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Abstract
Aim: Predicting future changes in species richness in response to climate change is 
one of the key challenges in biogeography and conservation ecology. Stacked species 
distribution models (S‐SDMs) are a commonly used tool to predict current and future 
species richness. Macroecological models (MEMs), regression models with species 
richness as response variable, are a less computationally intensive alternative to S‐
SDMs. Here, we aim to compare the results of two model types (S‐SDMS and MEMs), 
for the first time for more than 14,000 species across multiple taxa globally, and to 
trace the uncertainty in future predictions back to the input data and modelling ap-
proach used.
Location: Global land, excluding Antarctica.
Taxon: Amphibians, birds and mammals.
Methods: We fitted S‐SDMs and MEMs using a consistent set of bioclimatic variables 
and model algorithms and conducted species richness predictions under current and 
future conditions. For the latter, we used four general circulation models (GCMs) 
under two representative concentration pathways (RCP2.6 and RCP6.0). Predicted 
species richness was compared between S‐SDMs and MEMs and for current condi-
tions also to extent‐of‐occurrence (EOO) species richness patterns. For future pre-
dictions, we quantified the variance in predicted species richness patterns explained 
by the choice of model type, model algorithm and GCM using hierarchical cluster 
analysis and variance partitioning.
Results: Under current conditions, species richness predictions from MEMs and S‐
SDMs were strongly correlated with EOO‐based species richness. However, both 
model types over‐predicted areas with low and under‐predicted areas with high spe-
cies richness. Outputs from MEMs and S‐SDMs were also highly correlated among 
each other under current and future conditions. The variance between future predic-
tions was mostly explained by model type.
Main conclusions: Both model types were able to reproduce EOO‐based patterns in 
global terrestrial vertebrate richness, but produce less collinear predictions of future 

www.wileyonlinelibrary.com/journal/jbi
mailto:﻿
https://orcid.org/0000-0002-7726-988X
https://orcid.org/0000-0002-9528-6317
https://orcid.org/0000-0003-4511-3407
https://orcid.org/0000-0002-4668-7552
https://orcid.org/0000-0002-7763-1885
http://creativecommons.org/licenses/by/4.0/
mailto:matthias.biber@tum.de
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjbi.13696&domain=pdf&date_stamp=2019-08-28


     |  115BIBER et al.

1  | INTRODUC TION

One of the current major challenges in biogeography is to under-
stand and predict the potential impacts of global change on the dis-
tribution of biological diversity. In addition to land‐use change and 
its consequences for natural habitats, climate change has been iden-
tified as one of the most prominent drivers of biodiversity change 
(IPBES, 2019; Sala et al., 2000). Changes in biological systems in 
response to climate change are frequently documented, including 
shifts in species distribution (Chen, Hill, Ohlemüller, Roy, & Thomas, 
2011). Such changes in species distributions ultimately result in 
changes of biodiversity patterns, such as the geographical variation 
in species richness.

Species richness is a simple albeit important measure for biodi-
versity and has been identified as one of the Essential biodiversity 
variables (EBVs; Pereira et al., 2013). EBVs function as an interface 
between raw data and indicators and are meant to provide robust 
and coordinated data about biodiversity change on a global scale in 
order to inform policy makers (Brummitt et al., 2017; Geijzendorffer 
et al., 2016). EBVs require representative sampling across taxonomic 
groups especially for assessing changes in ecosystem services. Field 
studies and monitoring schemes provide data for a wide range of 
EBVs, but are often limited in spatial or temporal coverage, whereas 
large‐scale data sources, such as the Global Biodiversity Information 
Facility (GBIF), are inherently biased (Meyer, Kreft, Guralnick, & Jetz, 
2015) and not representative on a global scale (Proença et al., 2017).

Global climate models predict an increase in global mean surface 
temperature of up to 4.5°C by the end of this century compared to today 
(IPCC, 2013). This would be comparable to the difference between the 
last glacial maximum and the pre‐industrial climate (Otto‐Bliesner et 
al., 2006; Shakun & Carlson 2010). Given that species distributions and 
thus species richness have changed over the last century in response 
to an increase in the global average temperature of about 1°C, these 
changes are likely to continue in response to future climate change as 
well, even under optimistic (but currently unlikely) scenarios such as the 
ones in line with the 2°C or 1.5°C targets of the Paris Agreement (Hof 
et al., 2018). Thus, reliable predictions of future species richness under 
different climate change scenarios are of great need.

Species range shifts in response to climate change have been 
found across a wide array of taxa, with the majority of species 

shifting their distribution towards higher latitudes and altitudes 
(Chen et al., 2011); but also idiosyncratic responses have been ob-
served (Dobrowski et al., 2013). To estimate potential shifts in spe-
cies distributions as a response to climate change, current species 
distributions and climatic data can be fed into statistical models 
to infer the climatic niche of a species (species distribution models 
(SDMs)) or the relationship between climate and species richness 
(macroecological models (MEMs)).

SDMs are a widely used tool for predicting species distributions 
in response to changing climate (Engler et al., 2011; Hof, Araújo, Jetz, 
& Rahbek, 2011; Hof et al., 2018; Morán‐Ordóñez, Lahoz‐Monfort, 
Elith, Wintle, & Guisan, 2017; Peterson et al., 2002; Thuiller, 
Guéguen, Renaud, Karger, & Zimmermann, 2019; Zurell, Graham, 
Gallien, Thuiller, & Zimmermann, 2018). SDMs are based on statis-
tical correlations between species occurrences and environmen-
tal predictor variables (Elith & Leathwick, 2009; Guisan & Thuiller, 
2005; Guisan & Zimmermann, 2000), which can then be transferred 
into future time periods to predict future species distributions under 
climate change. Recently there has been a rise in the number of tools 
available to facilitate the implementation of SDMs (Golding et al., 
2018; Naimi & Araújo, 2016; Schmitt, Pouteau, Justeau, de Boissieu, 
& Birnbaum, 2017; Thuiller, Lafourcade, Engler, & Araújo, 2009). 
Modelling distributions for all taxa present in a region of interest 
and aggregating them to a single species richness layer, an approach 
termed ‘stacked SDMs’ (S‐SDMs), allows predicting current and fu-
ture species richness (Ferrier & Guisan, 2006).

However, besides the various assumptions inherent to SDMs, 
which have been discussed elsewhere in more detail (Elith & 
Leathwick, 2009); we see two major drawbacks of S‐SDMs as a tool 
for species richness projections. First, the potential errors of SDMs 
add up when stacking the output of multiple SDMs, which may in-
crease the potential error of species richness estimates (Pineda & 
Lobo, 2009). Second, SDMs are, by definition, species‐specific and 
thus require occurrence information for each of the investigated 
species. Furthermore, they require a minimum number of occur-
rence points, making them unsuitable for modelling small‐ranging 
species (Stockwell & Peterson, 2002; Wisz et al., 2008), which con-
stitute significant amounts of the species numbers of many taxo-
nomic groups (Platts et al., 2014). Thus, sufficient species‐specific 
information is lacking to reliably project species richness based on 

species richness. Model type by far contributes to most of the variation in the differ-
ent future species richness predictions, indicating that the two model types should 
not be used interchangeably. Nevertheless, both model types have their justification, 
as MEMs can also include species with a restricted range, whereas S‐SDMs are useful 
for looking at potential species‐specific responses.
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S‐SDMs for the vast majority of the world's taxonomic groups, with 
only a few exceptions (such as terrestrial birds or mammals; Beck et 
al., 2012).

Regression models with species richness as response variable, 
often termed macroecological models (MEMs), are a much‐less com-
putationally intensive alternative to S‐SDMs and have been shown 
to predict patterns of current and future species richness similar 
to S‐SDMs (Algar, Kharouba, Young, & Kerr, 2009; Distler, Schuetz, 
Velásquez‐Tibatá, & Langham, 2015; Harris, Taylor, & White, 2018). 
They further only require total richness values and no species‐spe-
cific information. This is particularly useful in cases where morpho‐
species or inaccurate occurrence data preclude the application of 
species‐specific distribution models, but allow rough estimates of 
the spatial variation in species richness. MEMs have a long history 
in macroecological research (Currie, 1991) and are often associated 
with a discussion on the factors that drive large‐scale species rich-
ness patterns (Currie, 1991; Currie et al.,. 2004; Francis & Currie, 
2003; Hawkins et al., 2003; Jetz & Rahbek, 2002; Rahbek & Graves, 
2001; Rahbek et al., 2007; Rangel et al., 2018; Thuiller, Midgley, 
Rouget, & Cowling, 2006; Wright, 1983).

In this study, we aim to assess whether MEMs may be a reliable 
tool for predicting current as well as future species richness patterns 
in comparison to S‐SDMs. Several studies have addressed this ques-
tion under current conditions, based on different approaches. For 
example Guisan and Rahbek (2011) found that S‐SDMs consistently 
over‐predict species richness and suggested to combine S‐SDMs 
with MEMs to derive more reliable species richness estimates. 
Inspired by the findings of Guisan and Rahbek (2011), Calabrese, 
Certain, Kraan, and Dormann (2014) showed that the over‐predic-
tion of S‐SDMs is due to the thresholding of individual occurrence 
probabilities and can be avoided by stacking the non‐thresholded 
probability values. More recently, Harris et al. (2018) showed that 
MEMs perform better than S‐SDMs when predicting future breed-
ing bird richness of North America.

While a comparison of MEM and S‐SDM predictions is rather 
simple for current conditions, as they can be compared with ob-
served richness values, quality assessments of future predictions 
remain challenging, as there are no future reference values to com-
pare with (but see Harris et al., 2018). However, an exploration of 
the commonalities and differences of predictions rendered by dif-
ferent approaches, namely by S‐SDMs and MEMs, may provide in-
sightful findings. In particular, comparing the variance generated by 
the modelling type (S‐SDMs vs. MEMs) to other sources of variance, 
such as the climate projection or the model algorithm (Diniz‐Filho et 
al., 2009; Thuiller et al., 2019), may help evaluating whether MEMs 
are a potential alternative to S‐SDMs for predicting future species 
richness patterns. Furthermore, conducting such a comparison in a 
spatial context allows investigating the consistency of model vari-
ance (i.e. uncertainty) as well as their sources for different areas of 
the world.

Here, we compare species richness predictions of MEMs and 
S‐SDMs under current and future climatic conditions in order to 
evaluate regression‐based macroecological richness models (MEMs) 

as a potential alternative for predicting future species richness pat-
terns. More specifically, we assess (A) whether MEMs and S‐SDMs 
provide accurate predictions of current global vertebrate richness, 
(B) whether and where MEMs and S‐SDMs provide congruent or di-
vergent future predictions of global vertebrate richness across mul-
tiple taxa (amphibians, birds and mammals), and (C) if the variance in 
species richness predictions is lower between model types (S‐SDMs 
or MEMs) in comparison to other sources of variance (model algo-
rithms and climate models).

2  | MATERIAL S AND METHODS

The methods for species data, climate data and S‐SDMs were per-
formed following the same procedure as Hof et al. (2018) and thus 
are only described briefly here.

2.1 | Species data

Species presence data for three taxonomic groups (amphibians, 
birds and mammals) were derived from expert extent‐of‐occur-
rence (EOO) range maps provided by BirdLife International and 
NatureServe (2015) and the International Union for Conservation 
of Nature (2016). Range maps were gridded to a spatial resolution 
of 0.5° using the raster package (Hijmans 2017) in R (R Core Team, 
2018). Polygons were first rasterized as lines and then as polygons in 
order to include also cells that are touched by the polygon bounda-
ries, which is particularly important when considering coastal areas 
and islands. Only polygons where a species was extant or probably 
extant, occurred natively and was resident or occurred regularly dur-
ing the breeding season were considered (this information is part of 
the expert range map data).

Pseudo‐absence data for each species was generated by ran-
domly selecting absences, equal to the number of presences or 
1,000 absences for all species with less than 1,000 presences, using 
a distance‐weighted approach, where the probability of randomly 
selecting a point decreases by 1/(De^2) where De is the distance 
from the range edge. This way the risk of only sampling absences 
close to the range of a species was reduced (Barbet‐Massin, Jiguet, 
Albert, & Thuiller, 2012; Thuiller, 2004), whereas at the same time 
avoiding to extensively sample too far beyond the range of a species, 
where absences are likely to occur due to non‐bioclimatic reasons 
(Anderson & Raza, 2010).

2.2 | Bioclimatic variables

Current bioclimatic variables were derived from 30‐year (1980–
2009) monthly means of minimum temperature, maximum temper-
ature and precipitation extracted from the meteorological forcing 
dataset ‘EartH2Observe, WFDEI and ERA‐Interim data Merged 
and Bias‐corrected for ISIMIP’ (EWEMBI; Lange, 2016) using the 
‘dismo’ package (Hijmans, Phillips, Leathwick, Elith & Hijmans, 
2017) in R (R Core Team, 2018). The EWEMBI dataset provides 
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bias‐corrected global daily climate data at a spatial resolution of 
0.5° and was specifically compiled for impact assessments of a 
1.5°C global warming above pre‐industrial levels (Lange, 2016).

Future bioclimatic variables were derived from 30‐year monthly 
means (2066–2095) of bias‐corrected general circulation model (GCM) 
data from Coupled Model Intercomparison Project Phase 5 (CMIP5 
produced by the Inter‐Sectoral Impact Model Intercomparison Project 
(ISIMIP) phase 2b, considering two Representative Concentration 
Pathways (RCPs), RCP2.6 and RCP6.0, and four different GCMs, 
GFDL‐ESM2M, HadGEM2‐ES, IPSL‐CM5A‐LR and MIROC5 (Frieler 
et al., 2017; Taylor, Stouffer, & Meehl, 2012). RCP2.6 represents a 
low emission scenario within CMIP5, which is depending on the GCM 
considered in line with a 1.5–2°C warming scenario, whereas RCP6.0 
represents a no mitigation scenario under the shared socioeconomic 
pathway SSP2 (Frieler et al., 2017).

After pre‐selecting the 10 most commonly used variables from the 
literature (see Porfirio et al., 2014), we used all possible combinations of 
three and four bioclimatic variables with a Pearson's collinearity <0.7. 
For a representative subset of 10% of the species of each taxon we 
built Generalized Additive Models (GAMs) for each of these variable 
combinations and for each taxon selected the variable combination, 
resulting in the largest number of species with SDM models of high ac-
curacy (highest area under the curve (AUC; Fielding & Bell, 1997)). For 
birds and mammals, the final variables were temperature seasonality 
(bio4), maximum temperature of the warmest month (bio5), annual pre-
cipitation (bio12) and precipitation seasonality (bio15). For amphibians, 
the variables were temperature seasonality (bio4), maximum tempera-
ture of the warmest month (bio5), precipitation of the warmest quarter 
(bio18) and precipitation of the coldest quarter (bio19; Figure S1).

2.3 | S‐SDMs

SDMs were fitted using two different modelling approaches, an 
additive (Generalized Additive Model, GAM) and a regression tree 
based modelling approach (Generalized Boosted Regression Models, 
GBM). Both approaches are widely used, as they have a good per-
formance and discrimination capacity (Araújo, Whittaker, Ladle, & 
Erhard, 2005; Elith, Kearney, & Phillips, 2010; Meynard & Quinn, 
2007). GAMs were fitted using a Bernoulli response with a logit link 
and thin‐plate regression splines using the ‘mgcv’ package in R (R 
Core Team, 2018; Wood, 2003, 2006, 2011). GBMs were built with 
the ‘gbm’ package in R (R Core Team, 2018; Ridgeway, 2017) using 
cross‐validation to optimize the parameter settings for the learning 
rate (0.01 and 0.001), tree complexity (1, 2 and 3) and number of 
trees (1,000–10,000) for each species (Bagchi et al., 2013).

Species distribution data often exhibit spatial autocorrelation, 
which can bias parameter estimates and error probabilities (Kühn, 
2007). We reduced the effect of spatial autocorrelation in the SDMs 
by applying two different methods. For species with more than 50 
presences, we divided the world into 10 blocks, based on a repre-
sentative subset of the climatic space of each of the world's ecore-
gions, as defined by Olson et al. (2001) and built 10 models leaving 
one block out at a time, using the left out block for model evaluation 

(Bagchi et al., 2013). For range‐restricted species (≤50 presences), 
we split the data into 10 datasets by repeatedly randomly select-
ing 70% of the data, using the left‐out 30% for model evaluation. 
Species occurring in less than 10 grid cells were not considered in 
this analysis (3,318 amphibians, 896 birds, 968 mammals).

The performance of the fitted SDMs was evaluated by calculat-
ing the overall AUC for each species (the average AUC across the 
10 blocks and the 10 sets of pseudo‐absences) and models with an 
overall AUC smaller than 0.7 were dropped (64 amphibians, 149 
birds, 332 mammals). This left us with SDMs for 2,964 amphibian, 
8,493 terrestrial bird and 4,039 terrestrial mammal species, which 
represents more than 85% of the entire species set across more than 
80% of the considered area (amphibians  =  96.8%, birds  =  83.3%, 
mammals 90%, Figure S5). The use of AUC as a correct metric for 
model evaluation is debatable (Hirzel, Le Lay, Helfer, Randin, & 
Guisan, 2006; Leroy et al., 2018; Lobo, Jiménez‐Valverde, & Real, 
2008), as is the use of other metrics (Fourcade, Besnard, & Secondi, 
2018). However, given that we have performed a rigorous variable 
selection procedure and a spatial blocking cross‐validation, as sug-
gested by Fourcade et al. (2018) to avoid the inflation of SDM perfor-
mance scores, we are confident that the selected models are robust.

Future species distributions were derived by predicting the models 
using future bioclimatic variables. They were limited by the extent of 
neighbouring zoogeographic realms, as defined by Holt et al. (2013), 
to avoid predictions for areas that mirror analogue climatic conditions. 
To account for the unlikely assumption of unlimited dispersal of each 
species within realms, we also applied a species‐specific dispersal buf-
fer. Species‐specific dispersal distances are still unavailable for most 
species considered here (Nathan, Klein, Robledo‐Arnuncio, & Revilla, 
2012), thus we limited the dispersal of each species by applying a buffer 
of d/4 to the range polygon, where d is the diameter of the largest range 
polygon of a species, and by clipping the current and future predictions 
of each species by the buffered range polygon. This approach builds 
upon previous studies (i.e. Barbet‐Massin & Jetz, 2015), but rather than 
taking one or multiple buffer distances which are kept constant for all 
species, a species‐specific buffer distance according to the species’ 
largest range extent was used (also see Hof et al., 2018). This is in line 
with a study by Whitmee and Orme (2013), who found that dispersal 
distance is species‐specific and together with home range area and 
body mass is mostly explained by geographical range size. To verify this 
approach, we explored the impact of choosing a specific dispersal cor-
rection factor on the results by comparing the low dispersal scenario 
(d/4) to several larger dispersal scenarios (d/2, d and 2*d) as well as to 
a no dispersal and a full dispersal scenario (Figures S2, S3, S7 and S8).

The current and future raw probabilities of occurrence of the in-
dividual SDMs were then stacked without thresholding, following 
the procedure suggested by Calabrese et al. (2014), to derive current 
and future predictions of species richness for each of the three taxa.

2.4 | MEMs

For the MEMs, we used the same gridded range data, but only of 
the species that we used for the S‐SDMs, and combined these to 
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create gridded species richness data for each taxon. The resulting 
species richness values per grid cell were then used as response 
variable for the MEMs using the same explanatory variables as for 
the SDMs to allow for a direct comparison. In order to avoid the 
violation of key statistical assumptions (Dormann, 2007), spatial au-
tocorrelation was again reduced by applying the ecoregion‐blocking 
approach described above (Bagchi et al., 2013; Hof et al., 2018).

MEMs were fitted using the same modelling approaches as for 
the SDMs. GAMs were this time fitted using a Poisson response 
with a logit link using thin‐plate regression splines (Wood, 2003, 
2006, 2011). GBMs were again conducted using the ‘gbm’ pack-
age in R (R Core Team, 2018; Ridgeway, 2017) following the same 
procedure as for the SDMs, but using a Poisson distribution. The 
model parameters were again optimized using cross‐validation, 
but this time using three different learning rates (0.1, 0.01, 0.001), 
as otherwise optimal models had too few trees (number of trees 
<1,000).

MEMs were fitted and predicted using the same current and fu-
ture climatic data as for the SDMs. Dispersal scenarios do not apply 
to MEMs, as they are inherently included in the models.

To evaluate the model fit of the MEMs we calculated the Root 
Mean Square Error (RMSE; Wilmott, 1981) between EOO‐based and 
modelled species richness (see Table S1).

In addition to the MEMs using species richness based on the spe-
cies sets modelled in the S‐SDMs, we also ran MEMs using species 
richness of each taxon with the respective entire species set (6,381 
amphibians, 9,885 birds, 5,276 mammals) as explanatory variable to 
see how incorporating all species would influence the output of our 
MEMs (see Figures S6, S15 and S16).

2.5 | Model comparison

While predictions of current species richness can be evaluated by 
the observed data used for fitting the models, it is impossible to 
compare the performance of future predictions of S‐SDMs and 
MEMs, due to the lack of future data for validation.

However, it is possible to compare the geographical patterns in fu-
ture species richness resulting from S‐SDM and MEM predictions and 
compare the variance in species richness of S‐SDM and MEM in rela-
tion to other sources of variance, such as the model algorithms (GAM 
or GBM) or the GCMs. For this, we used two different approaches, 
hierarchical cluster analysis and variance partitioning.

Predicting future richness using two different model types (S‐
SDMs and MEMs), two model algorithms (GAM and GBM) and four 
GCMs (GFDL‐ESM2M, HadGEM2‐ES, IPSL‐CM5A‐LR and MIROC5) 
resulted in 16 different predictions for each taxon under each RCP.

We performed a hierarchical cluster analysis to evaluate the sim-
ilarity of these 16 predictions for each taxon and each RCP. For this 
we created a distance matrix of the different predictions using the 
Euclidean distance measure. Hierarchical clustering was then per-
formed on the distance matrix using the complete linkage method 
within the hclust function of the ‘stats’ package in R (R Core Team, 
2018).

To further identify the sources that contribute to the variance in 
the patterns of predicted future species richness across each grid cell, 
we performed a three‐way Analysis of Variance (ANOVA) without 
replication (Legendre & Legendre, 1998; Sokal & Rohlf, 1995) for each 
grid cell separately. For this we used species richness as the response 
variable and model type (S‐SDM and MEM), model algorithm (GAM 
and GBM), GCM (MIROC5, HadGEM2‐ES, IPSL‐CM5A‐LR, GFDL‐
ESM2M) and their interactions as explanatory variables (see Diniz‐
Filho et al., 2009). We did this for each of the two RCPs (RCP2.6 & 
RCP6.0) and each of the three taxa (amphibians, birds and mammals) 
separately. The proportion of the sum of squares from each of these 
sources (and their interactions) of the total sum of squares is an esti-
mate of the variance that can be attributed to one of the sources (see 
Table 1). Note that the variance determined by the full interaction 
cannot be differentiated from the residual variance (the part of vari-
ance that is not explained by any of the factors or their interactions). 
Doing this for every grid cell individually allows us to display spatial 
differences and so identify regions of low and high variance among 
the different sources.

TA B L E  1   Relative contributions to the overall variation in predicted future species richness from different sources of variance

Source

RCP2.6 RCP6.0

Amphibians Birds Mammals Amphibians Birds Mammals

Model algorithm 4.51 6.45 5.52 3.86 6.99 4.76

Model type 32.7 42.0 54.6 36.3 35.7 54.3

GCM 19.9 12.6 8.73 20.6 15.0 9.20

Algorithm * type 4.25 4.95 5.66 3.58 5.42 4.98

Algorithm * GCM 1.20 1.72 1.51 1.32 2.13 1.61

Type * GCM 4.61 2.75 2.53 5.48 3.66 2.93

Algorithm * type * GCM 1.17 1.16 1.29 1.25 1.41 1.53

Note: Values represent median proportions (%) of the total sum of squares from the three‐way ANOVA performed for each grid cell evaluating the 
relative contributions of model type, model algorithm, general circulation model (GCM), as well as their interactions to the variance of predicted 
future species richness for the two different RCPs, separately for each taxon. Note that the variance determined by the full interaction cannot be 
differentiated from the residual (unexplained) variance.
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One major benefit of MEMs is that they can be applied for all 
species (see Figures S6, S15 and S16), including rare and small‐
ranging ones, which cannot be modelled using SDMs. Therefore, 
we performed a sensitivity analysis on how the species coverage 
(see Figure S5) affects the similarity and variance contribution 
of the different future predictions (see Figures S21 and S22, 
Table S2).

3  | RESULTS

3.1 | Current patterns of species richness

Current ensemble predictions of species richness based on S‐SDMs 
and MEMs both had a high correlation with EOO‐based species rich-
ness across all three taxa (R2 = 0.77–0.92; Figure 1a–f and Table S1). 

F I G U R E  1   EOO‐based versus current predicted species richness for each grid cell per taxon for ensemble models (average among GCMs 
and model algorithms) of (a), (b), (c) MEMs and (d), (e), (f) S‐SDMs and (g), (h), (i) the correlation between S‐SDMs and MEMs. S‐SDMs were 
performed using a low dispersal scenario (d/4). MEMs were performed using the same species as for the S‐SDMs. Black lines represent the 
fit of the respective regression, with the model equation and the R2 value given in black as well. Perfect fits would have intercepts of 0, 
slopes of 1 and a R2 value of 1 (dashed grey line)
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However, both model types over‐predicted richness in species‐poor 
sites and under‐predicted richness in species‐rich sites (Figure 1). 
The relationship between EOO‐based and predicted current rich-
ness varied among the different model algorithms used. For the S‐
SDMs, the GAM algorithm showed a better fit (intercept closer to 
0 and slope closer to 1) than the GBM algorithm, whereas for the 
MEMs, it was vice versa (Table S1).

For S‐SDMs the relationship between EOO‐based and predicted 
richness under current conditions varied with the dispersal assump-
tion used. Under a no‐dispersal scenario S‐SDMs always under‐pre-
dicted richness, whereas dispersal scenarios with a large dispersal 
buffer (d/2, d, 2*d and full dispersal) always over‐predicted richness 
(Figures S2 and S3). Under a low dispersal scenario (d/4), current pre-
dictions derived from S‐SDMs provided a better fit with EOO‐based 
species richness than MEMs. This was consistent across all three 
taxa (Figure 1) and across the different model algorithms (Table S1). 
Nevertheless, current predictions of MEMs and S‐SDMs showed a 
strong correlation (R2 > 0.8; Figure 1g–i).

When we compared the spatial patterns of EOO‐based and 
predicted current richness, we found that both MEMs and S‐
SDMs largely reproduced the global variation in vertebrate rich-
ness (Figure 2, Figure S4). S‐SDMs provided a better fit with 
EOO‐based richness patterns (53.3%–77.6%) compared to MEMs 
(22.4%–46.7%). S‐SDMs were in particular much better in areas of 
high species richness, that is across most parts of South America 
(Figure 2).

Running MEMs for all vertebrate species overall resulted, as ex-
pected, in on average about 8.55% (2.27% amphibians, 12.4% birds, 

9.64% mammals) higher richness estimates, although in some areas 
predicted current species richness got smaller (Figure S6).

3.2 | Future patterns of species richness

The correlations between future richness predictions from S‐SDMs 
and MEMs were weaker (R2 = 0.78–0.81) than those between current 
richness predictions. This was also reflected by the spatial pattern 
of future predictions, which showed large deviations in particular in 
areas of high species richness, i.e. central South America and central 
Africa, for both RCPs (Figure 3, Figures S7 and S8). Future predictions 
derived from S‐SDMs varied with the dispersal assumption used and 
under a low dispersal scenario (d/4) provided the best fit with predic-
tions derived from MEMs (Figures S9 and S10). The correlation and 
spatial consistency of future richness predictions from MEMs and S‐
SDMS was even weaker when looking at the absolute (R2 < 0.55) and 
relative change (R2 < 0.5) in species richness between current and fu-
ture predictions (see Figures S11–14). Future predictions from MEMs 
for the entire species set differed on average by around 8% (2% am-
phibians, 12% birds, 9% mammals) from MEMs that used only the spe-
cies that could also be modelled with SDMs (Figures S15 and S16).

Comparing the similarity in future predictions among model 
type, model algorithm and GCM, we found that predictions with dif-
ferent model types (i.e. S‐SDM vs. MEM) are least similar, followed 
by predictions with different model algorithms (i.e. GAM vs. GBM). 
MEMs showed a stronger similarity in predictions across model algo-
rithms and GCMs than S‐SDMs. All these patterns were consistent 
across the two RCPs (Figure 4, Figure S17).

F I G U R E  2   Residuals of current ensemble predictions (average among model algorithms) from (a), (d), (g) MEMs (EOO – MEM), (b), 
(e), (h) S‐SDMs (EOO – S‐SDM) and (c), (f), (i) the model type with the lower residual per taxon (black = MEM, grey = S‐SDM). Current 
species richness maps derived from EEO range maps, MEMs and S‐SDMs can be found in Figure S4. S‐SDMs were performed assuming 
a low dispersal (d/4). MEMs were performed using the same species, as for the S‐SDMs. Maps are in Mollweide equal‐area projection 
(EPSG:54009), the dashed line denotes the Equator [Colour figure can be viewed at wileyonlinelibrary.com]
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Assessing the sources of variance in future species richness pre-
dictions, we found that model type (SDMs vs. MEMs) contributed 
on average to 42.6% of the total amount of variance, depending on 
the taxon and RCP considered (32.7%–54.6%). In most cases the 
other factors altogether did not contribute as much as model type 
did (25.0%–36.1%). Overall, GCM was the factor with the second 
largest contribution to the amount of variance (about 8.73%–20.6%), 
followed by model algorithm (about 3.86%–6.99%). The interaction 
between model type and GCM as well as model type and model algo-
rithm contributed as much as model algorithm alone to the amount 
of variance, whereas the interaction between model algorithm and 
GCM and the full interaction was negligible. All patterns were con-
sistent across the two RCPs considered (Table 1).

Looking at the sources of variance in species richness from a 
spatial perspective, we found that the used model type mostly 
explained the variance in the majority of areas across the globe. 
However, there were also some areas, that is along the Andes, east 
of the Caspian Sea and along the coast of Algeria, where most of 
the variance in future richness was explained by the model algo-
rithm, whereas the north‐east of the United States of America, 
northern Europe and some parts of South America and Africa 

also showed a high variance among the GCMs (Figure 5). The east 
coast of the United States of America, parts of Brazil as well as 
the northern coast of Africa also showed a high interaction among 
model algorithm and model type, whereas the other interactions 
showed no particular peaks in relative contributions (Figure S18). 
Again, all these patterns were very similar across the two RCPs 
(Figure 5; Figures S18–20).

The results of the cluster analysis and the variance partitioning 
showed no sensitivity to the percentage of species covered (Figures 
S21 and S22, Table S2).

4  | DISCUSSION

Our findings suggest that under current conditions, both MEMs 
and S‐SDMs produce predictions that well resemble EOO‐based 
species richness patterns, though with over‐predictions in areas of 
low and under‐predictions in areas of high species richness. While 
future predictions of species richness also showed a relatively high 
correlation between S‐SDMs and MEMs, we found considerable 
divergence especially when focusing on the predicted changes 

F I G U R E  3   Future species richness per taxon according to ensemble predictions (average among GCMs and model algorithms) of (a), (d), 
(g) MEMs and (b), (e), (h) S‐SDMs and (c), (f), (i) their correlation in 2080 under the RCP2.6 scenario. S‐SDMs were performed assuming a low 
dispersal scenario (d/4). MEMs were performed using the same species, as for the S‐SDMs. Maps are in Mollweide equal‐area projection 
(EPSG:54009), the dashed line denotes the Equator. Future species richness maps under RCP6.0 can be found in Figure S9. Black lines 
represent the fit of the respective regression, with the R2 value given in black as well. Perfect fits would have a R2 value of 1 (dashed line) 
[Colour figure can be viewed at wileyonlinelibrary.com]
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under future conditions. When comparing different sources of 
variance in species richness predictions, model type, that is MEM 
or S‐SDM, was the factor that explained the highest amount of 
variance.

4.1 | Current patterns of species richness

MEMs and S‐SDMs both provided reliable predictions of EOO‐based 
global vertebrate richness at a 0.5° resolution. This is in line with 
previous studies (Calabrese et al., 2014; Distler et al., 2015; Dubuis 
et al., 2011), which compared the fit of MEMs and S‐SDMs across 
various scales and taxonomic groups.

MEMs and S‐SDMs both under‐predicted areas of low spe-
cies richness and over‐predicted areas of high species richness 
(Figure 1a–f), which has also been found by Harris et al. (2018). 
Guisan and Rahbek (2011) argued that MEMs could be used to 
improve S‐SDM predictions, as the latter consistently over‐pre-
dict species richness, whereas Calabrese et al. (2014) and Dubuis 
et al. (2011) demonstrated that the over‐prediction of S‐SDMs is 
largely driven by incorrect stacking of individual SDMs. Results of 
SDMs generally represent probabilities of occurrence of species. 
These occurrence probabilities can be converted into presence/
absence data using various thresholding approaches (i.e. see Liu, 
Berry, Dawson, & Pearson, 2005), some of which are typically bi-
ased by species prevalence (Leroy et al., 2018; Lobo et al., 2008). 

This leads to an over‐prediction of the distribution of small‐rang-
ing (low prevalence) species and thus stacking of thresholded SDM 
outputs typically results in over‐predictions of observed species 
richness values. Our study, in line with Dubuis et al. (2011) and 
Calabrese et al. (2014), highlights once more that using the raw 
output of SDMs for stacking is the preferable methodology, as it 
results in a high correlation of species richness predictions from 
S‐SDMs and MEMs.

MEMs performed worse for taxa where species richness was 
low (in our case amphibians) than for taxa with higher species rich-
ness values (birds and mammals). This appears to be in line with a 
study by Rahbek et al. (2007), which showed that models for the 
highest richness‐quartile of birds performed better than models for 
the lower richness‐quartiles. This might also be the reason why Da 
Mata et al. (2017) found that MEMs highly underestimate richness 
of Drosophilid species across the Cerrado biome in South America, 
as the maximum Drosophilid richness was only 92.

It has to be noted that for our analyses we had to exclude a 
large number of species which could not be modelled by SDMs due 
to their small geographical ranges, that is their low number of oc-
currence records. We also excluded these species from the MEM 
analyses to allow for consistency in the comparison between MEMs 
and S‐SDMs, but additionally also provided the MEM results for the 
entire species set (Figures S6, S15 and S16). Even though S‐SDMs 
outperformed MEMs in the prediction of species richness especially 

F I G U R E  4   Dendrogram of a hierarchical cluster analysis of the future species richness estimates for the 16 combinations of model type 
(S‐SDM, MEM), model algorithm (GAM, GBM) and general circulation model (MIROC5, IPSL.CM5A.LR, HadGEM2.ESM, GFDL.ESM2M) for 
each taxon under the RCP2.6 scenario. The dendrograms for RCP2.6 and RCP6.0 (Figure S17) are very similar
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in the areas of high species richness (Figure 2), the ability of MEMs 
to include these range‐restricted species is an advantage, as they 
can capture the impacts of climate change on entire taxa. However, 
we stress that range‐restricted species are more affected by habi-
tat type, whereas large‐ranging species are more limited by climatic 
zones and biome types (Brown & Maurer, 1989); thus applying cli-
mate‐only models to small‐ranging species might not reflect biolog-
ical patterns.

Spatial variation in species richness is not only driven by cli-
mate, which we considered here, but also by other factors such 
as topography (Davies et al., 2007; Rahbek & Graves, 2001), pro-
ductivity (Coops, Kearney, Bolton, & Radeloff, 2018) and land use 
(Kehoe et al., 2017). The factors which explain the variation in 
species richness depend strongly on the spatial scale considered 
(i.e. see Chase et al., 2018). Both, MEMs and S‐SDMs could poten-
tially be improved using high‐resolution climatic and non‐climatic 
factors. Baudraz et al. (2018) showed that land use and very high‐
resolution topo‐climatic factors can improve MEMs for predicting 
mountain grassland species richness in the Swiss Alps, whereas 
Seo, Thorne, Hannah and Thuiller (2008) highlighted the influence 
of spatial scale on the accuracy of SDM predictions. However, for 
SDMs the appropriate spatial resolution depends on the species 
considered, as large and mobile organisms might be well‐repre-
sented by large‐scale climatic conditions, whereas small and less 
mobile species might not (Nadeau, Urban, & Bridle, 2017). This also 
strongly depends on the data source considered, as range maps 
at a high resolution typically result in incorrect spatial patterns of 

species richness (Hurlbert & Jetz, 2007). Thus, models based on 
expert range maps should ideally be performed on a rather coarse 
resolution, and high‐resolution global occurrence data for a repre-
sentative number of vertebrate species is currently still unavailable.

5  | FUTURE PAT TERNS OF SPECIES 
RICHNESS

Future predictions of MEMs and S‐SDMs also showed a high cor-
relation (R2  >  0.75, Figure 3c,f,i), but were quite different when 
looking at the predicted future change in species richness (Figures 
S11–14). This is in contrast to the results from Distler et al. (2015), 
who found that predicted changes in summer and winter bird 
species richness of North America are consistent across S‐SDMs 
and MEMs. The difference between their and our study might be 
due to the fact that Distler et al. (2015) did not use range maps, 
but point occurrence data from the Audubon Christmas Bird 
Count and North American Breeding Bird Survey. This leads to 
the question whether range maps should be used in SDMs, which 
has been extensively discussed elsewhere (e.g. Ficetola et al., 
2014; Fourcade, 2016; Gaston & Fuller, 2009; Herkt, Skidmore, 
& Fahr, 2017; Pineda & Lobo, 2012). Despite their limitations, ex-
pert range maps provide one of the most comprehensive global 
biodiversity datasets with little spatial and taxonomic bias, unlike 
global data collection initiatives, like GBIF (Meyer et al., 2015). 
There is a growing body of literature comparing range maps with 

F I G U R E  5   Proportion of the total sum of squares among the three taxa accounted for by (a), (b), (c) model algorithm, (d), (e), (f) model 
type and (g), (h), (i) general circulation model (GCM) under the RCP2.6 scenario. Maps of the other sources of variance and their interactions, 
as well as the results for the RCP6.0 scenario, can be found in Figures S18–20. Maps are in Mollweide equal‐area projection (EPSG:54009), 
the dashed line denotes the Equator [Colour figure can be viewed at wileyonlinelibrary.com]
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different sources of occurrence records for different regions and 
taxa (i.e. see Barbosa, Estrada, Márquez, Purvis, & Orme, 2012; 
Fourcade, 2016; Herkt et al., 2017; Meyer et al., 2015), coming to 
mixed conclusions; however, EOO range maps are still widely used 
in macroecological research (Belmaker & Jetz, 2015; Hof et al., 
2018; Slavenko & Meiri, 2015; Thuiller et al., 2019; Torres‐Romero 
& Olalla‐Tárraga, 2015; Zurell et al., 2018). Being aware of these 
recent discussions and acknowledging the limitations and cave-
ats when using EOO range maps, we think that they remain valid 
for our purpose of comparing different modelling types for coarse 
species richness predictions.

Evaluating whether S‐SDMs or MEMs provide better predic-
tions of future species richness is a challenge that will remain unre-
solved, due to the lack of future data for validation. However, Harris 
et al. (2018) used observed data from two time spans (1982–2003 
vs. 2004–2013) to directly compare predictions of different model 
types using high‐resolution bioclimatic and satellite variables. They 
found that when predicting breeding bird richness of the continental 
US from one time span to the other, MEMs performed better than 
S‐SDMs.

Even if S‐SDMs and MEMs are built using the same environmen-
tal variables, the two approaches answer different questions and 
rely on different assumptions which we briefly discuss here:

SDMs try to capture the realized niche of a species, by defining 
the boundaries of a species’ geographical range using environmental 
variables. Future predictions from SDMs thereby assume that the re-
alized niche and its drivers are stable across space and time (Guisan 
& Thuiller, 2005; Guisan & Zimmermann, 2000; Huntley, Bartlein, 
& Prentice, 1989; Pearman, Guisan, Broennimann, & Randin, 2008), 
often termed niche‐conservatism, but also that the distribution of a 
species is well‐known and near equilibrium (Holt, 2009). However, 
niche‐conservatism is strongly debated (Pearman et al., 2008; Wiens 
& Graham, 2005), especially the question whether niches will remain 
stable under novel future climates (Veloz et al., 2012).In contrast to 
S‐SDMs, MEMs try to establish a direct relationship between envi-
ronmental variables and species richness and assume that the en-
vironment constrains the number of species that can co‐exist in an 
area (Guisan & Rahbek, 2011). This relationship is mainly driven by 
climate, productivity, environmental heterogeneity, disturbance and 
history (Currie et al., 2004; Field et al., 2009) and strongly depends 
on the spatial scale considered (Field et al., 2009; Whittaker, Willis, 
& Field, 2001). The direct underlying mechanisms behind this are 
still discussed, but are obviously driven by evolutionary and biogeo-
graphic processes, that is speciation, extinction and dispersal, which 
again assume niche conservatism (Wiens & Donoghue, 2004).

These inherent differences between S‐SDMs and MEMs are also 
reflected in the variable contribution to the model fit, which is quite 
different among the two model types (Distler et al., 2015). While both 
approaches do not consider population dynamics, S‐SDMs further 
have the advantage that they consider species‐specific responses to 
climatic change rather than one general response as in MEMs.

When partitioning the variance of the future predictions of spe-
cies richness into different sources, we found that model type was 

the largest variance source, followed by GCM and model algorithm 
(Table 1, Figure 5). Diniz‐Filho et al. (2009) applied the same ap-
proach to S‐SDMs of birds in the New World and found that model 
algorithm, followed by GCM and their interaction, accounted for 
the largest amounts of variance in the forecasts. A recent study by 
Thuiller et al. (2019) further found that the variation in S‐SDMs for 
global vertebrates is mostly driven by the choice of model algorithm 
and RCP. Their and our findings suggest that considering different 
modelling approaches and algorithms is often more important than 
accounting for the variation resulting from different GCMs. This con-
clusion is particularly important if time or computational resources 
are limited. In addition to these sources of variance, the spatial and 
temporal scale as well as the taxonomic level considered influence 
the forecast horizon (Harris et al., 2018; Petchey et al., 2015). Thus, 
future studies should assess whether our findings still hold when 
looking at different spatial and temporal resolutions and different 
taxonomic levels.

While variation in GCMs and model algorithm is usually dealt 
with by creating ensemble means to reduce the complexity of re-
sults, we refrain from combining the predictions of MEMs and S‐
SDMs into one ensemble prediction of species richness, as this 
would only add an additional step of complexity without any clear 
benefit. However, using MEMs to constrain predictions of S‐SDMs 
(as suggested by Guisan & Rahbek, 2011), has recently been shown 
to improve species richness predictions (D'Amen et al., 2017) as well 
as predictions of community similarity, composition and turnover 
(Di Febbraro et al., 2018; Del Toro, Ribbons, Hayward, & Andersen, 
2018). Independent of the model type used, we want to stress the 
importance of following existing model documentation standards 
and communicating model uncertainty in order to increase the use-
fulness of results for conservation practitioners as well as decision 
makers, as has been recently highlighted by Rapacciuolo (2019) and 
Thuiller et al. (2019).

6  | CONCLUSIONS

With this study, we aimed to compare patterns of species richness 
predicted by macroecological models (MEMs) and stacked species 
distribution models (S‐SDMs). Our findings show that under current 
conditions the patterns rendered by the two model types do closely 
resemble the global variation in EOO species richness. However, the 
two model types produce less collinear predictions of future species 
richness and model type by far contributes to most of the variation 
among future predictions. This suggests that both approaches are 
valid for coarse estimates of species richness at large geographic 
scales. However, the failure of both approaches to capture the full 
spectrum of global species richness variation calls for caution when 
trying to predict future richness, especially for the regions harbour-
ing the highest number of species.

MEMs are a potentially attractive alternative to S‐SDMs be-
cause of the lower number of model‐inherent assumptions, the 
drastic reduction in computational time compared to S‐SDMs, 



     |  125BIBER et al.

and their ability to be applied to taxa and regions for which spe-
cies‐richness estimates, but no species‐specific occurrence data 
are available. As MEMs do not perform much worse than S‐SDMs 
under current conditions, this suggests that they may be useful 
as a first quick explorative analysis or for outlining future species 
richness patterns, where running multiple S‐SDM is unfeasible. 
Since, as for any modelling exercise, it is impossible to assess the 
quality of future predictions directly, and predictions between 
model types vary considerably when looking at predicted changes 
in species richness, specific findings need to be interpreted with 
great care.
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