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Iron deficiency, with or without anemia, is the most frequent hematological manifestation

in individuals with cancer, and is especially common in patients with colorectal cancer.

Iron is a vital micronutrient that plays an essential role in many biological functions, in

the context of which it has been found to be intimately linked to cancer biology. To

date, however, whereas a large number of studies have comprehensively investigated

and reviewed the effects of excess iron on cancer initiation and progression, potential

interrelations of iron deficiency with cancer have been largely neglected and are not

well-defined. Emerging evidence indicates that reduced iron intake and low systemic

iron levels are associated with the pathogenesis of colorectal cancer, suggesting that

optimal iron intake must be carefully balanced to avoid both iron deficiency and iron

excess. Since iron is vital in the maintenance of immunological functions, insufficient iron

availability may enhance oncogenicity by impairing immunosurveillance for neoplastic

changes and potentially altering the tumor immune microenvironment. Data from clinical

studies support these concepts, showing that iron deficiency is associated with inferior

outcomes and reduced response to therapy in patients with colorectal cancer. Here,

we elucidate cancer-related effects of iron deficiency, examine preclinical and clinical

evidence of its role in tumorigenesis, cancer progression and treatment response. and

highlight the importance of adequate iron supplementation to limit these outcomes.

Keywords: iron deficiency, iron deficiency anemia, colorectal cancer, immune host defense, intravenous iron

therapy

INTRODUCTION

Colorectal cancer (CRC) is the third most deadly and fourth most diagnosed cancer worldwide,
and its incidence is steadily rising in developing nations (1). Both genetic characteristics
and environmental factors play a role in intestinal carcinogenesis (2, 3). Alongside other
well-established contributors, iron has recently emerged as a possible culprit in colorectal
carcinogenicity (4). Published data support the hypothesis that excess oral iron intake is associated
with an increased risk of CRC (5–8).

Iron is a vital micronutrient that has an essential role in many biological functions, in the
context of which it has been found to be intimately linked to cancer biology (4, 9, 10). The trace
element is required for energy production and intermediary metabolic actions as a catalyzer for
REDOX-mediating enzymes. Proteins may bind directly to iron or contain iron in the form of
heme or iron–sulfur clusters (11). Iron generates oxygen free radicals, which may in turn cause
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iron-induced apoptosis or ferroptosis. Furthermore, these iron-
oxygen complexes are complicit in promoting mutagenicity and
malignant transformation. Having undergone transformation,
malignant cells require large quantities of iron in order to
proliferate. Iron is also an important mediator of immune
functions, including tumor surveillance carried out by the
immune cells (9). Cytokine production in macrophages, a key
aspect of host defense, is regulated by their iron content (11).
Ideal iron intake must therefore be carefully balanced between
iron deficiency and iron excess, since both can have potentially
crucial clinical consequences with regard to cancer development.
To date, however, although a large number of studies have
comprehensively investigated and reviewed the role of excess iron
in cancer initiation and progression (5, 9, 10, 12–14), potentially
tumorigenic effects of iron deficiency have been largely neglected
and are not yet well defined (4). This certainly deserves more
research, since iron deficiency occurs particularly frequently in
patients with CRC, both at the time of diagnosis and throughout
the duration of disease (15–17).

Just as the effects of excess iron intake can potentially
influence both the etiology and prognosis of CRC, so too can
the physiological effects of iron deficiency (18–20). The risk of
CRC has been found to be significantly elevated among patients
with iron deficiency anemia (IDA) (15, 16, 21). Moreover, iron
deficiency is evidentially associated with shorter survival times
in patients with cancer (19). These findings are not surprising,
since iron deficiency can limit hematopoiesis, a prerequisite for
immune cell production, and iron is necessary for the correct
functioning of the immune cells (22, 23). Thus, in cancer patients,
iron deficiency can result in a diminished immune response
and, consequentially, an impaired treatment response, a poor
prognosis and reduced overall survival (18–20). In this review,
we investigate the flipside of the coin regarding the role of
iron in cancer, addressing consequences of iron deficiency on
immune functions key to tumor development and progression,
particularly in CRC, and elucidating current options for iron
therapy to limit these outcomes.

DEFINITION OF IRON DEFICIENCY

Iron deficiency, with or without anemia, is the most frequent
hematological manifestation in individuals with cancer,
occurring in over 40% of patients. In patients with CRC, the
reported rate is even higher, at around 60% (17, 24, 25). Two
forms of iron deficiency can be observed in patients with

Abbreviations: AID, absolute iron deficiency; CAT, catalase; CHr, hemoglobin
content of reticulocytes; CRC, colorectal cancer; EMT, epithelial to mesenchymal
transition; ESA, erythropoiesis-stimulating agent; Fe-S cluster, iron-sulfur cluster;
FID, functional iron deficiency; GSH-Px, glutathione peroxidase; Hb, hemoglobin;
HIF, hypoxia-inducible factor; IDA, iron deficiency anemia; IFN, interferon; IL,
interleukin; JHDM, Jumonji-C (JmjC)-domain-containing histone demethylase;
MCV, mean corpuscular volume; MiRNA, microRNA; NF, nuclear factor; NK,
natural killer; MPO, myeloperoxidase; RBC, red blood cell; REDOX, oxidation-
reduction; SF, serum ferritin; SOD, superoxide dismutase; TNF, tumor necrosis
factor; TSAT, transferrin saturation; ZnPP, zinc protoporphyrin; sTfR, soluble
transferrin receptor; UIBC, unsaturated iron binding capacity; VEGF, vascular
endothelial growth factor; VHL, von Hippel-Lindau; %HYPO, percentage of
hypochromic erythrocytes.

cancer: absolute iron deficiency (AID) and functional iron
deficiency (FID).

Whereas AID is characterized by depleted iron stores and
inadequate iron supply, in FID, iron stores are adequate, but
there is insufficient iron supply for erythropoiesis and other iron-
dependent pathways (26, 27). The main cause of FID in cancer is
the release of cancer-associated pro-inflammatory cytokines such
as interleukin (IL)-6, IL-1, TNF-α, and IFN-γ. These cytokines
upregulate hepcidin synthesis, thus reducing the quantity of
iron released into the circulation (27–29). FID may also develop
due to chemo- and/or radiotherapy-induced myelosuppression
or increased erythropoiesis under therapy with erythropoiesis-
stimulating agents (ESAs) (27, 29). Chronic kidney disease,
a frequent comorbidity in cancer patients, can cause FID by
reducing erythropoiesis and increasing levels of hepcidin (30, 31).
FID is one of the major contributors to anemia of chronic
disease (ACD), in this context also known as anemia of cancer
or cancer-related anemia (29, 32).

In AID, on the other hand, iron stores are genuinely
depleted. Nutritional deficiencies (e.g., malabsorption, tumor-
induced anorexia, malnutrition) and especially manifest or occult
blood loss, which are not uncommon in CRC, contribute to AID
(26, 27, 29).

Figure 1 presents an overview of the consequences of iron
deficiency and anemia in patients with cancer.

Clinical Insight: Diagnosing Iron Deficiency
in Patients With Cancer
Differentiation between AID and FID is essential, since the
specific etiology of iron deficiency in patients with cancer is an
important determinant of the treatment approach (26, 27, 33, 34).

Analysis of iron supply in the bone marrow with Perls’
Prussian blue staining is the “gold standard” for diagnosis of iron
deficiency (35). However, this technique is costly, highly invasive
and non-automated, as a result of which it is largely impracticable
in routine practice.

In healthy individuals, serum ferritin (SF) is recognized
as a marker of iron stores, while other parameters, such as
transferrin saturation (TSAT), mean corpuscular volume (MCV),
percentage of hypochromic erythrocytes (%HYPO), Hb content
of reticulocytes (CHr), soluble transferrin (sTfR), red blood cells
(RBCs) and zinc protoporphyrin (ZnPP) reflect the amount
of biologically available iron (26, 27). However, most of these
parameters are altered in patients with cancer. Therefore, the
differentiation of types of iron deficiency in this setting poses
multiple challenges (27).

Iron deficiency is defined as transferrin saturation (TSAT) <

20%, and can be further characterized as AID (SF < 100 ng/mL)
or FID (SF > 100 ng/mL) (27, 33, 34). Since SF behaves as
an acute-phase protein, due to the presence of cancer-related
inflammation, its cut-off point is higher in patients with cancer
than in persons without inflammatory disease (cut-off for SF in
the latter is 30 ng/mL) (34). In addition to the more established
markers TSAT and SF, ZnPP could represent a valuable addition
to differential diagnostics, since it has been found to be increased
in AID (34, 36, 37). While levels of soluble transferrin receptor
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FIGURE 1 | Overview of the consequences of iron deficiency and anemia in patients with cancer.

(sTfR) have also been reported to be increased in AID and
reduced in FID (27, 32), its levels may decrease following
chemotherapy and increase after ESA treatment. Therefore, sTfR
and markers related to sTfR, such as sTfR/log ferritin index, are
less suitable as markers in an oncological setting (32, 34, 37).
Other markers of iron deficiency, including CHr, %HYPO, MCV,
and RBCs, fail to discriminate between AID and FID (34).

Measurement of circulating hepcidin could offer additional
utility, not only in assessing iron status, but also in predicting
response to iron therapy (38, 39). As yet, however, there is neither
a validated clinical cut-off for hepcidin nor a simple standard test
that would allow it to be fully used in clinical practice (27, 38).

IMPACTS OF IRON DEFICIENCY ON
CANCER

Iron has anti-inflammatory and antioxidant properties and
is vitally involved in functions of the immune system (4,
20, 40). It also plays an indispensable role in many other
essential physiological processes, such as cell proliferation and
differentiation, the maintenance of intestinal health, DNA
synthesis and repair, and the metabolic breakdown of drugs and
toxins (41–43). Iron homeostasis (23, 44, 45) and the role of iron
in the initiation, progression and therapy of cancer have already
been comprehensively reviewed in numerous publications (9, 10,
12, 13, 46). In this section, we specifically focus on the impacts of

iron deficiency on CRC, from basic science to clinical outcomes
(Figure 1).

Iron Deficiency and Cancer Epigenetics
Epigenetic mechanisms have emerged as major actors that play
diverse and important roles in the initiation and progression
of cancer (47–49). While the role of iron in epigenetics has
been described, the underlying mechanisms have not yet been
thoroughly elucidated. Iron is essential for iron–sulfur (Fe-S)
cluster synthesis in every cell of the body (50) and it is known
that the key enzymes of DNA duplication, repair, and epigenetics
have Fe-S clusters as prosthetic groups (50–54). Iron deficiency
causes defective biogenesis of the Fe-S clusters, inducing DNA
replication stress and genome instability, both of which are
indications of malignant transformation (20, 54).

Jumonji-C (JmjC)-domain-containing histone demethylases
(JHDMs) affect gene expression by demethylating lysine residues
of histone tails, the most common sites of post-translational
changes. Genetic alterations in JHDMs have been reported
in various human cancers (55–57). Consequently, JHDMs are
believed to be involved in oncogenesis (55). JHDMs are iron-
dependent enzymes, having iron as a cofactor (51, 57). Therefore,
iron deficiency might inhibit the activity of JHDMs, with possible
oncologically relevant effects. Furthermore, hypoxia, a common
feature of iron deficiency, has also been found to result in a loss of
JHDM activity and probably contribute to changes in chemokine
expression (56). The role of JHDMs can be two-sided, depending
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on the cancer type. Overall, therefore, it is important to maintain
optimal iron levels (55).

The role of microRNAs (miRNAs), members of the noncoding
RNA family, in the initiation, progression, metastasis and
invasive activity of tumors has been characterized over the
past decade. miRNAs are evolutionarily conserved, endogenous,
single-stranded small RNAs of 18–22 nucleotides in length, that
are encoded by eukaryotic genomic DNA. Aberrant expression
of miRNAs may modify the normal expression of various
genes including oncogenes and tumor-suppressor genes (47,
58). Ultimately, dysregulation of miRNA expression and related
biological processes leads to poor outcomes in terms of cancer
progression and development, and also to poorer therapeutic
response (58–60). In addition, ∼50% of miRNAs are located at
genomic cancer-associated regions of loss of heterozygosity or
loss of amplification and at fragile sites within chromosomes,
underlining the important role of miRNAs in tumorigenesis (61).

Iron deficiency is suspected to affect miRNA biogenesis and
expression and alter miRNA-mediated gene regulation networks
by causing defective heme biosynthesis and degradation,
hypoxia and increased ROS (62–66). Thus, iron deficiency
can also increase the risk of tumorigenesis and lead to poor
cancer prognosis and poor therapeutic outcomes by negatively
influencing the gene regulation system of miRNAs (67).

Hypoxia, a common feature of iron deficiency, has been
demonstrated to play a major part in tumor progression and
treatment resistance in mice by corrupting the von Hippel-
Lindau (VHL) gene, the master regulator of hypoxia-inducible
factor (HIF) and thus a tumor suppressor (68). In iron-deficient,
immunodeficient mouse xenograft models, the Notch signaling
pathway was shown to be disrupted and expression of the
transcription factor Snail elevated (69). Snail has numerous
effects relevant to tumor growth, metastasis and treatment
resistance: Its increased expression promotes cell motility and
invasiveness by altering epithelial-mesenchymal transition (by
repressing epithelial and enhancing mesenchymal markers).
Furthermore, Snail endows stem cell-like characteristics on
tumor cells, thus increasing therapy resistance (70).

Iron deficiency, through hypoxia, has been associated with
enhanced expression of BCL2L1, the protein-coding gene that
inhibits mitochondria-mediated cell death. Furthermore, iron
deficiency has been shown to inhibit expression not only of
CTSZ, the gene for the cysteine protease cathepsin Z, which has
been associated with malignancy and inflammation, but also of
CASP5, the gene for the cysteine peptide Caspase 5, which is
involved in cellular apoptosis (71).

Iron deficiency is therefore associated with a variety of
epigenetic changes and epigenetic mechanisms that are likely
associated with oncogenesis. However, their role in cancer
development and progression remains to be fully elucidated.

Iron Deficiency and Pro-oxidant and
Antioxidant Activities
It has been suggested that iron deficiency might cause an
imbalance of the pro- and anti-oxidant systems (REDOX)
(20). When iron is lacking, the level of both enzymatic and

non-enzymatic antioxidant systems, such as catalase (CAT),
superoxide dismutase (SOD), glutathione peroxidase (GSH-Px)
and vitamins A, C, and E have been found to be decreased
(6, 72–74). On the other hand, oxidative stress markers like
Cu and Zn-SOD are increased (20, 75). These changes lead
to an increased generation of reactive oxygen species (ROS),
accompanied by a decrease in the body’s total antioxidant
capacity (74, 76–78). While ROS display varying reactivities
toward different targets, they share the ability to damage
cells by oxidizing proteins, lipids and DNA. This potential of
ROS to cause cell damage and DNA mutation suggests that
it may be directly or indirectly associated with tumor cell
development, metastasis, tumor aggressiveness and treatment
resistance as a reflection of accumulated ROS damage over
time (20, 79, 80).

It has been demonstrated that by increasing oxidative stress,
iron deficiency can cause damage to the mitochondria,
corrupting mitochondrial DNA (81). Mitochondria are
organelles of the cell that are primarily responsible for
oxidative phosphorylation, the production of intracellular
energy from oxygen and nutrients, as well as heme synthesis (82)
and assembly of eukaryotic iron-sulfur (Fe-S) protein clusters
(83). Mitochondria are also responsible for autoreproduction.
Disruption of mitochondrial functions can therefore impair the
integrity of the nuclear genome (84).

Hemoproteins are conjugated proteins with a variety of
structures and functions that contain a non-protein component
or prosthetic group called heme (or a derivative thereof).
Increased ROS due to oxidative stress may induce the
hemoproteins to discharge these heme groups, resulting in
circulating free heme that can trigger additional production
of free radicals. There are a number of mechanisms that can
counteract pro-oxidant effects of free heme, such as rapid
induction of heme oxygenase-1 gene (HMOX1) transcription
and heme oxygenase-1 (HO-1) isoenzyme protein expression,
which generates rapid catabolism of free heme in order to
limit resultant cell damage (85, 86). As well as being involved
in cellular homeostasis, HO-1 plays an important part in
preventing oxidative tissue damage and mediating intracellular
inflammatory mechanisms, apoptosis and cell proliferation
(85). Lai et al. (87) reported that without adequate iron,
HCT-116 human colon adenocarcinoma cells were unable to
express the HO-1 gene completely, in response to toxicity.
Since iron is essential for HO-1 gene expression, iron
deficiency might lead to decreased cytoprotection through HO-1
expression (20).

Heme is an integral part of the CYP (intestinal cytochrome
P450) antioxidant enzyme system (88–90). Iron deficiency has
been shown to diminish CYP system activity in intestinal cells.
Both in a xenograft murinemodel and in CRC cells, CYP2S1 gene
depletion was identified to promote colorectal carcinogenesis
(91–93). Thus, the effects of iron deficiency on heme synthesis
can interfere with the CYP system, posing a risk factor for CRC.

In vitro studies in human brain cells have shown iron
deficiency to result in significant reduction of the heme-
containing electron transport protein (cytochrome-c
oxidase/complex IV) (94). This has been shown to cause
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impairment of the heme metabolism, an increase in oxidative
stress, and mitochondrial dysfunction (94). All of these are
characteristic indications of cancer (20, 95).

The transcription factor Nrf2 (nuclear factor-E2-related
factor-2) functions as a cellular sensor for oxidative stress. The
genetic transcription of phase-II proteins via Nrf2 activation
probably represents the most important signaling pathway for
the body’s immune response to oxidative stress and toxins. Nrf2
thus plays an essential role in cell protection. Iron deficiency has
been found to activate autophagy andNrf2 signaling for oxidative
stress (96). Nrf2 activation has been implicated in cancer and is
associated with a poor outcome and reduced survival in tumor
types such as non-small cell lung cancer (97, 98). It has been
proposed that constitutive activation of Nrf2 may encourage
oncogenesis (99, 100) through actions promoting angiogenesis,
metabolic reprogramming, chronic proliferation, and resistance
to cell death (101, 102). Therefore, iron deficiency may promote
oncogenesis by activating autography and Nrf2 signaling for
oxidative stress.

Iron Deficiency, Immune Response, and
Cell Function
The interplay of iron homeostasis with cellular immune
responses is complex and context dependent. Impairment
of cellular immunity and antimicrobial activities of immune
cells due to iron deficiency may create a microenvironment
unconducive to the immunosurveillance mechanisms of the
immune system that should identify and eliminate potential
for malignant transformation. Furthermore, within the modified
tumor microenvironment, immune cells may themselves exert a
pro-tumorigenic response (4, 14, 20, 85).

The nuclear factor (NF-κB) and hypoxia-inducible factors
(HIFs) are transcription factors that are critical to immune
system regulation (103). The physiology of tumor cells allows
them to grow and multiply rapidly and avoid apoptosis. Also
characteristic of these cells are their capacities to ignore growth-
inhibitory signals, to instigate angiogenesis, tissue invasion and
metastasis, and to replicate infinitely. Almost all of the genes
involved in the mediation of these processes are regulated
by NF-κB transcription (104). Low levels of intracellular iron
evidentially reduce phosphorylation of Re1A, a subunit of the
NF-κB family of genes, and impair prolyl hydroxylation of
HIFs (71, 105). Iron deficiency per se and iron deficiency-
induced hypoxia can trigger the activation of HIFs, which
are known to mediate cancer progression by upregulating
target genes associated with angiogenesis and the metabolic
reprogramming of tumor cells (106, 107), thus causing resistance
to chemo- and radiotherapies (108, 109). HIF-1α plays a key
role in the growth, progression and metastasis of solid tumors
(110, 111). Iron deficiency has been found to promote HIF-1
transcription and inhibit HIF-2 transcription, thus corrupting
the synergistic signaling pathways between the HIFs and NF-
κB (71). Consequently, iron deficiency may weaken the immune
response, increasing both the risk of oncogenesis and the
probability of a poor prognosis and resistance to therapy when
malignancy occurs.

Cellular iron depletion induced by the iron chelator
desferoxamine mesylate (DFO) has been shown to increase HIF-
1α (112). The transcription factor HIF-1α mediates expression of
vascular endothelial growth factor (VEGF), a potent inducer of
malignant angiogenesis and metastasis. Thus, iron deficiency has
been reported to have important effects on HIF-1α stabilization,
VEGF formation, angiogenesis and tumor progression in breast
cancer, in both in vitro and in vivo studies (68, 113). Jacobsen
et al. (114) found increased VEGF levels to be associated with
a poor outcome in human renal cell carcinoma. Moreover,
in one of these models, iron supplementation was found to
significantly decrease VEGF levels in hypoxia, indicating a role
for iron in counteracting HIF-1α stabilization and thus, possibly,
in preventing angiogenesis (113).

Myeloperoxidase (MPO) and NADPH oxidase are enzymes
that play a key role in interferon-γ (IFN-γ) induction by
monocytes, and in microbial killing and phagocytosis by means
of ROS production in neutrophils. These enzymes are iron
dependent (115–118): Their catalytic activity is suppressed when
iron deficiency is present, causing phagocytosis to be impaired.
As a result, susceptibility to infections and tumor development
may be increased (20, 118).

Natural killer (NK) cells are cytotoxic effector lymphocytes
that perform unique functions including immunosurveillance
and anti-tumor actions within the innate immune system (119).
Hypoxia, which is characteristic of the iron deficient state, has
been shown to inhibit the expression of vital activating NK-
cell receptors and NK-cell ligands on tumor cell membranes
(120, 121). Iron deficiency therefore disrupts the cytotoxic and
specifically anti-tumor activities of NK cells and is conducive to
oncogenesis and tumor growth.

Lymphocytes, comprising natural killer cells, T cells and
B cells, are the major cellular constituents of cell mediated
immunity. Cytotoxic T cells have several functions, one of
which is the lysis of tumor cells. Iron deficiency has been
shown to inhibit T cell proliferation and secretion of the
potent anti-tumor cytokine IFN-γ (122). In murine models,
iron deficiency was found to lead to atrophy of the thymus
gland and the reduced excretion of CD28 thymocytes and
spleen cells, causing impairment to lymphocytic motility and
functions (123, 124). In addition, protein kinase-C translocation
from cytosol to the plasma membrane, vitally necessary for
T cell migration and immunological synapse, is reduced
in the iron deficient state (125, 126). Furthermore, iron
deficiency inhibits overall the expression of various diversely
acting cytokines from cells of the immune system (127–
129). Cell mediated immunity is therefore impaired due
to iron deficiency, paving the way for cancer development
and growth.

It has been demonstrated that intracellular iron plays
a key role in apoptosis of HCT-116 (human cancer) cells
(130). Furthermore, cytochrome-c oxidase activity, a significant
marker of apoptosis resistance, is evidentially diminished in
the presence of iron deficiency (131, 132). Therefore, the
cancer-related effects of iron deficiency may influence not only
tumor development and progression, but also apoptosis and
treatment response.
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EVIDENCE FROM HUMAN CLINICAL
STUDIES OF IRON DEFICIENCY ANEMIA
IN RELATION TO COLORECTAL CANCER

The abundant biological and immunological evidence describing
important cancer-related effects of iron deficiency has direct
implications for human health. Clinical and epidemiological
studies have focused on various aspects of the relationship
between iron deficiency and CRC, from etiology to progression
and metastasis, therapeutic response and long-term outcomes.

Studies of patients with CRC found a significant association
with low transferrin saturation in a cohort of Californian males
(133) and with low serum ferritin in a case-control nested study
of New York females (134). In another cohort study, men and
postmenopausal women with iron deficiency without anemia
had a five-fold and those with IDA a 31-fold increased risk of
developing gastrointestinal cancer in comparison to individuals
with normal hemoglobin (Hb) and TSAT levels (15).

In a large cohort of 965 men and women aged 50–75
years, Bird et al. (135) found a U-shaped relation between iron
intake and colorectal polyps, with those consuming high (>27.3
mg/day) or low (<11.6 mg/day) quantities of iron more likely
to develop colorectal polyps, a precursor lesion to CRC. In
line with this, Cross et al. (136) showed that CRC risk was
inversely associated with serum ferritin levels and positively
associated with serum unsaturated iron binding capacity (UIBC).
Moreover, serum iron and TSAT were found to have an inverse
association with the risk of colon cancer, specifically (136).
In a recent study by Hamarneh et al. (137) assessing risk
factors for CRC following a positive fecal immunochemical test,
IDA was reported as a significant risk factor for CRC [OR
7.93, 95% Cl (2.90–21.69), p < 0.001] independent of age.
While the above findings suggest that iron deficiency could
contribute to the pathogenesis of CRC, just as excessive iron
intake does, the mechanisms are not yet fully understood.
However, as presented above, preclinical research points to a role
of iron deficiency in blunting the immune response, allowing
tumor cell invasion under diminished immunosurveillance or
switching to a pro-tumorigenic immune cell function in the
tumor microenvironment (4, 9, 22, 23).

Not only may iron deficiency substantially influence
oncogenesis, but it has also been found to influence oncological
outcomes in patients with CRC. Zhen et al. (138) investigated
long term effects of iron deficiency on the outcomes of 644
patients (19–83 years) with TNM stage II CRC and found
IDA to be an independent predictor of long-term outcome in
patients with T3N0M0 stage colon cancer. Patients with IDA
had inferior outcomes and presented with worse tumor staging
and lower disease-free survival than non-anemic patients (138).
These findings suggest that IDA can influence CRC prognosis
and outcomes, presumably by inhibiting immune system
mechanisms that limit tumor growth, hindering responsiveness
to treatments such as chemotherapy or surgery, and restricting
the immune system’s response to circulating tumor cells that
can develop into distant metastasis (4, 9, 139). Lorenzi et al.
(140) found that patients with both high and low serum ferritin

levels who underwent curative or palliative surgery had shorter
survival after a follow up period of at least 5 years in comparison
to those with normal levels. Another study by An et al. (141)
showed that patients with preoperative anemia treated with
combined FOLFOX-based adjuvant chemotherapy had a worse
prognosis than those without anemia. Additionally, a systematic
review of 60 studies identified a 65% overall elevated mortality
risk among cancer patients with anemia in comparison with
those without anemia (19).

Overall, therefore, the evidence from epidemiological and
clinical research corroborates data from preclinical studies,
suggesting that iron deficiency, like iron surplus, might have
a considerable negative influence with regard to oncogenesis,
tumor progression and individual outcomes. Iron deficiency,
with or without anemia, is associated with a poor prognosis,
worse tumor staging, lower disease-free survival rates and a
poorer response to oncological therapies in patients with CRC.

ON A THERAPEUTIC KNIFE-EDGE: IRON
REPLACEMENT THERAPY IN PATIENTS
WITH COLORECTAL CANCER AND IRON
DEFICIENCY/ANEMIA

There are currently three main treatment approaches for
iron deficiency in the context of CRC; blood transfusions
(RBC transfusions), erythropoiesis-stimulating agents
(ESAs) and iron supplementation (26, 34). Since both RBC
transfusions and ESAs are, like iron deficiency/anemia,
independently associated with an increased risk of CRC
recurrence and mortality (142–144), the use of iron
substitution therapy to reverse anemia has gained more
attention. In principle, iron can be replaced either orally
or intravenously.

Oral Iron
Oral substitution of iron has long been favored due to its
simplicity and low costs, and as a result of lingering safety
concerns due to adverse events associated with early intravenous
iron compounds. However, its suitability in cancer patients is
generally limited by concurrent inflammation, gastrointestinal
discomfort and polypharmacy. Furthermore, oral iron has
not been associated with consistent clinical or hematological
improvement in patients with cancer (82, 145–147). On the
contrary; it has been found to be ineffective in individuals with
cancer and especially CRC, since intestinal iron absorption is
greatly reduced in these patients (nearly 95% of the iron being
excreted) (33). Furthermore, the increased availability of iron in
the gut due to reduced intestinal iron absorption may support
the proliferation of pathogenic gut bacteria conducive to tumor
progression in preference to protective passenger bacteria that are
more likely to hinder disease progression (148). As for the very
small quantity of iron absorbed, most remains trapped within
the enterocytes, where it is largely blocked by inflammatory
cytokines and thus cannot be metabolized (33, 149). Overall,
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therefore, oral iron is unsuitable for iron replacement in patients
with CRC.

Intravenous Iron
Intravenous (IV) iron can overcome the absorptive inflammatory
blockade of iron, since iron is directly captured by the
macrophages (33). There is growing evidence to support benefits
of IV iron therapy (without additional ESAs) in patients with
cancer (150–160) and IV iron has been shown to optimize
preoperative hemoglobin levels specifically in patients with
CRC (158–163). On the other hand, in the extended IVICA
trial, a randomized study including 116 patients with anemia
and colorectal cancer treated preoperatively with oral or IV
iron, no significant difference was found for 5-year overall
survival or disease-free survival (164). There are some concerns
about the possible role of iron overload in cancer, including
promotion of tumor growth, enhanced oxidative stress and
poor disease progression (165–167). Wilson et al. (168) suggest
that “iron therapy may worsen colorectal tumor prognosis
by supporting colorectal tumor growth and increasing the
metastatic potential.” However, there is no direct evidence
from experimental studies to substantiate this hypothesis and
the clinical applicability of such experimental data in patients
with cancer is limited, since they are based on high iron
doses, differing routes of injection and a variety of iron
formulations that are not typically used in clinical settings
(27, 169). Furthermore, iron overload is rare in patients with
cancer (34).

In rodent models of CRC induced by inflammatory or
carcinogenic agents, whereas elevated oral iron intake was
shown to increase the incidence of tumors, systemic (IV) iron
supplementation did not have the same effect (170, 171). This
suggests that increased luminal iron, but not systemic iron levels,
increase colorectal carcinogenesis in inflammatory models of
CRC (172, 173). Radulescu et al., who showed in a rodent
model that luminal iron cooperates with Apc (adenomatous
polyposis coli gene) loss to promote intestinal tumorigenesis,
propose that in patients with CRC, a combination of colonic
luminal iron chelation and concurrent systemic iron replacement
therapy would both resolve anemia and at the same time
diminish the carcinogenic pool of residual iron within the
colon (174).

Evidence from prospective clinical trials describing outcomes
of IV iron therapy (alone or in combination with ESAs)
in an oncological population are relatively scarce but their
results are in line with the findings of rodent model studies.
Short-term studies are reassuring, having not shown increased
tumor progression in patients treated with IV iron and ESAs
(34). One prospective randomized controlled trial evaluating
treatment with IV iron and ESAs in patients with cancer
(175), with a median follow-up period of 1.4 years, failed to
find any negative effects on long-term outcomes or survival.
A retrospective cohort study of patients who underwent
surgery for CRC, with an extended follow-up period (median
3.9 years), confirmed that overall and disease-free survival
did not significantly differ in subjects treated with IV iron

(in this case, ferric carboxymaltose at a dose of 1,000–
2,000mg) as compared with a matched group not receiving
IV iron (176). A comprehensive review of iron dextran use by
Gilreath et al. concluded that there was no clinical evidence
to support an elevated risk of cancer growth due to iron
overload (167).

Regarding the risk of infections, no alarming signs have
emerged in patients with cancer treated with IV iron.
Nevertheless, given the role of iron in immune response
and microbial proliferation (177), current guidelines
prudently advise that IV iron should not be administered
to patients who have, or are suspected to have, active
infections (34).

No increase in cardiovascular morbidity has been observed in
connection with IV iron therapy (82, 145, 178–180). However,
it is recommended to avoid concomitant administration
of IV iron and cardiotoxic chemotherapy: IV iron should
be administered either before or after application of
chemotherapy, or at the end of the chemotherapy treatment
cycle (34).

CONCLUSION

In contrast to the large amount of research already dedicated to
the effects of excess iron as a probable (co-)trigger and driver of
oncogenesis, the role of iron deficiency has been largely neglected
and—on the evidence of the reviewed preclinical and clinical
data—possibly underestimated. In particular, iron is vital for
optimal functioning of the immune system, playing major roles
in a multitude of different immune processes and pathways.
Iron deficiency influences crucial mechanisms such as immune
surveillance, gene regulation and cell apoptosis, all of which
are key to host defense against malignant transformation and
tumor growth. Clinical studies in patients with cancer and
iron deficiency/anemia suggest that that unlike oral iron, IV
iron therapy (with/without ESAs) improves overall outcomes
without increasing risk of infection or cardiovascular morbidity.
Excess (uningested/residual) oral iron can cause oncogenic
effects in the intestinal tract and is thus generally unsuitable
for patients with CRC (although its use may occasionally be
justified, employing “defensive” dosing strategies). In general,
IV iron does not appear to have this potential for local
exacerbation, as confirmed by rodent studies. Iron overload
is rarely seen in patients with cancer and there is no clinical
evidence that IV iron negatively affects tumor progression.
Nevertheless, in view of the abounding evidence of effects
of iron overload on tumor growth, we suggest that IV iron
should be cautiously supplemented with the goal of avoiding
anemia and maintaining iron stores. Additional research is
needed to confirm the appropriateness of IV iron replacement
in patients with cancer, to explore the feasibility of concurrent
luminal iron chelation, to determine target levels for iron store
maintenance, and to shed further light on the effects of chronic
iron deficiency on iron-dependent mechanisms in the context of
the tumor microenvironment.
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