
Simulations
for

Cognitive Vision

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Informatik and Mathematik
der Johann Wolfang Goethe-Universität

in Frankfurt am Main

von

VSR Veeravasarapu

aus Vadali, India

Frankfurt am Main, 2018
D30

vom Fachbereich Informatik und Mathematik der

Johann Wolfgang Goethe-Universität Frankfurt am Main als Dissertation angenom-
men.

Dekan: Prof. Dr. Andreas Bernig

1. Gutachter: Prof. Dr. Visvanathan Ramesh

2. Gutachter: Prof. Dr. Constantin Rothkopf

Datum der Disputation:

The greatest challenge to any thinker is stating the problem in a way
that will allow a solution

Bertrand Russell –

Acknowledgements

I owe an enormous intellectual debt to my supervisor Prof. Visvanathan Ramesh

who introduced me to systems engineering principles and several fields of computer

vision domain. His uncanny abilities to find weak links in a chain of reasoning always

amazed me and inspired me to view the problems from a different perspective. His

constant encouragement and guidance made this work possible. The knowledge and

valuable suggestions given by him provided the foundation for the work presented in

this thesis. I am also grateful for the support and encouragement of Dr. Constantin

Rothkopf, my secondary guide who gave me valuable feedback, suggestions, and

inputs. I should be thankful to him for the cooperation in writing the camera-ready

version of my research article which was accepted at CVPR-2017.

I also want to thank the team at Center for Cognition and Computation lab,

especially, Dr. Kishore Konda and Rudra Hota, for lengthy discussions and their

support of all things technical. I must also thank Tobias Weis, Martin Mundt,

Christian Becker and others in the administrative team for providing a wonderful

research environment at the lab and maintaining easily accessible computation

resources.

I greatly acknowledge the funding towards my Ph.D. from the German Federal

Ministry of Education and Research (BMBF) in projects 01GQ0840 and 01GQ0841

(BFNT Frankfurt) and Continental automotive GmbH.

Abstract

Due to the resurrection of data-hungry models (such as deep convolutional neural

nets), there is an increasing demand for large-scale labeled datasets and benchmarks

in the computer vision fields (CV). However, collecting real data across diverse scene

contexts along with high-quality annotations is often expensive and time-consuming,

especially for detailed pixel-level label prediction tasks such as semantic segmentation,

etc. To address the scarcity of real-world training sets, recent works have proposed

the use of computer graphics (CG) generated data to train and/or characterize

performance of modern CV systems. CG based virtual worlds provide easy access to

ground truth annotations and control over scene states. Most of these works utilized

training data simulated from video games and pre-designed virtual environments

and demonstrated promising results. However, little effort has been devoted to

the systematic generation of massive quantities of sufficiently complex synthetic

scenes for training scene understanding algorithms. In this work, we develop a

full pipeline for simulating large-scale datasets along with per-pixel ground truth

information. Our simulation pipeline constitutes of mainly two components: (a) a

stochastic scene generative model that automatically synthesizes traffic scene layouts

by using marked point processes coupled with 3D CAD objects and factor potentials,

(b) an annotated-image rendering tool that renders the sampled 3D scene as RGB

image with a chosen rendering method along with pixel-level annotations such as

semantic labels, depth, surface normals etc. This pipeline is capable of automatically

generating and rendering a potentially infinite variety of outdoor traffic scenes that

can be used to train convolutional neural nets (CNN).

However, several recent works, including our own initial experiments demonstrated

that the CV models that are trained naively on simulated data lack generalization

capabilities to real-world scenes. This opens up several fundamental questions

about what is it lacking in simulated data compared to real data and how to use it

effectively. Furthermore, there has been a long debate since 1980’s on the usefulness

of CG generated data for tuning CV systems. Primarily, the impact of modeling

errors and computational rendering approximations, due to various choices in the

rendering pipeline, on trained CV systems generalization performance is still not

clear. In this thesis, we take a case study in the context of traffic scenarios to

7

empirically analyze the performance degradations when CV systems trained with

virtual data are transferred to real data. We first explore system performance

tradeoffs due to the choice of the rendering engine (e.g., Lambertian shader (LS),

ray-tracing (RT), and Monte-Carlo path tracing (MCPT)) and their parameters. A

CNN architecture, DeepLab, that performs semantic segmentation, is chosen as the

CV system being evaluated. In our case study, involving traffic scenes, a CNN trained

with CG data samples generated with photorealistic rendering methods (such as RT

or MCPT), shows already a reasonably good performance on real-world testing data

from CityScapes benchmark. Use of samples from an elementary rendering method,

i.e., LS, degraded the performance of CNN by nearly 20%. This result conveys that

training data must be photorealistic enough for better generalizability of the trained

CNN models. Furthermore, the use of physics-based MCPT rendering improved the

performance by 6% but at the cost of more than three times the rendering time.

This MCPT generated dataset when augmented with just 10% of real-world training

data from CityScapes dataset, the performance levels achieved are comparable to

that of training CNN with the complete CityScapes dataset.

The next aspect we study in the thesis involves the impact of choice of parameter

settings of scene generation model on the generalization performance of CNN models

trained with the generated data. Towards this end, we first propose an algorithm

to estimate our scene generation model parameters given an unlabeled real world

dataset from the target domain. This unsupervised tuning approach utilizes the

concept of generative adversarial training, which aims at adapting the generative

model by measuring the discrepancy between generated and real data in terms of

their separability in the space of a deep discriminatively-trained classifier. Our

method involves an iterative estimation of the posterior density of prior distributions

for the generative graphical model used in the simulation. Initially, we assume

uniform distributions as priors over parameters of a scene described by our generative

graphical model. As iterations proceed the uniform prior distributions are updated

sequentially to distributions for the simulation model parameters that leads to

simulated data with statistics that are closer to the distributions of the unlabeled

target data.

In order to quantify the impact of parameter settings of the scene generation, we

compare the generalization of the CNN models trained separately on virtual datasets

that are generated with the scene parameters before and after tuning to target

domain’s data. We demonstrate better generalization capabilities of DCNN models

by tuning the scene generation (using the proposed adversarial tuning method) to two

real-world benchmark datasets (CityScapes and CamVid). We obtained performance

8

improvements by 2.28% and 3.14% in mIOU metrics between the CNN models

trained on simulated sets prepared from the scene generation models, before and

after tuning, on CityScapes and CamVid datasets respectively. Moreover, we observe

that utility of simulated data generated from the tuned models further reduces the

amount of labeled real data by nearly 1% (to reach the performance levels on par

with that of complete CityScapes data).

Although the utility of physics-based renderer and tuning the parameters of scene

generation has resulted in improved generalization performance, we needed several

”labeled” real samples (at least 9% of CityScapes in the context of experiments) to

achieve the performance levels on par with that of full real-world training. However,

this 9% data (i.e., more than 300 images) still requires a lot of human efforts to

label at pixel-level, for instance, optical flow and intrinsic images, etc. By motivating

the fact that unlabeled data is abundant in real-world, we next explore the use of

unlabeled real data in a Multi-Task Learning (MTL) framework to reduce the domain

shift of the feature representations that are learned while training the vision models

on labeled simulated data. We present a novel MTL based framework that uses an

auxiliary task on ”unlabeled” real data to regularize the processes of training on

labeled simulated data to learn feature representations that are more generalizable to

reality. Hence, the proposed MTL framework simultaneously trains two CNNs: one

for semantic segmentation on labeled simulated data and the other for an auxiliary

self-supervised task on unlabeled real data. Since the geometric context-based

features are relatively less biased compared to appearance models, we choose to

solve an in-painting task as the algorithms have to understand the geometric context

of the entire image. However, training with traditional reconstruction losses such

as L2-norm might produce blurry results. We surmount this problem by using

an adversarial discriminator to help the designed in-painting network to produce

high-quality predictions. Our experiments prove that the MTL approach can learn

feature representations that are well generalizable to real-world scenarios. In specific,

MTL improves the generalization of semantic segmentation model by at least 11%.

Interestingly, the impact of rendering engine has become insignificant on the CNN

models trained in our MTL framework, while tuning of simulators still seems to

important as data generated w/o tuning degraded the performance nearly by 7%.

This experimental evidence empirically supports our claim that our MTL training

process emphasizes to transfer geometric context rather than appearance specific

features.

9

Zusammenfassung

Begründet in der Auferstehung daten-hungriger Modelle (z.B. tiefe neuronale Netze)

steigt die Nachfrage nach großangelegten annotierten Datensätzen - vor allem in

den verschiedenen Feldern des künstlichen Sehens. Die Sammlung von realen Daten

über verschiedene Szenenkontexte hinweg sowie qualitativ hochwertige Annotationen

sind jedoch oft kostspielig und zeitaufwendig, insbesondere für detaillierte, Pixel-

genaue Vorhersagen wie z.B. semantische Segmentierung. Um dem Mangel an

realen Trainings-Datensätzen zu begegnen, haben jüngste Arbeiten die Verwendung

von durch Computergrafik (CG) generierten Daten vorgeschlagen, um moderne

CV-Systeme zu trainieren und deren Performanz zu charakterisieren. CG-basierte

virtuelle Welten bieten einfachen Zugriff auf ”ground-truth” Annotationen und

erlauben volle Kontrolle über die Zustände von Szenarien. Die meisten dieser Arbeiten

verwendeten Trainingsdaten, die aus Videospielen und vorgefertigten virtuellen

Umgebungen simuliert wurden, und zeigten vielversprechende Ergebnisse.

Es wurden jedoch nur wenige Anstrengungen unternommen, um systematisch

große Mengen an ausreichend komplexen synthetischen Szenen zu erzeugen, um

damit Algorithmen zum Szenen-Verständnis zu trainieren. In dieser Arbeit en-

twickeln wir eine vollständige Pipeline zur Simulation großer Datensätze mit Pixel-

genauen ”ground-truth”-Annotationen. Unsere Simulations-Pipeline besteht im

Wesentlichen aus zwei Komponenten: (a) ein stochastisches Szenengenerationsmodell,

das Verkehrsszenen-Layouts unter Verwendung von markierten Punktprozessen in

Verbindung mit 3D-CAD-Objekten und Faktorpotentialen automatisch synthetisiert,

(b) ein Rendering-Tool für annotierte Bilder, das die gesampelte 3D-Szene als RGB-

Bild mit einem gewählten Renderingverfahren zusammen mit Pixel-genauen Annota-

tionen wie semantischen Labels, Tiefenwerten, Oberflächennormalen, usw. darsgetellt.

Diese Pipeline ist in der Lage, automatisch eine potenziell unendliche Vielfalt von

Verkehrsszenen zu erzeugen und zu rendern, die zum Trainieren von ”faltenden

neuronalen Netzen” (convolutional neural network - CNN) verwendet werden knnen.

Mehrere aktuelle Arbeiten, darunter unsere eigenen vorläufigen Experimente,

zeigten jedoch, dass die CV-Modelle, die naiv auf simulierten Daten trainiert werden,

durch mangelnde Generalisierung nur schlecht auf reale Szenen anwendbar sind. Dies

wirft einige grundlegende Fragen auf: Was fehlt den simulierten Daten im Vergleich

11

zu realen Daten, und wie knnen diese effektiver genutzt werden? Darüber hinaus gibt

es seit den 1980er Jahren eine lange Debatte über den Nutzen von CG-generierten

Daten für das Tuning von CV-Systemen.

In erster Linie sind die Auswirkungen von Modellierungsfehlern und rechner-

ischen Rendering-Approximationen aufgrund verschiedener Entscheidungen in der

Rendering-Pipeline auf die Generalisierungsleistung trainierter CV-Systeme noch

unklar. In dieser Arbeit analysieren wir empirisch an einer Fallstudie im Rahmen

von Verkehrsszenarien die Performanz-Verluste eines CV-Systems, das mit virtuellen

Daten trainiert, und auf echten Daten angewendet wird. Wir untersuchen den Ein-

fluss der Wahl des Rendering-Verfahrens (z.B. Lambertian Shader (LS), Ray-Tracing

(RT) und Monte-Carlo Path Tracing (MCPT)) und deren Parameter auf die System-

Performanz. Als CV-System, das ausgewertet wird, wird eine CNN-Architektur

gewählt (DeepLab), die eine semantische Segmentierung durchführt.

Unsere Fallstudie zeigt, dass ein auf photo-realistischen gerenderten (z.B. RT

oder MCPT) CG-Daten trainiertes CNN bereits eine annehmbare Performanz auf

echten Test-Daten des CityScapes-Datensatzes liefert. Die Verwendung von Daten

generiert durch elementare Renderingverfahren (LS) verschlechterte die Leistung des

CNNs um fast 20%. Dieses Ergebnis zeigt, dass die Trainingsdaten photorealistisch

genug sein müssen, um eine bessere Generalisierung der trainierten CNN-Modelle zu

erreichen. Darüber hinaus verbesserte der Einsatz von physikalisch basiertem MCPT-

Rendering die Leistung um 6%, allerdings auf Kosten von mehr als dem Dreifachen der

Renderzeit. Durch Anreicherung des mit MCPT generierten Datensatzes mit nur 10%

der realen Trainingsdaten aus dem CityScapes-Datensatz wurden Performanz-Niveaus

erreicht, die vergleichbar sind mit dem eines CNNs, welches auf dem kompletten

echten CityScapes-Datensatz trainiert wurde.

Der nächste Aspekt, den wir in der Arbeit untersuchen, betrifft die Auswirkungen

der Wahl der Parametereinstellungen des Szenengenerierungsmodells auf die Gen-

eralisierungsleistung von CNN-Modellen, die mit den generierten Daten trainiert

wurden. Zu diesem Zweck schlagen wir zunächst einen Algorithmus vor, um unsere

Modellparameter für die Szenengenerierung zu schätzen, wenn ein nicht annotierter

Datensatz realer Daten aus der Zieldomäne verwendet wird. Dieser unüberwachte

Tuning-Ansatz nutzt das Konzept des generativen gegnerischen Trainings, das da-

rauf abzielt, das generative Modell anzupassen, indem es die Diskrepanz zwischen

erzeugten und realen Daten im Hinblick auf ihre Trennbarkeit im Raum eines tiefen,

diskriminierend trainierten Klassifikators misst. Unser Verfahren beinhaltet eine

iterative Schätzung der a-posteriori Dichte von a-priori Verteilungen für das in der

12

Simulation verwendete generative grafische Modell. Zunächst gehen wir von unifor-

men Verteilungen als a-priori Verteilungen über Parameter einer Szene aus, die durch

unser generatives grafisches Modell beschrieben werden. Im Laufe der Iterationen

werden die uniformen a-priori Verteilungen sequentiell zu den Verteilungen für die

Simulationsmodellparameter aktualisiert, was zu simulierten Daten führt, deren

Statistiken näher an den Verteilungen der nicht annotierten Zieldaten liegen.

Um die Auswirkungen der Parameter der Szenengenerierung zu quantifizieren,

vergleichen wir die Generalisierung von CNN-Modellen, die separat auf virtuellen

Datensätzen trainiert wurden, welche mit Szenenparametern vor und nach dem

Tuning auf die Daten der Zieldomäne erzeugt werden. Wir demonstrieren bessere

Generalisierungs-Fähigkeiten von DCNN-Modellen, indem wir die Szenengenerierung

(mit der vorgeschlagenen gegnerischen Tuning-Methode) auf zwei reale Benchmark-

Datensätze (CityScapes und CamVid) abstimmen. Wir erzielten Leistungssteigerun-

gen von 2,28% bzw. 3,14% bei den mIOU-Metriken zwischen den CNN-Modellen,

die auf simulierten Sets trainiert wurden, die aus den Szenengenerierungsmodellen

vor und nach dem Tuning auf CityScapes- und CamVid-Datensätzen erstellt wurden.

Darüber hinaus stellen wir fest, dass der Nutzen von simulierten Daten, die aus den

getunten Modellen generiert werden, die Menge der annotierten Echtdaten weiter

um fast 1% reduziert (um das Leistungsniveau auf dem Niveau der vollständigen

CityScapes-Daten zu erreichen).

Obwohl der Nutzen des physikalisch basierten Renderers und das Abstimmen

der Parameter der Szenengenerierung zu einer verbesserten Generalisierungsleistung

geführt hat, bentigten wir mehrere annotierte reale Daten (mindestens 9% von

CityScapes im Rahmen von Experimenten), um vergleichbare Performanz zu Modellen

zu erreichen, welche auf dem vollständigen realen Datensatz trainiert wurden. Diese

9% Daten (d.h. mehr als 300 Bilder) erfordern jedoch immer noch viel menschliche

Anstrengung, um diese Pixel-genau zu annotieren, z.B. mit optischem Fluss und

intrinsischen Bildern, etc. Durch die Motivation der Tatsache, dass nicht-annotierte

reale Daten reichlich vorhanden sind, untersuchen wir als nächstes die Verwendung

nicht-annotierter realer Daten in einem Multi-Task Learning (MTL)-Framework, um

die Domänenverschiebung der Feature-Repräsentationen zu reduzieren, die beim

Training der CV-Modelle auf annotierten simulierten Daten erlernt werden.

Wir präsentieren ein neuartiges MTL-basiertes Framework, das eine Hilfsaufgabe

für ”nicht-annotierte” reale Daten verwendet, um die Prozesse des Trainings auf

annotierten simulierten Daten zu regularisieren, um Feature Repräsentationen zu

lernen, die besser auf reale Daten generalisieren. Daher trainiert das vorgeschlagene

MTL-Framework gleichzeitig zwei CNNs: eines für die semantische Segmentierung auf

13

annotierten simulierten Daten und das andere für eine zusätzliche selbstüberwachte

Aufgabe auf nicht-annotierten realen Daten.

Da die geometrischen kontextbasierten Merkmale im Vergleich zu Erscheinungsmod-

ellen relativ geringe systematische Fehler aufweisen, entscheiden wir uns für die

Lsung einer In-Painting-Aufgabe, da die Algorithmen den geometrischen Kontext des

gesamten Bildes verstehen müssen. Allerdings kann ein Training mit traditionellen

Rekonstruktionsverlusten wie der L2-Norm zu verschwommenen Ergebnissen führen.

Wir überwinden dieses Problem, indem wir einen gegnerischen Diskriminator ein-

setzen, der dem entworfenen In-Painting-Netzwerk hilft, qualitativ hochwertige

Vorhersagen zu treffen. Unsere Experimente beweisen, dass der MTL-Ansatz Feature-

Repräsentationen lernen kann, die gut auf reale Szenarien generalisieren. Insbesondere

verbessert MTL die Generalisierung des semantischen Segmentierungsmodells um

mindestens 11%. Interessanterweise ist der Einfluss des Rendering-Engine auf die in

unserem MTL-Framework trainierten CNN-Modelle unbedeutend geworden, während

das Tuning von Simulatoren immer noch zu wichtig erscheint, da die ohne Tuning

erzeugten Daten die Performanz um fast 7% verschlechterten. Diese experimentellen

Beweise stützen empirisch unsere Behauptung, dass unser MTL-Trainings prozess

den Schwerpunkt auf die übertragung geometrischer Zusammenhänge und nicht auf

optische Besonderheiten legt.

14

Contents

1 Introduction 1

1.1 Motivations and Problem Statements 2

1.2 Contributions and Outline . 4

1.3 Publications . 6

2 Background 7

2.1 Synthetic Imagery for Vision . 7

2.2 Diverging Opinions and Unifying Perspective 8

3 Graphics Rendering 11

3.1 A Brief Review of Computer Graphics 11

3.1.1 3D modeling . 11

3.1.2 Rendering . 12

3.1.2.1 Surface reflectance 12

3.1.2.2 Media scattering . 14

3.1.2.3 Camera transfer . 15

3.1.3 Rendering engines . 15

3.1.3.1 Real time rendering 16

3.1.3.2 Physics-driven rendering 17

3.2 Our Tool for Annotated Data Rendering 17

3.2.1 Lambertian Shading . 18

3.2.2 Ray Tracing . 19

3.2.3 Monte-Carlo Path Tracing . 19

3.3 Photometry . 20

3.4 Annotations . 21

4 Stochastic Scene Generation 25

4.1 Scene Geometry . 25

4.1.1 Marked Point Processes for Scene Geometry 26

4.1.2 Scene Layout constraints as Factor potentials 28

4.1.2.1 Position Constraint 30

4.1.2.2 Non-overlap Constraint 30

i

Contents

4.1.2.3 Alignment with Road 30

4.1.3 Limitations . 31

4.2 Scene Photometry . 31

5 Impact of Rendering Fidelity 33

5.1 Semantic Labeling . 33

5.2 Data preparation . 35

5.2.1 Simulated Sets . 35

5.2.2 Real-world datasets . 36

5.3 Deep Network architecture . 36

5.3.1 DeepLab . 36

5.3.2 Training . 36

5.3.3 Performance Measure . 37

5.4 Experiments and Results . 37

5.4.1 Input Image statistics . 37

5.4.2 Performance of Virtual-world-based-training 39

5.4.3 Impact of Photorealism . 39

5.4.4 Impact of Physics fidelity . 41

5.4.5 Impact of computational-approximation (spp) 41

5.4.6 Things vs Stuff . 42

5.4.7 Location of Major errors . 42

5.4.8 Transfer learning and Data combinations 44

5.5 Discussion and Conclusion . 45

6 Adversarially Tuned Scene Generation 47

6.1 The Proposed Approach . 49

6.1.1 Initialization . 49

6.1.2 Sampling and Rendering . 50

6.1.3 Adversarial Training . 50

6.2 Validation . 51

6.2.1 Real world target datasets . 51

6.2.2 Virtual reality datasets . 53

6.2.3 Statistics of Training sets . 53

7 Impact of Scene Generation Parameters 55

7.1 Generalization of DeepLab . 55

7.2 Conclusions . 57

ii

Contents

8 Learning to Transfer Geometric Context 59

8.1 Background . 62

8.1.1 Force to Learn Geometric Context 62

8.1.2 Inpainting . 62

8.1.3 Self-supervised Learning . 63

8.1.4 Multi-Task Learning . 64

8.2 Proposed MTL Architecture . 65

8.2.1 SegNet with Instance Normalization Layers 65

8.2.1.1 Train SegNet on Simulated Data 67

8.2.2 InpaintNet . 67

8.2.3 Adversarial Discriminator . 69

8.2.4 Multi-task loss . 70

8.2.5 Training . 70

8.3 Experiments . 70

8.3.1 Training only for Semantic Segmentation 73

8.3.2 Multi Task Learning . 73

8.3.3 Revisiting the impact of data generation settings 74

8.4 Conclusions . 74

9 Conclusions 77

9.1 Summary . 77

9.1.1 Tools . 77

9.1.2 Scientific experimentation and observations 78

9.2 Future Research . 79

9.2.1 Stochastic Scene Models . 80

9.2.2 Learning in Simulators and Image refinement 80

9.2.3 Learn to transfer spatiotemporal context 80

Bibliography 81

iii

List of Figures

3.1 A few 3D CAD vehicle models downloaded from Google’s 3D ware-

house. These CAD models are used in [23] for 3D object detection. . 12

3.2 Raytracing (RT) vs Monte-carlo path tracing (MCPT) [1]. Several

rendering algorithms have been proposed based on different approxi-

mations with different end purposes. For instance, RT (left) is favoured

for real time rendering (video games) and MCPT (right) is favoured

for physics-based renderings (movies or scienfic visualizations). How

does this rendering fidelity impact the tranferability of computer vision

models to reality, when they are trained on rendering data? 13

3.3 Mathematically simplified and physically based Fog effects 14

3.4 Simulation of sensor effects, left to right : Jitter noise (see highlighted

patch), Lens distortions, camera glare, chromatic aberrations. 16

3.5 Rendering fidelity and Virtual scene diversity. This work aims to

quantify the impact of photorealism and physics fidelity on transfer

learning from virtual reality. (a)-(c): Images of same scene state

rendered with different rendering engines. (e)-(g): Same scene under

different lighting. (d) and (h) semantic labels. Color coding scheme

for labels is same as [16]. 20

3.6 Simulated samples . 21

3.7 An image sample and corresponding pixel-level annotations 23

4.1 Scene Generative Models . 27

4.2 Marked Point Processes with Factor Potentials 29

4.3 A few samples from our scene generative model 32

5.1 Image statistics across datasets simulated with different rendering

settings: Simulations appear to be more deviated at higher frequencies

and lower scales. 38

5.2 Performance (IoU on CS val) variations due to photorealism and

computational-approximations of rendering method 40

5.3 Major erroneous locations: Major errors are located around object

boundaries . 43

v

List of Figures

6.1 Flow chart of our adversarial tuning procedure: We sample 3D scene

instances from the scene generative model and render the images.

We then append a second discriminator network, C (a standard

convolutional neural network) that tries to classify if an input image

is real or synthetically generated. C is a discriminative classifier that

has been trained on a combined dataset which has both simulated

samples from the generative model and real samples from the target

dataset. The classification probabilities across simulated instance,

along with the parameter choices used in the simulation are aggregated

together to get an estimate of the probability that a given choice of

parameters produces near-target data. This likelihood model is used

to update the parameters of P̂ in a Bayesian update setting, such that

it generates more similar images (as target data) in next iteration. In

the end, uniform prior distributions are supposed to be updated to

distributions that are closer to the (unknown) distributions of target

data. 48

6.2 Qualitative comparison of training sets (both simulated and real) and

their statistics before and after tuning 52

8.1 Geometric context might be less biased across virtual and real traffic

scenes compared to appearance context. For instance, geometry

scene layouts and object relations seem very similar across simulated

(left column) and real (right column) scenes, while the differences in

appearance of the images are quite varying. 61

8.2 MTL paradigms . 64

8.3 Our Multi Task Learning (MTL) architecture has three major com-

ponents: SegNet that is supposed to solve semantic segmentation

on simulated data, InpaintNet that aims to solve inpainting task on

unlabeled real data, and an adversarial discriminator that encourages

the InpaintNet to predict sharper and visually plausible hypotheses

for missing regions in real image data. 66

8.4 Input and ground truth generation for Inpainting task. Left: real

images from CityScapes dataset, Middle: Binary masks randomly

selected from PASCAL-VOC segmentation set, Right: Masked images

which are inputs to InpaintNet and images in left column are used as

ground truth for training. 68

8.5 Inpainting results . 71

8.6 Semantic segmentation results . 72

vi

List of Figures

8.7 Quantitative evaluations . 73

vii

1 Introduction

Recent advances in computational paradigms and scalable optimization schemes

have revolutionized the disciplines of computer vision and computer graphics. These

advances along with the availability of large scale datasets have facilitated the use of

machine learning based models with a large number of tunable parameters (for exam-

ple, deep convolutional neural networks) for nearly all forms of vision applications.

Due to the complex nonlinear nature of these models, conventional performance mod-

eling or parameter tuning methods (such as uncertainty or distribution propagation

etc.) can become intractable computations for modern vision systems. Training with

large scale diverse data, followed by extensive testing provides a practical way to

assure the required performance. Furthermore, both training and testing are being

done in supervised fashion that requires high quality ground truth information for

all the samples in the dataset. In practice, the processes of such data collection

might be costly and laborious, especially in situations where the data must cover

a wide range of scenarios (for instance, images from different seasons etc.) and

training labels require pixel-level annotations. For instance, CityScapes dataset [16]

is one of the most commonly used datasets for traffic scene semantic segmentation.

It consists of roughly 20000 RGB images in total, out of which only 3475 images

are annotated with pixel-level labels while remaining are unlabeled or partially

labeled. This clearly is insufficient for the supervised training of modern computer

vision methods, especially deeper neural networks. Moreover, the manual labeling

of per-pixel ground truth information is time consuming and error-prone, limiting

both its quantity and accuracy. Hence, lack of good diverse data with corresponding

ground truth information would be a major bottleneck in the vision system design

processes.

Parallel to vision fields, computer graphics (CG) has seen major advances in 3D

CAD modeling and photorealistic renderings, thanks to video gaming and movie

industries. Modern rendering methods are able to produce visually realistic and

physically plausible images and videos. This has drawn the attention of vision

researchers to utilize CG generated data to overcome the problems of scarcity of

real annotated data. Hence, several recent works proposed the utility of simulated

datasets to train and/or diagnose vision systems. Utilizing CG generated data in the

1

1 Introduction

design processes may provide several additional advantages. Parametric control over

the virtual scene states allows us to produce the diverse scenarios, including the most

frequent states and rarely occurring events. Access to ground truth representations

paves a way to train computer vision (CV) systems/models in a supervised manner,

even for the tasks in which real world ground truth is not measurable, for instance,

optical flow and intrinsic images etc. The trained systems can be validated extensively

even in what-if scenarios. This can be done in very early phases even when the

physical host platforms are not available. Moreover, the trade-offs between system’s

performance and hardware setup can be estimated in virtual environments. This

will avoid costly redesigns later in the process.

1.1 Motivations and Problem Statements

Although CG generated data promise control over scene states and access to ground

truth information, it is not trivial to generate synthetic data in large quantities

with sufficient diversity. This is due to (a) lack of stochastic generative models

for complex and diverse 3D scene configurations, and (b) the high computational

cost of generating photo-realistic renderings at a massive scale. Hence, most of

existing works use data from video games or manually designed virtual environments.

Unfortunately, these sets may not provide full control and access to the 3D scenes.

For example, the work of [63] had to develop a semi-automated labeling process

which requires at least one manual-seed per a mesh object, to annotate the data

generated from a video game known as GTA-V. Although it reduces time and efforts

needed for manual annotation processes, it is still not entirely automated as the

renderer does not have access to the semantic information of its scene elements.

We believe that a fully automatic and controllable simulation workbench can

enable the vision system design process in many ways. Hence, in this work we

develop a complete pipeline for synthesizing large scale urban scene layouts via 1)

sampling scene instances from a probabilistic 3D scene model, and 2) performing

graphics rendering of the scenes (with flexible choice of rendering methods) along

with detailed pixel-level ground-truth that serves as input training data for Machine

Learning. Our data simulation pipeline has the following characteristics:

• By leveraging freely available online 3D CAD repositories, we develop a proba-

bilistic scene generative model that can generate 3D scene states with common

layout constraints such as mutual spatial exclusion, alignment and other inter-

object relations etc.

2

1.1 Motivations and Problem Statements

• We also develop an image rendering tool that can render RGB images along

with required ground truth information for a 3D scene state sampled from the

above probabilistic scene model. The tool incorporates with several rendering

methods ranging from classical to modern physically realistic rendering engines

to be used in a plug-and-play manner.

The utility of CG-based simulations in the design process of CV systems is not

new and has been a long-debated issue since 1980’s. Many researchers expressed

apparently diverging opinions about the role of CG for experimental vision. Early

modeling efforts and their assumptions underlying vision algorithms significantly

overlap with the ones that CG based simulations use (for example, Lambertian

reflection [52] and Dichromatic scattering models [51]. Thus, the CV community

had been skeptical of using CG for learning as the data generated was assumed to

be ideal or near-ideal inputs to CV algorithms and noise models are unrealistic [77].

However, modern CG rendering methods are in a state that where they can simulate

visually realistic images and videos by using physically inspired lighting computations.

Also, modern CV architectures are based on deep hierarchical networks, which learn

the features automatically from the given training data. Hence, the utility of CG

generated data to train or diagnose modern CV systems has gained a renewed

attention, and, thus, in recent years, we have seen the increased use of synthetic

datasets.

Having said that modern CG rendering can produce photorealistic training data,

several recent works [80, 85, 25, 65, 63, 68] reported that the modern CV models

trained ”only” on these virtual datasets are lacking generalization capabilities on

real-world data. This again raises several fundamental questions such as: 1) What

properties are lacking in simulated data when compared to real-world data? , 2)

When is simulated data useful for training vision algorithms that can perform ade-

quately on real-world data ? CG based simulations are based on several mathematical

and computational approximations. How do these approximations impact the gener-

alizability of the CV systems trained on virtual data? These questions are not yet

systematically addressed. This work address this space.

Our experimental studies attempt to answer these questions by taking fraffic scene

understanding as an application domain. More specifically, we utilize the simulation

tools developed in this work to examine the following aspects:

• impact of rendering fidelity (modeling errors and computational approximations

in rendering),

3

1 Introduction

• impact of scene generation parameter settings on the generalization performance

of a vision system trained on simulated data,

• a set of design practices that encourage vision algorithm to learn domain-

invariant features that are generalizable to real images.

1.2 Contributions and Outline

The contributions of this thesis include:

• An Unifying Perspective (Chapter 2): We start by reviewing some works

in the literature that shed light on the role of CG based simulations for

experimental vision. Some of these works expressed apparently diverging

opinions about the utility of simulated data in the design process of computer

vision systems. We place their results in the context of systems characterization

methodology outlined in the 90’s and note that insights derived from simulations

can be qualitative or quantitative depending on the degree of fidelity of models

used in simulation and the nature of the question posed by the experimenter.

This perspective explains the apparently diverging opinions expressed in the

literature about the utility of simulated data for experimental vision.

• Data Rendering (Chapter 3): To render image data along with required

ground truth information, we devise a data rendering tool based on an open

source graphics platform, Blender. The tool is integrated with several rendering

methods ranging from classical to modern rendering engines and annotation

shaders in a manner that facilitates plug and play with several data simulation

methods. The details are discussed in Chapter 3. We also revisit the pipeline

of graphics rendering from a vision researcher’s perspective to try to point out

what is it lacking compared to real world image formation physics. We later

use this tool to render a set of scenes with different rendering methods and

parameters and try to quantify their impact of the generalization performance

of the trained model in Chapter 5.

• Stochastic Scene Generation (Chapter 4): Training a deep network re-

quires a large number of images with sufficient sample diversity in the training

phase. Manual design of complex 3D scene states that too in large quantities

with sufficient diversity may require many designers and man-hours. Hence,

we propose to use a probabilistic scene generative model that is based on

marked point processes coupled with predownloaded 3D CAD models and

4

1.2 Contributions and Outline

factor potentials to encode inter-object constraints such mutual exclusion and

alignment etc.

• Impact of Rendering Fidelity (Chapter 5): It is not yet clear that how the

rendering approximations (modeling errors and computational approximations

in rendering method) impact the generalization performance of a vision model

trained on the simulated data, especially in modern computer vision systems

that utilize deep learning. In Chapter 5, we address this question in the

context of traffic scene semantic understanding by comparing the generalization

performance of a deep learning framework trained on simulated data rendered

with different choices of rendering engines and their parameters.

• Adversarially Tuned Scene Generation (Chapter 6): Our parametric

scene generative model facilitates the freedom of selecting probabilistic distri-

butions of scene parameters such as lighting and weather, etc. In the above

chapters, we use uniform or Gaussian distributions of parameters in their

permissible ranges and generate the samples. However, we believe that utilizing

the distributions that are closer to the ones of target real world data might

improve the CV system’s performance on the testing data coming from the

same target domain. Hence, in this chapter we propose an unsupervised tuning

methodology to estimate the prior distributions for our scene generative models

by using a real-world dataset via the use of adversarial training concepts [3].

• Impact of Scene Generation Parameters (Chapter 7): We analyze

the impact of parameter choices of scene generative model on the system’s

generalization to real-world target data. In this chapter, we consider two

publicly available real-world benchmark datasets as target sets and show how

our tuned scene generation processes can improve the generalization capabilities

of trained models to target setting.

• Learning to Transfer Geometric Context from Virtual to Reality

(Chapter 8): In the above chapters, We focussed on making simulated data

statistically similar to real testing data and thus improving generalization

performances of trained models. In this chapter, we focus on unsupervised

visual learning approach that encourages training on simulated data to learn

the features are more realistic and generalizable to real data. Our approach

is based on Multi Task Learning that trains for semantic segmentaion on

simulated data along with an auxiliary task on real data in self-supervised

5

1 Introduction

manner. Our experiments in Chapter 8 demonstrate that the generalization

performance has been significantly improved by using this MTL framework.

• Discussion and Conclusions (Chapter 9): We finally conclude by consoli-

dating all experimental findings, and provide recommentations, in practice, for

generation and utilization of CG data to train a DCNN. We also point out a

few weaknesses of our work and mention possible future extensions.

1.3 Publications

• V. S. R. Veeravasarapu, C. A. Rothkopf, V. Ramesh. Model-driven sim-

ulations for computer vision. IEEE Winter Conference on Applications of

Computer Vision (WACV), 2017. Santa Rosa, USA.

• V. S. R. Veeravasarapu, C. A. Rothkopf, V. Ramesh. Adversarially tuned

scene generation. IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. Honolulu, Hawaii.

6

2 Background

This chapter presents a general overview of the works that utilize CG generated

data for different purposes in the development cycle of modern vision algorithms,

including training, inference, performance modeling and improvements etc.

2.1 Synthetic Imagery for Vision

Due to scarcity of real world annotated datasets, CG generated image datasets have

recently been a source of training data for many applications of CV such as semantic

segmentation, object detection, pedestrian detection, 2D pose estimation, 3D human

pose estimation, optical flow, action recognition and view point estimation etc.

Haltakov et al [31] used a racing video game to generate data with different pixel

level groundtruth such as optical flow, semantic class labels and depth information.

Similarly, another work [63] used recent and advanced video game (known as GTA-V)

to generate the large scale data. However, the annotation process is not automated as

the video game does not provide access to 3D scene state information. They proposed

a semi automated annoatation process based on the communication between the

game and graphics hardware. Another set of works [65, 64] used manually designed

or procedurally generated 3D CAD city environments to generate the data randomly

placing the object and camera in the scenes. For instance the works of synthea

and action data. Virtual KITTI [25] is another interesting work which simulates

the data that looks like KITTI benchmark dataset. All these works demostrated

that virtual data when combined with a few samples of real world data can achieve

state-of-the-art performances. Recently, [24] used a combination of real-data and

synthetic objects to train a DCNN and provide empirical evidence of the usefulness

of such training for real world settings.

Although some prior work demonstrates the potential of synthetic imagery to

advance computer vision research, some other works reported some negative results

when using synthetic data. For instance, experiments of [77] concluded that simu-

lations are not useful for tuning optical flow systems. The work [49] used carefully

designed indoor scene models (parameters) and advanced rendering algorithms to

synthesize very realistic sensory data and concluded that the optical flow error spatial

7

2 Background

statistics are different between simulated and real data. On the other hand, the

work [9] showed that motion models and local spatial statistics, crucial for optic

flow estimation, match with reality. Hence, they argued that the artificial animated

(Sintel) data could be used to design and tune the flow estimators even though

the data is not photo-realistic. This issue of photorealism for virtual-world based

training has a long debated issue in the literature. However, a systematic study

about photorealism of simulations for vision is not yet been done due to lack of

controllable and configurable data simulation platforms.

2.2 Diverging Opinions and Unifying Perspective

The main focus of the above mentioned works is in demonstration of the utility

or lack of utility of simulation for vision systems design and the emphasis is on

evaluation of the system as a black-box in an application context. Still, the degree of

effectiveness of graphics rendered data for vision system design is an open question.

A few discussions12 on public platforms clearly convey the confusion that the vision

community has towards using graphics for learning. These apparent divergent

conclusions can be explained away by the perspective that utility of CG for CV

depends on closeness of simulation models to reality and invariant natures of feature

transforms in the system to be trained/validated.

Systems Characterization Perspective

In Systems science and engineering fields, Simulations have often been used to

evaluate and understand the system as a whole and also the interactions between its

parts/components. This kind of study is often referred as Modeling and Simulation

(M&S). Simulations help in characterizing the performance of the system under

certain situations without actually testing it in real life. The role of modeling

and simulation in systems characterization (or performance characterization) of

computer vision systems engineering was articulated in the early 90s [32, 61]. In

these works, algorithms are viewed as statistical estimators and performance modeling

of an algorithm is viewed as a process of establishing the correspondence between

the deviations of an algorithms expected output as a function of the input signal

parameters, perturbation model parameters, and algorithm tuning constants. These

works advocate a perspective to view the simulation process as part of a meta-analysis

stage for characterizing systems performance. Essentially, the emphasis is on how

1www.quora.com/How-useful-are-massive-virtual-game-environments-for-training-AI
2www.researchgate.net/post/Synthetic-datasets-vs-real-images-for-computer-vision-algorithm-

evaluation2

8

2.2 Diverging Opinions and Unifying Perspective

sources of uncertainty propagate through a chosen system as a function of both

input probability distributions and parameter choices used in the system. In this

paradigm, a separate model validation stage is used for comparing theoretical models

to real-world data. Simulation is used for statistical validation of correctness of

software implementation as well as gauging performance limits of systems.

Although Computer Graphics is motivated by well established theories, the end

rendering model that drives computations (for instance, Monte-carlo path tracing),

generally incorporates modeling assumptions and approximated computations that

are not theoretically motivated. The results of graphic simulations, therefore, do not

automatically come with a stamp of approval that carries the full faith and credit

of the vision models and their statistics/analytics. Hence, constant concern with

uncertainty and error should be given, just same as real world data. Moreover, due

to the fact that we may not be able to model the context very close to (unknown)

real world models, it obviously reflects as dataset-shift problem in rendered data.

Transferability of the conclusions/models from simulations to reality depends on

many factors and variables in the experimental pipeline that include

• Scene generative models (P̂ (θW)) used,

• Rendering techniques (Ĝ(θG)) used to generate observations,

• Real world target data (Dr),

• Algorithm or System being evaluated (S)

• Criterion Function or metric for evaluation (L)

where θW denotes the generative model parameters governing the world scene and

θG represents the parameters governing the computer graphics rendering choices.

Ideally, the scene distribution (world model) has to be propagated through the

components Ĝ and S to get uncertainties in the conclusions/models that are being

transferred to the real world testing. This is often called as white-box performance

characterization. In a model-driven design paradigm, the structure of the system

can be motivated from invariance arguments and designed modules have specific

semantics in context (e.g. Mann [47], Mallat [8], Greiffenhagen [29] etc). In this

setting the system S is designed by choice of invariant modules and systems analysis

that explicitly account for contextual models and tasks. However, Model validation

of generative models is a challenging task in the real-world. Modular specification of

the world model (e.g. geometry, albedo, color, dynamics, environment), allows one

to learn the model parameters separately and then use the physics-based simulator.

9

2 Background

Modular specification naturally allows the use of a lesser number of samples. However,

experimental design and sampling needs to be done carefully to learn accurate prior

distributions. The strategy for validation of a model based design is (An example of

model validation is given in Greiffenhagen et al [29]).

The rationale for modern deep CV architectures is currently being studied ex-

tensively by theorists. However, a holistic systems analysis linking physics based

rendering methods with modern CV algorithm architectures is challenging. Hence,

we resort to a black-box but rigorous analysis in which we consider rendering engines

and vision systems (deep networks) as black-boxes. The combinations of (P̂ , Ĝ,

Dr, S, L) form a joint space of consideration for the experiment. Our choices in

this thesis work can be seen as a specific example from this space. However, our

experimental procedure can be extended to other choices with minimal changes.

Due to the explosions of big data (for example ImageNet) and renaissance of

data hungry models (such as deep networks), the focus on modeling errors has been

overshadowed with the excellence of deep models trained on large scale data. The

performance of the deep models depends on scale and diversity of the training dataset.

Moreover, with the adoption of deep networks from image-level classification to pixel-

level prediction tasks, the cost of getting labeled data (especially for pixel level

annotations) is increasing and becoming laborious. Hence, several recent attempts

[80, 85, 25, 65, 63, 68] has been reported to utilize CG based simulations to train

deep networks and demonstrated that amount of real world data required for training

can be reduced. However, these works bypassed the more involved task of generative

modeling by rendering data from video game environments and existing 3D CAD

models. Moreover, they have taken a fundamental assumption that modern CG

rendering methods simulate realistic images/videos. Hence, the impact of model

choices and approximations in rendering pipeline is largely unexplored. In this work,

we address this space with an approach inspired from systems characterization.

10

3 Graphics Rendering

In this chapter, we first provide a brief review of the major components in a CG-based

rendering pipeline. We also provide the details of our data rendering tool along with

the rendering methods used in our experiments in the following chapters.

3.1 A Brief Review of Computer Graphics

The major focus of Computer graphics is to simulate very realistic images/videos.

This process mainly constitutes of two phases: 3D Modeling and Rendering. Both

the phases have seen major advances in the last decades, thus, had a significant

impact on many types of media and has revolutionized the fields of video games,

animation, movies, and advertising etc.

3.1.1 3D modeling

CG pipeline starts with the process of developing a mathematical representation

of three-dimensional (3D) virtual scene. This includes defining: 1) the geometrical

structure of the objects in the scene, 2) a set of materials ribing the appearance of the

objects, 3) the specification of the light sources in the scene, and 4) a virtual camera

model. The geometry is often specified in terms of discretized rendering primitives

such as triangles describing surface patches. The materials define how light interacts

with surfaces and participating media. Finally, the scene is illuminated using one

or several light sources, and the composition of the rendered frame is defined by

introducing a virtual camera.

Due to high demands in video games and movie industry, a large number of

softwares and tools have been developed to simplify the phase of 3D modeling. For

example, Cinema 4D, Maya, 3DS max, Blender, LightWave, and Modo etc. All

these tools provide programmable shaders for most of the object materials, light

sources, weather scatterting effects and also camera models etc. Furthermore, these

tools have opened doors for large-scale online collections of 3D CAD models to share

across communities. For instance, please see Figure 3.1 that shows some samples of

3D CAD models for ”Car” object category which are available on an online CAD

11

3 Graphics Rendering

Figure 3.1: A few 3D CAD vehicle models downloaded from Google’s 3D warehouse.
These CAD models are used in [23] for 3D object detection.

repository. However manual designing the 3D virtual scenes is a laborious process,

hence, we devise an automated scene generation protocol based probabilistic models

and publicly available CAD object meshes. The details of this stochastic scene

generation will be discussed in the next chapter.

3.1.2 Rendering

Once 3D scene state is generated either manually or automatically, next step in CG

pipeline is rendering process that synthesizes 2D image/video(s) from the created

3D scene. This can be compared to taking a photo or filming the scene with a

camera in real life. Ideally any rendering method aim to simulate the physics of

light propagation through the entire 3D scene. Light propagation in a scene, from

light source to camera, mainly involves three phenomena: (a) surface reflectance, (b)

media scattering and (b) camera transfer.

3.1.2.1 Surface reflectance

The light interaction with surfaces [39] is explained mathematically as follows:

Lr(x, ωo) = Le(x, ωo) +

∫
H

ρbd(x, ωo, ωi)Li(x, ωi) cos θidσωi
(3.1)

12

3.1 A Brief Review of Computer Graphics

Figure 3.2: Raytracing (RT) vs Monte-carlo path tracing (MCPT) [1]. Several ren-
dering algorithms have been proposed based on different approximations
with different end purposes. For instance, RT (left) is favoured for real
time rendering (video games) and MCPT (right) is favoured for physics-
based renderings (movies or scientific visualizations). How does this
rendering fidelity impact the tranferability of computer vision models to
reality, when they are trained on rendering data?

where Lr(x, ωo) and Le(x, ωo) are the reflected and emitted light in the direction

ωo at a surface point x. Li(x, ωi) is incident light which has to integrated over solid

angle σωi
of a infinitesimal hemisphere H centered at x. ρbd is BRDF (Bi-directional

reflective distribution function) or BTF (Bi-directional transmission function), a

function of incident (ωi) and outgoing (ωo) directions. θi is the angle between incident

light ray and surface normal. BRDF/BTF [50] is a characteristic for a surface material

that defines apperance of the material. Several graphics platforms such as Blender

etc. provide these functions for a wide variety of materials that are commmonly

found in nature. Equation 3.1 involve a continous integration of dot product (b/w

incident light and BRDF) over a hemisphere H centered at surface point. This

is analytically intractable to compute. Some methods ignore this integration and

considers only one light ray that is coming directly from light source. These methods

are oftenly refered as local illumination models or direct lighting based methods.

For instance, Lambertian shader and Specular shader etc. The other set of methods

either introduce mathmatical simplifications for real time rendering or use numerical

ways to solve the continuous integration such as Monte-Carlo methods.

13

3 Graphics Rendering

(a) volumetric weighting (b) volume scattering

Figure 3.3: Mathematically simplified and physically based Fog effects

3.1.2.2 Media scattering

When simulating images under weather such fog etc., reflected light (Lr) from the

surfaces has to travel through medium/atmosphere before it hits camera. In this

phase, it undergoes three kinds of phenomena: absorption, scattering and emission.

This is formulated by the integral light transport equation as follows,

E(y) =

Lr(x, ωo)e
−

∫ y
x kt(u)du︸ ︷︷ ︸

Eal: attenuated light

+

∫ y

x
ka(u)Le(u)e−

∫ y
u kt(u)dudu︸ ︷︷ ︸

Eel: emitted light

+

∫ y

x

∫
S

ks(u)

4π
e
∫ y
u kt(u)duLr(x, ωi)p(ωo, ωi)dσωidu︸ ︷︷ ︸
Ess: single scattering

+

∫ y

x

∫
S

ks(u)

4π
e
∫ y
u kt(u)duLm(u, ωi)p(ωo, ωi)dσωidu︸ ︷︷ ︸

Ems: multiple scattering or medium radiance

(3.2)

where ka, kt and ks are absorption, extinction and scattering coefficients of medium.

Lm(u) is medium radiance due to multiple scattering and in integrated over sphere

S and along the light travel. Due to emission and inscattering, radiance increases

because of light impinging on a point u that is scattered into the viewing direction.

The spatial distribution of the scattered light is modeled by the phase function

p(ωo, ωi) and different phase functions (such as Mie [17] etc.) have been proposed

and applied to simulated polluted sky, haze, clouds, and fog etc. This equation is also

analytically intractable to solve as it involves double continuous integration. One

class of methods, physics based methods, hire Monte-Carlo rendering methods. For

instance Monte-Carlo light transport methods. These methods often use Schlick phase

functions [37] that are parameterized by anisotropy and particle density. These are

14

3.1 A Brief Review of Computer Graphics

proven to be well approximations for theoretical functions and well suited for Monte

Carlo rendering methods. Please see Figure 3.5c for scenes with fog rendered with

physics based renderer. These methods are popularly used in movies and scientific

visualizations etc. The other class of methods mainly simulate the appearance of

weather effects with simple mathematical approximations. These are termed as

appearance driven methods. For instance in Figure 3.5b, fog effect is added to an

image with a post processing shader which uses a volumetric formula based depth

buffer and color of the fog. These are popularly used in the situations where rendering

should be done in real time, for example video games etc.

3.1.2.3 Camera transfer

Most of graphics people use OpenGL pinhole camera and its projection matrix to

compute image intensities from camera irradiance (light incident on camera from

the scene). However, the appearance of an image also depends on the type of sensor

used and light transferring functionaties in it. CG developers rarely consider

sensor models and their influences on the rendered images. We believe that

simulated images, although realistic to the naked eye, might not be well suited

for machine vision applications unless camera imperfections are considered, which

include chromatic aberration, vignetting, lens distortion, sensor noise etc. Light

(camera irradiance) in a classical camera undergoes through several steps in the

camera before it stored as a pixel intensity [74]. Final digitized pixel is given by,

ẑ = f(a

∫ t

0

E(y)dt+Ns +Nc1 + b) +Nc2 (3.3)

where ẑ is the image intensity, f is the camera response function; a and b are the

parameters of while balance module which linearly stretches the received camera

irradiance E(y) in the exposure time t. Ns, Nc1 and Nc2 are factors due to shot noise,

thermal noise and quantization noise. An accurate implementation of these

phenomenon is mostly not available. However, most of the graphics platform

such as Blender provide image processing based filters to add these effects while

post-processing the rendered image. Some of these effects are as shown in Figure 3.4.

3.1.3 Rendering engines

Several different, and often specialized, rendering methods have been developed

for different end-goals. These range from the direct lighting based rendering to

more advanced techniques such as: Ray tracing or Monte-Carlo path tracing etc.

Rendering may take from fractions of a second to hours for a single image/frame,

15

3 Graphics Rendering

Figure 3.4: Simulation of sensor effects, left to right : Jitter noise (see highlighted
patch), Lens distortions, camera glare, chromatic aberrations.

depending on the level-of-details incorporated into rendering. In general, different

rendering methods are better suited for different applications. For example, physics-

grounded rendering methods such as Monte Carlo path tracing are used for scientific

visualizations and movies, whereas real-time rendering methods such as some versions

of Ray tracing are used in video games.

3.1.3.1 Real time rendering

Rendering for interactive media, such as games, is calculated and displayed in real

time, at rates of approximately 20 to 120 frames per second. In real-time rendering,

the goal is to show as much information as possible as the human eye can process in

a fraction of a second. The primary goal is to achieve an as high as possible degree

of photorealism at an acceptable minimum rendering speed (usually 24 frames per

second, as that, is the minimum the human eye needs to see to successfully create

the illusion of movement). In fact, exploitations can be applied in the way the eye

’perceives’ the world, and as a result that the final image presented is not necessarily

that of the real-world, but one close enough for the human eye to tolerate. Rendering

software may simulate such visual effects as lens flares, depth of field or motion

16

3.2 Our Tool for Annotated Data Rendering

blur. These are attempts to simulate visual phenomena resulting from the optical

characteristics of cameras and of the human eye. These effects can lend an element of

realism to a scene, even if the effect is merely a simulated artifact of a camera. This

is the basic method employed in games, interactive worlds, and VRML. The rapid

increase in computer processing power has allowed a progressively higher degree

of realism even for real-time rendering, including techniques such as high dynamic

range (HDR) rendering.

3.1.3.2 Physics-driven rendering

Animations for non-interactive media, such as feature films and video, are rendered

much more slowly. Rendering times for individual frames may vary from a few seconds

to several hours for complex scenes. When the goal is physics-realism, techniques

such as Monte-Carlo path tracing etc. are employed. This is the basic method

employed in digital media and artistic works. Techniques have been developed for the

purpose of simulating other naturally-occurring effects, such as the interaction of light

with various forms of matter. Examples of such techniques include particle systems

(which can simulate rain, smoke, or fire), volumetric sampling (to simulate fog, dust

and other spatial atmospheric effects), caustics (to simulate light focusing by uneven

light-refracting surfaces, such as the light ripples seen on the bottom of a swimming

pool), and subsurface scattering (to simulate light reflecting inside the volumes

of solid objects such as human skin). The rendering process is computationally

expensive, given the complex variety of physical processes being simulated.

For instance, see Figure 3.2. Left one is the image rendered using a ray tracer

whereas the right one is the image rendered using a Monte Carlo Path Tracer of the

same scene. On a normal computer, left image is rendering in real time. The right

image is more physically realistic compared to the left one. However, it comes with

a pay, i.e more rendering time. This trade-off depends on the application at hand,

for example, video game or scientific visualizations etc. Since, one of our goals is

to quantify the impact of the choice of rendering methods (appearance-drive and

physics-driven methods) and their parameters on the generalization performance of

the CV model trained on rendered data, we develop a tool that facilitates the use of

several rendering methods in a plug-and-play manner.

3.2 Our Tool for Annotated Data Rendering

In this section, we explain the details of rendering platform we have developed for

a systematic exploration of a set of scientific questions. We start by stating the

17

3 Graphics Rendering

requirements of an idealistic rendering platform which facilitates plug and play with

different choices of rendering engines and annotations. We also describe the details of

three basic rendering engines used for the experimentation provided in next chapters.

Ideally, choice of rendering process depends on a task that the experimenter

intended to solve. Our aim was to develop a flexible rendering platform which meets

following requirements: (i) It should provide an option of selecting a rendering kernel

ranging from local to global and classical to modern rendering algorithms, (ii) It

should provide a wide range of surface materials (BRDFs), volume scattering and

post processing shaders, (iii) It should render images along with required annotations.

Hence, we developed a rendering platform that is integrated with several rendering

algorithms ranging from classical to modern methods and shaders for several image

annotations such as semantic labels, depth, surface normals etc. Thanks to Blender

[2], an open source rendering engine, met several of our requirements. We integrated

the other rendering and annotations methods using its Node and Scripting interfaces.

Here, we briefly discuss the rendering methods used in our experimentation, which

range from local to global illumination methods, appearance-driven, and physics

driven methods. In our rendering platform, we consider three rendering engines:

Lambertian shader from Direct lighting based rendering family, a Ray-tracer from

the family of real-time realistic rendering (video game engines) and a Monte Carlo

path tracer from the family of physically accurate methods.

3.2.1 Lambertian Shading

Lambertian shading is one of the classical example for local illumination or direct-

lighting based rendering methods. It assumes all the surfaces in the scene are diffuse

surfaces and models only the interaction between surface points and the light that

directly come from light sources and neglect all global illumination effects. It can be

expressed as a dot product between light vector and diffuse BRDF (bi-directional

reflectance distribution function).

Lr(x) = ρbd(x, ωi)Li(x, ωi) cos θi (3.4)

It reflects light equally in all directions, hence, the appearance of these surfaces

are view-point invariant. Many model-driven vision algorithms make an assumption

that the scene surfaces are Lambertian. One image sample rendering with diffuse

BRDF is shown in Figure 3.5a. These images are treated as trivial inputs to CV

algorithms. Hence, the methods trained on these images are found to be more biased

in reality [77]. For our work in Chapter 5, we use Lambertian shader to simulate a

dataset with only direct lighting effects.

18

3.2 Our Tool for Annotated Data Rendering

3.2.2 Ray Tracing

Ray tracing [15] can be categorized as a global illumination based rendering method

that models global light interactions such as inter-reflections, scattering etc., in

addition to direct lighting. However, it employs several mathematically simplifications

for the sake of real time rendering. Hence it is often called as appearance driven

method, as it places emphasis on the appearance of the output rather than the

techniques used to derive it. These methods fire rays from the camera into the scene,

and where those rays intersect the scene, they fire multiple rays to every light in the

scene, and then computes the pixel value based on the material BRDF of the object

with the amount of light that pixel is receiving from all the lights in the scene. This

means that ray tracing can actually only compute direct lighting. All other effects,

such as caustics and global illumination, are based on separate, non-physically based

equations. One image sample rendering with a ray tracer is shown in Figure 3.5b.

These can generate realistic images but with limited fidelity (physical accuracy). In

Figure 3.5b, fog is added by post-processing fragment (pixel) buffer with the help of

depth (z-buffer).

3.2.3 Monte-Carlo Path Tracing

From Equations 3.1 and 3.2, one can see that pixel value in the image is a function

of nested integrals which are computationally intractable. However, some methods

attempt to solve these numerically by employing Monte-Calro methods to yield

approximate solutions to the integrals. These methods are used for some scientific

visualizations that require very accurate and physics-grounded light computation,

but at the cost of resources and time. Monte-Carlo Path Tracing (MCPT) is one such

rendering algorithm, which randomly sample many quantities to compute a solution.

In principle, light rays bounce around the scene (these bounces are calculated as

random directional values), accumulating all the values needed to solve the rendering

integrals. The final image quality of the render is determined by a parameter

Samples-Per-Pixel (spp). The more samples per pixel, the more refined the image,

thus, more accurate. In this work, we consider Monte-Carlo-Path-Tracer (MCPT)

engine [82, 81] to render the images of high fidelity. Some examples rendered with

MCPT are shown in Figure 3.5c, 3.5d, 3.5e, and 3.5f.

In summary, MCPT is a more physics-grounded, but computationally intensive

approach to rendering. Ray tracing is faster and more efficient, but it uses mathe-

matical heuristics for the effects of global illumination/caustics. In the end, there

are different solutions for different applications in CG. However, our interest is to

use simulated images to train vision systems. How do visual realism and physical

19

3 Graphics Rendering

fidelity affect the generalization of the trained model? To address this question, we

resort to empirical approach (see Section 5.4) in which we render image sets with

different rendering engines, compare the performances (on a real world dataset) of

the models trained on these sets independently.

(a) Lambertian (b) Ray tracing (c) Monte-Carlo rendering

(d) Day light (e) Night (f) Rain

Figure 3.5: Rendering fidelity and Virtual scene diversity. This work aims to quantify
the impact of photorealism and physics fidelity on transfer learning from
virtual reality. (a)-(c): Images of same scene state rendered with different
rendering engines. (e)-(g): Same scene under different lighting. (d) and
(h) semantic labels. Color coding scheme for labels is same as [16].

3.3 Photometry

In addition to the parameters of the rendering engine, we need to select lighting and

weather scattering parameters of the scene. Several light models such as sunlight,

street light etc. are provided with Blender. These are parametrized by color spectrum

and intensity. We also scripted some light variations such as morning-to-noon and

noon-night etc. In our work, we use uniform distributions on several parameters

including light source intensity, location, orientation etc on permissible ranges. We

also used street lamps at fixed locations in 3D world coordinate system to create night

lighting. The intensities of these lamps are conditioned on the sunlight. When we

use ray tracer for rendering, weather effects are added with post-processing shaders.

For MCPT rendering, physics-inspired shaders for volume scattering effects are used

to create weather effects such as fog, haze, and mist etc. These are parametrized by

20

3.4 Annotations

(a) Global light intensity variations

(b) Night light variations

(c) Fog density variations

Figure 3.6: Simulated samples

particle size, density, and anisotropy. These are proven to be good approximations for

theoretical functions and well suited for Monte Carlo rendering methods. Dynamic

weather effects such as rain and snow can be simulated with help of particle systems

[62] with water droplets or snowflakes as particles. The image rendered under

different lighting and weather settings are shown in Figure 3.5d, 3.5e, and 3.5f. In

the following experimentation, we did not consider dynamic weather effects such as

rain and snow etc.

3.4 Annotations

Nature of required annotations depends on the intended goal of vision systems, which

varies from overall System evaluation (e.g. Performance assessment, offline learning

of algorithm, etc.), to component evaluations and Model learning (ideal signals

and perturbations). Annotations can be bounding boxes around objects, specifying

21

3 Graphics Rendering

groups, identifying edges, region labels, etc. Annotations in systems engineering

context are essentially used for contextual model learning. Hence, we implement

a multitude of procedural shaders which are responsible for rendering multiple

image modalities or groundtruth (from local level to semantic level representations)

including depth, surface normals, reflection, shading, diffuse, specular, direct light

components, optical flow, geometric flow, trajectories, semantic labels, bounding boxes,

shadows etc. A sample of these modalities is provided in Figure 3.7.

22

3.4 Annotations

(a) RGB image

(b) Semantic class labels (c) Depth

(d) Surface normals (e) Diffuse reflections

Figure 3.7: An image sample and corresponding pixel-level annotations

23

4 Stochastic Scene Generation

Although CG can simulate very realistic images/videos, generating open world scenes

in large scale is not easy. Automatic scene generation is essential as the manual

creation of 3D scene states requires a lot of man-hours. As mentioned already,

Systems engineering perspective also proposes to design a mathematical model which

dictates input states to CV system. We aim to engineer a probabilistic scene model

which facilitates stochastic generation of diverse 3D scene states. Automatic or

semi-automatic content generation is also one of the interests of computer graphics

designers. (Semi) automatic large content creation with procedural grammars has

been attempted in [53] and a recent survey of these methods can be found in [71].

However, they might produce highly correlated scenes for two runs of the systems as

scene generation is based on given axioms and deterministic logic.

Probabilistic models are a powerful way to describe the subjective priors and

constraints on scene layout of man-made and natural objects. For example, the

spatial arrangement of objects (for examples, buildings, and trees) in a city can be

described by a set of probabilistic constraints. Though several probabilistic scene

models exist, most of them are not suitable for practical usage as they require

complex inference/sampling methods. Hence, we design a simple but effective scene

model that leverages the existing 3D CAD object shapes to create large scale 3D

layouts.

A good scene generative model is supposed to cover a wide variety of scene

conditions in terms of geometry, lighting and object’s movement. Hence, the three

major aspects of the scene model are: Geometry, Photometry, and Dynamics. In

this work, we skip the modeling of scene dynamics as we work with static scenes

and images. In this chapter, we restrict our goal to model urban traffic scene

environments.

4.1 Scene Geometry

In the context of urban scenes, we model a scene geometric instance as a sample from

a probability distribution of a spatial stochastic process with additional attributes.

Modeling scene geometry and object shape is getting easier due to the availability

25

4 Stochastic Scene Generation

of large-scale 3D CAD shape repositories such as Google’s 3D warehouses etc. We

collected a variety of CAD shapes and textures from the web, and place them in a

world’s coordinate system according to the realizations of Marked Point Processes

(MPP).

Marked point processes are frequently being used in numerous fields such as such as

astronomy, biology, ecology, geology, physics, economics, and telecommunications etc.

These have been introduced to computer vision fields by the work [4]. Later, these

got extended further by many researchers, for instance, [43, 76]. These stochastic

processes can be considered as a generalization to conventional Markov random fields

where random variable associated not with pixel values but with geometric shapes

describing a bounded region. In the following, we introduce some concepts of marked

point processes.

4.1.1 Marked Point Processes for Scene Geometry

Prior knowledge about spatial/temporal distributions of a set of objects can be

modeled with stochastic processes such as point processes [36]. A realization of the

point process consists of a random countable set of points {o1, ..., on} in a bounded

region O ∈ Rd. A marked point process couples a spatial point process Z with

a second process defined over a mark space M such that some random marks or

attributes mo ∈M are associated with each point o ∈ Z. For example, a 3D marked

point process of cuboid marks has elements of the form oi = (pi, [ci, li, bi, hi, ψi])

specifying the location (p), object class (c), size dimensions (l,b,h) and orientation

(ψ) of a specific bounding box (cuboid) in the scene. A sample of realization from

MPP can be seen in Figure 4.2a.

In this work, we use MPP to incorporate our prior knowledge about the spatial

patterns in city geometries (extrinsic size and transformation of objects such as

buildings and vehicles etc). Thus, the realization of MPP in this work consists of

an object location p defined on a bounded subset of R2 (xz ground-plane), together

with a mark m defining type and a 3D CAD shape to import and place at a point

p. In other words, we model the objects in the scene as a set of configurations

from an MPP that incorporates prior knowledge such as expected sizes of buildings,

trees, people and vehicles on the scene of knowledge about the scene regions where

these objects will not appear. We denote the prior term for an object as π(oi),

and assume independence among the objects. The mark process is assumed as

independent from the spatial point process, so that priors in MPP would be factored

as: π(oi) = π(pi)π(mi). However, this common approach ignores obvious and

strong correlations between the size and orientation of objects. Hence, a conditional

26

4.1 Scene Geometry

(a) Semantic diagram for our virtual world model: rectangle boxes represent MPP, Ns and Nd

denote the number of static and dynamic objects respectively in the virtual world

(b) A few samples from our CAD repository

Figure 4.1: Scene Generative Models

27

4 Stochastic Scene Generation

mark process is introduced for cuboids representing shape and orientations of a 3D

bounding box, conditioned on the location and shape, leading to a factored prior of

the form:

π(oi) = π(li, bi, hi, ψi|ci, pi)π(ci)π(pi) (4.1)

The prior for object class (type such as building, tree, pedestrian and vehicle classes

etc) distributions are modeled with uniform distributions. This means object type

follows a uniform distribution, and given object type, the shape dimensions (3D

bounding box) are i.i.d. One can also bootstrap the scene models by learning the

parameters through training using real-world data.

Conditional mark process: We represent priors for π(li, bi, hi, ψi|pi, ci) as simple

parametric distributions (such as uniform distributions) on the bounded regions. For

example, the heights of pedestrian and vehicle are modeled with uniform distributions

with 1.6± 0.3 and 1.7± 0.3 meters respectively. ψi (orientation with which object

should be placed on the ground or road) is allowed to vary from -180 to 180 degrees

with uniform distribution.

3D CAD shapes and Textures as Marks. The object shapes (for given object

identity) are randomly selected from the 3D CAD repositories and resized according

to the sampled (l, b, h). We have collected a rich set of 3D models for each object

category (buildings, grounds, pedestrians, and vehicles etc) from the web1. Some

of the 3D CAD shapes are shown in Figure 4.1b. These 3D models are indexed

according to their object category. However, parametric 3D object shape can be

modelled with the distributions [30] such as Boltzmann machines [83] or Bernoulli

mixture distributions [26].

4.1.2 Scene Layout constraints as Factor potentials

One can simply assume the independence in between marks or attributes of the

objects for simplicity in sampling from the world models. Scene instances generated

using the statistical independence assumption between marks will contain spatial

overlaps that are physically improbable as shown in Figure 4.2a. Hence, some

inter-dependencies between marks (such as spatial nonoverlap, co-occurrence, and

coherence among the instances of object classes etc.) is incorporated with the help

of Factor potentials.

Factor potentials have been traditionally used to incorporate a set of constraints

into modeling. The work [87] has employed factor potentials to encode the constraints

furniture arrangement, however, their system requires user interaction. Inspired from

13dwarehouse.sketchup.com, 3dmodelfree.com, quality3dmodels.net, tf3dm.com

28

4.1 Scene Geometry

(a) A sample from MPP (b) MPP with position constraints

(c) MPP with nonoverlap constraint (d) MPP with all constraints

Figure 4.2: Marked Point Processes with Factor Potentials

these works[43, 73], we formulate scene generation as a constrained sampling problem.

Hence, probabilistic distributions over scene layouts from MPP is formulated using

Gibbs equation:

π(o) =
e−E(o)∫
O
e−E(o)

(4.2)

where E(o) introduces prior knowledge on the object layouts by taking into account

factor potentials between the objects. In our current context (i.e. urban scenes),

these factors could be corresponding to a set of layout constraints such as support

relationships (Fp), spatial exclusion between the bounding boxes of objects (Fb), and

alignment to road (Fa). Then the energy of a realization of MPP is expressed as,

E(o) =
∑

oi,oj∈O

wpFp(oi) + wbFb(oi, oj) + waFa(oi, r) (4.3)

29

4 Stochastic Scene Generation

where wp, wb, and wp are weights associated with the factors Fp, Fb, and Fp respec-

tively. oi and oj are two different objects while r represents road in MPP. These

factor potentials are explained below.

4.1.2.1 Position Constraint

A valid scene layout must obey some very basic criteria of feasibility observed in real

world scenes. First such criterion we consider here is a constraint of the position

of objects. Placement of an object in the scene layout depends on its category.

For example, buildings and trees should be placed on the ground; and vehicles and

pedestrians should be placed on the road. Any deviation from this constraint is

penalized by the factor:

Fp(oi) =

{
max(0, bi − dir) ci ∈ {building, tree}
min(0, bi − dir) ci ∈ {vehicle, pedestrian}

(4.4)

where bi is breadth of the bounding box of the object oi and dir is euclidean

distance between object’s position (pi) and a nearest road point. A sample of MPP

process with this constraint is as shown in Figure 4.2b. Please note that we use a

fixed ground plane and Manhattan-like road network, although their texture maps

are randomly selected.

4.1.2.2 Non-overlap Constraint

Bounding boxes of any two objects must not intersect with each other. The factor

we use here has the following representation:

Fb(oi, oj) = max(0, bij − dij) (4.5)

where bij is the sum of the breadths of the bounding boxes of two objects (oi and

oj). dij is the euclidean distance between the positions of two objects. Generally, dij

is greater than or equal to bij is they are not intersecting each other. For such cases,

penalizing factor would be zero or some positive value otherwise. Please refer Figure

4.2c to see the effect of this factor on the scene layout.

4.1.2.3 Alignment with Road

For scenes to be visually pleasing, orientations of objects (for example building and

vehicles) should be likely to be aligned with the road. Hence, we add another factor

to increase the likelihood of such object states. It has the following representation:

Fa(oi) = (ψir − ψ′ir)α (4.6)

30

4.2 Scene Photometry

where ψir is the difference between orientations (ψ) between object and nearest road

segment. ψ′ir denotes the trade-off that one wants to allow. We fix α = 2 which

represents quadratic penalizer. Please see the effect of this factor in Figure 4.2d.

4.1.3 Limitations

Our model uses a fixed template for Manhattan-like road network and ground planes,

though the textures are loaded randomly. Hence, it may not be able to capture

variations like curvy roads, complex junctions and terrain situations.

4.2 Scene Photometry

Photometry of Scene state is one of the major factors which influences the visual

appearance of the image. It includes modeling the light sources, weather, and camera.

However, graphics tools readily provide a set approximated models for light sources,

volume scatterers and camera models. Several light models such as sunlight, street

light etc. are provided with Blender. These are parametrized by color spectrum and

intensity. In our work, we use uniform distributions on several parameters including

light source intensity, location, orientation etc on permissible ranges. We also used

street lamps at fixed locations in 3D world coordinate system to create night lighting.

The intensities of these lamps are conditioned on the sunlight. When we use ray

tracer for rendering, weather effects are added with post-processing shaders. For

MCPT rendering, physics-inspired shaders for volume scattering effects are used to

create weather effects such as fog, haze, and mist etc. These are parametrized by

particle size, density, and anisotropy. These are proven to be good approximations for

theoretical functions and well suited for Monte Carlo rendering methods. Dynamic

weather effects such as rain and snow can be simulated with help of particle systems

[62] with water droplets or snowflakes as particles. The image rendered under

different lighting and weather settings are shown in Figure 3.5d, 3.5e, and 3.5f. In

the experiments provided in this thesis, we did not consider dynamic weather effects

such as rain and snow etc.

31

4 Stochastic Scene Generation

Figure 4.3: A few samples from our scene generative model

32

5 Impact of Rendering Fidelity

In this chapter and the following ones, we utilize our data simulation tools to address

the some fundamental scientific questions about the use of synthetic imagery to

train modern CV systems, especially deep convolutional neual networks (DCNN).

This chapter particularly quantifies the impact of different rendering factors on

the generalization performance of CV systems on the real-world data when it is

trained using synthetic data generated from our tools. Since pixel-level annotations

such as semantic labels are one class of the groundtruth informantion which is time

consuming to acquire on the real-world, we consider pixel-level semantic labeling as

a task of interest. With the advent of fully convolutional networks (FCN), several

DCNN based architectures have been proposed for semantic labeling, among with

DeepLab [13] is one of the state-of-the-art architectutes. Hence this work considers

a case study involving pixel-level semantic labeling in traffic scene context with

DeepLab architecture.

5.1 Semantic Labeling

Pixel-level semantic labeling is considered as a low-level vision task that can play a

central role in holistic scene understanding. Before the resurrection of deep neural

networks into CV fields (roughly around 2010), random fields with hand-engineered

features had been a major paradigm to design algorithms for pixel level labeling.

Most labeling methods use conditional random fields (CRF) [72] with pair-wise factor

potentials that encode the label smoothness constraints in a neighborbood. This

neighborbood in general is defined over a local grid in a graph stucture, i.e., label of

each pixel is connected to its immediate neighbors. An important work to mention

in this class of algorithms is TextonBoost [69] which uses texture-layout filters (hand

engineered features based on textons [38]). The recent developments on CRF devised

efficient inference algorithms for fully connected CRF graphs in which each pixel’s

label is connected every other pixel’s label node. This has been demonstrated to

improve the performance of TextonBoost by around 4% on MSRC-21 dataset [69].

This class of algorithms may not require large amounts of labelled sets to tune their

parameters. Hence, MSRC-21 set that contains 94 images with groundtruth labels for

33

5 Impact of Rendering Fidelity

21 object classes. It has been reported that labeling a single image took 30 minutes

on average.

With the resurrection of deep neural networks into CV fields, Convolutional neural

networks (CNN) have become a standard choice for almost all CV applications. Image

classification networks such as VGG-16 [70] has been extended as FCN [46] to work

for pixel level classification tasks such as semantic labeling. These FCN architectures

employ some stategies to upsample the feature maps after some layers in order to

get an output of similar resolution on the other end of the architectures. Long et al

[46] uses an upsampling scheme is based on deconvolutions and mixing information

across layers using skip connections. However, the work of Chen et al [14], known

as DeepLab, highlights standard convoltion but with upsampled filters (known as

Atros convoltution in Wavelet community) as a powerful tool for dense prediction

applications. This type of convolutions explicitly control the feature resolutions

within final layers of DCNNs without increasing the number of parameters or the

amount of computation. It also suggests to use a fully connected CRF inference

as a post processing step to increase the localization accuracy of labels. DeepLab

architecture outperforms FCN by 1.8% on PASCAL-context dataset (benchmark for

generic semantic segmentation). Hence we select DeepLab as system to be trained

and evaluate virtual-reality-based-training for semantic segmentation task in traffic

scene context.

Large amounts of labeled data might be required to train these DCNN based

architectures. However as mentioned already, the acquisition of real-world data with

pixel-level annotations is costly in terms of money and efforts, factors that are slowing

down the collection of new large scale datasets such as ImageNet [18]. Especially for

traffic scenes or autonomous driving context, diversity of image samples and quality of

annotations in the existing datasets are much lower. For instance, CamVid [7] dataset

consists of only 701 images with pixel-level labels for 11 object classes. Similarly,

the very popular KITTI benchmark suite [27] for autonomous driving provides only

430 labeled images for semantic segmentation. Recently, Cordts et al [16] collected

a large scale dataset, CityScapes, with 3475 images with finer pixel-level semantic

annotations. This is recorded on the streets of several European cities in Germany,

Switzerland and France in different seasons. However, the bias introduced by the

collection processes in a specific city or cities is also a common limitation. Recently,

a DCNN model trained on CityScapes train subset is shown to be performing poorly

on a testing dataset from American cities while showing excellent performance on

CityScapes test subset. Hence, preparing a high quality of dataset would require

capturing images under a wide variety of seasons in different countries and traffic

34

5.2 Data preparation

conditions. Such data collection processes are practically infeasible due to several

factors such as money and efforts. For these reasons, a promising alternative could be

to utilize simulation tools that synthesize urban scenes in a vast variety of conditions

to simulate the training image sets along with required annotations.

However, the CV models that are naively trained on simulated dataset might

suffer with severe dataset-bias problems. Approximations made in virtual world

models and rendering processes influence the statistics of rendered outputs, and

thus, biases the learned classifier. For better usage of the synthetic training sets, we

believe that the impact of simulation factors on the system’s generalization has to

be studied systematically. The type of rendering algorithm and its parameters are

one of the factors that majorly influence the appearance (photorealism) of image

and its statistics. Hence, we first aim to quantify the impact of rendering engine on

the generalization performance the DeepLab model trained simulated data.

Towards this end, we conduct experiments to quantify the following:

• Effects of Photorealism: Here we compare results obtained from training data

using Lambertian shaders against photorealistic methods such as Ray-tracing

and Monte-Carlo Path tracing.

• Physics Fidelity: Here we compare results obtained by training with Ray-tracing

vs Monte-Carlo Path tracing (MCPT). MCPT datasets are physically more

realistic than Ray-traced ones, though they both look realistic to human-eye.

• The impact of Computational Approximations: Here we evaluate the variation

in performance as a function of number of Monte-Carlo samples (samples-per-

pixel, spp) in MCPT.

5.2 Data preparation

5.2.1 Simulated Sets

We simulate 5000 images sampled from the scene generative model (described in

Chapter 4) and rendered with different rendering settings, along with pixel-wise

object labels (the classes include: vehicle, pedestrian, building, vegetation, road,

ground, and sky). To measure the impact of choice of rendering method and its

computational-approximation, we render these images Lambertian shader, ray-tracer,

and MCPT with increasing computational-approximation (samples-per-pixel, spp)

ranging 10 to 130 with a step size of 30 (spp = 10 : 131 : 30 python notation). It

results in seven image datasets of same scene states. We use the terms ”Lambertian”,

35

5 Impact of Rendering Fidelity

”RayTrace”, and ”mcpt X” to denote the sets rendered with Lambertian shader, ray

tracer and path tracer respectively, where X being number of spp used in rendering.

5.2.2 Real-world datasets

For comparison purposes, we use a real-world dataset, CityScapes[16] which is

recorded on the streets of several European cities. It provides a diverse set of videos

with a public access to 3475 images (train-val) that has finer pixel-level annotations

for semantic labels. We divide the database into two disjoint subsets for training,

validation (3000 images, named as ”CS train”) and testing (475 images, named as

”CS val”) purposes. This dataset was adapted to the 7 class labels mentioned above.

5.3 Deep Network architecture

As mentioned already, we select a state-of-the-art DCNN-based architecture, i.e.

DeepLab [13] as a baseline in our experimentation. Thanks to the authors of DeepLab

for making their implementation publicly accessible.

5.3.1 DeepLab

DeepLab [13] is a modified version of VGG-net [70] to operate at original image

resolutions, by making following changes: (a) replace the fully connected layers with

convolutional ones, (b) skip the last subsampling steps and upsample the feature-

maps by using Atros convolutions. It still results in coarser map with a stride of 8

pixels. Hence, targets (semantic labels) during training are the ground truth labels

subsampled by 8. We also add batch normalization layers after every convolutional

layer as it might reduce covariate shift across minibatches. During testing, bi-linear

interpolation followed by fully connected conditional random field (CRF) was used to

get final label maps. To harmonize the final layer’s output with our data annotations,

we modify the last layer of DeepLab from 21-class to 7-class (including: vehicle,

pedestrian, building, vegetation, road, ground, and sky).

5.3.2 Training

Our DeepLab models are initialized with ImageNet pre-trained weights to skip longer

training times. Stochastic gradient descent method and cross-entropy loss function

are used with an initial learning rate of 0.001, a momentum of 0.9 and a weight

decay of 0.0005. We use mini-batch of 4 images and learning rate is multiplied by

0.1 after every 2000 iterations. High-resolution input images are down-sampled by a

36

5.4 Experiments and Results

factor 4. Training data is augmented by horizontal flipping and random crops from

the original resolution images etc., which yields four times the data. As stopping

criteria, we use a fixed number of SGD iterations (50,000) in all our experiments. In

the CRF postprocessing, we use fixed parameters in the CRF inference process (10

mean field iterations with Gaussian edge potentials as described in the work [13])

in all reported experiments. The CRF parameters are optimized on a subset of 300

images, randomly selected from the dataset.

5.3.3 Performance Measure

Mean Intersection-Over-Union (mIoU) is the standard performance measure for

segmentation purposes due to its representativeness and simplicity. It computes a

ratio between the intersection and the union of two sets, in our case the ground

truth and our predicted segmentation. mIoU ratio is computed as the number of

true positives (intersection) over the sum of true positives, false negatives, and false

positives (union).

mIoU =
1

k + 1

k∑
i=0

pii
k∑
j=0

pij +
k∑
j=0

pij − pii
(5.1)

Here k + 1 denotes number classes inclusing void or background class and pij is

the amount of pixels of class i inferred to belong to class j.

5.4 Experiments and Results

5.4.1 Input Image statistics

We start by comparing the image statistics of datasets to know how rendering

method influences the pixel statistics in image space. Figure 5.1a and 5.1b display

the histograms (normalized) and power spectra computed over all images of the sets.

From the figure, the pixel intensity distributions of virtual and real worlds are quite

varied, however, their modes seem to be closer on intensity axis. Power spectra of

the simulated datasets (both RayTrace and mcpt 130) deviate from the real world

spectrum more at higher frequencies. The reason for this might be fact that higher

frequency contents such as shadow and object boundaries are sharper in simulated

images compared real world images.

We also compute the Gabor responses of each set with Gabor filters of 31x31 size,

but varying scale (σ) parameter (scale = 3 : 9 : 1 python notation). In Figure 5.1c,

we plot KL divergence of distributions of Gabor filter responses between simulated

37

5 Impact of Rendering Fidelity

(a) histograms

(b) power spectra

(c) KL Divergence of distributions of Gabor responses as a function of scale of Gabor filter

Figure 5.1: Image statistics across datasets simulated with different rendering settings:
Simulations appear to be more deviated at higher frequencies and lower
scales.

38

5.4 Experiments and Results

Table 5.1: Comparing the performance of DeepLab when trained with simulated
datasets of different computational-approximation and rendering methods.
Figures in last column denote the time required for rendering an image
with corresponding engine and parameter settings.

Training Validation mean vehicle pedestrian building vegetation road ground sky time
dataset dataset IoU (in sec)

Lambertian CS val 24.46 ± 9.69 13.19 15.41 17.58 20.99 21.2 29.35 53.52 0.001
RayTrace CS val 44.81 ± 4.15 46.36 37.72 44.13 49.88 42.58 40.27 52.75 20
mcpt 10 CS val 34.10 ± 6.44 30.19 28.82 31.12 30.22 32.48 29.26 56.65 5
mcpt 40 CS val 50.00 ± 5.88 48.49 53.39 63.34 50.78 46.66 34.27 53.09 34
mcpt 70 CS val 49.82 ± 6.04 43.57 42.17 65.26 52.73 49.85 42.57 52.59 67
mcpt 100 CS val 53.82 ± 6.14 55.8 56.45 62.36 60.83 51.77 34.37 55.21 313
mcpt 130 CS val 52.15 ± 6.58 56.61 47.26 54.98 63.08 56.98 36.31 49.86 547

Variance ±5.56 ±5.08 ±5.10 ±3.25 ±5.1 ±3.06 ±2.85 ±1.46 NA

datasets and real-world CS train dataset against filter scale. For all plots, the

divergence of corresponding simulated set from reality seems to be decreasing with

the scale. That means simulations are more deviated in local statistics than global

averages. Moreover, the difference between RayTrace and mcpt sets is also decreasing

with increasing scales. How do these deviations in input statistics propagate through

the training stages of DeepLab?

5.4.2 Performance of Virtual-world-based-training

In order to evaluate the impact of photorealism and fidelity on the performance of

the model trained on virtual-world data, we train the DeepLab independently on

our simulated datasets. We then compare the performances of these trained models

on a reference real world dataset, i.e. CityScapes validation set (CS val).

As shown in Figure 5.2a, we plot the corresponding mIoU measures to show how

the performance of trained model on CS val varies with levels of realism and fidelity

in simulated training data. In all configurations, training with simulations seems

worse compared to real-world-based-training (red dotted line in the figure). This bias

could be due to sampling diversity (and its lack of closeness to reality) in the virtual

world models and computational-approximation in the simulations. This would be

discussed in detail in Chapter 6 and 7. We focus only on differences in rendering

approximations in this chapter.

5.4.3 Impact of Photorealism

The mIoU of DeepLab trained with simulated set, Lambertian (diffuse reflections

only) is worse than the other choices. It is clear that diffuse material assumptions

in simulations do not hold in most real world conditions. When we used the

Cook − Torrance shader that simulates both diffuse and glossy reflections the

performance was worse. One possible explanation could be that the deep learned

39

5 Impact of Rendering Fidelity

(a) mean IoU vs rendering settings

(b) per-class IoU vs rendering

Figure 5.2: Performance (IoU on CS val) variations due to photorealism and
computational-approximations of rendering method

40

5.4 Experiments and Results

classifier system is not invariant to physical reflections. We, therefore, deactivated

glossy reflections for this study. When we used more photorealistic (RayTrace and

mcpt) sets with global illumination effects, the performance of trained model has

been improved drastically (nearly gets double). Thus, it appears that photorealistic

data might be necessary for a better generalization performance of trained DCNN

models. But, how does the physical accuracy of these photorealistic effects impact

the performance?

5.4.4 Impact of Physics fidelity

To know how physics fidelity in lighting computation impact the trained model, we

compare the performance between these datasets (see Table 5.1). mcpt 10 seems

to be bad compared to RayTrace. However, 10 samples-per-pixel is too less to get

a photorealistic image and it suffers from heavy sampling noise. Hence comparing

with mcpt 10 may not be fair. By comparing the performance of RayTrace and

other mcpt X (X ≥ 40) sets, it appears that physics fidelity seems to be improving

the performance a little bit at the cost of high rendering times. For example, on an

average, the performance has been improved by 6% when trained with mcpt sets

instead RayTrace set, but at the cost of more than 10 times the rendering time of

ray-tracer (last column in the table). So, we believe that physics-accuracy of lighting

computations of photorealistic effects is also important to some extent. However,

it is a trade-off between large computational resources and little performance gains

due to physics.

5.4.5 Impact of computational-approximation (spp)

We now examine the effect of MC sampling parameter (spp) in MCPT rendering

method. Figure 5.2a is intended to show the variations in IoU due to photorealistic

rendering and computational-approximation. The plot seems to be more or less flat

for mcpt datasets, especially after spp = 40. The performance for mcpt sets varies

between IoU 51.8± 5.66%, mainly due to rendering noise in the simulations. From

this experiment, we conclude that DCNN’s seem to be less sensitive to computational-

approximation of physics in simulated training dataset used in our application context

and that 40 spp were enough for achieving the good performance in our experiments.

Hence, accuracy seems to be important to some extent, but, large number of samples

(spp) may not be necessary. This insight can help us to reduce the time required for

rendering the data and be spent at some other means of performance improvement.

41

5 Impact of Rendering Fidelity

Table 5.2: Data augmentations and Generalization performance of DeepLab
Training Validation Global vehicle pedestrian building vegetation road ground sky
CStrain CSval 67.54 58.92 57.04 72.92 63.7 68.79 63.78 87.64
CStrain CamVidval 54.29 47.33 42.58 54.84 68.67 45.52 51.25 69.89
mcpt40 CSval 50 48.49 53.39 63.34 50.78 46.66 34.27 53.09
mcpt40 CamVidval 39.37 52.97 28.14 34.26 35.18 42.73 19.47 62.85
mcpt40 + 10%
CStrain

CSval 67.21 60.1 65.95 51.85 66.68 73.41 71.61 80.91

5.4.6 Things vs Stuff

Figure 5.2b shows per-class IoU measures for all rendering settings, while the last

row in Table 5.1 contains variances of per-class IoU measures of training settings

with mcpt X, X ≥ 40. One interesting observation from these numbers is that the

computational-approximation does not seem to affect the system much in classifying

the pixels of sky, ground, road (which are considered to be ”Stuff1” in the semantic

segmentation literature(please refer to Things-and-Stuff model[34]), while most of

the differences are from the objects such as pedestrian, vehicles etc. (which are

considered to be ”Things” [34]). The reason we think is that the things (vehicles,

pedestrians etc.) tend to have more diverse complex shapes and textures which may

require more detailed CAD models and spp, compared to the stuff (building, ground,

and sky etc.). This observation from object level analysis inspired us to analyze and

locate the errors at pixel and region level.

5.4.7 Location of Major errors

We inspect also to locate regions where virtual-world-based training results in

classifications that are not reliable enough and deviate significantly. One key insight

from the analysis of the input image statistics (c.f. Section 5.4.1) is that the simulated

data might differ more at high-frequency contents such as inter-object boundaries.

We would like to see how this deviation propagates through DeepLab training.

We approach this by analyzing the performance at object boundaries with the help

of trimaps [41]. Trimaps are binary masks with the pixels that are located within

a narrow band of object boundaries, as shown in Figure 5.3a. We create trimaps

of varying pixel-widths for all images of CS val, and compute mIoU only at those

pixels in the white band region. Figure 5.3c show how performance changes from

boundaries to more global spatial contexts. One can observe that the performance

deviates more near boundaries (lower values of trimap’s pixel-widths) than that

over entire image space. We postulate that this may be due to the same reason

that the higher frequency contents more deviate from reality in simulated sets. The

1The objects that has no limited spatial extents are considered as Stuff, such as road, ground, sky
etc., while Things represent the objects with limited sizes, such as pedestrians and vehicles.

42

5.4 Experiments and Results

(a) Input image and corresponding labels

(b) Trimaps of 10 and 30 pixel-width

(c) IoU vs Trimap width

Figure 5.3: Major erroneous locations: Major errors are located around object bound-
aries

43

5 Impact of Rendering Fidelity

difference between simulated and real sets can be explained by the fact that the

object boundaries and shadows in virtual worlds are quite sharp while real world

boundaries have effects of color bleeding and penumbra (due to sensor effects). So,

modeling sensor and lens effects and behaviour in simulations or designing invarance

these deviations in CV systems may be important to improve the generalization

of the systerm and mitigate these statistical deviations. We address this issue in

Chapter 8 in more detail.

5.4.8 Transfer learning and Data combinations

Our experiments demonstrated that physics based rendering might improve the

generalization capabilities of DCNN models trained on simulated sets. However, one

can see (in Table 5.1) that the performance of virtual-world-based-training is largely

biased in all rendering settings compared to real-world training (see the difference

between the blue curve and red line in Figure 5.2a). One possible explanation for this

behaviour is that our virtual scene generative model might be biased to represent

real-world geometric variations. We address this in the next chapters. However, this

kind of domain shift issue exists in any two real-world datasets captured with different

cameras or in different locations. For instance, please see Table 5.2. A DeepLab

model trained on CS train is achieving the performance levels of 69.54% on CS val

(which is from same benchmark set), while a performance degradation of 16% has

been observed when it is tested on another validation set, CamV id val [7] (captured

in a different geographical location and with different camera model). Hence, we posit

that virtual world datasets suffer from a dataset-shift problem just like any other

real world dataset. The similar arguments and experiments have been demonstrated

in the works [80]. To correct this bias, one can add a few real world samples to

simulated training data as demonstrated in the works [78, 79, 31, 25, 65, 63]. The

performance measures of different training-validation settings is shown in Table 5.2.

Like many works [78, 79, 31, 25, 65, 63] already reported, we also found that

real world samples added to the simulated data can correct the performance bias

of the trained model. In this experiment, we add 10% real world data samples of

the training data from CityScapes and retrain the system. The performance of

model trained on such augmented set has been improved by nearly 13% on CS val

set as shown in Table 5.2. These mIoU values are on par with the levels that are

achieved with full training data. This can significantly reduce the number of real

world samples needed at training/development phase.

44

5.5 Discussion and Conclusion

5.5 Discussion and Conclusion

In this chapter, we addressed the very first fundamental question about the impact of

rendering choices on virtual-reality based transfer learning in the context of semantic

segmentation in traffic scenes. We empirically validated the virtual-world-based-

training and provided several insights about the impact of photorealism and fidelity

on DCNNs. Although it may be advantageous to have all photorealistic effects in the

data, DCNNs are not too sensitive towards physics accuracy of the effects. However

in the context of our experiments, physically based rendering seems to be improving

the generalization performance by nearly 6% but at the cost of more than 3 times

rendering time. Also, extreme levels of photorealism may not be necessary when

Monte-Carlo based physics renderers are used for simulations. The virtual-world

based training is relatively more biased around image boundaries due to fact that

rendering methods may not be able to simulate complex phenomena around object

boundaries. The major role in performance bias is from level-of-diversity of the

virtual world model to capture real-world variations. In this aspect, virtual data

suffers from a dataset shift problem just like any other real world dataset. However,

this shift can be corrected by adding a few real world samples to training data. In

our experiments, just 10% real world dataset was enough to reach the levels of full

real world training. This significantly reduces the number of real world samples

required at development phase.

45

6 Adversarially Tuned Scene
Generation

In the previous chapter, we have evaluated the impact of rendering method and its

parameters on the generalizability of virtual datasets to real-world. In the experiments

reported, these sets were generated using uniform prior distributions on parameters

of scene generative model (such as light source parameters, object scales, orientations

and weather scattering parameters etc.). Such virtual data when simulated with

physically based renderers was able to produce a DeepLab model which has shown a

generalization performance of 50 mIoU points on CityScapes (real-world) testing

data. However, it is still nearly 17.54 mIoU points less compared to the model trained

on real CityScapes training set. We believe that this performance shift is due to

the use of (uniform) prior distributions that may not accurately represent the target

domain distributions (i.e. CityScapes). In principle, if one uses the distributions

tuned to the target domain, then the simulated data will be more generalizable to

tesing data from the target domain. Hence, in this chapter we propose an algorithm

to estimate the prior distributions for the parameters of our scene generative model

(c.f. Chapter 4) from a given unlabeled dataset from the target domain.

Training generative models is not easy in practice and still being an active research

area. However, recent advance in the fields of unsupervised generative learning,

i.e. Generative Adversarial Training [28] (popularly known as GANs, generative

adversarial networks), proposes to use unlabeled samples from target domain to

estimate generative model parameters (point estimates in statistics sense) by mini-

mizing the discrepancy b/w generative and target distributions in the space of deep

discriminatively-trained classifier. We adopt these concepts to tune parametric prior

distributions in the context of CG based data generation scheme.

In the traditional GAN approach both generative and discriminative models are

neural networks [28, 59]). In contrary, our work focuses on the iterative estimation

of the posterior density of prior distributions, P (Θ), for our generative graphical

model via:

1. generation of virtual samples given a starting prior,

47

6 Adversarially Tuned Scene Generation

2. estimation of conditional class probabilities of labeling a given virtual sample

as real data using a discriminative classifier network (C),

3. mapping these conditional class probabilities to estimate class conditional

probabilities for labeling of data as real given the parameters of the generative

model (Θ),

4. finally, doing a Bayesian update to estimate the posterior density.

Initially, we assume uniform distributions as priors on these parameters of the

generative scene model. As iterations proceed the uniform prior distributions get

updated to distributions that are closer to the (unknown) distributions of target

data. Please see Figure 6.1 for a schematic flow of our adversarial tuning procedure.

Figure 6.1: Flow chart of our adversarial tuning procedure: We sample 3D scene
instances from the scene generative model and render the images. We
then append a second discriminator network, C (a standard convolutional
neural network) that tries to classify if an input image is real or syntheti-
cally generated. C is a discriminative classifier that has been trained on
a combined dataset which has both simulated samples from the genera-
tive model and real samples from the target dataset. The classification
probabilities across simulated instance, along with the parameter choices
used in the simulation are aggregated together to get an estimate of
the probability that a given choice of parameters produces near-target
data. This likelihood model is used to update the parameters of P̂ in a
Bayesian update setting, such that it generates more similar images (as
target data) in next iteration. In the end, uniform prior distributions are
supposed to be updated to distributions that are closer to the (unknown)
distributions of target data.

48

6.1 The Proposed Approach

6.1 The Proposed Approach

More specifically, we use our parametric generative 3D scene model (G) as explained

in Chapter 4. This model is parametrized by several variables including (a) Light

variables :- intensity, spectrum, position of light source, weather scattering parame-

ters; (b) Geometry variables :- object cooccurrences, spatial alignments; (c) Camera

parameters : position, location of camera.

Our approach to tune a generative model to given target data was shown in Figure

6.1. We summarize the key steps below:

• The generative model (P̂) has a set of parameters (θW) related to different

scene attributes such as geometry and photometry etc.

• A renderer (Ĝ) takes these parameters sampled from the distributions P̂ (θW)

and outputs image data V .

• C is a standard convolutional network which can be trained with gradient

descent on the data from target domain (T) and V to classify real vs generated.

C outputs a scalar probability, which is trained to be high if the input was real

and low if generated from G.

• The probabilities for all simulated samples P (c = 1|v,Θ)∀v ∈ V , are used to

estimate a likelihood P (v ≈ real|θW).

• This is then used to update our prior distributions, which will be used in the

next iteration as P (θW).

We now describe the details of the components used in this process.

6.1.1 Initialization

Our scene generative model (P̂) is explained in Chapter 4. As shown in Figure 4.1,

our generative model is a physics-based parametric model whose inputs are a set of

scene variables (θW) such as lighting, weather, geometry and camera parameters. We

assume that all these parameters are independent to each other which provides the

least expensive option for modeling and sampling. One can place the distributions

on these parameters using expert’s knowledge on the target domain or from other

disciplines such as atmospheric optics, geographic and demographic studies. However,

in the absence of priors, we can use uniform distributions in their permissible ranges.

For instance, lights source’s intensity is modeled as uniform(low = 0, high =

6), python notation, where 0 intensity levels can correspond to night lighting while 6

49

6 Adversarially Tuned Scene Generation

is for lighting at noon. With these settings, our model was able to render physically

plausible and visually realistic images. This scene model was used in our work in

previous chapters (Chapter 4 and 5) and the performance of DeepLab model on

the simulated data for semantic segmentation was quite generalizable to real-world.

Yet, data-shift was observed due to deviations in scene generation statistics to target

real-world domain. Hence, we now focus on the task of matching generation statistics

to that of real world target data (for instance CityScapes [16]). Some of the samples

rendered in this initial setting are shown in Fig 6.2b.

6.1.2 Sampling and Rendering

Although sampling from P̂ (θW) was easy initially, it eventually becomes hard as P̂

gets updated iteratively in a Bayesian update fashion (P̂ ← P̂ (θW)p(.|θW)). We do

not have conjugate relationships between classifier’s probabilities and P̂ (.). Hence,

these intermediate P̂ functions lose their easy-to-sample-from structure. Hence, we

use rejection sampling scheme to sample from P due to its scalability. In general,

an open issue in the use of rejection sampling schemes is to come up with an

optimal scaling factor (M) which makes proposal distribution as an envelope for

the complicated distribution that we should sample from. This issue does not arise

in our case as our initial uniform distributions of P̂ can behave as envelopes for

all intermediate P̂ ’s if they are not re-normalized. However, this ends up in the

increase in the probability of rejecting many samples and generating samples becomes

computationally heavy with the number of iterations. We solve this by normalizing

intermediate probability tables with its maximum value. We used Monte Carlo

path tracer in Blender to render the image samples (along with semantic labels

groundtruth) from 3D scene states.

6.1.3 Adversarial Training

In an adversarial training setting, generation model is appended with a discriminator

(C) which would be trained to classify real vs generated sample. In simple terms,

the output of the discriminator (c) should be one for a real image and zero for a

generated image. One can select any off-the-shelf classifier as C. However, the choice

of C plays a critical role as it measures dissimilarity between P̂ and P in the feature

space that C is based on. Here we use AlexNet (5 layer convolutional neural net)

as C to learn the feature space automatically as in conventional GANs. Standard

stochastic gradient descent with backpropagation is used to train this net.

Training Domain Classifier (C): All images are resized to a common resolution

of 223X223 (default input size of Alex-net implementation in tensorflow). This is done

50

6.2 Validation

to speed-up the training process and save memory. However, it has the disadvantage

of missing the details of smaller objects such as pedestrians and vehicles. All real

images (T) are labeled as 1, while simulated data is labeled as 0. Data augmentation

techniques such as random cropping, left-right flipping, random brightness and

contrast modifiers have been applied. per-image whitening has been used. 10000

epochs are used to train the classifier.

Tuning Scene Generator G: We now estimate the quantity P (c = 1|θW) from

class probabilities (softmax outputs of C) of all virtual samples in V . This is

estimated by weighted Gaussian kernel density estimation (KDE). Using classifier

outputs (p(c = 1|v)) as weights:

P (c = 1|θW) =
∑
v∈V

p(c = 1|v)Kg(θ
(v)
W , h) (6.1)

where Kg a Gaussian kernel with bandwidth h. In our experiments, we use h = 0.1.

We explored the use of automated bandwidth selection methods in the literature

but in our experiments a default setting seemed to perform adequately. This KDE

estimate represents the likeliness of P̂ generating samples similar to T for given

values of θW . In a Bayesian setting, this can be used to update our prior beliefs

about P̂ (θW) iteratively as,

P (i+1)(Θ)← P (i)(c = 1|θW)P (i)(θW) (6.2)

After several iterations, if P̂ and C have enough capacity, they will reach a point at

which both cannot improve because P̂ (θW)→ P (θW). The discriminator is unable

to differentiate between the two distributions and becomes random classifier, i.e.

p(c) = 0.5). However, we fix maximum number of P̂ iterations to 6 in the following

experimentation.

6.2 Validation

In this section, we provide an evaluation of our generative adversarial tuning approach

by observing the data statistics simulated before and after tuning.

6.2.1 Real world target datasets

We used CityScapes [16] and CamVid [7] as target datasets which are tailored for

urban scene semantic segmentation. CityScapes dataset was recorded on the streets

of several European cities. It provides a diverse set of videos with a public access to

3475 images that has finer pixel-level annotations for semantic labels. However, in the

51

6 Adversarially Tuned Scene Generation

Vinit
(a

)
H

isto
g
ram

o
f
V
in

it
(b

)
A

few
sa

m
p

les
o
f
V
in

it
sa

m
p

led
fro

m
th

e
m

o
d

el
b

efore
tu

n
in

g
(c)

P
ix

el-p
rop

ortion
s/class

Cityscapes data

(d
)

H
istogram

of
C

ity
S
cap

es
(e)

A
few

sa
m

p
les

fro
m

C
ity

S
ca

p
es

d
a
ta

(f)
P

ix
el-p

rop
ortion

s/class

Vcityscapes

(g
)

H
isto

g
ram

o
f
V
c
ity

s
c
a
p
e
s

(h
)

A
few

sa
m

p
les

o
f
V
c
ity

s
c
a
p
e
s

sa
m

p
led

fro
m

th
e

m
o
d

el
after

tu
n

in
g

(i)
P

ix
el-p

rop
ortion

s/class

Camvid data

(j)
H

istogra
m

of
C

am
V

id
(k

)
A

few
sa

m
p

les
fro

m
C

a
m

V
id

d
a
ta

(l)
P

ix
el-p

rop
ortion

s/class

Vcamvid

(m
)

H
istogra

m
of
V
c
a
m

v
id

(n
)

A
few

sa
m

p
les

o
f
V
c
a
m

v
id

sa
m

p
led

fro
m

th
e

m
o
d

el
after

tu
n

in
g

(o)
P

ix
el-p

rop
ortion

s/class

F
igu

re
6.2:

Q
u
alitative

com
p
arison

of
train

in
g

sets
(b

oth
sim

u
lated

an
d

real)
an

d
th

eir
statistics

b
efore

an
d

after
tu

n
in

g

52

6.2 Validation

adversarial tuning process, we use 1000 randomly selected samples from CityScapes

as T in each iteration to train D and we set Nv = 1000 to generate 1000 samples

from P (Θ). CamVid is recorded in and around Cambridge region in the UK. It

provides 701 images along with high-quality semantic annotations. While tuning the

generative model to CamVid, we randomly sample 500 samples from CamVid in

each iteration and set Nv = 500.

It is worth highlighting the differences between these datasets. Each of them has

been acquired in a different city or cities. The camera models used are different.

Due to the geographical and demographical differences in weather, lighting, object

shapes, the statistics of these datasets may differ. For instance, we computed the

intensity histograms over full CityScapes and CamVid datasets, (see Figure 6.2d

and Figure 6.2j). For better visual comparison, we normalized the histograms with

its maximum frequency. Topologically, these histograms are significantly different.

Similarly label statistics also different (See the histograms of semantic class labels in

Figure 6.2f and Figure 6.2l).

6.2.2 Virtual reality datasets

To realize the performance changes due to adversarial tuning, we prepared three

sets that are simulated from the initial model and the models tuned (with the

approach discussed in Section 6.1) to the datasets CityScapes and CamVid. We

denote them with V init, V cityscapes and V camvid respectively. Each set has

5000 images along with with pixel-wise semantic labels. We first compare the

statistics of simulated training sets against the target datasets used for adversarial

tuning. In next chapter, we also compare the generalizations of DeepLab models

on the target dataset, when it is trained on these sets separately to quantify the

performance shift due to adversarially trained scene generation.

6.2.3 Statistics of Training sets

Though its difficult to observe significant changes (due to tuning process) through

visual inspection, in Figures (6.2b, 6.2h and 6.2n), we compared statistics of pixels

and their labels to get an insight of what has been changed. We computed histograms

of pixel intensities over the full datasets Vinit (generated from the initial model),

CityScapes (our target data) and Vcityscapes (generated the model tuned to CityScapes).

These plots are shown in the first column of Figure 6.2. Topologically, the structure

of histogram has been moved closer to the histogram of CityScapes after tuning.

Quantitatively, KL divergence between virtual data and CityScapes data has reduced

from 0.57 (before tuning) to 0.44 (after tuning to CityScapes). Similar behaviour

53

6 Adversarially Tuned Scene Generation

is observed when the model is trained to CamVid data. We also did similar kind

of histogram analysis on the groundtruth labels. We observe these label statistics

also are closer to real datasets after tuning as shown in the last column of Figure

6.2. This evidence points to the potential usefulness of simulated datasets as virtual

proxies for these real world datasets.

54

7 Impact of Scene Generation
Parameters

In this chapter, we address the other fundamental question: How does parameter

settings of scene generative model impact the generalization performance of DCNN

models?. We try to provide a quantitative answer by comparing the performances

of DCNN models trained on three different virtual datasets separately. These sets

are simulated using three different parameter settings (θW) of our scene generative

model (P̂), as explained in the previous chapter.

7.1 Generalization of DeepLab

As mentioned in the previous chapter, we simulate three sets: V init, V cityscapes

and V camvid with different parameter settings of the scene generative model.

While V init was generated by placing uniform distributions on scene parame-

ters, V cityscapes and V camvid were generated after tuning those distributions

to CityScapes and CamVid datasets respectively. We use these sets as training

datasets for DeepLab and test their generalization performance on both CamVid

and CityScapes datasets. The IoU performance metrics are tabulated in Table 7.1

with different training-testing combinations.

In our first set of experiments, we use CityScapes as the target domain which means

we take validation set from CityScapes (CS val) for testing. We compared the utility

of simulated data generated from the initial model (Vinit) and the model trained

to CityScapes (Vcityscapes) in terms of the generalization of the trained models to

CS val. Vinit produced good results in classifying the objects like building, vehicles,

vegetation, roads and sky. However, pedestrians are poorly recognized due to low

frequency of occurrences and use of low quality (low poly meshes and textured) CAD

models. However, the use of Vcityscapes (which is generated from the model trained to

real CityScapes) has improved the overall performance (global IoU) by 2.28 points.

This time, the per-class IoU measure on pedestrian class has also been improved by

some extent. This may be credited to increased number of occurrences after tuning.

This can be visualized in the bar plot of Figure 6.2 (last column). To measure

55

7 Impact of Scene Generation Parameters

Table 7.1: Quantitative analysis of the performance of DeepLab models with different
training-testing combinations.
Notation: CS and CV refers to real CityScapes and CamVid datasets
respectively, and prefix ’V’ represents simulated sets.

Training set Validation global vehicle pedestrian building vegetation road ground sky

Model Tuned to CityScapes data
V init CS val 49.86 48 53 63 51 47 34 53
V cityscapes CS val 52.14 (+2.28) 56 47 65 57 53 31 56
CS train CS val 67.71 59 57 73 64 69 64 88
V cityscapes CV val 50.28 (+0.43) 51 50 55 48 49 49 50
CS train CV val 54.42 47 43 55 69 46 51 70

Model Tuned to CamVid Data
V init CV val 46.42 53 38 54 35 43 39 63
V camvid CV val 49.85 (+3.42) 57 34 63 37 48 44 66
CV train CV val 67.42 77 34 65 54 98 45 99
V camvid CS val 39.85 (-6.57) 35 41 44 44 32 40 43
CV train CS val 54.28 46 43 55 69 46 51 70

Data augmentations
V init+10%CS CS val 67.42 60 66 52 67 74 72 81
V cityscapes + 10%CS CS val 70.01 (+2.57) 68 60 59 68 77 69 89
V init+10%CV CV val 68.85 51 61 71 67 65 77 90
V camvid+10%CV CV val 70.57 (+1.71) 63 57 76 73 67 74 84

the statistical significance of these improvements, we repeated the training-testing

experiment 5 times, measured the improvement each time. The computed mean and

standard deviations are as 2.28± 0.34.

In our second set of experiments, we use CamVid as the target domain and take

the validation set from CamVid (CV val) for testing. We compared the utility of

simulated data generated from the initial model (Vinit) and the model trained to

CamVid (Vcamvid) in terms the generalization of the trained models to CV val. Vinit

has already produced good results. However, the use of Vcamvid has improved the

overall performance (global IoU) by 3.42 points. Interestingly, the trained DeepLab

model on Vcityscapes has improved performance also on CamVid validation set, however

vice-versa is not true as seen by a degradation in performance of 6.57%. We posit

that the high number of pedestrian occurrences and their diversity in CityScapes set

might be one of the reasons.

In the final set of experiments, we also consider a situation where 10% of real

labeled training data is available from the corresponding target domain. Here, we

compared the results of unsupervised adversarial tuning with those of supervised

domain adaptation, i.e., augmenting the simulated with 10% labeled samples from

the target domain. Clearly and obviously, supervised domain adaptation provides

improved gains over our adversarial tuning approach. However, we note that our

modest improvements using unsupervised learning described previously were achieved

without labeled samples from target domain, thus, the cost of the improvement is

cheap. Instead of using the data simulated with the initial model (Vinit), if we use

data from tuned models (Vcityscapes and Vcamvid for DeepLab training, we improve

the performance (on corresponding validation sets) by 2.57 and 1.71 IoU points

respectively. This gives an insight that the amount of real world labeled data

56

7.2 Conclusions

required to correct domain-shift in order to achieve a similar level of performance as

Vinit+10%CS is reduced. A rough analysis (using a linear fit for performance gains)

of the performance numbers in Table 7.1 provides the observation that the amount of

labelled real world data needed to reach the same level performance with Vcityscapes is

9% of training data compared to the 10% labeling of training data needed for Vinit.

7.2 Conclusions

In Chapter 6 and 7, we have evaluated an adversarial approach to tune generative

scene priors for the process of CG based data generation to train CV systems. To

achieve this goal, we designed a parametric scene generative model, followed by

AlexNet whose output probabilities are used to update the distributions of scene

parameters. Our experiments in the context of urban scene semantic segmentation

of with DeepLab provided evidence of improved generalization of models trained on

simulated data generated from adversarially tuned scene models. These improve-

ments were found to be 2.28% and 3.42% (average IoU) points on two real world

benchmarking datasets, CityScapes and CamVid respectively.

Our current work does not vary the intrinsic attributes of objects (shapes and

textures). Instead, we used a fixed set of CAD shapes and textures as a proxy to

model intra-class variations. We think that the performance boosts are not significant

as expected as this fixed CAD model set is restrictive. A possible extension is to

use component-based shape synthesis models (similar to [40]) to learn distributions

on object shapes. Further experimentation is needed to characterize the behavior

of adversarial tuning by studying the variability of the performance on simulated

training and target domains and plot the performance gains as a function of the

KL-divergence between the prior distributions used for training and target domains.

57

8 Learning to Transfer Geometric
Context

In this chapter, we propose an unsupervised methodology that uses ”unlabeled” data

from a target real-world domain to mitigate domain-shift problems of virtual data.

Chapter 5 and Chapter 7 evaluated the role of rendering fidelity and tuning the

scene model parameters respectively to deal with the domain-shift issues. Experi-

mental results in those chapters showed that one could achieve better generalization

capabilities for vision models trained on simulated data by adapting the generative

models in scene space. Although it has resulted in improved generalization perfor-

mance, we had to use a few ”labeled” real samples (at least 9% of CityScapes in the

context of experiments conducted in Chapter 7) to achieve the performance levels

on par with that of full real-world training. Fortunately, we had access to semantic

label information of real data in the case of semantic segmentation on CityScapes

benchmark. However, this 9% data (i.e., more than 300 images) still requires a

lot of human efforts to label at pixel-level, for instance, optical flow and intrinsic

images, etc. By motivating the fact that unlabeled data is abundant in real-world,

this chapter explores the use of unlabeled real data in a Multi-Task Learning (MTL)

[67] framework to reduce the domain shift of the feature representations that are

learned while training the vision models on labeled simulated data.

As we have seen in Chapter 5, the appearance of simulated data largely depends on

modeling errors and computational approximations underlying the chosen rendering

algorithm. Hence, appearance statistics of simulated training sets might be severely

biased unless advanced physically realistic rendering algorithms used are closer to

the sensory processes in the real-world camera used to capture real resting data. We

believe that the object shape and scene geometry models are more realistic in virtual

worlds (especially in modern graphics tools that use high polygon 3D meshes and

well-sampled animation models). Thus, the geometric context-based features are

relatively less biased compared to appearance models. Hence, we hypothesize that

transfer learning from virtual-to-reality would be more effective if we can regularize

the process of training on simulated data to learn geometric contextual features

rather than appearance-specific features. Towards this end, we design a training

59

8 Learning to Transfer Geometric Context

methodology to learn the features that are not only to solve the given task (i.e.,

semantic segmentation on labeled simulated data) but also solve an auxiliary task

(on real data) that requires an understanding of the geometric context of images.

We believe that training two CNN’s with shared components to solve the given task

and auxiliary geometric problem will produce features that are more robust towards

domain discrepancies b/w virtual and real-worlds.

However, it is more difficult to get ground truth labels for most of the geometry

context prediction tasks. Moreover, it is not very meaningful to select a task that

requires labels that are harder to collect than the semantic labels. Inspired by recent

concepts of self-supervised learning [60], we design a task and training methodology

that does not require any manual labels on training data and obtain supervisory

training signal from the image itself. Also, solving this task should require a semantic

contextual understanding of the entire image instance. These requirements dictated

us to choose ”inpainting” task as the auxiliary task as it is easy to generate training

data from real images without any manual intervention. To succeed at inpainting

task, the network has to understand geometric context of entire image as well as

produce plausible hypotheses for the missing regions. This requires a more in-depth

semantic understanding of the scene, and ability to synthesize high-level features

over large spatial extents.

We start by randomly masking out some regions of given real image. We then train

a CNN (namely InpaintNet) to regress the missing pixel values. In this work, we use

encoder-decoder like architectures for both inpainting and semantic segmentation

tasks. We use a fully convolutional network for semantic segmentation that is

adapted from the implementation of SegNet proposed in [5]. We train SegNet on

labeled simulated data and InpaintNet on unlabeled real data, both simultaneously

in an MTL framework. MTL frameworks encourage the networks to learn the

features representations that are generalizable to both the tasks, thus, both the

domains. Hence, SegNet features that are learned from simulated data would be well

generalizable for real data also.

In general, one can train InpaintNet using reconstruction losses like L2/L1 norms

[12]. However, they tend to produce blurry results due to inherent multi-modal nature

of the inpainting task, especially in the case of large missing regions. In other terms,

there are multiple plausible hypotheses to fill the missing regions while maintaining

coherence with the surrounding spatial context. Hence, predicting the mean of this

multi-modal distribution of hypotheses results in minimum for reconstruction losses

like L2 loss. To overcome this problem, we add an adversarial discriminator that

helps InpaintNet to produce high quality and visually sharper regions.

60

Figure 8.1: Geometric context might be less biased across virtual and real traffic
scenes compared to appearance context. For instance, geometry scene
layouts and object relations seem very similar across simulated (left col-
umn) and real (right column) scenes, while the differences in appearance
of the images are quite varying.

61

8 Learning to Transfer Geometric Context

8.1 Background

In this section, we provide a brief review of the concepts that are related to the work

in this chapter.

8.1.1 Force to Learn Geometric Context

Geometric (both spatial and temporal) context is the most realistic content in the

graphics-generated images/videos than appearance context [56]. Thanks to high-poly

meshes, textures, and animations in modern graphics tools. For instance, please refer

to Figure 8.1, distributions of scene geometry and object shapes are very similar

between virtual and real worlds, especially in the context of traffic scenes, while their

appearance might vary significantly (depending on rendering engine used). Also,

as shown in the bottom row of Figure 8.1, object appearance, especially human

avatars, in CG-based simulations are more biased in the appearance compared to

their shape statistics. Hence, we believe that the vision models would be more

effective in real-world conditions if training process on simulated data is regularized

to learn and transfer the features that are based on geometric statistics rather than

the appearance. Recent progress in multi-task learning paradigms for deep neural

networks has proven that training two or more CNNs for multiple tasks but with

shared weights improves the generalization capabilities of the trained models across

tasks and domains. Training process in MTL can help the models to focus on the

feature representations that more generalizable as other tasks provide additional

evidence for the relevance or irrelevance of those features [67]. Motivated by these

concepts, we propose an MTL based framework to train our semantic segmentation

on labeled simulated data along with an auxiliary task on unlabeled real-data in a

self-supervised manner.

However, one can come up with several tasks that require an understanding of

the geometric context of the entire image. Examples include pose estimation [10],

3D object detection [45] etc. However, most of these tasks require training data to

have corresponding output labels. This might require additional manual efforts since

we aim to solve this task on real data. Alternatively, one can choose reconstruction

tasks such as inpainting, etc. for which supervised training sets can be created by

artificially applying geometric distortion on real data without any human efforts.

8.1.2 Inpainting

Image inpainting refers to the task of inferring arbitrary missing regions in images.

In the case of large missing regions, the problem is termed as semantic inpainting

62

8.1 Background

as the algorithms have to understand the semantic context of the entire image to

infer plausible hypotheses for missing regions. Since the prediction of semantic

context is required, this task is significantly more difficult than classical hole filling

algorithms which are more concerned with correcting spurious data corruption.

However, inpainting becomes increasingly more difficult if large regions are missing

or if scenes are complex. Hence, we are interested in the more context-driven task of

semantic inpainting instead of filling small holes in the image.

Auto-encoder like architectures have been proposed for the problem and trained

using reconstruction losses such as L2 or L1 norms [84]. However, these losses are

found to be producing blurry results. This might be because this task is inherently

multi-modal as there are multiple ways to fill the missing region while also maintaining

coherence with the given context. Hence, it is much safer for the L2 loss to predict

the mean of the distribution because it minimizes the error (mean of the pixel-wise

errors), but results in a blurry averaged regions. In our work, we try to alleviate this

problem by adding an adversarial loss as would be explained in Section 8.2.

A recent approach for semantic inpainting, and closest to our work is [55]. This

work uses the concepts of adversarial learning to encourage the network to predict

in sharper regions. Given a mask indicating missing regions, an auto-econder like

neural network is trained to encode the spatial context information and predict

the unavailable content. Decoder’s predicted region is then fed to discriminator

along with some arbitrary real images sampled from the training set. The job of the

discriminator is to classify real verses predicted regions. The entire network is trained

in using a GAN loss. However, the decoder does not have enough prior information

about the content in the missing region. Hence, it still results in blurry or unrealistic

images especially when missing regions have arbitrary shapes. In our work, we solve

this problem to some extent by sharing the encoder’s weights of InpaintNet with

that of segmentation network. The encoder’s information learned from simulated

data will act as a prior for InpaintNet. We also observe that sharing weights of the

discriminator with the encoder of InpaintNet would stabilize the training process

and produce very realistic hypotheses for missing regions.

8.1.3 Self-supervised Learning

Very recently, there has been significant interest in self-supervised learning processes

[60] that aim to learn meaningful representations in supervised manner by automati-

cally extracting supervisory signals implicitly present in the given input signal. Most

of the works apply some arbitrary deformations to the input signal and train a CNN

to reconstruct the ideal image or information about it. The trained CNN model

63

8 Learning to Transfer Geometric Context

(a) hard parameter sharing (b) soft parameter sharing

Figure 8.2: MTL paradigms

is then fine tuned to the given task using a few samples with task-specific labels.

Some of the self-supervised tasks explored are jigsaw puzzles (prediction of relative

spatial locations of patches) [19], video frame sorting (prediction of correct ordering

of frames in a video) [44], missing color frame reconstruction [19], etc. However,

CNN’s can solve these tasks by learning to detect some low-level image properties

that may not be relevant to semantic tasks [19]. On the other hand, inpainting with

large missing regions could be a suitable task for our requirements on the auxiliary

task, since it requires an understanding of the geometric context of the given image.

8.1.4 Multi-Task Learning

As mentioned above, we train two CNN’s, SegNet and InpaintNet, simultaneously

within a MTL framework. In the context of Deep Learning, MTL is typically done

with either hard or soft parameter sharing of hidden layers.

Most common approach for MTL in deep networks is hard parameter sharing and

initially explained in [11]. As shown in Figure 8.2a, hard parameter sharing approach

is applied by sharing some lower level layers between all tasks while keeping separate

task-specific output layers. It reduces the risk of overfitting. In fact, [6] showed that

the risk of overfitting the shared parameters is an order N where N is the number of

tasks smaller than overfitting the task-specific parameters, i.e. the output layers.

This makes sense intuitively: The more tasks we are learning simultaneously, the

more our model has to find a representation that captures requirements of all of the

tasks and the less is our chance of overfitting on our original task.

In soft parameter sharing, on the other hand, each task has its own model with

its own parameters. The distance between the parameters of the model is then

regularized to encourage the parameters to be similar, as shown in Figure 8.2b. The

work of [21] for instance use L2 distance for regularization, while [86] use the trace

64

8.2 Proposed MTL Architecture

norm. Since our both the tasks are of different flavors, we use soft-parameter sharing

with L2 norm as in [21].

If a task is very noisy or data is limited and high-dimensional, it can be difficult

for a model to differentiate between relevant and irrelevant features. MTL can help

the model focus its attention on those features that actually matter as other tasks

will provide additional evidence for the relevance or irrelevance of those features.

MTL biases the model to prefer representations that other tasks also prefer. This

will also help the model to generalize to new tasks in the future as a hypothesis

space that performs well for a sufficiently large number of training tasks will also

perform well for learning novel tasks as long as they are from the same environment

[6]. Finally, MTL acts as a regularizer by introducing an inductive bias. As such, it

reduces the risk of overfitting as well as the Rademacher complexity of the model,

i.e., its ability to fit random noise.

8.2 Proposed MTL Architecture

We now introduce our MTL architecture that can be trained simultaneously for both

semantic segmentation (in a supervised manner) and inpainting (in a self-supervised

manner). Since our MTL architecture has several components including SegNet,

InpaintNet, and an adversarial discriminator, we first describe the SegNet part of

the architecture that is supposed to solve semantic segmentation on simulated data.

We then explain the design of InpaintNet that aims to solve inpainting task on

unlabeled real data. We also describe the adversarial discriminator that encourages

the InpaintNet to predict sharper and visually plausible hypotheses for missing

regions in real image data. A schematic flow chart of MTL architecture is as shown

in Figure 8.3.

8.2.1 SegNet with Instance Normalization Layers

We choose to develop our semantic segmentation architecture by adapting the SegNet

implementation proposed in [5]. The reason this choice is that its encoder-decoder

like structure (see Figure 8.3) provides an easy way to share weights with InpaintNet

which also has similar architecture. Its encoder-decoder design is based on the

convolutional layers of VGG-16 from the Visual Geometry Group [70]. In the original

implementation of SegNet [5], encoder is a succession of convolutional layers followed

by batch normalization (BN) [35] and ReLU (rectified linear units) layers. The

motivation behind using BN layers is to reduce covariate shift across mini-batches.

However, in this work, we work with minibatch samples come from two domains

65

8 Learning to Transfer Geometric Context

Figure 8.3: Our Multi Task Learning (MTL) architecture has three major components:
SegNet that is supposed to solve semantic segmentation on simulated
data, InpaintNet that aims to solve inpainting task on unlabeled real
data, and an adversarial discriminator that encourages the InpaintNet to
predict sharper and visually plausible hypotheses for missing regions in
real image data.

(virtual and real) that may have a different kind of statistics. Hence, we replace BN

layers with instance normalization (IN) layers [75, 20] which use per-feature statistics

(mean and variance) to normalize the feature responses from convolutional layers.

One more advantage with IN layers is that, unlike BN layers, they don’t have to be

removed at testing phases. Blocks of convolutions are followed by a pooling layer of

stride 2. The decoder has the same number of convolutions and the same number

of blocks. In place of pooling, the decoder performs upsampling using unpooling

layers. This layer operates by relocating at the maximum index computed by the

associated pooling layer. For example, the first pooling layer computes the mask of

the maximum activations (the ”argmax”) and passes it to the last unpooling layer,

which will upsample the feature map to a full resolution by placing the activations

on the mask indices and zeroes everywhere else. The sparse feature maps are then

densified by the consecutive convolutional layers. The encoding weights are initialized

using the corresponding layers from VGG-16, and the decoding weights are initialized

randomly using the strategy from [33].

66

8.2 Proposed MTL Architecture

8.2.1.1 Train SegNet on Simulated Data

We train our SegNet on simulated data since we have access to pixel-level labels. We

use the cross-entropy loss as follows. Let K denote the number of semantic classes,

which is 7 (similar to the ones in previous chapters) in our experiments. And, B be

the number of images in a mini-batch and N the number of pixels in the input image.

For a pixel xi, let yi be its ground truth label and SegNet(xi) = (zi1, z
i
2, ..., z

i
K) is

prediction vector. We minimize the loss:

Lseg =
1

NB

B∑
b=1

N∑
i=1

K∑
k=1

yik(xb) log(zik(xb)) (8.1)

8.2.2 InpaintNet

For Inpaint task, we mask out some region(s) from a real image using random

binary masks. We use binary masks from PASCAL-VOC segmentation dataset and

randomly apply for images from CityScapes as shown in Figure 8.4. Given an image

with a missing region (e.g., left-column in Figure 8.4), we train a convolutional

neural network (InpaintNet) to regress to the missing pixel values. It shares a similar

encoder-decoder architecture as SegNet. Hence, it is trivial to share weights via

soft-parameter sharing in MTL. Since inpainting is fundamentally a regression task,

we replace last softmax layer with another convolutional layer with Tanh nonlinearity.

Moreover, if the encoder architecture is limited only to convolutional layers, there

is no way for information to directly propagate from one corner of the feature map

to another. This is so because convolutional layers connect all the feature maps

together, but never directly connect all locations within a specific feature map. We

follow the work of [55] to alleviate this problem by using channel-wise fully connected

layers followed by the encoder layers as shown in Figure 8.3.

Binary Masks: The input to InpaintNet is a real image (real target domain,

for instance, CityScapes) with some region masked out; i.e., set to zero, assuming

zero-centered inputs. The removed regions could be of any shape. The simplest

such shape is the central square patch in the image. While this works quite well

for inpainting, the network might learn low-level image features that latch onto the

boundary of the rectangular or square mask [55]. Those low-level image features

tend not to generalize well to images without masks. Hence the features learned are

not very general.

To prevent the network from latching on the constant boundary patterns of the

masked region, we randomize the masking process. We experimented with removing

arbitrary shapes from images, obtained from random masks in the PASCAL VOC

67

8 Learning to Transfer Geometric Context

Figure 8.4: Input and ground truth generation for Inpainting task. Left: real images
from CityScapes dataset, Middle: Binary masks randomly selected from
PASCAL-VOC segmentation set, Right: Masked images which are inputs
to InpaintNet and images in left column are used as ground truth for
training.

68

8.2 Proposed MTL Architecture

2012 dataset [22]. We deform those shapes and paste in arbitrary places in the images

(from CityScapes). Note that we completely randomize the region masking process,

and do not expect or want any correlation between the source segmentation mask

and the image. We merely use those regions to prevent the network from learning

low-level features corresponding to the removed mask. See examples of training

samples in Figure 8.4.

Loss: We use a normalized masked L2 distance as our reconstruction loss function,

Lrec = ||(1−M)� (Y −X)||2 (8.2)

where M is mask used on original image, X, to generate input to InpaintNet (M�X)

and Y is the predicted output. While this simple loss encourages the decoder to

produce a rough outline of the predicted object, it often fails to capture any high-

frequency detail. This stems from the fact that the L2 loss often prefers a blurry

solution, over highly realistic textures. We believe this happens because it is much

safer for the L2 loss to predict the mean of the distribution because this minimizes

the mean pixel-wise error but results in a blurry averaged image. We alleviate this

problem by adding an adversarial loss as follows.

8.2.3 Adversarial Discriminator

Inspired by recent advances in Generative Adversarial Networks (GAN) [28], we

use an adversarial discriminator (D) to help our InpaintNet to synthesize realistic

hypotheses for missing regions. The objective of D is discriminate b/w generated

image and real image. The trainning process is a 2-player game when D takes both

the prediction of InpaintNet and groundtruth samples and tries to distinguish them,

while InpaintNet tries to fool D by predicting missing regions that appear as ”real”

as possible. D is implemented with another CNN that is similar to the encoder part

of InpaintNet or SegNwet. We also observed results improved when the encoder part

of InpaintNet and D share the weights softly. The adversarial loss of D, Ladv, is

given as

Ladv = maxDEx[log(D(X)) + log(1−D(Y))] (8.3)

Where, in practice, both InpaintNet and D are optimized jointly using alternating

SGD. Note that this objective encourages the entire output of the InpaintNet to look

realistic, not just the missing regions as in Equation 8.2.

69

8 Learning to Transfer Geometric Context

8.2.4 Multi-task loss

Since inpainting and segmentation tasks are of different flavors, we use soft parameter

sharing as MTL paradigm. The objective function for soft-parameter sharing based

MTL can be written as

Lsoft =
∑
c∈Cenc

Ω(W (c)
seg,W

(c)
inp,W

(c)
adv) (8.4)

where Cenc denotes all convolutional layers in encoder parts and W
(c)
s represents

vectorized form of all weights in a convolutional layer c of network s. Ω(W) is

a regularizer that couples the learning problems, typically by encouraging W =

[W
(c)
seg,W

(c)
inp,W

(c)
adv] to be a low-rank matrix. Popular choice is to use L2 norm [58].

Hence, we use

Lsoft =
∑
c∈Cenc

|W (c)
seg −W

(c)
inp|2 + |W (c)

inp −W
(c)
adv|

2 (8.5)

We define the overall MTL loss function as

Lmtl = λsegLseg + λinpLinp + λadvLadv + λsoftLsoft (8.6)

8.2.5 Training

The pipeline was implemented in PyTorch [54]. We used the recently proposed

stochastic gradient descent solver, ADAM [23] for optimization. The missing region

in the masked input image is filled with constant mean value. For SegNet, we used the

default solver hyper-parameters suggested in [5]. We use λseg = λinp = λsoft = 0.333

and λadv = 0.001. However, a few things were crucial for training the model. We use

a higher learning rate for InpaintNet (10 times) to that of adversarial discriminator.

To further emphasize the consistency of prediction with the context, we predict a

slightly larger patch that overlaps with the context (by 7px). During training, we

use higher weight (10X) for the reconstruction loss in this overlapping region

8.3 Experiments

As baselines, we start by reporting the generalization performance (in terms of

mIOU points) of SegNet models are trained separately on real and virtual data;

and combinations of them. We then train SegNet in the above proposed MTL

framework and compare the performance of those models with the baselines. Similar

to previous chapters, we use validation split (CS val) from CityScapes as our testing

70

8.3 Experiments

Maksed image Inpainted result Original image

Figure 8.5: Inpainting results

71

8 Learning to Transfer Geometric Context

(a) A few input images from CStest

(b) Results from SegNet model trained only on V

(c) Results from SegNet model trained full cityscapes

(d) Results from SegNet model trained V+10CS

(e) Results from our MTL model

(f) Groundtruth labels

Figure 8.6: Semantic segmentation results

72

8.3 Experiments

(a) Evaluation of generalization performance of
MTL

(b) Impact of simulated data generation on MTL
performance

Figure 8.7: Quantitative evaluations

dataset. Label prediction results of some samples are shown in Figure 8.6 for different

training settings. Quantitative comparison of generalization performances on CS val

is provided in Figure 8.7.

8.3.1 Training only for Semantic Segmentation

We first use V cityscapes to train SegNet and validate its generalization for CS val.

Please recall that V cityscapes is the simulated data used in the previous chapter and

that was generated by tuning our simulator to CityScapes training data (CS train).

As one can see in Figure 8.7a, the model trained only on V cityscapes has shown

a performance of 52.29 m-IOU points on CV val. As already observed in the

previous chapters, this model still suffers dataset bias issues, causing a performance

degradation roughly by 17% compared to the model trained with full cityscape

train split (CS train). However, these domain-shift problems of simulated data can

be mitigated by augmenting V cityscapes with just 10% of CS train. The model

trained on such augmented data has reached a generalization performance levels

(67.96 mIOU points) on par with that of the model trained on full CS train (69.08

mIOU). Experimental protocol for these set of experiments is similar to the previous

chapters.

8.3.2 Multi Task Learning

We now use our MTL framework to train SegNet on simulated datasets along with

InpaintNet on unlabeled CityScapes. Please note that in this setting we use entire

CS train set but without its semantic labels. Generalization performance levels of

the SegNet model are dramatically improved in all settings. This is nearly 27% (c.f.

Figure 8.7a) improved when compared to the model trained only on V cityscapes.

It also outperformed the model trained on full CS train by 11%. More interestingly,

73

8 Learning to Transfer Geometric Context

the model achieved this accuracy without the need for any labeled real data but

leveraging large-scale unlabeled data from CityScapes.

As already mentioned, we hypothesize that our MTL based architecture will

force SegNet to learn geometric contextual features that are invariant to domain

discrepancies. This means learned features should be generalizable to other datasets

that are captured with a different camera or in different geographical regions. To

empirically validate this hypothesis, we now evaluate the generalization capabilities

of the above trained model (trained in MTL using V cityscapes and CS train) on

test data from CamVid (CV val). Our model achieves 87% performance levels is

10% better than what we achieved with full CityScapes. More interestingly, this is

8% more than what can be achieved with the full CamVid training set (CV train).

This provides empirical evidence supporting our claim that MTL encourages to learn

features that are insensitive to appearance.

Since our MTL facilitates to use of unlabeled data, we make use of more data from

CityScapes data which is unlabeled or partially labeled (a total of 20000 images). We

also increased the size of labeled simulated data to 20000 samples. The SegNet model

trained on this large scale dataset (denoted as MTL++ in Figure 8.7a) achieved

86.57 mIoU points which scores the state of the art performance on CityScapes.

8.3.3 Revisiting the impact of data generation settings

We now revisit our experiments in Chapter 5 and Chapter 7, and quantify the

impact of scene generation and data rendering settings on the features learned in our

MTL framework. First, to quantify the impact of scene generation parameters (c.f.

Chapter 7), we used V init in place of V cityscapes to train our MTL architecture.

As a result, we observed degradation in performance by 7%. Thus, we believe that

tuning the parameters of scene generative model using real data from target domain

should also be considered as a better practice towards efficient transfer learning from

virtual to reality. However, the impact of rendering method becomes less significant

since there is no major difference when we use the data rendered with ray tracer in

place of V cityscapes (rendered with Monte-Carlo path tracer).

8.4 Conclusions

In this chapter, we proposed an MTL-based architecture and training methodology

to learn feature representations that are better transferable from virtual to reality.

In this architecture, semantic segmentation network is trained on labeled simulated

data while an auxiliary task of inpainting is trained using unlabeled real data. The

74

8.4 Conclusions

results of our experiments proved that the feature representations that are learned in

the proposed MTL framework are relatively less biased, thus, generalize well across

the domains. Our MTL architecture can be extended in many directions such as

learning spatiotemporal context using video-inpainting in temporal space or to cope

with other auxiliary tasks such jigsaw-puzzle solving etc.

75

9 Conclusions

We conclude with a summary of the main contributions of the thesis and a consolida-

tion of the experimental findings and observations. We also point out shortcomings

of our tools and methods; and list some promising future research directions.

9.1 Summary

The first part of the thesis presented a complete pipeline for simulating labeled

image datasets in large scale to train or diagnose modern vision systems such as

deep convolutional networks. In the second part of the thesis, we addressed several

fundamental issues about the impact of rendering choices and scene generation models

on the generalization performance of DCNs trained on simulated data. In the third

part, we design a novel MTL architecture that helps semantic segmentation network

architecture to learn efficient feature representations that are well generalizable to

the real-world target domain.

9.1.1 Tools

The details of our image rendering tool were explained in Chapter 3. Our tool

was mainly implemented on top of BLENDER, an open source graphics engine. It

is integrated with classical (such as Lambertian shading) and modern rendering

engines (such as Monte-Carlo path tracing); and several annotation shaders. Thus,

our tool can render the image data with a choice of rendering engine along with

required annotations or ground-truth information. This tool is utilized to quantify

the impact of modeling and computational approximations of the rendering engines

on the generalization performance of the trained models.

Rendering images in large scale are required to synthesize several 3D scene states

which include a detailed specification on 3D objects, light sources, camera and

their intrinsic and extrinsic parameters etc. However, manually designing the

3D scene states is a time-consuming and laborious process. Hence, Chapter 4

proposed a stochastic scene generative model to automatically synthesize traffic scene

layouts. Our generative model is based on Marked point processes coupled with

77

9 Conclusions

pre-downloaded 3D CAD object shapes and factor potentials. The later chapters

utilized these tools to address a set of scientific questions about the role of CG

generated data in experimental vision.

9.1.2 Scientific experimentation and observations

Chapter 5 addressed the impact of rendering method and its parameters (modeling

errors and computational approximations in rendering methods) on the generalization

performance of a DCNN trained on simulated training sets. All the experiments

were conducted in the context of traffic scene semantic segmentation with DeepLab

[14] architecture. As expected, the virtual training data is required to have all

photorealistic effects for better generalization of the trained models to real-world

data. The mIoU performance of DeepLab on CityScapes testing set has been

almost doubled when a raytracer (photorealistic rendering method, popularly used

in video-games) is used for rendering in place of a basic classical Lambertian shader

(that simulates only direct lighting effects). However, the physical accuracy of these

photorealistic effects seemed to have a less significant impact on the generalization

performance. Physics-based renderer MCPT has improved the results just by 6%

over appearance-driven renderer ray tracing but at the cost of 15 times the rendering

complexity. Furthermore, this improvement saturates around 40 Monte-Carlo samples-

per-pixel. Hence, apparently extreme levels of photorealism may not be necessary.

We also tried locating the image regions that are heavily biased when DeepLab is

trained on virtual data. Our experiments revealed that the label estimates around

object boundaries are heavily biased compared to other regions between virtual and

real-world based training settings.

In Chapter 6, we proposed an unsupervised approach to tune the parameters of our

scene generative model with a set of unlabeled samples from the target real domain.

This was inspired by the recent advances in generative adversarial training that

aims to train generative models by measuring the discrepancy between generated

and real data in terms of their separability in the space of a deep discriminatively-

trained classifier. Our method used an iterative estimation of the posterior density

of prior distributions for our generative graphical model. Initially, we placed uniform

distributions as priors on these parameters of a scene described by our generative

graphical model. As iterations proceed the uniform prior distributions get updated

to distributions that are closer to the (unknown) distributions of target data.

We used the proposed adversarial tuning approach in Chapter 7 to address the

impact of parameter settings of the scene generative model on the generalization

performance of DCNN. We have shown that tuning these parameters to the target

78

9.2 Future Research

domain will improve the generalizability of the simulated data on a testing set that

comes from the target domain. Initial parameter setting used uniform distributions

on scene parameters (lighting parameters, object sizes, orientations and weather

scattering parameter, etc.) in their permissible ranges. The remaining two parameter

settings were the distributions tuned to two existing real-world benchmarking datasets,

i.e., CityScapes and CamVid. We demonstrated the utility of adversarially tuned

scene generation on two real-world benchmark datasets (CityScapes and CamVid) for

traffic scene semantic labeling with DeepLab. We realized performance improvements

by 2.28 % and 3.14% between the DeepLab models trained on simulated sets prepared

from the scene generation models before and after tuning to CityScapes and CamVid

respectively.

Despite the improvements due to our tuning process, we still had to use a few

labeled real samples (at least 9%) to correct the domain-shift problem. Hence,

Chapter 8 presented a new multi-task learning based framework that uses ”unlabeled”

data from a target real-world domain to mitigate domain-shift issues of virtual data.

This framework simultaneously trains two DCNs: one for semantic segmentation

of simulated data and the other for an auxiliary self-supervised task on unlabeled

data. Since our auxiliary task is supposed to learn the geometric context of the

entire image, we choose to solve semantic inpainting problem. We also used an

adversarial discriminator to help inpainting network produce a high-quality prediction.

Our experiments prove that the MTL approach can learn feature representations

that are well generalizable to real-world scenarios. In specific, MTL improves the

generalization of SegNet by at least 11%. When in MTL, the impact of rendering

engine has become insignificant, which means we don’t have to use computationally

intensive renderers such as MCPT. However, tuning of simulators still seems to

important as data generated w/o tuning degraded the performance nearly by 7%.

So, we think using scene models that are nearer to target domain and learning for

multiple tasks are better practices when we are working with simulated data.

9.2 Future Research

Finally, we point out the shortcomings of our tools and approaches we are here-

with practicing. However, we believe, despite these shortcomings, the tools and

methodologies that we described will be of use to the CV community as a basis for

pretraining, rigorous validation, and model refinement.

79

9 Conclusions

9.2.1 Stochastic Scene Models

For simplicity of simulation process, the base road network and ground plane under-

lying our generative scene model are fixed in geometry. Hence, our simulated images

lack curved roads, terrains and complex road junctions. However, L-systems [66] or

procedural generation techniques can be used to generate complex road networks.

We used factor potentials to encode common-sense scene layout rules such as mutual

exclusion, object-road relationships, etc. However, one can use advanced factor

potentials to make probabilistic scene model more intelligent and informed with

traffic constraints and rules that we find in real-world. We used a large collection

of 3D object meshes and textures as a proxy to detailed probabilistic shape models

for given object category. However, one can use parametric shape models from

recent works of [57]. As most of the experimental setup has dealt with semantic

segmentation on static images, we haven’t focused much on motion and temporal

context of the 3D scenes. Stochastic animation and path generation models can

be used to extend our tools for automatic generation of scene dynamics and train

video understanding systems such activity recognition and object tracking etc. Our

probabilistic scene generator can also be used for likelihood-free inference (also

referred as Approximate Bayesian Computation or Probabilistic Programming) for

cognitive vision applications. The simulator in this framework should be able to

generate several image samples from given scene priors, and stochastic comparator

will accept or reject the parameters that have generated similar images compared

a real input image to construct posterior [48, 42]. Utilizing our tools in the ABC

frameworks is straightforward. However, inference will computationally intensive.

9.2.2 Learning in Simulators and Image refinement

Learning the parameters of generative models that could generate data statistically

and visually similar to the given target unlabeled data is gaining recent attention [28].

Our scene generation model and its adversarial tuning procedure are first steps in

this direction. As one future extension to our work, our simulator can be appended

with a cascaded refinement procedure to transfer the appearance style of real images

to simulated images by preserving the geometric content, thus, labels. This can be

done using adversarial methods and can be trained in an end-to-end manner.

9.2.3 Learn to transfer spatiotemporal context

In chapter 8, we explore an auxiliary task of inpainting spatially. However, this can

be extended to spatial-temporal space (volumetric inpainting) so that model will

80

9.2 Future Research

learn to transfer the spatiotemporal context from virtual to reality. We believe this

would give more efficient transfer as temporal feature models also quite realistic in

virtual worlds.

81

Bibliography

[1] https://threadreaderapp.com/thread/1031858472470495233.html.

[2] http://www.blender.org/.

[3] Anonymous. Adversarially tuned scene generation, 2017.

[4] Adrian J Baddeley and MNM Van Lieshout. Area-interaction point processes.

Annals of the Institute of Statistical Mathematics, 47(4):601–619, 1995.

[5] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep

convolutional encoder-decoder architecture for image segmentation. IEEE

transactions on pattern analysis and machine intelligence, 39(12):2481–2495,

2017.

[6] Jonathan Baxter. A bayesian/information theoretic model of learning to learn

via multiple task sampling. Machine learning, 28(1):7–39, 1997.

[7] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object

classes in video: A high-definition ground truth database. Pattern Recognition

Letters, 30(2):88–97, 2009.

[8] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8):1872–

1886, 2013.

[9] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A

naturalistic open source movie for optical flow evaluation. In Computer Vision–

ECCV 2012, pages 611–625. Springer, 2012.

[10] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person

2d pose estimation using part affinity fields. In CVPR, volume 1, page 7, 2017.

[11] R Caruna. Multitask learning: A knowledge-based source of inductive bias. In

Machine Learning: Proceedings of the Tenth International Conference, pages

41–48, 1993.

83

Bibliography

[12] Tony F Chan, Jianhong Shen, and Hao-Min Zhou. Total variation wavelet

inpainting. Journal of Mathematical imaging and Vision, 25(1):107–125, 2006.

[13] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. Semantic image segmentation with deep convolutional nets and

fully connected crfs. arXiv preprint arXiv:1412.7062, 2014.

[14] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,

and Alan L Yuille. Deeplab: Semantic image segmentation with deep con-

volutional nets, atrous convolution, and fully connected crfs. arXiv preprint

arXiv:1606.00915, 2016.

[15] Robert L Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing.

In ACM SIGGRAPH Computer Graphics, volume 18, pages 137–145. ACM,

1984.

[16] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus

Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.

The cityscapes dataset for semantic urban scene understanding. arXiv preprint

arXiv:1604.01685, 2016.

[17] AJ Cox, Alan J DeWeerd, and Jennifer Linden. An experiment to measure

mie and rayleigh total scattering cross sections. American Journal of Physics,

70(6):620–625, 2002.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE,

2009.

[19] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual represen-

tation learning by context prediction. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1422–1430, 2015.

[20] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned repre-

sentation for artistic style. CoRR, abs/1610.07629, 2(4):5, 2016.

[21] Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource depen-

dency parsing: Cross-lingual parameter sharing in a neural network parser. In

Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language

Processing (Volume 2: Short Papers), volume 2, pages 845–850, 2015.

84

Bibliography

[22] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object classes challenge:

A retrospective. International Journal of Computer Vision, 111(1):98–136, 2015.

[23] Sanja Fidler, Sven Dickinson, and Raquel Urtasun. 3d object detection and

viewpoint estimation with a deformable 3d cuboid model. In NIPS, 2012.

[24] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazırbaş,

Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox.

Flownet: Learning optical flow with convolutional networks. arXiv preprint

arXiv:1504.06852, 2015.

[25] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds

as proxy for multi-object tracking analysis. arXiv preprint arXiv:1605.06457,

2016.

[26] Wenjie Ge and Robert T Collins. Marked point processes for crowd counting. In

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference

on, pages 2913–2920. IEEE, 2009.

[27] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference on, pages 3354–3361. IEEE, 2012.

[28] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial

nets. In Advances in Neural Information Processing Systems, pages 2672–2680,

2014.

[29] Michael Greiffenhagen, Visvanathan Ramesh, and Heinrich Niemann. The

systematic design and analysis cycle of a vision system: A case study in video

surveillance. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on, volume 2, pages

II–704. IEEE, 2001.

[30] Peng Guan. Virtual Human Bodies with Clothing and Hair: From Images to

Animation. PhD thesis, Brown University, Department of Computer Science,

December 2012.

[31] Vladimir Haltakov, Christian Unger, and Slobodan Ilic. Framework for gen-

eration of synthetic ground truth data for driver assistance applications. In

German Conference on Pattern Recognition, pages 323–332. Springer, 2013.

85

Bibliography

[32] Robert M Haralick. Performance characterization in computer vision. In

Computer Analysis of Images and Patterns, pages 1–9. Springer, 1993.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE international conference on computer vision, pages

1026–1034, 2015.

[34] Geremy Heitz and Daphne Koller. Learning spatial context: Using stuff to find

things. In European conference on computer vision, pages 30–43. Springer, 2008.

[35] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International conference

on machine learning, pages 448–456, 2015.

[36] Martin Jacobsen. Point process theory and applications. Springer, 2006.

[37] Wojciech Jarosz. Efficient monte carlo methods for light transport in scattering

media. ProQuest, 2008.

[38] Bela Julesz. Textons, the elements of texture perception, and their interactions.

Nature, 290(5802):91, 1981.

[39] James T Kajiya. The rendering equation. In ACM Siggraph Computer Graphics,

volume 20, pages 143–150. ACM, 1986.

[40] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen

Koltun. A probabilistic model for component-based shape synthesis. ACM

Transactions on Graphics (TOG), 31(4):55, 2012.

[41] Pushmeet Kohli, Philip HS Torr, et al. Robust higher order potentials for

enforcing label consistency. International Journal of Computer Vision, 82(3):302–

324, 2009.

[42] Tejas D Kulkarni, Pushmeet Kohli, MSR Cambridge, Joshua B Tenenbaum,

and Vikash Mansinghka. Picture: A probabilistic programming language for

scene perception. CVPR, 2015.

[43] Florent Lafarge, Georgy Gimel’Farb, and Xavier Descombes. Geometric feature

extraction by a multimarked point process. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 32(9):1597–1609, 2010.

86

Bibliography

[44] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Unsuper-

vised representation learning by sorting sequences. In 2017 IEEE International

Conference on Computer Vision (ICCV), pages 667–676. IEEE, 2017.

[45] Bastian Leibe, Konrad Schindler, Nico Cornelis, and Luc Van Gool. Coupled

object detection and tracking from static cameras and moving vehicles. IEEE

transactions on pattern analysis and machine intelligence, 30(10):1683–1698,

2008.

[46] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[47] Wallace Bishop Mann. Three dimensional object interpretation of monocular

gray-scale images. 1996.

[48] Vikash Mansinghka, Tejas D Kulkarni, Yura N Perov, and Josh Tenenbaum.

Approximate bayesian image interpretation using generative probabilistic graph-

ics programs. In Advances in Neural Information Processing Systems, pages

1520–1528, 2013.

[49] Stephan Meister and Daniel Kondermann. Real versus realistically rendered

scenes for optical flow evaluation. In Electronic Media Technology (CEMT),

2011 14th ITG Conference on, pages 1–6. IEEE, 2011.

[50] Rosana Montes Soldado and Carlos Ureña Almagro. An overview of brdf models.

2012.

[51] Srinivasa G Narasimhan and Shree K Nayar. Vision and the atmosphere.

International Journal of Computer Vision, 48(3):233–254, 2002.

[52] Michael Oren and Shree K Nayar. Generalization of the lambertian model and

implications for machine vision. International Journal of Computer Vision,

14(3):227–251, 1995.

[53] Yoav IH Parish and Pascal Müller. Procedural modeling of cities. In Proceedings

of the 28th annual conference on Computer graphics and interactive techniques,

pages 301–308. ACM, 2001.

[54] Adam Paszke, Soumith Chintala, Ronan Collobert, Koray Kavukcuoglu, Clement

Farabet, Samy Bengio, Iain Melvin, Jason Weston, and Johnny Mariethoz.

Pytorch: Tensors and dynamic neural networks in python with strong gpu

acceleration, may 2017.

87

Bibliography

[55] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A

Efros. Context encoders: Feature learning by inpainting. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 2536–2544,

2016.

[56] Matt Pharr and Greg Humphreys. Physically based rendering: From theory to

implementation. Morgan Kaufmann, 2004.

[57] Leonid Pishchulin, Stefanie Wuhrer, Thomas Helten, Christian Theobalt, and

Bernt Schiele. Building statistical shape spaces for 3d human modeling. Pattern

Recognition, 67:276–286, 2017.

[58] Ting Kei Pong, Paul Tseng, Shuiwang Ji, and Jieping Ye. Trace norm regular-

ization: Reformulations, algorithms, and multi-task learning. SIAM Journal on

Optimization, 20(6):3465–3489, 2010.

[59] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[60] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng.

Self-taught learning: transfer learning from unlabeled data. In Proceedings of

the 24th international conference on Machine learning, pages 759–766. ACM,

2007.

[61] Visvanathan Ramesh. Performance characterization of image understanding

algorithms. PhD thesis, University of Washington, 1995.

[62] William T Reeves. Particle systemsa technique for modeling a class of fuzzy

objects. ACM Transactions on Graphics (TOG), 2(2):91–108, 1983.

[63] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing

for data: Ground truth from computer games. arXiv preprint arXiv:1608.02192,

2016.

[64] Cesar Roberto de Souza, Adrien Gaidon, Yohann Cabon, and Antonio

Manuel Lopez. Procedural generation of videos to train deep action recog-

nition networks. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017.

88

Bibliography

[65] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M

Lopez. The synthia dataset: A large collection of synthetic images for semantic

segmentation of urban scenes. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3234–3243, 2016.

[66] Grzegorz Rozenberg and Arto Salomaa. The mathematical theory of L systems,

volume 90. Academic press, 1980.

[67] Sebastian Ruder. An overview of multi-task learning in deep neural networks.

CoRR, abs/1706.05098, 2017.

[68] Alireza Shafaei, James J Little, and Mark Schmidt. Play and learn: Using video

games to train computer vision models. arXiv preprint arXiv:1608.01745, 2016.

[69] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Textonboost:

Joint appearance, shape and context modeling for multi-class object recognition

and segmentation. In European conference on computer vision, pages 1–15.

Springer, 2006.

[70] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[71] Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. A survey

on procedural modelling for virtual worlds. In Computer Graphics Forum,

volume 33, pages 31–50. Wiley Online Library, 2014.

[72] Charles Sutton, Andrew McCallum, et al. An introduction to conditional random

fields. Foundations and Trends R© in Machine Learning, 4(4):267–373, 2012.

[73] Olivier Tournaire, Nicolas Paparoditis, and Florent Lafarge. Rectangular road

marking detection with marked point processes. In Proc. conference on Pho-

togrammetric Image Analysis, 2007.

[74] Yanghai Tsin, Visvanathan Ramesh, and Takeo Kanade. Statistical calibration

of ccd imaging process. In Computer Vision, 2001. ICCV 2001. Proceedings.

Eighth IEEE International Conference on, volume 1, pages 480–487. IEEE, 2001.

[75] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture

networks: Maximizing quality and diversity in feed-forward stylization and

texture synthesis. In Proc. CVPR, 2017.

89

Bibliography

[76] Akos Utasi and Csaba Benedek. A 3-d marked point process model for multi-

view people detection. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 3385–3392. IEEE, 2011.

[77] Tobi Vaudrey, Clemens Rabe, Reinhard Klette, and James Milburn. Differ-

ences between stereo and motion behaviour on synthetic and real-world stereo

sequences. In Image and Vision Computing New Zealand, 2008. IVCNZ 2008.

23rd International Conference, pages 1–6. IEEE, 2008.

[78] David Vázquez, Antonio López, Daniel Ponsa, and Javier Marin. Cool world:

domain adaptation of virtual and real worlds for human detection using active

learning. In Advances in Neural Information Processing Systems–Workshop on

Domain Adaptation: Theory and Applications, 2011.

[79] David Vázquez, Antonio M López, and Daniel Ponsa. Unsupervised domain

adaptation of virtual and real worlds for pedestrian detection. In Pattern

Recognition (ICPR), 2012 21st International Conference on, pages 3492–3495.

IEEE, 2012.

[80] David Vazquez, Antonio Manuel Lopez, Javier Marin, Daniel Ponsa, and

D Geroimo. Virtual and real world adaptation for pedestrian detection. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 36(4):797–809, 2014.

[81] Eric Veach and Leonidas J Guibas. Optimally combining sampling techniques

for monte carlo rendering. In Proceedings of the 22nd annual conference on

Computer graphics and interactive techniques, pages 419–428. ACM, 1995.

[82] Eric Veach and Leonidas J Guibas. Metropolis light transport. In Proceedings

of the 24th annual conference on Computer graphics and interactive techniques,

pages 65–76. ACM Press/Addison-Wesley Publishing Co., 1997.

[83] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou

Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric

shape modeling. In Proc. CVPR, to appear, volume 1, page 3, 2015.

[84] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with

deep neural networks. In Advances in neural information processing systems,

pages 341–349, 2012.

[85] Jiaolong Xu, Sebastian Ramos, David Vázquez, and Antonio Manuel López.

Domain adaptation of deformable part-based models. IEEE Trans. Pattern

Anal. Mach. Intell., 36(12):2367–2380, 2014.

90

Bibliography

[86] Yongxin Yang and Timothy M Hospedales. Trace norm regularised deep multi-

task learning. arXiv preprint arXiv:1606.04038, 2016.

[87] Lap Fai Yu, Sai Kit Yeung, Chi Keung Tang, Demetri Terzopoulos, Tony F

Chan, and Stanley J Osher. Make it home: automatic optimization of furniture

arrangement. ACM Transactions on Graphics (TOG)-Proceedings of ACM

SIGGRAPH 2011, v. 30, no. 4, July 2011, article no. 86, 2011.

91

