠 Frequency of documents containing term 𝑠

𝑡𝑓𝑠,𝑡 Frequency of term 𝑠 in document 𝑡

α Prior of per-document topic distribution

β Prior of per-topic word distribution

θ Per-document topic distribution

λ Relevance weighting parameter

ρ Spearman’s rank correlation coefficient

𝑟 Pearson’s correlation coefficient

φ Per-topic word distribution

𝐷 Number of documents

𝐾 Number of classes

𝑁 Number of words

𝑇 Number of topics

𝑖 Feature index

𝑗 Class index

𝑘 Number of folds in cross validation

𝑛 Number of features

𝑠 Term index

𝑡 Document index

𝑤 Word variable

𝑧 Topic variable

𝜀 Error term

- 1 -

1 Introduction

Throughout the past decade, the accelerating rate of smartphone adoption has been one of

the most pervasive diffusions of technology in human history. It has drastically transformed

existing business models and fostered the emergence of new ones. Along with the increasing

penetration of smartphones, the popularity of mobile applications has seen a remarkable

growth. Mobile applications, or apps for short, are software programs designed to run on

mobile operating systems, such as Apple’s iOS as well as Google’s Android platform. By

launching the pioneering App Store marketplace in 2008, Apple was the first company to

ignite a worldwide app phenomenon that has since revolutionized the industry. To this day,

the App Store drives the app economy with a number of two million available applications

(Apple Inc. 2019a). It counts over half a billion visitors each week and has earned more than

$120 billion for developers. Digital marketplaces and operating system platforms have be-

come cornerstones of emerging mobile app ecosystems. Similar to natural ecosystems, app

ecosystems are characterized as an intricate network of various actors, including platform

owners, developers, or consumers. Platform owners regularly publish software updates to

enhance their mobile operating systems. However, this intentional platform evolution poses

the risk of inadvertently introducing technical issues, which can severely disturb the ecosys-

tem’s balance by compromising its foundational technologies. A recent example is the re-

lease of Apple’s thirteenth version of iOS. Shortly after the debut of iOS 13, hundreds of

millions of iPhone users reported problems with the update, ranging from a variety of bugs

to potentially dangerous security flaws. In fact, even the US Department of Defense strongly

encouraged its employees not to install iOS 13 immediately, but rather to wait for the 13.1

patch (Forbes 2019). The update also drew lots of criticism from both public media and the

iOS developer community. In light of the serious consequences for members of Apple’s

ecosystem, it is of utmost relevance to learn from the shortcomings of the iOS 13 rollout in

order to avoid recurrence. With the customer base as the most valuable asset, it is especially

important to analyze the concrete impact of the operating system update on app users.

A substantial body of academic literature has already explored the phenomenon of ubiqui-

tous software updates. Although updates happen to be particularly prevalent in the mobile

app sector, they are used in all areas of information technology. Developers frequently lev-

erage them as an instrument to change the way software works by modifying its underlying

source code. For instance, Apple publishes a new version of its iOS platform every year and

multiple smaller patches at irregular intervals. Updates can implement novel features, fix

errors, or alter the design of user interface elements. Because they play such an integral part

in software management, many scholars have investigated updates in a software engineering

context (Krishnan et al. 2004, p. 396; Ruhe and Saliu 2005, p. 47; Stackpole and Hanrion

2007, p. 230). Common themes are software release planning, development, or maintenance.

- 2 -

Despite the numerous studies about technical aspects of updates, the research situation on

how individuals perceive software updates remains scarce. To address this gap in literature,

some academics started to adopt a user-centered perspective. This new research stream,

which gained traction over the last few years, examines behavioral dimensions and is linked

to the information systems post-adoption literature. HONG et al. were among the first to in-

spect determinants of users’ acceptance towards information systems that are modified

through frequent software updates (Hong et al. 2011, p. 235). Further studies from AMIRPUR

et al., FLEISCHMANN et al., and GRUPP and SCHNEIDER focused on how individuals respond

to specific update types, such as feature or security updates (Amirpur et al. 2015, p. 13;

Fleischmann et al. 2016, p. 83; Grupp and Schneider 2017, p. 611). Each of those studies

based their research work on BHATTACHERJEE’S information systems continuance model

(ISCM), a theoretical framework that explains users’ intention regarding the sustained usage

of information systems (Bhattacherjee 2001, p. 351). Since its explanatory power has been

widely demonstrated in post-adoption literature, it is employed as theoretical lens in this

thesis. Nevertheless, the existing research work mainly deals with direct update effects con-

fined to one software system. To the author’s best knowledge, not a single study has yet

addressed the complex interdependency between mobile platform updates and application

software from a user-centered perspective. This research gap is astonishing, as virtually all

consumer applications rely on a functioning operating system layer. If the latter is impaired,

as in the case of the iOS 13 update, end users can be confronted with countless software

failures. Therefore, the present thesis seeks to answer the following research question:

RQ: What are the influences of mobile operating system updates on app users?

In accordance with the research question above, the goal of this thesis is to empirically ana-

lyze the adverse impact of the iOS platform update on end users in Apple’s ecosystem. The

study results are expected to contribute to the theoretical topic of software updates by provid-

ing a better understanding of how platform users perceive update-induced issues and how

their attitude changes in reaction to the introduced problems. In this way, the acquired find-

ings about the complex relationship between platform evolution and post-adoption behavior

can constitute as an important input for information systems literature. They can also serve

as a foundation for follow-up studies on this topic. Furthermore, by shedding light on nega-

tive effects of software updates within the mobile ecosystem, in particular the manifold tech-

nical complications reported by end users, the thesis offers valuable insights for app devel-

opers and platform owners alike. This practical knowledge can help actors of mobile app

ecosystems to better cope with such problems or to avoid them in the first place. Conse-

quently, actors can use the recommended actions derived from the research results to take

preventive measures to collectively ensure the ecosystem’s stability.

- 3 -

To meet the objectives of the thesis at hand, an exploratory research approach is employed.

In consideration of the ISCM as theoretical lens, several hypotheses are deduced that attempt

to answer the underlying research question. The hypotheses are subject to empirical testing.

In this regard, vast amounts of publicly available customer reviews are collected from Ap-

ple’s App Store through web scraping. Following the conventional data mining procedure,

the scraped review data first undergo some preparation, aimed to transforming them into an

adequate format for the ensuing data processing phase. Then, data mining techniques like

sentiment detection, text classification, and topic modeling assist in the extraction of relevant

patterns and useful information out of app ratings, review content, and textual sentiment.

Together with statistical analyses, the empirical evidence from the mined feedback data are

involved in the verification of the formulated research hypotheses. In a last step, both theo-

retical and practical implications are inferred from the obtained results.

The structure of this thesis is composed of seven chapters. The introductory section of chap-

ter 1 was presented above. Chapter 2 provides the theoretical background and a literature

review. The key concepts of mobile app ecosystems and software updates are defined, fol-

lowed by a detailed explanation of the ISCM. For each of those main topics, related studies

are discussed. Chapter 3 builds upon the theoretical foundations of the previous chapter and

involves the development of hypotheses. In chapter 4, a description of the research method-

ology and design is included. Because the study design reflects the four steps of the tradi-

tional data mining process, such as data collection, preparation, processing, and evaluation,

a separate subchapter is devoted to each step. Chapter 5 concerns the presentation of the

analysis results with various diagrams and tables. Chapter 6 further elaborates upon the em-

pirical results in an extensive discussion of the findings with respect to the thesis statement.

It also contains the examination of the postulated hypotheses. In the last section, chapter 7,

the key findings and important contributions to theory and practice are summarized, whereby

potential limitations of the results are set out. Finally, the thesis concludes with an outlook

on possible future research objectives.

- 4 -

2 Theoretical background and literature review

In order to analyze update interdependence within mobile app ecosystems, it is indispensable

to understand corresponding key terms, concepts, together with their definitions, and theo-

retical frameworks. Hence, this chapter first gives an overview of the development and inner

mechanisms of mobile app ecosystems. Apple’s ecosystem, as representative research sub-

ject, is described in more detail. Second, an explication of software updates in general and a

three-class update typology are presented. The last section introduces the ISCM and its psy-

chological constructs. In addition, relevant scholarly literature is discussed for each concept.

2.1 Mobile app ecosystems

The ecosystem concept is fundamental to several scientific areas, including business and

technology. However, the term originated in the science of ecology. It was coined by the

English botanist TANSLEY in 1935 to designate a level of organization which integrates both

living and non-living components of communities and their environments into a functional

unit (Tansley 1935, pp. 299–300). All ecosystems function via the interactions between their

constituents. To achieve stability, an ecosystem must reach a state of dynamic equilibrium,

whereby a self-regulating balance exists between the components.

Owing to its emphasis on interconnectedness, cooperation, and competition, the ecosystem

concept provides a useful analogy for understanding complex affairs in business environ-

ments. The idea of applying ecological metaphors to the business world was first put forward

by MOORE who developed the theory of business ecosystems (Moore 1993, p. 75). In his

Harvard Business Review paper from 1993, he argues that successful companies are those

that are evolving quickly, since the only sustainable competitive advantage comes from

greater innovative strength. Additionally, he proposes that innovative businesses cannot

evolve in a vacuum but rather coevolve capabilities and align themselves with other mem-

bers of the ecosystem. The latter include competitors, suppliers, manufacturers, and other

stakeholders. Together they form an economic community producing products as well as

services for consumers (Moore 1996, p. 16). By way of example, MOORE cites the technol-

ogy company Apple as a successful ecosystem leader crossing several industries like con-

sumer electronics, software or online services. Through its cultivated community of partners,

suppliers, and customers, Apple’s leadership is valued by all ecosystem members in respect

of investing towards a shared future (Moore 1993, p. 76). Along the same lines, IANSITI and

LEVIEN elaborate on the business ecosystem concept and list two crucial factors for ecosys-

tem wellbeing (Iansiti and Levien 2004, pp. 43–47). First, business ecosystems consist of a

diverse network of contributors relying on each other’s mutual performance. While each

member is specialized in a certain field, it is the collective effort of the community that

- 5 -

creates value. Second, ecosystems require so called keystone organizations whose role is to

ensure good ecosystem health by managing important resources and shaping the network

structure. For example, keystones establish platforms such as marketplaces, services, or tech-

nologies which help community members to enhance their own performance. Consequently,

a keystone players’ strategy is of central importance for all ecosystem stakeholders.

As the software industry has become increasingly interdependent, the shift of focus from the

individual software organization towards an ecosystem of interrelated organizations with

shared platforms is evident. In this context, platforms represent foundation technologies that

link actors within an ecosystem and reduce frictions for interactions to take place. Each plat-

form holds a set of access points or interfaces made available for ecosystem members (Iansiti

and Levien 2004, p. 148; Tiwana et al. 2010, p. 675). The emergence of software ecosystems,

which are subsets of business ecosystems, was first addressed in 2003 by MESSERSCHMITT

and SZYPERSKI, but it took until 2009 before precise definitions in literature were formed

(Messerschmitt and Szyperski 2003, p. 3). To cite a widely accepted definition, the authors

JANSEN et al. delineate a software ecosystem as “a set of actors functioning as a unit and

interacting with a shared market for software and services, together with the relationships

among them. These relationships are frequently underpinned by a common technological

platform or market and operate through the exchange of information, resources and artifacts”

(Jansen et al. 2009, p. 35). Similarly, BOSCH declares a software ecosystem as consisting of

the set of software solutions that aid the activities of the members in the associated ecosystem

as well as the central organizations providing these solutions (Bosch 2009, p. 112). He also

introduces a software ecosystem taxonomy. His two-dimensional taxonomy distinguishes

between the level of abstraction and the dominant computing platform.1 For this thesis, the

category of operating system-centric mobile software ecosystems is specifically relevant.

Mobile app ecosystems can be referred as subtypes of software ecosystems related to mobile

applications. The ecosystem perspective is well transferable to the mobile sector (Basole

2009, p. 147; Peppard and Rylander 2006, pp. 130–131). Driven by technological evolution,

growing consumer demand, and the formation of strategic alliances, an intricate network of

various actors has formed around this profitable market. Undoubtedly, these dynamics

shaped a competitive market structure where firms must cope simultaneously with innova-

tion pressure, changing customer expectations, and regulatory influences in order to survive.

Numerous studies about the mobile industry have applied the ecosystem concept. Some have

outlined the role of specific actors, such as device manufacturers or app developers (Dittrich

and Duysters 2007, p. 510; Qiu et al. 2017, p. 225). Others examined the products and ser-

vices like mobile content or collaborative service systems (Eaton et al. 2015, p. 217; Peppard

and Rylander 2006, p. 130). Taken as a whole, these studies suggest that the mobile app

1 For a detailed overview of the software ecosystem taxonomy, refer to Appendix B.1.

- 6 -

ecosystem consists of three major players: the customer, the ecosystem orchestrator, and the

complementors (Manikas and Hansen 2013, pp. 1300–1302). The first of these is the pur-

chasing end customer, whereas the ecosystem orchestrator is the keystone organization keep-

ing the whole ecosystem intact through regulated ownership of the platform technologies as,

for instance, Apple or Google. Complementors offer products or services that complement

the product portfolio of the ecosystem orchestrator by adding value to a common customer

base. These include infrastructure providers, device fabricators, and app developers, the lat-

ter being the primary focus of this study. For the sake of clarity, Figure 1 gives a conceptual

overview of the mobile app ecosystem.

Figure 1: Conceptual model of mobile app ecosystems

As can be seen in the conceptual model above, the ecosystem, represented by the dotted

ellipse form, evolves around the already mentioned actors and foundational platform tech-

nologies through which they interact with each other. One essential platform in app ecosys-

tems is the operating system governed by the orchestrator. Operating system providers offer

application programming interfaces (APIs) and development tools to simplify the adoption

of the operating system by developers (Bosch 2009, p. 113). Then, app developers build

applications on top of it in order to extend its functionality for users. Although the operating

system offers generic functionality, it constantly needs to advance via updates, since it must

maintain both a high number of end users and attractiveness for developers due to the ever-

present competition with other mobile ecosystems. However, this software evolution process

can easily become a major source of inefficiency. Without careful software quality manage-

ment, new updates may imply compatibility issues disrupting the susceptible balance of the

ecosystem. Herein lies a major risk for all involved actors.

- 7 -

Apart from operating systems, digital app distribution channels, also referred to as app

stores, are a crucial component of the mobile ecosystem. Taking Apple’s ecosystem as object

of investigation, both platform technologies are discussed in the following chapter.

2.1.1 App Store and iOS platform

The continuing expansion of mobile app ecosystems led to the rise of two predominant play-

ers. The two technology companies Apple and Google established their dominance through

their platforms iOS and Android, respectively. Together, their operating systems had more

than 99% of the market share in 2018, leaving an insignificant share for other platforms (IDC

Inc. 2020). Because this thesis concentrates on Apple’s ecosystem as research subject, the

subsequent paragraphs elaborate on Apple’s iOS platform and its affiliated App Store.

Marking a major milestone in mobile history, Apple unveiled the initial iOS version for the

original iPhone in June 2007. As first commercial mobile operating system, it comprised a

software platform on top of which other application programs could run on mobile devices.

It brought many revolutionary concepts, including badge notifications, slide to unlock, or

multi-touch. At first, iOS did not support native third-party applications. Only a dozen pre-

installed apps were usable, for example, Calendar, Notes, and Weather (Helal et al. 2012, p.

9). Apple executives argued that developers could create web-based applications that would

behave like the existent native iPhone apps, which were written in iOS specific programming

languages. In the light of displeased developers and the announced Android platform, Apple

released a software development kit (SDK) for iOS in 2008. The SDK allowed developers

to access a development environment, a user interface configurator, and a simulation tool

for application testing (Ghazawneh and Henfridsson 2013, p. 182). Later in the same year,

Apple also launched the App Store where developers could publish their applications to users

of iOS devices. It provided a joint platform through which both developers and consumers

could connect. This new digital marketplace led to a massive change in the mobile device

sector. It should soon become one of the most distinguishing elements of the mobile app

ecosystem.

By launching the App Store, Apple followed the idea of creating a curated distribution chan-

nel integrated in every single iPhone, so developers would be able to reach every user. Apple

took on the role of curator enforcing rigid quality controls on the submitted apps. The appli-

cation review policies entailed checking an applications compliance with regulations and

guidelines. For instance, submissions with banned content types or malicious software were

persistently rejected. Many third-party developers criticized the application review process

as being too restrictive. In compensation, the SDK got radically updated with a multitude of

new features and APIs as an attempt to better address the heterogenous developers’ needs

(Ghazawneh and Henfridsson 2013, pp. 183–185). As both large and small app publishing

- 8 -

firms entered this dynamic new market, the growing developer base resulted in a greater

variety of apps available to customers. This branched out the iPhone scope into new appli-

cation areas (Garg and Telang 2013, p. 1254). For instance, almost five years after its open-

ing along with an inventory of only 500 apps in 2008, the App Store offered more than

850,000 mobile applications to users in 155 countries around the world. Apple customers

could already choose from a wide range of 23 categories, including Business, Games, Health

& Fitness, or Travel. The download rate amounted to 800 apps per second converting to two

billion apps per month at that time (Apple Inc. 2013).

In short, Apple’s described App Store strategy proved to be exceptionally successful. It was

a balance act between regulation-based securing and diversity securing. On the one hand,

Apple exercised control over the platform as regulating orchestrator. Strict App Store poli-

cies were imposed to make the platform a safe and trusted marketplace with high quality

apps for users. The updated SDK with more APIs, on the other hand, were actions to resource

the new device capabilities and to better support the developer community (Ghazawneh and

Henfridsson 2013, p. 187). Therefore, app stores can be seen as a catalyst facilitating inter-

actions amongst members of the same platform. Reducing transaction costs, building audi-

ences, or matchmaking are just a few exemplary aspects. Through the creation and sharing

of value, they enable the corresponding owners to manifest their keystone advantage within

the mobile app ecosystem (Iansiti and Levien 2004, p. 44).

Without doubt, the App Store success contributed substantially to the fact that more and

more customers bought iPhones and thus joined Apple’s ecosystem. Due to the popularity

of iPhones, Apple decided to use the iPhone operating system for its remaining portfolio.

Today, iOS runs on iPads, iPods, and the Apple TV box. However, each device runs with a

specific iOS customization (Helal et al. 2012, p. 9). The maintenance of the iOS platform is

subject to high standards. Apple releases updates on a regular basis throughout the year,

sometimes to add new features and sometimes to fix bugs. In general, iOS updates can be

categorized into three types with regard to their three-part version number. First, a major

update happens once a year. It usually includes profound system changes like, for example,

the alteration of the processor architecture between iOS 10 and iOS 11. Second, a minor

update, such as from iOS 11.1 to iOS 11.2, can occur multiple times per year and extends

functionalities on a larger scale. Last, patch level updates, as from iOS 11.2.1 to iOS 11.2.2,

occur at irregular intervals. They reflect bug fixes or urgent security patches (Apple Inc.

2019b). The most recent major iOS update was released on 19 September 2019. Being the

thirteenth version, iOS 13 brought, for instance, a dark mode color scheme, improvements

for Apple’s digital assistant, or privacy enhancing upgrades. Despite the dozens of new fea-

- 9 -

tures, the iOS update was accompanied with many issues forcing Apple to release counter-

acting updates at a higher-than-usual frequency. The impact of these update-induced plat-

form issues on the sensible ecosystem balance are examined in detail in later chapters.

2.1.2 Studies related to mobile app ecosystems

Software ecosystems and their inner components have been widely investigated in previous

work. While some researches discuss mechanisms of ecosystems in general, others concen-

trate on certain app ecosystems. Below, some relevant findings are summarized.

An empirical study of CECCAGNOLI et al. addressed the question whether participation in a

platform-based ecosystem improves the business performance of small software vendors

(Ceccagnoli et al. 2012, p. 263). After analyzing partnering activities and performance indi-

cators of a sample of 1,210 software vendors, the researchers found that joining a platform

ecosystem was associated with gains in operational performance and a greater likelihood of

obtaining an initial public offering. Hence, they empirically demonstrated that, on average,

varied benefits could accrue to firms participating in a platform-based ecosystem.

Other research work focused specifically on the interaction between ecosystem members.

By exploring ecosystem interrelations between app developers and users with time-series

analysis, SONG et al. investigated how cross-side network effects are influenced by the plat-

form orchestrator’s governance rules (Song et al. 2018, p. 121). Their results indicated that

while long application review time enhanced the quality of applications, the delay also neg-

atively impacted the user side, which though might be counteracted by the former effect.

Additionally, frequent platform updates compelled developers to commit more efforts to

updating existing apps rather than developing new ones.

In a longitudinal measurement study, WANG et al. analyzed the evolution of mobile ecosys-

tems over more than three years (Wang et al. 2019, p. 1988). Based on 5.3 million app rec-

ords gathered from three Google Play snapshots, the scholars observed favorable progress

in respect of app popularity, user ratings, or privacy policies, although there remained nu-

merous unsolved issues, including update problems, malicious apps, and improper promo-

tion actions. By shedding a light on these dynamics, the study aimed to assist developers in

making better decision and give insights for app market owners to detect misbehaviors.

GENC-NAYEBI and ABRAN carried out a methodical literature review about opinion mining

from mobile app store user comments (Genc-Nayebi and Abran 2017, p. 207). The objec-

tives were to identify proposed solutions for opinion mining as well as existing challenges

and problems in the research field. In total, the scholars selected a total of 24 relevant studies

- 10 -

for their literature review. Even though they pointed out the problem of spam or fake re-

views, they concluded that customer reviews contained valuable information about user ex-

pectations, which both developers and app store regulators could leverage to better under-

stand their customer base.

EATON et al. conducted an embedded case study of Apple’s iOS ecosystem with regard

to the software tools and regulations that serve as the interface between platform owner

and application developers (Eaton et al. 2015, pp. 217–218). They wanted to understand

how these so-called boundary resources come to be and evolve over time. Their in-depth

analysis of 4,664 blog articles with 30 boundary resources suggested that part of Apple’s

success could be subscribed to a distributed, heterogeneous pool of actors who collec-

tively tune boundary resources rather than Apple’s sole control over the iOS ecosystem.

Since the authors pointed out the cocreative nature of boundary resources, they contrib-

uted to existing mobile ecosystem research literature.

Another study focusing on Apple’s ecosystem was performed by GARG and TELANG

(Garg and Telang 2013, p. 1253). Taking the App Store as subject of interest, they pre-

sented an innovative approach to infer app rank-demand relationships from publicly

available data. According to their findings, an iPhone app ranked first got 150 times more

downloads than the app ranked at place 200. Also, the app ranked at 200 on the top

grossing list earned 95 times less revenue compared to the app ranked first. The con-

structed model provided a new way to estimate the products sales from app rankings.

Overall, mobile app ecosystems have been examined from various angles and in the light

of diverse contexts. In spite of this, the search for studies that combine the two aspects

of evolving platform technologies and user behavior consequent to updates was unsuc-

cessful. The thesis at hand tries to overcome this research gap.

2.2 Software updates

Updates play an integral part in the software maintenance process, as they enclose addition,

deletion, or refining activities. Software updates can be regarded as modifications of the way

software works by changing the underlying base software. Contrary to stand-alone programs,

they directly integrate into deployed software that is already in operation. The update proce-

dure must therefore document each incremental change, which is usually expressed in a dif-

ferent version number, and control for potentially introduced errors (Stackpole and Hanrion

2007, pp. 165–166). In practice, update requirements have been growing at a remarkable

pace. All kinds of software are reliant on subsequent alterations, ranging from applications,

drivers to operating and information systems. Within the domain of mobile app ecosystems,

software updates are particularly prevalent. For example, users of either Android or iOS

- 11 -

phones receive application and operating system updates on a regular basis. Those updates

are distributed automatically over the air (OTA), while in the past updates had to be manually

installed from data storage media. OTA updating for mobile devices lets users download and

install actualized software versions over a wireless Internet connection like mobile broad-

band (Herle and Fan 2010, pp. 1–2). The mechanism of OTA provisioning is indispensable

for every mobile app ecosystem.

In the sphere of information technology, the pervasive usage of updates is accompanied by

a large body of research. Because of varying preferences of terminology in literature, it is

advisable to differentiate some key concepts. The term software patch is used interchangea-

bly with software update. Patches, or updates, are in general free of charge and provide se-

curity improvements, bug fixes, and many other services (Kushwaha et al. 2012, p. 20). Un-

like updates, software upgrades fall into the category of chargeable software services. Once

users have paid for the upgrade, they get an extended set of new features that are unavailable

in the not upgraded standard version. This enlarged scope sometimes implies a full re-instal-

lation of the product replacing the older version.

Nonetheless, the benefits of updating come with a trade-off. Downloading patches consumes

device resources together with network bandwidth, what can cause problems in case of larger

update files. Furthermore, modifications to the installed base software must be handled with

caution (Kushwaha et al. 2012, p. 21). The same applies in view of dependencies between

software packages. Otherwise, not only stability or performance can be impacted, but even

the compatibility and basic operability. In the worst case, update-induced errors can lead to

a total system failure. Thus, software developers are bound to face the dilemma of quickly

releasing and carefully testing recent software versions at the same time (Stackpole and

Hanrion 2007, pp. 166–167).

2.2.1 Overview of different update types

Research on software updates mainly distinguishes between three distinct types, namely fea-

ture, non-feature, and security updates (Franzmann et al. 2019, p. 5). For this reason, a de-

tailed explanation of this three-class typology is necessary.

As the name indicates, feature updates introduce new features to the running version by

changing its core functionality. They are used by developers to add, remove, or modify the

current feature set of the underlying base software. Especially within the mobile ecosystem,

feature updates have been increasingly leveraged by developers over the last years (Amirpur

et al. 2015, p. 2). To cite a popular example, Apple’s mobile operating system gets a major

update every year. Its most recent version iOS 13 added, among other features, a dark mode

color scheme, a swipe keyboard, and novel photo editing tools (Apple Inc. 2019b). From the

- 12 -

user’s viewpoint, feature updates are either proclaimed through notifications or recognized

due to visible changes. Although customers need to adjust the way how they interact with

the updated version, feature updates normally correlate with higher perceived satisfaction

and practicality (Fleischmann et al. 2016, p. 83).

Non-feature updates represent the second class in the update typology. Without affecting the

software’s core feature set, they rather concentrate on correcting known errors or stability

deficiencies. Such actualizations include bug fixes, more urgent hot fixes, as well as perfor-

mance patches. Highlighting the difference relative to feature updates, AMIRPUR et al. point

out that non-feature updates “[…] often do not directly affect the user’s interaction with the

software and are typically not even visible to the user […]” (Amirpur et al. 2015, p. 1). To

continue the example from above, iOS 13 received numerous patches for bug fixes and im-

provements after its initial release due to a high incidence of errors (Apple Inc. 2019b).

Therefore, non-feature updates occupy a central position in software maintenance.

Security updates represent a subclass of non-feature updates, since they neither add func-

tionalities nor contain apparent modifications. Their purpose lies in guaranteeing protection

against malicious code and other threats by closing security breaches (Grupp and Schneider

2017, p. 613). Since both organizations and individuals heavily rely on the integrity of in-

formation systems, security patches are widely studied in the literature (Cavusoglu et al.

2008, p. 657; Ng et al. 2009, p. 815). In the example case of iOS 13, Apple detected a major

security flaw giving third-party keyboards full access to external services without the user’s

knowledge. Affected keyboard apps could record and upload sensitive data. As a conse-

quence, Apple released a global warning message and iOS version 13.1.1 to patch this vul-

nerability (Apple Inc. 2019c).

2.2.2 Studies related to software updates

Academic literature has comprehensively dealt with software updates. This subchapter aims

to give a concise overview of related work. To build a general understanding about the innate

characteristics of updates, studies from the two main research streams regarding technical

and user-centered literature are presented. In the software engineering literature, scholars

focus on the technical aspects about patches. Here, the course of action from the developer

standpoint forms the context. Common research topics are software release management,

development, or maintenance.

Release management plays a central role in software engineering projects. It refers to deci-

sions about software release cycles under technical, budget, and risk constraints. The key

tasks are planning, testing, and deploying updates to software systems while minimizing

business disruptions (Stackpole and Hanrion 2007, p. 230). A study from RUHE and SALIU

- 13 -

investigated best practices in the release planning process (Ruhe and Saliu 2005, p. 47). They

proposed a hybrid planning approach combining benefits of human experience together with

computational intelligence. Introducing more formalism for transparency, setting release

planning goals with several impacting criteria, or the pro-active evaluation of possible re-

lease strategies were among their recommendations for organizations. Failing this, the re-

searches listed unsatisfied customers, missed delivery deadlines and poor quality standards

as implications of inadequate release management.

Software development and maintenance differ from release planning, since they take up later

stages within the software life cycle. The purpose of maintenance activities is to modify and

perfect software systems after delivery. Rolling out patches is one of the most common

maintenance tasks (Stackpole and Hanrion 2007, pp. 166–167). In a paper published in In-

formation Systems Research, KRISHNAN et al. drew attention to the fact that software mainte-

nance accounts for a substantial amount of overall life cycle costs (Krishnan et al. 2004, p.

396). As a measure for cost reduction, the researchers came up with a stochastic decision

model for maintenance of information systems. This dynamic framework could compute the

optimal state for a major system update, based on the uncertainties in the user environment

and product performance (Krishnan et al. 2004, p. 410).

Apart from the technical literature on software updates, a second research stream gained

traction over the last few years. Rather than focusing on the developer perspective, recent

studies put efforts into understanding the user’s perception concerning updates, in which the

context revolves around post-adoption behavior. A study conducted by HONG et al. was

among the first to examine users’ intention to continue using software systems that received

feature updates (Hong et al. 2011, p. 266). After the analysis of data from 477 users, the

scholars discovered that the user’s level of comfort with ongoing changes represents a nota-

ble driver of information system acceptance.

Having a similar research interest, FLEISCHMANN et al. explored the relationship between

updates and information system continuance intention by carrying out a controlled labora-

tory experiment (Fleischmann et al. 2016, p. 83). Based on their experimental results, the

scholars found a positive effect of feature updates on users’ willingness to continue using

information systems. This effect further intensified with more frequent feature updates. In

addition, the study unveiled that this effect operates through positive disconfirmation, lead-

ing to higher levels in perceived usefulness and satisfaction. Further evidence in support of

these findings was found in another study from AMIRPUR et al. (Amirpur et al. 2015, p. 13).

Consequently, FLEISCHMANN et al. advised software vendors to leverage the gained insights

in practice. Even though the authors did not find the same effect for non-feature updates, a

- 14 -

following study from FRANZMANN et al. demonstrated that non-feature updates, such as bug

fixes, can have a positive effect on users’ impression as well (Franzmann et al. 2019, p. 3).

In accordance with the study results above, GRUPP and SCHNEIDER empirically confirmed

that feature patches elicit a positive effect on users’ continuance intention (Grupp and

Schneider 2017, p. 611). Moreover, based on their online experiment with 282 participants,

they could even prove a positive impact of security updates on users’ continuance intention,

as long as users got a notification after successful implementation. Therefore, they suggested

practitioners should always inform users about new patch releases.

Summarizing the literature review, despite the vast dissemination of software updates, ex-

isting studies are mostly oriented towards a technical background, whereas literature on how

individuals perceive updates is still scarce. Lately, some academics started to address this

gap in literature by adopting a user-centered approach. For instance, AMIRPUR et al.,

FLEISCHMANN et al., FRANZMANN et al., and GRUPP and SCHNEIDER explicitly investigated

the influence of different update types on users within the post-adoption phase (Amirpur et

al. 2015, p. 13; Fleischmann et al. 2016, p. 83; Franzmann et al. 2019, p. 1; Grupp and

Schneider 2017, p. 611). They all based their work on the information systems continuance

model, which was also employed as a research lens for the present thesis. The next section

elaborates on the properties of this model.

2.3 Information systems continuance model

The information systems continuance model (ISCM) is an influential theory in post-adoption

literature. This research stream looks into situations where users are confronted with the

decision to either continue or stop using an information system after they have initially ac-

cepted it (Hong et al. 2011, p. 238). To study user intentions regarding sustained usage of

software systems, BHATTACHERJEE was the first to adapt the expectation-confirmation the-

ory (ECT), which serves as theoretical basis for the ISCM, for an information systems con-

text (Bhattacherjee 2001, p. 351).

Providing a cognitive framework to study customer satisfaction and post-purchase behavior,

ECT has been widely used in consumer psychology literature and marketing in general

(Anderson and Sullivan 1993, p. 125; Oliver 1993, p. 418). In the year 1977, a foundational

experiment from OLIVER studied the two constructs expectation and disconfirmation on per-

ceived product performance (Oliver 1977, p. 480). His survey with 243 respondents, who

reacted to a recently introduced product, demonstrated that disconfirmation was not corre-

lated with expectations measured before revealing the product, thereby allowing room for

an additive interpretation. Following up on these findings, OLIVER wrote a second paper in

1980 proposing a research framework in which satisfaction is expressed as a function of

- 15 -

expectation and disconfirmation (Oliver 1980, p. 460). Satisfaction, in turn, was determined

as an influencing factor of the repurchase intention. Briefly explained, consumers possess

certain expectations about a product or a service before buying. Once they have collected

experiences with it, they compare the perceived performance with preceding expectations.

If the former exceeds the latter, the disconfirmation is positive implying a positive effect on

satisfaction. Conversely, if consumers’ expectations are negatively disconfirmed due to un-

derperformance, satisfaction decreases. Lastly, the repurchase or reuse intention depends on

the level of satisfaction. To date, the explanatory power of ECT was verified across various

experiments (Liao et al. 2017, p. 651; Oliver 1993, p. 418; Patterson 1997, p. 4).

Based on the ECT framework and prior information systems literature, BHATTACHERJEE

conceptualized the ISCM in an attempt to better understand users’ intention to continue using

information systems (Bhattacherjee 2001, pp. 351–356). His model, which is illustrated in

Figure 2, theorizes the difference between acceptance and continued usage by examining

personal attitudes and beliefs. Hence, subject of interest in the ISCM is the intention of sus-

tained continuance instead of the repurchase inclination. As displayed below, the ISCM en-

compasses four primary constructs: disconfirmation, satisfaction, perceived usefulness, and

continuance intention, the latter being self-explanatory. Disconfirmation stands for the dis-

crepancy in users’ observation between product expectation and actual performance. Satis-

faction is the affective evaluation of prior usage. Perceived usefulness, an adapted con-

struct of the technology acceptance model, symbolizes expected benefits of post-adop-

tion usage (Davis et al. 1989, p. 982). All model constructs are post-acceptance variables,

since disconfirmation and satisfaction already capture pre-acceptance effects.

Figure 2: Information systems continuance model (Bhattacherjee 2001, p. 356)

- 16 -

The underlying reasoning of the ISCM functions in a similar way as the ECT framework. In

his model, BHATTACHERJEE postulates that the predicted continuance intention depends pri-

marily on satisfaction and secondary on perceived usefulness (Bhattacherjee 2001, pp. 364–

367). This is because perceived usefulness is more central to acceptance than continuance

intention. User satisfaction, for its part, is determined by disconfirmation and perceived use-

fulness, while disconfirmation has a relatively stronger impact. Perceived usefulness is

solely influenced by disconfirmation, whereby positive disconfirmation increases the level

of perceived usefulness. Ultimately, the construct of disconfirmation can be interpreted in

accordance with the ECT. If the judged performance of an information system surpasses

users’ original expectations, they are positively disconfirmed which, as a direct consequence,

elevates their satisfaction and perceived usefulness. The reverse causes negative disconfir-

mation, dissatisfaction and thus indirectly the intention of discontinuance.

Since its introduction in 2001, the ISCM gained prominence in information systems litera-

ture. It has been widely applied and expanded by scholars to study the phenomenon of post-

adoption behavior across a variety of settings (Benlian et al. 2011, p. 85; Chang and Zhu

2012, p. 995; Larsen et al. 2009, p. 778; Limayem et al. 2007, p. 705). For instance, HONG

et al. extended the ISCM with components from the technology acceptance model to exam-

ine the continuance intention of mobile Internet usage (Hong et al. 2006, p. 1819). In addi-

tion, BHATTACHERJEE and PREMKUMAR proposed an augmented ISCM with a pre-usage and

usage stage to understand shifts in users’ attitudes and beliefs over time (Bhattacherjee and

Premkumar 2004, p. 229). Thinking one step further, along with changes in users’ percep-

tion, it is rational to presume that the information system itself is exposed to temporal

changes, for example, through software patches. Both of these dynamic changes influence

users’ continuance intention (Fleischmann et al. 2016, pp. 88–89; Ortiz de Guinea and

Webster 2013, p. 1165). For the aspects cited above, the ISCM was selected as solid theo-

retical lens for exploring post-adoption behavior regarding updates within mobile app eco-

systems in this thesis.

- 17 -

3 Development of hypotheses

The following chapter is dedicated to formulating educated guesses in connection to the

research question. It contains derivations of hypotheses about the influence of evolution-

induced platform issues on mobile app users. Each deduced hypothesis rests upon the theo-

retical foundations from chapter 2. In the center of investigation stands the operating system

update iOS 13 and its adverse impact on users in Apple’s mobile ecosystem.

3.1 Adverse effects of update-induced issues on continuance intention

As detailed in section 2.1, mobile app ecosystems are characterized by a fragile balance

between actors and platform technologies through which they interact. This applies in par-

ticular to the continuous evolution of mobile operating systems. Software patches provide

incremental platform improvements that aim to strengthen the ecosystem as a whole (Bosch

2009, p. 113). Yet, herein lies the risk of destabilizing the ecosystem by accidentally intro-

ducing detrimental software flaws, as it was the case with Apple’s current mobile operating

system update. The patch release documentation of iOS 13 gives a rough idea about the wide

scope of compatibility, performance, and security problems (Apple Inc. 2019b). Chapter 1

has highlighted the consequent severe negative feedback from both public media as well as

app users. Given the interdependent nature of mobile ecosystems, the update-induced issues

assumingly impacted a huge number of app users. Related information systems literature has

already demonstrated that certain software updates might diminish customers’ continuance

intention, alienate existing ones, or even increase their inclination of switching to a compet-

itor (Fleischmann et al. 2015, p. 17; Foerderer and Heinzl 2017, p. 1). In line with the ISCM,

the psychological mechanism behind these user responses operates through negative discon-

firmation regarding the updated software. This rationale can be transferred to the indirect

adverse effects of Apple’s iOS update on mobile applications and their users. Following this

argumentation chain, it is hypothesized that:

H1: The release of the new operating system update introduced issues that caused

a significant decline in app users’ continuance intention.

3.2 Manifestation of distinct update issue types in user reviews

One distinguishing element of the mobile ecosystem is its digital app distribution channel,

just like the App Store from Apple. In this online marketplace, developers publish applica-

tions for users to download and rate. More specifically, App Store customers have the option

to rate content on a scale of 1 to 5 stars, with 5 being the best. Customers are allowed to

complement their reviews with a short text about their personal evaluation. Recent work

shed light on the valuable insights contained in these user reviews, which both app store

- 18 -

owners and developers can leverage (Chen et al. 2014, p. 767; Genc-Nayebi and Abran 2017,

p. 207; Noei et al. 2019, p. 1; Panichella et al. 2015, p. 281). Such customer feedback can

address diverse topics, for example, feature requests, functional complaints, detected bugs,

privacy concerns, and other problem cases. Considering the many issues related to iOS 13,

it seems sensible to assume that a myriad of app users wrote reviews about the complications

they faced. Hence, in accordance with previous work on app review mining, major problem

categories reflected in user feedback should be theoretically identifiable with adequate text

mining methods, which results in the supposition that:

H2: Distinct update issue types are manifested in user reviews.

3.3 Magnitude of influence of issue types on continuance intention

Based on the statements above, the iOS 13 update was accompanied by a considerable num-

ber of distinguishable app issues, leaving frustrated and dissatisfied customers. Drawing

from information systems post-adoption literature, users’ perception of modified software

varies depending on the degree of disconfirmation (Fleischmann et al. 2016; Hong et al.

2011, p. 238; Limayem et al. 2007, p. 733). While updates are usually not anticipated by

customers, unexpected update-induced errors during usage exert negative disconfirmation,

which eventually leads to declining usage rates or even complete discontinuation. It appears

plausible that the more critical an experienced error is, the more negative will be the user

response. This logic can be applied to the context of iOS 13. As indicated in Apple’s iOS

patch documentation, the criticality of errors is variable, ranging from minor performance

lags to major software failures and security breaches (Apple Inc. 2019b). It is therefore likely

that some specific issue categories are correlated with a lower continuance intention than

other categories. Hence, grounded on the outlined reasons, it is expected that:

H3: The influence of different issue types on app users’ continuance intention var-

ies in terms of magnitude.

- 19 -

4 Research methodology

This chapter concentrates on the research methodology undertaken in the present thesis. It

begins with a discussion of the general study design, followed by a description of the data

collection process. Then, the executed data preparation steps are explained one by one. The

subsequent section introduces the applied data mining methods. Lastly, the analytical eval-

uation of the extracted data patterns is discussed.

4.1 Study design

Against the background of the research question, the study design articulates the overall

strategy that combines multiple methods and techniques of the study in a coherent way,

thereby ensuring the scientific verification of proposed hypotheses. Given the plethora of

design options, it is fundamental to select a design fitting the study objectives in the best

possible manner in consideration of all limitations. Research methods are broadly catego-

rized into qualitative and quantitative approaches (Venkatesh et al. 2013, pp. 21–24). Quan-

titative research represents the systematic investigation of phenomena by collecting data

which can be quantified by computational and mathematical techniques. Laboratory experi-

ments or questionnaires are two popular instruments for quantitative research. Scholars typ-

ically select the quantitative approach to empirically test hypotheses about relationships be-

tween constructs from a theory, since quantitative research is primarily based on deductive

reasoning. In contrast, qualitative research is natively more inductive, so the objective is to

infer generalized explanations and theories from specific observations. Examples for quali-

tative research instruments are in-depth interviews or archival research.

In the present thesis, a quantitative approach was employed in order to empirically examine

the influences of update-induced issues on app users. For this purpose, hypotheses about

post-adoption behavior were deduced from the ISCM. Besides, quantitative research encom-

passes the subcategories descriptive and experimental research (Williams 2007, pp. 65–66).

The former involves the exploration of attributes or factorial correlations of an observable

phenomenon in its current state, the latter analyzes the cause-and-effect relationship between

variables within a controlled environment. Thus, the adopted research design for this thesis

was descriptive ex-post facto by its nature, since the effects of the observed iOS software

update already manifested, what excluded the possibility of controlling any independent var-

iables. Another important study design question referred to the choice between primary or

secondary data. While primary data is original information acquired from first-hand re-

sources, secondary data is public information provided by someone other than the researcher.

As this study was interested in user feedback regarding a very specific and recent event like

the mobile operating system update iOS 13, the decision was made to collect primary data

- 20 -

from the App Store. Having answered the fundamental study design questions, the sequential

application of concrete methods for the empirical data analysis needed to be determined. In

brief, this process aims at making sense of complex data sets by bridging the gap between

low-level data and higher-level concepts (Berente et al. 2018, p. 54). This related to tech-

niques for gaining insights about users’ perception of the new iOS update that can be ex-

tracted from vast amounts of feedback data. So, it was expedient to align the analysis with a

suitable framework for knowledge mining.

Knowledge Discovery in Databases (KDD), which was developed by FAYYAD et al., is a

widely recognized methodical framework that supports the extraction of information from

large volumes of raw data (Fayyad et al. 1996, pp. 37–42). The multi-step KDD process

entails a total of five sequential steps: selection, preprocessing, transformation, data mining,

and interpretation. First, a target data set is selected on which discovery is to be sought. The

second step improves data reliability through cleaning and preprocessing activities. Third,

feature selection or dimension reduction techniques convert the data set into the required

form for the analysis. In the fourth step, selected data mining algorithms are applied to derive

patterns and correlations of interest. Fifth and finally, the mined patterns are interpreted and

can be displayed in models or visualizations. The discovered knowledge can be documented

for reports or integrated into another system, and, of course, it can be used for hypothesis

verification. According to FAYYAD et al., the KDD process allows for multiple iterations if

the found patterns are insufficient for the set research objectives (Fayyad et al. 1996, pp. 50–

51). They also note the suitability of the KDD framework for mining free-form text data.

Figure 3: Schematic diagram of study design

Hence, KDD elements were partially adopted for creating the design of the study at hand,

which is depicted above in Figure 3. The four main phases collection, preparation, pro-

cessing, and evaluation are represented as the sequence of black arrows. Beneath each phase,

the high-level process flow is displayed. Put concisely, primary data was first collected and

- 21 -

stored with the help of Python-scripted web scrapers. The raw customer reviews then under-

went a preparation phase, where the data set construction and text preprocessing tasks were

performed. Next, the reviews were ready for processing through data mining algorithms. In

more detail, the sentiment of each review text was identified, reviews related to iOS 13 were

classified and eventually the latent topics within these user reviews were extracted. Last, the

discovered data patterns were evaluated in the fourth phase. Descriptive statistics, correla-

tion analyses, and statistical tests helped with the empirical investigation and extraction of

relevant knowledge. Special attention was paid to users’ intention of sustained information

systems usage as well as its antecedent constructs. Depending on the outcome of the data

evaluation, the proposed hypotheses from chapter 3 were either accepted or rejected.

After having briefly summarized the four different phases in the study design at hand, a

deeper look into how exactly the phases were carried out is appropriate. Therefore, the suc-

ceeding chapters elaborate on the underlying workflow behind each phase.

4.2 Data collection

4.2.1 Sample definition

As outlined in the previous chapter, the study intends to explore the impact of Apple’s last

operating system update on app users’ post-adoption behavior. To assess the iOS patch im-

pact, it was essential to obtain a broad measure of corresponding feedback data from cus-

tomers. In terms of data source, it goes without saying that the choice fell on Apple’s digital

marketplace as repository for app reviews. A thorough inspection of the App Store can be

found in chapter 2.1.1. The decision to acquire the required feedback data from app reviewer

comments and ratings was made during the study design. Being the data object of interest,

the format of a user review can vary across different app marketplaces.2 Reviews on the App

Store contain five attributes that are visible to all customers: author, date, review text, rating,

and the number of people who found the review helpful (Apple Inc. 2018). The textual con-

tent is made up of a title together with a short text, usually consisting of more than one

sentence. Customers can rate any app on a scale of 1 to 5 stars. Feedback can only be written

by customers who have actually downloaded the application. Aside from the attributes

above, additional review features can be gathered from Apple’s App Store, such as, internal

app ID, country code, or app version number. All these features were received for each col-

lected review. At this point, geographical and temporal restrictions during the data acquisi-

tion process are also worth mentioning. Since the text mining methods were confined to

reviews in English language, only reviews from both the United States and Great Britain

marketplaces were selected. Considering the time limitation, the data collection period was

2 The elementary structure of customer reviews on the App Store is depicted in Appendix A.1.

- 22 -

defined to span four months, whereby the interval started one month before and ended three

months after the initial release of iOS 13, which happened on 19 September 2019.

Even though the research question concerns how the iOS update influenced customers of

Apple’s ecosystem, which offers millions of applications, it is not feasible to gather reviews

from the whole app population due to limited time and computational power. That is why a

representative sample was necessary. The constructed sample was based on several criteria.

For one thing, it reflected the product diversity in the App Store, and for another, it included

applications that attract relatively more feedback because of high popularity among many

customers within the ecosystem. From the more than 20 different categories in Apple’s port-

folio, a subset of 15 categories was chosen. It was ensured that these selected categories

accounted for the most app downloads worldwide as reported by current market statistics

(Sensor Tower Inc. 2019, pp. 24–27). For instance, Games, Photo & Video, and Entertain-

ment made up the list of top three most downloaded app categories. The majority of down-

loads were associated with leading developer studios from Facebook, Google, or Amazon.

It was assumed that if professional publishers encountered app issues due to the iOS 13

patch, then smaller or independent developers should be at least as heavily affected. Further-

more, the sample included the ten most popular free apps for each of the chosen categories.

These top ten lists were manually fetched from the App Store in mid-November 2019. The

idea behind this originated from the relationship between high popularity and larger amounts

of feedback. More feedback, in turn, implied a higher likelihood of reviews disclosing de-

sired information about the full spectrum of iOS problems. In total, the sample comprised

150 distinct apps.3 Below, Table 1 shows a limited extract of this sample with the names of

the top three ranked apps within each category.

Category App ranked first App ranked second App ranked third

Books Audible Amazon Kindle Wattpad

Business Indeed Job Search ZOOM Cloud Meetings ADP Mobile Solutions

Education Photomath Google Classroom Remind

Entertainment TikTok Netflix Hulu

Finance Cash App Venmo PayPal

Food & Drink DoorDash Uber Eats Grubhub

Games Call of Duty Mobile Photo Roulette Rescue Cut

Health & Fitness Calm Reflectly Flo

Lifestyle Google Home Tinder OnMyWay

Photo & Video YouTube Instagram Snapchat

Productivity Gmail Google Docs Google Drive

Shopping Amazon Walmart Wish

Social Networking Facebook Messenger WhatsApp Messenger

Travel Uber Lyft Yelp

Utilities Google Chrome Google Fonts

Table 1: Extract from mobile app sample

3 The complete list of all 150 mobile apps of the sample can be found in Appendix B.2.

- 23 -

Whenever a sample is taken in order to make inferences about a population, awareness to-

wards threats to external validity is mandatory. What can lead to biased data is a sampling

method that systematically favors some outcomes over others. MARTIN et al. presented the

app sampling problem for app store mining which can occur when only a subset of apps is

studied by selecting, for example, the most recent or most popular apps (Martin et al. 2015,

pp. 132–133). Nevertheless, they found that correlation analysis and topic modeling were

less sensitive to biasing effects. Hence, regarding the defined sample and used methods in

the present thesis, the app sampling problem was not a major risk. Still. it was obviated to

make vast generalizations for the entire app population.

4.2.2 Data scraping process

In the course of the preceding sample definition, general conditions of the collection process

were set, for example, temporal, geographical, or content-related specifications. Following

the exact description of what data were required, this chapter addresses how the data collec-

tion was executed. The compiled sample list of 150 applications constituted the starting

point. Information about app feedback is publicly available on the App Store. Web mining

is thus common practice for collecting user reviews. The term web mining, first coined by

ETZIONI in 1996, refers to the application of data mining techniques to discover and extract

information automatically from web documents or services (Etzioni 1996, p. 65). However,

compared to other app markets like Google Play, Apple is more restrictive when it comes to

allowing software agents to gather data from its webpages. Accessing the App Store through

a web browser gives merely a constrained preview of user feedback. As an alternative source,

Apple provides web feeds based on rich site summary (RSS) documents that hold infor-

mation on iTunes hit lists, developer news, mobile app reviews and much more. Therefore,

pertinent RSS feeds were queried with the help of specifically programmed web crawlers.

Scrapy is an open source web crawling and web scraping framework written in the program-

ming language Python. It is designed to crawl and extract structured data from webpages

(Scrapinghub Ltd. 2019). Merging efficiency, performance, and an excellent developer doc-

umentation, it is a popular solution in the industry. Built-in data export formats cover CSV,

JSON and XML. Owing to its easy expandability, Scrapy has the option to add custom mid-

dleware or data pipelines. Having only a compatible Python version and a virtual environ-

ment as prerequisites, the setup was fairly simple as well. In light of these advantages, the

framework was a proper choice for the data collection procedure, whereby the versions Py-

thon 3.8 and Scrapy 1.8.0 were used. The scraping process can be divided into two steps,

systematically finding and downloading webpages, and then parsing information from the

pages’ source code (Scrapinghub Ltd. 2018). Scrapy’s architecture incorporates an engine

controlling the data flow between various components, including a scheduler, a downloader

- 24 -

and customized classes for data extraction, also known as spiders or bots.4 The general data

flow can be summarized as follows. At first, the Scrapy engine gets the initial Hypertext

Transfer Protocol (HTTP) requests from the spider and then schedules the requests in the

scheduler. Once the scheduler returns subsequent requests to the engine, they are passed

through the downloader. After the download finishes, the downloader sends a response to

the engine. Next, the engine forwards the response to the spider, which thereupon processes

the downloaded webpage and returns scraped items to the engine along with new HTTP

requests. Ultimately, the engine sends the processed items to the data pipeline and asks the

scheduler for new requests. This cycle repeats until there are no requests left. Accordingly,

the programmed Python module started by creating HTTP requests targeted at Apple’s cus-

tomer review web feed. Query parameters concerning the app ID, time period, and App Store

country code were passed through the target Unified Resource Locators (URLs) in a loop.

To systematically scrape data in the feed format, custom spiders were programmed. Since

the downloaded RSS documents consisted of XML-formatted plain text, the spiders ex-

ploited Scrapy’s XPATH selector mechanism. XPATH is a language for selecting nodes and

processing items in XML documents. Scripted XPATH expressions enabled the spiders to

parse the RSS pages. The retrieved customer reviews were stored in CSV format.

Although the feed scraper module routinely fetched data for all 150 sampled applications,

the data was insufficient due to a limitation of Apple’s web feed. In fact, the feed solely

stored records about the 500 most recent customer reviews for a single application excluding

past reviews beyond this limit. This turned out to be a problem for apps with high feedback

rate because some historical data within the four-month collection period were missing. To

acquire the needed historical records, a software agent was programmed that systematically

imported data out of the API from Appfigures, which is a mobile app store reporting platform

(Appfigures Inc. 2019). For getting access to the API, a 14-day free trial account was regis-

tered. Despite the rate limit of 1,000 API requests per day in the test version, it was manage-

able to obtain the remaining historical data. The programmed software agent worked in a

similar way like the feed scraper module. First, the software agent authenticated itself to the

Appfigures server with a client key from the trial account. Then, it proceeded to send API

requests, downloaded the responses in JSON format and stored the information after the

parsing operation in a CSV file.

As final outcome of the data acquisition, two raw data sets were scraped from two distinct

origins. In combination, they included all required customer reviews for the 150 sampled

apps in the defined four-month time span. Still, dissimilarities between the data sources were

reflected in the data sets themselves, thereby entailing the need for further preparatory steps.

4 The architecture of Scrapy is graphically illustrated in Appendix A.3.

- 25 -

4.3 Data preparation

4.3.1 Data set construction

Within the KDD process, paramount importance is attached to the data preparation phase. It

encompasses various preprocessing activities for transforming raw data into a structured for-

mat that is amenable to data mining procedures (Fayyad et al. 1996, pp. 39–41). Some men-

tionable operations include, for example, variable selection, noise reduction, or handling

missing values. Raw data are often erroneous, inconsistent, or incomplete. These deficien-

cies were taken into account when the two scraped data packages were merged for the con-

struction of one cohesive data set. Stemming from separated data origins, namely Apple’s

web feed and Appfigures’ database, the act of harmonizing proved to be obligatory. Data

harmonization focuses on integrating data of varying qualities, types, and naming conven-

tions. To ensure proper data quality, which after all determined the successful analysis,

bringing together the scraped data sets was handled through a Python module specifically

developed for preparation purposes.5

One function in the referred module was dedicated to data set fusion. Its functional architec-

ture emulated the paradigm of load, transformation, and extraction (ETL). This process is

widely spread in data warehousing, where data coming from heterogenous sources are re-

structured and stored (March and Hevner 2007, pp. 1032–1033). The first step in ETL in-

volves extracting all required data from their source systems. During the transformation step,

the data are prepared for analysis through aggregation, cleansing, deduplication, and other

preprocessing tasks. In the last ETL step, the ready-made data is loaded into the end source.

As delineated in the following paragraph, these three steps were programmed into the func-

tion devoted to data set merging, though in a slightly adjusted manner.

First and foremost, raw data from the two CSV files were read in and converted into data

frames by using the open source software library pandas. Pandas is a powerful, versatile

Python package that provides custom data structures and operations (McKinney 2010, p.

51). These implementations supported both the data manipulation as well as the information

analysis throughout the course of this study. After the data import, the feature sets were

aligned. This implied the enforcement of fixed naming conventions. Identical features were

given the same feature names. Aside from renaming, certain attributes had to be deleted

because they either were redundant or existed only in one data set. In addition, the scripted

function ensured the unification of different data formats for identical features, such as the

date format or app version numbering. For instance, in one data set the app version number

contained trailing zeros, while in the other there were none. That is why trailing zeros inside

5 For a structural overview of all developed Python modules, refer to Appendix A.2.

- 26 -

the app version details were truncated across all records. Subsequent to the feature align-

ment, a horizontal concatenation of both data frames took place. This step resulted in the

creation of a single data set with rectified properties, although it simultaneously introduced

duplicates. Occasionally, the exact same app review of an author appeared multiple times,

yet with minimal variations in the timestamp. To detect and filter out double records, a cus-

tom pandas function was applied. Next, the penultimate transformation step joined the data

frame with the app sample list by means of the app ID in order to add extra columns, such

as app category, developer, and rank. Lastly, the newly constructed data set was loaded into

a CSV file, which completed the data set construction phase.

4.3.2 Text preprocessing

Apart from the function described above, a second preparative function devoted to textual

data was implemented as preliminary step before natural language processing (NLP). The

discipline of NLP concerns itself with the development of computational algorithms that

enable machines to process and understand human language (Panichella et al. 2015, p. 282).

A major goal in NLP is to extract meaning from spoken or written language. In connection

to answering the research question of this thesis, state-of-the-art NLP techniques were used

to analyze voluminous textual data inside customer reviews. Typically, feedback comments

are not well-written, but rather contain misspelled, repetitive, and filler words. As a matter

of fact, many comments are written on limited keyboards of mobile phones. The relatively

younger age group of users might be another reason. Consequently, textual data preparation

is especially vital when dealing with mobile app reviews. To reduce as much noisy, unin-

formative text elements as possible, a whole series of preprocessing tasks were carried out.

The creation of a new attribute named document, which concatenated title and content for

every individual review, marked the beginning. This way the original review text was pre-

served, whereas only the text data copied into the document attribute underwent prepro-

cessing. Taken together, the document attributes for all records represented the corpus of

documents to be analyzed. It became apparent that some customers composed their feedback

in Arabic or Chinese language in spite of the restriction to American and British App Stores.

Regular expressions helped to filter out instances with Arabic or Chinese letters, saving time

and resources in foresight of the computationally intensive text preprocessing tasks.

Thereafter, the Python script traversed all documents to check for punctuation marks. Punc-

tuation removal is a frequently recommended preprocessing step, since punctuations do not

convey any significant semantics. The same holds true in respect of special characters. A

custom string which enclosed these unwanted text elements served as search input. If any

instances were identified in a document, they were replaced with a whitespace character.

- 27 -

Generally, it is advised to remove digits for noise reduction as well, but this was not appli-

cable for the planned analysis because numbers could stand in relation to a distinct mobile

operating system version number like iOS 13.1 or iOS 13.2.2.

Further, converting all review texts to lowercase was another simple but highly effective

preparatory step. Many customers excessively capitalize either the first letter or the entire

word to emphasize certain words. However, casing does not change the general meaning of

a given word. In this context, lowercasing also reduces sparsity and vocabulary size, since

identical words with diverse cases map to the same lowercase form. It was thus crucial for

improving textual data consistency.

Stop word removal belongs to the most popular preprocessing steps across a wide range of

NLP implementations. Stop words are commonly used words in a specific language. Arti-

cles, pronouns, and prepositions count as examples. A list of English stop words was im-

ported from the Python NLTK library, which is a leading open source platform offering

several tools regarding NLP (Bird et al. 2009, p. 9). To give but a few concrete examples,

the list included words like “and”, “the”, “is”, or “me”. The idea behind removing stop words

is that uninformative elements are deleted, while the share of relevant top-specific terms in

a document increases. Consequently, the number of features representing a specific customer

review was trimmed down to a few truly significant words.

Besides lowercasing, the act of stemming is a supplementary text normalization technique.

Stemming reduces words to their root form. Relatively simple algorithms cut off suffixes

from words to retain the word stem. This may result in stems that are not actual words, but

just chopped of terms. Overstemming occurs when two distinct words are stemmed falsely

to the same root. An alternative operation to stemming is called lemmatizing. Unlike the

former, lemmatization groups together inflected forms of a word to its dictionary form based

on lexical knowledge. Lemmatized words are therefore always valid words. As lemmatiza-

tion produced more readable results, aiding the interpretation of modeled topics, NLTK’s

default WordnetLemmatizer was applied to the text corpus.

For the sake of regularity, the last preparatory action eliminated redundant whitespace char-

acters so that all text elements were separated from each other by a single whitespace. By

way of illustration, a user review before and after preprocessing is cited below in Table 2.

Raw document Preprocessed document

App keeps CRASHING!!!

After updating my iPhone to IOS 13.2.2, I have

noticed the app takes longer to load and crashes

more when trying to access it, hopefully, the app

can be updated to accommodate this issue :(

app keep crashing

after updating iphone ios 13.2.2 noticed app take

longer load crash trying access hopefully app updated

accommodate issue

Table 2: Comparison of raw and preprocessed review text

- 28 -

4.4 Data processing

4.4.1 Sentiment detection

The readily prepared data set constituted the basic precondition for knowledge discovery.

With the ensuing data mining operations, hitherto unknown and useful patterns were ex-

posed. Most notably, unstructured data inside the customer review texts, which were cau-

tiously preprocessed, embodied a main information source of great potential. In the field of

NLP, one prevailing approach to making sense out of textual feedback and customer atti-

tudes is sentiment analysis (Chen et al. 2014, p. 768; Panichella et al. 2015, p. 284). It is

responsible for determining the semantic orientation of provided source material. The ex-

pressed affect or mood can be quantitatively assessed through so called sentiment scores. In

contrast to conventional customer ratings, sentiment scores provide a more fine-grained an-

notation. From the calculational perspective, sentiment scores are computed using either lex-

icon-based or machine learning approaches. The latter approach builds classification models

that learn from training data what kind of sentiment is associated with various textual fea-

tures. Lexicon-based approaches require a dictionary of positively or negatively connotated

words. A summing function evaluates the overall sentiment of a document by taking into

account the individual sentimental values assigned to each of the words. Some hybrid tech-

niques even blend aspects of the two main approaches.

In the present thesis, sentiment detection was conducted with the Valence Aware Dictionary

and sEntiment Reasoner (VADER) package, a lexicon and rule-based sentiment analysis

tool (Hutto and Gilbert 2014, p. 216). Among numerous reasons for choosing VADER, its

aptitude in respect of microblog-like contexts is to be emphasized. Accordingly, the VADER

lexicon is especially attuned to sentiment expressions in product reviews or social media

comments, which are often characterized by abbreviations, slang, and informal language.

VADER includes a list of sentiment-bearing lexical features relevant to this domain. These

lexical features are combined with five general rules considering grammatical and syntacti-

cal conventions that humans use when accentuating sentiment intensity. Due to this mecha-

nism, VADER does not require a large training data set, yet, as HUTTO and GILBERT demon-

strated, it performs very well in direct comparison with other highly regarded sentiment

analysis solutions (Hutto and Gilbert 2014, pp. 224–225). In sum, the above stated reasons

justified the suitability criteria of the tool.

As previously handled, a new Python module for data processing was created. After import-

ing the VADER package, the function dedicated to sentiment detection loaded the prepared

data set into a data frame structure. Then, the script instantiated an object of the Senti-

mentIntensityAnalzyer class. An implemented method in this class takes a string argument,

- 29 -

calibrates its sentiment orientation and returns a dictionary with corresponding polarity

scores. The output dictionary not only contains the proportional categorization into positive,

neutral, or negative but also a compound score summing up all lexicon ratings. The positivity

score describes the overall sentiment polarity on a scale standardized from 0 to 1. Values

close to 1 reflect a high percentage of positivity, whereas 0 denotes complete absence of

positive sentiment. Consequentially, the programmed function iterated over each review rec-

ord to analyze its sentiment and stored the polarity scores in a newly added attribute column.

Ultimately, the data set with annotated sentiment was saved.

4.4.2 Review classification

In order to investigate the iOS update-induced impacts on mobile applications, over half a

million customer feedbacks were collected. Given this background, the fundamental ques-

tion arose whether an arbitrary review referred to iOS 13 or not. A binary classification into

either iOS update related or unrelated presented the solution. Without doubt, the sheer num-

ber of review texts called for computer-aided categorization procedures. Thus, methods were

employed from the research field of machine learning, which lies at the intersection of arti-

ficial intelligence, computer science, and statistics. Machine learning focuses on developing

systems capable of learning patterns and making predictions from data (Fayyad et al. 1996,

pp. 43–44). For the task at hand, machine learning algorithms that classify data items into

one of multiple predefined classes were pertinent. However, the plethora of options to choose

from made the model choice non-trivial. A two-step approach was used to guide the review

classification process, where the comparison of the two differently classified subsets was

conducted as an additional data validation check.

In a first step, customer reviews with a very high certainty of being related to the recent iOS

update were preselected by scanning through all data records. A simple text search was car-

ried out to identify co-occurrence of the term iOS and number 13 in the same document.

Regular expressions allowed specifying character sequences for matching conforming

search patterns. Thereby, all possible constellations between the textual elements iOS and

13 were covered. Since the term iOS accompanied by the number 13 turned out to be a quite

particular combination, an intermediate inspection of the results attested an extremely high

classification accuracy. Despite of its exactness, the simple text search strategy ignored

many reviews that implicitly mentioned iOS 13. For example, customers often referred to it

as the newest firmware update, upgraded operating system or recent iPhone version without

mentioning iOS 13 explicitly. Hence, more sophisticated classification techniques from the

machine learning domain were also put to the test.

- 30 -

The second step aimed at using machine learning algorithms to learn hitherto unidentified

text features that were strongly correlated with the topic iOS 13. This attempt sought to cre-

ate a bigger subset of iOS feedbacks through detecting relevant instances that were evidently

more difficult to classify and thus overlooked in the prior text search. Python’s scikit-learn

package is one of the most widely used open source libraries for machine learning and pre-

dictive modeling (Pedregosa et al. 2011, p. 2825). It integrates state-of-the-art machine

learning algorithms, including support for classification, regression, cluster analysis, and

model selection. Unlike other major machine learning toolkits in Python, scikit-learn incor-

porates compiled code for efficiency, what gives it a significant advantage in performance.

Owing to its consistent, task-oriented interface, it enables an easy comparison of imple-

mented methods. Its minimal dependencies and an excellent documentation count as addi-

tional reasons why scikit-learn is used in both academic and commercial settings.

Concerning the review classification, scikit-learn offered supervised and unsupervised learn-

ing methods (Pedregosa et al. 2011, pp. 2827–2829). Supervised methods try to find rela-

tionships between the feature set and predefined classes. In other words, they are designed

to infer a classifier function by learning from labeled data examples with indicated classes.

This learned function takes in unseen inputs and outputs the predicted class labels. As dis-

tinguished from supervised models, unsupervised machine learning does not presuppose any

training data (Aggarwal and Zhai 2012, pp. 5–6). Its main goal is to capture hidden structures

in unlabeled data. Association rule mining, clustering, or dimensionality reduction are three

popular techniques for unsupervised machine learning. To predict if a customer review refers

to Apple’s iOS patch, the decision fell on supervised machine learning methods because the

task could be cast as binary classification problem. Besides, labeled data records were al-

ready available from the earlier conducted text search with regular expressions. These la-

beled reviews about iOS 13 served as training examples.

The model selection entailed a thorough comparison of several candidates. Three universally

recognized methods were elected from among the multitude of text classification algorithms,

namely naïve Bayes, logistic regression, and random forest. The naïve Bayes classifier is

commonly used for establishing a first baseline. It is a simple generative classification algo-

rithm that models the document distribution for each class in a probabilistic manner

(Aggarwal and Zhai 2012, pp. 181–182). Following Bayes’ theorem, it calculates the poste-

rior probability of a class by exploiting the distribution of words in a given document. The

calculation is based on making the simplifying assumption of stochastic independence be-

tween word features in each class. Assuming this conditional independence is hardly ever

true in practice, which is why it is titled naïve. In spite of its strong independence assumption,

naïve Bayes achieves good classification performance when the feature dependencies cancel

one another out. A multinomial model is typically used for document classification, whereby

- 31 -

word frequencies are captured in a so-called bag-of-words vector representation, ignoring

grammar or word positions. Bayes’ theorem is applied to the multinomial word distribution

to compute the posterior probability of the class for a given document. Mathematically

speaking, the posterior probability of the observed feature vector 𝑥1, 𝑥2, … , 𝑥𝑛 belonging to

a particular class 𝐶𝑗 can be estimated as the product of individual feature probabilities con-

ditioned on class 𝐶𝑗 multiplied with the prior class probability 𝑃(𝐶𝑗) divided by the prior

probability of the predictor variables 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛). Since the latter is constant for all clas-

ses, the denominator is often neglected in the calculation. Out of all the different classes, the

label of the most probable class is assigned to the document.

𝑃(𝐶𝑗|𝑥1, 𝑥2, … , 𝑥𝑛) = ∏ 𝑃(𝑥𝑖|𝐶𝑗)

𝑛

𝑖̇=1

⋅
𝑃(𝐶𝑗)

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)

Logistic regression, being the discriminative analog of naïve Bayes, was chosen as a second

option. While generative algorithms must assume some conjectures about the underlying

data structure, such as feature independence in naïve Bayes, discriminative algorithms make

fewer assumptions (Ng and Jordan 2002, pp. 842–843). Contrary to generative classifiers

that try to compute the actual class distribution, discriminative ones compute the decision

boundary between classes. The mathematical formula of the binary logistic regression model

is expressed below. In the case of a linear classifier like logistic regression, the decision

boundary is determined by a linear combination 𝛽0 + 𝛽1 ⋅ 𝑥1 + 𝛽2 ⋅ 𝑥2 + … + 𝛽𝑛 ⋅ 𝑥𝑛 + 𝜀

of 𝑛 different features plus an error term 𝜀 (Aggarwal and Zhai 2012, pp. 196–197). Provided

a set of training data, the model is trained through adjusting the 𝛽 parameters to maximize

the conditional likelihood of labels 𝐶𝑗 given the corresponding 𝑥1, 𝑥2, … , 𝑥𝑛 observations.

As denoted in the binomial logistic regression equation below, the logistic sigmoid function

is applied to transform the output into a probability value between 0 and 1. To map the

resulting value to a binary category, a classification threshold of 0.5 is set by default. Having

calculated the posterior class probability, the other class gets assigned the complementary

probability 1 − 𝑃(𝐶𝑗 = 1|𝑥1, 𝑥2, … , 𝑥𝑛). Even though logistic regression can be generalized

to multiclass problems, the binary model was sufficient for the planned review classification.

𝑃(𝐶𝑗 = 1|𝑥1, 𝑥2, … , 𝑥𝑛) =
1

1 + ⅇ−(𝛽0+𝛽1⋅𝑥1+𝛽2⋅𝑥2+ … +𝛽𝑛⋅𝑥𝑛+𝜀)

Random forests completed the selection of three classification methods. This family of en-

semble machine learning algorithms has proven to be especially suited for dealing with text

categorization (Fernández-Delgado et al. 2014, p. 3133). The random forest classifier, like

its name suggests, creates an ensemble of decision trees where each tree is constructed from

randomly selected training data subsets. By aggregating the predictions from the decision

tree ensemble, the final class prediction is derived. Decision trees are capable of modeling

- 32 -

one complex decision into a sequence of primitive rules. They are designed to perform hier-

archical division of the training data space, in which conditional control statements with

respect to an attribute are traversed recursively (Aggarwal and Zhai 2012, pp. 176–177). The

splitting objective is to produce more homogeneous subspaces than the original data space

in terms of their class distributions. In the context of text classification, splitting conditions

are usually about the absence or presence of specific terms. To quantify discriminative abil-

ities of words, the implemented tree algorithm used the Gini-index. As mathematically ex-

pressed below, the Gini-index is calculated by summing the squared fractions of class label

presence 𝑝𝑗(𝑤)2 for word 𝑤 across the 𝐾 different classes (Aggarwal and Zhai 2012, p.

168). Gini-index values 𝐺𝑖𝑛𝑖(𝑤) lie in the range (1/𝐾, 1), whereby higher values indicate

greater discriminative power of word 𝑤. Given an exemplary document, decision trees apply

a sequence of rules at their nodes to divide the data space until a leaf node is reached. De-

pending on the majority class inside the leaf node, the respective label gets assigned. Unfor-

tunately, out of all machine learning algorithms, decision trees are amongst the most suscep-

tible to overfitting. The latter occurs when a model captures random noise rather than to

generalize from the training data. Pruning nodes to reduce complexity is a way to mitigate

this problem. Further, irrespective of pruning, the random forests classifier is robust against

overfitting due to its inherent randomness and voting mechanism as ensemble method be-

cause picked up noise averages out across various decision trees.

𝐺𝑖𝑛𝑖(𝑤) = ∑ 𝑝𝑗

𝐾

𝑗=1

(𝑤)2

Returning to the two-step review classification process, the second step was devoted to train-

ing the three discussed classifiers. A programmed Python function sampled roughly 25,000

records from the preprocessed data. Labeled iOS 13 reviews that resulted from the preceding

text search were integrated in this training data set. Then, all text documents were converted

into numeric vectors to enable mathematical computation. An aforementioned technique for

mapping words to vectors, also known as word embedding, is the bag-of-words approach,

where documents are represented as multidimensional vectors with word counts. But instead

of relying on normal enumeration, another weighting schema named term frequency-inverse

document frequency (TF-IDF) was preferred (Aggarwal and Zhai 2012, pp. 389–390). TF-

IDF weights measure how relevant a word is to a document in a document corpus.

𝑤𝑠,𝑡 = 𝑡𝑓𝑠,𝑡 ⋅ 𝑙𝑜𝑔 (
𝐷

ⅆ𝑓𝑠
)

According to the TF-IDF formula above, the word weighting factor 𝑤𝑠,𝑡 is calculated by

multiplying the frequency of the term 𝑠 in the document 𝑡 with the logarithm of the inverse

document frequency, computed as the total number of documents 𝐷 divided by the number

- 33 -

of documents containing 𝑠. Put differently, word importance is proportional to the number

of times it appears in a document, but is offset if the frequency of the word in the document

corpus is high. For converting review texts into a matrix of TF-IDF features, scikit-learn’s

TfidfVectorizer function was adopted. The TfidfVectorizer function also allowed the extrac-

tion of word n-grams, which encompassed all combinations of adjacent words of length n

from the source text. Through including both unigram and bigrams, some degree of contex-

tual and word-order information was retained. As a result, the calculated TF-IDF weights

were incorporated in a two-dimensional word-document matrix whose rows represented

document vectors and columns represented all word features in the corpus. This matrix was

split randomly with ratio 80:20 into training and test subset, respectively. Next, naïve Bayes,

logistic regression, and random forest classifiers were fitted on the training records and af-

terwards tested on the validation subset. A comparison between the three learned models

assessed performance indicators, such as accuracy, precision, recall, or the F1-score. While

accuracy measures the overall correct discriminations, precision reflects the percentage of

correct instances among all instances classified as positive (Aggarwal and Zhai 2012, p. 33).

Recall measures the percentage of correct instances retrieved from all positives. The F1-score

takes the harmonic mean of precision and recall. Finally, predictions of the best performing

model were stored in the data set, which consequently listed two class labels from both the

regular expression text search and the machine learning approach.

4.4.3 Topic modeling

Aside from the executed document classification, a successive data mining task concentrated

on corpus summarization. Outcome of the classification process was a subset of customer

reviews with feedback regarding iOS 13. However, the sheer number of reviews made a

manual content analysis impossible. Computer-aided knowledge extraction was necessary.

That is why advanced NLP techniques were employed to provide summary insights into the

overall content of the review text collection. A practical method for this purpose is topic

modeling (Aggarwal and Zhai 2012, pp. 131–132). The general idea behind topic modeling

is to discover hidden semantic patterns inside large bodies of text. Because of its connection

to clustering as well as dimension reduction, topic modeling is considered as unsupervised

machine learning. Unsupervised techniques can transform documents into new representa-

tional ways, which reveal their innate structures and interrelations. Topic modeling groups

documents into thematic clusters based on information about document similarity. Compa-

rable documents are associated with the same clusters, though, since topic modeling is a

probabilistic approach, soft clustering is used, wherefore one document can be assigned to

multiple topics. Each document has a membership probability of belonging to a certain the-

matic cluster and each cluster is a function of all original text features. Considering each

topic as a dimension, clustering induces a low-dimensional view, what supports analysis and

- 34 -

interpretation. In other words, topic modeling integrates soft clustering with dimension re-

duction by linking documents with a predetermined number of latent topics.

In the thesis at hand, topic mining was performed with the latent Dirichlet allocation (LDA)

algorithm. LDA, first introduced by BLEI et al. in the year 2003, is a probabilistic generative

model for documents (Blei et al. 2003, pp. 993–996). It is a Bayesian model and derives its

name from having a Dirichlet prior. Per definition, the model treats each document as a

distribution of a preset number of 𝑇 topics. Each topic, in turn, is treated as a multinomial

distribution of words. In a further step, it is assumed that documents are generated by select-

ing a topic set and then for each topic a set of words. This generative process is depicted in

the plate diagram in Figure 4 below.

Figure 4: Plate notation for latent Dirichlet allocation (Blei et al. 2003, p. 1006)

Initially, the chosen Dirichlet parameters α and β govern the per-document topic distribution

and per-topic word distribution, respectively. In plate notation, rectangles symbolize re-

peated variables. Thus, a word distribution φ exists for each of the 𝑇 topics and in the same

manner each of the 𝐷 documents has its own topic distribution θ. A single document consists

of 𝑁 words in total, thereby, the hidden topic variable z appears 𝑁 times. Eventually, each

document is generated by drawing 𝑁 words 𝑤 from the multinomial distribution 𝑝(𝑤|𝑧). It

is worth noting that posterior inference works backwards reversing the generative process

such that hidden model parameters are predicted using text data of the corpus (Aggarwal and

Zhai 2012, pp. 142–144). As words are the only known piece of data, the observable word

variable 𝑤 is shaded in the diagram. Training an LDA model involves estimating ideal pa-

rameters, under which the likelihood of generating the training documents is maximized.

Therefore, LDA results in patterns of terms which frequently co-occur with each other in

- 35 -

documents. Coherent topics are identified amidst these patterns. Moreover, another benefit

of LDA is its capability of resolving polysemy and semantic ambiguity. For example, a term

appearing in multiple topics can have distinct meanings, however, LDA disambiguates pol-

ysemous terms by leveraging contextual information provided that the topics are associated

with other words in the document. Also, LDA favors learning a smaller number of broad

topics rather than a large number of overly specific ones, which was appropriate for the

intended high-level analysis of update issue categories. Taken together, these advantages

predestined LDA as the optimal topic modeling algorithm for this thesis.

Concerning the data processing script, the NLP toolkit gensim was imported (Rehurek

2019). It provides various topic modeling scripts along with an implementation for LDA. To

begin with, categorized iOS 13 feedbacks in their entirety were loaded into a list of texts. A

loop function subsequently tokenized each text document into a list of words. If adjacent

terms co-occurred at least 15 times throughout the corpus, bigrams were formed. Additional

preprocessing was not required due to the earlier text preparation. Next, a function from

gensim constructed a dictionary with a mapping between words and integer identifiers. Ex-

treme cases, like tokens that were present in less than five documents, were filtered out from

the vocabulary. As LDA relies on term frequency vectors, the corpus and dictionary were

combined to construct a bag-of-words representation. Several LDA models with a varying

number of fixed topics were trained on the bag-of-words corpus. The information retrieval

indicators coherence and perplexity helped with scoring each model (Aggarwal and Zhai

2012, pp. 149–150). Coherence measures the degree of semantic resemblance between top

words of a topic. Perplexity indicates how well a probabilistic model predicts a sample. Ul-

timately, the output of the best topic model was captured for the ensuing empirical analysis.

4.5 Data evaluation

In accordance with the study design, the last step of the knowledge discovery process was

reserved for data evaluation. During the previous processing phase, a series of data mining

algorithms were applied, such as review classification, sentiment detection, and thematic

corpus summarization. The data evaluation step referred to interpreting those mined data

patterns (Fayyad et al. 1996, pp. 41–42). It involved statistical analyses, quantitative

measures, and visualization techniques. Two chapters were dedicated to data evaluation.

Chapter 5 provides a descriptive commentary that discloses empirical findings as well as

analytical insights, underpinned by graphs and tables. Chapter 6 elaborates on the findings

and explains uncovered correlations, supported by personal interpretations and related liter-

ature. On this evidence basis, the three research hypotheses were discussed and verified. A

brief overview of the data evaluation procedure is outlined in the following passage.

- 36 -

The procedure started with evaluating the document classification, since all ensuing analyses

built upon the categorized review data. After comparing performance metrics of all three

classifiers, the best model was selected. The predictions from this machine learning model

were benchmarked against the matches of the regular expression text search that served as

training data. Categorized instances of these approaches were systematically examined to

ensure data validity of both subsets. Then, classified iOS 13 feedback texts from both subsets

were merged into one data set. Descriptive statistics were used to show the characteristics

and distribution of iOS-related comments across various dimensions, such as app category

or popularity rank. Thereafter, another evaluation step analyzed sentiment and rating scores

to ascertain the detrimental influences of the operating system update on user satisfaction. It

was searched for negative review polarity and declines in star ratings. In particular, biserial

correlation coefficients were computed to quantify the relationship between negative cus-

tomer feedback and iOS 13 references. Furthermore, the evaluation procedure focused on

cluster analysis in the course of choosing the best LDA topic model. Coherence and perplex-

ity scores of topic models with a varying number of topics were assessed. After the best

model was chosen, the extracted topics were examined. Documents with strong thematic

similarity were grouped in order to form distinct update issue types. Each identified issue

type was studied in depth with quantitative and qualitative analyses. The discoveries were

used to prove the manifestation of separable update issue categories in customer feedback.

For each established issue type, adverse impacts on users’ continuance intention were inves-

tigated. Major declines in ratings or sentiment polarity were scrutinized. In this regard, a

Kruskal-Wallis test, sometimes referred to as one-way analysis of variance on ranks, was

carried out in order to test if the negative impact of different update issue categories varied

in terms of magnitude. Along with the test statistics, p-values were calculated to determine

the significance of the results, whereby a significance level of α = 0.05 was designated as

threshold for all tests.6 Eventually, the series of evaluation results culminated in the conclud-

ing chapter 7 with a summary of the key findings and a statement in respect of theoretical

and practical implications.

6 Significance levels: significant at p ≤ 0.05; very significant at p ≤ 0.01; highly significant at p ≤ 0.001

- 37 -

5 Empirical analysis and results

The present chapter deals with empirical analyses of the processed reviews. As an essential

part of the data evaluation, it describes the results of applied data mining methods. Firstly,

three candidate models are assessed regarding their classification performance. Subsequent

to the model selection, a statistical summary and inspection of the classified review data is

provided. Another subchapter continues with a temporal analysis of rating and sentiment.

Lastly, extracted update issue types from topic modeling are evaluated in detail.

5.1 Assessment of classification models

A direct comparison of multinomial naïve Bayes, logistic regression, and random forest clas-

sifiers was done in consideration of model goodness. Through the regular expression text

search, 3,416 reviews with iOS 13-related content were labeled, which made up a small share

of the total of 646,580 scraped records. Thus, oversampling was conducted in order to avoid

extreme class imbalance. The final training data set consisted of 25,000 documents, includ-

ing all 3,416 labeled iOS 13 instances. An estimator function from scikit-learn helped during

the training phase, where the data set was split in 𝑘 sets and each model was fitted 𝑘 times

on different subsets, with one set held out each time for testing (Pedregosa et al. 2011, p.

2828). This procedure, also known as 𝑘-fold cross validation, was initiated setting 𝑘 = 5.

Below, Figure 5 depicts the cross-validation outcome. Black dots mark the model accuracies.

Figure 5: Boxplots of cross validation accuracy scores

In Figure 5, discrepancies between the three models become apparent. In comparison with

naïve Bayes (NB), logistic regression as well as random forest classifiers had superior clas-

sification accuracies, though the Bayesian model showed less variability. This was partly

attributed to the bias-variance trade-off. High bias emerges from oversimplifying model as-

sumptions, whereas high variance models make less assumptions and pay more attention to

training data. Naïve Bayes’ strong independence assumption implied a lower variability, but

it could not accurately represent the data leading to worse accuracy. Another reason was

- 38 -

that, given enough training data, discriminative models, like logistic regression or random

forests, tend to outperform generative models. Previous research demonstrated this phenom-

enon across many situations (Ng and Jordan 2002, p. 841). Yet, accuracy scores alone were

not enough for the model selection. Table 3 lists supplementary performance measures.

 Multinomial NB Logistic regression Random forest classifier

Accuracy 0.90 0.98 0.99

Precision 0.97 0.99 0.99

Recall 0.28 0.86 0.93

F1-score 0.43 0.92 0.96

Table 3: Performance metrics for classification model assessment

The metrics confirmed the inferiority of naïve Bayes. In the test data, the majority of actual

iOS 13 feedbacks were not recognized by the Bayesian model. Hence, its recall score of

0.28, the ratio of correctly classified iOS 13 reviews, was roughly three times lower than the

score of logistic regression. Although naïve Bayes is often proposed in text classification

literature, it turned out to be suboptimal for the classification problem at hand. In contrast,

logistic regression and random forests were both very good in terms of model performance.

Accuracy, precision, and F1-score happened to be similar in both models. Still, the random

forest classifier achieved a 7 percentage points higher recall value. From out of 665 iOS 13

comments in the test set, it retrieved 618 comments and logistic regression recognized 573.

These differences widened after the two learned models predicted the full data set. While

random forests missed 47 among 3,416 relevant instances, logistic regression failed to cate-

gorize 351. The former had also a 12 percentage points better precision than the latter when

predicting the entire data set. Additionally, false positive predictions stood in the center of

interest because they included reviews which were potentially related to the recent iOS patch

without mentioning iOS 13 explicitly and thereby could not be labeled by the prior text

search as such. The logistic regression and random forest classifiers predicted 1,271 and 714

false positives, respectively. A manual check exposed that the more inaccurate logistic re-

gression overgeneralized. The 714 false positives from the stricter random forest model were

more promising. By way of exemplification, Table 4 lists a few unprocessed user comments

of false positive predictions stemming from the random forest classifier.

App Date Review content

Audible 23.10.2019 Audible won't load now on my 11 Pro running 13.1.3 :(

Capital One 24.09.2019 Great app on every level, however the widget that provides your account

balance has stopped working after upgrading to 13.0 and later 13.1

Fitbit 17.12.2019 Ever since the new IOS came out I haven’t been able to receive texts on my

Fitbit Alta HR. It’s been far too long for this issue to not be resolved.

Instagram 02.10.2019 Recently Apple has included dark mode in their new iOS update which has

changed the themes in many applications. It would be cool to add dark mode.

Youtube 16.10.2019 The app has become 95% non functional since the 13.1.3 update

Table 4: False positive predictions of random forest classifier

- 39 -

The false positive predictions of the random forest classifier demonstrated its ability to gen-

eralize. It successfully picked up text patterns correlated with Apple’s thirteenth operating

system update. During the training phase, the algorithm found associations in respect of iOS

13-related version numbers, iPhone models, or specific application issues. The same held

true for prevalent words in the software update context. Owing to the easy interpretability of

decision trees, learned associations were observable within the individual tree structures.

feature_names = tfidf_vectorizer.get_feature_names()

decision_tree= random_forest.estimators_[random.randrange(0, 50)]

tree_rules = export_text(decision_tree, feature_names=feature_names)

print(tree_rules)

|--- ios13 <= 0.08

| |--- iphone 11 <= 0.03

| | |--- after upgrade <= 0.03

| | | |--- installing ios <= 0.03

| | | | |--- since updated <= 0.05

| | | | | |--- xr running <= 0.05

| | | | | | |--- please fix <= 0.04

| | | | | | | |--- not working <= 0.06

| | | | | | | | |--- 13 keyboard <= 0.05

| | | | | | | | | |--- recent os <= 0.05

| | | | | | | | | | |--- truncated branch of depth 101

| | | | | | | | | |--- recent os > 0.05

| | | | | | | | | | |--- class: 1.0

| | | | | | | | |--- 13 keyboard > 0.05

| | | | | | | | | |--- class: 1.0

| | | | | | | |--- not working > 0.06

| | | | | | | | |--- class: 1.0

| | | | | | |--- please fix > 0.04

| | | | | | | |--- bug <= 0.06

Figure 6: Extract from decision tree of random forest classifier

An extract from a randomly chosen decision tree is illustrated as console output in Figure 6

above. The depicted decision tree incorporates word features along with conditional control

statements. At each node of the tree, the TF-IDF weight of a feature is visible. Some tree

rules were connected to the newest iPhone 11 or XR versions, others referred to events after

the iOS update. Several different decision trees were scrutinized in this way, which unveiled

further evidence considering the classifier’s goodness.

In sum, the performance metrics and the analysis of categorized reviews provided important

information for the model selection. As has been pointed out, the random forest classifier

ended up being the best model. This outcome was in line with past studies which bench-

marked random forests against other algorithms for text classification, whereby the superior

discriminative power of random forests stood out (Fernández-Delgado et al. 2014, p. 3133).

A second argument for selecting the random forest classifier was its transparent learning

mechanism. Visualized tree rules made the decision-making process comprehensible. Fi-

nally, the ensemble method random forests showed no critical signs of overfitting. Its gen-

eralization capability enabled the identification of additional reviews with indirect iOS 13

reference. All model predictions were saved for the succeeding validation check.

- 40 -

5.2 Statistical summary of classified reviews

Descriptive statistics were fundamental in order to gain an in-depth understanding of the

acquired feedback data. Feedback about iOS 13 was obtained through the two-step review

classification process. This categorizing operation, which involved regular expression text

search and random forests as machine learning algorithm, took into account both explicit

and implicit mentions of iOS 13. It resulted in two different data sets that needed to be

checked for conformity. For this purpose, the table below lists comparative key figures.

 iOS 13 reviews labeled

via regular expressions

iOS 13 reviews labeled

via machine learning

Total

data set

Number of reviews 3,416 714 646,580

Average rating 2.38 2.44 3.54

Standard deviation of rating 1.45 1.48 1.71

Average characters per review 261 239 178

Standard deviation of characters

per review
262 206 222

Table 5: Descriptive statistics of classified reviews

From 4,130 identified iOS 13 reviews, 3,416 were tagged via regular expressions and further

714 via machine learning. According to Table 5, the discrepancy in average review rating

between the iOS 13 subsets amounted to merely 0.06 rating points, which was a relatively

small difference in view of the rating standard deviations. The difference between the rating

standard deviations themselves was just half as large with 0.03 points. Likewise, the figures

relating to review length indicated similar properties of the classified subsets. In conse-

quence of the evident conformity, all 4,130 records stemming from both classification ap-

proaches were considered as valid iOS 13 feedback. Besides, a comparison between iOS 13

reviews and the full data set evinced substantial disparities. Not only was the mean of iOS

13 review ratings over 1 point lower than the total average rating, but also the variability of

the former was less. Concerning characters per review, labeled comments referencing Ap-

ple’s thirteenth operating system update tended to be longer than the overall average. Yet,

classified iOS 13 records constituted a rather small part of the whole data set, wherefore its

concrete influences ran into danger of getting lost in the masses of other reviews. It was thus

necessary to determine application subgroups with stronger repercussions of the iOS patch.

 Country Popularity rank

GB US 1-2 3-4 5-6 7-8 9-10

Number of iOS 13 reviews 427 3,703 1,939 819 357 411 604

Total number of reviews 63,352 583,228 285,105 114,241 55,061 84,950 107,223

Table 6: Breakdown of reviews across country and ranking dimensions

Table 6 describes the portion of reviews about iOS 13 for the dimensions of country and app

ranking. The table values inside the country columns show that the majority of iOS com-

ments were scraped from the United States App Store. Even though fewer records came from

- 41 -

Apple’s British App Store, the relative shares of iOS 13 records for both marketplaces were

roughly the same, namely 0.67% for Great Britain and 0.63% for the United States. These

percentages signaled that, at large, the operating system update affected the two countries to

the same extent. Another dimension within Table 6 is the ranking position. Applications

ranked first or second had the highest and those ranked fifth or sixth had the lowest number

of iOS 13 reviews. Their relative iOS 13 comments share was, however, very similar with

0.68% for the former and 0.65% for the latter ranking range. While the ranking range 3-4

had the highest ratio of iOS 13 comments, the positions 7-8 had the lowest, but the ratio

increased again for the last two ranking places. Taken together, the ranking values gave no

hint of an apparent relationship between app popularity and the ratio of iOS 13 references.

Since neither country nor app ranking were clearly interconnected with the relative propor-

tion of iOS feedback, app category was explored as a third dimension.

Figure 7: Distribution of iOS 13 reviews across app categories

The bar chart in Figure 7 displays the absolute number of iOS 13 reviews across all studied

app categories, where each bar of the 15 categories aggregates records of the top ten selected

apps in that group. It is visible that every single category contained user remarks about Ap-

ple’s recent iOS version, which confirmed the update’s broad impact. At the same time, by

looking at the bar sizes above, an extremely uneven spread of user reviews was discernible

between top and bottom categories of the chart. Putting it precisely, the top three categories

made up more than half of the iOS 13 records with a 52.71% share, whereas the three small-

est categories Travel, Food & Drink, and Education only contributed 4.12%. Aside from this

observation, it is noteworthy that the total sum of user comments in a category was not pro-

portional to the ratio of iOS 13 references. For instance, the categories Photo & Video,

Games, and Entertainment held the largest portion of overall reviews, but as seen in the chart,

they did not encompass the most comments about the iOS patch. The category Productivity

29

67

74

83

96

110

113

168

218

225

384

386

630

751

796

0 200 400 600 800 1000

Education
Food & Drink

Travel
Lifestyle

Entertainment
Books

Business
Shopping

Finance
Utilities
Games

Health & Fitness
Productivity

Social Networking
Photo & Video

Number of iOS 13 reviews

C
at

eg
o

ry

- 42 -

had the largest relative proportion of iOS 13 records with 5.25%, though it was the category

with the second lowest number of comments among all others. Photo & Video as category

with the most reviews, on the other hand, distinguished itself with a quite low ratio of 0.54%

iOS 13-related comments. Therefore, there was no definite interrelation between the sheer

number of iOS 13 references in a category and the actual relative distribution. As an inter-

mediate result, none of category, country, or ranking dimensions could predicted the relative

frequency of iOS 13 problems. The update repercussions were determined by a complex of

multiple variables as opposed to a set of high-dimensional general rules. Consequently, the

further analysis focused on individual applications which were especially affected.

App Publisher Category Total number

of reviews

Percentage of

iOS 13 reviews

Gmail Google LLC Productivity 2,647 13.15%

Fitbit Fitbit, Inc. Health & Fitness 5,114 6.77%

Duo Mobile Duo Security Business 180 6.67%

Google Chrome Google LLC Utilities 701 6.28%

Amazon Flex AMZN Mobile LLC Business 979 6.03%

Google Google LLC Utilities 1,002 5.29%

Yahoo Mail Yahoo Productivity 2,052 5.21%

Microsoft Outlook Microsoft Corp. Productivity 2,133 5.20%

Dropbox Dropbox Productivity 310 5.16%

WhatsApp Messenger WhatsApp Inc. Social Networking 6,313 4.89%

Adobe Acrobat Reader Adobe Inc. Business 300 4.00%

Verizon Call Filter Verizon Wireless Utilities 386 3.37%

American Airlines American Airlines Travel 457 2.63%

Ring Ring.com Utilities 1,433 2.37%

Amazon AMZN Mobile LLC Shopping 4,828 2.30%

Google Home Google LLC Lifestyle 1,018 2.26%

Facebook Facebook, Inc. Social Networking 11,777 2.05%

Google Sheets Google LLC Productivity 371 1.89%

Audible Audible, Inc. Books 3,967 1.74%

Messenger Facebook, Inc. Social Networking 4,845 1.69%

Table 7: Top 20 apps with highest percentage of iOS 13 reviews

In Table 7, the 20 applications with the greatest relative share of iOS 13 comments are item-

ized. Instead of sorting by absolute comments, percentages were preferred to avoid clouding

real update influences through potentially low ratios of iOS-specific content. Within the third

column, 9 of the 15 distinct categories are represented. As has been mentioned before,

Productivity had on average the highest percentage values and it is also the most prevalent

category inside the table. Out of 150 sampled apps, an overwhelming majority of 119 com-

prised iOS 13 feedback. Among the 20 most affected products, the table includes widely

popular apps, such as WhatsApp, Facebook, Amazon, Microsoft Outlook, or various prod-

ucts from Google. All these apps belong to professional developer studios and usually take

up upper ranking positions. So, even product portfolios of reputable technology companies

were subject to complications regarding Apple’s newest operating system. During the sta-

- 43 -

tistical analysis, it was already noted that reviews with iOS 13 remarks tended to have sub-

stantially lower ratings than the total average. Following up on this, the ensuing step exam-

ined changes in sentiment as well as rating scores from applications impacted by the update.

5.3 Rating and sentiment analysis

In order to understand how App Store customers reacted after the release of iOS 13, the star

rating system played a central role. Every scraped review was interlinked with such a rating

ranging from 1 to 5 stars, enabling customers to communicate their overall evaluation in a

single number. The numerical rating data allowed the usage of quantitative analyses. More-

over, it provided an excellent proxy measure for changes in users’ continuance intention.

Complementary to app ratings, the sentiment of each review text was determined in the

course of the data mining process. Depending on the positive or negative connotation of

words present in those reviews, the sentiment analysis tool VADER calculated a positive

polarity score between 0 and 1, with 1 being maximum positivity. It is worth mentioning

that sentiment was not inevitably consonant with rating. The data set analysis revealed that,

in a few cases, users complained about app problems after the iOS update, but they still liked

the app and did not project these issues on the app itself giving it a 5-star rating. Nevertheless,

rating and sentiment of a review were typically in accordance with another. As a first plau-

sibility test of derived sentiment scores, a simple correlation analysis was conducted.

Figure 8: Linear relationship between rating and sentiment scores

The scatter plot in Figure 8 depicts rating against sentiment scores. Both average values were

calculated and plotted for all 150 applications, which are marked as gray data points. On a

closer look, there is a strong positive linear relationship because of the relatively small spread

of points around the black regression line. Both variables move in tandem so that higher

ratings go together with more positive sentiment and vice versa. To exactly measure the

linear association between the two variables, Pearson’s correlation coefficient, sometimes

𝑟 = 0.94
𝑝‐ 𝑣𝑎𝑙𝑢ⅇ ≤ 0.001

- 44 -

referred to as Pearson’s 𝑟, was used. It equals the covariance of the two variables divided by

their respective standard deviations. Its values can vary from -1 to 1, where a value of 0

means that no linear relation exists and a value of -1 or 1 reflects a perfect negative or posi-

tive linear association, respectively. The computation of Pearson’s 𝑟 and its corresponding

p-value relied on SciPy, a Python-based scientific computing library providing a large num-

ber of statistical functions (Virtanen et al. 2020, p. 1). With a correlation coefficient of 0.94,

the very strong, positive correlation visible in Figure 8 was confirmed. A p-value ≤ 0.001

indicated an exceptionally low probability of obtaining a correlation coefficient from an un-

correlated data source that is at least as extreme as the one computed.

Figure 9: Rank-biserial correlation analysis results

A second correlation analysis concentrated on whether customer reviews that mention Ap-

ple’s iOS update were associated with declining sentiment and rating scores. Similar to the

preceding calculations, averages for rating and sentiment were computed, although applica-

tions with less than five references about the iOS patch were excluded. In addition, the mean

values were calculated twice, once for iOS 13 and once for non-iOS 13 classified reviews.

The results are illustrated in Figure 9 above. Data points mark average values for each of the

78 apps. The dashed line passes through the group means of the separated data point classes.

According to Figure 9, average app ratings with iOS 13 reference turned out to be worse

than ratings without. The latter had also a higher variation than the former. These findings

were even more pronounced in respect of sentiment scores. While average positivity values

for reviews without iOS 13 reference were scattered from 0.1 up to 0.5, app reviews about

iOS 13 were clustered around 0.15 and below. Thus, upon visual inspection only, a negative

relationship between user remarks on the iOS update and average app rating as well as sen-

timent scores was apparent. Furthermore, rank-biserial correlation using Spearman’s ρ was

consulted as supplementary evidence. It is the non-parametric counterpart of Pearson’s 𝑟 in

situations when one variable is dichotomous. Unlike Pearson correlation, Spearman’s rank

ρ = −0.42
𝑝‐ 𝑣𝑎𝑙𝑢ⅇ ≤ 0.001

ρ = −0.66
𝑝‐ 𝑣𝑎𝑙𝑢ⅇ ≤ 0.001

- 45 -

correlation does not assume that the data are normally distributed or homoscedastic

(Spearman 1904, p. 80). Considering average app rating and iOS 13 reference, the correla-

tion coefficient of -0.42 suggested a moderate negative correlation. As noticeable in Figure

9, the monotonic, negative correlation for sentiment was even stronger with a value of -0.66.

The two estimated p-values attested that both calculated coefficients were highly significant.

 Month before

release

First month

after release

Second month

after release

Third month

after release

Grand

total

Number of iOS 13 reviews 98 2,593 1,052 387 4,130

Average rating 2.49 2.48 2.23 2.19 2.39

Standard deviation

of rating
1.55 1.49 1.38 1.36 1.46

Average sentiment score 0.14 0.15 0.13 0.12 0.15

Standard deviation

of sentiment score
0.12 0.14 0.13 0.12 0.14

Table 8: Temporal changes in rating and sentiment scores of iOS 13 reviews

In a subsequent analysis step, temporal rating and sentiment changes in iOS 13 feedback

were explored. Table 8 includes relevant numbers over the four-month observation period

from 19 August till 19 December 2019. During the month before its release date on 19 Sep-

tember, the iOS 13 update was cited in merely 98 reviews by users with access to the public

beta version. Customers wrote the bulk of iOS 13 reviews within the first month after release

with a total of 2,593 records, whereby this number was more than cut in half in the second

and again in the third observation month. Besides, the table shows a substantial drop in av-

erage rating between the first month and the following two months after the iOS release. The

same applied for average sentiment scores, albeit in weakened form. Standard deviations for

both rating and sentiment were lowest during the last two observed months. Put concisely,

iOS 13 feedback became less prevalent over time, but its negative effect on app rating inten-

sified along with a reduction in positive review sentiment.

Figure 10: Weekly rating and sentiment scores of Gmail app

By means of an example, weekly rating and sentiment values for Google’s Gmail app, which

had the highest relative share of iOS 13 references, are displayed in Figure 10 above. The

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.50

1.00

1.50

2.00

2.50

3.00

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

A
v
er

ag
e

se
n
ti

m
en

t
sc

o
re

A
v
er

ag
e

ra
ti

n
g

Week number

Rating Sentiment score

- 46 -

data basis consisted of 2,647 scraped Gmail reviews. Calendar weeks are listed on the ab-

scissa. A vertical line at week number 38 marks the week of the update release. As depicted

in the graph, both average rating and positivity score started to deteriorate after week 38.

The decline continued until a trough was reached in week 45. It was not solely caused by the

348 classified iOS references, but also by hitherto undetected iOS 13 feedback. The decrease

in rating and positivity occurred mainly throughout the first and second month after the iOS

patch. Then, the values slightly recovered within the remaining weeks. Across the entire

observation period, sentiment and rating were correlative in their weekly changes.

WhatsApp, Yahoo Mail, or other apps which were heavily impacted by iOS 13 exhibited a

similar development like in the case of Gmail. Altogether, the rating and sentiment analysis

of individual apps validated the findings that were discovered to this point.

5.4 Evaluation of topic model and update issue types

The LDA topic modeling algorithm was employed for discovering thematic dimensions con-

tained in a collection of app reviews. Aside from review documents, LDA required a prede-

fined number of topics as an input parameter. To ascertain the optimal number of topics,

multiple LDA models with varying topic numbers were trained, compared and graphically

visualized. The two curves in Figure 11 denote changes in coherence and perplexity scores

for models with different topic numbers ranging from 2 to 20. In terms of coherency, starting

out from two topics, coherence scores improved with an increasing number of topics, peaked

at six topics and then gradually deteriorated for larger numbers. Due to the innate variability

of LDA models, which originates from the initial random topic assignments, several training

repetitions were executed to verify this curve progression. In consideration of model per-

plexity, the calculated negative logarithmic perplexity decreased with the number of topics,

which is associated with better generalization performance (Blei et al. 2003, p. 1008). Re-

garding the intention of identifying consistent update issue themes, coherency was a more

decisive factor for parameter optimization, wherefore a topic number of six was chosen.

Figure 11: Topic model coherence and perplexity

0.25

0.30

0.35

0.40

0.45

0.50

2 4 6 8 10 12 14 16 18 20

C
o

h
er

en
ce

 s
co

re

Number of topics

Model coherence

-7.50

-7.30

-7.10

-6.90

-6.70

-6.50

2 4 6 8 10 12 14 16 18 20

P
er

p
le

x
it

y
 s

co
re

Number of topics

Model perplexity

- 47 -

In the ensuing analysis step, the modeled topics were interpreted. A common practice for

making sense of topic models is to look at the most relevant words within each topic. To this

end, a term relevance metric was used from LDAvis, a web-based interactive visualization

of LDA generated topics (Sievert and Shirley 2014, p. 63). Below, Table 9 provides the top

15 most relevant terms for each of the six modeled topics.

Topic Top 15 topic-related terms sorted by relevance metric7

1
[“dark mode”, “add”, “support”, “need”, “dark”, “theme”, “instagram”, “please”, “night”,

“option”, “feature”, “eye”, “white”, “facebook”, “no”]

2
[“crash”, “bug”, “ios”, “app”, “open”, “iphone”, “audio”, “freeze”, “keyboard”, “close”,

“13.1.2”, “running”, “pro”, “file”, “email”]

3
[“account”, “keep”, “log”, “app”, “widget”, “balance”, “connection”, “logged”, “bar”, “see”,

“safari”, “constantly”, “crashing”, “sign”, “amazon”]

4
[“notification”, “watch”, “fitbit”, “text”, “sync”, “versa”, “bluetooth”, “stopped”, “audible”,

“no longer”, “sound”, “charge”, “receive”, “syncing”, “beta”]

5
[“search”, “don’t”, “issue”, “time”, “download”, “sleep”, “week”, “item”, “get”, “font”, “show”,

“service”, “ad”, “else”, “answer”]

6
[“game”, “controller”, “controller support”, “control”, “ps4”, “xbox”, “multiplayer”,

“mobile”, “fun”, “cod”, “graphic”, “played”, “race”, “ruby”, “duty”]

Table 9: Top 15 most relevant terms per modeled topic

Looking at the table, the first topic included the bigram “dark mode” as most relevant term

as well as analogous terms like “night”, “option”, “dark”, or “theme”. Its thematic direction

was straightforward. There was an obvious reference to the newly introduced setting in iOS

13 that darkens user interface elements. The words “add”, “feature”, and “please” pointed to

lacking support of the dark iOS theme in third-party applications. Instagram and Facebook

appeared, among others, in the most relevant words as apps without dark mode support.

The second and third topic were contextually related, since both encompassed relevant words

about software errors, such as “bug”, “constantly”, “crashing”, or “freeze”. While the former

tended to address malfunctions in respect of audio, keyboard, and file management, the latter

focused on log-in and app widget issues. Screening the review texts, concrete cases were

identified, for instance, the Gmail app crashed when trying to open audio file attachments

and the Capital One app had a broken account balance widget. As a matter of fact, the fifth

topic was thematically related to software errors, too. For example, it involved the terms

“search”, “issue”, and “font”. These terms reflected problems across several applications

concerning a defect search function or misrepresented font formatting.

The fourth topic principally evolved around the context of smart devices. There were the-

matic connections to Apple’s smartwatch and activity trackers from the company Fitbit.

Some of its topic-related terms like “notification”, “bluetooth”, “stopped”, or “syncing”

evinced the presence of device communication failures. In fact, the vast majority of reviews

under this topic mentioned that, after installing the iOS 13 update, the Fitbit device stopped

7 Relevance(term w|topic t) = λ * p(w|t) + (1 - λ) * p(w|t)/p(w) with λ = 0.4 (Sievert and Shirley 2014, p. 66)

- 48 -

receiving text notifications from the iPhone and, in addition, a significantly increased battery

drain was reported. In regard to the Apple Watch, users of Audible, Duo Mobile, and other

apps reported that their smartwatch refused data synchronization leading to severe incom-

patibility issues with the applications in question.

Lastly, the sixth topic had a clear link to mobile games. Out of 244 reviews under this topic,

225 feedbacks came from the popular gaming apps Call of Duty Mobile and Mario Kart

Tour. The bigram “controller support” as well as the words “ps4”, “xbox”, or “multiplayer”

were amongst the most relevant terms. They referred to a new feature of Apple’s iOS update

that allowed customers to connect a wireless controller to their iPhone via Bluetooth. Some

apps, like the two mentioned above, did not support controller pairing yet. Hundreds of users

expressed criticism over this situation in their app reviews.

Figure 12: Intertopic distance map and topic grouping

A further step towards discovering specific issue types caused by iOS 13 was to find seman-

tic similarities between the modeled topics. For this purpose, the visualization framework

LDAvis was leveraged to project the intertopic distances into a two-dimensional space with

principal component analysis (PCA). To put it short, PCA applies orthogonal transformation

to convert a multidimensional feature space into a set of linearly uncorrelated variables

called principal components, which account for the most variance of the data. As displayed

in Figure 12, a topic is plotted as a circle whose size is proportional to its relative share of

word tokens in the corpus. The minimal overlap between the circles indicated a good model

quality, though, it was apparent that the second, third, and fifth topic slightly overlapped and

clustered together. Because all of these three topics contained reviews about crashing appli-

cations or dysfunctional features, they were grouped under the issue type of functional errors.

Besides, the intertopic distance map illustrates that the first and sixth topic are positioned

closest to the right-hand-side of the PC1 axis. As another common characteristic, the two

topics were not centered around erroneous software, but rather bundled user reviews which

6

1

4

2
5

3

- 49 -

articulated the need for supporting new features introduced in iOS 13. Therefore, both topics

were allocated to the feature request issue type. In the upper left quadrant, the fourth topic is

positioned above the functional error topic cluster. Despite of its semantic resemblance to

software failures, the fourth topic concentrated specifically on malfunctions of smart de-

vices. Bearing this differentiating aspect in mind, it was categorized under a third issue type

named device compatibility. Eventually, three distinct issue types were established from the

six modeled topics. Owing to LDA’s soft clustering, each document had a probability distri-

bution over these six topics instead of one discrete topic, which is why the topic with the

highest likelihood was assigned to each document of the corpus. When counting all docu-

ments in the topic grouping, the three types functional error, device compatibility, and fea-

ture request consisted of 2,229, 543, and 1,358 user feedbacks, respectively.

In the course of the preceding topic model evaluation, review texts were scoured for wide-

spread issues that manifested after Apple’s latest iOS patch. Three very distinct update issue

types emerged during this process. Structure and content of the reported problems varied

greatly depending on the issue type. In a final step, it was tested if these substantial differ-

ences were likewise mirrored in rating and sentiment scores.

Figure 13: Rating histograms for update issue types

An initial overview of the frequency distribution of ratings for each issue type is given in

Figure 13. What is striking is the resemblance of distributed ratings for functional error and

device compatibility. In Figure 13, they are both characterized through a similar unimodal

shape. It is recognizable that both distributions are highly right-skewed. Moreover, they both

had a mode of 1, or in other words, the most frequent user feedback was a one-star rating.

Apart from this, their median rating was not equal with a value of 2 in the functional error

and 1 in the device compatibility histogram. Also, 4-star and 5-star ratings were the least

frequent records. By contrast, the feature request histogram had a very different underlying

distribution. Rating scores of this issue type approximated the shape of a bimodal distribu-

tion. There were nearly as many 1-star as 5-star app ratings, followed by 4-star ratings.

0

50

100

150

200

250

300

350

1 2 3 4 5

F
re

q
u
en

cy

Rating

Feature request

0

200

400

600

800

1000

1200

1 2 3 4 5

F
re

q
u
en

cy

Rating

Functional error

0

50

100

150

200

250

300

350

1 2 3 4 5

F
re

q
u
en

cy

Rating

Device compatibility

- 50 -

Thereby, the standard deviation of the rating was much larger than that of the device com-

patibility or functional error distributions. The median rating of 3 was higher than in the

other two update issue groups. In accordance with ratings, the sentiment score histograms

showed analogous dissimilarities in skewness and variance.

With the help of statistical methods, the impact of the three issue types on user feedback was

scrutinized in depth. One-way analysis of variance (ANOVA) is a technique for determining

the existence of statistically significant differences among at least two grouped samples. This

is tested by comparing the between versus the within group variance. However, the acquired

data did not satisfy the restrictive ANOVA assumptions, such as homogeneity of variances

and normally distributed observations. This was already outlined in the passage above. For

one thing, rating and sentiment score had either a bimodal or right-skewed distribution, and

for another, the standard deviations of the grouped samples were different.

The Kruskal-Wallis test, also called H-test, is a non-parametric analog to the one-way

ANOVA, which means it neither makes assumptions about normality nor homoscedasticity

(Kruskal and Wallis 1952, p. 583). A significant H-test statistic result signals the stochastic

dominance of at least one grouped sample over any other group, or otherwise stated, it is

more likely that a randomly drawn observation from one sample will be greater than a ran-

dom observation from another. But as an omnibus test, it does not pinpoint where this dom-

inance occurs. Thus, upon rejecting the null hypothesis, post hoc pairwise comparisons are

conducted if necessary. Independence of the samples was guaranteed by the deletion of re-

views from authors who were present in more than one issue group. The computation of the

H-statistic and p-value relied on Scipy’s Kruskal-Wallis implementation.

Descriptive statistics

Issue types Number of reviews Median rating Median sentiment score

Feature request 1,358 3 0.23

Functional error 2,229 2 0.10

Device compatibility 543 1 0.08

Test statistics

Tested issue types Degrees of freedom Rating Sentiment score

Feature request

Functional error

Device compatibility

2
H-statistic = 531.53

p-value ≤ 0.001

H-statistic = 533.29

p-value ≤ 0.001

Functional error

Device compatibility
1

H-statistic = 8.57

p-value ≤ 0.01

H-statistic = 6.38

p-value ≤ 0.05

Table 10: Kruskal-Wallis test results

Table 10 summarizes the calculated test results. Considering user ratings across all three

issue types, the H-statistic, along with its highly significant p-value, indicated the existence

of stochastic dominance. The same held true for sentiment scores. Looking back at the his-

togram analysis, signs of dominance of the feature request group were foreseeable, since its

- 51 -

rating and sentiment distributions were less skewed towards lower scores than the distribu-

tions of the remaining issue groups. To compare the latter two groups in detail, a post hoc

test between the functional error and device compatibility issue type was done. As could be

seen from the histograms, both sample distributions had similar shapes and variances for

rating and sentiment scores. In such a special case, the Kruskal-Wallis null hypothesis is

interpreted as a statement about the equality of the group medians, whereas the alternative

hypothesis proposes the opposite. According to the figures in Table 10, the very significant

H-statistic of 8.57 suggested that the median ratings of the functional error and device com-

patibility samples were unequal. In particular, app ratings of reviews concerning device com-

patibility issues proved to be more negative than of reviews about functional errors. The

same applied to sentiment scores, even though with a smaller H-statistic of 6.38. Still, the

corresponding p-value turned out to be significant, wherefore the null hypothesis, which

assumed equal group medians, was rejected. Once again, the findings for rating scores were

consistent with those of sentimental positivity. Through the Kruskal-Wallis test, substantial

differences between each one of the three issue types were demonstrated.

- 52 -

6 Discussion

The following chapter elaborates upon the results of the empirical analysis from chapter 5.

Relevant findings are reviewed and interpreted with respect to the thesis statement. In this

way, the three formulated research hypotheses are examined in consecutive order by criti-

cally discussing the empirical evidence.

The first hypothesis (H1) assumed that the release of the iOS 13 patch negatively affected

app users’ continuance intention. Consequently, it was essential to detect potential negative

feedback about the recent iOS version in customer reviews. A two-step classification process

labeled review texts with explicit or implicit remarks on iOS 13. Because filtering out im-

plicit references happened to be a non-trivial task, naïve Bayes, logistic regression, and ran-

dom forest classifiers were benchmarked against each other. Owing to its superior perfor-

mance, including a F1-score of 0.96, the latter model was selected. This choice can be ex-

plained by the inherent benefits of random forests. Especially worth mentioning are the abil-

ities to deal with high-dimensional text data or to handle unbalanced classed distributions,

which were very advantageous in respect of the given review data set. The extracted tree in

Figure 6, offers insights into the underlying decision rules. It seems reasonable that users

implicitly reference iOS 13 by naming their affected iPhone generation, pointing out specific

bugs, or referring to the time period after the iOS update. This underlines the good reliability

of the trained random forest model. Additionally, the outcome of the model comparison is

in line with machine learning literature, for instance, in an exhaustive evaluation of 179

classifiers from FERNÁNDEZ-DELGADO et al., the best performance was achieved by the fam-

ily of random forest algorithms (Fernández-Delgado et al. 2014, p. 3175).

In spite of the model’s effectiveness, a relatively small number of 4,130 reviews were found

to have a relation to iOS 13, which falls behind initial expectations. This can be attributed to

two factors. On the one hand, mobile app users diverge in their individual technology exper-

tise (Fleischmann et al. 2015, p. 5). While experts have more knowledge to assess the root

causes behind app issues, novice users may not associate malfunctions with an iOS update,

not to speak of knowing the version number of their currently installed operating system.

Therefore, a large number of comments from novice users is probably lacking any clues to

iOS 13, even if they experienced problems with it. On the other hand, the strictness of the

classification model could imply that some feedbacks with implicit, superficial iOS 13 re-

marks were missed, yet, the model’s stringency is a desired property. This way, the classifi-

cation results were accurate, and the analyses were not impeded by too many false positives.

With the hypothesis H1 in mind, rating and sentiment scores of the classified reviews were

examined to gauge users’ continuance intention. The figures in Table 5 unveil that the aver-

age rating of iOS 13 reviews is worse than the total average rating. Likewise, user comments

- 53 -

related to iOS 13 have on average more characters per review. One plausible explanation for

this phenomenon is the tendency of customers to put more effort in their feedback when they

are dissatisfied with a product or service. They often describe negative experiences in great

detail. Typically, more words are used to express anger, disappointment, or impatience. This

argumentation is backed up by previous research studies about electronic word-of-mouth

feedback (Chevalier and Mayzlin 2006, p. 345; Verhagen et al. 2013, p. 1430).

Through determining review sentiment in the form of positivity scores, a complementary

measure for assessing the intention of sustained app usage was attained. The observed strong

relationship of rating and positivity is considered as validation of the calculated scores. It

appears rational to expect that, in general, better ratings go together with more positive user

comments. Otherwise, the reviews would be contradictory and difficult to interpret. The out-

come of the correlation analysis in Figure 9 shows a highly significant negative correlation

between iOS update-related feedback and rating as well as positivity scores, with coefficients

of -0.42 and -0.66, respectively. In accordance with these observations, the examination of

Google’s Gmail app, which had a particularly high ratio of iOS 13 comments, reveals a

visible drop of rating and sentiment scores occurring after the iOS release date, succeeded

by moderate improvements during November and December. Although it is believed that

the scores will further recover due to the debugging endeavors of developer studios. Natu-

rally, more long-term data is necessary to support this assumption, whereas the present study

focused on the immediate update effects. Following the ISCM logic, it can be thus argued

that Apple’s new iOS version caused lots of unexpected application errors. Since those issues

heavily impair the usage experience, it is presumed that customers are negatively discon-

firmed. This also finds expression in dissatisfaction or in a worsened perception of an app’s

usefulness, as has been proven by the analyzed decline in rating and sentiment scores. Ulti-

mately, diminished levels of satisfaction and perceived usefulness are believed to have led

to a reduction of users’ continuance intention (Bhattacherjee 2001, p. 351). To conclude, the

discussed findings provide enough empirical data to accept hypothesis H1.

The second hypothesis (H2) suspected that discernible types of application issues resulting

from the iOS 13 update are manifested in user reviews. In view of the collected feedback,

there was a sheer endless number of reported bugs, crashes, feature requests, network issues,

performance losses, and other complaints. As an attempt to arrange individual problems into

a typology of update-related issues, the topic modeling algorithm LDA was employed. LDA

assisted in inferring latent themes within the corpus of review documents. The graph in Fig-

ure 11 illustrates how the model coherence score changes with the topic number. It is not

surprising that coherency peaks at a number of six topics. A model with merely two or three

topics may be unable to differentiate unique themes, thereby failing to uncover the true un-

derlying semantic structure. On the opposite side, a model with too many topics may produce

- 54 -

ambiguous, overlapping topics, which can complicate the topic assignment. Another possi-

ble hindrance for allocating documents to one out of several themes concerns the review

content itself. Scanning through the collected comments, it becomes apparent that some us-

ers raise not one, but multiple app issues in their commentary, as has been also noted in

related research (McIlroy et al. 2016, p. 1067). To address this problem, the six modeled

topics were categorized into three well-separated issue types.

Functional errors constituted a first type, which accounted for over half of the classified

feedback records. It grouped together manifold software problems, ranging from minor bugs

to permanent app crashes. In order to avoid semantic overlaps, it seems appropriate to merge

all kinds of functionality issues into one type because they tend to frequently co-occur in

user reviews. For instance, several App Store customers wrote about various dysfunctions

and warned others to not install the new iOS patch: “I am relegated to deleting the app en-

tirely and going browser-based. It is chock full of bugs and does not work well with iOS13.

Do not update to the latest version. The lag now experienced while typing and general nav-

igation is unbearable.” Obviously, update-induced functional impairments are widely repre-

sented in the collection of review texts. The problem descriptions inside those user reviews

are believed to be a crucial information source for monitoring and fixing app errors.

Device compatibility emerged as a second issue type. Despite of the semantic resemblance

to the functional error type, it can be argued that incompatibility issues belong to a special

quality of iOS 13 repercussions, in which not only iPhone applications, but also peripheral

devices are negatively impacted. The content analysis exposed common troubles with Ap-

ple’s own smartwatch series or third-party products like activity trackers from Fitbit. In nu-

merous comments, users vehemently complained about malfunctioning devices after they

switched to the new operating system: “Ever since updating to 13.1.3 I have stopped receiv-

ing text message notifications to my Fitbit device. I have contacted Apple and Fitbit support

to no avail. Fitbit has been aware for a long time of the issues that many customers are

experiencing with iOS 13 and have yet to address the issue.” From the reported compatibility

problems, a broken data transfer between iPhones and smart devices appears to be very prev-

alent. Without this constant synchronization, it is likely that many features of an affected

device become useless, much to the annoyance of customers who bought the device.

Feature requests were the last identified issue type. In contrast to the subgroups above, this

type is not linked to arisen defects. Instead, it encompassed uttered user wishes to add novel

functions. In fact, the requests revolved around newly introduced features of the iOS 13

update, such as the option to connect a Bluetooth controller or a novel dark color scheme

setting. It is comprehensible that users of the new operating system want to fully exploit its

functionality. For this reason, it is astonishing that many developers, who normally have

- 55 -

access to beta versions of Apple’s operating system, were not able to anticipate these user

wishes. The number of applications with corresponding feature requests exceeds prior ex-

pectations. For example, a plethora of users asked for dark mode support and directly reached

out to developers: “Can we finally have dark mode on all of your IOS apps please?!?!?! It

was well known since JUNE that IOS 13 will have dark mode!” Besides, it is remarkable

that even highly popular apps like Facebook, Instagram, Snapchat, WhatsApp, or Youtube

failed to support Apple’s dark mode from the beginning, though, for some of them, the fea-

ture was delivered subsequent to weeks of pressure from customers.

The above elaboration of problem categories connected to iOS 13 proves that it is feasible

to extract knowledge about manifested issue types from user feedback. This is also in line

with related studies which underpin the high informative value of mobile app user reviews

(Chen et al. 2014, p. 767; Genc-Nayebi and Abran 2017, p. 207; Panichella et al. 2015, p.

281). On the basis of these results, hypothesis H2 is accepted.

The third hypothesis (H3) postulated that the influence of different issue types on app users’

continuance intention varies in terms of magnitude. Its underlying reasoning expects a more

negative effect of those problems which undermine the user experience to a greater extent.

Against this background, rating and sentiment scores of the three established issue categories

were analyzed in depth. Figure 13 gives an overview of how star ratings are distributed

across the groups feature request, functional error, and device compatibility. As distin-

guished from the two latter ones, the feature request histogram is by far less skewed to the

right, meaning it has a smaller relative share of low ratings. It has the highest median star

rating among the groups and almost the same count of 1-star and 5-star evaluations. These

figures endorse the initial assumption that users may perceive missing features as less critical

than actual software flaws. A conceivable explanation for the still large number of one-star

ratings concerns the inclination of individuals to pay more attention to negative events. This

tendency to overweigh negative experiences, also referred to as negativity bias, has been

established as a key principle in consumer psychology (Ahluwalia 2002, p. 270; Rozin and

Royzman 2001, p. 296). Accordingly, it can be argued that app users who take note of an

unsupported iOS feature tend to focus on its absence and are thus negatively disconfirmed.

Owing to their dissatisfaction, they give lower ratings and eventually may have a weakened

continuance intention, even though the application in question works just fine. This insight

is believed to be vital for managing an app’s feature set. For instance, a lot of users made

their rating dependent on a requested functionality: “This will have a one-star rating until

dark mode is a feature!!! iOS 13 has been out for many weeks now and still no dark mode.”

Nonetheless, high ratings were yet more dominant in feature requests than in the remaining

two types. The same applied to positive sentiment, as the highly significant Kruskal-Wallis

- 56 -

H-statistic of 533.29 indicated. In order to explicate why functional errors and device com-

patibility issues are perceived more negatively by users, the loss aversion principle from the

domain of cognitive psychology can be used. Loss aversion describes the human tendency

to judge losses as more weighty than corresponding gains (Kahneman and Tversky 1979, p.

263). If this rationale is transferred to the software update context it is assumed that, in gen-

eral, users should prefer avoiding feature losses to acquiring equivalent new features, since

the actual app usage is stronger affected by impairments of the existing functionality. Think-

ing one step further, it makes sense that the greater the scope of the loss, the more negative

the effect. An erroneous app is often undeniably less severe than a malfunctioning device.

In this regard, a pairwise comparison of median rating and sentiment scores for the groups

functional error and device compatibility was conducted. The two significant H-statistics

suggest lower median values for device compatibility on both accounts. Hence, it turns out

that users perceive incompatibility of devices as most critical out of all issue types. High

financial investments and switching costs may be exemplary reasons. There are plenty of

reviews in which customers emphasized their strong discontent over impacted devices: “Text

message notifications still do not work now three months after iOS 13 release. I will never

buy another Fitbit product again. Do not recommend any of their products designed to re-

ceive text message notifications to anyone.” Without any doubt, the presence of device com-

patibility issues reinforces users’ discontinuance intention to a high degree.

In summary, the discussed findings help to differentiate the impact of the three issue types

on rating and positivity scores. They proved that the influence on the intention of sustained

app usage varied for each issue group. As a logical consequence, the results provide enough

evidence to accept hypothesis H3.

- 57 -

7 Conclusion

In this concluding chapter, the main findings of the thesis at hand are briefly summarized

with reference to the core research question. Thereafter, based on the obtained study results,

theoretical as well as practical contributions are discussed. The final section points out the

study’s limitations and offers suggestions for future research.

7.1 Summary of key findings

The thesis at hand sought to study the influences of an operating system update on app users.

The case of Apple’s thirteenth update of the iOS platform served as object of investigation.

On the basis of existing literature and the information systems continuance model as theo-

retical lens, three hypotheses were formulated about the adverse impact of iOS 13 on end

users in Apple’s mobile app ecosystem. In order to carry out the research, vast amounts of

feedback data were scraped from the App Store. The collected data set comprised 150 sam-

pled applications with a total of 646,580 reviews. Data mining techniques and statistical

methods were used to test the proposed hypotheses, which resulted in several insightful find-

ings regarding the observed influences of Apple’s iOS update, thereby answering the re-

search question. The key findings can be summarized as follows.

First, the empirical analysis demonstrated significant negative effects of iOS update-induced

issues on users’ satisfaction levels. The correlation analysis indicated that reviews with ref-

erence to iOS 13 were associated with lower ratings and less positive sentiment. The feed-

back also became more negative with each passing month after the release. Such critical

remarks on the new iOS version were widespread in Apple’s mobile app ecosystem. In fact,

they could be diagnosed in the sample across all 15 product categories, across all ten popu-

larity ranks, and in both the Great Britain and United States marketplaces. Furthermore, even

reputable developer studios from major technology companies like Amazon, Facebook,

Google, or Microsoft were not spared and had to resolve numerous complications with their

products. The empirical data showed evidently that end users seemed to have very little tol-

erance for issues related to iOS 13. Consequently, there was no doubt that the adverse effects

of the iOS update considerably reduced users’ intention of continued app usage.

Second, the research investigated the manifestation of iOS platform issues in the acquired

customer reviews from the App Store. A large number of discontented users wrote detailed

descriptions about specific troubles they faced. The feedback texts proved to be a valuable

data source, since a multitude of software complications could be identified. Through clus-

tering the respective application flaws into separate categories, three overarching groups

emerged, namely feature requests, functional errors, and device compatibility. For each of

- 58 -

these three issue types, a content analysis revealed insights into the expressed needs of cus-

tomers. While some insisted on the implementation of iOS-specific features like dark mode

or Bluetooth controller support, others reported a high incidence of broken functionalities,

and yet others complained about malfunctioning devices since the update. The documented

software problems ranged from occasional lags and minor bugs to complete failures. An

impaired data synchronization between iPhones running iOS 13 and peripheral devices was

ascertained as the primary cause for incompatible activity trackers, smartwatches, or media

streaming hardware. Hence, the manifold technical influences of the iOS 13 update were

noticeably reflected in feedback comments of the collected review data.

Third, the differentiated issue types were examined in terms of impact on users’ continuance

intention. To this end, rating and positivity of reviews within each group were compared

against each other. According to the Kruskal-Wallis test results, the issue types exhibited

significant differences. Device compatibility issues provoked the strongest negative reac-

tions, followed by functional errors and feature requests. In the latter group, rating and sen-

timent scores were higher than in the two former groups, although many users penalized the

lacking feature support with one-star ratings. Incompatible devices and dysfunctional apps

attracted the most criticism of customers because compromised core functionalities ruined

the general usage. Thus, it was found that the negative effect on users’ continuance intention

varied between the distinct types depending on the severity level of issues.

7.2 Theoretical and practical implications

The summarized findings illuminate how users perceive operating system updates and their

effects on applications, framed in the context of mobile app ecosystems. In view of Apple’s

recent iOS 13 platform, an overwhelming body of evidence exemplifies the disruptions con-

nected to its release. Having scrutinized its consequences in depth, this thesis provides both

theoretical and practical contributions, which are set out in the section below.

From a theoretical standpoint, this thesis adds to the emerging research stream on software

updates in the information systems post-adoption literature. To the author’s best knowledge,

it is the first to study how mobile app users perceive platform updates. Unlike existing work,

it does not focus on the direct effects of intra-system updates, but on the indirect, interde-

pendent update effects between operating system and application software. In accordance

with relevant information systems literature, this thesis shows that software updates can have

measurable effects on end users (Amirpur et al. 2015, p. 13; Claussen et al. 2013, p. 186;

Fleischmann et al. 2016, p. 83; Hong et al. 2011, p. 235). Considering the situation of Ap-

ple’s iOS 13 platform, the discoveries underline that its release was accompanied by a wide

array of technical complications, much to the chagrin of App Store customers. In that respect,

- 59 -

the empirical analysis demonstrated that iOS-related issues impacted users’ continuance in-

tention in a negative way. This observation aligns with previous studies which corroborated

adverse effects of certain software updates on continued information systems usage

(Fleischmann et al. 2015, p. 17; Foerderer and Heinzl 2017, p. 15). For example, in line with

prior evidence, it was confirmed that losses in functionality through an update severely di-

minishes the continuance intention of users. This can increase their willingness of switching

to another product (Recker 2006, p. 21).

Adding to this observation, the results of the topic analysis proved that the severity of update-

induced issues is closely tied to the negativity of user reactions. In this sense, the present

study gives meaningful insights into how users perceive diverse issue types, such as lacking

features, dysfunctional features, or incompatible devices. Accordingly, each of those issue

types can have a different impact on the intention of sustained app usage. An additional

noteworthy finding relates to feature requests arising due to the new iOS version. Customers

turned out to be negatively disconfirmed if their installed apps did not support novel features

of iOS 13 from the beginning, what means that an operating system update can alter custom-

ers’ evaluation of initially accepted application software and may also reduce their continu-

ance intention. Overall, the findings contribute to aid the current understanding of the com-

plex set of influences that software updates can exert on end users.

Furthermore, the research results have important practical implications for actors in mobile

app ecosystems. Taking iOS 13 as an exemplary case, the thesis shed light on potential ad-

verse effects of platform updates. This is especially relevant for platform owners like Apple,

as they must control the rapid evolution of platform technologies. The main challenge lies

in continuously advancing the platform’s capabilities through updates without, at the same

time, introducing technical difficulties, which, in the worst scenario, can disturb the ecosys-

tem and impede its members. The latter happened to be true for rolling out iOS 13. The

empirical analysis gives a first impression of its far-reaching shortcomings that affected the

vast majority of sampled apps. Owing to the central role of platforms, it is recommended to

extensively test pre-release versions. However, in spite of Apple’s beta software program

for consumers and developers, the first iOS 13 version came out with a myriad of deficien-

cies. Therefore, a reexamination of software quality assurance and testing practices might

be helpful. For counteracting problems after the official release, platform owners should

work together with the end user as well as developer community. In close collaboration, they

could engage to keep records of software flaws or incompatible devices. This could be made

possible by creating an online network where users and developers jointly report on existing

platform-related complications and so aid the dissemination of problem-specific knowledge.

- 60 -

Alongside recommendations for platform orchestrators, the thesis provides practical insights

for app publishers. In particular, the manifestation of discernible updated-related issues in

review texts was evinced. Developers are advised to leverage the valuable data contained in

feedbacks in order to effectively fix application faults. They should also prioritize resolving

certain issue types, as some issues were found to have a more destructive effect on sustained

product usage, such as incompatible hardware or permanently crashing apps. Otherwise, the

companies may run into danger of losing dissatisfied customers to the competition. The re-

view analysis indeed found corresponding reviews about incompatible devices, in which

customers uttered the intention of never buying a product from the company again or vehe-

mently dissuaded other customers from doing so. In addition, the research results evidenced

a substantial change in customer demands regarding their applications after the platform

update, mainly because of newly introduced iOS features which were not yet supported.

Hence, it is recommended that developer studios try to anticipate emerging customer re-

quests. In this matter, an open information exchange between platform owner and third-party

developers is indispensable to communicate the new platform functionalities and reconcile

the feature sets of operating system and applications. This will not only increase user satis-

faction, but also strengthen the customer base and, in turn, contribute to the general success

of the ecosystem, which is a desirable outcome for all ecosystem members.

7.3 Limitations and future research

Despite the contributions to research as well as practice, the findings of this study are subject

to several limitations. To start with, the results are limited by the data sample size. Due to

constraints in terms of computing resources and time, data from 150 applications were col-

lected, which is a small sample from the population of over two million available apps on

the App Store. For this reason, the study does not claim to represent the full scope of appli-

cation issues caused by iOS 13. For another thing, the observation time was restricted to a

four-month period, since the study concentrated on the immediate effects of platform updates

rather than the long-term consequences. The latter opens up a fertile avenue for possible

future research. What is more, the text mining analysis was confined to comments in English

language stemming from the American and British App Store. Therefore, cultural or regional

dissimilarities might imply different customer perceptions. Even though it is probable to

observe similar user reactions in other App Stores, cross-cultural studies are needed to verify

this. The last limitation relates to the incomplete detection of feedback with iOS 13 refer-

ence. It is acknowledged that a plethora of users without technical background knowledge

failed to diagnose the iOS update as error cause for their app problems. Their review texts

possessed neither explicit nor implicit remarks on the operating system update and were thus

not recognized during the classification. That is why the findings must be interpreted with

careful attention to the existence of enormous amounts of latent feedback regarding iOS 13.

- 61 -

Aside from the stated limitations, the study results can be used as a starting point for further

research. One option could be an extensive follow-up study with a larger data sample. Both

free and paid applications in all listed categories from app marketplaces across all continents

could be included for greater representative power. Additionally, a prolonged observation

period may assist in investigating long-term update effects, such as the foreseeable recovery

of rating scores. With this in mind, it seems promising to inspect the troubleshooting meth-

ods and the quickly deployed bug-fixing patches of Apple and developers as measures

against the shortcomings of iOS 13. The effectiveness of these coping strategies could be

assessed by analyzing changes in app user ratings over time. Apart from Apple’s iOS plat-

form, researchers are encouraged to study the influences of platform updates in other mobile

app ecosystems. An interesting candidate would be Google’s Android platform, which is the

most installed mobile operating system in the world. In stark contrast to iOS, the ecosystem

around Android is heavily fragmented with a great variety of manufacturers, smartphone

hardware, and platform versions, which renders it especially prone to incompatible apps or

devices. Assumingly, it is worthwhile to examine users’ post-adoption behavior in connec-

tion to Android updates. Besides, future studies could reaffirm the discovery that updated

operating systems can evoke multiple types of issues, each of which having a unique effect

on sustained information systems usage. In a controlled laboratory experiment, participants

could be confronted with errors in functionality, defective devices, or unsupported features

consequential to a simulated platform update. Afterwards, they could be interviewed about

their personal continuance intention with respect to each experienced problem category. This

can help to reconfirm the validness of the observed results.

In conclusion, with the thesis at hand, a fundamental first step towards better understanding

users’ perception of operating system updates was made. The findings elucidated the hitherto

poorly explored relationship between post-adoption behavior and platform evolution in mo-

bile app ecosystems. Hence, this thesis laid foundations for further studies in a research area

that will continue to grow in importance in the future.

- 62 -

Literature

Aggarwal, C. C., and Zhai, C. X. 2012. Mining Text Data, (Vol. 978-1–4614), New York:

Springer Science & Business Media. (https://doi.org/10.1007/978-1-4614-3223-4).

Ahluwalia, R. 2002. “How Prevalent Is the Negativity Effect in Consumer

Environments?,” Journal of Consumer Research (29:2), pp. 270–279.

(https://doi.org/10.1086/341576).

Amirpur, M., Fleischmann, M., Benlian, A., and Hess, T. 2015. “Keeping Software Users

on Board - Increasing Continuance Intention through Incremental Feature Updates,”

in European Conference on Information Systems, pp. 1–16.

Anderson, E. W., and Sullivan, M. W. 1993. “The Antecedents and Consequences of

Customer Satisfaction for Firms,” Marketing Science (12:2), pp. 125–143.

(https://doi.org/10.1287/mksc.12.2.125).

Appfigures Inc. 2019. “The Appfigures API,” API Documentation.

(https://docs.appfigures.com/, accessed January 15, 2020).

Apple Inc. 2013. “Apple’s App Store Marks Historic 50 Billionth Download,” Apple Press

Info. (https://www.apple.com/newsroom/2013/05/16Apples-App-Store-Marks-

Historic-50-Billionth-Download/, accessed December 23, 2019).

Apple Inc. 2018. “Ratings, Reviews, and Responses - App Store,” Apple Developer.

(https://developer.apple.com/app-store/ratings-and-reviews/, accessed January 12,

2020).

Apple Inc. 2019a. “Apple Celebrates the Best Apps and Games of 2019,” Apple Press Info.

(https://www.apple.com/newsroom/2019/12/apple-celebrates-the-best-apps-and-

games-of-2019/, accessed March 12, 2020).

Apple Inc. 2019b. “About IOS 13 Updates,” Apple Press Info.

(https://support.apple.com/en-us/HT210393, accessed December 26, 2019).

Apple Inc. 2019c. “About an Issue That Impacts Third-Party Keyboard Apps in IOS 13

and IPadOS - Apple Support,” Apple Press Info. (https://support.apple.com/en-

us/HT210613?/en-us/advisory, accessed December 30, 2019).

Basole, R. C. 2009. “Visualization of Interfirm Relations in a Converging Mobile

Ecosystem,” Journal of Information Technology (24:2), pp. 144–159.

(https://doi.org/10.1057/jit.2008.34).

Benlian, A., Koufaris, M., and Hess, T. 2011. “Service Quality in Software-as-a-Service:

Developing the SaaS-Qual Measure and Examining Its Role in Usage Continuance,”

Journal of Management Information Systems (28:3), pp. 85–126.

(https://doi.org/10.2753/MIS0742-1222280303).

Berente, N., Seidel, S., and Safadi, H. 2018. “Data-Driven Computationally Intensive

Theory Development,” Information Systems Research (30:1), pp. 50–64.

(https://doi.org/10.1287/isre.2018.0774).

- 63 -

Bhattacherjee, A. 2001. “Understanding Information Systems Continuance: An

Expectation-Confirmation Model,” MIS Quarterly: Management Information Systems

(25:3), pp. 351–370. (https://doi.org/10.2307/3250921).

Bhattacherjee, A., and Premkumar, G. 2004. “Understanding Changes in Belief and

Attitude toward Information Technology Usage: A Theoretical Model and

Longitudinal Test,” MIS Quarterly: Management Information Systems (28:2), pp.

229–254. (https://doi.org/10.2307/25148634).

Bird, S., Klein, E., and Loper, E. 2009. Natural Language Processing with Python,

Sebastopol: O’Reilly.

Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. “Latent Dirichlet Allocation,” Journal of

Machine Learning Research (3:4–5), pp. 993–1022. (https://doi.org/10.1016/b978-0-

12-411519-4.00006-9).

Bosch, J. 2009. “From Software Product Lines to Software Ecosystems,” in Proceedings of

the 13th International Software Product Line Conference, pp. 111–119.

(https://doi.org/10.1016/j.jss.2012.03.039).

Cavusoglu, Hasan, Cavusoglu, Huseyin, and Jun, Z. 2008. “Security Patch Management:

Share the Burden or Share the Damage?,” Management Science (54:4), pp. 657–670.

(https://doi.org/10.1287/mnsc.1070.0794).

Ceccagnoli, M., Forman, C., Huang, P., and Wu, D. J. 2012. “Cocreation of Valueina

Platform Ecosystem : The Case of Enterprise Software,” MIS Quarterly: Management

Information Systems (36:1), pp. 263–290. (https://doi.org/10.2307/41410417).

Chang, Y. P., and Zhu, D. H. 2012. “The Role of Perceived Social Capital and Flow

Experience in Building Users’ Continuance Intention to Social Networking Sites in

China,” Computers in Human Behavior (28:3), pp. 995–1001.

(https://doi.org/10.1016/j.chb.2012.01.001).

Chen, N., Lin, J., Hoi, S. C. H., Xiao, X., and Zhang, B. 2014. “AR-Miner: Mining

Informative Reviews for Developers from Mobile App Marketplace,” International

Conference on Software Engineering (1), pp. 767–778.

(https://doi.org/10.1145/2568225.2568263).

Chevalier, J. A., and Mayzlin, D. 2006. “The Effect of Word of Mouth on Sales: Online

Book Reviews,” Journal of Marketing Research (43:3), pp. 345–354.

(https://doi.org/10.1509/jmkr.43.3.345).

Claussen, J., Kretschmer, T., and Mayrhofer, P. 2013. “The Effects of Rewarding User

Engagement: The Case of Facebook Apps,” Information Systems Research (24:1), pp.

186–200. (https://doi.org/10.1287/isre.1120.0467).

Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. 1989. “User Acceptance of Computer

Technology: A Comparison of Two Theoretical Models,” Management Science

(35:8), pp. 982–1003. (https://doi.org/10.1287/mnsc.35.8.982).

- 64 -

Dittrich, K., and Duysters, G. 2007. “Networking as a Means to Strategy Change: The

Case of Open Innovation in Mobile Telephony,” Journal of Product Innovation

Management (24:6), pp. 510–521. (https://doi.org/10.1111/j.1540-

5885.2007.00268.x).

Eaton, B., Elaluf-Calderwood, S., Sørensen, C., and Yoo, Y. 2015. “Distributed Tuning of

Boundary Resources: The Case of Apple’s IOS Service System,” MIS Quarterly:

Management Information Systems (39:1), pp. 217–243.

Etzioni, O. 1996. “The World-Wide Web: Quagmire or Gold Mine?,” Communications of

the ACM (39:11), pp. 65–68.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. 1996. “From Data Mining to Knowledge

Discovery in Databases,” AI Magazine (17:3), pp. 37–53.

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. 2014. “Do We Need

Hundreds of Classifiers to Solve Real World Classification Problems?,” Journal of

Machine Learning Research (15), pp. 3133–3181.

(https://doi.org/10.1117/1.JRS.11.015020).

Fleischmann, M., Amirpur, M., Grupp, T., Benlian, A., and Hess, T. 2016. “The Role of

Software Updates in Information Systems Continuance - An Experimental Study from

a User Perspective,” Decision Support Systems (83), pp. 83–96.

(https://doi.org/10.1016/j.dss.2015.12.010).

Fleischmann, M., Grupp, T., Amirpur, M., Hess, T., and Benlian, A. 2015. “Gains and

Losses in Functionality-An Experimental Investigation of the Effect of Software

Updates on Users’ Continuance Intentions,” International Conference on Information

Systems, pp. 1–21.

Foerderer, J., and Heinzl, A. 2017. “Product Updates: Attracting New Consumers versus

Alienating Existing Ones,” International Conference on Information Systems, pp. 1–

19. (https://doi.org/10.2139/ssrn.2872205).

Forbes. 2019. “Apple IOS 13 Is Full Of Bugs, Reports Warn,” Forbes Magazine.

(https://www.forbes.com/sites/gordonkelly/2019/09/19/apple-ios13-upgrade-

problems-iphone-11-pro-max-xs-max-xr-update/#8e6952822bc4, accessed March 12,

2020).

Franzmann, D., Wiewiorra, L., and Holten, R. 2019. “Continuous Improvements: How

Users Perceive Updates,” European Conference on Information Systems, pp. 1–17.

Garg, R., and Telang, R. 2013. “Inferring App Demand from Publicly Available Data,”

MIS Quarterly: Management Information Systems (37:4), pp. 1253–1264.

(https://doi.org/10.25300/MISQ/2013/37.4.12).

Genc-Nayebi, N., and Abran, A. 2017. “A Systematic Literature Review: Opinion Mining

Studies from Mobile App Store User Reviews,” Journal of Systems and Software

(125), pp. 207–219. (https://doi.org/10.1016/j.jss.2016.11.027).

- 65 -

Ghazawneh, A., and Henfridsson, O. 2013. “Balancing Platform Control and External

Contribution in Third-Party Development: The Boundary Resources Model,”

Information Systems Journal (23:2), pp. 173–192. (https://doi.org/10.1111/j.1365-

2575.2012.00406.x).

Grupp, T., and Schneider, D. 2017. “Seamless Updates - How Security and Feature Update

Delivery Strategies Affect Continuance Intentions With Digital Applications,”

European Conference on Information Systems, pp. 611–626.

Helal, S., Bose, R., and Li, W. 2012. Mobile Platforms and Development Environments,

San Rafael: Morgan & Claypool Publishers.

(https://doi.org/10.2200/s00404ed1v01y201202mpc009).

Herle, S. P., and Fan, G. 2010. “Apparatus and Method for Performing an Over-the-Air

Software Update in a Dual Processor Mobile Station,” U.S. Patent No. 7,810,088,

Washington DC: U.S.Patent and Trademark Office.

(https://patents.google.com/patent/US8572597B2/en).

Hong, S. J., Thong, J. Y. L., and Tam, K. Y. 2006. “Understanding Continued Information

Technology Usage Behavior: A Comparison of Three Models in the Context of

Mobile Internet,” Decision Support Systems (42:3), pp. 1819–1834.

(https://doi.org/10.1016/j.dss.2006.03.009).

Hong, W., Thong, J. Y. L., Chasalow, L., and Dhillon, G. 2011. “User Acceptance of Agile

Information Systems: A Model and Empirical Test,” Journal of Management

Information Systems (28:1), pp. 235–272. (https://doi.org/10.2753/MIS0742-

1222280108).

Hutto, C. J., and Gilbert, E. 2014. “VADER: A Parsimonious Rule-Based Model for

Sentiment Analysis of Social Media Text,” in Proceedings of the 8th International

Conference on Weblogs and Social Media, pp. 216–225.

Iansiti, M., and Levien, R. 2004. The Keystone Advantage: What the New Dynamics of

Business Ecosystems Mean for Strategy, Innovation, and Sustainability, Boston:

Harvard Business Press.

IDC Inc. 2020. “Smartphone OS Market Share,” IDC Worldwide Quarterly Mobile Phone

Tracker. (http://www.idc.com/prodserv/smartphone-os-market-share.jsp, accessed

March 14, 2020).

Jansen, S., Brinkkemper, S., and Finkelstein, A. 2009. “Business Network Management as

a Survival Strategy: A Tale of Two Software Ecosystems,” Proceedings of the First

International Workshop on Software Ecosystems (505:2), pp. 34–48.

Kahneman, D., and Tversky, A. 1979. “Prospect Theory: An Analysis of Decision under

Risk,” Econometrica (47:2), pp. 263–91.

Krishnan, M. S., Mukhopadhyay, T., and Kriebel, C. H. 2004. “A Decision Model for

Software Maintenance,” Information Systems Research (15:4), pp. 396–412.

(https://doi.org/10.1287/isre.1040.0037).

- 66 -

Kruskal, W. H., and Wallis, W. A. 1952. “Use of Ranks in One-Criterion Variance

Analysis,” Journal of the American Statistical Association (47:260), pp. 583–621.

(https://doi.org/10.2307/2280779).

Kushwaha, A., Kumar Verma, S., and Sharma, C. 2012. “Analysis of the Concerns

Associated with the Rapid Release Cycle,” International Journal of Computer

Applications (52:12), pp. 20–25. (https://doi.org/10.5120/8254-1784).

Larsen, T. J., Sørebø, A. M., and Sørebø, Ø. 2009. “The Role of Task-Technology Fit as

Users’ Motivation to Continue Information System Use,” Computers in Human

Behavior (25:3), pp. 778–784. (https://doi.org/10.1016/j.chb.2009.02.006).

Liao, C., Lin, H. N., Luo, M. M., and Chea, S. 2017. “Factors Influencing Online

Shoppers’ Repurchase Intentions: The Roles of Satisfaction and Regret,” Information

and Management (54:5), pp. 651–668. (https://doi.org/10.1016/j.im.2016.12.005).

Limayem, M., Hirt, S. G., and Cheung, C. M. K. 2007. “How Habit Limits the Predictive

Power of Intention: The Case of Information Systems Continuance,” MIS Quarterly:

Management Information Systems (31:4), pp. 705–737.

(https://doi.org/10.2307/25148817).

Manikas, K., and Hansen, K. M. 2013. “Software Ecosystems-A Systematic Literature

Review,” Journal of Systems and Software (86:5), pp. 1294–1306.

(https://doi.org/10.1016/j.jss.2012.12.026).

March, S. T., and Hevner, A. R. 2007. “Integrated Decision Support Systems: A Data

Warehousing Perspective,” Decision Support Systems (43:3), pp. 1031–1043.

(https://doi.org/10.1016/j.dss.2005.05.029).

Martin, W., Harman, M., Jia, Y., Sarro, F., and Zhang, Y. 2015. “The App Sampling

Problem for App Store Mining,” Conference on Mining Software Repositories (2015-

Augus), pp. 123–133. (https://doi.org/10.1109/MSR.2015.19).

McIlroy, S., Ali, N., Khalid, H., and Hassan, A. E. 2016. “Analyzing and Automatically

Labelling the Types of User Issues That Are Raised in Mobile App Reviews,”

Empirical Software Engineering (21:3), pp. 1067–1106.

(https://doi.org/10.1007/s10664-015-9375-7).

McKinney, W. 2010. “Data Structures for Statistical Computing in Python,” Proceedings

of the 9th Python in Science Conference (445), pp. 51–56.

Messerschmitt, D. G., and Szyperski, C. 2003. Software Ecosystem: Understanding an

Indispensable Technology and Industry, Cambridge: MIT Press.

Moore, J. F. 1993. “Predators and Prey: A New Ecology of Competition.,” Harvard

Business Review (71:3), pp. 75–86.

Moore, J. F. 1996. The Death of Competition: Leadership and Strategy in the Age of

Business Ecosystems, New York: Harper Collins.

- 67 -

Ng, A. Y., and Jordan, M. I. 2002. “On Discriminative vs. Generative Classifiers: A

Comparison of Logistic Regression and Naive Bayes,” in Advances in Neural

Information Processing Systems, pp. 841–848.

Ng, B. Y., Kankanhalli, A., and Xu, Y. C. 2009. “Studying Users’ Computer Security

Behavior: A Health Belief Perspective,” Decision Support Systems (46:4), pp. 815–

825. (https://doi.org/10.1016/j.dss.2008.11.010).

Noei, E., Zhang, F., and Zou, Y. 2019. “Too Many User-Reviews - What Should App

Developers Look at First?,” IEEE Transactions on Software Engineering, pp. 1–12.

(https://doi.org/10.1109/tse.2019.2893171).

Oliver, R. L. 1977. “Effect of Expectation and Disconfirmation on Postexposure Product

Evaluations: An Alternative Interpretation,” Journal of Applied Psychology (62:4),

pp. 480–486. (https://doi.org/10.1037/0021-9010.62.4.480).

Oliver, R. L. 1980. “A Cognitive Model of the Antecedents and Consequences of

Satisfaction Decisions,” Journal of Marketing Research (17:4), pp. 460–469.

(https://doi.org/10.1177/002224378001700405).

Oliver, R. L. 1993. “Cognitive, Affective, and Attribute Bases of the Satisfaction

Response,” Journal of Consumer Research (20:3), pp. 418–430.

(https://doi.org/10.1086/209358).

Ortiz de Guinea, A., and Webster, J. 2013. “An Investigation of Information Systems Use

Patterns: Technological Events as Triggers, the Effect of Time, and Consequences for

Performance,” MIS Quarterly: Management Information Systems (37:4), pp. 1165–

1188. (https://doi.org/10.25300/misq/2013/37.4.08).

Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C. A., Canfora, G., and Gall, H. C.

2015. “How Can i Improve My App? Classifying User Reviews for Software

Maintenance and Evolution,” Conference on Software Maintenance and Evolution

(1), pp. 281–290. (https://doi.org/10.1109/ICSM.2015.7332474).

Patterson, P. G. 1997. “Modeling the Determinants of Customer Satisfaction for Business-

to-Business Professional Services,” Journal of the Academy of Marketing Science

(25:1), pp. 4–17. (https://doi.org/10.1007/BF02894505).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M., and Duchesnay, É. 2011. “Scikit-Learn: Machine

Learning in Python,” Journal of Machine Learning Research (12), pp. 2825–2830.

Peppard, J., and Rylander, A. 2006. “From Value Chain to Value Network: Insights for

Mobile Operators,” European Management Journal (24:2), pp. 128–141.

Qiu, Y., Gopal, A., and Hann, I. H. 2017. “Logic Pluralism in Mobile Platform

Ecosystems: A Study of Indie App Developers on the IOS App Store,” Information

Systems Research (28:2), pp. 225–249. (https://doi.org/10.1287/isre.2016.0664).

- 68 -

Recker, J. 2006. “Reasoning about Discontinuance of Information System Use,” Journal of

Information Technology (17:1), pp. 21–31. (https://doi.org/10.1111/j.1467-

8276.2007.00999.x).

Rehurek, R. 2019. “Gensim: Topic Modelling for Humans.”

(https://radimrehurek.com/gensim/index.html, accessed February 2, 2020).

Rozin, P., and Royzman, E. B. 2001. “Negativity Bias, Negativity Dominance, and

Contagion,” Personality and Social Psychology Review (5:4), pp. 296–320.

(https://doi.org/10.1207/S15327957PSPR0504_2).

Ruhe, G., and Saliu, M. O. 2005. “The Art and Science of Software Release Planning,”

IEEE Software (22:6), pp. 47–53. (https://doi.org/10.1109/MS.2005.164).

Scrapinghub Ltd. 2018. “Architecture Overview - Scrapy Documentation,” Scrapy

Developer Documentation. (https://docs.scrapy.org/en/latest/topics/architecture.html,

accessed January 14, 2020).

Scrapinghub Ltd. 2019. “Scrapy 1.8 Documentation,” Scrapy Developer Documentation.

(https://docs.scrapy.org/en/latest/index.html, accessed January 14, 2020).

Sensor Tower Inc. 2019. “Q2 2019 - App Store Intelligence Data Digest,” Data Digest

Report, pp. 1–54. (https://s3.amazonaws.com/sensortower-

itunes/Quarterly+Reports/Sensor-Tower-Q2-2019-Data-Digest.pdf?src=landing,

accessed January 13, 2020).

Sievert, C., and Shirley, K. 2014. “LDAvis: A Method for Visualizing and Interpreting

Topics,” in Proceedings of the Workshop on Interactive Language Learning,

Visualization, and Interfaces, pp. 63–70. (https://doi.org/10.3115/v1/w14-3110).

Song, P., Xue, L., Rai, A., and Zhang, C. 2018. “The Ecosystem of Software Platform: A

Study of Asymmetric Cross-Side Network Effects and Platform Governance,” MIS

Quarterly: Management Information Systems (42:1), pp. 121–142.

(https://doi.org/10.25300/MISQ/2018/13737).

Spearman, C. 1904. “The Proof and Measurement of Association between Two Things,”

American Journal of Psychology (15:1), pp. 72–101.

(https://doi.org/10.2307/1422689).

Stackpole, B., and Hanrion, P. 2007. Software Deployment, Updating, and Patching, Boca

Raton: CRC Press. (https://doi.org/10.1201/9781420013290).

Tansley, A. G. 1935. “The Use and Abuse of Vegetational Concepts and Terms,” Ecology

(16:3), pp. 284–307. (https://doi.org/10.2307/1930070).

Tiwana, A., Konsynski, B., and Bush, A. A. 2010. “Platform Evolution: Coevolution of

Platform Architecture, Governance, and Environmental Dynamics,” Information

Systems Research (21:4), pp. 675–687. (https://doi.org/10.1287/isre.1100.0323).

- 69 -

Venkatesh, V., Brown, S. A., and Bala, H. 2013. “Bridging the Qualitative-Quantitative

Divide: Guidelines for Conducting Mixed Methods Research in Information

Systems,” MIS Quarterly: Management Information Systems (37:1), pp. 21–54.

(https://doi.org/10.25300/MISQ/2013/37.1.02).

Verhagen, T., Nauta, A., and Felberg, F. 2013. “Negative Online Word-of-Mouth:

Behavioral Indicator or Emotional Release?,” Computers in Human Behavior (29:4),

pp. 1430–1440. (https://doi.org/10.1016/j.chb.2013.01.043).

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,

Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,

E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,

Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A.

M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P. 2020. “SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, pp.

1–12. (https://doi.org/10.1038/s41592-019-0686-2).

Wang, H., Li, H., and Guo, Y. 2019. “Understanding the Evolution of Mobile App

Ecosystems: A Longitudinal Measurement Study of Google Play,” Proceedings of the

World Wide Web Conference 2019, pp. 1988–1999.

(https://doi.org/10.1145/3308558.3313611).

Williams, C. 2007. “Research Methods,” Journal of Business & Economics Research (5:3),

p. 65.

- 70 -

Appendix

A Supplemental figures

Appendix A.1: Structure of App Store reviews

Appendix A.2: Overview of developed Python modules

Appendix A.3: Architecture of Scrapy (Scrapinghub Ltd. 2018)

- 71 -

B Supplemental tables

Platform

Desktop Web Mobile

C
a

te
g

o
ry

 End user

programming

MS Excel, Mathe-

matica, VHDL

Yahoo! Pipes, MS PopFly,

Google’s mashup editor

None so far

Application MS Office SalesForce, eBay, Amazon, Ning None so far

Operating system
Windows, Linux,

Apple OS X

Google AppEngine, Yahoo devel-

oper, Coghead, Bungee Labs

iOS, Android,

Nokia S60, Palm

Appendix B.1: Software ecosystem taxonomy (Bosch 2009, p. 112)

Category Rank App Publisher

Books 1 Audible audiobooks & originals Audible, Inc.

Books 2 Amazon Kindle AMZN Mobile LLC

Books 3 Wattpad - Books & Stories Wattpad Corp

Books 4 KJV Bible -Audio Bible Offline iDailybread Co., Limited

Books 5 Libby, by OverDrive OverDrive, Inc.

Books 6 Yarn - Chat & Text Stories Science Mobile, LLC

Books 7 OverDrive: eBooks & audiobooks OverDrive, Inc.

Books 8 Goodreads: Book Reviews Goodreads

Books 9 Color Therapy Coloring Number Miinu Limited

Books 10 Hoopla Digital Midwest Tape, LLC

Business 1 Indeed Job Search Indeed Inc.

Business 2 ZOOM Cloud Meetings Zoom

Business 3 ADP Mobile Solutions ADP, Inc

Business 4 Duo Mobile Duo Security

Business 5 Adobe Acrobat Reader for PDF Adobe Inc.

Business 6 DoorDash - Driver DoorDash, Inc.

Business 7 Amazon Flex AMZN Mobile LLC

Business 8 Microsoft Teams Microsoft Corporation

Business 9 ZipRecruiter Job Search ZipRecruiter, Inc.

Business 10 Uber Driver Uber Technologies, Inc.

Education 1 Photomath Photomath, Inc.

Education 2 Google Classroom Google LLC

Education 3 Remind: School Communication remind101

Education 4 Quizlet Quizlet Inc

Education 5 Mathway Mathway, LLC

Education 6 Duolingo Duolingo

Education 7 Kahoot! Play & Create Quizzes Kahoot! AS

Education 8 Socratic by Google Google LLC

Education 9 Elevate - Brain Training Elevate, Inc.

Education 10 Slader Math Homework Answers Slader, LLC

Entertainment 1 TikTok - Make Your Day TikTok Inc.

Entertainment 2 Netflix Netflix, Inc.

Entertainment 3 Hulu: Stream TV shows & movies Hulu, LLC

Entertainment 4 Countdown App Ryan Boyling

Entertainment 5 Amazon Prime Video AMZN Mobile LLC

Entertainment 6 Tubi - Watch Movies & TV Shows Tubi, Inc

Entertainment 7 Roku ROKU INC

Entertainment 8 Ticketmaster - Buy, Sell Tickets Ticketmaster

Entertainment 9 Slime Simulator Relax Games ASMR - Slime Casual Games Studio

Entertainment 10 The CW The CW Network

Finance 1 Cash App Square, Inc.

Finance 2 Venmo: Send & Receive Money Venmo

Finance 3 PayPal: Mobile Cash PayPal, Inc.

- 72 -

Finance 4 Capital One Mobile Capital One

Finance 5 Credit Karma Credit Karma, Inc.

Finance 6 Zelle Early Warning Services, LLC

Finance 7 Chase Mobile® JPMorgan Chase & Co.

Finance 8 Bank of America Mobile Banking Bank of America

Finance 9 Wells Fargo Mobile Wells Fargo

Finance 10 Robinhood: Invest. Save. Earn. Robinhood Markets, Inc.

Food & Drink 1 DoorDash - Food Delivery DoorDash, Inc.

Food & Drink 2 Uber Eats: Food Delivery Uber Technologies, Inc.

Food & Drink 3 Grubhub: Local Food Delivery GrubHub.com

Food & Drink 4 Starbucks Starbucks Coffee Company

Food & Drink 5 Popeyes® Popeyes Louisiana Kitchen, Inc.

Food & Drink 6 Chick-fil-A Chick-fil-A, Inc.

Food & Drink 7 McDonald's McDonald's USA

Food & Drink 8 Postmates - Food Delivery Postmates Inc.

Food & Drink 9 Domino's Pizza USA Domino's Pizza LLC

Food & Drink 10 Dunkin' Dunkin' Donuts

Games 1 Call of Duty®: Mobile Activision Publishing, Inc.

Games 2 Photo Roulette Photo Roulette AS

Games 3 Rescue Cut - Rope Puzzle MarkApp Co. Ltd

Games 4 Fit the Ball 3D Bigger Games

Games 5 Kolor it ZPLAY

Games 6 Clash of Blocks! Popcore GmbH

Games 7 Icing on the Cake Lion Studios

Games 8 Brain Out EYEWIND LIMITED

Games 9 Art Ball 3D Alictus

Games 10 Mario Kart Tour Nintendo Co., Ltd.

Health & Fitness 1 Calm Calm.com

Health & Fitness 2 Reflectly Reflectly

Health & Fitness 3 Flo Period & Ovulation Tracker FLO HEALTH, INC.

Health & Fitness 4 MyFitnessPal Under Armour, Inc.

Health & Fitness 5 Motivation Quotes -Daily Quote Monkey Taps

Health & Fitness 6 BetterMen: Workout Trainer Genesis Technology Partners

Health & Fitness 7 Sweatcoin Sweatco Ltd

Health & Fitness 8 Headspace: Meditation & Sleep Headspace Inc.

Health & Fitness 9 Fitbit Fitbit, Inc.

Health & Fitness 10 Muscle Booster Workout Tracker A.L. AMAZING APPS LIMITED

Lifestyle 1 Google Home Google LLC

Lifestyle 2 Tinder Tinder Inc.

Lifestyle 3 OnMyWay: Drive Safe, Get Paid OnMyWay

Lifestyle 4 Zillow Real Estate & Rentals Zillow.com

Lifestyle 5 Co-Star Personalized Astrology Co-Star Astrology Society

Lifestyle 6 PINK Nation Victoria's Secret PINK

Lifestyle 7 Bumble - Meet New People Bumble Holding Limited

Lifestyle 8 Text Free: Texting + Calling Pinger, Inc.

Lifestyle 9 T-Mobile Tuesdays T-Mobile

Lifestyle 10 Hinge: Dating & Relationships Hinge, Inc.

Photo & Video 1 YouTube: Watch, Listen, Stream Google LLC

Photo & Video 2 Instagram Instagram, Inc.

Photo & Video 3 Snapchat Snap, Inc.

Photo & Video 4 Google Photos Google LLC

Photo & Video 5 PicsArt Photo Editor + Collage PicsArt, Inc.

Photo & Video 6 Triller: Social Video Platform Triller LLC

Photo & Video 7 Polaroid Originals Polaroid Originals

Photo & Video 8 Funimate Video Musical Editor Avcr, Inc.

Photo & Video 9 Shutterfly: Cards & Gifts Shutterfly

Photo & Video 10 Layout from Instagram Instagram, Inc.

Productivity 1 Gmail - Email by Google Google LLC

- 73 -

Productivity 2 Google Docs: Sync, Edit, Share Google LLC

Productivity 3 Google Drive Google LLC

Productivity 4 Google Slides Google LLC

Productivity 5 Microsoft Outlook Microsoft Corporation

Productivity 6 Google Sheets Google LLC

Productivity 7 Dropbox Dropbox

Productivity 8 Yahoo Mail - Organized Email Yahoo

Productivity 9 CyberGhost VPN & WiFi Proxy CyberGhost SRL

Productivity 10 Microsoft Word Microsoft Corporation

Shopping 1 Amazon - Shopping made easy AMZN Mobile LLC

Shopping 2 Walmart - Save Time and Money Walmart

Shopping 3 Wish - Shopping Made Fun ContextLogic Inc.

Shopping 4 eBay Shopping - Buy and Sell eBay Inc.

Shopping 5 Target Target

Shopping 6 Nike Nike, Inc

Shopping 7 Poshmark Poshmark, Inc.

Shopping 8 SHEIN-Fashion Shopping Online Shein Group Ltd

Shopping 9 Arrive - Package Tracker Shopify Inc.

Shopping 10 OfferUp - Buy. Sell. Simple. OfferUp Inc.

Social Networking 1 Facebook Facebook, Inc.

Social Networking 2 Messenger Facebook, Inc.

Social Networking 3 WhatsApp Messenger WhatsApp Inc.

Social Networking 4 Life360: Find Family & Friends Life360

Social Networking 5 Pinterest Pinterest

Social Networking 6 YOLO: Anonymous Q&A Popshow, Inc.

Social Networking 7 IRL - Social Calendar Live Awake Inc

Social Networking 8 Discord Discord, Inc.

Social Networking 9 Google Duo Google LLC

Social Networking 10 Monkey Monkey, Inc.

Travel 1 Uber Uber Technologies, Inc.

Travel 2 Lyft Lyft, Inc.

Travel 3 Yelp Food & Services Around Me Yelp

Travel 4 Airbnb Airbnb, Inc.

Travel 5 Southwest Airlines Southwest Airlines Co.

Travel 6 Google Earth Google LLC

Travel 7 American Airlines American Airlines

Travel 8 Expedia: Hotels, Flights & Car Expedia, Inc.

Travel 9 GetUpside: Gas & Food Cashback Upside Services Inc

Travel 10 United Airlines United Airlines

Utilities 1 Google Chrome Google LLC

Utilities 2 Google Google LLC

Utilities 3 Fonts Fonts LLC

Utilities 4 Bitmoji Bitstrips

Utilities 5 My Verizon Verizon Wireless

Utilities 6 myAT&T AT&T Services, Inc.

Utilities 7 QR Reader for iPhone TapMedia Ltd

Utilities 8 Ring - Always Home Ring.com

Utilities 9 Verizon Call Filter Verizon Wireless

Utilities 10 Microsoft Edge Microsoft Corporation

Appendix B.2: Complete mobile app sample

