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Simple Summary: The interaction between tumors and immune cells influences tumor fate, i.e.,
regression, growth, or even metastases. The evaluation of tumor infiltrating lymphocytes (TILs) in
human breast cancer has prognostic value. Pet rabbits develop spontaneous mammary carcinomas
and have an immune system that is comparable with that of humans, so that they have the
potential to provide an animal model for human breast cancer. To further substantiate this similarity,
this study examined TILs in 107 pet rabbit mammary carcinomas according to criteria established
for human breast cancer. For TIL evaluation routinely stained microscopic sections were examined
by light microscopy. Relevant histological and immunohistochemical tumor characteristics were
obtained from a data base. Results showed that increased presence of stromal TILs was statistically
associated with histological tumor features indicative of a less aggressive biological behavior, i.e.,
reduced tumor cell proliferation and a lower histological grade. The expression by tumor cells of
calponin, a presumed tumor suppressor protein, was also associated with their reduced proliferation
and a higher percentage of stromal TILs. Data suggest that higher percentages of stromal TILs may
have the potential to serve as favorable prognostic indicator in rabbit mammary carcinomas and
support the value of pet rabbits for comparative research.

Abstract: Tumor infiltrating lymphocytes (TILs) serve as prognostic biomarker in human breast cancer.
Rabbits have the potential to act as animal model for human breast cancer, and close similarities
exist between the rabbit and human immune system. The aim of this study is to characterize
TILs in pet rabbit mammary carcinomas and to statistically correlate results with histological and
immunohistochemical tumor characteristics. Microscopic evaluation of TILs was performed in
hematoxylin and eosin stained sections of 107 rabbit mammary carcinomas according to international
guidelines for human breast cancer. Data on histological features of malignancy, estrogen and
progesterone receptor status and calponin expression were obtained from the data base. This study
revealed a statistical association between stromal TILs in the central tumor (CT) and infiltrative margin.
Higher maximal percentages of stromal TILs at the CT were statistically correlated with decreased
mitotic count and lower tumor grade. An increased number of calponin positive tumor cells
was statistically associated with a lower mitotic count and a higher percentage of stromal TILs.
Results suggest that higher percentages of stromal TILs are useful biomarkers that may point toward
a favorable prognosis in rabbit mammary carcinomas and support the concept of the use of rabbits
for translational research.
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1. Introduction

Pet rabbits serve as excellent animal models for numerous infectious, degenerative, and neoplastic
human diseases [1–8]. This includes the investigation of disease-associated molecular and cellular
mechanisms as well as the development of vaccines and treatment options [4,7,8]. The suitability of
rabbits as animal models for human diseases is facilitated by the availability of comprehensive data on
their innate and adaptive immune mechanisms [1,8,9], close similarities between the rabbit and human
immune systems [1,4], and very similar expression and functions of key genes between humans and
rabbits [2]. Recent investigations on spontaneous mammary carcinomas of pet rabbits, identified the
pet rabbit as potential animal model for certain types of spontaneous human mammary tumors [10–12].
This eligibility is further supported by the following aspects: In contrast to rodents, mammary glands
of does and women contain independent ductal systems with separate teat orifices [13]. The rabbit
size allows the application of diagnostic and therapeutic procedures that are also used in humans [13].
The age expectancy of rabbits is approximately 6–13 years [14], and thus will permit enough follow-up
time for tumor recurrence, metastases and survival time.

It has been shown that most rabbit mammary tumors are carcinomas, i.e., 50–98% depending on
the respective study, the majority of these being adenocarcinomas [10–12,15,16]. Recent investigations
on rabbit mammary carcinomas analyzed in detail the histological features [10,15,16], estrogen and
progesterone receptor status [10], as well as the intra-tumoral presence of retained non-neoplastic
myoepithelial cells and tumor cells with a myoepithelial differentiation [11,15]. Definitive prognostic
factors are not available yet, and currently the only therapeutic option is surgical excision [12].

The immune system plays a major role in the body′s defense against tumor development and
progression [17–19]. Tumor infiltrating lymphocytes (TILs) can be found in the central tumor,
the invasive margin, and the peritumoral stroma [17,20–22] and include different lymphocyte
subpopulations such as cytotoxic T cells (Tc1, Tc2), T helper cells (Th1, Th2), Th17 cells, regulatory T
cells (T regs), B cells, and plasma cells [17,20–22].

CD8+Tc1 [17,19,21,23] and CD4+Th1 cells [17,19] are the main mediators of adaptive anti-tumor
immune responses. A high density of Th1 cells and Tc1 in the tumor area represents a favorable
prognostic factor in several types of cancer [17] including certain types of breast cancer [20]. T regs
promote tumor progression by acting immunosuppressive [19,21]. Studies revealed divergent roles of
B cells [17,19,24], Th2 cells [17,21,25], as well as Th17 cells [17,20,21]. The respective functions of the
latter cell populations are likely influenced by the tumor type and molecular subtype [17], stage of
disease [17], as well as differences of the tumor microenvironment [17,21,24].

Notably, despite the phenotypic and functional heterogeneity of TILs, the general assessment
of TILs in routinely stained (hematoxylin eosin stained) tissue sections has prognostic significance
for certain types of human breast cancer and other malignant tumors [20,21,26]. In certain types of
breast cancer, a favorable prognostic effect of increased stromal TILs is reported, e.g., triple-negative
tumors [21,27,28], estrogen receptor (ERα) negative cancer [29], and HER2 positive malignancies [21,30].

For a standardized evaluation of TILs in human breast cancer and other solid tumors, international
guidelines exist [20–22,31]. The aim of this investigation was to examine TILs according to these
guidelines in pet rabbit mammary carcinomas and to correlate obtained results with histological features,
ERα and progesterone receptor (PR) status, as well as calponin-expression in tumor cells, to check their
possible prognostic significance.
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2. Materials and Methods

2.1. Animals and Tissue Samples

This retrospective study was performed on archived formalin-fixed paraffin-embedded tissue
(FFPE) samples of 107 mammary carcinomas from 107 pet rabbits, respectively. Immediately after
their excision in veterinary practices, tissue samples had been fixed in 10% buffered formalin for 24 to
72 h. After their arrival in the diagnostic laboratory, tissue samples were trimmed, routinely processed,
and embedded in paraffin-wax.

The age of the rabbits was reported for 97 animals and ranged from 1.5 to 10 years with a mean age
of 5.3 years and a standard deviation (SD) of 1.6 years. The sex was known for 97 animals; of these 78%
(n = 76) were female and 22% (n = 21) female spayed. Regarding the rabbits with known breed (n = 52),
there were 31 dwarf rabbits, 7 dwarf lop rabbits, 5 lop rabbits, 5 lion head rabbits, 1 Teutoburger rabbit,
1 rex rabbit, 1 angora rabbit, and 1 lop mixed breed rabbit.

Hematoxylin eosin (HE) stained tissue section of the 107 rabbit mammary carcinomas were
obtained from the database and re-examined to confirm the presence of a mammary adenocarcinoma.
These tissue samples were also used for the microscopic evaluation of TILs. In addition, histological
features associated with the degree of tumor differentiation (reported below), the ERα and PR status
as well was the percentages of calponin positive tumor cells were extracted from the databases and
diagnostic records [10,11].

2.2. Light Microscopic Evaluation of Tumor Infiltrating Lymphocytes

For each of the rabbit mammary carcinomas, TILs were evaluated according to the international
guidelines for human mammary carcinomas [20,21] using a Zeiss microscope scope A1 with an ocular
field number of 23. As defined by Salgado et al. [20] and Hendry et al. [21], TILs represent stromal
and intra-tumoral lymphocytes and plasma cells. Stromal TILs are defined as percentage of stroma
area occupied by TILs over the total stromal area [20,21]. Intra-tumoral TILs (IT TILs) represent the
epithelial tumor area covered by TILs in relation to the entire epithelial tumor tissue [20,21]. They are
defined as TILs associated with tumor cell nests that have direct cell to cell contact with cancer cells
with no intervening stroma [20,21]. TILs were evaluated separately within the central tumor (CT)
and the invasive margin (IM) [20,21]. The IM is defined as 1-mm wide zone at the tumor periphery
centered at the delineation of the outer margin of the tumor cell nests [21]; it is composed of an inner
rim of tumor tissue (500 µm) and an outer rim of peritumoral stroma (500 µm) [21]. TILs were analyzed
with the 20× objective, and IT TILs were confirmed as TILs using the 40× objective. From these data,
the average percentage of TILs over the entire stromal or intra-tumoral area in the CT and IM, as well
as maximal and minimal percentages of TILs per 20× objective field of view (20× objective FOV)
were obtained. Within the fibrous connective tissue of the adjacent non-neoplastic mammary tissue,
lymphocytes and plasma cells were determined as well by using the 20× objective FOVs. Percentages
of TILs < 10% were reported in 1% intervals and those ≥ 10% in 5% intervals.

2.3. Data Obtained from Diagnostic Records

Histological parameters extracted from the databases were the tumor area with a tubular growth
pattern in percent of the entire tumor area, the mitotic count per ten 40× high power fields (HPFs) under
consideration of the field number of the microscope, the degree of nuclear pleomorphism, as well as the
degree of tumor invasion [10,11,15]. The results of the former three parameters were used to determine
the histological tumor grade [32–34]. Depending on the degree of tissue infiltration, tumors were
classified as those with mild, moderate, or marked invasive behavior [10,11,15]. Necrosis was recorded
as minimal, mild, moderate, and marked, if it affected <10%, 10–39%, 40–69%, and ≥70% of the
tumor area, respectively [10].

Immunohistochemical data obtained from the diagnostic records were percentages of ERα and
PR positive tumor cells, the immunoreactive score (IRS), the histological score (H-score), as well as
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the percentage of calponin positive tumor cells [10,11]. Carcinomas had been immunostained for
ERα, PR, and calponin with the peroxidase anti-peroxidase (PAP) method and 3,3′-diaminobenzidin
as chromogen by using the following primary cross-reactive antibodies: mouse anti-human ERα
(clone 6F11, Novocastra Laboratories, Newcastle upon Tyne, UK: 1:20 diluted), mouse anti-human PR
(clones 16 and SAN 27, Novocastra Laboratories: 1:100 diluted), and mouse anti-human calponin 1
(clones SPM 169, Zytomed Berlin, Germany: 1:200 diluted) [10,11]. By image analysis, the percentages
of tumor cells positive for ERα, PR, and calponin had been determined [10,11]. ERα and PR positive cells
had been further subclassified in those with a mild (1+), moderate (2+), or strong (3+) immunoreaction
and for each tumor the IRS [35] and the H-score [36] had been calculated according to the formulas
provided below [10].

IRS =
(1 + cells) + (2 + cells × 5) + (3 + cells × 10)

100
; H − score = (1 + cells) + (2 + cells × 2) + (3 + cells × 3)

2.4. Statistical Evaluation

The statistical analysis was done by using IBM SPSS software version 25 (IBM SPSS Inc., Armonk,
NY, USA). Data are presented as mean ± SD. The correlation between two investigated factors was
analyzed with Pearson’s co-relation coefficient, and the significance threshold was set at 0.05.

3. Results

3.1. Stromal Tumor Infiltrating Lymphocytes

In most rabbit mammary carcinomas average stromal TILs encompassed up to 10% in the TC
and at the IM. More than 50% average stromal TILs, a feature of human lymphocyte-dominant breast
cancer [20,21], were observed in two tumors in the CT and in none of the tumors at the IM. Results are
summarized in Table 1 and described in detail below. Figures 1 and 2 show representative images
from cases with low and high stromal TILs in the CT and at the IM, respectively.

In the CT, average stromal TILs ranged from 0–70% with a mean value (MV) of 6% and a standard
deviation (SD) of 12%. Majority of carcinomas (89%; 95/107) had 0–10% average stromal TILs, whereas
9% (10/107) and 2% of carcinomas (2/107) contained an average of 11–50% and >50% stromal TILs,
respectively. Maximal percentages of stromal TILs per 20× objective FOV varied between 1 and 90%
(MV: 19%; SD: 23%). Minimal percentages of average stromal TILs per 20× objective FOV showed
a range from 0–60% (MV: 2%; SD: 7%). The distribution of stromal TILs within the TC was often
heterogenous with a mean difference of 17% (SD: 21%) between the maximal and minimal percentages
of TILs per 20× objective FOV. In 59% of tumors (63/107) this difference ranged from 1–10%, whereas in
35% (37/107) and 6% (7/107) of the carcinomas it varied between 11–50% and >50%, respectively.

Table 1. Percentages of stromal and intra-tumoral tumor infiltrating lymphocytes.

TIL Numbers Stromal TILs in CT (%) Stromal TILs at IM (%) IT TILs in CT (%) IT TILs at IM (%)

Average

Range 0.00–70.00 0.00–30.00 0.00–5.00 0.00–10.00
Mean ± SD 6.21 ± 11.61 3.34 ± 5.23 0.24 ± 0.67 0.24 ± 1.07

Max. per 20×

Range 1.00–90.00 0.00–70.00 0.00–25.00 0.00–40.00
Mean ± SD 19.20 ± 23.29 10.28 ± 13.32 0.98 ± 3.00 1.00 ± 4.00

Min. per 20×

Range 0.00–60.00 0.00–10.00 0.00–1.00 0.00–2.00
Mean ± SD 2.09 ± 6.97 1.11 ± 1.65 0.06 ± 0.23 0.07 ± 0.32

CT = central tumor; IM = invasive margin; IT = intra-tumoral; Max. = maximal numbers; Min. = minimal numbers;
SD = standard deviation; TILs = tumor infiltrating lymphocytes; 20× = 20× objective field of view.
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Figure 1. Stromal tumor infiltrating lymphocytes (TILs) within the central tumor (CT) of pet rabbit 
mammary carcinomas. Illustrated are two representative tumor areas with very few stromal TILs 
(A,A’) and multifocal aggregates of stromal TILs (B,B’), respectively. (A,A’) Grade I carcinoma with 
a tubular growth pattern and moderate secretory activity. Occasional stromal TILs (less than 1%) are 
present in the 20× objective field of view (FOV) shown in A. The rectangular area delineated in A is 
illustrated in A’ in higher magnification. Individual rare stromal TILs are labelled by arrows. (B,B’) 
Stromal TILs (asterisks) form multifocal aggregates that dissect between tubular structures lined by 
tumor cells (arrowheads). The 20× objective FOV present in B contains an estimate of 50% stromal 
TILs. The area delineated by a rectangle is shown in B’ in higher magnification. 

Figure 1. Stromal tumor infiltrating lymphocytes (TILs) within the central tumor (CT) of pet rabbit
mammary carcinomas. Illustrated are two representative tumor areas with very few stromal TILs
(A,A’) and multifocal aggregates of stromal TILs (B,B’), respectively. (A,A’) Grade I carcinoma with a
tubular growth pattern and moderate secretory activity. Occasional stromal TILs (less than 1%) are
present in the 20× objective field of view (FOV) shown in A. The rectangular area delineated in A is
illustrated in A’ in higher magnification. Individual rare stromal TILs are labelled by arrows. (B,B’)
Stromal TILs (asterisks) form multifocal aggregates that dissect between tubular structures lined by
tumor cells (arrowheads). The 20× objective FOV present in B contains an estimate of 50% stromal TILs.
The area delineated by a rectangle is shown in B’ in higher magnification.

An IM was present in 102/107 (95%) sections of rabbit mammary carcinomas, whereas in four
cases due to incomplete excision of the tumor tissue an IM could not be evaluated and in one case the
relatively small size of the tumor did not allow a separate evaluation of CT and IM. Average stromal
TILs at the IM ranged from 0–30% (MV: 3%; SD: 5%). In 95% of the tumors, average stromal TILs at the
IM were ≤10%. The remaining carcinomas contained average stromal TILs of 20% (3/102) and 30%
(2/102) TILs at the IM, respectively. Per 20× objective FOV at the IM, maximal percentages of stromal
TILs showed a range from 0–70% (MV: 10%; SD: 13%) and minimal percentages extended from 0–10%
(MV: 1%; SD: 2%). Although in some tumors stromal TILs at the IM formed hot spots, the overall
distribution of stromal TILs at the IM was less heterogenous than in the CT, i.e., the mean difference
between the maximal and minimal percentages of TIL per 20× objective FOV was 9% (SD: 13%).
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In detail, in 78% (80/102) of the carcinomas this difference ranged from 1–10%, while in 20% (20/102)
and in 2% (2/102) of these tumors it varied between 11–50% and >50%, respectively. Notably, at the IM,
stromal TILs were mostly located within the 500-µm wide inner rim of the IM compared to the 500-µm
wide outer rim of the IM.Animals 2020, 10, x FOR PEER REVIEW 6 of 18 
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TILs (A,A’) and multifocal clusters of stromal TILs (B,B’) at the IM, respectively. (A,A’) Grade II 
carcinoma with tubular and cystic growth patterns and mild secretory activity. The IM contains no 
unequivocal stromal TILs. In A, the 10× objective field of view (FOV) is depicted. The rectangle in A 
delineates the area that is shown in A’ in higher magnification. (B,B’) Grade II carcinoma with a 
predominantly tubular growth. TILs (green asterisks) are mostly located between and adjacent to the 
infiltrative tumor cell nests (arrowheads). In B, the 20× objective FOV is shown and contains 
approximately 25% stromal TILs. The area that is contained within the rectangle is depicted in B’ in 
close up. 
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Figure 2. Stromal tumor infiltrating lymphocytes (TILs) within the infiltrative margin (IM) of pet
rabbit mammary carcinomas. Shown are two representative tumors with nearly complete absence of
stromal TILs (A,A’) and multifocal clusters of stromal TILs (B,B’) at the IM, respectively. (A,A’) Grade
II carcinoma with tubular and cystic growth patterns and mild secretory activity. The IM contains
no unequivocal stromal TILs. In A, the 10× objective field of view (FOV) is depicted. The rectangle
in A delineates the area that is shown in A’ in higher magnification. (B,B’) Grade II carcinoma with
a predominantly tubular growth. TILs (green asterisks) are mostly located between and adjacent to
the infiltrative tumor cell nests (arrowheads). In B, the 20× objective FOV is shown and contains
approximately 25% stromal TILs. The area that is contained within the rectangle is depicted in B’ in
close up.

3.2. Infiltrating Lymphocytes within Nests of Carcinoma Cells

IT TILs were formed solely by lymphocytes (Figure 3). Results are summarized in Table 1.
In the CT, the average percentage of IT TILs varied between 0–5% with MV of 0.24% and SD of 0.67%.
Carcinomas with an average of 0% IT TILs dominated (82%; 88/107), whereas 1% average IT TILs
occurred in 15% of the carcinomas (16/107). One tumor each contained average IT TILs of 2%, 3%,



Animals 2020, 10, 1437 7 of 17

and 5%, respectively. Minimal numbers of IT TILs per 20× objective FOV ranged from 0–1% (MV:
0.06%; SD: 0.23%) and maximal numbers from 0–25% (MV: 0.98%; SD: 3%).
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At the IM, average percentages of IT TILs differed between 0% and 10% (MV: 0.24%; SD: 1%). 
Most tumors (87%; 89/102) contained 0% average IT TILs, whereas 9% (9/102) and 3% (3/102) of 
carcinomas had an average of 1% and 2% IT TILs. In one tumor, 10% average IT TILs were detected. 
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Figure 3. Intra-tumoral infiltrating lymphocytes (IT TILs) of pet rabbit mammary carcinomas. Depicted
are two representative tumors with almost lack of IT TILs (A) and some IT TILs (B), respectively.
In comparison to stromal TILs (asterisk), IT TILs (arrowheads) are immediately associated with tumor
cells (arrowheads). Intra-tumoral cell fragments (arrows) are present (A,B).

At the IM, average percentages of IT TILs differed between 0% and 10% (MV: 0.24%; SD: 1%).
Most tumors (87%; 89/102) contained 0% average IT TILs, whereas 9% (9/102) and 3% (3/102) of
carcinomas had an average of 1% and 2% IT TILs. In one tumor, 10% average IT TILs were detected.
Maximal numbers of IT TILs at the IM per 20× objective FOV fluctuated between 0 and 40% (MV: 1%;
SD: 4%). The minimal numbers of IT TILs per 20× objective FOV extended from 0–2% (MV: 0.07%;
SD: 0.32%).

3.3. Lymphocytes and Plasma Cells in the Adjacent Non-Neoplastic Tissue

Non-neoplastic mammary tissue was included in 100 of 107 sections of rabbit mammary carcinomas.
Average percentages of lymphocytes and plasma cells within the inter- and intralobular fibrous
connective tissue differed from 0–2% (MV: 0.11%; SD: 0.35%). Within the fibrous connective tissue,
maximal percentages of lymphocytes and plasma cells per 20× objective FOV ranged from 0–5%
(MV: 1%; SD: 0.52%) and minimal percentages of lymphocytes and plasma cells per 20× objective FOV
from 0–2% (MV: 0.04%; SD: 0.24%). Examined cases did not show evidence of lobulitis.

3.4. Histological and Immunohistochemical Features

In the rabbit mammary carcinomas, the percentage of tubular growth in relation to the entire
tumor area varied between 5% and 90% with a mean of 56% and a SD of 25% (Table 2). Vast majority
of tumors (97%; 104/107) showed moderate cellular pleomorphism, whereas only 2% and 1% had mild
and marked cellular pleomorphism, respectively. The numbers of mitotic figures per ten 40×HPFs
ranged from 0–32 mitoses with a MV of six mitotic figures and a SD of six mitoses (Table 2).

Well differentiated grade I tumors predominated with 57% (61/107); the frequency of the grading
scores 3, 4, and 5 was 1%, 13%, and 43%, respectively. Moderately differentiated grade II tumors
occurred with 41% (44/107); 20.5% were consisted with grading score 6 and 20.5% with grading score 7,
respectively. Poorly differentiated grade III tumors were observed with 2% (2/107), all of these were
score 8 (Figure 4).
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Table 2. Results of histological and immunohistochemical evaluations.

Analyzed Parameters Range Mean ± SD

Tubular growth 5–90% 56% ± 25%
Mitoses per ten 40× HPFs 0–32 6 ± 6
IRS estrogen receptor 0–2.28 0.16 ± 0.42
IRS progesterone receptor 0–3.66 0.56 ± 1.06
H-score estrogen receptor 0–101.35 11.29 ± 26.86
H-score progesterone receptor 0–149.07 25.44 ± 45.19
Calponin positive tumor cells 0–22% 8% ± 5%

HPFs = high power fields; H-score = histological score; IRS = immunoreactive score; SD = standard deviation.
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Figure 4. (A) Of the 107 rabbit mammary carcinomas, 57% were grade I, 41% grade II, and 2%
grade III. (B) The majority (65%) was hormone receptor negative, whereas 17% of the tumors
expressed both receptors, 17% showed immunostaining for solely progesterone receptor, and 1%
was immunoreactive for only estrogen receptor. ERα = estrogen receptor; PR = progesterone receptor.

The degree of invasion could not be evaluated in four carcinomas (4%) because of incomplete
excision of the tumor. Peritumoral tissue was present in 103 carcinomas. Of these, four carcinomas
(4%; 4/103) were well demarcated with multifocal only minimal invasion in the peritumoral tissue,
whereas 45% (46/103), 43% (45/103), and 8% (8/103) displayed mild, moderate, and marked invasion
(Figure 5).
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Figure 5. (A) Rabbit mammary tumors showed mostly mild (45%) and moderate (43%) invasive
behavior; only small percentages of tumors displayed minimal (4%) and marked (8%) tissue invasion.
(B) Necrosis was absent in 22% of the tumors, whereas minimal and mild necrosis was detected in 44%
and 22% of rabbit mammary carcinomas, respectively. Moderate necrosis was present in 10% of the
tumors and 2% of tumors had marked necrosis.

Areas of necrosis were absent in 22% of the carcinomas (23/107). Minimal necrosis that was
detected in 44% of the tumors (47/107) was more frequently observed than mild, moderate, and marked
necrosis that occurred in 22% (24/107), 10% (11/107), and 2% (2/107) of the carcinomas, respectively
(Figure 5).
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Immunostaining of the carcinomas showed that 81% (87/107) were negative for ERα (IRS and
H-score: 0) and 66% (71/107) for PR (IRS and H-score: 0). In detail, 65% of the carcinomas (70/107)
lacked expression of both receptors, 17% (18/107) were double positive for ERα and PR, 17% (18/107)
were solely positive for PR, and 1 tumor was only positive for ERα (Figure 4). The positive IRS for ERα
varied between 0.15 and 2.28, whereas the positive IRS for PR ranged from 0.16 to 3.66. The positive
H-score for ERα ranged from 14.87 to 101.35, and the positive H-score for PR differed between 9.30
and 149.07 (Table 2).

The percentage of calponin positive tumor cells showed a variation between 0% and 22% with a
MV of 8% and a SD of 5% (Table 2). In detail, 7% of the carcinomas (8/107) lacked calponin expression
in tumor cells, whereas 65% (69/107) contained ≤ 10% calponin positive tumor cells and 28% (30/107)
had 11–22% of calponin expressing neoplastic cells.

3.5. Statistical Correlations

The results of the statistical analyses are summarized in Table 3. A significant association existed
between average stromal TILs within the CT and average stromal TILs at the IM. For both locations,
average stromal TILs and maximal stromal TILs at 20× objective FOV were statistically correlated
as well. In addition, at the IM a further correlation existed between average stromal TILs and average
IT TILs.

Table 3. Results of statistical correlations.

Parameter 1 Parameter 2 p-Value, ρ-Value Cases

Tumor Infiltrating Lymphoc Ytes

Average stromal TILs in CT
Max. stromal TILs in CT p = 0.000; ρ = 0.731 n = 107
Average stromal TILs at IM p = 0.000; ρ = 0.563 n = 102
Max. stromal TILs at IM p = 0.000; ρ = 0.420 n = 102

Max. stromal TILs in CT Max. stromal TILs at IM p = 0.000; ρ = 0.546 n = 102

Average stromal TILs at IM
Max. stromal TILs at IM p = 0.000; ρ = 0.698 n = 102
Max. stromal TILs in CT p = 0.000; ρ = 0.436 n = 102
Average IT TILs at IM p = 0.038; ρ=0.206 n = 102

Average IT TILs in CT
Max. IT TILs in CT p = 0.000; ρ = 0.831 n = 107
Max. IT TILs at IM p = 0.000; ρ = 0.734 n = 102
Average IT TILs at IM p = 0.000; ρ = 0.739 n = 102

Max. IT TILs in CT
Max. IT TILs at IM p = 0.000; ρ = 0.936 n = 102
Average IT TILs at IM p = 0.000; ρ = 0.899 n = 102

Histological Features

Degree of invasion Degree of necrosis p = 0.000; ρ = 0.352 n = 103

Grading score Degree of invasion p = 0.000; ρ = 0.364 n = 103
Degree of necrosis p = 0.003; ρ = 0.284 n = 107

Tumor grade Degree of invasion p = 0.002; ρ = 0.299 n = 103
Degree of necrosis p = 0.029; ρ = 0.211 n = 107

Tumor Infiltrating Lymphocytes and Histological Features

Max. stromal TILs in CT
Mitotic count p = 0.042; ρ = −0.197 n = 107
Grading score p = 0.035; ρ = −0.204 n = 107
Tumor grade p = 0.027; ρ = −0.213 n = 107

Immunohistochemical and Histological Features

IRS estrogen receptor IRS progesterone receptor p = 0.000; ρ = 0.606 n = 107
Mitotic count p = 0.012; ρ = −0.243 n = 107

IRS progesterone receptor Mitotic count p = 0.008; ρ = −0.255 n = 107
Degree of necrosis p = 0.009; ρ = −0.250 n = 107

Calponin pos. tumor cells Mitotic count p = 0.035; ρ = −0.204 n = 107

Calponin Positive Tumor Cells and Tumor Infiltrating lymphocytes

Calponin positive tumor cells
Max. stromal TILs in CT p = 0.012; ρ = 0.241 n = 107
Average stromal TILs in CT p = 0.026; ρ = 0.215 n = 107
Average stromal TILs at IM p = 0.026; ρ = 0.220 n = 107

CT = central tumor; IM = invasive margin; IRS = immunoreactive score; IT = intra-tumoral; Max. = maximal;
Min. = minimal; TILs = tumor infiltrating lymphocytes; n = numbers of evaluated cases.
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Higher maximal numbers of stromal TILs in the CT showed a statistical association with a
decreased mitotic count, as well as a lower grading score and tumor grade (Figure 6).
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Figure 6. Higher maximal (max.) stromal tumor infiltrating lymphocytes (TILs) per 20× objective field
of view (FOV) within the central tumor (CT) are statistically correlated with decreased numbers of
mitotic figures per ten 40× HPFs (A) and a lower histological tumor grade (B).

No statistical association was observed between evaluated TIL parameters and the ERα/PR status.
An increased percentage of calponin positive tumor cells, however, was correlated with higher maximal
numbers of stromal TILs within the CT as well as higher percentages of average stromal TILs within
the CT and at the IM (Figure 7).
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4. Discussion

To the best of the authors knowledge this is the first study to examine TILs in mammary
carcinomas of pet rabbits. For this, the international guidelines for TIL evaluation on human breast
cancer were used [20,21,31], since only a limited number of studies on TILs in mammary carcinomas of
different animal species have been published so far and standardized guidelines are not available yet.
The adoption of the guidelines for TIL evaluation in human breast cancer to mammary tumors of pet
rabbits and domestic animals has the advantage of not only allowing a standardized assessment across
different animal species, but also between individual animal species and human beings.

4.1. Evaluation of Tumor Infiltrating Lymphocytes in Routinely Fixed, Processed, and Stained Tissue

The use of HE stained sections of FFPE tissue for TIL evaluation offers the following advantages
for scientific studies on pet rabbits and other across animal species.

It can be readily included in the routine diagnostic examination of tissue sections [21] and allows
retrospective studies on archived material. Moreover, it is a cost- and time-effective method, since it
avoids additional tests requiring further laboratory work and equipment as well as further examinations



Animals 2020, 10, 1437 11 of 17

at later time points [21]. Cost restriction can be an important aspect for veterinary medicine since pet
owners may have financial limitations.

In addition, the assessment of TILs in HE stained specimens can be applied to human beings and
all domestic and pet animals, since it does not include the need for subclassification of lymphocyte
subpopulations and the resulting requirement for consideration of species-specific expression of
lymphocyte markers. The immunohistochemical subclassification of lymphocyte subpopulations
beyond T cells and B cells is often not established in the routine diagnostic work up of veterinary
pathology laboratories.

4.2. Distribution of Stromal and Intra-Tumoral Tumor Infiltrating Lymphocytes

The present investigation showed a significant correlation between average and maximal stromal
TILs presence at CT and IM suggesting an overall similar level of immune cell presence and presumptive
activation across a given carcinoma.

However, the distribution of stromal TILs within the CT was often heterogenous, i.e., 47% of
carcinomas showed a difference of >10% between maximal and minimal numbers of stromal TILs per
20× objective FOV. It can be speculated that the TIL hotspots may be observed in areas containing
tumor cell clones expressing or having expressed immunogenic antigens [37]. Spatial heterogeneity of
TILs also occurs in human breast cancer [20,21,37,38].

At the IM of the rabbit mammary carcinomas, stromal TILs were often intimately associated
with nests of invasive tumor cells. Since tumor invasion is associated with loss cohesiveness between
carcinoma cells, it likely will facilitate penetration of lymphocytes in tumor cell nests. This assumption
is supported by the finding that at the IM a statistically significant correlation existed between average
numbers of stromal and IT TILs. In this regard, Salgado et al. [20] reflected that the distinction between
IT TILs and stromal TILs may be arbitrary, since TILs are able to move between the different tumor
compartments. After their migration in nests of tumor cells, TILs may, however, become entrapped
there because of their ability to establish cell to cell contacts with tumor cells, i.e., TILs may express the
integrin CD103 that binds to E-cadherin on cancer cells [39].

Notably, Nawaz et al. [38] revealed that spatial heterogeneity of immune cell infiltrates has
prognostic significance in ERα negative breast cancer. They showed that a higher number of
co-localized immune cell and cancer cell hotspots weighted by the tumor area correspond to a longer
time for local and distant metastases [38].

4.3. Tumor Infiltrating Lymphocytes and Histological Features

There was a statistically significant association between increased maximal percentages of stromal
TILs per 20× objective FOV and histological features indicative of a better tumor differentiation, i.e.,
reduced mitotic count, as well as lower grading scores and tumor grades. These data suggest that rabbit
mammary carcinomas with a better differentiation are composed of immunogenic tumor cell clones
that facilitate TIL accumulation [18,37]. Thus, it may be speculated that a higher percentage of maximal
stromal TILs may represent a favorable prognostic factor in rabbit mammary carcinomas. This would
support the assumption of Saltz et al. [37] that not only the average numbers of TILs, but also their
spatial distribution has likely prognostic significance. As a next step, it would be interesting to analyze
the spatial correlation of immune and cancer cell hotspots also in rabbit mammary carcinomas and to
correlate these with microscopic features of tumor dignity.

4.4. Tumor Infiltrating Lymphocytes and Immunohistochemical Features

A statistically significant association existed between higher percentages of calponin positive
tumor cells and increased average percentages of stromal TILs in the CT and at the IM as well as
higher maximal numbers of stromal TILs in the CT per 20× objective FOV. The latter, as well as higher
numbers of calponin positive tumor cells are significantly correlated with a lower mitotic count in
neoplastic cells. These findings indicate that in pet rabbit mammary carcinomas both parameters, i.e.,
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a higher number of calponin positive tumor cells, as well as an increased percentage of stromal TILs are
associated with a better tumor differentiation and thus may have the potential to serve as biomarkers
for a better tumor prognosis.

Calponin is linked to the actin cytoskeleton and acts as tumor suppressor protein by facilitating
intercellular adhesion and inhibiting cellular motility and cell division [40,41]. By inhibiting mitotic
activity of tumor cell [40,41], calponin may also help to prevent mutations in tumor cells that can lead
to the development of less immunogenic subclones.

4.5. Tumor Infiltrating Lymphocytes in Tumors of Domestic Animals

In several tumors of animals, a prominent lymphocytic infiltration is associated with a
favorable prognosis. For example, in canine cutaneous histiocytoma and oral papilloma it indicates
tumor regression [42,43]. Similarly, in transmissible venereal sarcomas of dogs, the number of
mononuclear immune cells was significantly higher in tumors that show regression or stable growth
than in tumors with progression [44]. In rabbits with auricular VX2 carcinomas, tumors in remission
contained statistically higher CD3 cell infiltrates than those exhibiting progression [6].

Only a few studies on TILs in mammary tumors of dogs are available [45–49]. In contrast to the
present study, investigations in dogs revealed an association between a higher infiltration with TILs
in mammary carcinomas and histological parameters indicative of a worse prognosis, i.e., a higher
tumor grade [47], as well as the presence of lymphatic tumor cell emboli [47] or vascular invasion [48].
In addition, Estrela-Lima et al. [45] detected a statistically significant correlation between an intense
lymphocytic infiltrate and a shorter survival. By distinguishing tumors with high and low CD3+

lymphocyte infiltrates, Saeki et al. [46] detected a significantly reduced survival rate within one year
in the high CD3+ T cell infiltration tumor group. These studies examined TILs in different types of
carcinomas including carcinoma in benign mixed tumor [45,47], complex carcinoma [47,48], simple
carcinoma of different histotypes [45,47,48], squamous cell carcinoma [47], as well as carcinosarcoma [48]
and used divergent evaluations [45–48]. Kim et al. [47] scored the lymphocytic infiltration based on
their distribution as well as density, whereas Saeki et al. [46] and Carvalho et al. [48] counted CD3+ T
cells within five and ten 40×HPFs, respectively. Estrela-Lima et al. [45] enumerated lymphocytes in
eight “hot spots” fields.

In triple-negative complex type mammary carcinomas of dogs, not only total numbers of
immune cells, but also their phenotype influenced survival [49]. In detail, statistically significant
shorter survival times occurred in dogs with a total higher immune cell infiltrate as well as higher
numbers of CD3+ T cells, CD4+ T cells or tumor infiltrating macrophages [49].

A comparison of these studies with each other, the present investigation, as well as data on
human breast cancer is impaired by use of different methodical approaches. To the best of the authors
knowledge, there are no published studies on mammary carcinomas and other tumors of dogs and cats
and other pet animals that used the international guidelines for TIL evaluation on human breast cancer.

4.6. Tumor Infiltrating Lymphocytes in Human Breast Cancer

Majority of studies analyzed the association between TILs and clinical data of prognostic and
predictive value, i.e., complete pathological response [50,51], disease free survival [27,51], or overall
survival time [51] after certain treatment regimes. These investigations revealed that in certain types
of breast cancer, in particular in HER2 positive and triple-negative types, increased stromal TILs are
associated with a better clinical outcome [27,50,51] or can even predict response to certain treatment
regimens [27,50]. Notably, the molecular signatures of tumor associated immune cells may further
assist in patient stratification and treatment decisions [52]. In this regard, the immunological constant
of rejection (ICR) analyzes the activation of genes associated with a cytotoxic immune response,
Th1 signaling interferon and Th1 chemoattraction [52]. Within the groups of HER2 positive and
triple- negative breast cancer, that by classical prognostic signatures are collectively defined as more
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aggressive breast cancer types, it serves as independent prognostic and predictive factor and can
identify tumors with a presumable better prognosis and/or improved treatment response [52].

Data on a possible association of TILs and the histological tumor differentiation are only available
in some publications. Several authors report higher average percentages of stromal TILs in breast
cancer with higher histological grades [27,53] and/or a higher proliferation index [53].

These results cannot directly be compared with the present investigations, since in the rabbit
mammary carcinomas a statistically significant correlation existed between the maximal percentage of
stromal TILs and a lower histological grade. The maximal number of stromal TILs per 20× objective
FOV were not included in the studies of Criscitiello et al. [53] and Loi et al. [27]. The study of
Nawaz et al. [38] on human breast cancer, however, showed that the spatial heterogeneity of TILs and
especially the colocalization of immune cell and cancer cell hotspots has prognostic significance.

As a possible explanation for the favorable prognostic value of TILs in human breast cancer,
despite their possible association with a higher histological tumor grade [27,53] or higher proliferation
index [53], might be related to their treatment-associated activation [17,20,50].

4.7. Future Perspectives on the Concept of “One Health, One Medicine”

4.7.1. Standardized Evaluation of Tumor Infiltrating Lymphocytes

For a direct comparison of data between different animal species and human beings, standardized
evaluation schemes are an essential diagnostic tool. This study shows that the international guidelines
for TIL evaluation of human breast cancer [20,21,31] can be used for TIL assessment in mammary
carcinomas of pet rabbits as well. Further, it provides evidence, that they can be applied also to
mammary tumors of other domestic animals. Such a standardized evaluation approach will not only
help to further characterize the value of TILs as prognostic and predictive biomarker in mammary
carcinomas of different animal species, but it will also assist to find appropriate animal models for
certain types of breast cancer in women. In addition, it may foster the development of effective
anticancer immune-mediated therapies in veterinary and human medicine.

4.7.2. Rabbits as Animal Model for Immunoncological Studies

Rabbits with experimentally induced VX2 carcinomas have been proposed as animal models for
different types of human carcinomas including breast cancer [5–7]. Since VX2 mammary carcinomas
do not show the molecular signatures defining different types of human breast cancer, they are not
suitable to investigate specific molecular aspects of breast cancer tumorigenesis and immunoediting.

This study reveals that in mammary carcinomas of pet rabbits the TIL-associated immunological
response shows similar morphological features as in human breast cancer. In addition, the immune
systems of rabbits and humans contain similar lymphocytic subpopulations [1,54], and they are more
closely related than those of rodents and humans [4,54]. Further, investigations on spontaneous
mammary tumors in rabbits reflect more closely the interaction between immune system and breast
cancer in humans than studies on rodent models with induced or transplanted tumors. Nowadays,
rabbits are widely available and represent very popular companion animals in many countries of
Europe and Asia, in USA and Australia [55]. In addition, pet rabbits are often exposed to similar
environmental antigens than their owners.

For similar reasons, a canine breast cancer model has been propagated as well [56]. In contrast to
rabbits and humans, canine mammary carcinomas often contain proliferated interstitial myoepithelial
cells and non-neoplastic bone or cartilage [34].

Since majority of rabbit mammary carcinomas are ERα and PR negative, the rabbit has been
proposed as a potential animal model for ERα/PR negative breast cancer in humans [10] as well
as potentially also for triple negative human breast carcinomas [12]. In addition, rabbits may be
a suitable model for breast cancer types with a myoepithelial differentiation of tumor cells and a
prolactin-associated tumorigenesis as well [10–12,15].
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5. Conclusions

To the best of the authors knowledge, this is the first study that characterizes TILs in pet rabbit
mammary carcinomas. It shows that the international guidelines for TIL evaluation in human breast
cancer can be applied to mammary carcinomas of pet rabbits as well. The obtained data suggest
that the evaluation of stromal TILs in rabbit mammary carcinomas should not only include average
numbers but also hotspot areas.
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immunophenotype of canine cutaneous histiocytic tumours with particular emphasis on diagnostic
application. Vet. Res. Commun. 2015, 39, 7–17. [CrossRef]

44. Pérez, J.; Day, M.J.; Mozos, E. Immunohistochemical study of the local inflammatory infiltrate in spontaneous
canine transmissible venereal tumour at different stages of growth. Vet. Immunol. Immunopathol. 1998, 64,
133–147. [CrossRef]

45. Estrela-Lima, A.; Araújo, M.S.S.; Costa-Neto, J.M.; Teixeira-Carvalho, A.; Barrouin-Melo, S.M.; Cardoso, S.V.;
Martins-Filho, O.A.; Serakides, R.; Cassali, G.D. Immunophenotypic features of tumor infiltrating
lymphocytes from mammary carcinomas in female dogs associated with prognostic factors and survival rates.
BMC Cancer 2010, 10, 256. [CrossRef]

46. Saeki, K.; Endo, Y.; Uchida, K.; Nishimura, R.; Sasaki, N.; Nakagawa, T. Significance of tumor-infiltrating
immune cells in spontaneous canine mammary gland tumor: 140 cases. J. Vet. Med. Sci. 2012, 74, 227–230.
[CrossRef]

http://dx.doi.org/10.1038/s41598-018-38272-1
http://dx.doi.org/10.1016/j.semcancer.2017.10.003
http://dx.doi.org/10.1111/j.1365-2559.1991.tb00229.x
http://dx.doi.org/10.1177/0300985812447830
http://dx.doi.org/10.1016/j.celrep.2018.03.086
http://www.ncbi.nlm.nih.gov/pubmed/29617659
http://dx.doi.org/10.1038/modpathol.2015.37
http://www.ncbi.nlm.nih.gov/pubmed/25720324
http://dx.doi.org/10.1038/sj.bjc.6600597
http://www.ncbi.nlm.nih.gov/pubmed/12434297
http://dx.doi.org/10.1111/j.1349-7006.2005.00118.x
http://www.ncbi.nlm.nih.gov/pubmed/16271067
http://dx.doi.org/10.1016/j.gene.2016.02.040
http://www.ncbi.nlm.nih.gov/pubmed/26970176
http://dx.doi.org/10.1006/viro.2000.0789
http://dx.doi.org/10.1007/s11259-014-9622-1
http://dx.doi.org/10.1016/S0165-2427(98)00131-7
http://dx.doi.org/10.1186/1471-2407-10-256
http://dx.doi.org/10.1292/jvms.11-0118


Animals 2020, 10, 1437 17 of 17

47. Kim, J.-H.; Chon, S.-K.; Im, K.-S.; Kim, N.-H.; Sur, J.-H. Correlation of tumor-infiltrating lymphocytes to
histopathological features and molecular phenotypes in canine mammary carcinoma: A morphologic and
immunohistochemical morphometric study. Can. J. Vet. Res. 2013, 77, 142–149. [PubMed]

48. Carvalho, M.I.; Pires, I.; Prada, J.; Queiroga, F.L. A role for T-lymphocytes in human breast cancer and in
canine mammary tumors. Biomed. Res. Int. 2014, 2014, 130894. [CrossRef] [PubMed]

49. Franzoni, M.S.; Brandi, A.; de Oliveira Matos Prado, J.K.; Elias, F.; Dalmolian, F.; de Faria Lainetti, P.;
Prado, M.C.M.; Leis-Filho, A.F.; Fonseca-Alves, C.E. Tumor-infiltrating CD4+ and CD8+ lymphocytes
and macrophages are associated with prognostic factors in triple-negative canine mammary complex type
carcinoma. Res. Vet Sci. 2019, 126, 29–36. [CrossRef] [PubMed]

50. Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Müller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.;
Kronenwett, R.; Hanusch, C.; et al. Tumor-associated lymphocytes as an independent predictor of response
to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 2010, 28, 105–113. [CrossRef]

51. Gao, G.; Wang, Z.; Qu, X.; Zhang, Z. Prognostic value of tumor-infiltrating lymphocytes in patients with
triple-negative breast cancer: A systematic review and meta-analysis. BMC Cancer 2020, 20, 179. [CrossRef]

52. Bertucci, F.; Finetti, P.; Simeone, I.; Hendrickx, W.; Wang, E.; Marincola, F.M.; Viens, P.; Mamessier, E.;
Ceccarelli, M.; Birnbaum, D.; et al. The immunologic constant of rejection classification refines the prognostic
value of conventional prognostic signatures in breast cancer. Br. J. Cancer 2018, 119, 1383–1391. [CrossRef]

53. Criscitiello, C.; Bagnardi, V.; Pruneri, G.; Vingiani, A.; Esposito, A.; Rotmensz, N.; Curigliano, G. Prognostic
value of tumour-infiltrating lymphocytes in small HER2-positive breast cancer. Eur. J. Cancer 2017, 87,
164–171. [CrossRef]

54. Graur, D.; Duret, L.; Gouy, M. Phylogenetic position of the order Lagomorpha (rabbits, hares and allies).
Nature 1996, 379, 333–335. [CrossRef]

55. DeMello, M. Rabbits multiplying like rabbits. The rise in the worldwide popularity of rabbits as
pets. In Companion Animals in Everyday Life: Situating Animal-Human Engagement within Cultures;
Pregowski, P.M., Ed.; Palgrave MacMillan: London, UK; Springer: New York, NY, USA, 2016; pp. 91–108.

56. Dow, S. A role for dogs in advancing cancer immunotherapy research. Front. Immunol. 2019, 10, 2935.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/24082407
http://dx.doi.org/10.1155/2014/130894
http://www.ncbi.nlm.nih.gov/pubmed/24672781
http://dx.doi.org/10.1016/j.rvsc.2019.08.021
http://www.ncbi.nlm.nih.gov/pubmed/31425936
http://dx.doi.org/10.1200/JCO.2009.23.7370
http://dx.doi.org/10.1186/s12885-020-6668-z
http://dx.doi.org/10.1038/s41416-018-0309-1
http://dx.doi.org/10.1016/j.ejca.2017.10.011
http://dx.doi.org/10.1038/379333a0
http://dx.doi.org/10.3389/fimmu.2019.02935
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animals and Tissue Samples 
	Light Microscopic Evaluation of Tumor Infiltrating Lymphocytes 
	Data Obtained from Diagnostic Records 
	Statistical Evaluation 

	Results 
	Stromal Tumor Infiltrating Lymphocytes 
	Infiltrating Lymphocytes within Nests of Carcinoma Cells 
	Lymphocytes and Plasma Cells in the Adjacent Non-Neoplastic Tissue 
	Histological and Immunohistochemical Features 
	Statistical Correlations 

	Discussion 
	Evaluation of Tumor Infiltrating Lymphocytes in Routinely Fixed, Processed, and Stained Tissue 
	Distribution of Stromal and Intra-Tumoral Tumor Infiltrating Lymphocytes 
	Tumor Infiltrating Lymphocytes and Histological Features 
	Tumor Infiltrating Lymphocytes and Immunohistochemical Features 
	Tumor Infiltrating Lymphocytes in Tumors of Domestic Animals 
	Tumor Infiltrating Lymphocytes in Human Breast Cancer 
	Future Perspectives on the Concept of “One Health, One Medicine” 
	Standardized Evaluation of Tumor Infiltrating Lymphocytes 
	Rabbits as Animal Model for Immunoncological Studies 


	Conclusions 
	References

