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Abstract

Autism spectrum disorders (ASD) are highly heritable and are characterized by deficits in social communication and
restricted and repetitive behaviors. Twin studies on phenotypic subdomains suggest a differing underlying genetic
etiology. Studying genetic variation explaining phenotypic variance will help to identify specific underlying
pathomechanisms. We investigated the effect of common variation on ASD subdomains in two cohorts including
>2500 individuals. Based on the Autism Diagnostic Interview-Revised (ADI-R), we identified and confirmed six
subdomains with a SNP-based genetic heritability hZSNp: 0.2-04. The subdomains nonverbal communication (NVC),
social interaction (SI), and peer interaction (PIl) shared genetic risk factors, while the subdomains of repetitive sensory-
motor behavior (RB) and restricted interests (RI) were genetically independent of each other. The polygenic risk score
(PRS) for ASD as categorical diagnosis explained 2.3-3.3% of the variance of SI, joint attention (JA), and PI, 4.5% for R,
1.2% of RB, but only 0.7% of NVC. We report eight genome-wide significant hits—partially replicating previous findings
—and 292 known and novel candidate genes. The underlying biological mechanisms were related to neuronal
transmission and development. At the SNP and gene level, all subdomains showed overlap, with the exception of RB.
However, no overlap was observed at the functional level. In summary, the ADI-R algorithm-derived subdomains
related to social communication show a shared genetic etiology in contrast to restricted and repetitive behaviors. The
ASD-specific PRS overlapped only partially, suggesting an additional role of specific common variation in shaping the
phenotypic expression of ASD subdomains.

Introduction diagnostic criteria according to DSM-5 (Diagnostic and
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heterogeneous  neurodevelopmental disorder. The social communication and interaction and (B) restricted
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estimates are reported previously®. Albeit high heritability
estimates in ASD, the genetic and biological contribution
of individual ASD domains remains largely unknown.
This can be attributed to its heterogeneous genetic and
phenotypic complex architecture. An approach to address
this difficulty and ravel the ASD complexity is to focus on
ASD phenotypic domains and subdomains, which have
been proposed to reduce genetic heterogeneity and thus
increase statistical power”.

The phenotypic independence of the two DSM-5
dimensions has been shown previously®. Categorizing
these domains further into independent phenotypic sub-
domains has shown evidence for an underlying strong
genetic susceptibility as published by Liu et al.>. Based on
the diagnostic algorithm items of the Autism Diagnostic
Interview-Revised (ADI-R), they identified 6 subdomains
in the Autism Genome Project (AGP) cohort, namely
joint attention (JA), social interaction and communication
(SI), nonverbal communication (NVC), and peer interac-
tion (PI) related to domain A, and repetitive sensory-
motor behavior (RB), compulsion/restricted interests, or
insistence on sameness (RI) related to domain B. Linkage-
based common-variant heritability of these ASD sub-
domains ranged between 29% (PI) and 65% (RI), which is
comparable to the additive SNP-based heritability of
40-60% or the twin-based additive genetic heritability of
62-81%>* of the categorical ASD diagnosis.

ASD domains and subdomains are likely to show dis-
tinct underlying genetic risk. Twin studies reported the
genetic correlation (r,) between domain A and domain B
to be ranging between ~10 and 50%, and varying between
males and females®. Another study investigating 189 twins
with at least one affected individual reported that the
overall co-twin co-trait correlations were small between
five phenotypic subdomains derived from the Develop-
ment and Wellbeing Assessment instrument’ (i.e., social,
communication, restricted repetitive behavior and inter-
ests, language development, and insistence on sameness
(1S))°.

The high genetic heritability and the low genetic cor-
relation between domains and subdomains suggest that
the previously reported statistically independent ADI-R
subdomains™” are also genetically independent. Evidence
for a genetic etiology further comes from a genome-wide
SNP-based linkage study on these subdomains®, which
identified two genetic loci, i.e., for JA (11q23) and RB
(19q13.3). In addition, numerous quantitative genome-
wide association studies (QGWAS) have focused on dif-
ferent ASD-related dimensional traits derived from the
ADI-R diagnostic algorithm (e.g., repetitive sensory-
motor behavior or IS)'%, the SRS total score'’, or single
items of the ADI-R'?, the ADOS and the SRS"2. None of
the reported genome-wide significant findings were
observed in another ASD subdomain or trait, or
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independently replicated in any study. This may be
attributed to small genetic effects or limited sample size'?;
still, it may also indicate a differing underlying genetic
etiology and implicated neurobiological mechanisms of
different ASD subdomains.

In addition, an overlap with common genetic risk for
ASD as categorical diagnosis has not been assessed in
previous studies. To capture the additional value of
studying phenotypic subdomains, their genetic correlation
with ASD as a categorical diagnosis also needs to be
explored. Regarding the small genetic effect of single
SNPs, a powerful approach to capture the role of common
genetic variation is to study the combined effect of SNPs
by a polygenic risk score (PRS). This approach has been
taken in ASD research to identify cross-disorder genetic
risk, to study the role of common variation in different
ASD subtypes, such as low and high IQ'*, and genetic
overlap with different traits observed in the population'®.
Given the polygenic etiology of ASD as categorical diag-
nosis and the assumed differential polygenic etiology of
variance in phenotypic subdomains, it is of prime interest
to study the overlap of general polygenic risk on ASD with
specific genetic risk for the subdomains.

Regarding the implicated neurobiology, similarly to the
assumed differential genetic risk, specific underlying
neurobiological mechanisms are expected for the different
ADI-R algorithm-based subdomains. Studies on neuro-
biological mechanisms in ASD as categorical diagnosis
converge with regard to abnormal neuronal function and
early-age brain growth abnormality’®. ASD-associated
genes are implicated in synaptic scaffolding, neuronal
transmission, chromatin remodeling, protein synthesis or
degradation, or actin cytoskeleton dynamics'®. Previous
research has also shown that ASD-associated genes are
involved in numerous biological processes, such as the
mammalian target of rapamycin (mTOR)17, Wnt'®, and
calcium (Ca2+) signaling pathways'®. Although these
pathways are well known for their role in ASD, there is
still a great need to understand how dysregulation of these
pathways is involved in modulating the subdomains of
ASD. From a biological perspective, we hypothesize that
the phenotypic domains of social interaction and stereo-
typed behavior show differential underlying patho-
mechanisms. This assumption is based on the observation
that genetic animal models for ASD show inconsistent
phenotypes. For example, Nlgn3 (Neuroligin) adult
knockout (KO) mouse model showed normal direct social
interaction, but was engaged in repetitive behavior®,
whereas Nrxn2a (Neurexin 2a) KO mice showed social
deficits, but did not exhibit stereotyped repetitive beha-
vior?!. Moreover, magnetic resonance imaging (MRI)
studies in humans have shown that inferior frontal gyrus,
amygdala, prefrontal, and temporal cortices are related to
defects in social language processing and social
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attention®>?3, whereas the orbitofrontal cortex and basal

ganglia have been associated with repetitive and stereo-
typed behavior of ASD**. Given the concept of ASD as an
early developmental disorder, another biologically plau-
sible argument for a differential genetic regulation of
ASD-related subdomains stems from the finding of dis-
tinct transcriptomic signatures during development of
these brain regions.

We hypothesize that distinct common genetic variants
will modulate ADI-R-derived ASD subdomains, which are
related to specific underlying biological processes, and
gene-regulatory signatures. Thus, we performed a
qGWAS on ADI-R-derived ASD subdomains dissecting
their genetic etiology, and investigated their relation to
the polygenic risk for ASD.

Materials and methods
Study cohort

We included a German (DE) cohort (7 = 625 trios, n =
53 duos, and # = 27 singletons) and the AGP cohort (n =
2730 trios and n=>5 duos). Diagnosis was based on
thorough clinical assessment using Social Communica-
tion Questionnaire (SCQ), ADI-R, and/or ADOS. Exclu-
sion criteria and QC were based on the AGP cohort®. For
final analysis, only the index patients (AGP n = 1,895, DE
n=614) with ADI-R and genotype information available
were included (Supplementary Material).

Genotype data

DE-cohort samples were genotyped on Illumina Human
Omni Express 12v1-H chips. AGP samples were cate-
gorized into stage 1 and 2 samples, genotyped on 550 K
[lumina, 510K Illumina, 1 M Single, and 1 M Duo Illu-
mina chips. However, all the stage 1 and 2 samples
included in this study were genotyped on 1M Illumina
chips. We performed quality checks of both datasets
separately. Genotype imputation was based on mini-
mac3”®. For detailed procedure and power analysis see
Supplementary Material and Yousaf et al.*’.

Statistical analysis

All statistical analyses were performed in R-3.4.4 if not
otherwise specified. For an overview of the analyses and
the cohorts used for those analyses, refer to Supplemen-
tary Fig. 1.

Imputation of phenotype data

From Liu et al.?, we selected the 28 “ever/most abnor-
mal” items from the ADI-R questionnaire available for
verbal and nonverbal individuals. Individuals with >10%
missing items were excluded. Missing scores were impu-
ted using multivariate imputation by chained equations
(MICE) applying predictive mean matching (pmm) in R
package mice*® (Supplementary Material).
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Define ADI-R subdomains

Subdomains were identified based on ADI-R data of the
AGP cohort using principal component analysis with
“varimax” rotation in R package psych® as published®.
Components were selected based on the Kaiser criterion.
Confirmatory factor analysis (CFA) was performed in the
DE cohort implementing R package lavaan. For iden-
tified components, the sum of items with loading above
0.4 was calculated (Supplementary Material).

Single-nucleotide polymorphisms (SNP)-based analysis

The implemented algorithms require large sample sizes.
To increase power, SNP-based analyses were performed
in the combined cohort (AGP and DE). For quantitative
GWAS, the sample size had a power of 1-beta > 80% to
explain 6% of the variance (R*=0.06) in the DE cohort,
1.5% in the AGP cohort, and 1.2% in the combined cohort
with a genome-wide significance threshold of alpha =
5e %, Power analysis was performed using Quanto (http://
biostats.usc.edu/Quanto.html). See the power analysis for
performing genetic heritability in the supplementary
material.

Polygenic risk scores (PRS)

To identify the shared etiology between an ASD diag-
nosis and the phenotypic subdomains, we performed a
polygenic risk score analysis implementing the Psychiatric
Genomics Consortium (PGC) summary statistics of ASDs
(see http://pgc.unc.edu). Polygenic risk score analysis was
performed using PRSice tool*! (Supplementary Material)
in the merged cohort. P values for shared etiology were
corrected using false discovery rate (FDR).

Genetic heritability and its correlation

SNP-based heritability (W snp) was calculated using the
GCTA software®® based on the genetic relationship
matrix (GRM) between pairs of individuals. For genetic
correlation (r,) analysis, bivariate genomic GREML ana-
lysis was performed in GCTA (Supplementary Material)
using the merged cohort.

Quantitative GWAS

SNP-based association analysis was performed in com-
bined as well as individual cohorts. However, for further
downstream analyses, we only used findings replicated in
the GWAS of individual cohorts. Linear mixed-effect
regression models with the subdomains as dependent
variables were applied with fixed effects for gender, age,
first four dimensions of the multidimensional scaling
results (population stratification) from plinkv1.9>® (Sup-
plementary Fig. 2), and with recruitment site of indivi-
duals as a random effect. The analysis was implemented
using R package Ime4**. Due to the high amount of
missing IQ values, we did not correct for IQ. Correlations
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Table 1 Descriptive statistics of samples with complete phenotype and genotype data.

AGP DE P Merged
N total 1895 614 2509
Age at diag. in months, mean (SD) 103.11 (58.52) 128.72 (74.19) <0.001° 109.38 (63.66)
Male gender, N (%) 1649 (87.02%) 525 (85.50%) 0373° 2174 (86.64%)
Female gender, N (%) 246 (12.98%) 89 (14.50%) 335 (13.35%)
IQ, mean (SD) 78.63 (24.44) 88.96 (23.30) <0.001° 80.99 (24.56)
1Q>70, N (%) 1145 (60.42%) 418 (74.51%) <0001P 1563 (62.29%)
IQ<70, N (%) 750 (39.58%) 143 (25.50%) 893 (35.59%)
Subdomains, mean (SD)
Social interaction (SI) 10.17 (3.24) 10.30 (343) 0.180° 10.20 (3.29)
Joint attention (JA) 12.86 (4.63) 11.92 (5.02) <0.001° 12.63 (4.74)
Peer interaction (PI) 731 (2.56) 730 (2.79) 08152 731 (261)
Nonverbal communication (NVC) 414 (2.24) 437 (2.21) 0023 4.19 (2.23)
Repetitive sensory-motor behavior (RB) 6.04 (2.97) 5.16 (3.25) <0.001° 5.83 (3.07)
Restricted interests (RI) 3.08 (2.03) 291 (1.90) 0.103° 3.04 (2.00)

DE German cohort, AGP Autism Genome Project cohort, diag. diagnosis, SD standard deviation.

“Wilcoxon test.
PChi-square test.
P: nominal P value comparing DE versus AGP cohort.

between IQ and the subdomains were minimal in both
samples (cor = —0.26-0.12).

Gene-based analysis
Gene-based association

This analysis was performed separately on the indivi-
dual cohorts based on their respective GWAS output. The
simultaneous joint effect of multiple SNPs was deter-
mined using Multimarker Analysis of GenoMic Annota-
tion (MAGMA) software package v1.06>. qGWAS results
of the individual cohorts were used. To reduce false-
positive findings, we included only genes with Pyermuted <
0.05 replicated in both datasets for further analysis.

Pathway and brain network analysis

The significant (Ppermuted <0.05) and overlapping genes
from the MAGMA analysis resulting from both the
cohorts were subjected to these analysis. Gene ontology
(GO) and pathway analysis was performed using GO-
Elite®®. Brain network analysis was based on published
gene lists of the 29 transcriptome modules (kindly pro-
vided by Dr. Kang) co-regulated during the development
of the human brain®’. Replicated genes from MAGMA
analysis for each subdomain were tested for enrichment
using Fisher-exact test.

Results
In our study, we refer domain A as the ASD domain
“Social interaction and social communication” domain,

whereas domain B refers to the “restricted repetitive
behaviors, interests, and activities” in ASD. The quanti-
tative traits in our study can be classified into either
domain A or domain B, i.e., SI, JA, PI, and NVC belong to
domain A, whereas RB and RI belong to domain B.

Descriptive data

Complete phenotypes and genotypes (N = 6,900,500
SNPs) were available for 1895 AGP and 614 DE cases
with no difference in gender distribution across
cohorts (P=0.373). The DE cohort was older at diag-
nosis and showed a higher IQ compared with AGP
sample (Table 1).

ADI-R algorithm-based subdomains

The AGP cohort satisfied the sample adequacy cri-
teria (Supplementary Table 1). Six subdomains (Sup-
plementary Table 2, Supplementary Fig. 3) were
identified and labeled as SI (five items), JA (eight
items), PI (four items), NVC (three items), RB (five
items), and RI (three items). The item “Conventional/
Instrumental gestures” loaded on SI and NVC, respec-
tively, and—in accordance with the previously pub-
lished study’—was included into NVC. CFA in the DE
cohort confirmed the structure (Supplementary Table
3). No differences with respect to SI, PI, and RI were
observed between cohorts (P,; > 0.1). JA and RB were
lower in the DE compared with the AGP cohort, while
NVC was higher (Py; <1 x 107 %, Table 1).
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Single-nucleotide polymorphism (SNP)-based analysis
Polygenic risk scores (PRS)

The ASD-PRS explained a significant (all P <2 x 107%)
proportion of genetic variance of all subdomains. The best
PRS model explained 3.3% of variance (R?) in SI and 2.3%
in JA and in PL In contrast, R*> was lower for NVC (0.7%)
and RB (1.2%), whereas for RI, the best model explained
4.5% of variance. P-value thresholds used for SNP selec-
tion of the subdomain GWAS in the best models ranged
from 0.031 to 0.411 (Fig. 1).

Genetic heritability (h*syp)

Significant Hgnp (P<0.05) was identified for all sub-
domains with the highest W2 gnp observed for SI (Hgap =
0.53, Pygjusted = 3.33 X 107'%), and the lowest for RB

(W snp = 0.21, P, gjusted = 6.72 x 107%) (Supplementary
Table 2).

Cross-trait correlations

The strongest r, was observed between SI and NVC (r,
=097, P=1.19x 10_11). Moderate correlations were
observed between SI and PI (r, = 0.79, P = 2.19 x 107%), SI
and JA (r,=0.67, P=7.47x10"'"), and SI and RI (r,=
0.64, P=42x10"7), while the least correlation was
observed between SI and RB (r,=0.10, P=0.280).
However, JA and PI were highly correlated (r,=1, P=
2.62x 10719, Moderate correlations were observed
between JA and NVC (r, = 0.66, P = 1.89 x 107°) and RI
(rg=0.55, P=1.35 x 10™%). The lowest r, with respect to
JA was observed with RB (r,=0.11, P=0.285). For PI,
middle-range correlation was observed with SI (r,=0.79,
P=219%x10"°, and NVC (r,=0.74, P=4.78 x 10,
whereas lower r, values were seen for RB (rg: 0.29, P=
0.127) and RI (r, = 0.25, P = 0.077). Lowest r, of NVC was
observed with RB (r, = 0.32, P = 0.040), whereas moder-
ate r, with RI (r,=0.68, P=1.0 x 10~ *). RB showed very
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interaction, NVC nonverbal communication, RB repetitive sensory-
motor behavior, Rl restricted interest.

low genetic correlation with RI (r,=0.15, P=0.213).
Overall, RB showed no significant r,, i.e., P < 0.05 with any
other subdomain (Fig. 2).

Quantitative GWAS

GWAS (combined cohort) identified eight genome-wide
significant SNPs (Fig. 3, Supplementary Fig. 4, Supple-
mentary Tables 4, 5), which are reported along with their
chromosomal position and closest gene as follows: four
were found for SI, ie., rs2095092, P=4.3x10"% at
1p31.3 (PAT)J), rs377634870, P = 4.8 x 10~ at 1p22.3 (no
gene within 10kb), rs34459814, P=25x10" at
7q11.23 (CLIP2), rs34083004, P=3.7 x 10~ °® at 7q11.23
(CLIP2), one for P, ie., rs10115292, P=1.8x 10 *® at
9p21.1 (no gene within 10kb), and three for RB, ie,
rs13274146, P=2.1x10"% at 8p21.3 (no gene within
10kb), rs7837513, P=4.2x10 " at 8p21.3 (no gene
within 10kb), and rs7824610, P=2.0 x 10~*° at 8q21.11
(no gene within 10 kb). No significant hit was identified
for RI. For locus plots, see Supplementary Fig. 5.

Gene-based analysis

MAGMA identified 292 replicated (DE and AGP cohort
Ppermuted < 0.05) genes associated with any of the sub-
domains (Fig. 4; Supplementary Tables 6-8). The 52
associated genes with SI were enriched for GO terms,
including “sensory perception”, and at brain level, the
childhood-activated co-regulated brain gene-network
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module 6 (beta =3.213, P = 0.042, P,g;=1). For JA, 35
genes were associated and nriched for GO terms, e.g.,
“carbohydrate and energy metabolism” and “chromatin
modification”. For PI, 59 genes were identified, which are
implicated in “hormone processing” and “plasma mem-
brane” processes. For NVC, 47 genes were enriched for
GO terms related to protein catabolism, and at brain level,
the brain-expressed module 27 (beta =3.297, P =0.039,
P,qj=1) was enriched. The brain-enriched module P
values were tested for multiple correction within the
individual subdomain but not across subdomains. RB-
associated 49 genes were enriched for “skeletal muscle
tissue development”, “DNA binding”, and “transmem-
brane receptor activity”. For RI, 59 genes were identified
and implicated in “postsynaptic” and “intracellular medi-
ated” signaling along with regulation of MAPKKK
(mitogen-activated protein kinase kinase kinase) cascade.

No genome-wide significant hit was overlapping
between subdomains. However, 149 nominal (P < 0.01)
SNPs were shared between SI, JA, and PI; 27 SNPs
between SI, PI, and NVC. No nominal overlaps were
identified between RI and any other phenotype. At gene
level Ppermuted < 0.05, we observed three overlapping
genes between SI and JA (GYSI, TTCI17, and PPMIN),
two genes between SI and PI (MNSI and IL20), one gene
between NVC and PI (TM4SF4), SI and RB (RGS10), JA
and PI (LHB), and JA and NVC (COBLLI) (Fig. 4).

Discussion

In this study, we studied common genetic variants for
their role in shaping the phenotypic variability of ASD.
We focused on ADI-R-derived phenotypic subdomains to
determine their underlying genetic etiology and possible
genetic and functional overlap. A large amount of var-
iance was not explained by the PRS, implicating additional
common and/or rare variation in the phenotypic expres-
sion of the subdomains. We also studied the r, of indi-
vidual subdomains and estimated the polygenetic risk for
ASD to explore if variability in subdomains may be
explained by general common genetic risk for ASD.
Measures explaining phenotypic heterogeneity often have
been studied as predictors of outcome in clinical trials®®
or of long-term outcomes®, but genetic studies aiming at
describing the genetic underpinnings of this phenotypic
heterogeneity are scarce.

We identified and confirmed the six-factor structure of
the ADI-R algorithm items first reported by Liu et al.® in
two independent ASD datasets. A similar six-factor
solution has been published for 98 ADI-R algorithms™.
Previously, another study conducted a factor analysis on
11 items related to restricted and repetitive behavior
(RRB) and identified two factors, i.e., RSM and IS similar
to our identified subdomains of RB and RI, respectivelylo.
Thus, the identified subdomains in our study have been
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well replicated in independent ASD datasets before, and
are plausible targets for quantitative genetic analyses.

I gnp has been studied in large ASD samples to quantify
additive heritability explained by genome-wide SNPs*'.
Our study is the first estimating SNP-based heritability of
specific phenotypic subdomains in ASD. We assumed that
the heterogeneous phenotype of ASD may prevent a clear
picture of the role of SNP in each subdomain. Overall, we
observed low SNP-based heritability for the individual
subdomains; however, in our study, Hgnp for all sub-
domains was higher than previously reported estimates of
the categorical phenotype ASD (~17%)**. Although,
without replication, we cannot generalize our findings for
the specific subdomains, we still describe higher herit-
ability estimates for domain A-related subdomains.
However, we observe a difference between the sub-
domains of domain B, which showed the lowest estimate
for RB but higher estimates for RI. From the results of our
study, we suggest a differential role of common and rare
variants in domain A and also within the subdomains of
domain B. This also may explain the lower SNP-based
heritability of the categorical ASD phenotype, because it is
defined by symptoms in domains A and B.

Phenotypic subdomains with high SNP-based herit-
ability but lack of genome-wide significant hits, such as RI,
might underlie many variants with low effect sizes. Sub-
domains with only little variance explained by SNP her-
itability where genome-wide hits are identified, might in

contrast underlie few variants with a moderate-to-high
effect size. Thus, we conclude that the genetic archi-
tecture underlying the phenotypic variance in ASD indi-
viduals is likely to be different across the domains.

The highest genetic correlation was identified between
SI and NVC (0.97), mirroring the correlation at the phe-
notypic level*®. A complete genetic correlation of 1 was
found for JA and PI, suggesting strongly overlapping
common genetic variation underlying SI and NVC, or JA
and PI. Moreover, we observed that subdomains of
domain A are also highly phenotypically correlated than
the subdomains of domain B (Supplementary Fig. 6). In
contrast to SNP-based heritability, genetic correlation
analysis of the two subdomains related to domain B
showed only weak correlation, and thus may be geneti-
cally independent with respect to common variation.
Another linkage study on ADI-R algorithm-derived
“repetitive sensory-motor behavior” (RSMB) and “insis-
tence on sameness” (IS) scores™ similarly reported pre-
dominantly specific, but also a few overlapping linkage
findings for these subdomains. A recent qGWAS reported
suggestive evidence for distinct common variants when
RSMB and IS were analyzed independently; however,
when both phenotypes were considered together, three
genome-wide hits were identified'®. This indicates higher
variability of the combined phenotypic measure, resulting
in a higher power to detect a specific genetic risk. RB did
not genetically correlate with other subdomains and also
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Pl: ADRB1, ANAPC15, ASB8, BLVRA,
BRD3, C140rf119, CAMK2D, CCRL2,
CECR2, CGB3, COPB2, COPS9, CRYZL1,
DGUOK, DPP8, E2F7, ENPP3, EXOG,
HACD3, HMGCLL1, HMOX1, HNRNPH1,
IL18BP, IL7R, INTS14, ITGBS5, KIAA0319L,
LAMTOR1, LOC286238, LRTOMT, LTV1,
MTNR1A, MYO1E, NUMA1, OR2A4,

RNF121, RNF130, RSPO3, SCN5A,
SLC24A1, STARDS, TDRD6, TRPC4, TTLL1,
UBAC1, UHMK1, UNC13B, WDR17, ZNF664,
ZNF99

"

RI: ACR, ACSBG2, AGAP5, AIM2, AK8, ANKK1, ARAP3,
ARL15, ASIP, ATP1A2, C190rf70, C60rf132, C8B,
CATSPERD, CDC37, CEP55, CIB4, COPG2, EMP1,
ERBB4, FBX022, GNG2, GRIN3A, HSD11B1L, IDH3B,
KCNQ5, KIAA0319, KIAA1755, KL, KMT5C, KRT6A,
KRT6C, LNPEP, LOC101929747, LONP1, MOB1B,
MS4A13, MTMR14, NBPF7, NDST2, NLRP3, NSUNS5,
OR2B2, PPP1R13B, RPL36, SAFB, SEC11A, SERP2,
PARVA, PCSK6, PFKM, PGLYRP2, PPP1R7, SPN, SPSB1, SYCP2L, TMIEDS, TRPS1, TSGA13,
TTC12, ZFYVE21, ZGLP1, ZNF814, ZSWIM8 [

Fig. 4 Venn diagram of overlapping genes with a significant Ppermuteq < 0.05 as identified using MAGMA from the individual cohorts, i.e.,
AGP and DE. The underlined genes represent SFARI genes. S| social interaction, JA joint attention, Pl peer interaction, NVC nonverbal
communication, RB repetitive sensory-motor behavior, Rl restricted interest.

29

COBLL1

had the lowest #*gyp (0.21). Similarly, a population-based
twin study did not find genetic covariation between SI and
RB scores®; however, a twin study of ASD individuals
reported a strong genetic overlap of the extreme values of
impaired social communication and restricted behaviors
derived from SCQ®. The contrasting findings may be
explained by a differential role of common and rare var-
iation in social communication-related subdomains and
RB, especially in ASD individuals, with rare variation
playing a stronger role in RBY.

With respect to specific genetic variation underlying the
different subdomains, several genome-wide significant
hits and novel candidate genes were identified in the
present study. For SI, we observed an association with
PAT] (aka INADL) at SNP as well as at gene level. PAT] is
coding for a scaffolding protein CIPP, and regulates sur-
face expression of the acid-sensing ion channel 3 in sen-
sory neurons*®, The Uniprot Protein Database (https://
www.uniprot.org/) predicts, based on sequence simila-
rities, an interaction of PATJ with glutamatergic NMDA
receptors and ASD candidate genes NLGN2 and HTR2A.
Rare loss-of-function variants in PATJ have also pre-
viously been found in ASD®, thus strengthening our
findings. The second genome-wide significant hit for SI

mapped to CLIP2 gene is located at 7q11.23. Duplication
carriers of this region show a high rate of ASD***'. Fur-
thermore, Sl-associated genes were enriched in a co-
expressed brain gene set (module 6). This module is
mainly active in cortical structures during early childhood.
In the hippocampus, module 6 is activated before birth,
silenced prior to puberty, and then reactivated. This
supports previous findings of early cortical maturation
impairments in ASD?, and of the important role of the
hippocampus in social behavior>>.

No genome-wide hit was identified for JA. At the gene
level, JA was associated with DAGLA gene implicated in
seizures and neurodevelopmental disorders, including
autism®*, and the COBLLI gene involved in epilepsy”> and
language impairment™®,

The only genome-wide significant SNP in PI is
rs10115292 mapped to an intergenic region at chr. 9p21.1,
known for ASD-associated CNVs®’. Among the sig-
nificant genes (Ppermutea < 0.05) enriched for PI, we
identified a sodium voltage-gated ion channel gene
SCNS5A that was found to be a hub protein in an ASD-
associated protein-interaction module®®. Other ASD-
associated significant PI genes include CECR2, a 7.2-kb
exonic loss, which was found in an ASD female®*,


https://www.uniprot.org/
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For NVC, no genome-wide significant hit was identified.
Most suggestively associated SNPs map to chr. 6q26, a
region linked to ASD*’. SLC26AS at 11p15.4 was among
the top hits from the gene-based analysis; mutations in
this gene are potential candidates for causing neurosen-
sory deafness®®. This region is linked with delayed
development of speech®. The NVC-associated regulatory
gene set (module 27) is expressed in the hippocampus,
striatum, and mediodorsal nucleus of the thalamus until
puberty (Supplementary Fig. 7). These regions are well
known for their role in language and communication®*>?,
which puts our findings in line with the current literature.

RB was associated with genome-wide significant SNPs
at 8p21.3, a region previously associated with restricted
and repetitive behaviors in ASD'’. Duplications of this
region have been associated with ASD®*. The suggestive
effect at 19q13.33 is also in line with previous findings
regarding RB®. Gene-based analysis indicated RGS10 gene
implicated in neurodegenerative diseases®®, and is also
overlapping in SI and RB.

Top significant SNP hits for RI were also observed in
migraine, sensorineural deafness, cognition, Williams—Beuren
syndrome, and ASD such as NLPR3®, GNG2%, and
NSUN5®®. No genome-wide associated SNP was identified for
RIL The top peak at 15q25.3, however, is spanning the NTRK3
gene, associated with autism and Asperger syndrome®, as well
as obsessive—compulsive disorder”.

Among the overlapping genes in the subdomains, we
identified GYS1 in JA and SI. KO of Gys1 has been known
to induce depression-like behavior in rats, indicating that
brain glycogen has an important role in animal emotion”".
Another study generated a brain-specific GYS1 KO
mouse and found that these animals had a significant
deficiency in motor and cognitive abilities and synaptic
strength””. Another overlapping gene found between JA
and NVC is COBLLI. A study reported an individual with
ASD and Tourette syndrome with heterozygous micro-
deletion of approximately 719 kb at 2q24.3, which led to
deletion of COBLLI gene as well besides four other genes.
As mentioned above, this gene is also found to be deleted
in a patient with severe epilepsy’” and individuals with
autistic features, developmental delay, repetitive hand
movements, and language impairments®°.

One of the major limitations of our study is the limited
sample size of individual AGP and DE cohorts. Although
quantitative statistical tests generally have a higher power
in comparison with the qualitative approaches, small
effects are likely to have been undetected in our study (see
power analysis in the methods section). It is possible that
a variant may carry a large genetic risk to increase
expression of one phenotypic subdomain but a smaller
risk on another. Thus, to identify the overlapping SN-
based genetic risk with high confidence, it requires a
larger sample size to attain an adequate statistical power.
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However, we followed a conservative approach to mini-
mize proneness of false positives by performing the gene
analysis in two independent ASD datasets, and to classify
genes as replicated only if they have an empirical P < 0.05
in both cohorts. Although this cannot omit the possibility
of false positives and especially not false-negative findings,
it lowers the risk for false findings.

Another limitation of our study is the mixed ethnicity in
the two cohorts and higher ASD severity scores in the
AGP sample. However, we accounted for the mixed eth-
nicity in our GWAS analysis, and to overcome false-
positive associations, we followed a conservative approach
by performing gene-based analysis in two independent
ASD datasets and only interpreted overlapping hits. In
addition, several genes mapped from GWAS hits of the
combined cohort were found at gene level. For the PRS
analysis, we used the combined cohort, which contained
PGC ids as well, but since our research question was
focused on dimensional phenotypes rather than catego-
rical, so we did not exclude those samples from our
cohort. In the heritability and genetic correlation analysis,
we did not account for covariates. This might have led to
an overestimation of estimates. Still, a recent study has
shown that the inclusion of covariates can result in
inflated and biased genetic correlations and heritability
estimates’®, Thus, we again chose the more conservative
approach. However, we suggest replicating the analysis in
a genetically more homogeneous sample.

In summary, our results suggest that the genetic
architecture of subdomains is distinct between A- and B-
related subdomains and differs within the two B-related
subdomains RB and RI. We replicated several previously
implicated genes in ASD, but also describe new candidate
genes for specific subdomains. Involved biological path-
ways and gene expression patterns strengthen the pre-
vious observations that ASD phenotypic variability is
influenced by pathways regulating neuronal development
of different brain areas, including the hippocampus,
amygdala, and cortical areas.

The results of our study need to be replicated in larger
samples with different ethnic backgrounds. In addition, a
combined analysis of common and rare variants may
clarify the specific role of common variants in shaping the
ASD phenotype in relation to the reported subdomains.
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