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Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal
hematopoietic stem cell diseases leading to an insufficient formation of functional blood
cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related
factors as recurrent treatment with red blood cell transfusions frequently lead to
systemic iron overload in MDS and AML patients. In addition, alterations of function and
expression of proteins associated with iron metabolism are increasingly recognized to be
pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be
involved in multiple intracellular and extracellular processes. It is essential for cell
metabolism as well as for cell proliferation and closely linked to the formation of reactive
oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the
leukemic environment and the occurrence as well as the defense of infections. Imbalances
of iron homeostasis may induce cell death of normal but also of malignant cells. New
potential treatment strategies utilizing the importance of the iron homeostasis include iron
chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell
death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs.
Here, we provide an overview of some of the latest findings about the function, the
prognostic impact and potential treatment strategies of iron in patients with MDS
and AML.

Keywords: myelodysplastic syndrome, acute myeloid leukemia, iron overload, reactive oxygen species,
microenvironment, iron chelation
Abbreviations: AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; DFS, disease-free survival; GvHD, graft-
versus-host disease; HFE, hereditary hemochromatosis protein; HSCT, hematopoietic stem cell transplantation; ICT, iron
chelation therapy; IRE, iron-responsive elements; IRP, iron-responsive element binding protein; LCI, labile cellular iron; LPI,
labile plasma iron; MDS, myelodysplastic syndrome; NRM, non-relapse mortality; NTBI, non-transferrin-bound iron; OS,
overall survival; PFS, progressive-free survival; PUFA, polyunsaturated fatty acid; RFS, relapse-free survival; ROS, reactive
oxygen species; TAM, tumor-associated macrophage; TCA, tricarboxylic acid cycle; TFR, transferrin receptor.
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INTRODUCTION

Myelodysplastic syndrome (MDS) and acute myeloid leukemia
(AML) represent heterogeneous clonal hematopoietic stem cells
disorders. MDS is characterized by dysplasia of hematopoietic
cells, AML by uncontrolled proliferation of poorly differentiated
hematopoietic cells (blasts). Both diseases lead to insufficient
hematopoiesis. Chronic fatigue due to anemia, bleeding due to
thrombocytopenia and infection due to neutropenia are typical
consequences. MDS bone marrow is prone to leukemic
transformation with approximately 30% of MDS patients
developing secondary AML over time (1). AML, being the
most common acute leukemia in adults, is a disease that in
most cases needs immediate treatment to avoid death within
months or even weeks. Although our knowledge about the
molecular drivers of AML is rapidly increasing, and recently
resulted in the development of novel drugs and of molecularly
informed treatment stratification, the 5-year overall survival
(OS) rate is still below 30% (2).

MDS and AML patients may develop primary iron overload
arising from insufficient erythropoiesis (3). Repeated
transfusions, which aim at ameliorating the symptoms of
anemia, often lead to secondary iron overload. Iron overload in
MDS and AML patients may lead to multiple cellular and
systemic changes and therefore plays a crucial role in these
hematologic malignancies (Figure 1). Besides the importance of
iron and proteins involved in iron metabolism for multiple
cellular functions, iron is tightly connected to the production
of reactive oxygen species (ROS) and can lead to cell death when
Frontiers in Immunology | www.frontiersin.org 2
in excess (4). Iron overload in the bone marrow and other tissues
can result in alterations of the microenvironment and contribute
to increased morbidity (5). In this respect, iron has been
demonstrated to participate in aggravating the symptoms of
MDS and AML patients by contributing to bone marrow
failure (6). Excess iron can also alter the components of the
immune system and result in an increased susceptibility to
various infections (7). Therefore, serum and cellular iron levels
have a prognostic value at initial diagnosis, might influence the
response to chemotherapy and predict the outcome after
hematopoietic stem cell transplantation (HSCT) (8–10). The
involvement of iron in diverse metabolic processes and its
special necessity for malignant cells makes it an interesting
therapeutic target (11).

In this review, we will first give an overview of the molecular
basis of iron metabolism and its role in hematopoiesis. We will
then focus on the altered iron metabolism in MDS and AML
patients including clinical consequences. Subsequently, we will
elucidate the effect of iron overload on the pathophysiology of
MDS and AML, clinical consequences of the altered iron
metabolism and its use as a potential target for therapy.
IRON HOMEOSTASIS AND ITS ROLE FOR
NORMAL HEMATOPOIESIS

Iron is an essential micronutrient for fundamental metabolic
processes in all cells and organisms and is therefore a crucial
FIGURE 1 | Potential cellular and systemic consequences of iron overload in patients with MDS or AML. Many of these factors are interwoven and may all together
contribute to patient outcome.
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element for terrestrial life. A vital iron-binding protein of the
human body is hemoglobin, which is crucial for the transport,
storage and distribution of oxygen. Hemoglobin in circulating
erythrocytes and erythroid precursors in the bone marrow
contains about two thirds of the total body iron (12). Besides,
iron is bound to myoglobin in the muscles. Iron is also part of
prosthetic groups such as in cytochrome proteins and Fe-S
clusters due to its ability to facilitate electron transfer. Thereby,
it is essential for the function of the citric acid cycle (TCA), the
respiratory chain, DNA synthesis and DNA repair.

Systemic iron homeostasis is maintained by a balance of iron
uptake, recycling and loss (Figure 2A). Nutritional iron is mainly
available as ferric iron, which can be reduced by ferrireductases.
Subsequently, ferrous iron can be internalized into enterocytes
via need-oriented gastrointestinal active transport mechanisms
by the divalent metal ion transporter (SLC11A2). Iron may also
be internalized through siderophore-associated binding to
Frontiers in Immunology | www.frontiersin.org 3
lipocalin-2 (LCN2) and subsequent endocytosis (13).
Moreover, nutritional heme and possibly also ferritin can be
absorbed by enterocytes via mechanisms not fully determined
yet (14). Efflux of iron across the basolateral membrane into the
bloodstream via ferroportin (SLC40A1), the only known iron
exporter, is usually followed by its oxidation to ferric iron by the
membrane-bound ferroxidase hephaestin. Ferric iron can be
loaded to transferrin (TF) and then be used for the needs of
the body. Excess iron is stored via ferritin (FTH and FTL) mainly
in the liver. The body loses iron via exfoliation of cells on the
inner and outer surfaces of the body with stool, urine, sweat and
blood loss in menstruating women, but there are no
physiological active excretion mechanisms to release an excess
of iron in mammals and humans and the iron excretion cannot
physiologically be increased beyond these values. High iron levels
lead to systemic secretion of hepcidin, the most relevant
regulator of the systemic iron metabolism, by the liver.
A

B

FIGURE 2 | Iron metabolism under physiological conditions (A) and in case of MDS/AML (B). Black arrows indicate direct iron metabolism, gray arrows represent
regulatory mechanisms. LPI, labile plasma iron; MPS, mononuclear phagocyte system; NTBI, non-transferrin-bound iron; TFBI, transferrin-bound iron.
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Hepcidin binds to ferroportin on enterocytes and iron-storing
cells like macrophages, resulting in an internalization and
degradation of the hepcidin-ferroportin complex and thus
effectively shuts down nutritional iron absorption and iron
release from internal iron storage. Hepcidin expression is
controlled by regulatory feedback mechanisms that involve
active erythropoiesis: erythroblast-derived erythroferrone
(ERFE), growth differentiation factor 11 (GDF11), growth
differentiation factor 15 (GDF15) and twisted gastrulation
protein homolog 1 (TWSG1) have been shown to influence
hepatic hepcidin secretion, thus linking erythropoietic iron
demand to iron supply (15–18).

Overall, only 4% to 10% of the daily iron need is supplied by
uptake of nutritional iron, whereas the majority of iron gets
recycled by different cell types originating from the bone
marrow. Cells within the mononuclear phagocyte system
(MPS) remove senescent blood cells via phagocytosis and
digestion. Afterwards, iron is released into the blood, from
where it is transported by transferrin back to the bone marrow
for recurrent use in hematopoiesis. About ten times the amount
of serum transferrin iron is recycled through this bone marrow-
MPS-bone marrow cycle per day (19).

Intracellular iron acquisition is provided by ferrous iron
importers (SLC11A2, SLC39A8, SLC39A14) or by binding of
diferric transferrin to the cell surface transferrin receptors
(TFR: TFRC and TFR2a) resulting in an internalization of
the complex by clathrin-mediated endocytosis. Acidification
of the endosome results in the release of ferric iron from
transferrin. Additionally, circulating FTH can bind transferrin-
independently to TFRC and be internalized in this way
(20). Endosomal ferric iron is reduced to ferrous iron via
ferrireductases. Ferrous iron can then be transported to the
cytosol, where it represents the labile cellular iron (LCI) pool.
This non-bound, redox-active and chelatable iron pool
can be utilized in cellular metabolic processes, or, when in
excess, be stored in ferritin or excreted via ferroportin.
NCOA4 can mediate ferritinophagy, while it is degraded via
HERC2 ubiquitination-mediated induction of the proteasomal
degradation machinery in the presence of iron (21). Intracellular
iron proteins are post-transcriptionally regulated by the IRP/
IREs regulatory network. Therefore, mRNAs of regulated
proteins harbor specific hairpin stem loops, called iron-
responsive elements (IRE), situated in the 3’ or 5’ untranslated
regions. In iron-deplete cells, the iron-responsive element
binding proteins ACO1 and IREB2 bind to the IREs of specific
mRNAs resulting in mRNA stabilization or translational
repression of these mRNAs. In this way, they modulate the
expression of iron-regulating proteins, which subsequently leads
to an increase of the labile iron pool. In iron-replete cells,
ACO1 works instead as aconitase in the TCA cycle and IREB2
undergoes SCFFBXL5 E3 ubiquitin ligase mediated ubiquitination
and proteasomal degradation (22).

Both, iron deficiency and iron overload lead to impaired
hematopoietic functions. Iron deficiency resulting in microcytic
anemia due to impaired hemoglobin production is a common
nutritional deficiency disorder affecting especially women and
Frontiers in Immunology | www.frontiersin.org 4
children worldwide. As a consequence of iron overload,
dysplastic changes and detrimental effects on erythroblast
differentiation and maturation resulting in a reduction of the
proliferative capacity of erythropoiesis and of erythroblast
apoptosis in vitro have been described (3, 23). Additionally,
iron overload has been shown to induce growth arrest and cell
death due to oxidative stress via ROS-mediated activation of
p38MAPK, JNK and p53 pathways in immature hematopoietic
cells (24, 25). Thereby, the IRP/IRE regulatory network is
essential in maintaining hematopoietic stem cells in their
physiological self-renewal process. While Ireb2(-/-) mice
develop microcytic anemia, deletion of Fbxl5 in murine
hematopoietic stem cells leads to impaired hematopoiesis due
to Ireb2 overexpression and subsequent iron overload (26, 27).
ELEVATED IRON LEVELS IN MDS AND
AML PATIENTS

Measurement of a patient’s iron status is difficult due to various
pitfalls of the available methods. Most commonly, iron status is
measured based on serum iron indicators such as serum ferritin,
transferrin saturation and soluble transferrin receptor (sTFR).
However, the results may be influenced by external factors
including inflammation, growth factors and organ dysfunctions
(28). In case of acute iron overload, exceedance of the transferrin
binding capacity leads to detectable amounts of non-transferrin-
bound iron (NTBI) in the serum. A subfraction of NTBI is
chemically labile plasma iron (LPI), which is toxic due to its
redox-activity and can cause oxidative damage to cellular
membranes, proteins and DNA (29). NTBI including LPI are
loosely bound to serum components as albumin and citrate (30).
Thereby, the presence and dynamics of active iron forms as
NTBI and LPI may be accountable for direct toxic effects,
whereas steady iron markers as ferritin may reflect mainly
systemic changes in iron metabolism. Iron overload can also be
measured via organ biopsies or imaging methods as biomagnetic
susceptometry or magnetic resonance imaging (MRI) although
these methods are rarely applied due to their invasiveness, costs
or insufficient validation (31).

Using this variety of methods, over the years several
characteristics of an altered iron metabolism in MDS and AML
patients have been found together indicating a state of iron
overload in these diseases (Figure 2B).

The most common reason for iron overload in patients with
hematologic diseases is the administration of multiple red blood
cell transfusions representing a massive excess of iron uptake
with about 200 mg of iron in one unit of packed red blood cells
(32). Transfusion-associated iron is processed by hepatic and
splenic macrophages, which recycle heme iron from erythrocytes
and release it into the extracellular space, thereby increasing the
serum iron pool.

Independent of red blood cell transfusions, disease-immanent
factors can contribute to the iron overload phenotype. Dysplastic
ineffective erythropoiesis is one of the cardinal manifestations of
February 2021 | Volume 11 | Article 627662
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MDS, leading to an insufficient production of mature
erythrocytes and potentially to a higher turnover of erythroid
progenitors. This insufficient erythropoiesis leads to the
secretion of hepcidin-suppressing cytokines and thus might
result in further iron overload. A vicious cycle is formed, in
which primary bone marrow dysfunction causes iron overload,
which in turn amplifies bone marrow dysfunction. The presence
of this mechanism is supported by data from Cui et al., who
found elevated hepcidin and ferritin levels, but a reduced
hepcidin/ferritin ratio compared to healthy controls in a study
including 107 MDS patients without prior transfusions (33). In
the same study, elevated ferritin levels correlated with decreased
proliferative potential of erythropoiesis ex vivo. However, the
extent of these mechanisms seems to differ between MDS
subtypes. MDS subtypes with a high presence of ring
sideroblasts (RARS, corresponding to MDS-RS according to
the present WHO classification) as a morphological correlate
of iron-loaded mitochondria, have been shown to have the
lowest hepcidin/ferritin ratio (34, 35). Therefore, inefficient
erythropoiesis might be more prominent in these subtypes
than in other MDS patients. Correspondingly, MDS-RS is
typically associated with a mutation in the splicing factor gene
SF3B1. An SF3B1 mutation was recently identified by Bondu
et al. to lead to the expression of an alternative ERFE transcript,
which suppresses hepcidin transcription and thereby provides an
explanation for the increased iron load especially in these
patients (36). The European MDS registry (EUMDS)
investigated the occurrence of iron overload in MDS patients
prospectively (37). Here, clinical data and iron metabolism-
associated parameters including serum levels of ferritin,
transferrin, hepcidin, GDF15, sTFR, NTBI and LPI were
analyzed in newly diagnosed lower-risk MDS patients from
148 centers in 16 countries in Europe and Israel since 2008.
The results indicate that the above-mentioned concept of
primary, disease-immanent iron overload may not be of strong
relevance for the majority of MDS patients: markers of iron
overload were elevated over all MDS subtypes. However,
occurrence specifically correlated with transfusion-dependent
MDS and with the MDS-RS subtype.

During chemotherapy and foremost during hematopoietic
stem cell transplantation (HSCT) the iron homeostasis might be
further disturbed as a result of erythroid cell lysis and suppressed
erythropoiesis. This theory matches data from the German
prospective multicenter study ALLIVE including 22 MDS and
90 AML patients and some smaller studies, which show an
increase in NTBI and LIP levels during allogeneic HSCT (38–40).

During the course of AML, signs of iron overload have also
been described. Frequently, serum ferritin is elevated at initial
AML diagnosis. The extent correlates with the leukemic burden,
normalizes in remission, and increasing levels may signify a
relapse (41). Increased hepcidin serum levels at diagnosis and
pre- as well as post-HSCT were described in two small cohorts
including exclusively or mostly AML patients (42, 43). However,
hepcidin and ferritin are acute-phase proteins and might not
only indicate iron overload but may also reflect a state of
inflammation. Correspondingly, ferritin and hepcidin serum
Frontiers in Immunology | www.frontiersin.org 5
levels in one of these studies correlated with serum levels of
CRP and IL-6 (42). In another study, ferritin levels were also
elevated in CRP-low patients and ferritin and hepcidin levels
correlated with the number of blood transfusions (43). Overall,
valid data including definitive measures of iron overload and
investigations in the systemic iron state in AML are missing.
Specifically, there are no data available from investigating the
interplay of insufficient hematopoiesis and iron metabolism in
AML. Presumably, ineffective erythropoiesis due to dysplastic
changes applies only to an AML subgroup (especially AML with
myelodysplasia-related changes), whereas in other AML
subtypes, insufficient erythropoiesis may rather be driven by
other pathomechanisms as the suppression of erythropoiesis by
inflammatory cytokines (44).

Signs of iron overload show a prognostic impact in both,
MDS and AML patients in many studies. One of the open
questions in the field is, whether iron overload is just a
consequence of increased transfusion frequency, which is a
well-known measure of disease severity, which would explain
the worse prognosis, or, whether iron overload per se has a
negative impact on the course of the disease. In both diseases, the
degree of transfusion dependency was associated with a worse
patient outcome (45–48). However, high levels of LPI were
associated with inferior overall and progression-free survival in
lower-risk MDS patients irrespective of the transfusion status in
the study of the European MDS registry (37). The ALLIVE study
revealed that in patients undergoing allogeneic HSCT,
pretransplant NTBI was associated with an increased incidence
of non-relapse mortality and a worse overall survival, which is
hard to explain by the pretransplant disease severity alone (38).
Besides, high serum ferritin levels at AML diagnosis were
associated with a worse outcome (9, 49, 50). The same is true
for ferritin levels before and after allogeneic HSCT in cohorts
including mainly MDS and AML patients (51, 52). Data on the
prognostic impact of the liver iron content measured by MRI for
patients receiving allogeneic HSCT are ambiguous. While a
meta-analysis of four studies with mixed patient cohorts
including overall 50% AML and 16% MDS patients found that
increased liver iron was not indicative for bad patient outcome
(53), the ALLIVE study showed an association of high
pretransplant liver iron with increased early non-relapse
mortality (NRM) (38). Despite different compositions of the
patient cohorts with older, more severely iron-overloaded
patients in the ALLIVE study, the role for liver iron overload
in NRM remains inconclusive.

Taking the data on the prognostic impact of different iron
overload markers together, the overall correlation with patient
outcome is striking. However, it is difficult to exclude that this is
merely the reflection of disease severity. Despite these doubts,
clinical correlation data and studies on the consequences of iron
overload from other diseases, led to the widespread
recommendation to treat transfusion-induced iron overload in
patients with hematological malignancies. Several therapeutic
options are available that will be reviewed in section Therapies
Aiming at Iron Metabolism as a Possible Target in MDS
and AML.
February 2021 | Volume 11 | Article 627662
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POTENTIAL ROLES OF IRON-RELATED
INTRACELLULAR PROTEINS IN AML
AND MDS

To further understand the iron metabolism in MDS and AML,
investigating the role of iron-related intracellular proteins might
help explaining the interplay between iron and essential
intracellular networks in MDS and AML cells.

Expression of iron-importing proteins might be an indicator
for the iron need of the cells. It has been appreciated for almost
40 years that AML cells strongly bind to transferrin (54). In
humans, two transferrin-binding receptors have been identified:
TFRC is a ubiquitously expressed high affinity receptor and
TFR2a is restricted to certain cell types as hepatocytes and
erythroblasts and has an approximately 25-fold lower affinity
for transferrin than TFRC (55, 56). The alternative TFR2
isoform, TFR2b, lacks the transmembrane and cytoplasmic
domain but might be involved in the regulation of iron efflux
in the MPS (57). Overexpression of TFRC was demonstrated in
AML cells (58–60) and supports the hypothesis of a higher iron
consumption of these cells. Thereby, TFRC expression was
higher in undifferentiated than in more differentiated AML
subtypes and decreased with terminal differentiation (59, 61).
Neither high TFRCmRNA nor TFRC protein levels in AML cells
correlated with patient outcome although a correlation was
found with increased anemia, thrombopenia and complex
cytogenetics (62, 63). On the contrary, higher TFR2 mRNA
levels in bone marrow samples were surprisingly associated
with a favorable outcome in AML and MDS patients (64, 65).
However, the increase of TFR2 mRNA levels in MDS and AML
bone marrow samples were shown to roughly correlate with the
proportion of erythroid cells in the marrow and might therefore
only to a minor extent reflect the expression of MDS or AML
cells themselves (13, 66). This association with the erythroid cell
number might be the explanation for the favorable outcome.
Deducing from these data, higher TFRC expression of AML cells
might reflect an undifferentiated blast status whereas higher
TFR2 mRNA expression in the bone marrow of MDS and
AML patients might be a marker for the number of erythroid
cells. However, there is also evidence for a need of higher iron
amounts due to overall higher TFRC expression and the
necessity of TFR for leukemic cell growth as shown in TFR
antibody studies described in section Perspectives.

Only recently, the roles of LCN2 and BDH2 have attracted
attention in MDS and AML patients. LCN2 can bind to
siderophores and thereby lead to iron internalization via
endocytosis or to the secretion of iron via endosome recycling
thereby potentially enabling iron overload or iron deficiency
(67). BDH2 catalyzes the rate-limiting step for the formation of
the mammalian siderophore 2,5-dihydroxybenzoic acid (68).
This might facilitate LCN2-mediated iron uptake but also
prevent iron overload in the cytoplasm and iron depletion in
mitochondria. In cytogenetically normal AML patients, LCN2
mRNA was reduced (69). Thereby, high LCN2 mRNA
expression in the bone marrow was associated with a favorable
outcome especially in combination with wild-type FLT3 showing
Frontiers in Immunology | www.frontiersin.org 6
an enhanced apoptosis under hydrogen peroxide and cytarabine
treatment whereas showing a protective effect under DFO
treatment. On the contrary, BDH2 overexpression has been
associated with poor overall survival in cytogenetically normal
AML (70) and with elevated ferritin levels as well as an increased
risk for progression to leukemia in MDS (71). As further
mechanistical analyses are missing, it can only be speculated
that in this case LCN2 overexpressing cells might have an
increased LPI pool predisposing them to oxidative stress,
whereas BDH2 overexpression might prevent cytoplasmatic
iron overload. Further studies validating these results and
unraveling the underling mechanisms are highly needed.

The intracellular conversion of insoluble ferric to soluble
ferrous iron is mediated by ferric reductases including STEAP
protein members. Although STEAP1 has no iron reducing
function, it co-localizes with transferrin and TFRC suggesting
also a role in iron homeostasis. In AML, STEAP1 was shown to
be overexpressed and associated with an adverse OS (72).

Systemically elevated levels of the iron storage protein ferritin
suggest a role for intracellular ferritin levels in MDS and AML as
well. FTH1 was reported to be expressed particularly in erythroid
blasts measured by immunohistochemistry (73). In another
study, FTH1 and FTL mRNA overexpression and FTH1
protein overexpression measured by immunoblot were shown
in AML primary cells compared to peripheral mononuclear cells
(9). The presence of ferritin may reduce the LPI pool and
therefore prevent ROS formation. In line with this, a decreased
in vitro cytotoxic activity of cytarabine was detected in FTH1
overexpressing AML. Addit ional ly , analyses of the
erythroleukemia cell line K562 indicate that FTH1 expression
might prevent ROS-induced protein misfolding (74) and ROS-
induced activation of the HIF1A/CXCR4 pathway leading to an
epithelial-to-mesenchymal transition (EMT)-like phenotype
(75). Besides, FTH1 might regulate RAF1 downregulation and
activate pERK1/2 through downregulation of the expression of
distinct microRNAs (76). Therefore, intracellular ferritin
expression might play a role in MDS and AML especially in
erythroid blasts on many levels.

Expression of the iron exporter FPT is also suggested to
reduce the LPI pool and thereby the formation of ROS. Low FPT
levels in AML cells correlated with good risk cytogenetics,
increased sensitivity to cytarabine treatment and favorable
outcomes (10) but a causal relationship could not be deduced
from this data.

Overall, several changes in proteins associated with iron
metabolism have been detected in MDS and AML cells.
Mutually, the iron status and these proteins as well as several
intracellular signaling pathways influence each other. Thereby,
especially proteins directly regulating the intracellular iron pool
seem to have an impact on cell viability and patient outcome.

IRON AND ROS HOMEOSTASIS
IN LEUKEMOGENESIS

Iron and ROS homeostasis are closely entangled. Iron
contributes to ROS formation by the production of hydroxyl
February 2021 | Volume 11 | Article 627662
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radicals via the Haber-Weiss and Fenton reaction. Moreover,
iron is involved in indirect ROS production. Multiple iron-
containing enzymes and those which require iron as an
indispensable cofactor contribute to ROS production under
normal conditions (77). So, as an important component of the
respiratory chain iron is involved in the formation of
mitochondrial ROS during oxidative phosphorylation (78).
Vice versa, ROS can interact with iron sulfur clusters ([4Fe-
4S]), turning them into their inactive form ([3Fe-4S]+). This
leads to a switch in the function of the iron-sulfur cluster protein
ACO1 from its role as aconitase in the TCA cycle to its function
as an IRE-binding protein regulating the expression of various
proteins involved in iron metabolism and other pathways (79).

Elevated ROS levels have been detected in MDS and AML
patients compared to controls (80, 81). Moreover, iron overload
is accompanied by increased ROS levels in this patient cohort
(82–84). Therefore, iron may contribute to leukemogenesis via
its effect on the ROS homeostasis.

Due to this connection, iron overload has been discussed to be
involved in mutagenesis and leukemic transformation. Highly
reactive hydroxyl radicals can directly interact with DNA leading
to DNA damage (85). Moreover, ROS can stimulate the generation
of lipid peroxyl radicals especially of polyunsaturated fatty acids
(PUFAs) leading to reactive aldehydes that are mutagenic and
genotoxic (86). In a mouse model for myelodysplastic syndrome
using NUP98-HOXD13 (NHD13) transgenic mice, increased levels
of ROS were detected in bone marrow nucleated cells accompanied
by increased DNA double strand breaks supporting a connection
between ROS and malignant transformation (87). In this line, a 5-
year prospective registry study including 599 MDS patients revealed
a deceased rate of progression to AML in patients treated with iron
chelators (60). On the contrary, an earlier meta-analysis of Zeidan
et al. did not confirm differences in the progression of MDS to AML
with or without administration of iron chelators (88). Thereby,
analyses might differ due to different MDS subgroups, observation
periods and a potential selection bias for patients with longer
predicted survival receiving iron chelation. Deducing from these
results, leukemic transformation as a result of iron overload is a
valid hypothesis but data are still ambiguous and more prospective
trials are required. Possibly, disease related risk factors in MDS may
overcome the influence of iron overload on progression to AML.
The fact that mutations in the hereditary hemochromatosis protein
(HFE) have not been found to increase the risk of AML (89, 90) may
also indicate that de novo AML development is not induced by
systemic iron overload.

ROS is known to highly influence hematopoiesis including
hematopoietic stem cell state and function (91, 92). ROS is also
involved in the regulation of various intracellular processes and
signaling pathways (e.g. NF-kB, MAPK, PI3K-Akt, ubiquitination)
as it is able to interact directly with proteins, ions and other
molecules (93). Therefore, ROS might also influence stemness
and proliferation of MDS and AML cells. Many molecular lesions
related to MDS and AML development including mutations in
FLT3,NRAS/KRAS and IDH1/2 affect intracellular ROS production,
thus potentially promoting ROS-mediated oncogenic signaling (94).
Therefore, iron might impact intracellular signaling and cell fate
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decisions also by its influence on intracellular ROS signaling.
Indeed, iron and associated proteins are involved in some of these
signaling pathways as described in section Potential Roles of Iron-
Related Intracellular Proteins in AML and MDS. However, studies
further investigating this theory are needed.

In the extreme, iron overload with subsequent overwhelming
accumulation of ROS can lead to ferroptosis, a non-apoptotic form
of programmed cell death dependent on iron that differs from other
regulated cell deathmechanisms as apoptosis. First labeled by Dixon
in 2012, ferroptosis is the consequence of a reduced antioxidant
defense leading to uncontrolled lipid peroxidation and subsequent
oxidative cell death (95). Depending on the activation of ROS-
connected signaling pathways, cells are at a different risk for
ferroptosis. Treatment of NRAS-Q61L mutated AML cells with
the ferroptosis-inducing molecule erastin resulted in enhanced ROS
levels and cytosolic translocation of HMGB1 leading to cell death,
whereas this effect was not seen in unmutated cell lines (96).
Importantly, the effect was iron-dependent and HMGB1 knock-
down lead to lower expression of TFRC.

Leukemic cells seem especially exposed to iron overload with the
risk of undergoing ferroptosis. This indicates that they may have
gained some ferroptosis evasion strategies. Indeed, Hole et al. could
show that higher levels of NOX-derived ROS (ROS) in AML blasts
were tolerated by evading oxidative stress response through
suppression of p38MAPK signaling (97). Additionally, glutathione
peroxidases, which can protect cells from oxidative damage by
reducing lipid hydroperoxides and free hydrogen peroxide are
overexpressed in AML patient samples and associated with an
adverse OS (98). Moreover, Yusuf et al. show a dependency of
murine and human AML cells on ALDH3A2, which can detoxify
fatty aldehydes and thereby prevent oxidative damage due to lipid
peroxidation (99). In mouse models, reduction of Aldh3a2 induced
ferroptosis in leukemic cells and was synergistically lethal combined
with the inhibitor of glutathione peroxidase 4 (GPX4) RSL3,
whereas it was dispensable for normal hematopoiesis. In this line,
the transcription factor NFE2L2 also seems to strengthen the
oxidative stress defense in leukemic cells by regulating the
expression of many antioxidative proteins especially in case of
additional chemotherapeutic treatment (100, 101). Parallelly,
NFE2L2 also regulates the expression of iron-related proteins as
FTH1, FTL and HMXO1 again supporting a close connection
between ROS and iron homeostasis. All these findings support
the hypothesis that AML cells might benefit from the toleration of
higher iron and ROS levels. To which extent iron is involved in this
pathomechanism and if this is also the case for MDS cells has to be
further elucidated.
IRON AND THE MICROENVIRONMENT

Hematopoietic and leukemic blasts reside and proliferate in bone
marrow niches interacting with their microenvironment. The
microenvironment including mesenchymal cells, endothelial cells,
sympathetic neurons, other hematopoietic and immune cells and
the extracellular matrix is considered to be a key regulator of MDS
and AML pathogenesis and recurrence (25, 102). Leukemic cells
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seem to adopt the bone marrow microenvironment according to
their needs and suppress normal hematopoiesis via secretion of
cytokines, microRNAs and exosomes.

Excess iron in AML and MDS patients is deposited in various
organs including the bone marrow thereby altering the
composition of the hematopoietic niche and potentially leading
to hematopoietic niche defects. A murine iron overload model
revealed elevated ROS levels and increased bone resorption
leading to changes in the bone microarchitecture with
trabecular and cortical thinning of the bone (103). This loss of
bone substance seems related to changes in the bone marrow
mesenchymal stem cells (BM-MSCs). Several alterations in the
bone marrow stroma cell number and composition have been
reported which concur in the fact that iron overload reduces the
differentiation into osteoblasts relative to other cell subtypes and
reduces matrix calcification (103–105). Cheng et al. could also
demonstrate a ROS-mediated cell death of mesenchymal cells
due to iron overload mediated by the AMPK/MFF/DNM1L
pathway triggering mitochondrial fragmentation and reducing
ATP production (106). The alterations of the mesenchymal cell
compartment were also shown to influence their supporting
function for hematopoiesis. Thereby, the expression of several
adhesion molecules and cytokine secretion was altered in bone
marrow stroma cells under overload conditions impairing their
capacity to support hematopoietic cells growth (24, 105, 107).
This might also be important for transplant engraftment during
HSCT, as transplantation from normal donor mice to mice with
iron overload resulted in a delayed hematopoietic reconstitution
(107). Therefore, the effects of iron overload on bone marrow
structure and mesenchymal cells might attribute to the defective
hematopoiesis found in MDS and AML patients.

Macrophages in the bone marrow of MDS patients were
shown to have higher FTH expression (108). Additionally,
expression of HMOX1 in macrophages was associated with an
adverse patient outcome. In the microenvironment of solid
tumors, tumor-associated macrophages (TAMs) are thought to
contribute to tumor progression via delivery of iron to the tumor
cells by an iron-release macrophage phenotype (109). However,
it has not been investigated if there might be a similar role of
leukemia-associated macrophages.

Normal cells of the hematopoietic and especially
erythropoietic system are also highly affected by changes in the
iron homeostasis as already described in section Iron
Homeostasis and its Role for Normal Hematopoiesis. Morbidity
and mortality in iron overloaded MDS and AML patients might
therefore largely be explained by the toxicity of iron to these cells.
In a murine iron overload model using RUNX1S291fs-induced
MDS mice, the survival of iron overloaded MDS mice decreased
as a result of an impaired frequency and colony-forming capacity
of normal hematopoietic stem cells (110).

The iron household in the bone marrow might also affect
endothelial cells and the vascular architecture. Cellular iron
deficiency increases VEGF-induced angiogenesis (111, 112).
Moreover, it has been shown that ferritin promotes the
assembly of endothelial cells by antagonizing the antiangiogenic
effects of cleaved high molecular weight kininogen (113).
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Beside the bone marrow, an altered iron metabolism can also
impact other organs. Iron overload due to multiple transfusions
has been demonstrated to be toxic to various organs as liver, heart,
pancreas, thyroid and pituitary gland leading to an increased
morbidity and mortality (114). The influence of organ iron
overload on patient outcome in MDS and AML patients is not
fully determined yet. As described in section Elevated Iron Levels
in MDS and AML Patients, data on a potential correlation of liver
iron overload with NRM are ambiguous.
IRON, INFLAMMATION, AND INFECTION

Iron and proteins related with iron overload are closely
connected to local or systemic inflammation and might also
influence the occurrence of infections by effects on the immune
system and various pathogens.

Patients with AML and MDS are often immunocompromised
due to a suppression of normal hematopoiesis by the disease and
bone marrow toxicity of applied chemotherapies. Additionally,
the patients frequently undergo multiple medical interventions
including placements of catheters, which further increase the risk
of inflammation and infection. Patients receiving an allogeneic
HSCT have also a risk of inflammation due to a Graft-versus-
Host Disease (GvHD) and need immunosuppressive therapy.

Inflammatory stimuli lead to an upregulation of hepcidin and
other acute-phase proteins as ferritin and caeruloplasmin as well
as a down-regulation of negative acute-phase-proteins as
transferrin. The resulting downregulation of available plasma
iron may withhold iron from pathogenic microorganisms and
protect healthy tissues from ROS damage at the site of infection.
Many microorganisms require iron for electron transport,
glycolysis, genome synthesis and defense, making it an essential
nutrient. Excess iron has shown to stimulate the growth of many
gram-positive and gram-negative bacteria, fungi and single-celled
eukaryotes as well as the replication of viruses (115, 116).
Correspondingly, patients with hemochromatosis or hemo
globinopathies are at increased risk for infectious diseases due to
iron overload (117, 118).

In patients undergoing allogeneic HSCT, high pre-transplant
ferritin levels have been associated with an increased risk for
invasive fungal pneumonia (119, 120) and hepatosplenic
candidiasis (121). Patients suffering from mucormycosis in
allogeneic HSCT recipients were found to have a severe iron
overload compared with a matched control population (122).
Moreover, early bacterial infections in allogeneic HSCT
recipients were increased in patients with elevated pre-transplant
hepcidin levels (123). A large metanalysis demonstrated a higher
incidence of blood stream infections, a lower incidence of chronic
GvHD and no effect concerning acute GvHD to be associated with
high-pretransplant ferritin levels (52). Additionally, Pullarkat et al.
reported in a prospective study, that iron overload measured by
pre-transplant ferritin was a risk factor for mortality and blood
stream infections but also for acute GvHD (124). Thereby, all these
studies point towards a prognostic impact of iron overload
markers as ferritin and hepcidin for fungal and bacterial
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infections as well as for the occurrence of GvHD. Although an
elevation of these markers was measured before the onset of the
diseases, a bias for patients that were already initially prone to
inflammation and infection cannot be excluded.

The function of cells belonging to the immune system may
also be influenced by iron homeostasis. In MDS patients with
iron overload measured by elevated ferritin and transferrin
saturation, Chen et al. found a lower percentage of CD3+ T-
cells and disrupted T-cell subsets accompanied by higher ROS-
levels in these cells (125). Using a murine iron overload model,
Chen et al. showed that iron overload could reduce peripheral T-
cells, decrease Th1/Th2 as well as Tc1/Tc2 ratio and increase
CD4/CD8 ratio as well as the fraction of regulatory T-cells by
inducing ROS-mediated oxidative stress and apoptosis of T-
lymphocytes. The impact of these alterations on the anti-
leukemic defense, inflammation and infection as well as patient
outcome is yet unclear.
THERAPIES AIMING AT IRON
METABOLISM AS A POSSIBLE
TARGET IN MDS AND AML

Features of iron overload, a differential iron metabolism and
changes in proteins associated with iron have been found in
Frontiers in Immunology | www.frontiersin.org 9
MDS and AML patients. Markers of iron overload correlate with
a worse prognosis in both patient cohorts. There is a rational for
potential pathomechanisms explaining detrimental effects on the
patient outcome by consequences of the altered iron metabolism.
However, markers of iron overload are in many ways subject to
the chicken-and-egg problem making it impossible to
discriminate between cause and consequence. Therefore,
interventional studies might cast light on the causative impact
of the altered iron metabolism.

Iron-targeting strategies are based on the differential iron
metabolism in case of MDS and AML compared to normal
circumstances constituting a potential vulnerability in these
diseases. Therapeutic strategies aiming at iron metabolism as a
possible target in MDS and AML can be roughly distributed in
four approaches: reduction of iron required for cellular functions
via iron chelation, modulation of proteins involved in iron
metabolism, induction of ferroptosis und exploitation of iron
proteins for the delivery of antileukemic drugs (Figure 3).
Thereby, most studies have been conducted using iron
chelators, whereas the other approaches are in the early stages
of development.

Iron Chelation
Iron overload, whether or not caused by an impaired underlying,
dysregulated mechanisms or by multiple red blood cell
transfusions, has been demonstrated to influence many
FIGURE 3 | Targets of different drugs interfering with iron metabolism. Simplified outline with colored arrows indicating the respective way of action. *loss of
important protein functions can induce apoptosis and cell cycle arrest. †excessive ROS production leading to lipid peroxidation can lead to ferroptosis. LCI, labile
cellular iron; TFR, transferrin receptor.
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intracellular and systemic processes. The reduction of iron
overload thus seems like an obvious therapeutic strategy to
correct prognostically unfavorable effects.

Chelators can bind metal ions and afterwards be excreted as
water-soluble complexes. By reducing NTBI, LPI and LCI pools,
iron chelators may influence enzyme functions depending on
iron, and influence ROS homeostasis. Therefore, iron chelation
therapy (ICT) offers a rational therapeutic option in the
treatment of patients with iron overload aiming at an
induction of an antileukemic effect and a reduction of
secondary organ dysfunctions and infections. So far, there are
three iron chelators approved by the European Commission/
EMA for the treatment of patients with iron overload:
Deferoxamine (DFO) administered parenterally and the orally
available deferiprone (DFP) and deferasirox (DFX). Whereas
DFP is approved only for patients with thalassemia major, DFO
and DFX have broader indications including iron overload in
MDS and AML patients.

Iron chelators seem to act by various mechanisms.
Deferoxamine (DFO) was shown to negatively affect DNA
synthesis and reduce cell growth in the leukemic cell line K562
by impairing the activity of ribonucleotide reductase (126).
Ribonucleotide reductase catalyzes the formation of
deoxyribonucleotides and needs iron as a cofactor to build a
tyrosyl radical crucial for its function. DFO was shown to inhibit
the enzyme activity by depletion of the LCI pools necessary to
regenerate the active enzyme (127). Moreover, iron chelators can
affect ROS homeostasis in two opposite directions leading to
either ROS depletion or ROS promotion (128). The ROS
depleting effect is suggested to depend on diminished free
labile iron levels (129), whereas the ROS promoting effect may
be facilitated by an iron-mediated free radical generation
through the iron-chelator-complex (130, 131) or by a
potentially iron-unrelated induction of ROS signaling (132).
The effect of ICT on ROS seems thereby to depend on the
binding-characteristics of the chelator, the time of treatment and
the used concentration (133). Both mechanisms seem to play a
role in ICT activity. The ROS-promoting activity has been
suggested to participate in the effect of DFX in AML cells (128,
133). On the contrary, oxidative stress was reduced under long-
term DFX treatment in MDS patients with iron overload (134,
135). ICT is also reported to enhance the effect of other
antiproliferative drugs. In vitro and in vivo studies showed an
increased antileukemic effect for the combination of DFO and
cytarabine (136), DFX and decitabine (137) as well as DFO and
doxorubicin (138). A potential mode of action for the
combination of DFX with doxorubicin might be an increase of
the intracellular calcium resulting in an improved sensitivity to
chemotherapy in leukemia cell lines (138). Moreover, ICT has
been found to modulate different signaling pathways including a
repression of mTOR and NF-kB signaling pathways, which
might also explain a potential synergistic effect with other
drugs (139, 140). Iron chelators were also shown to act
synergistically with differentiating agents in the treatment of
AML (133). Thereby, iron chelation led to ROS production,
activation of MAPK pathways and also induced expression and
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phosphorylation of the vitamin D3 receptor (VDR) leading to
blast differentiation in vitro, in vivo and also in one patient with
secondary AML treated with DFX and vitamin D3 after relapse
of the disease (133). Deducing from these results, the mechanism
of ICT action might not solely be the iron-deprivation but rather
also a modulation of ROS homeostasis and intracellular
signaling. A relation of the latter effects with the iron-
modulating activity seems likely, but iron-independent effects
of the ICT cannot be excluded. The diverse effects might not only
depend on the way of chelator administration but also on the
status of the treated cells.

Clinically, there is some evidence from post-hoc analyses in
cohorts of low/intermediate-1 risk MDS patients with iron
overload that iron chelators as DFX may improve hematological
parameters after administration over at least one year in a small
proportion of the patients (141–145). An increase of hemoglobin,
platelets and/or neutrophils was observed in 11%–22% of the
patients with a few multilineage improvements and a few
transfusion independencies. Thereby, the data of List et al.
suggest a possible correlation between the amount of ferritin
reduction by iron chelators and hematological response (143). In
a retrospective analysis of 182 patients with MDS with various
subtypes, the multivariate analysis revealed a significant benefit in
OS for patients receiving ICT with 140.9 months vs 36.3 months
(p=0.0008) in case of refractory anemia (RA or, according to the
present WHO classification: MDS-RS), 133.4 months vs 73.3
months (p=0.02) in case of refractory anemia with ring
sideroblasts (RARS/RARS-t, corresponding to MDS-RS
according to the present WHO classification) and no difference
for refractory cytopenia with multilineage dysplasia (RCMD/
RCMD-RS, corresponding to MDS-MLD according to the
present WHO classification) (146). The latter indicates that not
all subtypes of MDSmay benefit from ICT. It should also be noted
that ICT seems to have the largest effects in subtypes which were
suspected to suffer more from primary iron overload, MDS-RS
and MDS-RA but not MDS-MLD, as marked by a reduced
hepcidin/ferritin ratio described in section Elevated Iron Levels
in MDS and AML Patients.

A recent systematic review and meta-analysis by Zeidan et al.
included nine studies (4 prospective and 5 retrospective) with a
total of 2450 patients with particularly low-risk MDS of whom
38.4% received ICT (88). Patients with ICT had a lower mortality
and longer OS compared to no ICT with a pooled estimate of the
ratio median OS of 2.1 years, suggesting that iron chelation
therapy might double the OS in MDS. Additionally, there were
some hints at a correlation between dose intensity of ICT and
OS. Two of the reported studies compared patients with high
adequate ICT to no ICT showing a highly significant survival
advantage for patients with a higher adequate dose, but
comparing any degree of ICT with no ICT, the OS benefit was
less pronounced (88, 147, 148). In the study by Rose et al.,
adequate ICT was associated with median OS of 124 months
compared to 85 months for ICT (p < 0.001) (147). Similar results
were described by Delforge regarding OS with adequate ICT and
no adequate ICT (p = 0.001) but not between weak ICT and no
ICT (148). Hereby, adequate chelation was defined for DFO
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subcutaneously (40 mg/kg/day in slow infusion over 8–12 h for
at least 3 days per week), DFX (20–30 mg/kg/day p.o.) or DFP
(30–75 mg/kg/day p.o.); weak chelation treatment was
considered to be less than 3 g per week of DFO. The question
whether there are any differences regarding the efficacy between
the iron chelators cannot be answered finally due to a lack of
randomized trials. However, the compliance of DFX might be
better than that of DFO or DFP due to the oral mode of
administration and the less frequent occurrence of side effects
resulting in a continued application and more remarkable
reduction of iron overload (149–153). Gastrointestinal adverse
events and neutropenia were more frequently observed in DFP
than in DFO (149, 150).

Randomized trials in MDS looking for the clinical benefit
using iron chelators in patients with excessive iron overload are
highly needed. Recently, Angelucci et al. published data from the
randomized clinical study TELESTO (154). Here, 225 patients
with low- to intermediate-1 risk MDS were treated with DFX
versus placebo in a 2:1 randomization. The event-free survival
(EFS) was prolonged with 3.9 years in the DFX versus 3.0 years in
the placebo arm (HR 0.64). Although the study is limited by an
amendment from a planned phase 3 trial with 630 patients to a
phase 2 trial with 225 patients and different follow-up times
between the groups, the data again support a benefit of iron
chelation on the clinical outcome.

There are some weak hints that iron chelation also has
positive effects after allogeneic HSCT on hematological
reconstitution, but the number of patients reported is limited.
So, in a rather small cohort of eight patients with incomplete
hematological reconstitution after allogenic HSCT, treatment
with DFX led to hematological improvements with a
subsequent loss of transfusion dependency in all patients
within a maximum of 30 days (155). Moreover, Cho et al.
propose an enhanced graft-versus-leukemia (GvL) effect
leading to a lower incidence of relapse, an improvement of
DFS and OS, while the incidence of chronic GvHD by DFX
treatment post-transplant increases (156). The data, however, are
limited due to their retrospective analysis.

Besides the iron chelators mentioned above, there are also
new iron chelators and other substances with iron-chelating
properties under investigation. In a phase 2 study, triapine,
forming a potentially redox active iron complex and known to
inhibit the M2 subunit of the ribonucleotide reductase, showed
clinical activity when administered sequentially with fludarabine
in patients with accelerated myeloproliferative diseases and
secondary AML (157, 158). Ciclopirox olamine, an antimycotic
agent with iron chelation activity, showed a hematologic
improvement in 2 out of 23 patients with relapsed or
refractory hematologic diseases in a phase 1 study (159).
Moreover, eltrombopag, a thrombopoietin receptor agonist
approved for the treatment of idiopathic thrombocytopenic
purpura and aplastic anemia, has also shown to be an efficient
iron chelator, mobilizing iron and reducing ROS working
synergistically with other iron chelators in vitro (160). In a
mechanistic study on HSCs, eltrombopag stimulated
hematopoiesis at the stem cell level through iron chelation-
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mediated reprogramming (161). Randomized placebo-
controlled phase 1/2 data revealed a reduction of clinically
relevant thrombocytopenic events upon eltrombopag treatment
in MDS and AML patients (162, 163). On the contrary, a
subsequent randomized phase 2 trial investigated the receipt of
eltrombopag during standard induction therapy in AML patients
and found no clinical benefit of eltrombopag but rather a
tendency for increased severe adverse events (164).

The clinical data demonstrate activity of ICT in the treatment
of low/intermediate-1 risk MDS patients with iron overload
suggesting a potency of ICT as an additional treatment option.
The other way around, it can be deduced that iron overload in
these patients might be accountable for a worse patient outcome.
Thereby, ICT seems to specifically improve the hematopoietic
response. There is only limited data on the effect of ICT on
leukemic cells themselves and on the role of ICT in AML.
Deducing from some preclinical studies, ICT might here
influence intracellular signaling and ROS homeostasis
specifically in combination with other drugs.

Modulation of Proteins Involved
in Iron Metabolism
Many different proteins are involved in iron metabolism and have
demonstrated differential expression in MDS and AML cells as
described in section Potential Roles of Iron-Related Intracellular
Proteins in AML and MDS. Targeting these proteins therefore
represents another potential treatment approach.

Considering that malignant cells need iron for proliferation
and that TFR was demonstrated to be expressed on the surface of
AML cells, it was tested if inhibition of the TFR may lead to an
antiproliferative effect due to a decreased iron import. Indeed,
various TFR antibodies showed inhibition of DNA synthesis and
a subsequent growth inhibition of AML cells in vitro and a
reduction of tumor growth in mouse models (126, 165–168). The
effect of different TFR antibodies was even enhanced when used
in combination (169). However, as TFR is also expressed on
normal cells of the hematopoietic system and TFR antibodies
have shown to impair growth of normal hematopoietic cells as
well (165), bone marrow toxicity is thought to be an important
side effect of the treatment. Despite this fact, administration of
the TFR antibody 42/6 in patients with refractory cancer
including lymphoma patients was well tolerated in a phase 1
trial (170). Clinical data for the treatment of MDS and AML
patients are missing.

Hepcidin as regulator of systemic iron provides another
reasonable antileukemic target with the aim to reduce overall
iron load and subsequent toxic effects on organs as heart, liver
and bone marrow. Hepcidin as a potential target of iron-
homeostasis has been investigated in iron overload situations
but without specific data for MDS and AML. Synthetic hepcidin
mimetics such as PTG-300 or LJPC-401 have been reported to
reduce serum iron levels and to be well-tolerated in phase 1 trials
in healthy subjects and patients with iron overload, although the
clinical relevance has still to be determined in ongoing studies
(171, 172). Various other hepcidin targeting agents, for instance
humanized monoclonal antibodies (LY2787106; 12B9m), the
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anticalin (PRS-080), and Lexaptepid Pegol (NOX-H94) have
been tested in preclinical models or early in-human trials as
reviewed by Crielaard et al., but failed major efficacy so that
further development was stopped (173). Matripase-2 (MT2A), a
transmembrane serine protease predominantly expressed in
hepatocytes suppresses the expression of hepatic hepcidin by
cleaving the membrane hemojuvelin into an inactive form (174).
Antisense DNA (IONIS-TMPRSS6-LRx) or liposomal siRNA
(ALN-TMP) as well as some protease inhibitors have
demonstrated specific MT-2 inhibiting activity with the
potential to reduce secondary anemia in patients with iron
overload in preclinical models (173–176). Targeting the
hepcidin-ferroportin pathway by inhibiting the bone
morphogenic protein BMP6, which stimulates hepcidin
expression in the liver or the iron exporter ferroportin via the
monoclonal antibodies, LY3113593 and LY2928057, has not
been further investigated beyond a phase 1 study (177).
Therefore, data on the role of the hepcidin-ferroportin axis as
a potential therapeutic target were mostly negative, further
studies of MT-2 inhibitors have to be awaited.

Induction of Ferroptosis
In contrast to influencing the course of the disease in MDS and
AML by reducing iron overload, enhancing iron overload to
induce ferroptosis represents an opposing but alterative
mechanism. There are various agents acting as inhibitors or
inducers of ferroptosis: Iron chelators, lipophilic antioxidants,
inhibitors of lipid peroxidation and depletion of PUFAs inhibit
ferroptosis, whereas ferroptosis is induced by the accumulation
of iron or PUFA-phospholipids and by the depletion of
endogenous inhibitors such as GSH, NADPH, GPX4 or
vitamin E (178).

Erastin is a ferroptosis inducer acting on multiple levels. It
inhibits the cysteine/glutamate antiporter system Xc-, thereby
revoking cysteine import and thus reducing glutathione
synthesis. It activates TP53, which can also inhibit system Xc,
and it induces the opening of voltage-dependent anion channels
(VDACs), thereby inducing mitochondrial dysfunction (179).
The activation of ferroptosis by erastin promotes chaperone-
mediated autophagy and the degradation of glutathione
peroxidase 4 (GPX4) (180). In AML cell lines, erastin has
shown a dose-dependent mixed-type of cell death, including
ferroptosis, and enhanced the antileukemic effect of cytarabine
and doxorubicin (156). Besides, the tyrosine kinase inhibitor
sorafenib, which is approved for the treatment of liver renal and
thyroid carcinoma and also showed efficacy in AML patients
with FLT3-ITD (181, 182), also inhibits the system Xc- (183).

Other ferroptosis inducers have shown antileukemic activity
in AML cells as well: Dihydroartemisinin (DHA) was shown to
induce ferroptosis of AML cells by leading to accelerated
degradation of ferritin and increasing LPI (184). Besides, the
frequently used antileukemic drug decitabine has recently
suggested to induce ferroptosis (185). Treatment of MDS/AML
cell lines with decitabine increased ROS levels by reducing GSH
and GPX4 activity. Ferroptosis inducers enhanced the effect of
decitabine, whereas ferroptosis inhibitors abrogated the effect. As
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iron chelators also potentiated the effect of decitabine, this is
another hint that treatment effects may be mediated by ROS and
might also be influenced by the intracellular iron household.

The data suggest a potential use of ferroptosis inducers in the
treatment of AML, although clinical data are missing. There are
not enough data to estimate the role of ferroptosis induction
in MDS.

Exploitation of Iron Proteins for Targeted
Drug Delivery
Another attempt to specifically target malignant cells is to use the
TFR as target protein for the delivery of another tumor-specific
cargo. Covalent conjugates of the ferroptosis inducing agent
artemisinin and a transferrin-receptor targeting peptide
combined ferroptosis induction and targeted delivery and
revealed antileukemic affectivity in vitro (186). Thereby,
artemisinin could be co-internalized with receptor-bound
transferrin and could use the iron deliberated by transferrin to
generate cytotoxic ROS. Moreover, transferrin-conjugated
nanoparticles have shown potential in the delivery of
antileukemic drugs: Transferrin-conjugated lipid nanoparticles
delivering an antisense oligonucleotide targeting BCL2 mRNA
induced caspase-dependent apoptosis in AML cell lines and
suppressed tumor growth of human AML xenograft tumors in
mice (187, 188). Transferrin-conjugated liposomal nanoparticles
containing antagomiR-126 resulted in reduction of leukemic
stems cells in an AML mouse model (189). Additionally,
transferrin-conjugated nanoparticles delivering doxorubicin
showed cytotoxicity in myeloid leukemia cells in vitro and in
vivo (190, 191). Also, transferrin-conjugated polymeric
nanoparticles del ivering edelfosine and lipid-based
nanoparticles delivering etoposide revealed antileukemic
activity in vitro (192, 193).

Ferritin can also be used as a protein cage for the delivery of
other molecules due to its tertiary structure (194). As FTH can be
bound and uptaken by TFRC (20), this provides another way of
directed targeting. Ferritin nanovesicles delivering cytochrome C
induced apoptosis in a promyelocytic AML cell line (195).
Delivery of cytarabine in form of Fe3O4@SiO2-cytarabine
nanoparticles increased the cytotoxic effect of cytarabine alone
about two orders of magnitude in cell lines (196). The
combination of erastin and rapamycin, an inducer of
autophagy, with ferritin as a nanodrug showed increased
inhibition of tumor growth compared to the drugs
administered separately (197). Besides, use of iron saturated
ferritin as a component of nanoparticles may also contribute to
ferroptosis induction. The intravenous iron preparation
ferumoxytol has also shown to increase ROS and thereby
induce ferroptosis in patient derived xenografts from primary
AML samples with low ferroportin (198). Furthermore,
nanoparticles using Fenton reactions to improve ferroptosis are
under investigation (199).

Taken together, a couple of possible therapeutic agents have
been developed that hijack iron proteins for target delivery. Their
effectivity has been demonstrated in vitro and in vivo. Clinical
studies have to further evaluate their use in patients.
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PERSPECTIVES

In this review, we demonstrated the clinical significance of iron
homeostasis in MDS and AML patients. Iron metabolism has
been shown to impact multiple intracellular functions, the
production of ROS, the microenvironment as well as the
susceptibility to infections. Markers of iron overload were
demonstrated to have prognostic relevance although the
impact of an altered iron metabolism on patient outcome in
MDS and AML is still under debate as markers of iron overload
are highly influenced by inflammatory signals and complicate the
detection of causative associations. Supporting a partially
causative connection between iron metabolism and patient
outcome, therapeutics addressing the iron balance as ICT were
found to improve the outcome especially in low/intermediate-1
risk MDS patients. As recurrent red blood cell transfusions
constitute the major source of secondary iron overload in MDS
and AML patients, a more restrictive application should be
considered. Moreover, various agents targeting proteins
involved in iron homeostasis or inducing ferroptosis are
investigated preclinically or are in early clinical development.
With a more detailed understanding of the pathophysiology of
MDS and AML in the context of iron, future development of new
iron-targeting strategies may lead to better patient outcomes.
Therefore, basic research further investigating the processes
involved in iron homeostasis linked with redox balance and
leukemia is inevitable. Moreover, clinical studies analyzing
reliable markers for pathophysiological active iron overload
Frontiers in Immunology | www.frontiersin.org 13
and prospective studies exploring function of iron-homeostasis
targeting drugs are essential. Especially the combination of iron-
homeostasis targeting drugs with other antileukemic agents
constitutes a promising approach due to potential synergistic
effects and should therefore be further elucidated.
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