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1 Introduction

Macro asset pricing models such as the habit model (Campbell and Cochrane 1999) or the

long-run risk model (Bansal and Yaron 2004) claim some success in jointly explaining many

regularities of aggregate U.S. consumption and dividend claims. Key ingredients of these mod-

els are typically latent state variables, which in the background drive risk premia and other

quantities like valuation ratios. The mechanism behind these model outputs is usually di�cult

to falsify, since state variables are not observable, and the model parameters necessary to fit

empirical stylized facts are di�cult to estimate. These facts constitute what has recently been

called “dark matter” in asset pricing models (Chen et al. 2019). It is therefore vital to find new

ways to investigate the plausibility of models and to come up with new testable implications.

Models with time-varying risk premia make statements not only about the expected return

on the aggregate stock market, but also (implicitly or explicitly) about the cross-section of

expected returns on individual stocks. We exploit this fact to come up with such new testable

implications concerning the link between time-series and cross-sectional predictability. A generic

asset pricing model implies that expected returns on arbitrary assets are functions of the state

variables, as are the price-dividend ratio and the variance risk premium of the market. We

suggest a simple empirical approach making use of exactly this fact by first regressing individual

stock returns on the lagged price-dividend ratio and variance risk premium of the aggregate

market, and then transforming the estimated slope coe�cients into model-implied loadings on

state variable innovations. When we perform univariate and bivariate sorts on these loadings,

we find average return patterns in the data, which most models are not able to reproduce.

Our approach is motivated by the observation that excess returns on stocks and portfolios

are predictable by the price-dividend ratio and the variance risk premium of the aggregate stock

market. To exemplify this finding, Figure 1 shows regression coe�cients and R
2s from predictive
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regressions on these two predictors. As test assets we use 49 industry portfolios from Kenneth

French’s website and the market portfolio itself (marked by the dark gray bar). The R
2s are

large for many portfolios, and the slope coe�cients are significant at the 5%-level for about half

of the portfolios in case of the price-dividend ratio and for all but four portfolios in case of the

variance risk premium. Furthermore, there is considerable cross-sectional variation in the slope

coe�cients. Asset pricing models impose restrictions on the relation between these coe�cients

and expected returns.

Our main finding is that stocks with high coe�cients with respect to either regressor tend

to have high average returns, but that the cross-sectional rank correlation of the two sets of

coe�cients across stocks is significantly negative in the majority of months. This immediately

implies that a model in which only one state variable causes expected excess returns to be time-

varying (as it is the case in the models suggested by Campbell and Cochrane 1999, Bansal and

Yaron 2004, Wachter 2013) is by construction not able to match the cross-sectional patterns in

average returns in the data.1 Specifying a framework where at least two state variables drive the

time variation in expected excess returns is thus a necessary, but still not a su�cient condition

to explain the empirical stylized facts.

As a matter of fact, our results show that the two state variables have to exhibit very

specific characteristics to allow the model to match the data. Most importantly, one of the state

variables has to be positively related to the price-dividend ratio of the aggregate market. This

feature is rare in asset pricing models building on endowment economies, since state variables

driving the time variation in risk premia, like risk aversion, uncertainty, or disaster risk, typically

have the property that an increase in any of them leads to lower valuation ratios.

Empirically, the relation between these quantities is less clear. While returns typically

1The long-run risks model, just as many of its extensions, also features a state variable that models the
trend growth rate of consumption and dividends. This state variable is of minor relevance for expected excess
returns and thus plays a negligible role for the purpose of our analysis.
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have negative exposures to realized volatility, Campbell et al. (2018) find that returns on all

their 25 test portfolios have positive exposures to forward-looking volatility, backed out from

a VAR. Production economy models such as Croce (2014) naturally imply that stock prices

increase in uncertainty. The reason is that households consume less and save more after a

positive shock to uncertainty. Thus, production economies naturally imply a positive relation

between expected returns and slope coe�cients with respect to the market price-dividend ratio.

Relative to production economies, endowment economies are easier to handle and make

the economic channels that a↵ect asset prices more explicit, which is helpful when considering

all the empirical facts jointly. To exemplify the ingredients which are necessary to match them,

we discuss two di↵erent endowment economy models. The model of Segal et al. (2015) features

a state variable representing “good uncertainty”, i.e., the upside potential of consumption

innovations. In their model, the price-dividend ratio increases in good uncertainty, which, in

combination with a second state variable for “bad uncertainty”, allows the model to explain

most of the patterns we find in the cross-section of expected stock returns.

As a second example, we discuss the model of Bekaert and Engstrom (2017), which features

as state variables the variances of two shocks, each of which has an impact on both consumption

and dividend growth. While high values of both state variables correspond to bad states in

this model, dividends are a hedge against one of the risks a↵ecting aggregate consumption

growth. This makes the price-dividend ratio increase in one state variable, and, together with

the second state variable, allows the model to explain the empirical facts we document. The

key assumption, a negative relation between consumption and dividend growth in response to

a certain type of shock, is rather non-standard and may appear counterintuitive. Production-

based models could thus provide a more natural rationale for the joint behavior of price-dividend

ratios, variance risk premia and expected returns in the cross-section.

Our paper is structured as follows. In Section 2, we discuss the related literature. In
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Section 3, we introduce our empirical approach, provide information about the data set, and

show the main empirical findings. Section 4 contains a more detailed empirical analysis as well as

a number of robustness checks. In Section 5, we analyze models in which only one state variable

drives time-variation in expected excess returns and show that, by their very construction, they

are not able to produce the patterns we find in Sections 3 and 4. Afterwards, we discuss the

ingredients necessary for a model to at least have a chance to explain the empirical stylized

facts. Section 6 concludes. An Online Appendix provides additional information on the solutions

of the di↵erent models and provides detailed quantitative analyses of the models of Bansal and

Yaron (2004), Segal et al. (2015), and Bekaert and Engstrom (2017).

2 Literature review

Our paper is not the first to investigate the cross-section of expected returns in the context of

macro asset pricing models. Barroso et al. (2017) show that the exposure of stocks to innovations

in state variables predicting future consumption growth can explain cross-sectional variation

in expected stock returns. They also find that risk premia are considerably higher in periods

of high variance of the state variables. These findings can easily be explained within the long-

run risks model of Bansal and Yaron (2004). There, the state variable x predicts consumption

growth, while time variation in the variance of x (and thus in risk premia) is modeled via

a second state variable V . Hence, the long-run risks model is a natural framework to study

cross-sectional variation in risk premia.

Similarly, Boons (2016) also backs out state variables from observables. More directly,

Bansal et al. (2005) empirically investigate the link between aggregate consumption growth

and firms’ cash flow growth and show that variation in consumption betas can explain a large

share of the cross-sectional variation in expected returns. In a related paper, Boguth and Kuehn
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(2013) estimate expected consumption growth and consumption growth variance from the data

and show that the exposure to consumption volatility risk predicts future returns. Dittmar and

Lundblad (2017) study the link between firm characteristics and the exposure to consumption

risk to explain the cross-section of expected returns. Tédongap (2015) develops and estimates

a long-run risks model, and he shows that consumption volatility is an important factor when

it comes to explaining cross-sectional asset pricing anomalies.

The habit model proposed by Campbell and Cochrane (1999) is also a natural framework

to formalize the relation between the time variation in discount rates, consumption growth, and

risk premia on the one hand, and the cross-section of expected stock returns on the other. Dou

et al. (2020) also assume that households entertain habit preferences, which implies that times

of high discount rates are times of low consumption growth. In their general equilibrium model,

firms in industries with very persistent market leadership have particularly high exposures

to discount rate shocks and, thus, higher expected returns. These firms also have on average

higher profit margins and higher profitability. Thus, the framework of Dou et al. (2020) allows

an interpretation of the exposure to discount rate shocks in terms of firm characteristics.

In contrast to all of these papers, we start with a model-free empirical approach. In

particular, we do not have to estimate latent macro state variables or rely on consumption data

(which may be prone to measurement errors, as discussed in, e.g., Kroencke (2017), Parker

and Julliard (2005), and Savov (2011)) to estimate exposures of assets in the cross-section.

The key idea in our approach is that expected returns on stocks with a strong exposure to

certain shocks react more strongly to changes in the variance of these shocks. When we use the

same predictors for all stocks, the strength of this reaction is quantified by the coe�cients in

predictive regressions. This allows us to remain silent about the ultimate sources of the variation

in risk premia. The link between the ultimate macroeconomic risks and variation of expected

returns in the cross-section is then solely provided by the respective theoretical models.
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An alternative approach to distinguishing between di↵erent macro asset pricing mod-

els was recently suggested by Zviadadze (2018). She uses Bayesian MCMC methods to esti-

mate generalized VARs using data on aggregate stock market returns, dividends, consumption

growth, and the price-dividend ratio of the aggregate market. The structures of the VARs, which

feature latent state variables, are implied by di↵erent candidate models. Zviadadze (2018) in-

troduces the concept of “incremental expected returns”, which are generalized impulse response

functions and allow to analyze the impact of di↵erent shocks on expected market returns over

di↵erent horizons. She concludes that a specification that is in line with the model of Drechsler

and Yaron (2011) explains the term structure of risk in expected returns well.

Our approach is related but di↵ers from hers in two important aspects. First, we do not

back out shocks to latent state variables using sophisticated econometric techniques. Thus, our

approach is simpler and does not require consumption data with all the limitations mentioned

above. The price we pay is that our approach does not allow conclusions about the type of shocks

impacting expected returns (over di↵erent horizons), i.e., we cannot make firm statements

about whether expected returns are driven by innovations in variance, jump intensities, or

other economic variables. Second, Zviadadze (2018) considers the term structure of aggregate

market returns and does not take the cross-section of stock returns into consideration. We do

the exact opposite, i.e., we limit our analysis to one particular prediction horizon (per predictor)

and consider the cross-sectional dimension of the return data. In this sense, our paper is the

cross-sectional analogue to the time-series analysis of Zviadadze (2018).
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3 Stylized empirical facts

3.1 Empirical approach

We form portfolios of individual stocks based on their slope coe�cients from predictive regres-

sions. As predictors we consider the (log) price-dividend ratio and the variance risk premium of

the aggregate stock market, denoted by ! and ⌫, respectively. We account for the possibility of

time-varying coe�cients and perform a rolling-window analysis. In particular, at the beginning

of each month t, we look at the return history of a stock over the formation period [t�72, t�1],

i.e., over the preceding six years and run the regressions

r
i
⌧,⌧+12 � r

f
⌧,⌧+12 = a!,i,t + b!,i,t !⌧ + e

!,i,t
⌧+12 (1)

r
i
⌧,⌧+4 � r

f
⌧,⌧+4 = a⌫,i,t + b⌫,i,t ⌫⌧ + e

⌫,i,t
⌧+4 (2)

with ⌧ ranging from t� 72 to t� 11 and to t� 3 in regressions (1) and (2), respectively. Here,

r
i
⌧,⌧+h denotes the log return on stock i when investing at time ⌧ and holding it for h months.

r
f
⌧,⌧+h denotes the risk-free return over the corresponding holding period.

We select a return horizon of 12 and 4 months for the price-dividend ratio and the variance

risk premium, respectively, since predictive regressions based on these horizons are likely to yield

informative slope coe�cients b! and b⌫ .2

We then sort stocks with respect to the estimated coe�cients b̂!,i,t and b̂⌫,i,t, respectively,

and form decile portfolios. We hold the portfolios for one month and repeat the exercise at the

beginning of month t + 1. In addition, we also perform independent bivariate sorts, where we

form 25 portfolios as the intersection of quintiles based on the estimates of the two b-coe�cients.

2We discuss the choice of formation period and return horizons in Section A1.2 of the Online Appendix and
show that our results are not specific to the particular values in regressions (1) and (2).
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3.2 Data

We use monthly returns on all publicly traded common stocks available in CRSP. We exclude

stocks that are traded at venues other than AMEX, NYSE, or NASDAQ, penny stocks (i.e.,

stocks with a share price below 5$ at the beginning of a month), and stocks of financials

and utilities, as it is standard in the literature. Delisting returns are accounted for following

Shumway (1997). We subtract the one-month Treasury bill rate (taken from Kenneth French’s

data library3) to calculate excess returns. Accounting data for individual stocks, used in Section

4 below, are taken from Compustat.

We use the price-dividend ratio of the aggregate stock market provided on Amit Goyal’s

webpage4 and the variance risk premium taken from Hao Zhou’s homepage.5 The former is

defined as the ratio of the S&P500 index and the 12-month moving sums of dividends paid

by the index constituents. The latter is defined as the risk-neutral variance implied by prices

of S&P500 index options with a maturity of one month minus the lagged realized one-month

return variance. The construction of this time series is discussed in detail in Bollerslev et al.

(2009). For us, it is only important that we use the same time series in the predictive regressions

for all stocks.

We use data from January 1933 until June 2018. Data on the variance risk premium are

only available from 1990 onwards, hence, for a large part of our analysis, we rely on a sample

starting in January 1990. To extend the sample backwards, we make use of the news implied

volatility index (NVIX). Manela and Moreira (2017) construct this index by running a support

vector regression of option implied volatility on the relative frequency of words used in the Wall

Street Journal. For our purposes, we run a regression of the risk-neutral variance on NVIX and

NVIX2 for the period from 1990 to 2018 and obtain an R
2 of 0.77. We use the estimated

3See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
4See http://www.hec.unil.ch/agoyal.
5See https://sites.google.com/site/haozhouspersonalhomepage.
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coe�cients from this regression and the values for NVIX and NVIX2 in the period from 1933 to

1990 to compute a proxy for the risk neutral variance and subtract the realized variance, again

taken from Amit Goyal’s webpage, to obtain a proxy for the variance risk premium before 1990.

3.3 Results

3.3.1 The relation between slope coe�cients and returns

This section describes the returns on the portfolios sorted according to the procedure outlined

in Section 3.1 above. Further information concerning the time-series behavior of the portfolio

returns, the relation between slope coe�cients, and other portfolio characteristics as well as

robustness analyses are provided in Section 4.

Table 1 shows the portfolio returns. HML! and HML⌫ denote the portfolios long in stocks

with high and short in stocks with low estimated slope coe�cients from the respective predictive

regressions. For both sorts, we find that the average return on the respective HML portfolio is

positive. When we sort on b!, i.e., the slope coe�cient for the price-dividend ratio, this average

return is significantly positive for both sample periods, with a value of 77 and 31 basis points per

month over the 1990-2018 and the 1933-2018 sample, respectively. The corresponding numbers

for the sort on b⌫ are 54 and 30 basis points, where the latter is also statistically significant.

3.3.2 The relation between b⌫ and b!

We now study the cross-sectional relation between the predictive slope coe�cients in more detail

to get a better understanding of the similarities and di↵erences between the two individual

sorts. For that purpose, we calculate the cross-sectional rank correlation between b! and b⌫ in

every month. The time series of these correlation coe�cients is shown in Graph A of Figure 2.

Their median (average) is �0.20 (�0.13) over the 1990-2018 sample, with significantly negative
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values in 68% of the months. However, we also find a positive rank correlation in about 30%

of the months. As can be seen from Figure 2, this is the case right before the recession in 2001

and during the financial crisis in 2008. Over the longer sample, we find median and average

correlation coe�cients which are still negative, but closer to zero, due to a long period between

1970 and the mid 1980’s where the cross-sectional correlations were actually positive.

One may now ask what drives the time series behavior of the cross-sectional correlation?

Graph B of Figure 2 shows 72-months rolling correlation coe�cients between our two predictors,

i.e., the price-dividend ratio and the variance risk premium. We observe a pattern that is very

similar to the one in Graph A, which is a very intuitive finding. It is plausible that stocks

whose future returns are positively related to innovations in the variance risk premium also

have future returns that are positively related to innovations in the price-dividend ratio in

periods when the variance risk premium and the price-dividend ratio are positively related and

the other way around when the relation between the two predictors is negative. We observe the

latter pattern in the majority of months, which is in line with the intuition from macro asset

pricing models. The variance premium is high when uncertainty or risk aversion is high, and

these models typically imply that the price-dividend ratio is low in these periods.

Table 2 shows the average relative number of stocks in portfolios resulting from an inde-

pendent double sort based on the estimates for b! and b⌫ . In line with the on average negative

rank correlations between b! and b⌫ , we find that in the shorter sample (Panel A), the high-

est number of stocks in each column and each row are assigned to the portfolios along the

counterdiagonal. In addition, there are less pronounced clusters in the low b!/low b⌫- and the

high b!/high b⌫-portfolios, which correspond to the months with positive rank correlations dis-

cussed above. However, the overall pattern clearly suggests a negative unconditional correlation

between the two sorting criteria. We observe a similar pattern in the longer sample (Panel B).
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4 Further analyses and robustness

4.1 Time series properties of slope coe�cients

In this section we provide additional information about the rank correlation between b! and b⌫

and discuss further time series properties of the slope coe�cients. Graph A in Figure 2 suggests

that the rank correlation between slope coe�cients is quite persistent. The first order auto-

correlation coe�cient is 0.99. This is not astonishing, given the fact that the slope coe�cients

themselves are very persistent due to the overlapping formation periods. The cross-sectional

median first order autocorrelation is 0.92 and 0.81 for b! and b⌫ , respectively. This, in turn,

leads to a very persistent portfolio composition. We analyze the persistence of a stock’s portfolio

number, i.e., the number of the decile portfolio that the stock was assigned to in the di↵er-

ent months. The cross-sectional median first order autocorrelation coe�cient of the portfolio

number is 0.95 and 0.88 for sorts on b! and b⌫ , respectively.

Even with a very persistent portfolio allocation, there can still be periods in which many

stocks change portfolios and subsequently remain in the new portfolio for an extended period

of time. Since it is not really feasible to track individual stocks over time, we now look at what

we call mode portfolios. For each stock, we calculate the mode of its portfolio number over the

recent 12 months. We then sort stocks into portfolios with respect to this mode and study the

average portfolio number for the stocks assigned to the di↵erent mode portfolios. A perfectly

persistent portfolio allocation would imply that the average portfolio number is always equal

to the mode of past portfolio numbers. In a period where all stocks are randomly reallocated,

the average portfolio numbers of all mode portfolios is equal to 5.5.

The time series of average portfolio numbers across mode portfolios are shown in Figure 3.

The figure shows these numbers for mode portfolios based on b!, b⌫ , and, as a comparison,

momentum. Momentum is a useful benchmark, since it is also based on past returns with
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portfolios formed every month and not just once a year, as in case of many sorts based on

balance sheet information. The figure shows that the portfolio allocation is pretty stable for the

sorts on slope coe�cients, compared to momentum. However, in a few periods, considerable

reallocation takes place. In case of b!, these periods are in early 1964, mid 1996, and during

the financial crisis in 2009. In case of b⌫ , these periods are in 1946/1947, early 1988, and during

the recessions in 1973, 1982, and 2009. The dates 1946, 1964, 1988, and 1996 coincide with the

dates of the reversal of the correlation between price-dividend ratio and variance risk premium

from negative to positive or vice versa.

Intuitively, the two predictors and the conditional expected returns on stocks are driven by

some latent state variables. A correlation reversal can be caused by a change in the conditional

loadings of the predictors on the state variables. Such a change will automatically also a↵ect

the portfolio allocation for our sorts, since stocks that are strongly exposed to a certain state

variable will now have a weaker or stronger relation with the predictor. The fact that the

portfolio reallocation and the correlation reversal take place at the same time indicates that

our sorts indeed pick up the exposures of the di↵erent stocks to latent state variables.

Our motivating example presented in the introduction shows that for industry portfolios

most b!’s are negative, and all b⌫ ’s are positive. The picture is very similar for individual

stocks and for the aggregate market, for which we perform the same rolling window predictive

regressions as for the single stocks. Figure 4 shows the evolution of the breakpoints for the

portfolio formation with respect to b! (upper graph) and b⌫ (lower graph) together with the

coe�cient of the aggregate market over time. It becomes apparent that the interdecile range is

much larger in some periods than in others. The reason is that the volatility of the predictor

is much lower in these intervals which leads to larger absolute slope coe�cients and a more

pronounced spread between higher and lower values.

The main insight from Figure 4 is that b! is predominantly negative, while we observe the
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opposite for b⌫ . When we look at all the individual b!’s across firms and months for the sample

period 1990-2018, we find that 66% of them are negative, and the cross-sectional median is

also less than zero in 92% of the months, which is in line with the intuition from the predictive

regressions for the aggregate market portfolio. For b⌫ , the corresponding numbers are 60% and

77%. The b!-coe�cient of the market portfolio is negative in 86% of the months and exhibits

a time-series correlation of 84% with the cross-sectional median. For b⌫ we find a positive

coe�cient for the market in 91% of the months, and again a strong positive correlation of 58%

with the cross-sectional median.

Over the longer sample, the statistics for b! are very similar to those for the shorter

period. b⌫ coe�cients are predominantly negative between 1970 and the mid 1980’s, where we

also observe a positive local correlation between b! and b⌫ and between the two predictors

themselves.

4.2 Relation to other firm characteristics

Table 3 shows characteristics of the stocks in the portfolios sorted on the predictive slope coef-

ficients. We report average characteristics in the most extreme decile portfolios and aggregate

portfolios in the middle to groups of two. The sample period is 1990-2018. From Panel A, we

first observe that the average b⌫ coe�cients are positive and decrease monotonically in b!. A

similar pattern can be observed for the average b! coe�cients (which are negative though) across

b⌫-sorted portfolios in Panel B. This again shows the strongly negative average cross-sectional

relation between b! and b⌫ documented in Sections 3.3 and 4.1 above.

Market beta is inversely related to b!. This finding is not astonishing, given the fact that

the market portfolio itself exhibits a negative slope coe�cient in predictive regressions on the

price-dividend ratio. Under the (strongly simplifying) assumption that all systematic variation
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in returns is due to common variation in expected returns and price-dividend ratios driven by a

single state variable, stocks which are more sensitive to changes in that state variable (i.e., have

more negative b!) must also have higher market betas. The same intuition applies to b⌫ , albeit

with a switch in sign, since the market portfolio and the majority of stocks have a positive slope

coe�cient in predictive regressions on the variance risk premium. The positive cross-sectional

relation between b⌫ and market beta may explain the positive relation between b⌫ and expected

returns. We take a closer look at in-sample portfolio betas and alphas in Section 4.3.

With respect to market capitalization, we find inversely U-shaped patterns in b! and b⌫ .6

For both predictors, we also find an inverse U-shape for the relation between the respective

b-coe�cient and the book-to-market ratio of equity as well as operating profitability. For in-

vestment and R&D expenses scaled by sales we obtain the opposite picture, i.e., a U-shaped

relation.

Recent asset pricing models provide guidance regarding the cross-sectional relation be-

tween slope coe�cients and firm characteristics. For example, the model by Dou et al. (2020)

suggests that highly profitable firms have stronger exposures to discount rate innovations and,

thus, more negative b!’s. From the perspective of their model, we would expect average prof-

itability to be decreasing in b!. However, this intuition is only valid as long as an increase

in discount rates leads to a decrease in the price-dividend ratio. In Section 5, we will discuss

models that rationalize decreases but also increases in valuation ratios upon a given discount

rate innovation, depending on the reason of that innovation, and, thus, potentially reconcile

the patterns in characteristics and returns.

All of the U-shaped or reverse U-shaped patterns in average firm characteristics suggest

that stocks in the most extreme decile portfolios should have low expected returns. For example,

6In Section A1.1 of the Online Appendix, we analyze if the relation between slope coe�cients and returns
is special to small stocks and find that this is not the case.
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for a given expected cash-flow, low investment suggests that future cash-flows are risky, since the

firm would have a strong incentive to invest otherwise.7 Conversely, high profitability suggests

high cash-flows relative to a low firm value, which again suggests that the cost of capital is

high. In the light of the patterns in these four characteristics across b-sorted portfolios, it is not

surprising that the returns on the low b-portfolios are low. At the same time, it is surprising

that the returns on the high b-portfolios are high.

U-shaped patterns in average characteristics across portfolios can have (at least) two rea-

sons. There can either be a U-shape in the majority of periods, or there can be a conditionally

(non-linearly) increasing or decreasing relation, which then appears non-monotonic when un-

conditional averages are taken. When the latter explanation is correct, we should see only very

few months in which the average characteristics of the firms in portfolios 1 and 10 are both

above the cross-sectional average characteristic. In case of size, book-to-market, operating prof-

itability, and R&D expenses, we find conditionally U-shaped or inversely U-shaped patterns in

the majority of months.8 An exception is investment, where we typically see a “smirk”, i.e., a

conditionally convex decreasing or increasing pattern. In case of b!-sorted portfolios, we find a

downward-sloping smirk in the majority of periods. The high investments of firms in the low

b! decile portfolio is in line with the low returns that we observe.

In contrast to the characteristics mentioned so far, there is little variation in past returns

across the b-sorted portfolios. This makes it unlikely that the patterns in average returns can be

explained by a momentum e↵ect. We will take a closer look at the exposures of the portfolios

to risk factors (such as the momentum factor UMD) in the next section.

Figure A2 in the Online Appendix shows the average compositions of the ten b!- and b⌫-

sorted portfolios with respect to the industry classification represented by SIC codes. We do not

7This intuition has been formalized by Hou et al. (2015), among others.
8To give an example, in the case of b!-sorted portfolios, we find that the average sizes of firms in both of

the two extreme deciles are simultaneously below the cross-sectional average in 96% of the months.
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find a systematic pattern. We also perform portfolio sorts for each SIC code category separately.

In all industry segments, we find patterns that are qualitatively similar to those shown in Table

1, which shows that those patterns are not driven by stocks from certain industries.

4.3 Time series properties of portfolio returns

We start our analysis of the time series properties of portfolio returns by looking at the correla-

tion between the two HML portfolios. Over the period from 1990 to 2018 they are moderately

negatively correlated with a value of around �0.23. Over the longer sample from 1933 to 2018,

the correlation is rather weak and roughly equal to �0.03. There is considerable variation in the

conditional correlation, as indicated by Figure 5 showing correlations estimated over 72-month

rolling windows. The values for these conditional correlations range roughly between �0.8 and

0.4. Unsurprisingly, the time series behavior of this conditional correlation is very similar to

that of the rank correlation between b⌫ and b! (see Figure 2).

Table 4 shows the results of regressions of the decile portfolio returns on the factors MKT,

SMB, HMLBM, RMW, and CMA from the Fama-French 5-factor model (see Fama and French

(2016)), the momentum factor UMD (see Carhart (1997)), and the liquidity factor LIQ (see

Pástor and Stambaugh (2003)).9 The table shows alphas and betas for the decile portfolios

(where we again group the portfolios in the middle) as well as the alphas and factor exposures

of the HML! and HML⌫ portfolios, together with Newey and West (1987) t-statistics.

Alphas are increasing in b! and in b⌫ , and the alphas of the two HML portfolios are

comparable to their average returns reported in Table 1 with respect to their magnitude and

significance.10 In line with our earlier results we find a negative relation between b! and market

9We denote the standard Fama and French (1993) HML factor, i.e., the value factor, as HMLBM (for book-
to-market) to avoid confusion with HML! and HML⌫ .

10RMW and CMA are not available before 1963, and LIQ not before 1968, so we cannot perform the same
analysis on the full sample between 1933 and 2018. However, the alphas on the b!- and b⌫-sorted portfolios are
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betas and the opposite for b⌫ .

Regarding the exposures to the other factors, we find that they are U-shaped or inversely

U-shaped, in line with the findings from the previous section. An exception is UMD, to which

the HML⌫ portfolio has a negative exposure. This exposure explains the large positive alpha

on the b⌫-sorted portfolios, despite the monotonic relation between b⌫ and market beta.

The finding that exposures to common factors do not explain the large positive return

spreads between high and low b!- and b⌫-portfolios is in line with recent evidence provided by

Kozak et al. (2020). We now move in the opposite direction, i.e., we investigate if exposures

to HML! and HML⌫ help to explain the cross-sectional variation in returns on stocks and

portfolios beyond standard factors.

Table 5 presents market price of risk estimates from a Fama and MacBeth (1973) regres-

sion of returns on di↵erent sets of test assets on exposures to the factors used in Table 4 as well

as the new factors HML! and HML⌫ . As test assets we use single stocks as well as sets of 25

portfolios, double-sorted on size and a second characteristic, namely the book-to-market ratio,

operating profitability, investment, or momentum. As an alternative set of test assets, we use

30 industry portfolios.11

For single stocks, augmenting the common factor model by HML! and HML⌫ increases

the cross-sectional R2 by a large amount, from -1.41 to -0.51. It has to be noted, though, that

both values are low because of the large variation in returns on single stocks. The market price

of risk estimates of the new factors are insignificant when using single stocks as test assets, just

as for some of the standard factors, such as SMB or HMLBM.

0.71 (t-statistic of 2.80) and 0.64 (t-statistic of 2.53), respectively, for the subsample from 1968 to 2018. The
factor exposures from this regression are similar to those reported in Table 4, except that both HML portfolios
have significantly negative SMB betas.

11The portfolio returns are taken from Kenneth French’s data library. Although it is more common in the
literature to use portfolios rather than single stocks when estimating market prices of risks, Ang et al. (2020)
argue that using portfolios does not lead to smaller standard errors of market price of risk estimates and comes
at the cost of shrinking the dispersion in betas. We use both single stocks and portfolios.
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When using portfolios sorted on standard criteria as test assets, HML! and HML⌫ help

to reduce pricing errors relative to the existing factors in only a few cases. Exposures to HML!

help explain variation in returns to size and investment sorted portfolios, with a significantly

positive market price of risk estimate and an increase in cross-sectional R2 from 0.76 to 0.85.

The exposures to HML⌫ are negatively related to average returns on size and momentum-sorted

portfolios, which is in line with the negative exposure of the HML⌫ portfolio to momentum.

However, including HML⌫ into the factor model for pricing size and momentum-sorted portfolios

does not increase the cross-sectional R2 by much.

The findings for the sorted portfolios are not surprising. Table 3 already suggests that b!

and b⌫ do not line up with other characteristics such as book-to-market very well. As a con-

sequence, there is little variation in HML!- and HML⌫-exposures across, e.g., book-to-market-

sorted portfolios.

4.4 Robustness

Section 1 of the Online Appendix contains several robustness tests. We find that our results are

not caused by the presence of small stocks in our sample, that they hold for various alternative

lengths of formation periods and return horizons, and that they are robust to variations in the

regression design and the rebalancing intervals.

5 Implications for macro asset pricing models

5.1 Models with one state variable

The asset pricing literature has suggested a number of models that are able to solve the equity

premium puzzle and are thus natural candidates for our study. The most prominent ones share
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the feature that the conditional expected excess return on any particular asset is a function

of one single state variable within the model. Famous examples include long-run risks models

(Bansal and Yaron (2004)), disaster models (Wachter (2013)), and models with habit formation

(Campbell and Cochrane (1999)).

Models with a single state variable controling the time-variation in conditional expected

returns are generally not capable of explaining the empirical stylized facts described in Sec-

tion 3. The reason is as follows: A stock that yields a high unconditional expected excess return

(relative to other stocks in the cross-section) is always also a stock whose conditional expected

excess return is particularly sensitive to changes in the state variable. This sensitivity causes a

relatively high absolute coe�cient in regressions of future returns on the price-dividend ratio

or on the variance risk premium of the aggregate market. The signs of the coe�cients depend

on the signs of the innovation in the respective predictor given a shift in the state variable. The

results in Table 1 suggest that for both predictors high b stocks are also high return stocks.

This implies that stocks that have large coe�cients in predictive regressions using the price-

dividend ratio as a predictor also have large coe�cients when using the variance risk premium

as predictor. Our empirical findings in Sections 3 and 4 suggest the opposite: High-b! stocks

are typically low-b⌫ stocks, and vice versa.

To illustrate this rationale more explicitly, we now discuss the relationship between slope

coe�cients in predictive regressions and the cross-section of expected returns in the context of

the three macro models mentioned above.

5.1.1 Long-run risks

In the classic long-run risks model introduced by Bansal and Yaron (2004) the distribution of

future cash-flows is time-varying and depends on the conditional expected growth rate xt and

the conditional variance Vt of consumption growth. We consider a variant of the model where
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Vt follows a square-root process to make the variance risk premium time-varying. The model

implies that expected excess returns are approximately linear in Vt. Using an exact numerical

solution, it can be shown that xt has only a negligible impact on the time variation in expected

excess returns. Further examples of long-run risks models where one state variable drives time-

variation in risk premia are the models of Eraker and Shaliastovich (2008) and Tauchen (2011).

The rationale of return predictability within the model is that the price-dividend ratio and

the variance risk premium move when there is a shock to Vt. At the same time, expected returns

on an arbitrary asset i changes, making returns predictable in the time series. Section A2 of

the Online Appendix derives the equations

Et

⇥
r
i
t,t+1

⇤
� r

f
t,t+1 = ⇡i,V Vt, (3a)

!
m
t = Am,0 + Am,xxt + Am,V Vt, (3b)

⌫
m
t = Bm,V Vt. (3c)

The coe�cients ⇡i,V are the key to understanding the cross-section of expected returns, since

unconditional expected returns are given by ⇡i,V V̄ , with V̄ denoting the long-run mean of the

state variable V . Just like Am,0, Am,x, Am,V , and Bm,V , the coe�cient ⇡i,V can be calculated in

closed form as shown in the Online Appendix.

The slope coe�cients b!,i and b⌫,i in Equations (1) and (2) are given by

b!,i =
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where V denotes the persistence of V . These equations imply that unconditional expected
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excess returns are proportional to the slope coe�cients b!,i and b⌫,i:

E
⇥
r
i � r

f
⇤
= ⇡i,V · V̄ = �! · b!,i = �⌫ · b⌫,i, (5)

where �! and �⌫ are constants independent of the specific asset i.

Any model calibration imposes restrictions on the sign and magnitude of the �’s. The

original calibration of Bansal and Yaron (2004) implies that the market price of V -risk is

negative (see the Online Appendix for details). Since the variance of V is proportional to

V itself, the variance risk premium increases in economic uncertainty. For the price-dividend

ratio, the negative market price of V -risk means that the coe�cient Am,V is negative, i.e.,

prices decrease when economic uncertainty increases. A stock with high expected returns, i.e.,

a stock with a large ⇡i,V , will thus have a highly negative b! and a highly positive b⌫ . In terms

of Equation (5), this means �! < 0 and �⌫ > 0. Section 3, however, shows that stocks with

greater slope coe�cients have higher returns, which is at odds with a negative �!.

There are alternative calibrations which imply �! > 0 and �⌫ > 0. These calibrations are

in line with the single sorts on b! and b⌫ , but at odds with the fact the cross-sectional correlation

between b! and b⌫ is mostly negative. As shown in the Online Appendix (and approved by a

simulation study), high ⇡i,V stocks are then exactly stocks with high b! and also high b⌫ , so

that the model implies a perfectly positive cross-sectional relation between b!,i and b⌫,i.

5.1.2 Rare disasters

In the rare disasters model of Barro (2006), expected excess returns are constant, implying that

returns are not predictable by the price-dividend ratio or the variance risk premium. However,

the extension of Wachter (2013), featuring time-varying disaster risk, yields high expected excess

returns whenever the risk of experiencing a disaster is high. We briefly discuss the economic
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intuition of the model and refer to Wachter (2013) for a more formal treatment.

The representative investor has Du�e and Epstein (1992) preferences, which is the contin-

uous-time analogue of Epstein and Zin (1989) preferences, with a unit elasticity of intertemporal

substitution. The growth rate of consumption is modeled as an i.i.d. di↵usive process plus

a jump component represented by a Poisson process with time-varying jump intensity Vt.12

Dividends are assumed to be levered consumption, i.e. Dm
t = C

�m
t , with �m > 1 as the leverage

parameter. The most natural way to generate a cross-section of dividend claims in this economy

is to assume that dividends of firm i are given by D
i
t = C

�i
t .13 As shown by Wachter (2013),

the conditional expected excess return over the next period is given by

Et

⇥
r
i
t,t+1

⇤
� r

f
t,t+1 = ⇡i,0 + ⇡i,V Vt. (6)

As opposed to the long-run risks model, Equation (6) features two coe�cients, ⇡i,0 and ⇡i,V ,

which explain cross-sectional di↵erences in expected returns. However, both are increasing

functions of the leverage parameter �i, which implies that high-⇡i,V stocks also exhibit high

⇡i,0’s and, thus, high unconditional expected returns.

From here on, the intuition for why the model fails to explain the stylized facts from

Section 3 is analogous to the long-run risks model, when we replace a time-varying di↵usive

cash-flow volatility by a time-varying risk of a rare disaster. The standard calibration of the

model implies that the price-dividend ratio of the market decreases while expected excess

returns increase in disaster risk. This e↵ect is more pronounced for high ⇡i,V -stocks. Thus,

stocks with lower (i.e. more negative) slope coe�cients in predictive regressions on the price-

dividend ratio have higher unconditional expected returns.

12Wachter (2013) denotes the jump intensity by �t. To avoid confusion and to emphasize the similarities
with the long-run risks model, we use Vt instead.

13With this restriction, all log dividend growth is perfectly correlated across all assets in the economy. To
avoid that feature, one may add an uncorrelated and thus unpriced shock to the dividend growth of asset i.
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5.1.3 Habit formation

Campbell and Cochrane (1999) introduce a model in which time-varying risk aversion drives

time variation in risk premia. As opposed to the models with long-run risks and rare disasters

reviewed above, they assume that consumption growth is i.i.d. and lognormal. However, instead

of an Epstein and Zin (1989) utility function, the agent maximizes the function

Et

" 1X

j=0

exp(�j�)
(Ct+j �Ht+j)1�� � 1

1� �

#
. (7)

The preference parameters � and � control the agent’s pure time preference rate and her risk

attitude. More specifically, Campbell and Cochrane (1999) show that the Arrow-Pratt measure

of relative risk aversion is time-varying and equal to � exp(�st), with st being defined below.

Ht denotes the time-varying habit or subsistence level, such that Ct > Ht. Time variation in H

is modeled indirectly via the time variation in the log surplus consumption ratio

st = log(Ct �Ht)� log(Ct), (8)

which is assumed to follow the process

st+1 = (1� �)s̄+ �st + �t(�ct+1 ��ct+1). (9)

�t is always positive and chosen in a way such that the interest rate is constant.

In this model, the surplus consumption ratio s is the only state variable. There is no

closed-form solution for the model, but Campbell and Cochrane (1999) show that risk premia

are increasing in risk aversion, i.e., decreasing in s. At the same time, the price-dividend ratio

is increasing in this variable. As a consequence, the return on the market is predictable by the

price-dividend ratio with a negative coe�cient, just as observed in Section 4.
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We can again introduce a cross-section of dividend claims by considering claims that are

levered to di↵erent degrees relative to the consumption claim.14 With this notion, more levered

claims have higher unconditional expected returns. Moreover, their conditional expected returns

are more sensitive to changes in the surplus consumption ratio, i.e., they have more negative

slope coe�cients b!. This contradicts our empirical findings from Section 3 above.

5.2 Necessary condition 1: More than one state variable

Models in which conditional expected excess returns depend on a single state variable as in

Equation (3) fail because they cannot reconcile the three main findings from Section 3, namely

that ⇡i,V needs to be positively correlated with both b! and b⌫ in the cross-section to be in line

with the single sorts, but that at the same time b! has to be negatively correlated with b⌫ .15

The tight link between the cross-sectional correlations is loosened when there is a second state

variable W that impacts conditional expected returns, i.e., when

Et

⇥
r
i
t,t+1

⇤
� r

f
t,t+1 = ⇡i,V Vt + ⇡i,WWt. (10)

For simplicity, assume that V and W are locally uncorrelated, that the price-dividend

ratio of the market is only a function of W , i.e., !t = Am,0 + Am,WWt, and that the variance

risk premium is only a function of V , i.e., ⌫t = Bm,0 + Bm,V Vt. In this simple case, the slope

coe�cients b!,i and b⌫,i are proportional to ⇡i,W and ⇡i,V , respectively, i.e.,

b!,i = k!Am,W⇡i,W

14Campbell and Cochrane (1999) assume that dividends and consumption are equal, i.e. that claims to all
cash-flows are traded.

15For ease of exposition, we only consider a linear relation between expected returns and the state variable
here. Most of the conclusions carry over to the non-linear case, as long as the relations between state variables
and expected returns are monotonic.
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and

b⌫,i = k⌫Bm,V ⇡i,V ,

where k! and k⌫ are coe�cients which do not depend on i.

Given this, a model will reproduce the monotonicity in expected returns from the single

sorts, when k!Am,W and k⌫Bm,V are both positive. To be in line with the negative cross-

sectional rank correlations between slope coe�cients, one may simply assume that ⇡i,V and

⇡i,W are negatively correlated in the cross-section.

Macro asset pricing models typically imply that the price-dividend ratio is a function of

all state variables, rather than only W as in the above example. Replacing the assumption

!t = Am,0 + Am,WWt by the assumption !t = Am,0 + Am,V Vt + Am,WWt implies that b!,i is

a linear combination of ⇡i,V and ⇡i,W . As a consequence, there is a cross-sectional correlation

between b!,i and b⌫,i even without making assumptions on the joint cross-sectional distributions

of ⇡i,V and ⇡i,W . Thus, analyzing the cross-section of slope coe�cients and returns in the context

of a macro asset pricing model is typically more involved than suggested above.

A famous example of a model where two state variables drive the time variation in ex-

pected returns is the model of Drechsler and Yaron (2011). The model is an extension of the

long-run risks model suggested by Bansal and Yaron (2004), in the sense that also in Drech-

sler and Yaron (2011) the representative agent has Epstein and Zin (1989) preferences, and

consumption growth features a persistent component and is heteroskedastic.16 The volatility

structure, however, is more involved, which allows the authors to explain the high and time-

varying variance risk premium and its predictive power in the data. In particular, the stochastic

variance of consumption growth, denoted V here, has a time-varying central tendency, denoted

16There is a large number of alternative models that could also serve as examples, since they have qualitatively
similar implications for the relation between coe�cients from predictive regressions and the cross-section of
expected returns. Examples are Bansal and Shaliastovich (2010), Bollerslev et al. (2009), Bollerslev et al.
(2010), Drechsler (2013), Jin (2015), and Shaliastovich (2015).
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W . Moreover, there are several jumps with intensities that are assumed to be functions of V .

The exact dynamics are presented in Section A3 of the Online Appendix, together with an

extensive discussion of the model solution.

Using a standard calibration of the model, we find that the price-dividend ratio and

the variance risk premium of the market portfolio are both functions of both state variables.

However, the price-dividend ratio is first and foremost driven by the central tendency W , which

in turn has only a negligible impact on the variance risk premium. Time variation in the latter

is driven by innovations in V . For the slope coe�cients, this means that ⇡i,W is more important

for b!,i, while ⇡i,V is more relevant for b⌫,i. Quantitatively,

b!,i = �0.15 ⇡i,V � 0.85 ⇡i,W (11a)

b⌫,i = 0.95 ⇡i,V + 0.05 ⇡i,W , (11b)

where we standardize the coe�cients to make them sum to ±1 to facilitate the interpretation.

The model unambiguously implies a positive cross-sectional correlation between b⌫,i and

expected returns, because b⌫,i increases in both ⇡i,V and ⇡i,W . It also implies that stocks with

high b⌫,i have low b!,i, unless there is a very strong negative cross-sectional correlation between

⇡i,V and ⇡i,W . Moreover, since ⇡i,V and ⇡i,W are typically positive for reasonable parameteriza-

tions of the dividend claims, the majority of b!’s will be negative, while most of the b⌫ ’s will

have a positive sign.

Still, the model is not in line with the empirical findings from Section 3, because it implies

that stocks with high b!’s have low expected returns. Economically, an increase in consumption

volatility V and in the central tendency W of the volatility process are bad news for the

investor, in the sense that the wealth-consumption ratio decreases in V and W . Importantly,

the price-dividend ratio also decreases with positive innovations to V or W . At the same time,
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risk premia increase and thus expected excess returns on single stocks also go up. This increase

is particularly large for relatively risky stocks with high unconditional expected excess returns.

As a consequence, stocks with more negative coe�cients in predictive regressions on the market

price-dividend ratio will have higher unconditional returns, which is at odds with the data.

5.3 Necessary condition 2: Good uncertainty, or dividends as a hedge

How can a model generate a positive cross-sectional relation between slope coe�cients b!,i and

unconditional expected returns? We now exclusively discuss this question and, for that purpose,

focus on a single state variable, denoted by Vt, which is assumed to have a substantial impact

on the price-dividend ratio of the market portfolio. The unconditional expected excess return

on stock i is high, relative to other stocks in the cross-section, when ⇡i,V is high. In case we

would run a predictive regression of the returns on stock i on Vt directly, the slope coe�cient

would be relatively large. This implies that the price-dividend ratio of the market must be an

increasing function of Vt in order to also generate a relatively large slope coe�cient in predictive

regressions on the price-dividend ratio.

To structure the discussion, we distinguish between the cases of V representing “good” and

“bad” uncertainty, in the sense of whether the wealth-consumption ratio increases or decreases

in V . In the first case, V could, e.g., represent the variance of a shock to consumption where

the shock has strictly positive support, so that V could be interpreted as an upside potential

in consumption. Alternatively, V could stand for the likelihood of a disruptive technological

innovation which leads to an upward jump in aggregate consumption. The latter idea has been

put forward in a number of recent papers. For example, Kogan and Papanikolaou (2014) argue

that such shocks (called investment-specific technology shocks) can explain the value premium,

and Dou (2017) builds a general equilibrium model in which uncertainty can increase or decrease

valuation ratios, depending on the type of uncertainty (production vs. investment uncertainty)
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and on the degree of risk sharing. His model provides an endogenous channel that motivates

the notion of “good uncertainty”.

It is thus reasonable to assume that the wealth-consumption ratio and, given a positive

relation between consumption and dividends, also the market price-dividend ratio would in-

crease in V . Stocks in the cross-section can then be compared with respect to their exposure

to the good shocks. Assume stock j is not exposed to these shocks, i.e., its price-dividend ratio

and, thus, its conditional expected return would not react to innovations in V . This implies

that in the setting assumed here the slope coe�cient in a predictive regression on the market

price-dividend ratio is zero (unless there are further state variables which we ignore in this

section). Moreover, stock j will not carry a risk premium.

Assume that some other stock h has an exposure to good shocks that is positive and

even greater than that of the aggregate market portfolio. Stock h would then carry a large

positive unconditional risk premium, since its return is positively related to a shock that has

a positive market price of risk. Moreover, its conditional expected return would increase in V

and, thus, we would find a large positive slope coe�cient in predictive regressions on the market

price-dividend ratio.

While these channels jointly imply a positive relation between b!,i and ⇡i,W in the cross-

section, they also imply positive coe�cients b!,i for the majority of stocks and, in particular,

for the market portfolio. This is at odds with the results presented in Section 4.1, where we

showed that these coe�cients are typically negative in the data.

To match this stylized fact, the exposures to a further state variable W can help. Assume

the market price-dividend ratio is decreasing in W , and all stocks in the cross-section exhibit

large and positive ⇡i,W ’s. In the simplest case, assume that ⇡i,W = ⇡m,W for all stocks, then

the slope coe�cients b!,i may all be negative and vary in the cross-section due to di↵erent

exposures to the good shock.
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Segal et al. (2015) propose a model that features two state variables driving conditional

risk premia. We review the model and analyze its implications for the relation between slope

coe�cients from predictive regressions and the cross-section of expected returns in Section A4

of the Online Appendix. We find that the model is able to reproduce the pairwise cross-sectional

correlations between b!,i, b⌫,i, and unconditional expected excess returns E[ri � r
f ]. However,

it implies that most of the slope coe�cients b!,i and the slope coe�cient b!,m of the market

portfolio are positive, which is at odds with the findings from Section 4.1.

Intuitively, consumption growth is subject to two di↵erent shocks, both of which are

heteroskedastic. The variances of the shocks are given by two state variables, V and W , and

expected consumption growth is time-varying with a persistent component x as in Bansal and

Yaron (2004). The key economic mechanism in the model is that innovations in V (W ) are

positively (negatively) correlated with shocks in x. As a consequence, positive innovations in

V are good news to the investor, in the sense that the wealth-consumption ratio increases,

justifying the term “good uncertainty” for V . In line with the wealth-consumption ratio, the

price-dividend ratio of the market also increases in V for standard calibrations of the model.

The priced risks that are related to V in the model carry a positive premium, so that

stocks with a stronger exposure to these risks have higher returns on average. Conditional

expected returns on these stocks are also more sensitive to changes in V , so that they have

more pronounced slope coe�cients. Importantly, the slope coe�cients are positive, since the

market price-dividend ratio and risk premia are positively related to V . As a consequence, there

is a positive relation between b!,i and expected returns in the cross-section, just as documented

in Table 1. However, the fact that the slope coe�cients b!,i are positive contradicts our findings

from Section 4.1.

We now discuss the second case where a high V -state is a bad state for the investor.

This situation corresponds to the standard intuition from the majority of macro asset pricing
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models. Typically, V quantifies economic uncertainty, the probability of a rare disaster, or

time-varying risk aversion. For example, an increase in consumption growth volatility lets the

price of the claim to aggregate consumption decrease, due to the investor’s aversion to risk.

The price-dividend ratio, however, would have to increase in this situation to be in line with

our empirical findings. Such a pattern naturally occurs when dividends constitute a hedge for

consumption risk. The investor can buy the market portfolio to insure against consumption

risk and this hedging instrument is particularly valuable when consumption is very risky, i.e.,

when V is high.

Stocks in the cross-section can then be compared based on how well they hedge consump-

tion risk. Assume stock j is not exposed to consumption risk at all, i.e., a shock to V does not

change its conditional expected return. Hence, the slope coe�cient in a predictive regression

on the market price-dividend ratio will be zero (just like in the first case). The expected return

on stock j will be relatively high, because stock j does not hedge consumption risk.

Assume that some other stock h is a better hedge than the market portfolio. When V

increases, the price-dividend ratio of stock h will increase by even more than for the market

and expected excess returns on stock h decrease strongly. Accordingly, stock h will have a very

negative slope coe�cient in predictive regressions on the market price-dividend ratio. Moreover,

it will also have relatively low unconditional expected returns, because it hedges a source of

priced risk.

Just like in the first case, this rationale can explain the positive cross-sectional relation

between b! and ⇡V and, as opposed to the first case, it naturally implies a negative b!,i for

the majority of stocks, and a negative b!,m. We show in Section A5 of the Online Appendix

that the model of Bekaert and Engstrom (2017) generates such a pattern when using the

original calibration. The agent in their model has habit formation preferences as in Campbell

and Cochrane (1999) and cash-flows are subject to two di↵erent shocks whose variances are
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modeled using two separate variance processes, V and W . While this feature is similar to the

model of Segal et al. (2015), expected consumption growth is constant in the model of Bekaert

and Engstrom (2017). Thus, innovations in V and W are bad news to the investor, in the sense

that the wealth-consumption ratio decreases in the two state variables.

The key channel that allows the model to produce a positive relation between slope coef-

ficients b! and expected returns, is that aggregate dividend growth is negatively a↵ected by one

of the two shocks that positively a↵ect consumption growth. This feature of the model is some-

what counterintuitive and does not have an obvious micro foundation. Bekaert and Engstrom

(2017) argue that it is important to match the joint dynamics of consumption and dividend

growth in the data, especially the positive but rather low correlation between consumption and

dividend growth.17 As a consequence, dividends hedge one type of consumption risk. The hedge

is particularly valuable when uncertainty is high. Thus, the price dividend ratio of the aggregate

stock market increases in the state variable V and the intuition discussed above applies.

Endowment economy models are reduced-form models in the sense that they specify the

joint dynamics of cash-flows and state variables exogenously. To study if an increase in the

price of the market portfolio as a response to increased uncertainty is plausible, we now discuss

a production-based model, where the trade-o↵ between consumption and investment is an

endogenous outcome of the solution of the agent’s optimization problem. Croce (2014) suggests

a model in which an agent with Epstein and Zin (1989) preferences has to decide on how

much to consume and on how much to work in a given period t. As is standard in production

economies, today’s consumption and investment in the capital stock are financed by today’s

output, which means that the agent has to trade o↵ an increase in today’s utility via higher

consumption against a higher capital stock in the future which leads to a higher future output.

17Both, consumption and dividend growth, are by assumption only a↵ected by the two shocks. A positive
relation of dividend and consumption growth with both shocks would imply an almost perfect correlation
between the two. Adding a third (unpriced) shock to dividend growth would break this tight link without
imposing the negative relation discussed above.
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Similarly, the agent’s utility today increases in leisure, but output, and thus the continuation

utility of future consumption, increase in hours worked. Apart from this, the way how capital

translates into output is also governed by a stochastic productivity growth rate. Here, it is

assumed that this growth rate is heteroskedastic with an exogenously specified mean-reverting

state variable modeling the variance of productivity shocks. The exact model specification is

presented in Section A6 of the Online Appendix.

Under Epstein and Zin (1989) utility with a preference for early resolution of uncertainty,

the agent generally dislikes uncertainty. More precisely, a state of high productivity volatility

is a high marginal utility state. Croce (2014) finds that the agent’s response to an increase

in the volatility of productivity growth is to work more, consume less and invest more. This

behavior is in line with a standard precautionary savings motive. It is not specific to Croce’s

model but a general feature of production-based models. Due to the high investment, the value

of the firm’s capital increases when there is an increase in productivity growth volatility. Due to

capital adjustment costs, consumption volatility also increases in productivity growth volatility.

Hence, the model provides an economic rationale for why the price-dividend ratio of the market

portfolio can increase in consumption volatility.

This important model implication is empirically supported by Campbell et al. (2018),

who estimate a VAR to back out volatility news. On a sample starting in 1963, they find that

the returns on all 25 portfolios, sorted with respect to book-to-market and size, have positive

exposures to volatility news. They emphasize that it is important in this context to distinguish

between forward looking and realized volatility (the exposures of realized returns to realized

volatility are negative). Their findings suggest that uncertainty can either be good news to

investors or that equity claims provide a hedge against certain shocks, which is particularly

valuable in times of pronounced uncertainty.
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6 Conclusion

Excess returns on single stocks are often predictable by their price-dividend ratios and their

variance risk premia. We show that there is also predictive power when we regress future returns

on single stocks on the price-dividend ratio and variance risk premium of a broad stock market

index. Naturally, the coe�cients from these predictive regressions vary in the cross-section. We

show that this variation contains information about the cross-sectional di↵erences in expected

returns. Stocks with high regression coe�cients have high returns on average, no matter if

we use the price-dividend ratio or the variance risk premium as a predictor. Moreover, stocks

with high coe�cients with respect to the price-dividend ratio typically have low coe�cients

with respect to the variance risk premium. This finding constitutes an important restriction for

asset pricing models, or, put di↵erently, it represents a model test.

Standard asset pricing models imply that stocks with large regression coe�cients (in

absolute terms) have strong exposures to latent fundamental macro risks and must thus have

higher average returns. We show that the relation between coe�cients and excess returns in

the data is incompatible with models where only one state variable drives time variation in risk

premia. In these models, stocks with high coe�cients with respect to the price-dividend ratio

also exhibit high coe�cients with respect to the variance risk premium. This is inconsistent with

the negative cross-sectional rank correlation between slope coe�cients. Hence, we can reject

standard models like Campbell and Cochrane (1999), Bansal and Yaron (2004), and Wachter

(2013) with respect to their ability to explain the cross-section of average stock returns.

More strikingly, even models where expected excess returns are functions of two state

variables usually fail to produce the patterns found in the data. The reason is that with standard

parameters needed to match the usual unconditional asset pricing moments, high uncertainty-

states are usually bad states, such that equity prices fall when uncertainty increases. This leads
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to a negative relation between state variables and the price-dividend ratio, while the variance

risk premium loads positively on them.

We argue that there needs to be at least one state variable in the economy that is on av-

erage positive and has the following properties: First, it has an impact on the time-variation of

expected returns and, second, it is positively related to the price-dividend ratio of the aggregate

market. This implies that stock returns with high slope coe�cients in regressions on the price-

dividend ratio would also have high slope coe�cients in regressions on the state variable itself,

and, thus, that the unconditional expected returns on these stocks are high. Production-based

asset pricing models, for example the model of Croce (2014), naturally imply these character-

istics. In times of high uncertainty, when conditional risk premia are high, it is optimal for the

agent to invest more and, by that, increase the capital stock of the firm, resulting in a higher

price-dividend ratio of the market portfolio.

In endowment economy models, we have to make rather particular assumptions to gener-

ate a positive relation between uncertainty and the market price-dividend ratio. One of these

assumptions can be that highly uncertain states are good states in general, in the sense that

the wealth-consumption ratio and the price-dividend ratio increase in this form of uncertainty,

which justifies the term “good uncertainty”. For example, in the model of Segal et al. (2015)

an increase of good uncertainty comes with an increase in growth prospects. This channel is

combined with a second state variable that models “bad uncertainty” and is negatively related

to the price-dividend ratio, but positively related to the variance risk premium. The model is

able to explain the pairwise correlations between the di↵erent slope coe�cients and expected

returns. However, it implies a positive slope coe�cient in a predictive regression of the market

return on the market price-dividend ratio, which is at odds with the data.

Alternatively, when highly uncertain states are bad states, the price-dividend ratio can still

be high in these states, if the dividend claim hedges a form of consumption risk. For example, in
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the model of Bekaert and Engstrom (2017), there are two sources of risk influencing consumption

growth, one of which can be hedged by holding the market portfolio. In total, the model is able

to explain the stylized facts from the empirical part of our paper. This is remarkable given that

the model and the calibration suggested by Bekaert and Engstrom (2017) were not tailored

to do so. However, it is questionable whether the exact economic mechanism of this model is

plausible, given the particular structure of consumption and dividend growth dynamics that

is crucial to reconcile our empirical findings. Production-based models could provide a more

natural rationale to explain the joint behavior of price-dividend ratios, variance risk premia,

and expected returns in the cross-section.
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Table 2: Number of stocks in independently double-sorted portfolios

Panel A: 1990/01 - 2018/06

low b! 2 3 4 high b!

low b⌫ 5.46 2.18 1.98 3.13 7.24
2 3.31 4.18 4.20 4.72 3.60
3 2.58 4.82 5.85 4.59 2.16
4 2.97 5.30 5.19 4.32 2.22

high b⌫ 5.68 3.52 2.79 3.24 4.78

Panel B: 1933/01 - 2018/06

low b! 2 3 4 high b!

low b⌫ 5.88 2.78 2.22 2.97 6.16
2 3.45 4.33 4.19 4.45 3.58
3 2.56 4.60 5.44 4.72 2.68
4 2.82 4.79 5.16 4.54 2.70

high b⌫ 5.30 3.50 2.99 3.33 4.88

The table shows the average relative frequency (in percent) of stocks in portfolios double-sorted in-
dependently w.r.t. b! and b⌫ . b! and b⌫ are estimated as described in Section 3.1. Portfolios are held
over one month. The sort on b⌫ in Panel B relies on the backwards extrapolation of the time series for
the variance risk premium as described in Section 3.2.
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Table 3: Characteristics across portfolios

Characteristic low 2-3 4-5 6-7 8-9 high

Panel A: Sorted on b!

b! -6.78 -2.24 -0.96 -0.26 0.61 3.82
b⌫⇥ 100 0.15 0.12 0.10 0.08 0.06 0.05
market beta 1.73 1.35 1.04 0.88 0.83 1.01
market equity 4.79 5.28 5.70 5.76 5.43 4.77
book-to-market 0.56 0.62 0.61 0.59 0.58 0.55
operating profitability 0.01 0.14 0.22 0.24 0.20 0.05
investment 0.21 0.14 0.12 0.11 0.13 0.17
R&D expenses 0.41 0.20 0.12 0.09 0.14 0.40
past returns (12-2) 0.07 0.08 0.10 0.10 0.12 0.11

Panel B: Sorted on b⌫

b! -1.15 -0.58 -0.52 -0.68 -1.05 -1.87
b⌫⇥ 100 -1.05 -0.20 0.01 0.15 0.38 1.31
market beta 0.98 0.84 0.86 1.01 1.36 1.76
market equity 4.71 5.24 5.59 5.76 5.52 4.94
book-to-market 0.58 0.61 0.60 0.59 0.58 0.58
operating profitability 0.04 0.18 0.22 0.22 0.17 0.04
investment 0.17 0.14 0.12 0.12 0.13 0.17
R&D expenses 0.48 0.17 0.11 0.12 0.17 0.32
past returns (12-2) 0.07 0.10 0.10 0.10 0.10 0.09

The table shows time series averages of the cross-sectional average characteristics of the stocks in
portfolios sorted on b! and b⌫ . We show the characteristics for the bottom and top decile as well
as for portfolios containing stocks in two deciles of the original sort each (2-3, 4-5, 6-7, and 8-9). b!
and b⌫ are estimated as described in Section 3.1. Market betas are estimated using data over the
previous 60 months, as long as at least 24 monthly returns are available. Market equity is the log of
the product of the number of shares outstanding and the price per share. Book equity, investment,
and operating profitability are calculated as described in Davis et al. (2000) and Fama and French
(2016). Past returns (12-2) denotes the return on an asset from one year to one month prior to the
formation month. R&D expenses are scaled by total assets. The sample period is 1990/01 - 2018/06.
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Table 4: Alphas and factor exposures

Factor low 2-3 4-5 6-7 8-9 high HML t-stat

Panel A: Sorted on b!

↵ -0.38 -0.16 -0.08 -0.06 0.09 0.45 0.83 2.34
MKT 1.25 1.09 1.01 0.93 0.93 1.07 -0.18 -1.70
SMB 0.30 0.24 0.01 -0.09 -0.06 0.29 -0.02 -0.09
HMLBM -0.08 0.21 0.24 0.27 0.09 -0.01 0.07 0.45
RMW -0.66 -0.05 0.25 0.00 -0.28 -0.75 -0.09 -0.36
CMA -0.44 -0.33 -0.01 -0.19 -0.40 -0.64 -0.20 -0.74
UMD -0.04 -0.02 0.03 0.03 0.04 0.13 0.17 0.83
LIQ 0.08 0.07 0.04 0.05 0.05 0.03 -0.04 -0.56

Panel B: Sorted on b⌫

↵ -0.12 -0.21 -0.17 -0.12 -0.01 0.51 0.63 1.59
MKT 0.90 0.98 0.94 0.98 1.14 1.25 0.35 2.31
SMB 0.59 0.15 0.01 -0.12 0.02 0.29 -0.31 -1.94
HMLBM 0.05 0.23 0.27 0.18 0.09 0.07 0.02 0.08
RMW -0.60 0.17 0.24 0.08 -0.35 -0.88 -0.28 -1.50
CMA -0.71 -0.19 -0.09 0.07 -0.20 -0.56 0.16 0.54
UMD 0.25 0.13 0.08 0.04 -0.08 -0.19 -0.44 -4.22
LIQ 0.10 0.06 0.07 0.04 0.04 0.03 -0.06 -0.61

The table shows factor exposures and alphas of portfolios sorted on b! and b⌫ . We show these quantities
for the bottom and top decile as well as for portfolios containing stocks in two deciles of the original
sort each (2-3, 4-5, 6-7, and 8-9). b! and b⌫ are estimated as described in Section 3.1. Factor exposures
are estimated using contemporaneous time series regressions. The factors are the excess return on the
market (MKT), the size factor (SMB), the value factor (HMLBM), the operating profitability factor
(RMW), the investment factor (CMA), the momentum factor (UMD), and the Pástor and Stambaugh
(2003) liquidity factor (LIQ). The sample period is 1990/01 - 2018/06.
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Figure 1: Regression coe�cients and R
2
s in predictive regressions
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The figure shows R2s and slope coe�cients from predictive regressions for 49 industry portfolio returns
and the market portfolio (dark gray bar). We run the regression r

i
t+1,t+h � r

f
t+1,t+h = ai + bixt + ✏

i
t+h,

where r
i denotes the log return on the particular portfolio i, rf is the risk-free rate, x is the predictor

variable, and ✏
i represents a mean zero noise term. The coe�cients a and b are estimated for a

return horizon h of 12 months when the market price-dividend ratio is used as the predictor variable
(upper graph). With the variance risk premium as the predictor variable (lower graph), this horizon
is 4 months. The data for the portfolio returns are taken from Kenneth French’s data library. The
price-dividend ratio and the variance risk premium are obtained from Amit Goyal’s and Hao Zhous’s
webpage, respectively. The sample period is 1990/01 - 2018/06. Slope coe�cients and R

2s are expressed
in percentage points. The predictor variables are standardized such that the slope coe�cients can be
interpreted as reaction of returns on a positive one standard deviation shock in the predictors.
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Figure 2: Rank correlation between predictive slope coe�cients
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The upper graph shows the monthly time series of the cross-sectional rank correlation between the
estimated slope coe�cients b⌫ and b!. The lower graph shows the monthly time series of correlation
coe�cients between the price-dividend ratio and variance risk premium. The correlation coe�cient for
a given month is estimated from data over the preceding six years. The shaded areas indicate NBER
recessions.
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Figure 3: Average portfolio numbers
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The figure shows the time series of average portfolio numbers for mode portfolios formed on the basis
of the estimated regressions coe�cients b! (upper graph), b⌫ (middle graph), and momentum (lower
graph). The construction of mode portfolios is explained in Section 4.1. The portfolio number is equal
to 1 (10) for stocks in the lowest (highest) decile for the respective sorting criterion. The shaded areas
indicate NBER recessions.
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Figure 4: Decile breakpoints for portfolio formation
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The figure shows the time series of decile breakpoints from the cross-sectional distributions of the
estimated slope coe�cients b! (upper graph) and b⌫ (lower graph). The bold black lines represent the
slope coe�cients of the market portfolio. The shaded areas indicate NBER recessions.

Figure 5: Correlation between HML portfolios
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This figure shows the time series of correlation coe�cients between the returns on HML! and HML⌫ .
The correlation coe�cient for a given month is estimated from data over the preceding six years. The
shaded areas indicate NBER recessions.
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