CHEMPHOTOCHEM

Supporting Information

Coumarin-4-ylmethyl- and p-Hydroxyphenacyl-Based Photoacid Generators with High Solubility in Aqueous Media: Synthesis, Stability and Photolysis

Karishma K. Adatia, Thomas Halbritter, Matiss Reinfelds, Andre Michele, Michael Tran, Sabine Laschat, Alexander Heckel, Günter E. M. Tovar,* and Alexander Southan*© 2019 The Authors. Published by Wiley-VCH Verlag GmbH \& Co. KGaA.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Supporting information

Scheme S 1: Synthesis of p-hydroxyphenacylacetate (pHP-ac). ${ }^{1}$ i) AcOH, $\mathrm{NaOAc}, \mathrm{H} 2 \mathrm{O}, 9{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 73 \%$.

ARTICLE

Figure S 1. a) ${ }^{1} \mathrm{H}$ NMR spectrum and b) ${ }^{13} \mathrm{C}$ NMR spectrum of 7 -[bis(tert-butylcarboxymethyl)amino]-4-(methyl)coumarin (1a).

ARTICLE

Figure S 2. a) ${ }^{1} \mathrm{H}$ NMR spectrum and b) ${ }^{13} \mathrm{C}$ NMR spectrum of 7-[bis(tert-butylcarboxymethyl)amino]-4-(formylmethyl)coumarin (1b).

ARTICLE

(

Figure S 3. a) ${ }^{1} \mathrm{H}$ NMR spectrum and b) ${ }^{13} \mathrm{C}$ NMR spectrum of 7-[bis(tert-butylcarboxymethyl)amino]-4-(hydroxymethyl)coumarin (1c).

ARTICLE

Figure S 4. a) ${ }^{1} \mathrm{H}$ NMR spectrum and b) ${ }^{13} \mathrm{C}$ NMR spectrum of 7-[bis(carboxymethyl)amino]-4-(hydroxymethyl)coumarin (1d).

Figure S 5. a) ${ }^{1} \mathrm{H}$ NMR spectrum and b) ${ }^{13} \mathrm{C}$ NMR spectrum of 7-[bis(carboxymethyl)amino]-4-(acetoxymethyl)coumarin (c4m-ac)

ARTICLE

Figure S 6. ${ }^{1} \mathrm{H}$ NMR spectrum and b) ${ }^{13} \mathrm{C}$ NMR spectrum of ethyl-2,5,8,11-tetraoxatridecan-13-oate (2a).

ARTICLE

Figure S 7. ${ }^{1} \mathrm{H}$ NMR spectrum and b) ${ }^{13} \mathrm{C}$ NMR spectrum of 2,5,8,11-tetraoxatridecan-13-oic acid (2b).

ARTICLE

Figure S 8. a) ${ }^{1} \mathrm{H}$ NMR spectrum and b) ${ }^{13} \mathrm{C}$ NMR spectrum of 2-(4-hydroxyphenyl)-2-oxoethyl-2,5,8,11-tetraoxatridecan-13-oate (pHP-t).

ARTICLE

Figure S 9. a) ${ }^{1} \mathrm{H}$ NMR spectrum and b) ${ }^{13} \mathrm{C}$ NMR spectrum of p-hydroxyphenacylacetate ($p \mathrm{HP}$-ac). The labile phenoxide proton is not always visible in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Figure S 10. UV Vis spectra for the calibration and determination of the maximum solubility of $\mathrm{c} 4 \mathrm{~m}-\mathrm{ac}, \mathrm{pHP}-\mathrm{t}$ and $\mathrm{pHP}-\mathrm{ac}$ in a), c), e) water as well as in b), d), f) alkaline solution. The diluted samples for the determination of maximum solubility ($\mathrm{c}_{\text {max,d }}$) were measured in triplicates $(\mathrm{n}=3$).

Figure S 11. Photometric determination of the solubility ($c_{\max }$) of $\mathrm{pHP}-\mathrm{ac}$ in a) water as well as in b) alkaline solution at $\mathrm{pH} 9 . c_{\max }$ is calculated according to equation 2. The diluted concentration $\left(c_{d}\right)$ with the respective dilution factor $\left(d_{f}\right)$ are summarized in Table S 1Fehler! Verweisquelle konnte nicht gefunden werden.

Table S 1. Diluted concentrations c_{d} and dilution factor d_{f} of the photoacid generators $c 4 m-a c, p H P-t$ and $p H P-a c$. The subscript ' w ' indicates measurements in water and ' a ' refers to alkaline solution.

PAG	$d_{f, w}$	$c_{d, w}\left[\mathrm{~g} \mathrm{~L}^{-1}\right]$	$d_{f, a}$	$c_{d, a}\left[\mathrm{~g} \mathrm{~L}^{-1}\right]$
c4m-ac	86	0.01	20000	0.01
$p H P-\mathrm{t}$	2500	0.02	800	0.02
$p H P-\mathrm{ac}$	400	0.01	833	0.01

Table S 2. Stabilities (s) of the photoacid generators (PAG) c 4 m -ac, pHP -t and pHP -ac after $1 \mathrm{~h}\left(s_{\mathrm{in}}\right), 3 \mathrm{~h}\left(s_{3 \mathrm{~h}}\right)$ and $24 \mathrm{~h}\left(s_{24 \mathrm{~h}}\right)$ at pH 7 , pH 8 , and pH 9 , as well as in water without pH adjustment after dissolution. The stabilities were determined via HPLC. n.d. $=$ not determined.

PAG	pH	$\mathrm{s}_{1 \mathrm{~h}}[\%]$	$\mathrm{s}_{3 \mathrm{~h}}[\%]$	$s_{24 \mathrm{~h}}[\%]$
$\mathrm{c} 4 \mathrm{~m}-\mathrm{ac}$	3	100	100	100
$\mathrm{c} 4 \mathrm{~m}-\mathrm{ac}$	7	100	99	99
$\mathrm{c} 4 \mathrm{~m}-\mathrm{ac}$	8	100	95	96
$\mathrm{c} 4 \mathrm{~m}-\mathrm{ac}$	9	96	90	11
$p \mathrm{HP}-\mathrm{t}$	6	97	96	95
$p \mathrm{HP}-\mathrm{t}$	7	92	90	85
$p \mathrm{HP}-\mathrm{t}$	8	73	65	48
$p \mathrm{HP}-\mathrm{t}$	9	56	17	0
pHP-ac	5	100	100	99
$p \mathrm{HP}-\mathrm{ac}$	7	100	99	94
$p \mathrm{HP}-\mathrm{ac}$	8	99	99	94
$p \mathrm{HP}-\mathrm{ac}$	9	100	n.d.	53

Figure S 12. HPLC determined stabilities (s) of pHP-ac after a storage time (t_{s}) of $1 \mathrm{~h}, 3 \mathrm{~h}$ and 24 h at $\mathrm{pH} 7, \mathrm{pH} 8$ and pH 9 .. The lines are only for the guidance of the eye.

Figure S 13. UV-vis spectra of $p \mathrm{HP}-\mathrm{ac}$ in water and alkaline solution at pH 9 .

Figure S 14. Photolysis under UV irradiation of $p \mathrm{HP}-\mathrm{ac}$ in water (pH 5), neutral (pH 7) and alkaline conditions (pH 8). The lines are only for the guidance of the eye

Figure S 15. Emission spectrum of a UV-H 255 UV chamber from Hartmann Feinwerkbau GmbH for the photolysis experiments.

Wiley-vch

ARTICLE

Figure S 16. HPLC monitored photolysis of a) $c 4 m-a c$, b) $p H P-t$ and c) $p \mathrm{HP}-\mathrm{ac}$ under UV irradiation. telu is the elution time during the HPLC measurement, $t_{\text {ir }}$ is the irradiation time under UV light and A is the absorbance at the respective wavelength. The absorbance of $\mathrm{c} 4 \mathrm{~m}-\mathrm{ac}$ is shown at 360 nm and of $p \mathrm{HP}-\mathrm{t}$ and $p \mathrm{HP}-\mathrm{ac}$ at 300 nm . The photoacid generator is marked in gray and the photolysis products are marked in blue.

Figure S 17. Reaction pathways for the photolysis of $\mathrm{c} 4 \mathrm{~m}-\mathrm{ac}$ (top) and $\mathrm{pHP}-\mathrm{ac}$ as well as pHP -t (bottom). By photolysis, carboxylic acids are obtained, as depicted on the right.

