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We derive the relation between cumulants of a conserved charge measured in a subvolume of a 
thermal system and the corresponding grand-canonical susceptibilities, taking into account exact global 
conservation of that charge. The derivation is presented for an arbitrary equation of state, with the 
assumption that the subvolume is sufficiently large to be close to the thermodynamic limit. Our 
framework – the subensemble acceptance method (SAM) – quantifies the effect of global conservation 
laws and is an important step toward a direct comparison between cumulants of conserved charges 
measured in central heavy ion collisions and theoretical calculations of grand-canonical susceptibilities, 
such as lattice QCD. As an example, we apply our formalism to net-baryon fluctuations at vanishing 
baryon chemical potentials as encountered in collisions at the LHC and RHIC.
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1. Introduction

Studies of the QCD phase diagram are one of the focal points of 
current experimental heavy-ion collision programs [1]. Observables 
characterizing fluctuations of the QCD conserved charges – baryon 
number, electric charge, and strangeness – have attracted a par-
ticular attention, as these are sensitive to the finer details of the 
QCD equation of state and its phase structure in particular [2–4]. 
Consider, for simplicity, a case of a single conserved charge, say 
baryon number B , for a system in equilibrium with volume V at 
temperature T . The nth order scaled susceptibility χ B

n is defined as 
a derivative of the pressure with respect to the chemical potential 
μB ,

χ B
n ≡ ∂n(p/T 4)

∂(μB/T )n
= κn[B]

V T 3
, (1)

and it determines the cumulants, κn[B], of the distribution of 
the charge B in the grand canonical ensemble (GCE). The sus-
ceptibilities, χ B

n , characterize the properties of the thermal system 
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under consideration, in particular they provide information about 
the possible phase changes, including remnants of the chiral crit-
icality at vanishing chemical potential [5]. Theoretically they are 
calculated either using first-principle lattice QCD simulations [6,7], 
or in various effective QCD approaches [8,9]. An important ques-
tion is how to relate these quantities to experimental measure-
ments [10–14]. The total net charge B does not fluctuate in the 
course of a heavy-ion collision, as opposed to the case of the GCE 
where the system can freely exchange the charge with an exter-
nal heat bath. However, experimental measurements typically have 
limited acceptance and only cover a fraction of the total momen-
tum space, which we subsequently assume to be characterized by 
a finite acceptance window in rapidity, �Yacc. As discussed e.g. 
in [4], for a sufficiently small acceptance window �Yacc � �Y4π

conditions corresponding to the GCE may be imitated, i.e. effects of 
global charge conservation become negligible. However, in order to 
capture the relevant physics the acceptance window �Yacc must 
be much larger than the correlation length �Ycor. Consequently, 
�Ycor � �Yacc � �Y4π is the minimum necessary condition for 
the applicability of the GCE to fluctuation measurements.

In practice the situation is more subtle. Deviations of lattice 
QCD calculations of the cumulants of conserved charges at T ∼
160 MeV from the ideal hadron resonance gas (HRG) expectation 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. A subsystem (dashed red rectangle) within a thermal system (solid black rect-
angle). The subsystem can exchange particles (conserved charges), shown by the 
circles, with the rest of the system. The filled red circles in (a) depict the parti-
cles within the subsystem, as considered in the present subensemble acceptance 
method (SAM). In contrast, the filled red circles in (b) highlight the particles from a 
typical configuration resulting from the binomial filter.

do not exceed the magnitude of charge conservation effects already 
for an acceptance as small as �Yacc/�Y4π ∼ 0.1 [12]. Therefore, 
in order to capture the physics of e.g. chiral criticality the effect of 
charge conservation needs to be understood very well, since simply 
reducing the acceptance window even further risks eliminating all 
the non-trivial effects associated with relevant QCD dynamics [15].

In the present letter we generalize the relation (1) between 
the GCE susceptibilities χ B

n and measured cumulants of conserved 
charge κn[B] to make it valid for subsystems that are comparable 
in size to the total system. We will still assume that the size of the 
subsystem is large enough to capture the relevant physics. Further 
assuming strong space-momentum correlations, as is the case for 
LHC and top RHIC energies, the formalism presented here connects 
the measured cumulants with those obtained in lattice QCD over a 
wide range of acceptance windows.

2. Formalism

Consider a spatially uniform thermal system at a fixed temper-
ature T , volume V , and total net charge, say net baryon num-
ber, B , which is described by statistical mechanics in the canon-
ical ensemble and characterized by its canonical partition func-
tion Z(T , V , B). We pick a subsystem of a fixed volume V 1 = α V
within the whole system, which can freely exchange the conserved 
charge B with the rest of the system (see Fig. 1). Our goal is to 
evaluate the cumulants κn[B1] of the distribution of charge B1
within the subsystem [the red points in Fig. 1(a)]. Our consider-
ations will extend the ideal HRG model results of Refs. [12,13] to 
arbitrary equations of state. The subvolume cumulants in the ideal 
HRG model can be computed using a binomial filter, which corre-
sponds to an independent acceptance of particles with a probabil-
ity α from the entire volume V [the red points in Fig. 1(b)]. Given 
a finite correlation length, however, particles will be more strongly 
correlated with their neighboring particles than with those far 
away. The binomial filter artificially suppresses these correlations 
and thus will not provide the correct results for the subvolume 
V 1.

Our arguments will be based purely on statistical mechanics. 
Assuming the subvolume V 1 as well as the remaining volume V 2 =
(1 − α)V to be large compared to correlation length ξ , V 1 � ξ3

and V 2 � ξ3, the canonical ensemble partition function of the total 
system with total baryon number B is given by

Z(T , V , B) =
∑
B1

Z(T ,αV , B1)Z(T , βV , B − B1) (2)
2

Here β ≡ 1 − α. The probability P (B1) to find B1 baryons in the 
subsystem with volume V 1 is proportional to the product of the 
canonical partition functions of the two subsystems:

P (B1) ∝ Z(T ,αV , B1) Z(T , βV , B − B1). (3)

The procedure based on Eqs. (2) and (3) will be called the 
subensemble acceptance method (SAM). Note that the SAM reduces 
to the binomial acceptance sampling for the case of ideal HRG.1

In the thermodynamic limit, i.e. for V → ∞, the above re-
sults can be generalized, since in this case the canonical partition 
function can be expressed through the volume-independent free 
energy density f : Z(T , V , B) = exp

[− V
T f (T ,ρB)

]
with ρB ≡ B/V

being the conserved baryon density. To evaluate κn[B1] we intro-
duce the cumulant generating function G B1 (t):

G B1(t) ≡ ln〈et B1〉 = ln
∑
B1

exp(t B1)P (B1)

= ln

⎧⎨
⎩

∑
B1

et B1 exp

[
−αV

T
f (T ,ρB1)

]

× exp

[
−βV

T
f (T ,ρB2)

]}
+ C̃ . (4)

Here ρB2 = B−B1
V −V 1

is the charge density in the second subsys-

tem and C̃ is an irrelevant normalization constant. The cumulants, 
κn[B1], correspond to the Taylor coefficients of G B1 (t):

κn[B1] = ∂nG B1(t)

∂tn

∣∣∣∣
t=0

≡ κ̃n[B1(t)]
∣∣
t=0 . (5)

Here we have introduced a shorthand, κ̃n[B1(t)], for the n-th 
derivative of generating function at arbitrary values of t , which 
we subsequently will refer to as t-dependent cumulants. Clearly, 
all higher order cumulants are given as a t-derivative of the first 
order t-dependent cumulant, κ̃1[B1(t)], which is given by

κ̃1[B1(t)] = ∂G B1(t)

∂t
=

∑
B1

B1 P̃ (B1; t)∑
B1

P̃ (B1; t)
= 〈B1(t)〉 (6)

with the (un-normalized) t-dependent probability

P̃ (B1; t) = exp

{
t B1 − V

α f (T ,ρB1) + β f (T ,ρB2)

T

}
. (7)

In the thermodynamic limit, V → ∞, P̃ has a sharp maximum at 
the mean value of B1, 〈B1(t)〉 [16]. The condition ∂ P̃ (B1; t)/∂ B1 =
0 determines the location of this maximum resulting in an implicit 
relation that determines 〈B1(t)〉:

t = μ̂B [T ,ρB1(t)] − μ̂B [T ,ρB2(t)] . (8)

Here μ̂B = μB/T , and ρB1 (t) = 〈B1(t)〉/(αV ), ρB2 (t) = [B −
〈B1(t)〉]/[(1 − α)V ]. We also used the thermodynamic relation 
[∂ f (T , ρB)/∂ρB ]T = μB(T , ρB). It follows from Eq. (8) that ρB1 =
ρB2 = B/V for t = 0, i.e. the net baryon number is uniformly 
distributed between the two subsystems, as it should be by con-
struction. Therefore,

κ1[B1] = α κ1[B] = α V T 3 χ B
1 . (9)

1 Strictly speaking, this is valid for the classical ideal HRG when quantum statis-
tics effects can be neglected. This is the case especially for baryons, where, due to 
their large mass, corrections to baryon number cumulants arising from Fermi statis-
tics are small at the chemical freeze-out, T � 155 MeV and μB � 0.
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The second cumulant is given by the t-derivative of κ̃1[B1(t)], 
i.e. κ̃2[B1(t)] = ∂κ̃1[B1(t)]/∂t = 〈B ′

1(t)〉. To determine 〈B ′
1(t)〉

we differentiate Eq. (8) with respect to t . To evaluate the t-
derivative of the r.h.s. of (8) we apply the chain rule ∂μ̂B/∂t =
[∂μ̂B(T , ρB1,2 )/∂ρB1,2 ]T [∂ρB1,2 (t)/∂t] and use a thermodynamic 
identity [∂μ̂B(T , ρB1,2 )/∂ρB1,2 ]T = [T 3 χ B

2 (T , ρB1,2 )]−1. The solu-
tion for the resulting equation for 〈B ′

1(t)〉 ≡ κ̃2[B1(t)] is

κ̃2[B1(t)] = V T 3

[αχ B
2 (T ,ρB1)]−1 + [β χ B

2 (T ,ρB2)]−1
(10)

which at t = 0 gives the 2nd order cumulant

κ2[B1] = α (1 − α) V T 3 χ B
2 . (11)

In order to evaluate the higher-order cumulants κn[B1] for n ≥
3 we iteratively differentiate the t-dependent cumulants κ̃n[B1(t)]
with respect to t , starting from κ̃2[B1(t)], and make use of the 
expression (10) for 〈B ′

1(t)〉. The result for the cumulants up to the 
6th order is the following:

κ3[B1]
α V T 3

= β (1 − 2α)χ B
3 , (12)

κ4[B1]
α V T 3

= β

[
χ B

4 − 3αβ
(χ B

3 )2 + χ B
2 χ B

4

χ B
2

]
, (13)

κ5[B1]
α V T 3

= β (1 − 2α)

{
[1 − 2βα]χ B

5 − 10αβ
χ B

3 χ B
4

χ B
2

}
, (14)

κ6[B1]
α V T 3

= β [1 − 5αβ(1 − αβ)]χ B
6 + 5α β2

×
{

9αβ
(χ B

3 )2 χ B
4

(χ B
2 )2

− 3αβ
(χ B

3 )4

(χ B
2 )3

−2(1 − 2α)2 (χ B
4 )2

χ B
2

− 3[1 − 3βα]χ
B
3 χ B

5

χ B
2

}
. (15)

In the limit α → 0 all susceptibilities, i.e. the cumulants scaled 
by V 1T 3 ≡ αV T 3, reduce to the GCE susceptibilities, as expected, 
since in this limit effects of global conservation become negligible. 
Note, however, that the α → 0 limit discussed here assumes that 
the condition V 1 � ξ3 still holds no matter how small the value 
of α is. Such a scenario can be realized by holding the subsystem 
volume fixed to a sufficiently large value and increasing the total 
volume, i.e. V 1 = const � ξ3 and V → ∞.

In heavy-ion collisions, on the other hand, a different scenario 
is realized. The total volume is fixed while the volume of the sub-
system is regulated by the measurement acceptance for example 
in longitudinal rapidity. This implies that the α → 0 limit corre-
sponds to V = const and V 1 → 0, meaning that our assumption 
of the subsystems being close to the thermodynamic limit breaks 
down, as the subsystem becomes much smaller than the correla-
tion length, αV � ξ3. The cumulants then approach the Poisson 
limit [17] rather than the GCE limit. We return to the discussion of 
this point when we apply our method to net baryon fluctuations at 
the LHC and RHIC. In the other limit, α → 1, all cumulants of order 
n ≥ 2 tend to zero, reflecting the dominance of the global conser-
vation laws and the absence of conserved charge fluctuations in 
the full volume.

The derivations in the SAM assume that both volumes are much 
larger than the correlation length, i.e. V 1, V 2 � ξ3. While this con-
dition is realized in many scenarios, one case where this may not 
hold is a vicinity of a critical point. The correlation length diverges 
at the critical point, ξ → ∞, thus the applicability of the SAM in 
its vicinity may be limited. In the present work we will apply the 
3

formalism only at LHC and top RHIC energies where this issue is 
not relevant.

It is instructive to consider ratios of cumulants, in which the 
volume V cancels. The explicit relations for the commonly used 
scaled variance, skewness, and kurtosis are:

κ2[B1]
κ1[B1] = (1 − α)

χ B
2

χ B
1

, (16)

κ3[B1]
κ2[B1] = (1 − 2α)

χ B
3

χ B
2

, (17)

κ4[B1]
κ2[B1] = (1 − 3αβ)

χ B
4

χ B
2

− 3αβ

(
χ B

3

χ B
2

)2

. (18)

The modification of the scaled variance κ2[B1]/κ1[B1] due to 
global conservation laws is a multiplication of the grand canonical 
scaled variance by a factor (1 − α). This is similar to the bino-
mial filter effect studied in prior works [12,13,18]. Same for the 
skewness κ3[B1]/κ2[B1], where the corresponding grand canonical 
ratio is multiplied by (1 − 2α). An interesting case is the kurto-
sis κ4[B1]/κ2[B1]: this ratio in the subvolume depends not only 
on the GCE kurtosis χ B

4 /χ B
2 but also on the GCE skewness χ B

3 /χ B
2 . 

If α is known, Eqs. (16)-(18) may be inverted to express the GCE 
cumulant ratios in terms of those of the subsystem.

3. Net baryon fluctuations at LHC and top RHIC energies

We apply our formalism to study the effect of baryon number 
conservation in view of measurements of net proton number dis-
tributions in heavy-ion collisions at the RHIC and LHC. The ALICE 
collaboration has published measurements of the variance of net 
proton distribution [19] and the analysis of higher orders up to κ4
is in progress. In the future runs, sufficient statistics may be accu-
mulated to extend the measurements up to the 6th order [20]. The 
STAR collaboration has measured the cumulants of the net proton 
distribution up to κ4 [21,22], preliminary results for κ6 are also 
available [23].

It should be noted that experimental measurements in heavy-
ion experiments are performed in momentum space rather than in 
coordinate space. However, the momenta and coordinates of par-
ticles at freeze-out are correlated due to the presence of a sizable 
collective flow, in particular the longitudinal flow. The correlation 
is one-to-one in the case of a Bjorken scenario, which can be ex-
pected to be approximately realized at the highest collision ener-
gies achievable at the RHIC and LHC. In that case, the experimental 
momentum cuts in rapidity correspond to cuts in coordinate space 
and our formalism is applicable, provided that all transverse mo-
menta are covered.2 In the other extreme, when no collective mo-
tion is present, cuts in the momentum space do not correlate with 
a definite subvolume in the coordinate space. In that case the bino-
mial acceptance may be the appropriate procedure. We also note 
that our calculations apply to net baryon fluctuations rather than 
net proton ones. Experimentally, the former can be reconstructed 
from the latter following the binomial-like method developed in 
Refs. [25,26]. This method requires the knowledge of various fac-
torial moments, which cannot be obtained from statistical physics 
alone but can and should be measured in the experiment.

The typical chemical freeze-out temperatures, Tch ∼ 155 −
160 MeV at the LHC [27–29] and Tch ∼ 160 − 165 MeV at the 

2 We note that thermal smearing by �Y th ∼ (T /m)1/2 somewhat dilutes the 
space-momentum correlation [15,24]. In case of baryons, which are heavy, this ef-
fect is rather small, especially if a rapidity window of �Yacc � 2 is considered. We 
expect baryon smearing to slightly shift our results for the cumulant ratios towards 
that obtained using the binomial filter.
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Fig. 2. The dependence of κ4/κ2 (left) and κ6/κ2 (right) ratios calculated for net baryon fluctuations inside a subvolume on the fraction α of the total system volume 
covered for QCD matter at the LHC conditions at the chemical freeze-out at T = 160 MeV (solid lines) and T = 155 MeV (dash-dotted lines). The bands correspond to the 
error propagation of the lattice data. The dashed lines depict the ideal hadron resonance gas results (binomial filter). The results are symmetric with respect to a change 
α → 1 − α and thus shown up to α = 0.5.
top RHIC energies [30], are close to the pseudo-critical temper-
ature of the QCD crossover transition determined by lattice QCD 
Tpc � 155 − 160 MeV [31,32] at μB = 0. Also, in the vicinity of 
Tpc lattice calculations predict a change of sign of χ B

6 , which is 
thought to be related to the remnants of the chiral criticality [5], 
although alternative explanations do also exist [33,34]. Therefore, 
it would be of great interest to verify the theory prediction of a 
negative χ B

6 experimentally.
As all odd order susceptibilities vanish at μB = 0, the relations 

between the higher-order cumulants κn[B1] and susceptibilities 
χ B

n simplify considerably. For the kurtosis κ4[B1]/κ2[B1] only the 
first term in Eq. (18) contributes. The hyperkurtosis κ6[B1]/κ2[B1]
is obtained from Eqs. (15) and (11),

(
κ6[B1]
κ2[B1]

)
LHC

= [1 − 5αβ(1 − αβ)]
χ B

6

χ B
2

− 10α(1 − 2α)2β

(
χ B

4

χ B
2

)2

. (19)

We then study how the cumulant ratios κ4/κ2 and κ6/κ2 of 
net baryon distribution depend on the value of the parameter α
characterizing the subsystem where the fluctuations are measured. 
We use the lattice data for χ B

4 /χ B
2 and χ B

6 /χ B
2 at T = 155 and 

160 MeV from Ref. [7] as input to the SAM. The results for the 
α-dependence of κ4/κ2 and κ6/κ2 ratios calculated from Eqs. (18)
and (19) are shown in Fig. 2. The solid red lines correspond to T =
160 MeV and the bands depict the error propagation of the lattice 
data. The dash-dotted lines correspond to T = 155 MeV. We also 
show the binomial acceptance results as dashed lines. These results 
are only valid for the classical ideal HRG which gives χ B

4 /χ B
2 = 1

and χ B
6 /χ B

2 = 1.
As both the kurtosis and hyperkurtosis are symmetric with re-

spect to α ↔ (1 −α) [17] we plot our results only up to α = 0.5. In 
the limit α → 0 both κ4/κ2 and κ6/κ2 approach their GCE values. 
The computed values of κ4/κ2 and κ6/κ2 lie below the binomial 
acceptance baseline for all values of α, which reflects the sup-
pression of the lattice values for χ B

4 /χ B
2 and χ B

6 /χ B
2 relative to 

the ideal HRG baseline. Interestingly, the difference between the 
ideal gas and QCD is the smallest for κ6/κ2 at α = 0.5, where the 
effects of baryon conservation are the strongest. Actually, in the 
entire region 0.2 < α < 0.8 the difference is so small that it may 
be difficult to distinguish the true dynamics of QCD from that of an 
ideal HRG. Measurements in this region of α, on the other hand, 
4

may serve as a model-independent test of baryon number conser-
vation effects. For α < 0.2, however, the measurable ratio κ6/κ2
becomes sensitive to the equation of state, i.e. to the actual value 
for χ B

6 /χ B
2 . We find that a negative κ6/κ2 for α � 0.1 is consis-

tent with χ B
6 /χ B

2 which is either negative or close to zero. Such a 
measurement would constitute a potentially unambiguous experi-
mental signature of the QCD chiral crossover transition.

If we apply these conditions to actual experiments such as 
ALICE and STAR, it translates into the following: At the LHC 
(ALICE) with 

√
sNN = 5.02 TeV, the beam rapidity is ybeam �

ln(
√

sNN/mN) � 8.5 while for the top RHIC energy (
√

sNN =
200 GeV) one has ybeam � 5.4. Thus, α � 0.1 would correspond 
to measurements within approximately two (one) units of rapidity 
for LHC (RHIC).

As discussed above, at α below a certain value, α < αlim, our 
formalism breaks down and the cumulants approach the Poisson 
limit instead. The value of αlim can be estimated. The physical vol-
ume used in lattice calculations [6,7,35,36] of χ B

2n at T � 160 MeV 
is of order V lat = (a Nσ )3 ∼ 102 fm3 for a = 0.1 fm and Nσ = 48
lattices. We can thus assume that volumes V ≥ V lat are sufficiently 
large to capture the relevant physics. The total volume in central 
collisions at the LHC can be estimated as V tot = (dV /dY ) 2 ybeam, 
which for dV /dY ∼ 5000 fm3 [27] and ybeam ∼ 8 at the LHC yields 
V tot ∼ 80000 fm3. Therefore, αlim = V lat/V tot ∼ 10−3. We note, 
however, that the shape of the freeze-out volume in heavy-ion 
collisions taken in a narrow space-time rapidity window is more 
resemblant of a disk rather than a squared box in lattice QCD. This 
difference may introduce an error in our estimate of αlim, meaning 
that the estimate likely lies on the optimistic side. Nevertheless, 
even an order of magnitude error in this estimate implies that αlim
does not exceed 10−2, and thus our method is applicable for virtu-
ally the entire linear scale shown in Fig. 2. The same estimate for 
RHIC, where dV /dy � 1500 fm3 [30], gives αlim ∼ 7 ·10−3. Another 
important issue is the thermal smearing which dilutes the corre-
lation between the space-time rapidity and the kinematic rapidity 
which is actually measured in experiment. The smearing induces a 
correlation length �Ycor ∼ 1 in kinematical rapidity [15], meaning 
that a rapidity acceptance of one unit or more may be required 
for this effect to be subleading. Measurements in �Yacc � 2 ac-
ceptance at the LHC will thus be less susceptible to the thermal 
smearing than �Yacc � 1 at RHIC. A detailed study of this correc-
tion is under way.

Our discussion corresponds to pT -integrated measurements 
of higher-order net-proton fluctuations. There are no conceptual 
problems preventing such measurements, however, this has not 
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yet been achieved in the presently available data collected at RHIC 
by STAR [21–23] and at the LHC by ALICE [19]. In both experiments 
the acceptance covers only part of the whole pT range. In addition, 
ALICE data are restricted to second order cumulants, while the 
STAR data should be supplemented with measurements of factorial 
moments that, as mentioned earlier, are needed to recover baryon 
number cumulants. These facts prevent us from analyzing the ex-
isting data within our formalism. We do mention though, that the 
ALICE publication [19] has discussed baryon number conservation 
in the framework of the HRG model (binomial acceptance), report-
ing indications for the relevance of the (1 − α) factor [Eq. (16)] 
due to baryon number conservation.

It should be noted that not only the baryon number is 
conserved in heavy-ion collisions, but the electric charge and 
strangeness as well. The SAM has been extended to the case of 
multiple conserved charges in Ref. [37]. There it is shown that net-
baryon fluctuations at μB = 0 are affected by exact conservation of 
electric charge and strangeness only starting from the sixth order 
cumulant. We verified this effect on κ6/κ2 within the ideal HRG 
model at T = 160 MeV and μB = 0 and found deviations from 
Eq. (19) to be negligibly small. Therefore, our results in Fig. 2 are 
not expected to be affected significantly by the electric charge and 
strangeness conservation.

4. Summary

We presented a novel procedure to connect measurements of 
cumulants of conserved charge fluctuations in a finite acceptance 
to the grand-canonical susceptibilities, taking into account effects 
due to exact charge conservation. In contrast to prior works study-
ing the ideal HRG model, our subensemble acceptance method 
works for an arbitrary equation of state, under the assumption 
that the acceptance is sufficiently large to reach the thermody-
namic limit, and thus to capture all the relevant physics. The 
formalism is most suitable for central collisions of ultrarelativis-
tic heavy-ion collisions at the highest energies where we have a 
strong space-momentum correlations, and it enables direct com-
parisons between experimental data on cumulants of conserved 
charges and theoretical calculations of grand-canonical suscepti-
bilities within effective QCD theories and lattice QCD simulations. 
We consider our results to be particularly helpful for the ongoing 
experimental effort to study the QCD phase structure with fluctu-
ation measurements. As a first application, we have studied the 
conditions under which a measurement of a net baryon hyper-
kurtosis κ6/κ2 can serve as an experimental signature of the QCD 
chiral crossover at μB = 0, and we found a rapidity window of 
�Yacc � 2(1) at LHC (RHIC) to be the sweet spot, where the QCD 
dynamics is not overshadowed by baryon number conservation ef-
fects.

Our framework opens a number of new avenues to explore. For 
instance, it can be interesting to test the limits of our approach 
in finite systems close to the critical point, where the correla-
tion length becomes comparable to the system size [38]. Another 
extension is a simultaneous incorporation of multiple conserved 
charges [37], enabling the analysis of the off-diagonal susceptibil-
ities which is a relevant topic in light of the corresponding mea-
surements that are being performed by the STAR collaboration at 
RHIC [39].
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