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Deutsche Zusammenfassung der
Dissertation

,Binokulare Eigenbewegungsschatzung
fliir Fahrerassistenzanwendungen”

Einfiihrung

Autofahren kann gefihrlich sein. Die Fahrleistung wird durch die physischen und
psychischen Grenzen des Fahrers und durch externe Faktoren wie das Wetter beein-
flusst. Fahrerassistenzsysteme erhohen den Fahrkomfort und unterstiitzen den Fahrer,
um die Anzahl an Unfillen zu verringern. Fahrerassistenzsysteme unterstiitzen den
Fahrer durch Warnungen mit optischen oder akustischen Signalen bis hin zur Uber-
nahme der Kontrolle tiber das Auto durch das System.

Eine der Hauptvoraussetzungen fiir die meisten Fahrerassistenzsysteme ist die ak-
kurate Kenntnis der Bewegung des eigenen Fahrzeugs. Heutzutage verfiigt man uber
verschiedene Sensoren, um die Bewegung des Fahrzeugs zu messen, wie zum Bei-
spiel GPS und Tachometer. Doch Auflosung und Genauigkeit dieser Systeme sind
nicht ausreichend fiir viele Echtzeitanwendungen. Die Berechnung der Eigenbewe-
gung aus Stereobildsequenzen fiir Fahrerassistenzsysteme, z.B. zur autonomen Na-
vigation oder Kollisionsvermeidung, bildet den Kern dieser Arbeit.

Diese Dissertation prasentiert ein System zur Echtzeitbewertung einer Szene, in-
klusive Detektion und Bewertung von unabhingig bewegten Objekten sowie der
akkuraten Schatzung der sechs Freiheitsgrade der Eigenbewegung. Diese grundle-
genden Bestandteile sind erforderlich, um viele intelligente Automobilanwendungen
zu entwickeln, die den Fahrer in unterschiedlichen Verkehrssituationen unterstiitzen.
Das System arbeitet ausschlie3lich mit einer Stereokameraplattform als Sensor.

Losungsansatz

Das vorgestellte System gliedert sich in drei wesentliche Bausteine.

Die ,Registrierung von Bildmerkmalen” erhilt eine Folge rektifizierter Bilder als
Eingabe und liefert daraus eine Liste von verfolgten Bildmerkmalen mit ihrer entspre-
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chenden 3D-Position.

Der Block ,Eigenbewegungsschiatzung” besteht aus vier Hauptschritten in einer
Schleife: Bewegungsvorhersage, Anwendung der Glattheitsbedingung fiir die Be-
wegung (GBB), absolute Orientierungsberechnung und Bewegungsintegration. Die
GBB ist eine machtige Bedingung fur die Ablehnung von AusreiRern und fiir die
Zuordnung von Gewichten zu den gemessenen 3D-Punkten. Die absolute Orientie-
rung wird mit der Methode der kleinsten Quadrate in geschlossener Form geschatzt.
Jede lteration stellt eine neue Bewegungshypothese zur Verfiigung, die zu der ak-
tuellen Bewegungsschatzung integriert wird. Wir nennen diese Schatzung Multi-
frameschatzung im Gegensatz zur Zweiframeschatzung, die nur die aktuellen und
vorherigen Bildpaare fiir die Berechnung der Eigenbewegung betrachtet.

Der dritte Block besteht aus der iterativen Schatzung von 3D-Position und 3D-
Geschwindigkeit von Weltpunkten. Hier wird eine Methode basierend auf einem
Kalman Filter verwendet, das Stereo, Featuretracking und Eigenbewegungsdaten fu-
sioniert.

Iterative Schatzung von 3D-Position und
3D-Geschwindigkeit

Ein stochastisches Modell fiir die rekursive Schatzung der 3D-Position und 3D-
Geschwindigkeit von Weltpunkten wird prasentiert. Das Kalman Filter ist ein ma-
thematisches Werkzeug, das rekursiv den Zustand eines dynamischen Systems mit
verrauschten Messdaten schatzt. Unter bestimmten Annahmen sind Kalman Filter op-
timale Schatzer, in dem Sinne, dass sie die Unsicherheit der Schatzung minimieren.
Viele Methoden, die auf einem Kalman Filter basieren, sind vorgeschlagen worden,
um die Bewegung von Objekten zu schitzen. Eine Ubersicht iiber einige der bedeu-
tendsten Veroffentlichungen wird aufgefiihrt.

Diese Dissertation schldgt ein Kalman Filter-Modell vor, um die 3D-Position und
3D-Geschwindigkeit von Weltpunkten zu schatzen. Messungen der Position eines
Weltpunkts werden durch das Stereokamerasystem gewonnen. Die Differenzierung
der Position des geschatzten Punkts erlaubt die zusatzliche Schatzung seiner Ge-
schwindigkeit. Kalman Filter bieten eine einfache Methode Position und Geschwin-
digkeit zu schatzen und damit auch unabhangig bewegte Objekte zu erkennen. Die
Bewegung eines statischen Weltpunkts in einem bewegten Kamerakoordinatensys-
tem wird durch die Systemgleichungen modelliert. Die Systemgleichungen beziehen
die Starrkérperbewegung der Kamera in Bezug auf die statische Umgebung ein. Die
Messungen werden durch das Messmodell gewonnen, das Stereo- und Bewegungs-
daten fusioniert. Ohne jegliche vorherige Informationen werden zwei Messungen
gebraucht, um den Filter zu initializieren. Simulationsergebnisse validieren das Mo-
dell. Der Vergleich mit der unteren Schranke von Cramer-Rao zeigt, dass die Metho-
de effizient ist. Die Verringerung der Positionsunsicherheit im Laufe der Zeit wird
mit einer Monte-Carlo Simulation nachgewiesen.

In dem Systemgleichungsmodell missen die Parameter der Eigenbewegung ge-
setzt werden. Bei Simulationen sind diese Parameter bekannt, die in realen Sequen-
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zen geschatzt werden missen. Dies erfolgt durch die Berechnung der absoluten
Orientierung zwischen den verrauschten 3D-Punktwolken der Umgebung.

Das absolute Orientierungsproblem und die
Fehlermodellierung

Um die Eigenbewegung und die Szenenstruktur zu berechnen, wird eine Analyse
des Rauschens und der Fehlerfortpflanzung im Bildaufbereitungsprozess benotigt.
Deshalb werden in dieser Dissertation die Rauscheigenschaften der durch Stereo-
triangulation erhaltenen 3D-Punkte analysiert. Dies fiihrt zu der Entdeckung eines
systematischen Fehlers in der Schatzung der 3D-Position, der sich mit einer Neu-
formulierung der Projektionsgleichung korrigieren ladsst. Die Eigenbewegungsschat-
zung wird gewonnen, indem die Rotation und Translation zwischen Punktwolken
geschitzt wird. Dieses Problem ist als ,absolute Orientierung” bekannt und viele
Losungen auf Basis der Methode der kleinsten Quadrate sind in der Literatur vorge-
schlagen worden. Diese Arbeit rezensiert die verfligbaren geschlossenen Losungen
zum Problem.

Absolute Orientierung

Der Berechnung der absoluten Orientierung in geschlossener Form ist oft in der Li-
teratur angendhert worden. Viele Artikel sind veroffentlicht worden ohne die Kennt-
nisse von vorherigen Untersuchungen, so dass dieselben Methoden mehrere Male
entdeckt und wieder entdeckt wurden. Dies geschah sowohl mit der quaternionen-
basierten Losung als auch mit der Methode basierend auf der Singularwertzerlegung.
Bis heute sind vier Methoden bekannt, um die gewichteten Least Squares in geschlos-
sener Form zu l6sen. Die zwei oben erwdhnten, eine Methode basierend auf der
Polarzerlegung und eine vierte Methode basierend auf der Doppel-Quaternionen
Methode.

Der Total Least Squares Ansatz fiir das absolute Orientierungsproblem ist iterativ.
Eine Losung in geschlossener Form wird gefunden, wenn eine Anniherung an die
gesuchte Rotationsmatrix verfligbar ist. Dennoch wird die Losung leicht verschlech-
tert, da die Rotationsmatrix als die Projektion einer uneingeschrankten Losung in der
Parametermannigfaltigkeit gefunden wird.

Fehlermodellierung von 3D-Punkten

Die absolute Orientierung wird zwischen 3D-Punktwolken berechnet. Der Fehler ei-
nes 3D-Punkts, erhalten durch Stereo, wird durch den Fehler des projizierten Punkts
auf das Bild und der Triangulationsgleichung charakterisiert. Verschiedene Modelle
sind gemal} den Fehlereigenschaften der projizierten 3D-Punkte verfiigbar.

Bei der Betrachtung der Bildquantisierung als Hauptursache fiir Fehler in der Ste-
reotriangulation (durch begrenzte Auflésung) approximiert das hexaedrische Modell
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den Fehler als gleichmaRig verteilt in einem Volumen, das als der Schnitt zweier
Pyramiden gesehen werden kann.

Wenn die Fehlerverteilung der Bildmerkmale in der Bildebene als gauliverteilt
angenommen werden kann, stellt das eiférmige Modell eine bessere Annaherung
an die echte Fehlerverteilung im dreidimensionalen euklidischen Raum dar. In dem
eiformigen Modell ist die geometrische Interpretation der Fehlerverteilung im eukli-
dischen Raum ein eiférmiger Ellipsoid. Ein solcher hat zylindrische Symmetrie, aber
ist asymmetrisch in einer Ebene senkrecht zur Langsachse.

Beide vorherigen Modelle machen die Fehlerfortpflanzung in spateren Stufen
ziemlich schwierig. Deshalb wird die Fortpflanzung der Bildkovarianzmatrix zum
dreidimensionalen euklidischen Raum berechnet, was das Ellipsoidmodell darstellt.
Da die Fortpflanzung mit einer ersten Ordnungsannaherung der Triangulationsglei-
chung erreicht wird, fiihrt dieses Modell zu einem systematischen Fehler in der
Bewertung der 3D-Position. Dieser wird durch eine Neudefinition der Triangula-
tionsfunktion reduziert. Die neue Triangulationsgleichung korrigiert die gemessene
Disparitat. Hierfir ist die reale Disparitatsvarianz erforderlich. Die Simulationsergeb-
nisse zeigen, dass eine bedeutende Verringerung des Fehlers in der geschitzten 3D-
Punktposition moglich ist, selbst wenn die echte Disparitatsvarianz grob geschatzt
wird.

Eigenbewegungsschiatzung

Das Problem der visuellen Schatzung der Eigenbewegung besteht in der Extraktion
der Parameter der Kamerabewegung zwischen zwei Zeitpunkten. Einige Arbeiten zur
Berechnung der Eigenbewegung sind in den letzten vier Jahrzehnten veroffentlicht
worden. Alle Methoden kénnen als zu einer von zwei Hauptgruppen gehorend klas-
sifiziert werden: monokulare Methoden und multiokulare Methoden. Der Hauptun-
terschied zwischen beiden Gruppen ist die Relativitdt der Ergebnisse. Multiokulare
Methoden berechnen die Starrkérpertransformation der Kameraplattform zwischen
zwei Zeitpunkten. Monokulare |6sen stattdessen das relative Orientierungsproblem.
Der fehlenden Skalierungsfaktor kann wiederhergestellt werden, indem Annahmen
tber die Bewegung der Kamera oder Uber die Struktur der Szene gemacht werden.
Beide Gruppen werden nach der Art und Weise untergliedert, wie sie den Zeitbe-
standteil integrieren: Methoden basierend auf optischer Fluss, Methoden basierend
auf normalen Fluss, direkte Methoden und Methoden basierend auf Landmarken.
Diese Arbeit rezensiert einige Hauptbeitrage zur Eigenbewegungschatzung fir jede
Kategorie.

Die in dieser Dissertation prasentierte Methode arbeitet als ein Pradiktor-Korrektor
Algorithmus, der friihere Messungen in jede neue Iteration integriert.

Jede lteration fiihrt vier Hauptschritte aus: 1. Bewegungsvorhersage, 2. Anwen-
dung der Glattheitsbedingung fuir die Bewegung (GBB), 3. Berechnung der absoluten
Orientierung (Korrektur) und 4. Integration der neuen Bewegung zu der derzeitigen
Schatzung. Die Bewegungsvorhersage hilft fir die Anwendung der Glattheitsbedin-
gung (GBB). Die GBB ist ein Kriterium, das angewandt wird, um AusreiRer, wie
fremdbewegte Punkte und falsche Korrespondenzen zu verwerfen. Die GBB gewich-



tet Daten um den Beitrag von verrauschten Messungen zu verringern. Das Ergebnis
des GBB sind zwei 3D-Punktwolken mit entsprechenden Gewichten.

Die Korrektur der vorausgesagten Eigenbewegung wird durchgefiihrt, indem die
absolute Orientierung zwischen den Wolken von Punkten berechnet wird. Der vierte
Schritt ist die Integration der zuvor erworbenen Bewegungsinformation zur gegen-
wartigen Schatzung. Dieser Schritt erfolgt durch eine Zerlegung gefolgt von einer
Interpolation der Bewegungsparameter.

Glattheitsbedingung fiir die Bewegung

Es gibt zwei Rauschvorginge, die die Messungen beeinflussen. Das extrinsische Rau-
schen wird hauptsachlich durch den Messprozess des Sensors erzeugt. Das intrin-
sische Rauschen hat die stiarkere Wirkung in Korrespondenzproblemen und wird
hauptsachlich durch falsche aber auch durch richtige Zuordnungen, die aber mit
dem modellierten System nicht beschrieben werden konnen, erzeugt. Falsche Kor-
respondenzen entstehen in Stereo- und Trackingalgorithmen und werden durch die
zeitlich (optischer Fluss) oder die raumlich (Stereo) falsche Zuordnung von Punkten
zwischen zwei Ansichten verursacht. Somit ist die Modellierung des entsprechenden
extrinsischen Rauschens und die gleichzeitige Erkennung der Ausreiller von groRter
Bedeutung fur einen robusten Algorithmus.

Diese Dissertation schlagt ein wirkungsvolles Kriterium vor, um Ausreiller (be-
wegte Punkte und falsche Korrespondenzen) in der Punktwolke zu entdecken. Es
hilft auch das Gewicht verrauschter Messungen zu reduzieren.

Zwei Versionen des GBB werden vorgeschlagen. Eine Version fiir die Weighted
Least Squares (WLS) und eine Version fiir Total Least Squares (TLS) Methode. Die
WLS-Version der GBB bestimmt das Gewicht, das den Beitrag eines Punktpaares
als Ganzes ohne Diskriminierung ihrer Komponenten festlegt. Ein Gewicht von Null
wird angewandt, wenn das Paar keine kohdrente Bewegung zeigt. Andernfalls ge-
wichtet die Methode das Paar von Punkten gemall der Entfernung zwischen Vor-
hersage und Messung. Die TLS-Version der GBB erlaubt zusatzlich die Gewichtung
jedes Punktes unabhangig einzusetzen.

Simulationen werden mit gaullschem und slashschem Rauschen ausgefiihrt. Die
Ergebnisse zeigen die Uberlegenheit der GBB-Version iiber die Standardgewich-
tungsmethoden. Die Stabilitat der Ergebnisse hinsichtlich Ausreilern wurde analy-
siert. Es zeigt sich, dass der ,break down point” groBer als 50% ist.

Multiframeschatzung

Zweiframeschatzung, d. h. die Schatzung der Bewegungsparameter zwischen dem
gegenwartigen und dem vorherigen Bildpaar, ist der Standardfall in den meisten An-
satzen. Das Hauptproblem dieser Anndherung ist die schnelle Fehlerakkumulation.
Der Fehler in der Eigenposition wachst superlinear im Laufe der Zeit. Diese Arbeit
schldgt eine Verringerung der Fehlerakkumulation durch die Integration mehrerer
Frames in der aktuellen Bewegungsschatzung vor.

Der Algorithmus fiihrt vier Hauptschritte aus: 1. Bewegungsvorhersage, 2. Anwen-
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dung des GBB, 3. Bewegungskorrektur und 4. Bewegungsintegration. Wenn diese
vier Schritte iterativ ausgeftihrt werden, wird ein Pradiktor-Korrektor-Verfahren ge-
wonnen. Die erste Iteration wird zwischen der aktuellen und vorherigen Wolke von
Punkten durchgefiihrt. Jede weitere Iteration integriert eine zusatzliche Punktwolke
eines vorherigen Zeitpunkts. Diese Methode reduziert die Fehlerakkumulation bei
der Integration von mehreren Schatzungen in einer einzigen globalen Schatzung.
Die Integration von Bewegungsschatzwerten wird mit sphéarischer linearer Interpola-
tion fur die Rotationsmatrizen und linearer Interpolation bei der Verschiebungsvek-
toren durchgefiihrt. Die Faktoren fiir die Interpolationen werden vom Residuum der
absoluten Orientierungsschatzung berechnet.

Simulationsergebnisse zeigen, dass, obwohl der Fehler noch superlinear im Laufe
der Zeit zunimmt, die GroRe des Fehlers um mehrere GroBenordnungen reduziert
wird.

Fusion von visueller Odometrie und Inertialsensoren

Die in dieser Dissertation vorgeschlagene Methode arbeitet ausschlieSlich mit den
Bildern, geliefert durch das Stereosystem. Doch es gibt Situationen, in denen das
Stereosystem in seiner Leistungsfahigkeit eingeschrankt ist, z. B. ganze oder teilweise
Verdeckung durch den Scheibenwischer oder direkte Einstrahlung von Sonnenlicht.

Wenn das Fahrzeug mit zusatzlichen Systemen fiir die Messung der Bewegung
ausgestattet wird, wie ein Tachometer, Gierraten- und GPS-Sensor, kbnnen die red-
undanten Informationen zur Erhohung der Robustheit und Verbesserung der Schat-
zung verwendet werden. Zu diesem Zweck wird eine Kovarianzmatrix der visuellen
Schatzung abgeleitet. Geschatzte Zustande mit entsprechenden Kovarianzmatrizen
werden in einer einzelnen Endschatzung fusioniert.

Experimentelle Ergebnisse

Experimentelle Ergebnisse werden mit langen Sequenzen von Bildern erzielt.

Die ersten beiden Testsequenzen wurden aufgenommen, wahrend das Fahrzeug
Strecken mit mehreren Kurven bei einer Geschwindigkeit von 0 km/h und 60 km/h
zurlicklegte. Die Framerate fiir beide Sequenzen betragt 10 Frames pro Sekunde.
Die Basisbreite des Stereokamerasystems ist 0, 35 Meter und die Bilder haben einen
Standard-VGA-Auflosung (640 x 480 Pixels). Jede Sequenz umfasst eine Entfernung
von mindestens 1,25 km. Die Sequenzen enthalten mehr als 25 fremdbewegte Ob-
jekte, hauptsachlich entgegenkommende Autos und Busse. Ein Kalman Filter wird
fur jedes neue Merkmal initialisiert und das Filter wird im Laufe der Zeit aktualisiert.
Die Eigenbewegung wurde mit und ohne Verwendung der Inertialsensorik berech-
net. Der herausgezogene Pfad wurde (ber die Luftansichten der Strallen geplottet.
Nur geringe Abweichungen werden zwischen dem Weg der Luftansichten und dem
geschatzten Pfad beobachtet. Die durchschnittliche Zeit fiir die Berechnung der Ei-
genbewegung betrug 8, 5 ms und fiir das Kalman Filter 9,8 ms.

Zusitzliche Tests, einschlieBlich einer 3D-Rekonstruktion einer Waldszene und
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der Berechnung der freien Kamerabewegung in einem Indoor-Szenario, wurden
durchgefiihrt. Die Methode zeigt gute Ergebnisse in allen Fallen.

Die Methode wurde auch an die Schatzung der Lage von kleinen Objekten ange-
passt. Eine Anpassung ist erforderlich, da bei der Schatzung der Lage eines Objektes
die Kamera statisch bleibt wahrend sich das Zielobjekt mit den sechs Freiheitsgraden
bewegt. Die Genauigkeit des Algorithmus wurde mit synthetischen Bildern von Ob-
jekten unterschiedlicher Grolle und mit einer Winkelauflosung von 2° bis 8° getestet.
Der maximale Fehler, einschliellich der integrierten Fehler der Lage tiber 100 Fra-
mes, bleibt innerhalb von 10°. Der durchschnittliche Fehler bleibt weit unter 1°. Der
Algorithmus liefert zudem akzeptable Ergebnisse bei der Schatzung der Lage kleiner
Objekte, wie Kopfe und Beine von realen Crash-Test-Dummies.

Schlussfolgerungen

In dieser Arbeit wurde ein robustes, echtzeitfihiges Verfahren vorgestellt, das es er-
laubt, alle 6 Freiheitsgrade eines bewegte Kamerasystems ausschliesslich anhand von
Stereobildsequenzen zu schatzen. Die Inertialsensoren des Fahrzeugs konnen ver-
wendet werden, um die Robustheit der Schatzung zu erhohen.

In dieser Dissertation wurde auch die Anpassungsfahigkeit der Methode auf ver-
schiedenen Szenarios und Anwendungen gezeigt. Die experimentellen Ergebnisse
haben die mogliche Anwendbarkeit dieser Methode als SLAM Methode gezeigt, in-
dem eine 3D-Rekonstruktion fiir eine ganze Szene gemacht wurde. Innenanwen-
dungen sind auch mit guten Resultaten untersucht worden. Schlieflich wurde die
Methode angepasst, um die prazise Lage von kleinen Objekten zu schitzen.
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Abstract

Driving can be dangerous. Humans become inattentive when performing a
monotonous task like driving. Also the risk implied while multi-tasking, like us-
ing the cellular phone while driving, can break the concentration of the driver and
increase the risk of accidents. Others factors like exhaustion, nervousness and ex-
citement affect the performance of the driver and the response time. Consequently,
car manufacturers have developed systems in the last decades which assist the driver
under various circumstances. These systems are called driver assistance systems.

Driver assistance systems are meant to support the task of driving, and the field
of action varies from alerting the driver, with acoustical or optical warnings, to tak-
ing control of the car, such as keeping the vehicle in the traffic lane until the driver
resumes control. For such a purpose, the vehicle is equipped with on-board sen-
sors which allow the perception of the environment and/or the state of the vehicle.
Cameras are sensors which extract useful information about the visual appearance
of the environment. Additionally, a binocular system allows the extraction of 3D
information.

One of the main requirements for most camera-based driver assistance systems is
the accurate knowledge of the motion of the vehicle. Some sources of information,
like velocimeters and GPS, are of common use in vehicles today. Nevertheless,
the resolution and accuracy usually achieved with these systems are not enough
for many real-time applications. The computation of ego-motion from sequences of
stereo images for the implementation of driving intelligent systems, like autonomous
navigation or collision avoidance, constitutes the core of this thesis.

This dissertation proposes a framework for the simultaneous computation of the 6
degrees of freedom of ego-motion (rotation and translation in 3D Euclidean space),
the estimation of the scene structure and the detection and estimation of indepen-
dently moving objects. The input is exclusively provided by a binocular system and
the framework does not call for any data acquisition strategy, i.e. the stereo images
are just processed as they are provided. Stereo allows one to establish correspon-
dences between left and right images, estimating 3D points of the environment via
triangulation. Likewise, feature tracking establishes correspondences between the
images acquired at different time instances. When both are used together for a large
number of points, the result is a set of clouds of 3D points with point-to-point corre-
spondences between clouds.

The apparent motion of the 3D points between consecutive frames is caused by
a variety of reasons. The most dominant motion for most of the points in the clouds
is caused by the ego-motion of the vehicle; as the vehicle moves and images are ac-
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quired, the relative position of the world points with respect to the vehicle changes.
Motion is also caused by objects moving in the environment. They move indepen-
dently of the vehicle motion, so the observed motion for these points is the sum of
the ego-vehicle motion and the independent motion of the object. A third reason,
and of paramount importance in vision applications, is caused by correspondence
problems, i.e. the incorrect spatial or temporal assignment of the point-to-point cor-
respondence. Furthermore, all the points in the clouds are actually noisy measure-
ments of the real unknown 3D points of the environment.

Solving ego-motion and scene structure from the clouds of points requires some
previous analysis of the noise involved in the imaging process, and how it propagates
as the data is processed. Therefore, this dissertation analyzes the noise properties of
the 3D points obtained through stereo triangulation. This leads to the detection of a
bias in the estimation of 3D position, which is corrected with a reformulation of the
projection equation. Ego-motion is obtained by finding the rotation and translation
between the two clouds of points. This problem is known as absolute orientation,
and many solutions based on least squares have been proposed in the literature. This
thesis reviews the available closed form solutions to the problem.

The proposed framework is divided in three main blocks: 1) stereo and feature
tracking computation, 2) ego-motion estimation and 3) estimation of 3D point posi-
tion and 3D velocity. The first block solves the correspondence problem providing
the clouds of points as output. No special implementation of this block is required
in this thesis.

The ego-motion block computes the motion of the cameras by finding the absolute
orientation between the clouds of static points in the environment. Since the cloud
of points might contain independently moving objects and outliers generated by
false correspondences, the direct computation of the least squares might lead to
an erroneous solution. The first contribution of this thesis is an effective rejection
rule that detects outliers based on the distance between predicted and measured
quantities, and reduces the effects of noisy measurement by assigning appropriate
weights to the data. This method is called Smoothness Motion Constraint (SMC).

The ego-motion of the camera between two frames is obtained finding the abso-
lute orientation between consecutive clouds of weighted 3D points. The complete
ego-motion since initialization is achieved concatenating the individual motion esti-
mates. This leads to a super-linear propagation of the error, since noise is integrated.

A second contribution of this dissertation is a predictor/corrector iterative method,
which integrates the clouds of 3D points of multiple time instances for the computa-
tion of ego-motion. The presented method considerably reduces the accumulation
of errors in the estimated ego-position of the camera.

Another contribution of this dissertation is a method which recursively estimates
the 3D world position of a point and its velocity; by fusing stereo, feature tracking
and the estimated ego-motion in a Kalman Filter system. An improved estimation
of point position is obtained this way, which is used in the subsequent system cycle
resulting in an improved computation of ego-motion.

The general contribution of this dissertation is a single framework for the real time
computation of scene structure, independently moving objects and ego-motion for
automotive applications.



Chapter 1

Introduction

1.1 Motivation

Drivers often perform multiple tasks while driving. Listening to music or news on
the radio, eating or using the cellular phone are typical activities performed while
driving. The risk implied by attending multiple tasks can break the concentration of
the driver, diverting their attention off the road and increasing the risk of accidents.
Furthermore, humans become inattentive when performing a monotonous task like
driving. These factors and others like exhaustion, nervousness and excitement affect
the performance of the driver and the response time.

The driving performance is not only affected by the limitations of the driver but
also by external factors like the weather. For example, there are difficulties when:

e braking and keeping the car steerable at the same time;
e pressing the brake pedal sufficiently when braking in an emergency situation;
e avoid skidding in a curve at high velocity; and

e perceiving the distance to other vehicles.

Consequently car manufacturers have developed systems in the last decades which
assist the driver under various circumstances. Examples of this are given by the Anti-
lock Brake System (ABS) and the Brake Assistance, the Electronic Stability Program
(ESP) and the Adaptive Cruise Control (ACC). These systems are examples of driver
assistance systems.

Driver assistance systems support the task of driving, and the field of action varies
from alerting the driver with acoustical or optical warnings to taking the control of
the car, such as keeping the vehicle in the traffic lane until the driver resumes control.
For such a purpose, the vehicle is equipped with on-board sensors, which allow the
perception of the environment and/or the state of the vehicle.

There are two classes of sensors: passive and active. Active sensors emit some
form of energy and then measure the impact as a way of understanding the envi-
ronment (e.g. millimeter-wave radars, sonar sensors and lasers radars) while passive
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sensors receive energy already in the environment. A camera is a passive sensor
which allows the extraction of useful data about the appearance of the environment.
A combination of multiple cameras allows the instantaneous extraction of 3-D infor-
mation. Therefore, multiple cameras are often used to measure the structure of the
environment at a specific instant in time.

The data obtained with cameras must be processed in order to generate informa-
tion. Computer Vision is the branch of science that develops methods and techniques
for the extraction of information from images. Visual motion is an essential cue in
the computer vision community, which studies the space variation in the image over
time. From the psychological point of view, visual motion serves a wide variety
of crucial roles: “way-finding (optic flow), perception of shape from motion, depth
segregation, judgments of coincidence (time to collision, time to filling a tea cup),
judgments of motion direction and speed, and perception of animate, biological
activity” [SWBO04]. The implementation of algorithms which carry out these percep-
tion tasks is essential for the development of intelligent vehicle assistance systems,
specially for the detection and interpretation of the driving environment.

One of the main requirements for most camera-based driver assistance systems is
the accurate knowledge of the motion of the camera. Knowing the motion of the
camera means knowing the current state of the camera and the vehicle w.r.t. its en-
vironment, i.e. the position, orientation and velocity. The accurate knowledge of
the motion of the camera allows the establishment of geometrical constraints which
highly reduces the complexity of many computer vision problems (e.g. the corre-
spondence problem). The computation of ego-motion from sequences of images
(also called visual odometry information) for the implementation of driving intelli-
gent systems, like obstacle detection, constitutes the core of this dissertation.

1.2 Objectives of the Dissertation

The development of intelligent systems is a very complex task which requires a clear
understanding of traffic situations. Determining the scene structure, computing the
ego-motion and estimating the independently moving objects of the environment are
low level tasks required for the interpretation of the traffic environment. The deter-
mination of the scene structure at a specific instant in time is achieved with stereo
cameras. A stereo camera system consists of two or more cameras synchronized
to acquire images simultaneously. A triangulation between image points allows the
computation of 3D point positions. When this operation is performed for many
points in the image, an instantaneous structure of the scene is available. An analysis
of the cloud of points can result in the identification of potential obstacles. Nev-
ertheless, making a decision about the data provided by an instantaneous shot of
the scene is usually dangerous, since very important motion information is missing.
Erroneous data in the cloud of 3D points can also lead to making the wrong decision.

The 3D structure of the scene changes as the ego-vehicld'|and other traffic partic-
ipants move. For instance, if the vehicle drives straight ahead, the new structure of

"The prefix ego is used to refer to the reference point of the viewer. In this specific case ego-vehicle
is the vehicle where the camera is installed in.
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(@) Motion observed from the environment. (b) Motion as observed from the camera.

Figure 1.1: Motion of the cloud of points. The left figure shows a cloud of points in
the environment and the corresponding motion of the camera platform. When the
same motion is viewed from a camera reference frame, the cloud of points does not
coincide. Points corresponding to the static scene are described with a rotation and a
translation, which corresponds to the camera motion. Independently moving points
are not described in the same way. The new position deviates from the expectation
(denoted with a circle). The difference between expected position and observed
position is the proper motion of the point.

the static scene will be shifted towards the vehicle; if the vehicle was driving on a
curve, the new structure will also be rotated (see Figure[T.T). Registering the change
in the structure of the scene can be realized in various ways. This is addressed later
in Section [4.2l One way of integrating information over time is assigning a point-
to-point correspondence between images of consecutive times. The point-to-point
correspondence is known as feature tracking. Thus, the data obtained with stereo
and feature tracking consist of two clouds of 3D points with point-to-point corre-
spondences. The obtained motion of each point in the clouds is a combination of
the following two reasons: 1) the ego-vehicle is in motion, and 2) other participants
are moving.

If a point is static, its observed motion is described with the inverse motion of the
camera. Thus, knowing the ego-motion of the camera allows the establishment of
static points. If the motion of the point is not described with the inverse motion of
the camera, since it deviates from the theoretical motion, the point corresponds to
an independently moving object. The detected deviation is the proper motion of the
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point, which is estimated (see Figure|1.1(b))

This dissertation has two objectives. The first, and main objective, is the compu-
tation of the motion of the camera from the clouds of 3D points obtained with stereo
vision; where the point-to-point correspondence is obtained by feature tracking. The
second objective is the estimation of the position of the points in the environment
and their motion. This way, ego-motion, scene structure and independently moving
objects are estimated in a single framework, providing useful information to more
complex automotive visual perception systems, such as autonomous navigation or
collision avoidance.

1.3 Contributions of the Dissertation

The scenario, as described in the previous section, is far form being realistic, since
the noise involved when measuring quantities from images was ignored. Stereo and
feature tracking are affected by noise. The uncertainty of 3D point positions intro-
duced by noise, can be reduced by integrating multiple measurements of the same
point over time. Feature tracking provides the image coordinates of the projection
of a world point, while stereo provides its corresponding disparity. When a point
is static, its observed motion from a camera reference frame is defined by the in-
verse camera motion. Any deviation with the expected motion is caused by noise or
independent motion. The first contribution of this dissertation is a method which re-
cursively estimates the 3D world position of a point and its velocity; by fusing stereo,
feature tracking and the 6 degrees of freedom of the ego-motion in a Kalman Filter
system.

The motion of the camera, between current and previous times, is implicitly given
by the cloud of noisy static points obtained with stereo. Ego-motion is obtained by
finding the rotation and translation between the two clouds of points. However, the
noisy measurements are not the only problem an estimator must deal with. Outliers
represent also a problem and they are caused by two main reasons:

e Incorrect matches: caused by the temporal (optical flow displacement) or spa-
tial (stereo disparity) incorrect establishment of the point-to-point correspon-
dence.

e Correct matches which cannot be described by the model: this is the case
when a point assumed to be static, actually belongs to an independently mov-
ing object.

Thus, the appropriate modeling of noise and the opportunely detection of outliers
is of paramount importance when a robust algorithm is desired. The second contri-
bution of this dissertation is a simple but effective rejection rule that detects outliers
based on the distance between predicted and measured quantities and reduces the
effects of noisy measurement by assigning appropriate weights to the data. We call
this method the Smoothness Motion Constraint (SMC).

The third contribution of this dissertation is a predictor/corrector iterative method
which integrates the clouds of 3D points of multiple times for the computation of
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ego-motion. This reduces considerably the accumulation of errors in the estimated
ego-position of the camera, leading to a better estimation of point position and ve-
locity with Kalman Filters.

The general contribution of this dissertation is a single framework for the compu-
tation of scene structure, independently moving objects and ego-motion in real time
for automotive applications.

1.4 Dissertation Overview

The remainder of this work is organized as follows. Chapter 2] is dedicated to basic
introductory concepts of the image, the image geometry and the correspondence
problem, which are required in the remaining chapters of this dissertation. The topics
addressed are the image formation, the geometrical properties of binocular systems,
the calibration and rectification, the image primitives and the correspondence of
image primitives.

Chapter [3| formulates the problem statement in detail. The chapter reviews some
alternative sensors for the computation of ego-motion and proposes a framework for
the computation of the ego-motion, the scene structure and independently moving
points. Some characteristics of the proposed solution are also outlined in the chapter.

The Kalman Filter system which estimates the position and velocity of world points
in 3D Euclidean space is fully described in Chapter[4, An improvement in the estima-
tion is possible thanks to the integration of stereo and feature tracking measurements
over time. The role of ego-motion in the Kalman Filter is made clear in system
model equations. The initialization of the filter is addressed and the computation
of the Cramér-Rao lower bound for the Kalman Filter is given. Various simulation
results validate the filter and show its efficiency.

Chapters[5|and[6]deal with two topics; the computation of the absolute orientation
between two clouds of 3D points and the modeling of stereo error. The absolute ori-
entation problem was already addressed multiple times in the literature, and here a
complete review of these publications is given. Chapter[5|focuses on the closed form
solutions to the absolute orientation problem and reviews principally the weighted
least squares solutions. A total least squares closed form solutions which has had
little attention in the literature is also reviewed. In Chapter [6]an analysis of the error
in the estimation of 3D position with stereo is also carried out. The propagation
of the covariance matrices leads to the ellipsoidal modeling of 3D position. In this
model, constant probability contours of the distribution of the points describe el-
lipsoids about the nominal mean, that approximate the true error. The true error
distribution is more egg-shaped, and therefore a bias in the estimation of 3D posi-
tion takes place. The reduction of the estimation bias is achieved by a Taylor series
expansion of the triangulation equation.

The ego-motion estimation algorithm is presented in Chapter[7} The chapter starts
with a literature review of ego-motion estimation methods. An overview of the pro-
posed algorithm is given, and an outlier rejection rule called Smoothness Motion
Constraint is presented for the weighted and total least squares approaches. Simu-
lation results showing the effectiveness of the method under different situations are
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carried out. The multi-frame estimation is presented and simulations results show-
ing the reduction of the integration error are carried out. The use of filtered data
obtained from a Kalman Filter is also addressed, and a strategy for avoiding falling
into a positive feedback loop is described. The possibility of fusing inertial sensor
information is also outlined.

Experimental results showing the performance of the proposed approach are
shown in Chapter [8l The method is not only evaluated on traffic environments,
but also in off-road, indoor and industrial scenarios. The various application possi-
bilities of the method are described. The last chapter summarizes and concludes this
dissertation.



Chapter 2

Image Geometry and the
Correspondence Problem

2.1 Introduction

This chapter reviews some topics of image geometry and the correspondence prob-
lem, which will be required in the following chapters of this dissertation. Only basic
concepts are introduced here and the reader is invited to consult the bibliography
listed at the end of the chapter for further details about the addressed topics.

2.2 Image Formation and Camera Geometry

2.2.1 Image

A digital image is represented by a two dimensional array or matrix. The elements
of the matrix are called pixelsand the value assigned to each element of the matrix
is its associated gray level. Formally,

I:QCR* = Ry;(u,v) — I(u,v) (2.1)

an image is a map [ defined on a compact region 2 of a two-dimensional surface,
taking values in the positive real numbers [YSJS04]. In the case of digital image, both
the domain €2 and the range R are discretized. For instance, {2 = [0, 639] x [0, 479] C
NZ and R, is approximated by an interval of integers [0,255] C Ny. The image
configuration above mentioned is used in the remainder of this work, when not
stated otherwise.

The value of each point of the image is typically called image intensity, brightness
or irradiance and describes the energy falling onto a small patch of the imaging sen-
sor. The irradiance value depends among others on the exposure time of the sensor,
the shape of the object or objects in the region of space being measured, the material

TAlso called pel. Both, pixel and pel are commonly used abbreviations of picture element
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Figure 2.1: Thin lens.

of the objects, the illumination and the optics of the imaging device. The measuring
of light corresponds to the radiometryP| which is a science per se. In the following,
only Lambertian surfaces are assumed. The radiance of a Lambertian surface only
depends on how the surface faces the light source, but not on the direction from
which it is viewed. This assumption allows the derivation of expressions for the es-
tablishment of correspondences between multiple images of the same object. This
is shown in the next sections.

2.2.2 Thin Lenses and Pinhole Camera

2.2.2.1 Thin Lens Model

Real images are obtained with optical systems, such as a camera devices. Camera
devices are composed of a set of lenses in order to direct light in a controlled manner.
This section describes the imaging through thin lenses.

A thin lens is a spherical refractive surface, symmetrical across the vertical and
horizontal planes (see Figure[2.7). The horizontal axis which passes exactly through
the center of the lens is the optical axis. The plane perpendicular to the optical axis,
which bisects the symmetrical lens in two, is the focal plane. The optical center
O is defined as the intersection between the optical axis and the focal plane. Light
rays incident towards either face of the lens and traveling parallel to the principal
axis converge to a point on the optical axis called focus or focal point. The distance
f between the focal point and the optical center is the focal length of the lens. In
Figure[2.1] F and I are both focal points and are equidistant from the optical center.
An important property of thin lenses is that rays passing through the optical center

2Also called photometry if the interest lies only on light detected by the human eye (wavelength
range from about 360 to 830 nm).
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Figure 2.2: Perspective camera projection

are not deflected. Consider a point P € E? at a distance z from the focal plane. Let
PO denote the ray passing through P and the optical center. Now consider a ray
parallel to the optical axis passing through P. The parallel ray is refracted by the lens
and intersects PO at P which is at a distance 2’ from the focal plane. Thus, it
can be argued that every ray from P intersects at P’ on the other side of the lens. In
particular the ray from P’ parallel to the optical axis pass through P . With the above
geometry formation, the fundamental equation of the thin lens is obtained:

1 1

(2.2)

. 1
z 2z f

2.2.2.2 Ideal Pinhole Camera

Letting the aperture of the lens decrease to zero, all rays are forced to go through the
center of the lens and therefore are not refracted. All the irradiance corresponding to
P’ is given by the points lying on a line passing through the center O (see Figure|2.2).
Let us consider the coordinate system (O, i, j, k) with center O, depth component
k and (i,j) forming a basis for a vector plane parallel to the image plane 2 at a
distance f from the origin. The line passing through the origin and perpendicular
to the image plane is the optical axis, which pierces the images plane at the image
center C'. Let P be a point with coordinates (z,y, z) and let be P’ its image with

coordinate (2,3, —f). Since P, O and P’ are collinear then _O—_)P’ — \OP for some

3We call P’ the image of P



10 Image Geometry and the Correspondence Problem

Figure 2.3: Frontal Pinhole Camera

A, therefore:

¥ = M\
/ / .
—f = Xz

this obtains the ideal perspective projection equations:
v =—fT oy =—f~ 2.4
z z

This model is known as ideal pinhole camera. lt is an idealization of the thin lens
model, since as the aperture decreases, the energy going through the lens becomes
zero. The thin lens model is also an idealization of real lenses. For example, diffrac-
tion and reflection are assumed to be negligible in the thin lens model. Other char-
acteristics of real lenses are spherical and chromatic aberration, radial distortion and
vignetting. Therefore, the ideal pinhole camera is a geometric approximation of a
well-focused imaging system.

2.2.2.3 Frontal Pinhole Camera

Since the image plane is at position —f from the optical center O, the image of
the scene obtained is inverted. In order to simplify drawings, the image plane is
moved to a positive distance f from O as shown in Figure In the remainder
of this dissertation this frontal representation will be used. All geometric and alge-
braic arguments presented hold true when the image plane is actually behind the
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Figure 2.4: Camera and image coordinate systems.

corresponding pinholes. The new perspective equations are thus given by:
— fE y = fg (2.5)
z z

where (2/,y') are in a retinal plane coordinates frame.

2.2.2.4 Field of View

In practice, the area of the sensor of the camera device is limited and therefore, not
every world point will have an image in the sensor area. The field of view (FOV) of
the camera is the portion of the scene space that actually is projected on the image
plane. The FOV varies with the focal length f and area of the image plane. When
the sensor is rectangular, a horizontal and vertical FOV is usually defined. The FOV
is usually specified in angles and can be obtained by

0 = 2arctan(r/f) (2.6)

where 6 is the FOV angle and 2r is the spatial extension of the sensor (see Figure

2.4).

2.2.2.5 Camera and Image Coordinate System

Equations relate the 3D position of a point and its projection on the retinal
plane, using the coordinate system specified for the camera. On the other side, a
digital image is composed of pixels, where (0,0) is the coordinates of the pixel of
the upper-left corner of the image (see Figure [2.4). The following equations relate
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the retinal plane coordinate frame with the image coordinate frame:
e _ s
(u UO)SU - fz (UO U)SU fZ
where (s,, s,) is the width and height of the pixel in the camera sensor and (ug, vo)
is the image position in pixels corresponding to the image center C’. Expressing the
focal length in pixel width and height, i.e. f, = % and f, = % respectively, the
projection of a world point P in the image plane is given by

x
u:uo—l—fu; v:vo—fv%

In a homogeneous coordinate system the following representation is also used:

u fu fo uo 1 0 00 .
AN lol =0 £ w 0 -1 0 0 ‘Z
1 0 0 1 0 0 10 :
~ ~ ~~ < (2.7)
——
-p/ K TO .P
)\p,:KT()P

where K is known as intrinsic parameter matrix or calibration matrix and Y as pro-
jection matrix, and P is the vector homogeneous coordinate of point P. Observe
that the second diagonal element in the projection matrix is negative because the
vertical dimension has opposite direction in the image coordinate system [ The
scalar fy in the matrix K is equivalent to i—: where sy = cot @ is called skew factor
and @ is the angle between the image axes (because of manufacturing error). Nev-
ertheless, in current hardware 6 is very close to 90° and therefore the skew factor is
very close to zero.

2.3 Geometry of Two Views

A perspective projection is the mapping of a three-dimensional space into a two-
dimensional space. Formally,

7:R*—=R% P—P. (2.8)

A characteristic of the projection is that the scale factor \ of Equation is lost. In
planar perspective projection, the unknown scale factor corresponds to the depth =
of the projected point. Nevertheless, if two or more images of the same point taken
at different known positions are available, the unknown scale factor can be recov-
ered through triangulation. Before deriving the triangulation equations, this section
introduces some basic geometric properties when two images of the same scene are

4The camera coordinate system in Figure[2.4]is left-handed. The remainder of this work will use a
left-handed coordinate system as shown in Figure[2.4]
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(a) epipolar geometry with two image planes.

(b) standard stereo configuration.

Figure 2.5: Two-View geometry.

available. The properties derived here allow the simplification of the triangulation
equations, and the reduction of the search space for the correspondence problem.

2.3.1 Epipolar Geometry

Figure [2.5()| shows the imaging process of a point P into two views. In the figure,
O and O’ are the focal points of each camera, and p and p’ are the images of P. The
plane defined by POO' is called the epipolar plane, and the lines [ and [’ obtained
by the intersection of the epipolar plane with the image planes are called epipolar
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— —
lines. The epipolar constraint expresses the coplanarity of the vectors Op, O’p’ and

Ay
OO’ and therefore .

Op(00" x O'p') =0 (2.9)
If R is the rotation matrix relating the relative orientation of the second camera with

—
the first camera, and t the translation coordinate vector separating OO’ Equation
is equivalent to:
p (tx Rp')=0
where p and p’ are the homogeneous image coordinate vectors of the points p and
/
P T /
p Ep =0 (2.10)

where E is called essential matrix and is equal to t, R where a, is the matrix such
that ayx = a x x, with

0 —as a9
a, = as 0 —a (2.11)
—as aq 0

allowing us to express the cross product of two vectors as the product of a skew-
symmetric matrix and a vector. Equation shows that point p lies on the epipolar
line defined by the vector Ep’. The images ¢ and ¢’ are called epipoles. They are
the projections of the optical center in the camera image plane of the other camera,
and therefore ETe = €7E = 0.

2.3.2 Standard Stereo Configuration

When the relative pose between both cameras is only a lateral translation, i.e.
R=1;33and t = (B,0,0) the epipoles lie at a lateral position of infinity and the
epipolar lines are aligned with the rows of the images. The distance B is called the
baseline. Given an image point p; with coordinates (u;, v;) in the left image, its cor-
responding right image p, at (u,, v,.) is found in exactly the same image scanline (see
Figure [2.5(b)), i.e. v; = v,, since the epipolar lines are now collinear. The distance
d = w; — u, is called disparity. The reconstruction of the 3D position (X,Y, Z) of P
is then obtained by triangulation:

B
X = Eu'
B
Vo= D, (2.12)
B
zZ = Zf.
77

where s, = $,/$,, v = (u; — ug) and v' = (vg — v;). Reorganizing the coordinates
in vectors (X,Y, Z)T and (u/,v',d)T the the triangulation function g is defined as

X (u; — up)
Y | =g(u,v,.,d)’ = (Vo — V1) Suu (2.13)
A fu

|
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(b) rectified stereo pair.

Figure 2.6: Rectification of image pairs.

2.3.3 Calibration and Rectification

A standard stereo configuration is usually desired when implementing stereo match-
ing algorithms. In a standard stereo configuration the epipolar line of any world point
captured by both cameras is parallel to the scanlines of the left and right images.
This means that the cameras must be arranged parallel to each other. Nevertheless,
a physical lateral arrangement of the cameras is not enough to obtain accurate 3D
information. This is because:

e The accurate physical positioning and orientation of the cameras in a left/right
configuration is very difficult to achieve.

e The perspective camera is just an approximation to the optimal pinhole model.
The optical system introduces non-linear distortions in the image which penal-
ize the epipolar constraint, i.e. the epipolar lines are not found along the image
scanlines but are distorted into curves.

e The real value of the parameters of the camera, such as focal length and pixel
size are just approximate values and might deviate from the technical specifi-
cations of the manufacturer of the cameras.
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In order to obtain the standard stereo configuration all these parameters must be
known. Calibration is the process of measuring the internal parameters of the cam-
era. The process of remapping the raw image, in order to obtain an undistorted im-
age which meets the camera parameters obtained in the calibration phase, is called
rectification. In multi-camera systems additional steps are considered:

e the calibration process also includes the measurement of the relative camera
poses; and

e the rectification process also includes the remapping of the images, to impose
the collinearity of the epipolar lines with the scanlines of the images.

Since the parameters of a stereo platform generally do not change over time, cali-
bration is an off-line process in which computation time is not a constraint. Rec-
tification, on the other hand, must be performed with every acquired image, and
therefore, time is a factor to consider in real-time applications.

The literature on calibration and rectification is quite extensive, and many meth-
ods have been proposed. A discussion and review of calibration and rectification
methods for multi-camera systems can be found in [WWO03]. The calibration method
used in the remainder of this dissertation is the solution of Bouguet [Bou00], based
on the publications by Heikkila and Silvén [HS97]] and Zhang [Zha99]. The method
requires images of a planar calibration rig of known geometry as shown in Figure
[2.6] Some parts of the algorithm require an iterative optimization. With a two-
camera setup, a total of 16 parameters are estimated by minimizing the following
functional:

ZZHmZ] _m(K7k7R17t27M])||27 (214)

i=1 j=1

where m,;; is a measured feature point j of the calibration rig in image i, M, is the
corresponding known 2D world point of the calibration rig, and m (K, k, R;, t;, M;)
is the distorted projection of point M into image i. The matrix K is the same
of Equation R, and t; are the 3 x 3 rotation matrix and three-dimensional
translation vector of the camera with respect to the calibration rig in image ¢, and
k = (kyi, ks, ks, ky, ks)T is a five-dimensional vector of distortion coefficients. The
first three coefficients count for radial distortion while k; and k5 are the tangential
distortion coefficients. A real undistorted normalized image point (@, v)7 is distorted
to the normalized point (u, v)? according to the following equation:

w = @[l+ ki + kol + ksrd] + 2k + ks (r, + 20°) (2.15)
= 0 [L+kiry + ko) + ksri)| + 2kqu0 + ks (1) + 20°) (2.16)

where r, = @? + v°.
Equation implies a non-linear minimization problem, which is solved by
Levenberg-Marquardt optimization [Lev44].

The rectification requires only a remapping of the image, i.e. each pixel in the
image is displaced to a new position in the image space. An example of image
rectification for a stereo pair is shown in Figure|2.6
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2.4 Image Primitives and Correspondence

One of the main problems of Computer Vision is the establishment of correspon-
dences between images. The correspondence problem consists of finding a given
pattern in multiple images. In most applications the real interest lies in finding the
pixel coordinates of the same world point in multiple images, i.e. the correspon-
dence of image points which are projections of the same point in space. Once the
correspondence problem is solved, more specific geometric information about the
world can be obtained. For example, given the image position of the same world
point in the left and right rectified images of a calibrated standard stereo camera, the
corresponding 3D position of the world point is obtained using Equation |2.12

The main problem in correspondence is how to infer the motion of 3D geometric
structures given only the measurement of their reflected or emitted light intensity. It
can be assumed that a point in the left and right images having the same intensity
value correspond to the projection of the same world point. Finding solution based
on this observation will fail for a number of reasons. The first reason is that given the
small range of intensity value of the image (typically encoded in 8 bits, i.e. [0, 255]),
each intensity value of the sought point is expected to appear multiple times within
the image (assuming an equal distribution of intensity values in a VGA image, the
same brightness value is expected to appear 1200 times).

A second problem is the noise affecting the image brightness. The effects of noise
can be reduced by attaching a support region around the point of interest. But an
exact solution is still very unlikely to be found. It is therefore more convenient to de-
fine some discrepancy function and search for those image regions which minimize
it. We address this point later in this section.

2.4.1 Translational Motion Model

The simplest image correspondence model is obtained assuming that the whole sup-
port region of the reference point moves constantly. This is valid actually only for
those world regions which are flat, parallel to the image plane and which move par-
allel to it. But even when these assumptions are not fulfilled, almost any motion of
any structure form is well approximated through this model, if the camera motion is
small.

Let us suppose that both images are taken from infinitesimally close vantage
points. Let us rewrite I1(p1) and Iy(p2) as I(p(t),t) and I(p(t + dt),t + dt) re-
spectively, i.e. the continuous version of the discrete equations. Let us assume that
the brightness remains constant over time, i.e. I(p(t),t) is constant for all . Now
since dt is an infinitesimal increment we can rewrite p(t + dt) = p(t) + v dt where v
is a velocity vector. Then we have

I(p(t),t) = I(p(t) + vt t + dt). (2.17)

Applying Taylor series expansion around p(t) to the r.h.s. and neglecting the sec-
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BN

Figure 2.7: The aperture problem. Two parts of a figure are observed through aper-
tures. Although the triangle moves diagonally, only a horizontal motion can be
observed from the lower aperture. When enough 2D information is available, the
2D motion can be measured (upper aperture).

ond and higher-order terms we obtain the brightness constancy constraint

VITv+1,=0 (2.18)
where
o 1)
ou oI
VI = . L =—=(p,t). (2.19)
oI ot
—(p,t)
ov ™’

The vector VI is the frame spatial derivative or image gradient and the scalar I, is the
temporal derivative of I(p,t). Observing that the velocity vector v = (du/dt, dv/dt),
Equation can also be written as:

oldu 9ldv Ol

%dt—f—%%—i_a_o (2.20)

Equations|2.18|and [2.20] involve two unknowns and one constraint, therefore there
are infinitely many solutions for v that satisfy the equation. This is called the aper-
ture problem in the literature. The name comes from the geometrical interpretation
which exemplifies this fact and which is shown in Figure[2.7] If the solution is found
in the direction of the image gradient VI, the resulting vector is called normal flow.
Geometrically, the normal flow is the minimum norm vector that satisfies the bright-
ness constancy constraint and represents the projection of the real motion vector
onto the gradient direction. It is given by

I,VI
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Figure 2.8: Features selected for tracking. Observe that every selected window
presents a high textureness and regions of constant intensity values are avoided.

For the computation of the real motion vector, more constraints are required. A sup-
port region around the point provides enough information to find a solution if i) the
region contains enough “information” and, ii) the motion of the region is constant.
The second condition is required in order to provide enough constraints on v. The
first condition implies that the region must contain enough “texture”. As it was also
remarked before it is quite unprovable that the brightness remains constant over time
because of image noise. Equation [2.17] can be rewritten to consider noise as

I(p(t),t) = I(p(t) +vdt,t +dt)+n (2.22)

where 7 is a noise term. A solution is then found minimizing the sum of the squared
residuals, which leads to

Ew)= Y (VI'(p)v+L(B)) (2.23)

peW (p)

where W (p) is the support region around p. The minimum can be found in the
least-square sense by finding the zero derivatives of F(v) w.r.t. v, i.e.

ng quIv ZIuIt _
{ SLL I v+ S, =0 (2.24)
or in matrix form,
Gv+e=0. (2.25)

If the matrix G is invertible a solution can be found for v

v=-G'e. (2.26)

If the vector p, for which v was computed is some fixed integer position in the
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image, then the motion vector is called optical flow. If instead p is computed repeat-
edly as a particle which moves trough the image domain, the motion is called feature
tracking. When G is singular, then no solution can be found by [2.8] This happens
when the intensity variations in the support region varies in only one dimension (i.e.
I, = 0or I, = 0) or there is no variation at all (i.e. I, = 0 and I, = 0). In fact, Equa-
tion [2.26] can be solved reliably if the matrix G is well-conditioned and above the
image noise level. The matrix G is above the image noise level, if both eigenvalues
are large. The conditioning requirement means that the eigenvalues cannot differ
by several orders of magnitude. Both requirements are normally implemented by
just checking if the smallest eigenvalue is larger than a predefined threshold. This is
normally enough to check for both requirements since the maximal eigenvalue is ac-
tually upper bounded because of the limited intensity range of the image. Therefore,
the difference between eigenvalues is also finite. Observe that the matrix G gives
a measure of the textureness contained in the support region. This method is used
by the K LT tracker [LK81] [ST94] [TK91], which is used in the experimental results
of this dissertation for the computation of feature tracking. Another possibility is to
threshold the quantity det(G) + k tr(G), where k is some small value. This variation
is known as Harris corner detector [HS88].

Figure shows an example of feature selection. The matrix G is computed for
every point of the image forming a descending sorted list according to the smallest
eigenvalue of the matrix. The top 200 features which satisfy a minimal distance
constraint are chosen as features and are shown in the figure.

The computation of image velocities with the method described above is usually
expensive. It requires the computation of spatial and time derivatives as well as
some matrix operations. An alternative is to define some function, which measures
the discrepancy between support regions, and then find the displacement which
minimizes it. A typical dissimilarity measure is the Sum of Squared Differences
(SSD) criterion. Considering Equation the sum of the squared of the residua is
minimized this way, and therefore,

SSD = " (I(p(t),t) — I(p(t) + d,t + dt))* (2.27)

PEW (p)

where d = wdt is the displacement. The result is found as the displacement d
that minimizes the SSD. Observe that Equations |2.27| and [2.26] are related since
vdt = (—G™'e)dt is a first order approximation of d. The SSD is the correlation
function of the stereo algorithm used in the experimental results in Chapter 8]

Other dissimilarity criteria are also used in the literature. The Sum of Absolute
Differences (SAD) is an alternative to the SSD. Locally scale versions as well as zero-
mean normalized version of SAD and SSD are also commonly used. The Zero-
mean Normalized Cross Correlation coefficient (ZNCC) and the pseudo normalized
correlation [Mor80] are also examples of similarity functions. All these functions are
listed and evaluated for performance and robustness in [AG92] and [Bad02].
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2.4.2 Affine and Projective Motion Models

More advanced motion models have been proposed. It is actually rather improbable
that all the points corresponding to the support region have the same transformation,
which is a requirement for finding a solution. A better model would be to consider
some deformation of the support region. From Equation [2.17] a general transforma-
tion model is expressed as

1(B(t), 1) = I(h(p(t), @), t + dt) Vp € W (p) (2.28)

where h is the function of motion model and « captures all the parameters corre-
sponding to the model (e.g. in the translational case h(p,a) = p+ d and a = {d}).

In the affine transformation model, the motion of every point in the support
region depends linearly on its location with respect to the reference point p. So
h(p,a) = Ap +d (and a = {A, d}) where A is a 2 x 2 deformation matrix. This
model approximates a motion of a planar patch with arbitrary translation, arbitrary
rotation about the optical axis, and small rotation about any other axis. The affine
transformation model is used by Shi and Tomasi [ST94] for monitoring the quality of
a track for non-consecutive frames.

An arbitrary rotation and translation of planar surface is modeled by the projective
motion model, which applies an affine model to the homogeneous coordinates of
the points. In this case, h(p,a) = H P where H is a 3 x 3 matrix defined up to
a scale factor. The projective motion model is also called a homography motion
model, since H describes the homography between p(t) and p(t + dt).

Observe that the complexity in the derivation of the solution for the affine and
projective motion models increases and the corresponding implemented algorithms
are much slower (in comparison to the translational model). The readers are referred
to the bibliography cited in the next section for further details.

2.5 Literature

Most books of Computer Vision describe in detail all or at least parts of the topics
addressed in this chapter. As examples, | cite to “An Invitation to 3-D Vision” of Yi
Ma et al. [YSJS04], “Computer Vision, A Modern Approach” of Forsyth and Ponce
[FP0O3] and “The geometry of multiple images” [FLO1] of Faugeras and Luong, which
are the main bibliography sources used for this chapter.



Chapter 3

Overview of the Proposed Approach

3.1 Introduction

This chapter summarizes an approach for the estimation of ego-motion and for the
simultaneous estimation of position and velocity of single points, providing low-
level information to more complex visual perception systems, such as autonomous
navigation or collision avoidance. Treating such a process as a low-level task should
not be surprising since, from the biological point of view, motion detection is a direct
experience uniquely specified by the visual system[] The further segmentation and
integration of the information provided by this approach is here referred to as high-
level vision, which must introduce some additional knowledge and intelligence to
carry out a cognitive process (e.g. for statements such as “a bicyclist is approaching
from the left and a collision is imminent”).

In the next section, a statement of the problem is formulated. Section reviews
some alternative sensors for the computation of ego-motion and in Section the
proposed approached is described.

3.2 Problem Statement

The motion of an object observed by a stationary observer produces a spatial-
temporal change in the light distribution on some regions of the retinal image. If
we want to detect the motion of an object and estimate its position and velocity, the
focus of interest must be given on those image regions. The rest of the retinal image
is assumed to be the environment or background and remains static. Nevertheless,
when the observer is in motion, the projected background into the retinal image
changes as well. The problem becomes more complex to solve because the sys-
tem must discriminate between the motion caused by the observer and the motion
caused by an independent moving object.

"Neurons in the middle temporal visual area integrate motion signals over large regions of visual
space and respond to motion in their preferred direction, e.g. these neurons register motion informa-
tion per se. More advanced perception activities are distributed over many areas of the brain, each
extracting somewhat different information from the retinal image [SWBO04].
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We define independent 3D motion as the rigid or articulated temporal change of
the position of an object with respect to an environment which is considered static.
Nevertheless, and citing Daniilidis and Nagel [DN93], “what we can measure in the
image are apparent shifts or velocities of gray-value structures which are approxi-
mations to the geometrically defined displacements or velocities of the projections
of three-dimensional features”, i.e. what we can measure is motion relative to the
camera and not to the background. Nevertheless, if the camera motion is known, it
can be extracted from the observed motion to reveal independently moving objects.
The real camera motion is not available, but can be estimated from the images.

After these preliminary remarks the the statement of the problem can be formu-
lated:
Given as input a sequence of images of a freely moving calibrated
stereo camera platform, compute in real-time the ego-motion of the
camera as well as the 3D position and 3D velocity of world points
of the environment.

The real-time requirement is a factor which highly depends on the hardware used
and on the implementation of the algorithm. Nevertheless we define real-time ap-
plications in this dissertation as those applications which are able to provide new
information at a frequency of at least 10 Hz by using off-the-shelf hardware (e.g.
Pentium M, 2 GHz). There are some additional requirements which are normally
not mentioned because of their obviousness, but which | would like to address.

e The images composing the sequence must be of a fair quality, i.e. enough in-
formation is expected to be obtained from the images. The current implemen-
tation of the method includes actually an extrapolation (prediction) module in
case not sufficient information can be obtained from the images. But comput-
ing the ego-motion of the camera from a sequence of blank images is a problem
we do not pretend to solve. In this dissertation the images have a “fair quality”
when the stereo and the tracking algorithms can compute reliable information
for at least 50 points of the image.

e The intersection of the FOV corresponding to consecutive images must not be
empty, otherwise no tracking is possible. In fact, a smooth motion between
images is desired since the correspondence problem is easier to solve and it
allows more accurate predictions of motion.

e The transformation of the static background w.r.t. the camera must be that of a
rigid body motion.

When any of these requirements is not fulfilled, it is rather improbable that the
visual estimation of motion will be successful. When implementing a real robust
system, this problem can be overcome by using motion data from other sources, as
for example inertial sensors.
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3.3 Sensors for Ego-motion Computation

The ego-motion of a camera mounted on a vehicle can be obtained from other
sources than images. The Global Positioning System (GPS) seems to be a valid al-
ternative to the visual system. The accuracy of current GPS technology like WAAS
IAdmO06] and DGPS [AdmO5] is up to 1.5 to 2 meters. As this dissertation shows, the
accuracy achieved for short distances using the visual approach is several hundreds
times better than GPS. Furthermore, GPS is a positioning system, and therefore orien-
tation must be computed by differentiation over time, the latter being quite sensitive
to measurement errors. GPS is, this way, more appropriate for navigation purposes.

Another alternative solution is given by the inertial sensors of the vehicle such as
velocimeters and steering angle sensors. There are a number of drawbacks when us-
ing inertial sensors for the computation of ego-motion. Usually, not all components
of motion are covered with sensors. Commonly only a velocimeter and a steering an-
gle sensor are available. The motion obtained with these two sensors is incomplete
since pitch and roll rotation as well as vertical translation are unknown. Another
disadvantage is that the motion computed with inertial sensors is the vehicle motion
and not the camera motion. In order to be able to estimate the camera motion, the
transformation between both coordinate systems must be known, i.e. an additional
calibration procedure is required. The inertial sensors themselves require a calibra-
tion procedure. When computing visual ego-motion the motion is already computed
from the camera point of view. The independence of inertial sensors makes the ap-
proach also appropriate for other applications areas where no inertial sensors are
available (in the experimental results of Chapter [8are shown some examples). Nev-
ertheless, when available, the data provided by the inertial sensors are not worthless
but can be fused with the visual odometry information for a more robust motion
estimation as will be shown in Section

3.4 Proposed Approach

A block diagram of the proposed approach is shown in Figure The system is
composed of three main parts: registration of image features, ego-motion computa-
tion and Kalman filtering.

The first block, “Registration of Image Features” receives as input the rectified im-
ages and provides as output a list of tracked image features with their corresponding
3D position. Feature tracking is computed using the current and previous left images
for those points already being tracked by the system. Disparities between the left and
right images are only computed for the image features with tracking information. Tri-
angulation is then performed and a list with the tracked points for the current frame
is generated. The list is added to a table were the last m list of tracked 3D points are
stored.

The Ego-Motion block receives as input the list of tracked points (and eventually
the information provided by the inertial sensors of the vehicle) and provides as out-
put the translation and rotation of the camera platform between current and previous
times. The output is added to a list of motion steps which is used in subsequent
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cycles. A motion step stores the rotation and translation of the camera between two
consecutive frames. For the visual computation of ego-motion four mains steps are
carried out in an iterative way: motion prediction, application of the Smoothness
Motion Constraint (SMC), absolute orientation computation and motion integration.
An ego-motion prediction is required in order to apply the Smoothness Motion Con-
straint (SMC). The SMC is a powerful constraint for the rejection of outliers and for
the assignment of weights to the measured 3D points. Once the SMC has been ap-
plied, the absolute orientation problem between the clouds of points is solved in the
least squares sense. These three steps are carried out not only between the current
and previous clouds of 3D points but iteratively between the current cloud and every
cloud obtained in a predefined interval of time. Each iteration provides this way a
motion hypothesis which must be integrated into the final motion estimation. The
iteration stops when the number of points in the clouds is not sufficient in order to
compute the absolute orientation, or the predefined maximal amount of integration
cycles is achieved. We call this approach Multi-Frame Estimation (MFE) in contrast
to the Two-Frame Estimation (TFE) which considers only the current and previous
frames for the computation of ego-motion.

ﬁﬁ Rectified Inertial @z
Cameras Senso G

Registration of Image

Optical Flow Features Ego-Motion . .
. H . . . . r Predict Motion
(tracking) (optical flow/tracking Estimation
and stereo)
A4 A
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Motion
Integration
Kalman
Filtering
Update
A
Predict

Figure 3.1: Block Diagram of the Proposed Approach
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In order to better estimate the 3D position of the points of the environment, an
iterative refinement of 3D position is achieved by means of Kalman Filters (KF). The
dynamic of a static world point is given by the rigid body motion of the background,
which at the same time corresponds to the inverse camera motion. Any deviation
from this dynamic implies an independent motion, which is estimated by the differ-
entiation of the point position over time. For this purpose, Kalman filters provide
an iterative refinement of 3D point position and 3D point velocity. This information
is used to update the list of 3D points, which is used in the next system cycle for a
better computation of ego-motion. The Kalman filter provides also a prediction of
the next state estimate, which are used by the optical flow and stereo algorithms in
the next system cycle.

3.4.1 The Chicken-And-Egg Problem

The computation of ego-motion requires a list of static 3D points of the environment
observed at different time instances. A tracked point is labeled as static if its observed
motion is only because of measurement noise. The Kalman filter model estimates
the 3D position as well as the 3D velocity of the tracked points, so it is tempting
to ask the KF for the estimated velocity of a point before using it as a measurement
for the computation of ego-motion. Nevertheless, Kalman filters requires first the
ego-motion parameters before updating the state of a point and being able to tell its
current velocity. Problems involving systems with reciprocal requirements like this
are called chicken-and-egg problems. A solution to this kind of problems is given
by starting with a very rough estimate and iteratively giving reciprocal feedback of
the other system outputs until a convergence is found. We avoid the reciprocity by
applying the Smoothness Motion Constraint (SMC) as commented in the previous
section and shown in detail in Chapter|[7}

3.4.2 The Positive Feedback Effect

Suppose that for some reason ego-motion was wrongly estimated with the current
list of 3D points. This can happen if for example, not enough static points could be
tracked or stereo failed in estimating an accurate 3D position for the tracked features.
In this case, the KF block will receive as input an incorrect estimation of ego-motion.
KF will propagate this error to the filtered position and velocity of the points. Position
and velocity will be incorrectly estimated and the 3D Point list will be updated with
wrong estimates. This means that in the next system cycle, the ego-motion estimation
will also fail even if the stereo feature tracking are correctly computed, because the
filtered 3D positions stored in the list are incorrect. The situation becomes worse
with every cycle and the system is not able to work properly any more. This is
an example of the positive feedback effect. In the proposed approach, the positive
feedback effect can be avoided by defining a firewall. A firewall defines a limit for
the integration of information. For example, the firewall can be so defined to avoid
that the filtered 3D position of young feature point§| be stored in the 3D Point List.

2The age of a feature point is the number of times that the feature could be correctly tracked since
its first appearance. The age is given in frames.
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A relative old feature point will have an already converged state in the KF model and
a more stable behavior in front of wrong estimates. This effect will be analyzed later
in Chapters[7]and [8]



Chapter 4

Kalman Filter-based Estimation of 3D
Position and 3D Velocity

4.1 Introduction

The objective of this chapter is the estimation of the position and velocity of world
points in 3D Euclidean space, and the recursive improvement of these estimates over
time. A continuous improvement of the estimates is motivated by the noisy nature of
the measurements and, therefore, Kalman filters happen to be appropriate to address
this problem.

This chapter is organized as follows. Section |4.2|reviews the literature on tracking
with Kalman filters and alternative approaches for independent motion estimation.
In Section the Kalman filter model is presented, and the system and measure-
ment equations are derived. Section |4.4| deals with the initialization of the filter and
with the computation of the Cramér-Rao lower bound. Section carries out some
simulations for validating the filter. The last section summarizes the chapter. Some
parts of this chapter have been published in [Rab05] [FRBGO05] and [BERGO6].

4.2 Literature Review on 3D Object Tracking

In order to estimate the velocity of a world point, the system must observe its change
of position over time. The point position is obtained with multi-ocular platforms,
which allow the instantaneous extraction of 3D position through triangulation. The
time component is obtained by finding correspondences in consecutive frames. The
correspondences are found between image points (i.e. optical flow or normal flow)
or at the level of objects, which requires the previous segmentation of stereo points
and the further tracking of objects. This last strategy is commonly approached by an
orthographical projection of the 3D points into an evidence-grid-like structure, and
by grouping the projections according to their vicinity [MM96]. This method has
difficulties in segmenting distant objects and in separating distinct objects which are
close together.
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Normal flow methods have some advantages with respect to optical flow methods,
since the correspondence problem is reduced. Argyros and Orphanoudakis [AO97]
have proposed a method based on normal flow fields and Least Median of Squares
(LMedS), which estimates simultaneously ego-motion and independent 3D motion.
Morency and Darrell [MDO02] have also proposed a method for pose estimation based
on normal flow and the lIterative Closest Point algorithm [BM92]. Nevertheless, nor-
mal flow is less informative compared to optical flow, since it reflects only the motion
in the direction of the image gradient.

Methods based on optical flow have been widely proposed. One of the first
attempts to fuse stereo and optical flow information was studied by Waxman and
Duncan in [WD86], exploiting the relationship between 3D motion and image ve-
locities with stereo constraints. Kellman and Kaiser [KK95], Heinrich [Hei02] and
Mills [Mil97] also make use of such geometric constraints to detect independent
motion. Demirdjian and Horaud [DHOQ] propose a method for the estimation of the
ego-motion and the segmentation of moving objects. Demirdjian and Darrel [DDOT]
estimate rigid motion transformation mapping two reconstructions of a rigid scene in
the disparity space (which they called d-motion).

4.2.1 Literature Based on Kalman Filters

Kalman filters for object tracking are used everywhere in the computer vision litera-
ture. Some of the most significant methods are shortly described here.

Dang et al. [DHSO2] fuse optical flow and stereo disparity using Kalman filters
for object tracking. The detection and segmentation of the object must be provided
beforehand. A test based on the Mahalanobis distance is performed, in order to
eliminate those points with incoherent motion and which possibly do not belong to
the object being represented by the rest of the observations.

Suppes et al. [SSHOT] also estimate Kalman filtered landmark positions obtained
with stereo. The projection of the probability density function (p.d.f.) of the points on
a depth map allows the accurate detection of stationary obstacles. Phantom objects
are also less probable to appear this way, since the lifetime of a false correspondence
is normally very short and, therefore, its covariance matrix is large. If the covariance
matrix of a point is large, its registration on the depth map has little impact. The
ego-motion required is obtained from the inertial sensors of the robot.

Sibley et al. [SMS05] use Kalman filters for modeling the dynamics of distant
points measured with stereo. The dynamics of the point is left unspecified and is
assumed to be given. An analysis of the bias in the triangulated 3D points is carried
out and a correction using a second order approximation of the triangulation function
is proposed.

Lee and Kay [LK91] estimate object motion using Kalman filters in stereo image
sequences. The position and orientation as well as the translational and rotational
velocities of the object are estimated. The paper first presents the camera geometry
and then derives a simplified linear expression relating the measurement noise of
a feature point in a stereo image and its position error induced in 3D space. A
differential rotation matrix is defined and a least squares expression is found. A
linear measurement equation for the Kalman filter is found using quaternions for
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representing rotation and differential rotation.

Rives et al. [RBE87] present one of the first Structure-from-Motion algorithms using
Kalman filters and normal flow using monocular images. The paper derives the
equations of image velocity field given the motion of the camera and then eliminates
rotation from the equations in order to simplify the analysis. A solution for the
depth of the tracked point, given the velocity field, is obtained that way. The robot
displacement is refined minimizing a cost function relating the normal flow and the
motion parameters from the inertial sensors.

Matthies et al. [MKS89] propose an iconic disparity map estimation using Kalman
filters assuming a purely lateral translational monocular camera. An analysis of the
accuracy of the estimated distance of 3D points regarding the direction of the cam-
era motion is carried out. The results that are obtained are the relative precision of
stereo and depth-from-motion. The authors emphasize the importance of taking into
account the off-diagonal elements of the state covariance matrix in order to model
smoothness in the disparity map. A feature based model is also presented and com-
pared with the iconic model. The feature based approach has a faster convergence
rate, because it keeps the disparity and the sub-pixel-position of the feature as state
elements, while the iconic model only keeps the disparity. A comparison with stereo
shows the interesting result that processing the intermediate frames (as the camera
moves laterally) does not improve the precision, if compared to computing stereo on
the first and last frames of the images sequence.

Zhang and Faugeras [ZF91] present a complete framework for the segmentation of
objects and the computation of 3D motion using a trinocular stereo camera system.
Correspondences for image lines are found in space and time. The line segment
is accordingly represented with a mid-point and a direction vector. An appropriate
covariance matrix is considered this way. Kalman filters are used to estimate angu-
lar velocity, translational velocity and translational acceleration of the detected line
segments. The Mahalanobis distance between predicted line segment and measured
line segments are used to select possible matches. A bucketing technique is also
used to reduce, even more, the number of hypotheses. Every remaining hypothesis
is then tracked in order to observe its dynamics. The Mahalanobis distance is once
again used to eliminate features incorrectly tracked (the authors assign a “support of
existence” to every tracked line segment). The grouping of line segments into ob-
jects is also performed with the Mahalanobis distance between the motions of two
line segments. The covariance matrix of a detected objects is computed and used to
iteratively check if other line segments also belong to the object.

Altunbasak et al. [ATB95] estimate 3D point motion with a maximum likelihood
approach and Kalman filters in stereo sequences. Kalman filters are used to model
point position, translation velocity, translation acceleration, rotation, angular veloc-
ity and precession. Stereo and motion are fused in this way by maximizing the
probability that the estimated motion and disparity conform to the observed frames.
The conditional probability distribution is modeled as a Gibbs distribution. The al-
gorithm then iterates between the Maximum Likelihood step and the Kalman filter
step until the maximum likelihood cost can no longer be reduced.

Yao and Chellappa [YC94] present a method for tracking features using Kalman fil-
ters in an image sequence. The state model considers image position, image velocity
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and rotation of the features. The Mahalanobis distance is used to choose potential
feature points in the next image. The zero-mean normalized cross-correlation func-
tion (ZNCC) is applied for matching feature points. New image features are only
tracked if a minimum distance criterion is fulfilled.

Hung and Tang et al. [YCST95] [CYSZ99] detect and track multiple moving objects
computing stereo and optical flow in left and right images. A mutually-supported
consistency constraint is used to reduce errors in the feature matching. Random Sam-
ple Consensus (RANSAC) [FB81] is then used to find clusters of points with similar
motion, where similarity is defined as the inverse Euclidean distance between point
position and predicted point position. Kalman filters are used on each detected clus-
ter in order to track each object in the scene. Angular velocity, angular acceleration,
point of rotation, translational velocity and translational acceleration constitute the
state vector. When tracking a feature, the prediction for the corresponding cluster is
used to predict the 2D image position and supports the correspondence.

Kalman filters are widely used in Self Localization And Mapping (SLAM) appli-
cations [DNC*01]. Jung and Lacroix [JLO3] describe a method for building digital
elevation maps using stereo images. The Kalman filter is used to simultaneously
refine estimates of ego-motion and 3D landmark position of world points. Only a
sub-set of the dense output provided by the stereo algorithm is used as landmarks for
the computation of ego-motion. The rest of the stereo output is used to build maps of
the environment. The state vector includes the six motion parameters of the camera
and the 3D position of every tracked point.

Matthies and Shafer [MS87] estimate landmark positions in a camera-centered
coordinate system using Kalman filters. Ego-motion is computed from the 3D points
obtained with stereo. The covariance matrix of each stereo point is used to compute
a motion covariance matrix, which is next propagated to the covariance matrices of
the landmarks. The update of the global robot position is carried out; concatenating
the transformation matrices, and estimating the uncertainty of the global position by
propagating the covariance matrices of the incremental motions into a covariance of
the global position.

4.2.2 Alternative Methods for Object Tracking.

Kalman filters are not the only tool for combining stereo and motion components.
Some alternative methods are briefly described here.

Liu and Skerjanc [LS93] present a method for finding stereo and motion corre-
spondences using a coarse-to-fine strategy. Dynamic programming is used with a
cost function including interline penalty, motion penalty and pyramid penalty com-
ponents. Dynamic programming is applied in each level of the pyramid. The authors
also point out some geometric relationships between motion and disparity.

Jenkin and Tsotsos [JT86] present a method for handling multiple matching hy-
pothesis generated in a stereo image sequence. The paper describes some smooth-
ness assumptions and defines constraint based on such assumptions. Features are
tracked in 3D and multiple hypotheses are generated in a tree-like structure. Every
node is assigned a label and some label-combinations are defined as to be incoher-
ent in order to eliminate possible false correspondences.
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Ho and Pong [HP96] present a method for matching features in two consecutive
stereo images. Four match processes are integrated as a network. In the first step,
features are extracted from the images. Second, multiple matching hypothesis are
established for every feature. Third, to each potential match an initial probability
is assigned. In the last step, the probabilities are updated iteratively by a relaxation
labeling process.

Altunbasak et al. [ATB94] propose a framework for simultaneous motion and dis-
parity estimation. Motion is estimated with 6 d.o.f. The Bayesian framework is
presented and probabilities are modeled with Gibbs distributions. The method iter-
ates between computing the MAP estimate of the disparity and segmentation fields,
conditioned on the present motion parameter estimates, and the ML estimates of the
motion parameters via simulated annealing.

Agrawal et al. [AKIO5] present a complete framework for detecting independently
moving objects. The main steps of the method are: 1. compute ego-motion, 2.
warp previous image to current image according to the ego-motion, 3. compute sum
of absolute differences of warped image with current image, 4. extract blobs from
difference image, 5. track blobs in time. RANSAC is used to produce multiple hy-
potheses of motion. Every hypothesis is assigned a score depending on the error of
the projection of the points, based on the current motion hypothesis. The motion
hypothesis with larger vote is used as the starting point for a non-linear minimiza-
tion using Levenberg-Marquardt optimization [Lev44]. The function to minimize is
the projection error. The authors use the method of Demirdjian [DDOT] called “d-
motion” to compute the projection errors. Blob extraction and tracking are the last
steps of this procedure.

Talukder and Matthies [TM04] use a similar method for the detection and tracking
of independently moving objects. Independent motion is found by first computing
the ego-motion of the camera with respect to the static scene, and then observing the
difference between predicted and measured optical flow and disparity. These differ-
ences are thresholded in order to build a binary map. Moving objects are detected
from the map as binary blobs of moving pixels. The segmentation of moving ob-
jects is performed with a simple algorithm based mainly on heuristics. This method
requires dense optical flow and dense stereo computation.

Woelk and Koch [WKO04] detect independently moving objects from the optical
flow computed on a monocular camera and known ego-motion. The ego-motion
of the camera is first improved by refining the initially provided essential matrix.
Particle filters are used to select the regions in the image were optical flow must be
computed, leading to a fixed number of optical flow calculations and reducing this
way the computational burden.

4.3 The Kalman Filter Model

This section presents a model which allows to estimate the relative motion of world
points relative to the observer. This is done by using the ego-motion of the camera
platform to compensate for the motion of the world points. If a world point is static,
its observed motion is described as the inverse of the camera motion. Otherwise,
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the point has an independent 3D motion, which the filter estimates. In the follow-
ing subsections a vehicle-based coordinate system is assumed, i.e. the origin of the
coordinate system moves with the observer.

4.3.1 Stochastic Models and Kalman Filters

Stochastic models are mathematical tools for problems involving random variables.
Modeling a problem usually requires the design of a merit-function that measures
the agreement between the output of a system and the model. The objective is to
find the set of parameters of the merit-function for which the observed output can
be achieved. When the parameters are time-dependent, they are called the state
of the system, and the goal extends to finding their variation over time. Kalman
filters [Kal60] are recursive estimators of the state of a system, using noisy data mea-
sured from the environment. Under certain assumptions Kalman filters are optimal
estimators, in the sense that the estimation error is statistically minimized. Such as-
sumptions include a Gaussian error distribution, the independence of the process
and measurement noises, and the existence of a linear relation between the mea-
surements and the state of the system.

The Kalman filter addresses the problem of estimating the state € R™ of a process
that is governed by a stochastic difference equation of the form:

x, = Apxyp_1 + Brug + py, (4.1)
with measurement z € R™ where

A is a matrix relating the previous state x;_; with the current state x;, By is an
optional control input of the state of the system, and p,, represents the process noise.
H . relates the current state with the measurement z;, and v, represents the mea-
surement noise. The noise terms in both equations are assumed to be independent
and with normal probability distributions

p(py) ~ N(0,Q)
p(vg) ~ N(O,R)

Q and R being the process noise and measurement noise covariance matrices, re-
spectively.

The Kalman filter is the optimal recursive linear estimator of x; [May79]. How-
ever, the linearity assumed in the model and measurement equations are not satisfied
for most real problems. For example, in the next section the measurements are not
a linear relations of the state and therefore Kalman filters cannot be used directly.
The solution is provided by the Extended Kalman filter (EKF), which linearizes the
functions about the current mean and covariance. The linearized filter is not optimal
any more, since there are non-linear filters which perform better than the KF [GA93].
Nevertheless, between all linear estimators the KF is still the best estimator. In the
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next section, the required model for estimating 3D position and 3D point velocity
from stereo image measurements is derived. The extended Kalman filter equations
are presented later in Section Details about KFs and EKFs can be found in
[GA93] [BSLI3] [Lof90] and [May79].

4.3.2 Continuous Motion Model of 3D Position and 3D Velocity

In this section a continuous motion model for the description of the 3D point motion
is derived. The camera motion model as well as the object motion model are also
presented. With this basis, the system model equation is obtained. In the next
section the continuous motion model will be discretized.

4.3.2.1 Camera Motion Model

Let us assume the camera moves continuously in a world coordinate system with
translational velocity vector

ve = [ u(t) v,(t) v.(t) ] (4.3)
and angular velocity pseudo-vector
wo = [ @(t) oyt) w.t)]" (4.4)

The translational velocity is measured in meters per second. The angular velocity
pseudo-vector specifies the angular speed and axis about which the camera is rotat-
ing. The angular speed is obtained as the magnitude of the pseudo-vector. The axis
of rotation is obtained from its direction. The angular velocity is measured in radians
per second.

The computation of the translation and rotation of the camera after a time At is
obtained through integration over At, i.e.

At Um<t) At Wa:(t>
tC:/ vy(t) | dt and wc:/ wy(t) | dt (4.5)
0 0 -

Assuming that At is small and v and we remain constant over the interval At, it
is obtained

v AL WAt
te = | v,At and we = | w,At (4.6)
v, At w, At

The above equations represent a translation and a rotation of the camera over the
interval At. The translation t- is measured in meters and the rotation in radians.
The direction of the pseudo-vector w¢ defines the axis of rotation, and its magnitude
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defines the angle of rotation. A rotation matrix can be obtained as:

cosa +v3(1 — cos ) viv2(l —cosa) —vgsina  wvivz(l — cosa) + va2(sin @)
RC = vov1 (1 — cosa) + v3sina cosa + v3(1 — cos ) vavsz (1l — cosa) — v1(sin @) 4.7)
v3v1(l —cosa) —vasina  w3v2(l — cos @) + v1(sin ) cosa + v3(1 — cosa)

where a = ||Jw¢|| is the angle of rotation and (vy, v2, v3)T = we/a the unit direc-
tion vector.

4.3.2.2 Object Motion Model

This section proposed a continuous object motion model following a similar deriva-
tion as done by Lux [Lux00].

Let (X,Y, Z)" represent the coordinate vector of a world point relative to the cam-
era coordinate system at time t;_1, and (X,Y, Z)T represent its associated velocity
vector. An object is defined as the vector z = (X,Y, Z, X, Y, Z)T

The motion of the point can be expressed with a differential equation of the form

dJR = ARiBR (48)
where
03x3 I3x3
Ap = 4.9
i [ O3x3 Osxs3 1 “.9

In order to be able to express the object state at time t, in a camera coordinate
system, a rotation and translation to the new camera position must be performed.
This is achieved by applying the following transformation

z=Rxp+t (4.10)
where . .
R, O —R:t

R= C 3”} d t:[ CC} 4.11

|: 03><3 Rg o 03><1 ( )

tc and R¢ correspond to the camera translation and rotation from Equations[4.6]and

respectively.

4.3.2.3 Continuous System Model

In order to obtain a differential equation of the form of Equation Equation {4.10
is differentiated for the time component obtaining:
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& = Rxp+ Rip+t
= Rxp+ RApxp+1
(R+ RAR)xp +1
(R+ RAR)R"(x—t) +1

& = (RR"+Ap)x + (t— (RR” + AR)t)

which leads to

t=Ax+B+p 4.12)
with .
A=RR" + Ap (4.13)
and ‘
B=t- (RR" + Ap)t. (4.14)

where the noise term p was added in order to model the uncertainty of the system.

Inserting Equations |4.11|into [4.13|and [4.14] results in

- T
A= | Bello .I;i’“‘ (4.15)
0s3x3 R Rc
and -
B— { —Rote } (4.16)
O3><1

Equations to |4.14| represent the continuous system model. In order to apply
Kalman filters, the system must be first discretized. This is done in the next section.

4.3.3 Discrete System Model

In this section, the continuous model derived in the previous section is discretized.
This means that discrete versions of the matrices A, B and Q must be obtained. For
details about the discretization procedure see [F6194] and [BS94].

4.3.3.1 Transition Matrix A

The discrete version of the matrix A from Equation is obtained applying the
exponential series expansion [F6194]

AZAz A2A2 ABAL
A2 = $(At, 0) Z YT AAC L LTI 4.17)
— il 9l 3!
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where At = t;, — t,_1. Applying the series expansion to Equation |4.13|results in

(4.18)

14k _ { I%k Zktkl%k }

O3xz Ry

where R, corresponds to the inverse rotation matrix of the camera, i.e. R, = Rg.

4.3.3.2 System Input Matrix B

The discrete version of the B matrix is obtained by solving (see e.g. [Sim06], page
27)

At
B, = A%t / e A%daB(At) (4.19)
0
Substituting Equation and Equation [4.16| into 4.19| and solving the integral re-
sults in
B, = { b } (4.20)
03x1

where t;, is the inverse translation of the camera between times t;,_; and t, i.e.
t, = —Rltc

4.3.3.3 System Covariance Matrix Q

The driving noise term p of Equation is assumed to have a known covariance
matrix Q. The discrete covariance matrix Q. is obtained solving the following inte-

gral [BS94]
Aty

Qi = A QAT dt 4.21)
0

Let us define separate covariances for position and velocity

Qp 033
= 4.22
e [ 03x3 Qv 4.22)
with
op 0 0% 0
Op= 0 02 0 Oy = 0 o 0 (4.23)
0 0 o% 0 0 of
Solving results in
L. .3 Lo
At Qp + gAthV §Atk Qv
Qi = (4.24)

1



38 Kalman Filter-based Estimation of 3D Position and 3D Velocity

(a) Static Point. (b) Moving Point.

Figure 4.1: Motion of a point observed from a camera coordinate system. The left
figure shows an example of the motion of a static point observed from a moving
camera: the change in the observed position of the point is only a function of the
camera motion. In the right figure the point moves with constant velocity. The new
position of the point is not only a function of camera motion but also a function
of the point motion. The observed velocity of the point rotates inversely with the
camera rotation.

4.3.3.4 Summary of the Discrete System Model

Let p|, , = (X,Y,Z)T represent the coordinate vector of a world point observed
by the system at time t;_; and v}_, = (X,Y, Z)7 represent its associated velocity
vector. The camera platform moves in its environment with a given instantaneous
translational and angular velocity, changing its relative position to the point. After a
time At the new position of the point from the camera point of view is given by

p;c = Rkpz_l + tk -+ Athk’U;_l (425)

where R, and t;, are the inverse rotation matrix and inverse translation vector of the
camera, i.e. the motion of the static scene with respect to the camera. The velocity
vector v}, in the vehicle coordinate system, changes its direction according to:

v, = Rypv)_, (4.26)

Figure shows examples for static and moving points. Combining position and

velocity in the state vector
x = (p),v,)" (4.27)
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leads to the discrete linear system model equation:
T, = ATy + By + py, (4.28)

with the state transition matrix

(4.29)

and input matrix

The noise term p is assumed to be Gaussian white noise with covariance matrix Q.
The discrete covariance matrix is

1 1
At Qp + -At; Qy ~—At; Qy
Q. = 3 2 (4.30)

1
§AtiQV At Qv

4.3.4 Measurement Model

This section derives the equations corresponding to the measurement of the system.
As stated before in Equation the measurement z must be related to the state of
the system through a matrix H, which will be obtained in this section.

The measurement model captures the information delivered by the stereo
and optical flow systems. The non-linear measurement equation h for a point
x, = (X,Y,Z,X,Y,Z)T, given in the camera coordinate system is

U Ug 1 Xf.
z=|v | =h(zy)=| v |+ 7 -Yf, | +v (4.31)
d 0 Bf.

where (u,v) corresponds to the new image position of the point (obtained with the
optical flow) and d is the disparity computed with stereo. The scalars f,, f,, uo and
vy are parameters as introduced in Section The noise term v is assumed to
be Gaussian white noise with covariance matrix

o2 0
R=1| 0 0 (4.32)
0

o, o

QU

g

Figure shows an example of the successive measurements.

The non-linearity imposed by the depth component in Equation [4.31| requires the
linearization of h(xy). This is achieved by computing the Jacobian matrix of partial
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Space (Stereo)

Time (Tracking)

Figure 4.2: Measurement in space and time. The image position (tracking) and

disparity (stereo) of a world point is measured for every new image.

derivatives of h with respectto z, i.e. :

[ f. X ]
20 —f—=
Z / A
_ fo Y
Hp,k 0 —7 fvﬁ
B
|00 SR

The linearized H; matrix is

H,=[ Hpp 0343 |.

(4.33)

(4.34)

(4.35)
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4.3.5 The Extended Kalman Filter Equations

At a given time, the Kalman filter estimates the state of the system projecting the cur-
rent state and error covariance estimate to obtain a priori estimate for the next time
step. At another time the Kalman filter receives input in the form of measurements,
incorporating them in the a priori estimate leading to a posterior estimate. The a a
priori estimate equations are normally called “prediction” while the incorporation
of measurements in order to obtain an improved a posteriori estimate is called “cor-
rection”. In this sense the Kalman filter is a predictor-corrector algorithm. In the
following a super minus over the variable such as &; will indicate a priori estimate
(i.e. prediction), while the lack of such as Pj it will indicate that the variable is a a
posteriori estimate (i.e. correction).

The state and error covariance prediction equations are:

T; = A2y + By, (4.36)

P; = AP, AT} + Qy (4.37)

The above equations project the state & and its covariance estimate P from time
k — 1 to time k£ making a prediction. The matrices A, and B, are from Equations
[4.18|and |4.20| respectively and Qy, is from Equation |4.30

The state and error covariance correction equations are:

e Measurement.
e Computation of Kalman gain:
F,=H,PiH +R (4.39)
K,=P;HIF' (4.40)

Update estimate with measurement:

.’f)k = C??E + Kkvk (4-41)

Update of the error covariance:

Py = (Isxs — K Hy)P;, (4.42)

where R is from Equation h(&;) is described by Equation and Hj, is
from Equation [4.35] The update equations incorporate the measurements to
the a priori estimate through The a posteriori error covariance estimate is
obtained incorporating the measurement covariance matrix to the predicted error
covariance estimate in In both cases the previous computation of the matrix
K in Equations |4.39|and |4.40| is required. K, is usually called Kalman gain.
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The chosen implementation of the Kalman filter uses the UD covariance factor-
ization according to the Bierman algorithm, which do not involve square roots in the
implementation and provides a numerically stable and efficient method for factor-
ization. Details can be found in [BieZ7] (pages 101, 125, 132).

4.4 Initialization of the Filter and the Cramér-Rao
Lower Bound

This section addresses the problem of the initialization of the Kalman filter when
no previous information is available. After that, the Cramér-Rao Lower Bound for
the proposed KF is derived. In Section this bound is used to show the relative
performance of the proposed filter.

4.4.1 Initialization of the Filter

The initialization of the model requires an initial estimation of the state vector (3D
position and 3D velocity of the world point) as well as the initial system error co-
variance matrix. The initial 3D position is obtained with the first measurement
zo = (u,v,d)T of the feature image position and disparity

[ B

d
/
ph=glzo) = | P | (4.43)
Bf,

L d

where v = u — ug, v = vg — v and s,, = $,/s, as usual. The covariance matrix
corresponding to Equation is obtained computing the Jacobian of g(z)

B 0 By’
d 2
99y B By
Gy = (z0)=| o 28w _DUSuw | (4.44)
ST Dz d 2
Bf,
0 0 _
i 2 ]

The covariance matrix of the measurement z is the matrix R of Equation The
initial covariance matrix for point position is then obtained by

w03 + d*o? Spt'V 0 fuu'o?
T
P,., — GRGT = —— 2 2 (2 2 | 2 2 2
0.p = = SeutlV'02 2, (V202 + d*02)  fuse'ol |- (4.4D)

fuu'os fuswu¥'03 fio?
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The geometrical interpretation of this matrix will be given in the next chapter. For
the estimation of velocity at least two measurements are required. Therefore, the
initial velocity is set to zero with a very large covariance matrix, i.e.

ks 0 0
Py =kodsxs=| 0 ks O (4.46)
0 0 ks

with k., very large. Combining Equations |4.45|and |4.46| results in the initial covari-
ance matrix:

[ Poy O
PO_{ 0 Po,v/}' (4.47)

Observe that PO_1 has only rank 3 since Paj,, = 0343. The initial covariance matrix
of Equation [4.47] propagates according to Equation to:

[ Py + APy .y At P
P — R, [ Por Ao AU ]RIT (4.48)
B : Poy + AtikooIsxs AtikooIsxs T
= I AtikooI3x3 koo Isxs B (4.49)
i At%ISXS At1I3x3
~ Koo | AtiIsxs  Isxs 4.50

since we assume k., — oo. For the initialization we assume Q; = 0446. Equation
reflects the fact that no accurate prediction of point position is possible with
only one measurement and unknown velocity. Nevertheless, P; ' has rank 3 and is
obtained as

-1 -1
P07p’ _Atlpom’

771 JR—
Pr =R —Athgj,, At%Pg;,,Jr(kI)—l

} RT (4.51)

An alternative expression for the updated error covariance matrix shown in Equation
is:
P,=(PY%“+H R 'H,* (4.52)

Just after updating the model with a new measurement, the error covariance matrix
shows only finite elements

St (At;S1)7!
P, = (4.53)

1
(At S;) A—tQ(S;1 + R, Py, RY))
1

where:
Sk=H, R 'Hpu (4.54)

The initialization of the filter can be accelerated initializing multiple Kalman filters
in parallel for the same input data but with different system variances. More details
of this multi-filter system can be found in Franke et al. [FRBGO5].
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4.4.2 Comparison with Optimal Unbiased Estimator

There is a limit on how much information about unknown parameters can be ex-
tracted from a set of noisy measurements. For unbiased estimators, the limit is given
by the Cramér-Rao Lower Bound (CRLB). Formally, if f is an unbiased estimator of
some parameter « the Cramér-Rao inequality states that the mean square error of f
is lower bounded by the reciprocal of the Fisher information [Ger99], i.e.

1
200) > —— 4.
o (f) = () (4.55)
The Fisher information Z(«) about the parameter « is defined to be the expec-
tation of the second derivative of the log-likelihood. An unbiased estimator that

achieved the CRLB is said to be efficient. With Kalman filters, the information matrix
can recursively be obtained [Lof90] as

IT,=AYT, A.+HT, R 'H,. (4.56)

From Equation [4.56] it can be observed that the information provided by every
new measurement is given by the second summand of the right hand side, i.e.

HTkR_lHk:{ Sk 03X3} (4.57)

03)(3 03)(3

where S}, is from Equation This proves that the measurement only provides
new information for point position.

4.5 Simulation Results

This section evaluates the model under the assumption of known ego-motion, i.e.
the rotation matrix Ry and the translation vector ¢, of Equations [4.18|and |4.20| are
exactly known. Since in reality the ego-motion parameters will contain error, the
performance of the filter under noisy ego-motion parameters will be evaluated later
in Chapter [7]

A particle is simulated by defining its initial 3D position and corresponding 3D
velocity. A standard stereo system is defined with a baseline of 0.35m, focal length of
830 pixels and VGA image size. At each time instant, the new position of the point
(as it moves with constant velocity) is projected into the left and right images of the
stereo system. The measurement is simulated by adding Gaussian white noise with a
standard deviation of 1 pixel to the image position of the particle. In the simulations
only the distance and the speed of the particle in z direction are shown, since z is
the component more affected by noise.

In the first simulation a point was located at 50m from the camera with a velocity
of —1.5m/s, i.e. moving towards the camera. Figure |4.3(a)| shows the Kalman filter
estimated position of the point at each time instant. The vertical bars in cyan shows
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Figure 4.3: Estimation of the velocity of a point moving towards the camera.
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Figure 4.4: Estimation Variance and CRLB for a point moving towards the camera.
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the estimation uncertainty, i.e. standard deviation of the estimation. The black circles
show the triangulated measurement, i.e. the position of the point without filtering.
The red line shows the real value. The position and velocity covariances of equation
4.23|were set to 0% = 1073 and o = 2.5 1077, Although the triangulated positions
are rather scattered around the true position, the Kalman filter estimation converges
rather quickly to the real value. Figure shows the estimated velocity of the
particle. Since velocity must be computed by observing the change of the noisy
positions of the point and it was initialized to 0, it takes a little longer to converge
to the real state. A faster convergence can be achieved if 0% is assumed to be larger
at the expense of reducing the filtering effect giving more weight to the measure-
ments. Figure shows the estimation variance for position and speed, as well as
the corresponding theoretical Cramér-Rao lower bound, demonstrating an efficient
estimation.

The second simulation scene was generated by locating the particle at 50m from
the camera but moving away from the camera at a velocity of 3.7m/s. Figure[4.5(a)]
shows the estimated position, while Figure shows the estimated velocity of
the point. The initial velocity of the point was set to 0. The position and velocity
covariances 0% and o}, were set as in the previous simulation. Observe that as the
point moves away from the camera, the triangulated positions are more and more
dispersed, since uncertainty grows with distance. Nevertheless, the filtered position
of the point remains stable with no remarkable change of the estimation uncertainty.
Figure [4.6(a)] shows the estimation variance which increases slow as the point moves
away. Since the point is moving away, the estimation of its velocity has a larger
uncertainty as in the previous scenario in Figure Nevertheless, the estimate
converges correctly to the right solution. The CRLB is also achieved in this case, as
shown in Figure [4.6(b)

In the third simulation a point with constant acceleration was generated. Observe
that the filter was designed to estimate only constant velocity, assuming zero accel-
eration. Nevertheless, Kalman filters can handle deviations from the model if the
filters are correctly configured. The process noise covariance matrix @ of Equation
[4.30]allows one to consider uncertainties of the model. Making Q too large has the
effect of trusting less the current state and trusting more the noisy measurements.
Letting @ be too small might prevent the convergence of the filter. In this simulation
the the position covariance 0% was set as in the previous simulation and the velocity
covariance of equation [4.23| was increased to o = 0.16 in order to allow the filter
to adapt to changes in the velocity estimation. The system covariance parameters
are usually very stable parameters, in the sense that very large variations in the input
values generate small differences in the filter output. Therefore, in general, a rough
value is enough to ensure a good behavior.

Figure [4.7(a)] shows the estimation of the position of a point which moves away
from the camera at an initial position of 10m. A constant acceleration of —0.2m/s?
was set, so the point decreases its velocity continuously. The position of the point
converges quickly since the point is very close to the camera and therefore its esti-
mation is accurate. The estimation of point position throughout the entire tracking
of the point. The velocity estimation shown in Figure [4.7(b)]is a little noisier than in
previous scenarios and does not fully converge. Nevertheless, the estimated position
adapts very well to the constant change of the real velocity, which was actually not
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Figure 4.6: Estimation Variance and CRLB for a point moving away from the camera.
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Figure 4.9: Improvement achieved by the integration over time of stereo measure-
ments. Gaussian noise with standard deviation of 0.4 pixels were used in this exper-
iment.

considered in the model.

The estimation variances with corresponding CRLB are shown in Figure[4.8]. The
dissimilarities between the CRLB curve and the estimation variance curve are larger
than in the previous two simulations. This is a consequence of the bias introduced
by the non-constant velocity of the particle. The CRLB is a true limit for unbiased es-
timators, but biased estimators, as the case in this simulation, might achieved smaller
variances.

The improvements achieved with Kalman filters are shown with a Monte-Carlo
simulation. Figure shows curves of expected root mean square distance error as
a function of the point distance for different point ages. Every curve shows the results
for a specific age. A point of age 5 means that the filter was updated 5 times. Only
static points were considered here. The motion of the camera was simulated as con-
stant forward motion. The real benefit of the integration over time for the individual
stereo measurements can be seen by comparing each curve with the “Unfiltered” la-
beled curve, which shows the RMSE for non-filtered stereo measurements. This way,
features up to 100 meters away from the camera and with an age of 3 updates have
reduced the depth uncertainty by half. Features with an age of 14 updates present
only 25% of the standard deviation of unfiltered points.
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4.6 Summary

In this chapter, a stochastic model for the recursive estimation of 3D position and
3D velocity of world points was presented. The Kalman filter, as a stochastic model,
is a mathematical tool that recursively estimates the state of a dynamic system from
data provided by a noisy environment. Under certain assumptions, Kalman filters
are optimal estimators, in the sense that they minimize the estimation uncertainty.
This is the reason why KFs were, and continue to be, so extensively used for solving
computer vision problems. This chapter has reviewed some of the most interesting
publications on that subject.

Kalman filters are here used to estimate the position of world points. The simple
differentiation over time of the position of the estimated point allows the additional
estimation of its velocity. Kalman filters offer a simple way of estimating not only
position but also velocity, thus detecting independently moving objects. The motion
of a static world point, as being observed from a moving camera coordinate system
is modeled by the system model equations. The system model equations incorporate
the rigid body motion of the camera with respect to the static environment. The mea-
surements are captured by the measurement model, which fuses stereo and motion
data. Without any previous information, the filter requires two initial measurements
to be fully initialized. Simulation results have validated the model. Through the
comparison with the Cramér-Rao Lower Bound, the method has been shown to be
efficient. The reduction of the position uncertainty has also been demonstrated with
a Monte-Carlo simulation.

The ego-motion parameters contained in the system model equation were as-
sumed to be provided. When working with simulations, the motion parameters are
exactly known. But when working with real images, the ego-motion is unknown
and must be estimated. This is performed by computing the absolute orientation
between the clouds of static points in the environment. The next chapter addresses
the problem of computing the absolute orientation and the problem of modeling the
error for the clouds of points.



Chapter 5

The Absolute Orientation Problem

5.1 Introduction

This chapter carries out a complete review on the absolute orientation problem. The
focus is given on the closed form solutions for the weighted and total least squares
approaches. Section reviews the literature on absolute orientation. Sections

to[5.5]are dedicated to the mathematical formulation of the weighted and total
least squares approaches.

5.2 Literature Review

The computation of absolute orientation using a set of point correspondences is a
problem which was solved almost independently by many authors in different re-
search areas. The same problem was named Absolute Orientation in photogramme-
try [Hor87], 3D-3D Pose Estimation in Computer Vision [HJL™87] and even Orthog-
onal Procrustes Problem [SC70] in statistical psychology. The first closed form solu-
tions to the Least Square (LS) problem were proposed in the early 1970’s. Schone-
mann [SC70] presented a method which treats the nine elements of the rotation
matrix as unknowns and applies Lagrange multipliers to force the orthogonality. Sin-
gular Value Decomposition (SVD) is then applied for the computation of the rotation
matrix. Blais [BlaZ2] and Sanso [San73] also proposed closed form solutions. The
method proposed by Sanso finds rotation as unit quaternion, extracting the eigen-
vector corresponding to the minimum eigenvalue of a symmetrical matrix, the latter
constructed directly from the data sets. A decade later, Faugeras and Hebert [FH83],
without the knowledge of the work of Sanso, find the same quaternion solution. In
the second half of the 80’s Horn [Hor87] rediscovers the quaternion technique pre-
senting small variations in the derivation. The optimal rotation is now found as the
eigenvector corresponding to the most positive eigenvalue of symmetric 4 x 4 matrix.
Horn et al. [HHNS88] also published a solution with orthonormal matrices by polar
decomposition. In the same year, Arun et al. [AHB87] and Haralick et al. [HJL*87], in
independent investigations, bring to light once again the SVD technique. A fourth so-
lution with dual-quaternions was found by Walker et al. [WS91]. The SVD technique
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was improved by Umeyama [Ume91] by imposing an additional constraint to avoid
reflections. These four different techniques were evaluated in accuracy, stability in
case of degenerate data forms, and efficiency by Lorusso et al. [LEF95]. Kanatani
[Kan94] recapitulates the SVD, quaternion and polar decomposition methods in a
redefined manner as minimization over proper rotations.

Most solutions to the Total Least Square (TLS) approach to absolute orientation
are iterative. Matthies and Shafer [MS87] solves the problem by maximum likeli-
hood estimation, computing rotation and translation separately and minimizing it-
eratively with Gauss-Newton. Ohta and Kanatani [OK98] use quaternions and the
renormalization technique for finding best rotation fit between clouds of points with
anisotropic noise. Matei and Meer [MM99] propose a method which uses the same
linearization method with quaternions as in the method of Ohta and Kanatani, and
extend it to consider a translational term. Bootstrap analysis is also used to estimate
the covariance of the data points and a confidence of the motion result. Williams et
al. WB99] present another method, computing simultaneously motion and structure
with maximum likelihood estimation. Weng et al. [WC90], on the other hand, solve
the absolute orientation problem in closed form, eliminating a rotation from the co-
variance matrix and penalizing this way the resulting motion as shown later in this
chapter. Nevertheless the proposed method allows the implementation of a very fast
algorithm, making it attractive for real-time applications.

5.3 Preliminaries

5.3.1 Introduction to Least Squares

Least squares (LS) is a method for solving overdetermined systems. The least squares
method performs a fit of a model to a set of observations. This is achieved by finding
the set of parameters of the model for which the sum of the squared residual has it
least value, a residual being the difference between an observation and the output
given by the model. The method was first described by Carl Friedrich Gauss around
the end of the 18 century.

Let us define a set of m observations

where h(a;, Z) is a function relating the real unknown vector & € R" and indepen-
dent known vectors a; € R? with the dependent variable b; € R found by observa-
tion. The scalars w; are also unknown and are called measurement error or noise.
The least squares estimator of x is

:i::argmin{J:ZTf} r; =b; — h(a;, x). (5.2)
i=1

where r; is called residual value and J is the sum of the squared residuals.
The minimum is found where the slope of Equation|5.2]is zero. This leads to a set
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of n equations of the form

m

O:—QZTZ-M j=1,-,n. (5.3)

o0x;
i=1 J

The n equations in[5.3]are called gradient equations and solving them for = depends
on the function h(a;, ). If h(a;, x) is linear in x, then Equation is called linear
least squares. In particular, if h(a;, ) = al = where a; € R™ is a vector of constants
then Equation becomes

zﬁ—argmin{J—er} ri=b; —alx (5.4)
i=1

Stacking the observations b; and independent vectors a; one over the other

bl aFf
bg ag

b= ) and A= : (5.5)
bin al

and solving Equations [5.3]leads to the closed form solution (assuming m >= n)
&= (ATA)'ATb. (5.6)
in which case the sum of the squared residuals is

J=(b—Az)'(b- A%) (5.7)

If the noise terms have a mean of zero (i.e. E[w] = 0) and are uncorrelated
then the least square estimator is the best linear unbiased estimator (BLUE). This
result is known as the Gauss-Markov theorem [KK98]. The case of equal variance
for all measurements was demonstrated by Carl Friedrich GauR almost 200 years
ago. Aitken [Ait35] extended the Gauss-Markov theorem to the more general case of
different non-scalar covariance matrix and correlated errors. In such case the least
squares corresponds to the minimizing the Mahalanobis norm of the residual vector

J=(b—A2)"W(b- Az) (5.8)

where the matrix W is the second order moment of b known up to some scale factor
[OK98].

Observe that the data model does not count for errors in the independent
variable a;. A more appropriate technique for solving systems in which both the
dependent and independent variables are subject to error is the framework of the
“Total Least Squares” (TLS) estimation [MM98], also known as errors-in-variables-
modeling (EIV) or orthogonal regression. Details about LS and TLS are found in
IM(ih05].
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The next section make a general formulation of the Absolute Orientation Problem.
Solutions to the LS and TLS are shown later in this chapter.

5.3.2 The Absolute Orientation Problem

Given the sets P = {p,} and and X = {«;} of 3D points where p, < x;, i.e. z; is the
transformed version at time ¢,, of the point p, at time ¢,_, the Absolute Orientation
Problem implies the estimation of the rigid-body transformation parameters between
the sets P and &[]} The sets P and X’ are composed of measurements such that

T, = Tit+ 0y

b, = ﬁi+3p,i

i.e. x; and p, are unbiased noisy observations of the real, but unavailable vectors
Z; and p;, and 4,; and J,,; are independent random vectors with second order mo-
ment (i.e. covariance matrices) I',; and I, ; respectively. The Absolute Orientation
Problem requires to find the rotation vector w = (¢,, )" and the translation vector
t = (ty,t,,t,)7 such that

D; = R(w)x; +t (5.9)

where R(w) is the rotation matrix corresponding to w. The direction of the vector w
defines the axis of rotation and its magnitude the rotation angle. The rotation matrix
R(w) is obtained with Equation as seen in the previous chapter. In order to
simplify notation, the functional part will be omitted and the rotation matrix will be
written as R. A statistically optimal solution to Equation is found minimizing the
Mahalanobis norm of the residual vector ([Miih05] page 75), i.e

J= Z i—z) T, —a:z—f—z —p,)"T,}(p; — P;) (5.10)

subject to the Equation This is a formulation of the Generalized Total Least
Squares problem [EBW04]. Under the zero-mean assumptions E(d,;) = 0 and
E(4,:) = 0, Equation is the best linear unbiased estimator. Furthermore, if
the errors are Gaussian, i.e.

pi ~ N(O,T},) (5.12)

then Equation defines a maximum likelihood estimator [MM98].

With fixed R and ¢, the vectors Z; and p, that minimize J can be obtained ana-
lytically adding Lagrange multipliers, leading to [OK98]

J =Y (p,— Rx; — t)"W;(p, — Rx; — t) (5.13)

TActually, one can generalize the Absolute Orientation Problem in order to consider a scale factor.
Nevertheless, only the rigid body transformation parameters are considered here.
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where
W; = (RT,;R" +T,,)™" (5.14)

Observe that R belongs to the group of rotations SO(3). The matrix R contains
9 elements, but only 3 degrees of freedom. Finding the rotation which minimizes
Equation [5.13| requires to consider the non-linear constraints imposed by R.

5.4 Weighted Least Squares Formulation

This section reviews three closed form solution of the absolute orientation problem
with Weighted Least Squares (WLS).

If the noise terms of Equations|5.11|and [5.12|are equal in all dimensions, then the
covariance matrices are

L.i = 0253 (5.15)

Lpi = 05l (5.16)
and the weight matrix of Equation becomes

Wi = (RO’i’inggRT—f—O';’ingg)_l
(Ui,iRRT + 0'271»1—3><3)_1

1

5 L3x3

(Jg,i + ‘7;2),1')

Observe that the weight matrix does not depend any more on the rotation. The

closed form solution for the TLS problem of Weng et al. [WC90Q] relies on this sim-
plification, as shown in the next subsection. The Least Squares formulation results in

J =Y wip, — Rx; — t|’ (5.17)
=1
with .
w; = (5.18)

(U:%,i + ‘7;2;,1')'

The first step is to transform both sets so that the translation parameters can be de-
coupled from the rotation terms. In order to achieve this, both sets are translated
with their weighted centroids

T; = T; — T

A~

D; =P; — Do
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where xy and pg are the weighted centroids of each set:

w0 (S )wa

=1

Po = (Z )lzn:wzpz

=1

Observe now that
n
=1
n
> up =0
i=1
The new objective function to minimize is
n
J =Y wip, — Ri; — to”
i=1

where
t() =1 + RZU() — Do

Expanding the new objective function we obtain

J = sznpz Rz —2tonz — Ri;) + [to? Zw, (5.19)

=1

The first term of the r.h.s. does not depend on ¢ and the second terms equals 0 since
> wi(p; — RE;) = Z wiPp; — Z w; RE;
=1 i=1 i=1

0
= 0

Since the last expression of Equation cannot be negative, the minimum is ob-
tained when to = 0 or

i.e. translation is obtained as the difference between the rotated centroid of the set
X with the centroid of the set P. Since the second and third terms are zero, the new
cost function is

J=> wi||p, — R&||”. (5.22)

i=1
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Expanding once again the left hand side of Equation we obtain
T = wilp,|* —2) wi(p] R&;) + > wi(2] R Ri;) (5.23)
= = i=1

Rotation is simplified from the last term of the r.h.s. since R’ R = I;,;. The optimal
R can be found by minimizing the expression in the middle of Equation [5.23] (or
maximizing its negative). Applying the known trace property tr(a’b) = tr(ab"),
the expression in the middle of the r.h.s. is also expressed by

sz "R)&;) = tr (RTZwi(ﬁia‘:f )) (5.24)
=1

The rotation is obtained by finding
R = argmax tr (ﬁTEpX> (5.25)
R

where Xpy is the sample cross-covariance matrix of data sets P and X
Spx =Y wi(p@]) (5.26)

The matrix ¥px contains all the required information for computing the optimal
rotation matrix. In the following subsections, three methods for computing R are
shortly reviewed.

5.4.1 Solution by Singular Value Decomposition

Schonemann [SC70], Arun et al. [AHB87] and Haralick et al. [HJL™89] find the opti-
mal R by singular value decomposition (SVD). If ¥px = USV?, then the optimal
rotation matrix is simply

R=VU" (5.27)

The additional constraint added by Umeyama [Ume91] in order to force the solution
to the group SO(3) can be easily expressed as [Kan94] [BNBO4]

0

1 0
R=V |0 1 0 U’ (5.28)
0 0 det(VU?"))

5.4.2 Solution by Polar Decomposition
Horn et al. [HHNA88] find the polar decomposition of X5y = U S where

S = (ZL,Zpx)/? (5.29)
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and
U =px(ELZpy) 12 (5.30)

Then, the optimal rotation is R = U. The square root of the positive definite matrix
7 Spy is obtained from its eigenvalues \; and corresponding unit eigenvectors u;

(L. Zp)? = Vwul + ousul + /Asusul (5.31)

5.4.3 Solution by Rotation Quaternions

Horn [Hor87] finds the optimal rotation matrix using quaternions (see Appendix [A).
Through the definition of the anti-symmetric matrix:

A= (Zpx — Zpy)
and a vector consisting of the elements of A:
A= (A2,3A3,1A1,2)T

the optimal rotation quaternion ¢ is found as the unit eigenvector corresponding to
the maximum eigenvalue of the matrix:

_ | (Epx) AT
QEPY =1 A" mpy 120, (S s

The rotation matrix R is obtained from the vector ¢ as:

@+a—a—¢) 2(¢a — qw4-) 2(¢oq + q0y)
R = 200yt + @04:) (@G —C+a—@)  2(aye — Gol)
2(¢-qx + qoqy) 2(¢:0y — 90%) (@ — @ — 4 +72)

The computation cost of the WLS operation is O(n), where n is the number of points
in the sets. In Chapter [8] some computation times are shown.

5.5 Matrix Weighted Total Least Squares Formulation

A Least Squares approach assumes that the errors are present only in the observation
vector, and that the error is equal for all components of the vector. If we measure the
3D position of a world point with stereo at two different times, we expect to obtain
two noisy measurements and not only one. The assumption of having equal noise
for all the components of the measured data is also too optimistic in most cases.
For example, in stereo triangulation the largest uncertainty is given in the viewing
direction and it is smaller perpendicular to it.

Much better results are expected if the error for each measurement is modeled
with the full covariance matrix instead of a single weighting scalar. Matthies and
Shafer [MS87] were the first to propose the use of the full covariance matrix for
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ego-motion estimation. In the paper, the authors notice the difficulty in eliminating
the rotation from the weighting matrix W, and solve the problem with an iterative
method.

Some years later, Weng et al. [WC90] proposed a closed form solution, in which
the rotation matrix R in W; (Equation |[5.14) is replaced with a constant rotation
matrix R as an approximation to the sought real rotation matrix R. If the rotation
is assumed to be small then R ~ R = I.5. In this case the weighting matrix of
Equation becomes (T',.; + I',;)~! and W, “does not depend very much on R”
[WCO9Q]. If the rotation to be estimated can not be approximated with the identity
matrix, R is obtained from the scalar weighted Least Square solution. In either case,
the objective function is simplified to a linear expression in the elements of R, and
the optimal rotation matrix is found as the closest orthonormal matrix which solves
the linearized objective function.

In order to find a closed form solution, we cannot proceed as we did for the scalar
case. Observe that the weights w; are now the matrices W,;. The commutation
performed between weighting factor and rotation in Equation [5.20] cannot be done,
since the weight is now a matrix and the result is not 0 any more. Nevertheless,
a solution for translation can be found by means of the following theorem, whose
proof can be found in [WC90]:

Matrix-Weighted Centroid-Coincidence Theorem. If R and ¢ minimize Equation
and W, does not depend on either R or t, then the weighted centroids of p;,
and Rx + t must coincide, i.e.

Y Wi(Rx;+t)=) Wip, (5.32)
=1 =1
Solving for t we obtain
t=0_W)'> Wpp,—> W,Ra (5.33)
=1 =1 i=1

The objective function of Equation can be rewritten as
J =Y |IVilp, — Rz; — t)||? (5.34)
=1

where W, = V[V,. Substituting Equation to Equation we obtain an
expression which not only depends quadratically on rotation, but where rotation is
constrained to remain in the sum of vectors. This can be seen in Equations |5.33
and where R is pre-multiplied by the weighting matrix and post-multiplied by
vector coordinate x;. In the scalar case, the rotation matrix could be moved out
of the sum (Equation because scalar multiplication is commutative but matrix
multiplication is not. In order to find a closed-form solution we must first be able to
find an expression which depends linearly on rotation and then solve for R.

If the matrix R is composed of column vectors (71, 75, r3), the following 9 dimen-
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sional vector is defined.
T1

T3
With this notation, a point z can be rotated if it is transformed with the following
mapping

zI' 0 0
Clz)=| 0 2T 0 (5.36)
0 0 27
such that
Rz=C(z)r (5.37)
Substituting Equation to Equation we obtain
t = (Z w,)™ Z Wip, — Z WC(x;) v
i=1 =1 =1
d D
= d—Dr (5.38)
We substitute also Equation to Equation to obtain
J = Y |Vilpi— C@)r - D )|’
i=1
= Z HYZ(pz - d)/_\‘/i<c(wi) — D)j T
b A
= ) |bi—Ar|? (5.39)
=1
Stacking all A; and b; on top of each other
Al bl
A2 b2
A= ) and b= . (5.40)
A, b,
Equation [5.39| can be rewritten in matrix form as
J=1|b — A7 (5.41)

The minimization of Equation [5.41| still requires an iterative approach because of
the orthogonality constraints in », which are hard to enforce. The proposed solution
computes directly the unconstrained solution for r and finds the closest rotation ma-
trix to the solution found. The optimal solution to Equation [5.41] without constraints
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is given by

P = (ATA)'A"b (5.42)

= Z(C@»—D)TWAC@»—D)] [

\E

(C(z))Wy(p;, — d) | (5.43)

)

i=1 i=1

By remapping the optimal unconstrained solution 7 to the original 3 x 3 matrix
convention, the closest rotation matrix R and its corresponding r are found by any
of the methods specified in Section [5.4] Translation is then obtained from Equation
.38

Since the vector obtained from Equation is not constrained to be a rotation,
but instead the rotation is found by projecting the optimal unconstrained solution
into the parameter manifold, the rotation matrix obtained is not optimal any more.
Weng et al. argue that the penalty imposed in the solution might be “much less
significant than the penalty otherwise caused by improper weighting” [WC90]. As
shown later in Chapter 7}, this is not always the case.

5.6 Summary

The computation of the absolute orientation has been approached many times in
the literature. One could get the impression that most of approaches were proposed
without the knowledge of previous investigations. This led to the re-discovery of the
same methods many times. This happened with the quaternions-based solution and
the SVD-based method. Up to date, four methods are known to solve the weighted-
least squares approach to the absolute orientation problem in closed form. The two
mentioned above, a method based on polar decomposition and a fourth method
based on dual-quaternions. The total least squares approaches to the absolute orien-
tation problem are iterative. A closed form solution can be found if an approximation
to the sought rotation matrix is available. Nevertheless, the solution found is penal-
ized, since the rotation matrix is found by projecting an unconstrained solution into
the parameter manifold.

Between all method for absolute orientation review in this chapter, the quaternion-
based method has been selected for the implementation since it allows fast and
numerically stable algorithms. The closed form solution of the total least squares for-
mulation was also implemented and will be analyzed in Chapter[7lwhen computing
the ego-motion of the camera.



Chapter 6

Modeling Error in Stereo Triangulation

6.1 Introduction

The estimation of ego-motion is achieved by finding the rotation and translation be-
tween the clouds of 3D points obtained with stereo at different time points (frames).
It is therefore meaningful to understand the error expected in the 3D points before
using them as the input data for ego-motion estimation. This chapter analyzes and
model the stereo triangulation error.

When considering the image quantization as the main cause of error in stereo
triangulation (because of resolution limits), the hexahedral model approximates the
error as equally distributed inside a volume composed as the intersection of two
pyramids. If the error distribution of a feature in the image plane can be approx-
imated as Gaussian, the Egg-Shaped model provides a better approximation to the
real error distribution in 3D Euclidean space. Since both previous models make the
propagation of errors to posterior stages of processing quite difficult, the propagation
of the image covariance matrix to the 3D Euclidean space gives place to the ellip-
soidal model. The propagation is achieved with a first order approximation of the
triangulation equation. This model introduces a bias in the estimate of 3D position.
In the next four sections, all these points are analyzed in detail.

6.2 Hexahedral Model

Suppose a 3D point P with coordinate p = (z, 9, z) is projected on the left and right
images of a stereo camera system at pixels positions (u;, v;) and (u,, v,) respectively.
Under the assumption of standard stereo v; = v, (because of the epipolar constraint)
and d = u; — u, is the integer disparity corresponding to the 3D point. The recovery
of the 3D point through triangulation will produce the coordinate p’ = (2, ¥/, 2')
which is an estimate of the actual point position p

V' Spu (6.1)
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Figure 6.1: Hexahedral model of uncertainty in 3D Recovery.

where v/ = u;—ug, V' = vo—v;, Spu = Su/Su, fu = [/Su, B is the baseline and (ug, vo)
is the principal point in the left image. Under this configuration, the projections of P
in the left and right cameras are correct up to one pixel. Thus the uncertainty in the
projection of a point, for both left and right images is 1 pixzel. Assuming rectangular
pixels, the uncertainty in the projection of the point p’ as defined above, produces
a volume of uncertainty for the recovery of the 3D point. An illustration of this can
be seen in Figure[6.1] Every 3D point inside the red hexahedron would be projected
into the same image coordinates (u;, u;) and (u,,u,), so the actual point P could be
located anywhere in the hexahedron. Thus, the uncertainty is given by the volume
of the hexahedron. The vertices of the hexahedron are defined as the intersection of
the rays of each camera with the image plane at half pixel displacement around the
projected points.

For a given camera configuration the shape of the hexahedron changes with image
position and disparity, but the volume is a function only of the disparity, and is given

by [Bad05]
B, 1
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Figure 6.2: Egg-shaped Ellipsoidal model of uncertainty in 3D Recovery.

6.3 Egg-Shaped Ellipsoidal Model

The computation of a 3D point is usually required for the case where image coor-
dinates are non-integer. An example is when a feature point in the image is tracked
with sub-pixel precision and a 3D estimate of the feature is required. In this case,
the distribution of the feature point position on the image plane can be better ap-
proximated by a Gaussian distribution [MLGO0Q] [JLO3] [DDO01] [DDO02] [Mat92]. The
real distribution of the 3D point when applying the triangulation Equation is not
Gaussian, because stereo triangulation is not a linear operation. The geometrical
interpretation of the error distribution in Euclidean space is an egg-shaped ellipsoid.
An egg-shaped ellipsoid has cylindrical symmetry, but is asymmetric in a plane per-
pendicular to the long axis, i.e. in this case; the viewing direction. Figure[6.2] shows
an example.

6.4 Ellipsoidal Model

The volume of uncertainty is an estimate of the accuracy expected for the 3D po-
sition of a point computed with stereo, but says nothing about the distribution of
the error in space. As already mentioned, the hexahedron changes its form with im-
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age position and disparity. Therefore a better model of the reality must include this
change in shape. The exact modeling of the error distribution with the hexahedral or
egg-shaped model complicates the propagation of errors to posterior stages of com-
putation. Nevertheless, if the error in the image plane of a feature point is modeled
with a normal distribution, the propagation of errors in 3D Euclidean space can be
carried out with a first order approximation of the triangulation equation.

Let us suppose again that the measurement m = (u,v,d)” can be modeled as
normally distributed with covariance matrix

2
Oy

0
R=1] 0 0 |. (6.3)
0

g

od,o

ISR\

If the triangulation function g(m) of Equation were linear, p’ would also be
normal distributed with covariance matrix

u0% + d*o? SV 03 fu'ol
2
r_B 1,1 2 2 2 2 2 12
Iy =GRG = p sotv'cs 52, (VP05 + d*0l)  fuswut'od | - (6.4)
2 2 2
fuu Ud fusvuv 04 qu'd

where G is the matrix of first partial derivatives of g. Since g(m) is not linear in the
elements of m (it involves the division by the disparity), the triangulated 3D point p’
is not normally distributed and might lead to an estimation bias for small disparities
if higher order moments are neglected, as shown in the next section. Nevertheless,
the covariance matrix of Equation models the shape of the uncertainty, which
is @ much better approximation than assuming equal noise for all components. An
example is shown in Figure[6.3] Observe how the geometrical representation of the
second order moment differentiates from the egg-shape model: the error distribu-
tion is assumed to be pure ellipsoidal, and also symmetric with respect to a plane
perpendicular to the viewing direction.

An alternative expression for Equation is obtained replacing the image coordi-
nate with the corresponding 3D Euclidean coordinate according to the triangulation

Equation

0;X* + B’ oiXY 0oiX7
Z2
Ty =Fopm | oiXY oY+ B0l oiVZ | (6.5)
o X7 oY Z 0272
or equivalently,
ZQ
Fpl f'2 ( 2p p + dza’g(o—u’ Svuo—v? O)) (66)
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Figure 6.3: Ellipsoidal approximation to the stereo triangulation error.

where diag(a, b, ¢) is the diagonal 3 x 3 matrix with the scalars a, b, ¢ in the diagonal.
The first term of the sum makes in general the largest contribution to the covariance
matrix, while the second term accounts for the uncertainty of the feature pointin the
image plane [Mi{ih06]. The high anisotropy of the noise is given by the factor Z2,
which becomes even more pronounced because of the term p’p’” when Z > XY,
which is almost always the case in outdoor environments.

Observe finally that the covariance matrix in Equation is automatically mod-
eled by the Kalman filter in Equation |4.42

6.5 Biased Estimation of 3D Position

The covariance propagation from the image plane to the 3D Euclidean space with
a first order approximation leads to a statistical bias in the estimation of the 3D
position. As shown in the previous section, the real form of the error distribution
is egg-shaped, but approximated with a pure ellipsoid. The deformation factor of
the egg-shape increases with distance as shown in this section, and the first order
approximation deviates from the true distribution. An example is shown in Figure
where the real egg-shaped distribution is modeled with an ellipsoid. The p.d.f.
of the 3D point can be obtained from the p.d.f. of its corresponding projection in
the image plane. For instance, the p.d.f. f, for the distance of a point with disparity
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Figure 6.4: Ellipsoidal (red) and Egg-shaped (blue) distributions.

p.d.f. f; is obtained by [Mat92],

1) = )| 2]

oz (©.7)
— falos* ()| 2 69

— fuBf)?) ]‘Bf“

22

(6.9)

where the monotonic function g;'(z) is the third component of the inverse contin-

uously differentiable Equation Modeling the disparity as Gaussiarﬂ with mean
pq and variance o3, the p.d.f. for the distance z is

f(2) = %i_;“;_aﬁexp <—(B fulz — W)

2
203

(6.10)
with expected value

E[z] :uz:/_oo z2f.(2)dz 6.11)

Plots of the p.d.f. f.(z) at three different distances are shown in Figure [6.5(a). Ob-
serve that the expected value 1, diverges from the true value z, proving the existence

'See [RA90] for the p.d.f. assuming a uniform distribution.
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of a bias in the estimation. The bias is caused by the non-gaussianity of the p.d.f.
which exhibits a tail in the positive direction of distance. For small distances, the
tail is negligible and the p.d.f. is almost Gaussian. For large distances (i.e. small
disparities), the tail shifts the mean away and causes the bias in the estimation. The
length of the tail increases not only with distance, but also with the variance of the
disparity, as shown in Figure|6.5(b)

The bias in the estimation can be reduced to a negligible value if the real variance
of the disparity is known. This can be achieved with a Taylor expansion up to the
second order of the triangulation equation around the unknown real disparity d

7 393(d) + 1 d 28293(d)

g3(d) %gs(d)Jr(d—d)W 5( —d) 524 (6.12)
and taking the expectation [SMSO05],
o S gs(d) 1 0%g,(d)

Disparity is assumed to be zero-mean Gaussian distributed and therefore the expres-
sion E(d — d) in the second term is 0. Noting that F(d — d)* = o3 and replacing d
with d the new distance triangulation equation results in:

_ Bl 2 B fu 1 o3

The extension for the other two components of the 3D point is straightforward,
since the correction is applied only to the measured disparity. If d is the measured
disparity of a feature point, the 3D position is still obtained with Equation but

with disparity
1

(%)
d d?

The bias-correction with a Taylor series expansion of the triangulation equation
has two main drawbacks. First of all, the real disparity variance must be known,
which is not feasible. Another problem is given by the second order approximation
of the triangulation equation. If the real variance of the disparity is large, Equation
does not hold any more and higher order terms are required. This means not
only knowing the disparity variance, but also of its skewness, kurtosis and higher or-
der moments, which once again, is not feasible. The advantage of this bias-correction
method is given by its simplicity: only the disparity must be corrected.

Figure shows the estimated bias computed over 10° trials and assuming a
disparity variance of 0.4 pizels®. Observe that the bias is always positive overes-
timating the true value, as it was already shown in Figures [6.5(a)l and [6.5(b). The
bias-correction is also shown in the same figure, where it can be seen that the bias
is greatly reduced, but now underestimating the true value. Higher order moments
would be required to completely eliminate the estimation bias. In fact, the bias cor-
rection with second order approximation of the triangulation equation fails when the

d= (6.15)
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variance (03 = 0.4) is shown in blue.

signal-to-noise ratio decreases. Figure shows the plot which follows from Fig-
ure[6.6(a)]and reflects this effect. Observe that the “bias corrected curve” has a larger
bias than the uncorrected curve. According to our experiments the bias-correction
of Equation fails for values of d/o% < 5.18, factor which is independent of the
factor Bf, and therefore independent of the camera configuration.

Since an accurate estimation of the disparity variance o2 of Equation is not
feasible, a sensitivity analysis w.r.t. the change in the bias is required. Figure |6.7]
shows the bias for a point with mean disparity 4 pizels and variance 0.4 pizels? for
varying 2. The plot shows an almost linear relationship between expected bias and
error in disparity variance. A variance with 50% error allows approximately 50% of
bias reduction. This means that the application of Equation |6.15| even with relative
large variance error (+80%), helps in the reduction of the estimation bias.

6.6 Summary

The absolute orientation is computed between clouds of points obtained with stereo.
The error of a 3D point obtained with stereo is characterized by the error of the pro-
jected point onto the image and the triangulation equation. The hexahedral model
is used when it can be assumed that the image quantization is the main cause error.
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The egg-shaped model provides a better approximation to the real error distribution
if the image error is Gaussian. Approximating the latter with up to second order
central moments leads to the ellipsoidal model. The propagation of the covariance
matrix from image to world coordinates is achieved with a first order approximation
of the triangulation equation. Since higher order moments are neglected, a bias in
the estimation of 3D position is introduced. The bias is reduced by redefining the
triangulation equation. The new triangulation equation implies a correction of the
measured disparity, for which the real disparity variance is required. The simula-
tion results shows that a meaningful reduction of the bias in the estimated 3D point
position is possible, even when the real disparity variance is coarsely known.



Chapter 7

Robust Real-Time 6D Ego-Motion
Estimation

“The motion of a spectator who sees an object at rest
often makes it seem as though the object at rest

had acquired the motion of the moving bodly,
while the moving person appears to be at rest”.
Leonardo Da Vinci

7.1 Introduction

The extraction of the observed motion of a camera has been an active area of re-
search over the last decades. Ego-motion computation is motivated by applications
like autonomous navigation, self-localization, obstacle-detection and scene recon-
struction. Ego-motion is also needed by other applications which require the relative
orientation of the cameras with respect to a reference frame. Our interest lies in
the computation of the six degrees of freedom of the motion of a vehicle in typical
traffic situations, as already stated in previous chapters. For that purpose, a binocu-
lar platform has been mounted in the vehicle, which provides the main input to the
ego-motion algorithm.

Many approaches have been proposed with monocular and multi-ocular plat-
forms. When using more than one camera the scene structure can be directly re-
covered through triangulation providing 3D points of the environment. Monocular
approaches, instead, do not compute the scene structure, or they do it at the cost
of integrating measurements of the image points (and possibly other sensors) over a
long time, until a reliable structure is obtained. Therefore multi-ocular approaches
perform better in most cases.

Computing the ego-motion from an image sequence is obtaining the motion pa-
rameters of the camera with respect to a static environment. The scenarios we are
interested in are typical traffic situations. Such an environment presents many ob-
jects with independent motion, which can cause our estimation to fail if they are
considered static. Also the incorrect computation of a 3D position or the incorrect
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tracking of features can introduce errors in the computation. As already explained in
Section the Kalman filtered estimated velocity of the points cannot be used to
check its immobility until ego-motion is computed. Therefore an effective rejection
rule must be applied in order to identify which image points are not showing a co-
herent motion w.r.t. the camera. We propose a very effective constraint, which we
call Smoothness Motion Constraint (SMC).

Since the motion of the camera must be provided for each new acquired frame
the motion computed corresponds normally to the motion occurred between con-
secutive frames. The inter-frame motion is computed considering only the current
and previous state, which provides the current relative motion. The complete mo-
tion is then obtained concatenating the individual estimates. This may lead to poor
results because of error accumulation. A more stable estimation can be achieved if
we consider not only the last two frames, but also many frames back in time for the
computation of ego-motion (Multi-Frame Estimation).

This chapter proposes a robust method for the computation of the six degrees of
freedom of ego-motion (three rotation and three translation parameters) and presents
simulation results demonstrating the improvements achieved. Parts of this chapter
have been published in [Bad04].

7.1.1 Organization of the Chapter

Section summarizes the literature review on ego-motion computation. Section
describes shortly the algorithm. Section presents the Smoothness Motion
Constraint while Section the Multi-Frame Estimation. The integration of Kalman
filtered data is carried out in Section[7.6] The integration with inertial sensor infor-
mation is addressed in Section The last section concludes the chapter.

7.2 Literature Review on Ego-Motion Estimation

Ego-motion was and continues to be a very active research area in computer vision.
The visual ego-motion (or visual odometry) problem implies the extraction of the mo-
tion parameters of the camera between two time instances by analyzing the changes
of brightness patterns in the opportunely acquired images. In accordance with the
number and types of motion parameters computed, the motion or pose estimation
problem takes different names:

e The relative orientation problem: the problem of estimating the rotation be-
tween two camera poses and the relative direction between optical centers.
In 3D Euclidean space this implies the estimation of 3 parameters for rotation
and 2 parameters for translation, since although the direction vector implies
3 components (one for each x,y,z axis), they are specified up to an unknown
scale factor.

e The absolute orientation problem: the problem of estimating the rotation,
translation and scale factor between two sets of points. In 3D Euclidean space
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this implies the estimation of 7 parameters: 3 parameters for rotation, 3 pa-
rameters for translation, and 1 parameter for scaling. When the interest lies in
estimating the absolute position between two camera poses with fixed internal
parameters, the scale factor is omitted. This is equivalent to computing the 6
rigid-body transformation parameters.

All ego-motion methods can be classified as belonging to one of two main
groups: monocular methods and multi-ocular methods. Multi-ocular methods re-
cover the rigid body transformation of the camera platform between two time in-
stances. Monocular methods, instead, solve the relative orientation problem. The
missing scale factor can be recovered making assumptions about the motion of the
camera or about the structure of the scene.

Both groups at the same time can be classified according to the way in which
they integrate the time component; optical flow-based methods, normal flow-based
methods, direct methods, and landmark-based methods. Optical flow and normal
flow methods assume that the flow field is already provided and they are more or
less independent of the method used for it. Landmarks-based methods compute
motion w.r.t. 2D landmarks extracted normally from evidence grids [MM96]. Direct
method, instead, finds the motion parameters by minimizing some function relating
the brightness patterns in consecutive images. This section carries out a brief review
of the literature on ego-motion estimation according to this classification.

7.2.1 Monocular methods

Longuet Higgins and Prazdny [LHFP80] were about the first in deriving the relation-
ship between motion parameters and induced motion field in the image plane. Two
very important cues are remarked in their paper; the focus of expansion is identi-
fied as the 'vanishing point’ of all optical flow vectors once eliminated rotation, and
the structure of the scene can be achieved only with the translational components,
because the motion field induced by rotation is independent of the structure of the
scene.

Bruss and Horn [BH81] were one of the first in proposing a solution to the prob-
lem of passive navigation using optical flow with a monocular camera. The paper
reviews the equations describing the relation between motion of the camera and the
optical flow generated. The authors demonstrate that based only on the informa-
tion provided by optical flow, the motion parameters cannot uniquely be computed.
The authors deal separately with the translational and rotational case, and also the
general motion case. For the pure translational case, different norms for the least
squares formulation are developed and closed form solutions are derived. Special
cases where the problem does not have a solution are also addressed. A least squares
formulation is also carried out for the rotational case as well as the general motion
case.

Tian et al. [TTH96] evaluate six methods for ego-motion estimation: Bruss and
Horn [BH81], Jepson and Heeger [JH92], Tomasi and Shi [TS93], Prazdny [Pra80]
and two approaches proposed by Kanatani [Kan93]. The evaluation was carried out
considering bias and sensitivity of the estimates to noise in the flow data, and for
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quantifying the convergence properties of those algorithms that require numerical
search. They found very interesting results: (1) The 6 algorithms were insensitive
to to the axis of rotation (e.g. translation along the X-axis and rotation about the
Y-axis). This is given by the fact that five of the six algorithms eliminate rotation
by algebraic substitution or another technique. Algorithms which do not eliminate
rotation are affected by the rotation angle. (2) Fixating does not help when the noise
is independent of image velocities. Fixation helps if the noise is proportional to
speed, but this is only for the trivial reason that the speeds are slower under fixation.
(3) Increasing the FOV at the expense of losing resolution yield worse performance,
but increasing the FOV and the resolution give much better results. The Bruss-Horn
algorithm [BH81] exhibited the best overall performance followed by the Jepson-
Heeger algorithm [JH92]. They found also that the Prazdny algorithm was the most
affected by noise.

Suzuki and Tomasi [SK99] estimate camera motion and orientation for vehicle
applications measuring the optical flow on the road. The computed optical flow is
used to satisfy two equations relating the flow with the orientation and motion of
the camera. Kalman filters are used to integrate measurements over time and reduce
noise. Carlsson [Car91] applies also linearized Kalman Filters for the computation of
structure from motion and motion parameters from optical flow.

Behrad et al. [BSMOT] present a detection and tracking algorithm for the detection
of moving targets. Background motion is obtained by defining a motion model based
on affine transformation. Least median squares is used in order to determine the
affine transformation between two consecutive frames. A split and merge algorithm
is applied for segmentation. The tracking of features is performed using a dynamic
tracking algorithm.

Direct methods for computing ego-motion have been first proposed by Negah-
daripour and Horn [NH87]. In this paper the authors determine the ego-motion
relative to a planar surface directly from the image brightness derivatives. Optical
flow is in this way not computed as a previous step. Stein et al. [SMS00] compute
vehicle ego-motion assuming a planar road with a direct method. The motion of the
vehicle is restricted to 3 parameters, and vehicle ego-motion is computed through
the definition of a global probability function.

Mandelbaum et al. [MSS99] avoid also the explicit computation of optical flow.
Starting from an image flow model, the authors define a second-order (quadratic)
model, which can be fitted into the correlation of the Laplacian-of-Gaussian images.
The algorithm then iterates in a gradient descent style, estimating each component
of motion and structure at a time.

Ego-motion estimation was also approached with omnidirectional cameras by
Gluckman and Nayar [GN98] mapping velocity vectors to a sphere and testing the
results with existing algorithms for ego-motion estimation. In this paper the transfor-
mation between planar image vectors to spherical vectors is achieved by means of a
Jacobian matrix, which is specific of the omnidirectional system used. Vasallo et al.
[VSVS02] solve this problem by proposing a general expression for the Jacobian that
can be used for many different omnidirectional cameras.

Monocular methods based on normal flow were also proposed. Rives et al.
IRBE87] present a structure from motion algorithm using normal flow and Kalman
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filters. Although ego-motion is obtained from inertial sensors, a refinement of the
translational motion is achieved by minimizing a cost function relating inertial sen-
sors and normal flow measurements.

7.2.2 Multi-ocular methods

7.2.2.1 Methods based on Stereo and Optical Flow

The first approaches to visual sensing for controlling the motion of a robot were made
by Moravec [Mor80] in the late 1970’s. The cart where the cameras where installed
had a restricted motion which was estimated by stereo measurements and feature
tracking. Some experiments and thoughts on visual navigation were also published
by Matthies, Thorpe and Moravec et al. [MT84] [TMM85] and [LMT"85].

Matthies and Shafer [MS87] present a method for the computation of ego-motion
using a binocular platform, finding the six degrees of freedom of motion with a max-
imum likelihood estimator. In the paper it is assumed that the error in the projection
of a world point on the image planes can be approximated as Gaussian. Instead of
weighting the world points with scalars, the authors propagate the image covariance
matrices to the interpolated 3D world point with a first order approximation. This
allows to model world points with ellipsoidal covariances, i.e. the distribution error
of the 3D points describe ellipsoids about the nominal mean that approximate the
true error distribution. Kalman Filters are used in order to update the estimation of
the landmarks. The update of the global robot position is carried out; concatenating
the transformation matrices and estimating the uncertainty of the global position by
propagating the covariances matrices of the incremental motions into a covariance
of the global position.

Demirdjian and Horaud [DHO00] compute ego-motion based on 3-D projective
constraints (15 degrees of freedom). Camera calibration is not required since epipo-
lar geometry is dynamically estimated together with the tracking algorithm. RANSAC
is used in order to detect static points and the corresponding inliers/outliers with re-
spect to a global error estimated over the whole sequence. This method uses a stereo
tracking process throughout the sequence of image pairs. Interest points are selected
with the Harris corner detector [HS88].

Mallet et al. [MLGOQ] propose an algorithm for the estimation of the 6 parameters
of motion of a land-rover with stereo vision and feature tracking. The correlation
technique for the point-to-point correspondence is the zero-mean normalized cross
correlation. Evaluation of the confidence of the 3D point is carried out through
the analysis of the correlation curve (the larger the correlation peaks, the better the
3D-estimate). Every point is auto-correlated (also with ZNCC) to detect the points
which are the best traceable. For tracking, a search area for a point is centered in
the predicted new position obtained with odometry (inertial sensors), and the size of
the search area varies according to the uncertainty of the motion. Finally, the motion
estimation is performed using the least-square estimation method based on SVD of
Haralick et al. [HJLT87].

Olson et al. [OMSMO03] present an ego-motion estimation system to be used in
a Mars land rover. The goal is to perform robust and accurate rover navigation au-
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tonomously over long distances in order to reach terrain landmarks with known
location, but that are not within sight. The method used the maximume-likelihood
formulation of motion estimation of Matthies and Shafer [MS87] that models error of
landmark positions more accurately than scalar least-squares formulation. The au-
thors evaluate the error produced when ego-motion is computed incrementally from
frame to frame and find that the accumulated error grows super-linearly with the trav-
eled distance. In order to achieve a linear growth of the error they proposed the use
of an absolute orientation sensor (sun sensor, compass, etc.) Experiments with the
optimal field-of-view conclude that the optimal FOV is approx. 35° when all other
camera parameters remain constant. Stereo and tracking errors were also evaluated,
with the conclusion that the navigation error varies much faster as the stereo error is
varied compared to when the tracking error is varied. Errors of pitch and yaw angles
are estimated with far away (background) objects using a large template window.
With the estimation of pitch and yaw angles and the previous ego-motion estimate,
the tracking procedure can be sped up, reducing the search area for landmarks. Four
outlier rejection strategies are also described.

Jung and Lacroix [JLO3] describe a method for computing ego-motion and 3D
Maps from aerial stereo images. The method is based on the SLAM (Simultaneous
Localization And Mapping [DNCT01]) approach, where EKF is used to simultane-
ously estimate ego-motion and 3D landmark position of world points. Dense stereo
is computed with a correlation based algorithm. Harris is used for selecting interest
points. Landmarks are so detected and assigned to one of three possible categories:
non-landmarks, which are used for computing ego-motion; new landmarks, which
are cautiously added to the filter state and observed landmarks, which were already
tracked over many images. Ego-motion is computed finding the optimal rotation and
translation between the clouds of 3D points. An iterative procedure is used in order
to successively eliminate pairs of points with large error.

Nistér et al. [NNBO6] present a system for the computation of 6 d.o.f. of motion
with binocular and monocular cameras. RANSAC is used for both monocular and
binocular approaches. In the monocular method a 5 point algorithm is used for hy-
pothesis generation, while in the stereo version of the algorithm a 3 point algorithm
is used. In both cases 3D points are triangulated and a second triangulation step is
performed after motion estimation in order to avoid a positive feedback between tri-
angulation and motion estimation. The authors emphasize the fact of not computing
the absolute orientation between frames using the 3D triangulated points. The main
reason is that they could not find an efficient method for using the full 3D covariance
matrices in the hypothesis generation step of RANSAC.

Talukder and Matthies [TM04] present a method for the detection of indepen-
dently moving objects. Moving objects are found as outliers, computing first ego-
motion, and then observing the error in the change of disparity and optical flow. No
triangulation of feature points is required for the computation of ego-motion, since
the least squares is expressed in terms of the optical flow expected given the rigid-
body motion parameters. This method requires dense stereo and dense optical flow
computation.

Demirdjian and Darrel [DDOT] estimate 3D rigid motion estimation from binoc-
ular images without requiring explicitly computing 3D points. The authors demon-
strate that the disparity-space image is a projective space and derive the equations
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relating disparity-spaces (which they call d-motion), as well as an error function to
be minimized over the motion parameters. The computation of 3D points is, in this
way, avoided and the error modeling is directly done in the image plane.

The same authors also present an extended version of the latter, which can handle
multi-hypothesis [DD02]. The authors use Gaussian mixtures to model correspon-
dence uncertainties for image velocity and disparity estimation. The rejection of
outliers and the handling of multiple hypotheses are carried out with a random sam-
pling process. Data samples are selected, and for each sample, “d-motion” [DDOT]
is estimated. Finally, the solution with the best criterion is selected.

Ho and Chung [HC97] adapt the factorization method of Tomasi and Kanade
[TK92] to the stereo case in a very elegant way. The authors solve the correspon-
dence problem in stereo, applying first the factorization method independently for
left and right image sequences. From these results, initial stereo correspondences
are established using the epipolar constraint and a basis for the rest of the 3D points
is computed taking the first four columns of the U matrix. This basis is then used
to recreate the list of 3D point of the right camera from the estimation of the left
camera. Correspondences of columns are then found when the least-squares error is
small enough.

Barron and Eagleson [BE95] compute ego-motion separately in the left and right
images. Correspondences between left and right images are not needed but it re-
quires a rotational motion and large baseline (otherwise only monocular parameters
can be recovered). Kalman filters are used to integrate measurements.

Li and Duncan [LD93] present a method based on the binocular image flows of
Waxman and Duncan [WD86] for the computation of translational parameters. 3D
translational motion (without rotation) is obtained from linear equations of measured
optical flow fields in the left and right images, without point-to-point correspondence
between the left and right images. Additional equations are derived for the case
of having binocular normal flow. Features correspondences between left and right
images are then found using the computed translational motion parameters and the
binocular flow information.

Suinderhauf et al. [SKLLO5] review four methods for the estimation of ego-motion.
The maximum likelihood method of [OMSMO03] and [MS87] is shortly described.
Two bundle adjustment methods are also presented. A comparison of the two bundle
adjustment methods is carried out and experimental results are shown. The last
method reviewed is a Kalman Filter based estimator.

Molton and Brady [MBOQO] estimate motion and structure of a rigid environment.
Ego-motion is computed only with three points in three images and not in the Least
Squares sense, which makes the method not appropriate for outdoor applications.
Harris corner detector [HS88] is used to find corners and a matching strategy for
stereo and tracking is presented.

Gehrig [Geh00] estimates the vehicle ego-position with Kalman Filters for a
vehicle-following system. The system state includes position in the x-z plane, ve-
locity, acceleration and an orientation parameter. The outputs provided by the
speedometer, the steering angle sensor, 2D landmarks obtained with stereo as well
as lane markings extracted from the image are fused together in the measurement
equations of the Kalman Filter. An observability analysis is performed, leading to the
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minimal amount of landmarks required in order to make the system observable.

7.2.2.2 Methods based on Stereo and Normal Flow

Morency and Darrel [MDO02] present a method to compute rigid object motion with
stereo and normal flow. A hybrid error function which combines constraints from the
Iterative Closest Point (ICP) algorithm [BM92] and Normal Flow Constraint (NFC) is
presented. The algorithm first matches corresponding points between images using
4D points (3D Euclidean space and 1D for brightness). The normal flow constraint
(NFC) is computed with an inverse calibration approach. Error functions for the ICP
and NFC are both expressed as linear systems, which then are merged with a sigmoid
function in order to compensate for the errors. Small movements are better estimated
with the NFC and large movements are better estimated with the ICP algorithm. The
experimental results are shown with a face tracker. Morency and Gupta [MGO03]
apply later the same hybrid technique for the computation of ego-motion.

Argyros et al. [AO97] [ATO98] present a method for the detection of independent
3D Motion using least median of squares (LMedS) and normal flow. The authors de-
rive an equation starting from the known equations of relation between 3D velocity
and its corresponding 2D velocity in the image, which is also applied in the stereo
computation eliminating the motion parameters which do not take part in stereo due
to the left-right configuration of the cameras (i.e. only rotation about the Y axis and
translation in the X axis are considered). An expression for using LMedS is obtained,
which is applied iteratively using the outliers found in previous iterations for detect-
ing multiple motions. Ego-motion is supposed to be obtained in the first cycle (due
to the assumption that at least 50% of the flow field corresponds to the static scene)
and the rest of the motions detected are extracted from the static scene. Experimen-
tal results show a good detection of motion but no detail about the accuracy of the
method and of the estimated ego-motion is given.

7.2.3 Fusion of Multiple Sensors for Ego-Motion and Positioning Es-
timation

Publications which deal not directly with visual odometry but review the state of the
art in multiple sensor fusion for ego-motion and positioning estimation can be found
in [JB96] and [Kel94].

SLAM methods (e.g. [DNCT01]) are also alternative methods for computing ego-
motion, but where the focus is given more to self-localization of the robot and there-
fore a map of the environment must be maintained. SLAM has also been initially
performed using other ranging sensors, rather than regular cameras, although in the
last years some new methods using visual odometry were proposed [JLO3] [GSO4]
ISKLLO5]. The method presented in this dissertation can be adapted for SLAM appli-
cations.
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7.2.4 Summary of the Literature Review

A large number of publications on visual odometry estimation have been proposed
in the last 20 years. The methods were categorized based on spatial and temporal
characteristics, since it allows to classify almost any work based on this properties.

Most monocular techniques measure apparent shifts or velocities of gray-value
structures and find the motion parameters which minimizes the difference between
theoretical and measured motion field (e.g. , [BH81], [JH92], [Pra80], [Kan93]). The
factorization method requires feature tracking, but works differently since it accumu-
lates all coordinates of the feature over many frames in a measurement matrix and
then obtains motion and structure by factoring with singular value decomposition or
any other rank reduction technique (e.g. [TK92]). Another monocular techniques ap-
ply direct methods avoiding the computation of optical flow (e.g. [NH87], [SMSO00Q]),
or compute normal flow instead (e.g. [RBE87]).

Multi-ocular approaches can also be sub-categorized. Most stereo techniques ob-
tain 3D points of the environment and compute the absolute orientation between
the clouds of points. If inter-frame correspondences are given by optical flow or
feature tracking, the computation of absolute orientation is direct (e.g. , [MS87]
IMLGO0O0] [OMSMO3] [JLO3], [SKLLO5]). Otherwise, methods like the Iterative Closest
Point algorithm are required for finding the correspondences, while solving the abso-
lute orientation(e.g. [MDO02]). Some other techniques do not compute 3D points as
an intermediate step but relate projections of image points with motion parameters
(e.g. [DDOT]) requiring numerical optimization. Normal flow was also used for the
computation of ego-motion from sequences of images using multiple-cameras (e.g.
IAO97]). Methods which work almost independently in the left and right images and
integrate stereo information at a later stage were proposed too (e.g. , [HC97] [BE95]).

The method presented next corresponds to the category of multi-ocular ap-
proaches with feature tracking. Feature tracking and stereo are required, as well,
by other applications like obstacle detection, which run in parallel to the ego-motion
estimation, so their availability is granted. Our solution has two main contributions.
A fast and effective method for the rejection of outliers and the assignment of weights
to the data points, and a method that reduces the accumulation of errors in the mo-
tion integration. In the following sections the algorithm is analyzed in detail.

7.3 Overview of the Algorithm

Figure shows the block diagram of the method with a flow diagram of the algo-
rithm. The algorithm works in an iterative way, computing the absolute orientation
between the most recent cloud of 3D points and the cloud of points obtained at a
previous time instant. The method works as a predictor/corrector algorithm integrat-
ing new measurements in each iteration. Each iteration carries out four main steps:
1) motion prediction; 2) Smoothness Motion Constraint application; 3) computation
of absolute orientation (correction); and 4) integration of the new motion result to
the current estimation. The motion prediction helps for the application of SMC. The
SMC is a rejection rule applied to detect outliers (moving points and false correspon-
dences) and to lessen the contribution of noisy measurements assigning weights to
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the data. The SMC reads the data points from the 3D Point List and generates two
clouds of points. The correction of the previously predicted motion is accomplished
by computing the absolute orientation between the selected clouds of points, as de-
scribed in the Chapter 5] The fourth step is the integration of the newly acquired
motion information to the current estimate. This step is performed by a motion de-
composition followed by a interpolation of the motion parameters, as will be shown
in Section

The algorithm stops iterating when the amount of points available for the compu-
tation of absolute orientation falls below a threshold, or when a predefined maximal
amount of iterations levels is achieved. As a result, the estimated motion is stored in
the Motion Step List, which is used next by the Kalman Filter in order build the A
and b matrices and update the filters, as shown in Chapter [4]

7.3.1 Motion Representation with Matrices

In order to simplify the notation of the following subsections, we represent the mo-
tion in homogeneous coordinates. The computed motion of the camera between
two consecutive frames, i.e. from frame k — 1 to frame £, is represented by the matrix
M. where:

0 1

The rotation matrix Ry, and translation vector ¢, from Equations to [4.20] are
obtained by inverting M, i.e. :

1 R, t, _ Rg _Rg Lo,
M, _[ o 11| o 1 (7.2)

M) = { R, to, } (7.1)

The total motion of the camera since initialization can be obtained as the products
of the individual motion matrices:

k
M, =[] (7.3)

=1

Observe that total motion matrices are written without any accent symbol while one
step motion matrices are denoted with an apostrophe. A sub-chain of movements
from time t,, to time t,, is:

1=n+1
and per definition
M =M, and My = Iy (7.5)

The rotation and translation of of a 3D point vector p into a new vector g with the
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Figure 7.1: Block Diagram of the Approach
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Figure 7.2: The integration of single-step estimates can be obtained by multiplying
the individual motion matrices. Every circle denotes the state (position and ori-
entation) of the camera between time ty and time ts. Vectors indicate motion in
3D-space.

motion matrix M, is performed as
‘q =M, P (7.6)

where *p is the homogeneous version of vector p.

Figure shows an example of motion integration with matrices. As we will
show later in Section Equation [7.4] will support the integration of the motion
between two non-consecutive frames (multi-frame estimation).

7.4 Smoothness Motion Constraint

7.4.1 Introduction

The purpose of weighting the data in a least squares approach is to allow the integra-
tion of measurements with different reliability, increasing the amount of data that can
be used, and reducing the uncertainty (covariance matrix) of the estimate. Weighting
offers the modeling of the extrinsic noise, which is produced mainly due to the mea-
surement process of the sensor. On the other hand there is an additional source of
noise, which does not depend on the sensor but on the data correspondence. The in-
trinsic noise has the most dominant effect in correspondence problems and is mainly
due, not only to incorrect matches, but also due to correct matches which cannot
be described by the system being modeled [EBWO04], [HILT89], [AO97], [ATO98].
Incorrect matches originate in the stereo and feature tracking algorithms, and are
caused by the temporal (optical flow) or spatial (stereo) incorrect matching of points
between views. Intrinsic noise in the form of outliers can also be obtained when
some assumptions about the measurements are violated. This is the case, for exam-
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ple, when a point assumed to be static belongs to an independently moving object.
Thus, the appropriate modeling of extrinsic noise and the opportunely detection of
outliers is of paramount importance when a robust registration algorithm is desired.

A variety of rejection strategies and weighting methods has been proposed. Jung
and Lacroix [JLO3] and Mallet et al. [MLGOOQ] detect outliers by computing a 3D
transformation between triplets of points and rejecting the triplets with error larger
than & times the mean of the residual error. The residual error is a measurement
of the goodness of the fit of the rigid body motion between the 3D points triplets.
This procedure is applied iteratively starting with a large k& and reducing it after
each iteration until £ = 3. Hirschmuller [HIGO02] et al. analyze the consistency
of distance and rotation between subsets of points in the first and second cloud,
taking into account the stereo error distribution. Bandari et al. [BNB0O4] make use
of a similar criterion based on spectral clustering. The authors assume independent
identically distributed noise and make use of the rigidity constraint, i.e., the distance
between two 3D points of a rigid body motion is maintained. Estépar et al. [EBW04]
estimate the absolute orientation at each iteration and reassign weights according to
the residual values. The weights are used to add an isotropic part to the covariance
matrices of corresponding points. Haralick et al. [HJL"89] apply M estimators. Ohta
and Kanatani [OK98]| use the renormalization method.

With the exception of the methods of Bandari et al. and Hirschmdiiller, which only
detect outliers, all the methods listed above imply the iterative refinement of the
motion parameters by the successive elimination of outliers and re-weighting of point
correspondences according to some criterion. This section presents a method for the
detection of outliers and the automatic assignment of weights to the measurements
in a single step. We call this method Smoothness Motion Constraint (SMC). In the
following two subsections, the SMC for the weighted least squares (Section [5.4) as
well as for the total least squares (Section is formulated. The effectiveness of this
method is shown in this chapter with simulated data, and in the next chapter with
real data.

7.4.2 SMC for Weighted Least Squares

Dealing with 3D points obtained through stereo triangulation means dealing with
anisotropic noise as was shown in Chapter [6] The first problem that arises when
modeling anisotropic noise with weighting scalars is: which is the correct weighting
scalar for each measurement? In other words, what value must have each w; of
Equation Weights should be large for data points with small noise and vice
versa [HJL789] [Kan94]. Since both x; and p; are noisy measurements, the weight
must reflect the joint reliability of the vector v; = Z;p,. A reasonable choice is the
inverse mean square error of possible errors I, ; and T',,; [Kan94], i.e.

1
tr(RT, R ) + tr(T,,)

W; =

The covariance matrices I',, ; and T',,; are obtained from Equation . The rotation
matrix R should be an approximation to the sought rotation matrix R. For small
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rotations RR ~ I,.; and observing that tr(RI‘mRT) = tr(RRT,;) ~ tr(T',;)

Equation [7.7] becomes 7 ’
1

tI’(nyi) + tI‘(I‘pvi) ’

(7.7)

Ww; =

Since the main error component is given in the viewing direction, the weights ob-
tained with Equation [7.7] will mainly reflect the uncertainty due to distance. Never-
theless, weighting with Equation has two main drawbacks. First of all, it does not
account for outliers. Second, in order to model the different accuracy of each mea-
sured point, an individual estimation of the feature variance (¢2, 02, ¢2) is required.
We now proposed a weight function, which is able to cope with both problems

simultaneously.

If the frame rate is high enough to obtain a smooth motion between consecutive
frames, then the motion observed at any moment is similar to the immediate pre-
vious motion. Therefore, before including the pair of points p, and x; into their
corresponding data sets P and X, we evaluate if the vector v; = x;p, indicates a
coherent movement. Based on our previous estimation of motion M, at time t;_;
we evaluate the motion coherence of the vector v; as:

C; = M;gq T, — 'D; (7.8)

i.e. the error of the point position with respect to our prediction. Let us define dy,
as the maximal accepted error of the position of 3D point with respect to a predicted
position. The proposed weight is defined as

1
L if |leil| < dw
el

0 , otherwise

that is, the inverse error magnitude, if the error is smaller than the predefined maxi-
mal threshold dyy. If this is not the case, then the vector v; is identified as an outlier
and not included for the computation of absolute orientation. Equations[7.8]and
define the Smoothness Motion Constraint for the scalar case.

7.4.3 SMC for Total Least Squares

The scalar version of the SMC defines the contribution of the pair of measurements,
x; and p,, to the least squares estimation. The TLS version, instead, defines the
matrices I',; and I',; to be used in Equation The current points x; and p;,
are actually estimates of 3D position of the measurements x’; = (u,;, v, ;)" and
p'i = (upi,vpi,dyi)T respectively. Given p, and camera motion prediction M, ,
prediction of point ’; is defined as

Zoi= "h(M)_,'P;) (7.10)

)
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where the function *k is the homogeneous version of the projection Equation [4.31]
Equivalently, given "z; and the prediction of inverse camera motion M,"",, the pre-

diction of the feature point "p’, is
Zpi = (M) (7.11)

Let us define the error in the prediction of point projection on the image plane as

ey;i=a;—Zy; and ey;=p';—Zy,. (7.12)
Let us define d; as the maximal accepted error (in pixels) for the projection of a world
point on the image plane. If e,y ; > d; or e, ; > d; the vector v; = ;p; is identified
as an outlier. Otherwise, the weight matrices for point «; and p, are computed as

Fm’i = leﬂ;Ex/’in/’i and I‘p’i = Gp’,iEp’,iG;;ﬂ' (71 3)

where G ; is the Jacobian of Equation for a feature point 7;, as already derived
in the previous chapter; and E,/; and E,, ; are diagonal matrices such that

Ez/7i7jk = 5jk\/ez/7i7j and Ep’,i,jk = 5jk,/ep/7i7j (714)

where 0, is the Kronecker delta.

7.4.4 Discussion of the Scalar and Matrix SMC

When applying the scalar version of the SMC, the outliers are forced to have small or
zero weights, reducing their contribution in the least squares solution. Also, points
with small noise will have, on an average, larger weights than those with larger noise
error. In general, the weights must be chosen such that the measurement v; = x;p,
contributes positively to the solution. This might lead to the case where a point is
assigned a very small weight because its depth error is too large, although the lateral
and height position were measured with high accuracy. This is the case of feature
points located around the principal point of the image: We know certainly that the
corresponding 3D point is straight ahead, but not exactly at which depth. TLS takes
advantage over the WLS, since it allows to model the contribution of each individual
measurement.

The accuracy of tracking a feature point or computing the disparity normally de-
pends on multiple factors. The tracking and stereo algorithm benefits from high
textured image regions. In [JLO3] it is shown that the larger the magnitude of the
correlation peak at its minimum, the higher the accuracy of the measured stereo dis-
parity. It has also been shown [OMSMOQ3] that there is a positive correlation between
the time a feature point can be tracked and the stability and accuracy of its corre-
sponding measurement. We would like to detect cases like these and assign larger
weights for these measurements. With the SMC such detection is not required, since
a highly accurate measurement will have - on an average - smaller prediction error
than noisy measurements and, therefore, a higher weight.



7.4.5 Generation of Simulated Data 91

Pitch Rate X Velocity
. 0.6 0.02
& o4 % oo AN
g o2yt | | S / \m /\ / X
2 0.0 Al MHM.M e % 000 v A
e Wil MR \J
g o2 \ | { g 0
-0.4 -0.02
0 200 400 600 800 1000 0 200 400 600 800 1000
Frame Number Frame Number
Yaw Rate Y Velocity
_ 25 0.009
8 12 T 0006 |
g 00 I AN § o003 N |y [
i o\ - R LTI T A W T T A
g 25 N/ \ E -0.003 V W
-3.8 -0.006
0 200 400 600 800 1000 0 200 400 600 800 1000
Frame Number Frame Number
Roll Rate Z Velocity
_ 0.30] -0.4
] \ T 06
g 015 1 ) | ]
S 0.8
N VAT TP 1T LN T o N N
O T o LA 1 AT A L s
% -0.15 WM \ A | 2 2
g v ! ! U E 14
-0.30 -1.6
0 200 400 600 800 1000 0 200 400 600 800 1000

Frame Number Frame Number

Figure 7.3: Simulated motion sequence

A very important feature of both versions of the SMC is also the benefit obtained
from the integration of temporal data. Many methods ignore valuable previous infor-
mation and just compute the best fit by considering only the instantaneous measured
data. It is only possible to obtain a meaningful result if at most 50% of the data are
outliers, i.e. such estimators have a maximum breakdown point of 50%. Never-
theless, if previous information is integrated in the estimation process, the break-
down point of robust estimators will not depend on the percentage of contaminated
data, but more on the number of non-contaminated data, allowing breakdown points
larger than 50%. The simulation results in Section [7.4.6] show this behavior.

7.4.5 Generation of Simulated Data

In order to show the effectiveness of the SMC and compare it with the ordinary Least
Squares weighting, a simulated motion sequence is used. The motion sequence was
generated by computing the ego-motion of the cameras installed on a vehicle while
the vehicle was traveling the path shown at the top-left of Figure An optimal
parameter set in sights of accuracy (and at the expense of real-time) was choosen in
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this step for the computation of ego-motion. The frame rate was 10 frames/second
and the distance traveled was approximately of 1 km with a total of 1137 stereo
images. The motion parameters were smoothed in order to reduce noise and the
pitch and roll rate as well as the vertical translation were amplified by a factor of
1.33, in order to obtain a slightly rougher motion than normally expected in real
traffic situations. Figure[7.3]shows plots of the motion sequence.

The image features and corresponding 3D points of the environment used as mea-
surements in the Least Squares approach are generated according to the following
procedure:

1. the feature image position (u,,, 0,,) is randomly generated, equally distributed
in the left image;

2. the depth Z,, of the corresponding 3D point is randomly generated with equal
distribution between minimal and maximal distance (dist,,in, distmaz);

3. the disparity d,, of the feature and the corresponding lateral and height position
(X,,,Y,,) of the 3D point are obtained from the data generated in the two
previous points. At this point the world point position with coordinate p, =

(Xp,, Yo, Zp;)T and its projection p’; = (i, p,, dp, )" are already generated;
4. noise is added to p’; in order to obtain p’; = (uy,, vp,, dp,)";

5. the image feature point p’; is triangulated in order to obtain p, =
(X, Yy, Zp,)T, i.e. the noisy version of p;;

6. the current world point position is obtained by Z; = Ryp; + t where R;, and
t;. are the inverse rotation matrix and translation vector of the camera obtained
from the motion sequence at step k;

7. the point Z; is projected on the image obtaining ’; = (y,, U, ds, )" ;

8. noise is added to x’; in order to obtain &’; = (uy,,v,,,ds,)";

9. (when required) equally distributed noise in the range (—m, m) pixels is added
to every component of x’; generating a potential outlier; and finally

10. x’; is triangulated in order to obtain x; = (X,,,Y,,, Z,,)T, i.e. the noisy version
of Z;.

The above procedure ensures uniform distribution in the position of the feature in
the image plane and in the depth of the corresponding 3D world point. The noise
of steps 4 and 8 has a Gaussian or Slash distribution according to the evaluation de-
siredl A Slash distributed random variable can be obtained as a Gaussian random

T"When testing robust estimators Slash distribution are preferred to Cauchy distribution, because of
the smaller peakedness at the origin [Dav02].
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Figure 7.4: Comparison of Slash and Gaussian p.d.f. assuming a mean of 0 and a
variance of 1.

variable with mean 0 and variance o7 divided by a uniform random variable over the
unit interval [0, 1]. The Slash distribution has larger tails than the Gaussian distribu-
tion, as Figure shows. In either case, a zero-mean multi-variate noise term 7 is
added to feature point vectors x’; and p’, and not to the world points as is usually
done ([HJL™89]). 3D points are obtained with the noisy feature positions, generating
the real error distribution expected in the triangulated points. If, as a consequence
of noise or motion, an image feature results with a position outside the image coor-
dinates or its corresponding 3D point depth lies outside the range (dist in, distiaz),
the point is discarded. This process is repeated until NV valid points are obtained.

In order to evaluate the performance of the ego-motion algorithm the Root-Mean-
Square Error (RMSE) of the rotation angle and RMSE of the translation distance are
used. The error in the translation distance is obtained as the Euclidean distance
between real and estimated translation, i.e. if £z = ||t — || is the error in translation,
the translation distance error is ||tg||. Since rotations are elements of the group
SO(3), a rotation error cannot be obtained just as the Euclidean distance of rotation
parameters. The error measure used for the evaluation of the rotation error is the
minimal angle of rotation needed, around some axis, to transform estimated rotation
to true rotation [Kan94] [OK98] [EBWO04]. If R is an estlmatlon of the true rotation
matrix R, then the error rotation matrix is R = RR’. The rotation expressed in
Ry is represented as the angle of rotation AQ around some axis I,; AQ is the error
rotation angle.

7.4.6 Simulation Results

This section shows some experimental results using the simulated data of the pre-
vious section. For all the tests; the minimal distance is dist,,;, = 3.63125 me-
ters, which corresponds to a disparity of 80, pixels and the maximal distance
dist e = 141.62, which corresponds to a disparity of 2 pixels. The camera pa-
rameters are f, = f, = 830, ug = 320, vy = 240, B = 0.35 meters with an image size
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of 640 pixels width and 480 pixels height. The number of points N is 500 (when not
stated otherwise).

The improvements achieved with the scalar and matrix versions of the SMC are
shown by comparison with the standard weighting methods. When using the WLS
approach, the results of the SMC defined in Equation (labeled “WLS SMC” in
the graphs) is compared with the results using the standard weighting expressed in
Equation (labeled “WLS Without SMC” in the graphsf| For the TLS approach, the
results of the SMC of Equation (labeled “TLS SMC” in the graphs) is compared
with the results using the standard covariance matrices obtained with Equation |6.4
for points p and x (labeled “TLS Without SMC” in the graphs). Each point of the
following plots were obtained running 10 times the whole motion sequence, and
therefore the RMSE corresponds to 11, 370 motion estimation steps.

Figures [7.5(a)] and [7.5(b)| show the performance of the methods under varying
Gaussian image position noise. Both, for the rotational and translational plots, the
SMC curves outperform the standard versions. As expected the TLS approach with-
out SMC performs better than the WLS approach, since the covariance matrices allow
the modeling of the direction and size of the error for each point independently, as
already shown in Chapter [6] Nevertheless, comparing both SMC curves, the scalar
LS performs better than the matrix weighted LS. This is an effect of the penalization
imposed by the closed-form solution: rotation is found by projecting the optimal un-
constrained solution into the parameter manifold, as already discussed in the Section
[5.5] of Chapter[5] The real benefit of the TLS is given in the translational component,
which is at least 3 times more accurate than the WLS approach.

The penalization imposed in the rotation matrix for the closed form solution of the
TLS approach is small and when Gaussian noise is used instead of Slash noise, the
TLS with SMC shows the more robust behavior as shown in Figures|7.6(a)jand |7.6(b).
Observe that under Slash noise the scalar version of the SMC is the least affected in
the translation estimation, since the error increases by a factor smaller than 1.3.

The estimation accuracy with respect to the number of points in the sets behaves
as expected, i.e. the accuracy becomes considerably worse with decreasing number
of points [HJL™89]. Figure and show RMSE of rotation and translation re-
spectively, for varying number of points and fixed Gaussian noise with o; = 0.4. The
observations made for Figure are also true for these graphs, with an exception.
The TLS SMC version shows a better performance for rotation estimation than the
WLS with SMC, when the number of points decreases, demonstrating once again a
more stable solution. In Figure[7.7(a)| this can be seen when the number of points is
less than 65.

Figure[7.9|shows the results when step 9 of the procedure of the previous section
is used for an increasing percentage of features. As with the previous evaluation, a
zero-mean Gaussian noise term n with o7 = 0.4% is added to the features points. The
percentage of points, for which step 9 of the procedure is applied, is varied between
0 and 90. For this percentage of features, a uniform random value « in the interval
[—32,32] (i.,e. £5% of the image width) is added to the image vector generating
potential outliers, and simulating correspondence errors. Figure shows the
rotational error as a function of the percentage of outliers generated in this way, while

2If Equation is used instead of Equation the same results are obtained.
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Figure [7.9(b)| shows the translational error. In both cases, the estimation remains
quite accurate even when more than 50% are actually false correspondences.

Figure shows an example of the motion results obtained with SMC TLS ver-
sion when adding Gaussian noise with standard deviation 0.4 pixels and using 500
pairs of points.

7.5 Multi-Frame Estimation

7.5.1 Introduction

Two-Frame estimation, i.e. the estimation of the motion parameters from the current
and previous frames is the standard case in the literature. When the motion parame-
ters are filtered over time, for instance with Kalman Filters ((MS87] [OMSMO03] [JLO3]
ISKLLO5] [BE95]), the measurement of the process still continues to be the clouds of
points of the last two available frames. The main problem with this approach is the
large error accumulation. Olson et al. [OMSMO03] have found that the error in the
ego-position grows super-linearly over time. The overall error has two dependent
components, which are orientation and translation. The variance of the integrated
orientation is found as a term that is proportional to the sum of the variances of all
estimation steps. Instead, the ego-position variance increases as a sum of two terms:
i) a term which is proportional to the sum of the translation variances of each estima-
tion step; and ii) a term which increases with the integral orientation error. Rotation
errors eventually turn into translation errors, because of the dependency of transla-
tion and rotation. It is therefore expected an asymptotic growth in the translation
component of tg = O(n?}/2) where n; is the number of integrated frames. Olson et
al. [OMSMO03] reduce the error function to a linear term in the number of frames by
making periodic corrections of the orientation using an absolute orientation sensor.

Figure [7.11(a)] exemplifies the ego-position error with two curves. A pure trans-
lational motion in depth was simulated with random uniform Z velocity, at two
different frame rates. The absolute orientation was computed at every frame and
the total motion was integrated. At each frame the Euclidean distance error between
estimated and true position was computed and plotted against frame number. Fig-
ure [7.11(a)| show the super-linearly increment for both curves. Observe that with
a larger frame-rate, the estimation error per frame is smaller. This is because the
motion uncertainty with a higher frame rate is smaller, due to the shorter distance
traveled between frames. When working with real images, a higher frame rate means
less false correspondences. The correspondence problem between frames (tracking)
is easier to solve because the search space in the image area is reduced. Neverthe-
less, a higher frame rate means also the integration of more errors in the same time
interval. Figures shows the same curves as in Figure but showing
the position error as a function of distance traveled (or time). At the same traveled
distance (or time) the curve of the smaller frame rate shows less accumulated error.
A low frame rate is preferable, because fewer errors are accumulated in the same
distance (or time) as with a higher frame rate. But large distances between frames
means less feature correspondences (because more features disappear from the field
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Figure 7.11: Super-linearly increment of the Ego-Position Error.

of view), more correspondence problems, more motion uncertainty and less deci-
sion capacity because of the low time resolution. Hence, there is a trade-off between
frame-rate and the accumulation of estimation errors. This section presents a method
which allows a high frame-rate with a low accumulation of errors and it is named
Multi-Frame Estimation (MFE).

7.5.2 Integration of Multiple-Frames

In this and the following sections, the term multi-step estimation will be used to
indicate that the estimation of motion between two frames is actually obtained as
a function of the information obtained at multiple time steps. On the contrary,
single-step estimation will denote the estimation of absolute orientation with the
frames obtained at only two time instances. The term Multi-Frame Estimation (MFE)
will denote the method which approaches a multi-step estimation, while the term
Two-Frame Estimation (TFE) will denote the method which approaches a single-step
estimation.

Let us suppose that the tracking algorithm is able to track at least n features over
m frames. At each time step, the list of tracked features and corresponding 3D points
are stored in lists. Let us define the set of tracked world points for time t; as X. At the
current time t;, the motion M’ of the vehicle between times t;_; and t;, is required.
Two-Frame Estimation implies computing a single-step estimation, by finding the
absolute orientation between the data sets obtained at both times, i.e. X}, and X),_;.
The resulting motion is the observed inverse rigid motion of the static scene, i.e. the
ego-motion of the camera. Multi-Frame Estimation, instead, iteratively computes the
absolute orientation between the clouds X, and &),_; for: = 1,...,m — 1. At the
end of each iteration the current motion estimate M’ is refined by the integration
with the multi-step result (i.e. the absolute orientation between the clouds obtained

at time t;_,; and time t;, denoted as M;i,k).

Each iteration carries out four main steps:

e Motion Prediction: at iteration i a motion prediction between time t;_; and
time t;, is required before applying the SMC. In the first iteration (i.e. i = 1) the
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(@) As a first step the absolute orientation between current and previous frame is computed, obtaining
a first motion estimate.

(b) The motion estimate of step 1 (showed in grey) is used as the predicted motion for applying the
SMC. The absolute orientation between times 6 and 8 is computed (unfilled black circle) and the
motion decomposed in two parts: the first part from state 6 to state 7 and the second part from state 7
to state 8. The first part was computed before and is known. The second motion part is interpolated
with the current motion, obtaining a new motion estimate (diagonal hatched circle).

(c) The same procedure as in the previous step is applied here. The resulting absolute orientation
between times 5 and 8 is now decomposed as the motion chain (5 — 7,7 — 8). The last link is
integrated with the current motion obtaining a new motion estimate.

Figure 7.12: Example of Multi-Frame Estimation.
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(e) The resulting motion step is the interpolation of all multi-step estimates.

Figure 7.12: Example of Multi-Frame Estimation.

motion prediction is taken from the initialization which provides exactly a first
motion estimation between the previous and current time. For the second and
following iterations the motion prediction is computed ag’|

Ml;—i,k =M, M;_ M, (7.15)

i.e. the observed motion between times t;_; and t;,_; updated with the current
motion estimation of the current time.

Smoothness Motion Constraint: the prediction obtained in the previous step
is required in order to apply the SMC. The rejection of outliers, as well the
assignments of weights for each 3D point pair in the iteration phase, is more
precise than in the initialization phase, because the prediction is much more
accurate. The application of the SMC for multi-steps follows exactly the same
procedure as explained in Section i.e. Equations[7.9]and [7.8] for the WLS
and Equations to for TLS are still valid. Only a small change takes
place since the prediction M., used in those equations must be replaced

3Equation is also valid for the first iteration since when ¢ = 1 then M,;_lle_l = I4y4 and
Mlz*l,k - M’k.
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with the motion prediction matrix J\Zf,;i’k obtained from Equation|7.15|

e Computation of Absolute Orientation: the absolute orientation between the
: . . . ~+
sets X, _; and X}, is computed, resulting in the multi-step motion M, _, ,.

e Motion Integration: Once the camera motion matrix J\Zf;ivk between times
tx—; and ty is obtained, it must be integrated with the current step estimation
M’,.. This is performed by interpolation. The interpolation of matrices makes
sense, if they are estimates of the same motion. This is not the case, since
the current step motion matrix M’ is an estimation of motion between times

tx_1 and t; (one step motion), and the multi-step motion matrix M;i’k is an
estimation of motion over i frames. If i = 1, the interpolation is straightforward.
If © > 1, the multi-step motion matrix must be decomposed in two motion
matrices: the motion matrix from time t;_; to t;_; and the motion matrix from
time t,_; to time t,. The latter is the motion matrix to be interpolated. Thus,
the multi-step matrix obtained in the previous step is expressed as the product
of the two matrices o .

My =My i 1M, |, (7.16)

where the first matrix of the right hand side is be obtained from the total motion
matrices as
Mj i1 =M. M. (7.17)

Replacing Equation|7.17|in Equation |7.16/and solving for M;_Lk we obtain

Ml—:—l,k - M;;_11Mk—iM]—:_i,k~ (7.18)

The rotation matrices of M’; and M;Lk are converted to quaternions in or-
der to apply a spherical linear interpolation (see appendix A for details). The
translation vectors are linearly interpolated. The interpolation factors are ob-
tained in the following way. Let us define f;_;; as the inverse of the square
of the sum of Mahalanobis distances (or residuum) of Equation obtained
when computing the absolute orientation between data sets X,_; and X}.. The
interpolation factors are obtained from the values:

Sr—ik for the multi-step motion matrix; and
i—1

i
> fi—ix for the integrated motion matrix.
=1

which corresponds to the weighted average of all multi-step motions. This
means that every additional step has less and less impact on the final result.

Figures|7.12(a)|to|7.12(e)| exemplifies one iteration of the Multi-Frame Estimation.
With this algorithm, the estimation improves because of the integration of more
measurements. Also, the accumulation of errors is reduced considerably, as shown
in the next section.
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7.5.3 Simulation Results for MFE

This section shows simulation results for Multi-Frame Estimation. The simulation
data used in the previous section is also used in this section. However, in order to
generate a long distance navigation data set, the motion sequence shown in Figure
is used repeatedly, starting over after the end of the sequence. This way we
obtain a sequence, which can be so long as desired.

The generation of point data is performed using the procedure of Section |7.4.5|
In the next procedure n is the amount of tracked feature points and LostFeat is a
parameter to model the percentage of lost features at each time step:

—

. Load first motion step, i.e. Ry, and % for k = 0.
2. Fori=1toi=n.

(@) Run the procedure of Section from step 1.
(b) Make i =i + 1.

3. Load next motion step, i.e. Ry and &, for k = k + 1.
4, Forti=1toi=n.

(@) Generate uniform random number X in the range [0, 100].

(b) If X > LostFeat make p’; = x’;, p; = T;, p’; = ’; and p, = x; and go to
step 6. of the procedure of Section[7.4.5]

(c) If A <= LostFeat go to step 1. of the procedure of Section [7.4.5
(d) Make i =i+ 1.

5. Go to step 3.

In the following experiments we use n = 500 and LostFeat = 25%.

Figure[7.5.3]compares the performance between Two-Frame Estimation and Multi-
Frame Estimation using Weighted Least Squares. Two-Frame Estimation and Multi-
Frame Estimation for different levels of integration were computed and the error in
position was plotted against the distance traveled. “MFE level m” means that the
maximal integration time is m, i.e. MFE is computed iteratively between current
time t; and time t;_,,, as specified in previous section. Observe that MFE allows
a substantial reduction of the navigation error, even for level 2, which implies the
integration of only one more frame than the TFE. Every additional level of integration
reduces the error even more, although the reduction of the error becomes slower.
Figure [7.14] shows some examples of the traveled path, comparing ground truth and
estimated ego-position. Figure|7.14(a){shows the estimation with MFE level 6 for the
first 15 kilometers traveled. Observe that at the ending position, the estimation error
is quite small both in position and orientation. Figure|7.14(b)|shows a comparison of
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Figure 7.13: Performance of Multi-Frame approach as a function of distance traveled
for WLS.

ego-position estimation between the TFE and MFE estimation after a traveled distance
of 50 km. The error using MFE remains quite small and, although an evident increase
in the orientation error is observed, the position error is negligible in comparison to
the error made with TFE, which exceeds the 250 meters.

When computing the absolute orientation with TLS, similar results are obtained.
Figure [7.15(@)] shows the results of MFE using TLS, where it can be seen that same
improvements factors, as with WLS, are achieved. Figure|7.15(b) shows the orienta-
tion error as a function of traveled distance. The curves also show an improvement
with increasing level of integration, but in contrast to the ego-position error, there is
almost a constant reduction of the error with every additional level of integration. In
fact, it is the reduction of the orientation error that allows almost a linear relationship
between traveled distance and ego-position error, as already observed by Olson et
al. [OMSMO03].

7.6 Integration of Filtered Data

Chapter 4 introduced how to optimally estimate the 3D position and 3D velocity of
world points fusing optical flow, stereo and the motion parameters of the camera.
The simulation results showed that the iterative refinement over time of the posi-
tion of 3D points with Kalman filters allows a better estimation, than treating the
individual measurements as being uncorrelated. It is therefore tempting to use the
filter estimates when computing ego-motion and not the triangulated measurements.
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Figure 7.14: Examples of integrated motion estimation using MFE and TFE.
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Figure 7.15: Performance of Multi-Frame approach as a function of distance traveled.
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However, the filter requires first the motion of the camera in order to be able to tell
the optimal current position of the points. In other words, at time t; the motion of
the camera between times t;_; and t;, is required in order to obtain the new filtered
position of the points, i.e. the required filtered 3D position at time t;, is not available
until ego-motion is computed. The ego-motion algorithm cannot, therefore, use the
optimal estimation of the point for current time t;. However, previous filter outputs
are available and can be used as measurements for the computation of absolute ori-
entation. This means that when computing the absolute orientation between current
and previous time, the points corresponding to the data set X;_; will not be just the
triangulated features points but the estimates provided by the Kalman filters. Ob-
serve that not only the immediate previous data set may contain filtered data, but all
previous data sets (X;_o, Xi_3,...). This means that not only TFE benefits from the
filter outputs, but also MFE.

One important aspect to consider when using the filter outputs for the estimation
of ego-motion is the danger of falling into a positive feedback loop. Positive feedback
loops enhance or amplify changes, moving a system away from its equilibrium state
and make it more and more unstable. Suppose that our system (as shown in Figure
is in equilibrium. This means the system works stably, computing stereo and
optical flow, obtaining the ego-motion of the vehicle from non-filtered (current time)
and filtered (previous times) 3D point, and updating 3D point position and velocity
of world points. Now let us suppose that a small perturbation is introduced to the
system, for example, the tracking or stereo algorithm computes too many outliers
(because of repetitive structure in the scene for example). The Ego-motion system will
compute the motion of the camera but with less accuracy than normal. The points
updated with Kalman Filter will also have a larger error because of the inaccuracy of
the ego-motion parameters. The equilibrium is already broken. Every posterior cycle
amplifies this effect and the system go into an uncontrollable state.

In order to avoid this we define a firewalPl A firewall defines a limit for the
integration of information. The firewall in our system is achieved through a threshold
for the age of the tracked features. The filtered 3D position of feature points that are
younger than this threshold, are not stored in the 3D Point List. By doing this we
avoid the computation of ego-motion with filtered young features. Instead of the
filtered position, the triangulated 3D position of young feature points is used, which
is not affected by a previous wrong computation of ego-motion. A relatively old
feature point will have a converged state in the KF model and a more stable behavior
with respect to wrong estimates.

Figure shows the expected root mean square distance error as a function
of the point distance, comparing the performance of using the ego-motion results
against the results of using the real motion parameters (ground truth). Every curve
shows the results for point tracked a specified number of times. The curve “Age 2
Est” shows the RMSE for points with age 2 (tracked 2 times). “Est” means that the ego-
motion estimation was used for building the A, and b, matrices of the Kalman filter
system model. If, instead, the ground truth motion is used for building the matrices,
then the curve is labeled “GT”. The motion sequence was simulated as constant
forward motion. Multi-frame estimation with level 3 was used and all parameters

4The term firewall was taken from Nister et al. [NNB04] [NNBOG]. In the papers, the authors use
this term for defining a method that prevents the system falling into a positive feedback loop.
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remain the same as in the previous section, only that now the filtered 3D position of
feature points tracked at least 3 times are used. Observe that the ground truth curves
are the same as those of Figure [4.9]

The results show that the RMSE of Kalman filtered points, when using the esti-
mated ego-motion parameters, are almost the same as the RMSE of filtered points
using the ground truth motion. The error in the ego-motion estimation is propagated
to the 3D points and therefore the RMSE is slightly larger than when comparing with
ground truth motion. This effect is only visible when the points were tracked several
times, as can be seen by points with age 11 and 15. Nevertheless, the difference be-
tween corresponding curves is very small and becomes negligible if compared with
the RMSE of the unfiltered curve, which is least 3 times larger.
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Figure 7.16: Relative Performance using GT and Estimated Ego-Motion.

7.7 Integration with Inertial Sensors

As shown in the next chapter, the ego-motion algorithm proposed above is extremely
robust and it is able to compute the ego-motion of the vehicle in typical traffic situa-
tions. Nevertheless, such robustness is based on the assumption that the images are
correctly acquired and the levels of noise are acceptable, as already mentioned in
Section The accuracy and correctness of the stereo and tracking algorithm de-
pend highly on the images acquired, and the cameras might provide partially wrong,
or no output at all. Some cases where problems are expected are:

e changing lighting conditions (e.g. entering a tunnel);
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e partial or total occlusions (e.g. with the windshield wiper);

e distortions (e.g. the distortion produced by the raindrops or dirtiness on the
windshield);

e the direct exposure of light or through reflections (e.g. sun light or the headlight
of vehicles coming in the opposite direction);

e landscapes with little structure (e.g. flat and even surfaces with no trees or
vertical structures).

If the vehicle is provided with additional systems for measuring motion, like a
speedometer, a yaw-rate sensor and GPS, then the redundant information can be
used to provide a better estimate and to increase robustness. A combined estimate
is easily obtained if a confidence for every quantity is available. In the ideal case,
the estimate is provided with a corresponding covariance matrix. Let us suppose
m; = (i, Vi, 0i, taiy tyis t2i)T for i = 1,2,...,n as the estimates of motion provided
by the ith system and C; their corresponding estimate covariance matrices. Then
the combined optimal estimate m is obtained as

m=C (Cf1m1+Cz_1m2+...+C;1mn) (7.19)

where C is the corresponding covariance matrix of the new estimate which is ob-
tained as )
C=(Ci'+Cy'+...+C,") . (7.20)

In the experimental results of the next chapter the test vehicle uses a speedometer
and a yaw-rate sensor. The speedometer provides a velocity estimate v with variance
o2. The yaw-rate sensor delivers a yaw-rate estimate ¢ with variance ai. The motion
model achieved with both estimates is planar. For short interval of time At, the
vector s = (&,U)T can be considered constant, and the motion parameters of the
vehicle are obtained as a function of s, i.e.

0
Atyp?

0
mIS:F(S):Z cos( Aty — 1) (7.21)
0
— sin(Ate))v

—_

The corresponding covariance matrix of m,s can be obtained as

0 o2

(2

20
C,SZJF[% }J@ (7.22)

where J g is the matrix of first partial derivatives of F'(s), i.e.

an‘j

a—sj (7.23)

I =
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Solving Equation results in

[(ju 0 0 0 0 0]
0 g2 0 Jou 0 Jos
0 0 4 0 0 O
C,s = : : } 7.24
" 0 Joa 0 Juu 0 Jus ( )
0 0 0 0 js O
| 0 J2 0 Js6 O Jes |
where
Jo2 = AtQUi (7.25)
Atvo? (COS@ZJ — 1+ sin @Z))
g = L 26)
J24 ¢2 (7.
Atvai (sint) — 1 cosv)
Jos = e (7.27)
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Y2 (0
Jit = Js3=Js5s = koo (7.31)

where 1) = At and k., is a very large number which is used to model the unavail-
ability of the corresponding parameter. The scalar o2 in jy, is also added in order
to avoid the singularity of the covariance matrix, otherwise the matrix has only 5
degrees of freedom.

When computing ego-motion with the method described in this chapter, the co-
variance matrix of the estimated parameters can be obtained as the inverse matrix of
second partial derivatives of the objective function of Equation [5.13]evaluated at its
minimum, i.e.

Cvo=H;,, (7.32)

where 927
H, ;= ——— 7.33
VoL 8m18m] ( )

and my, = (¢,,0,t,,t,,t.)" is the parameter vector found.

The optimal motion parameter vector fusing inertial sensor and visual odometry
is obtained as
m = Hvomvo —l_ C;Slmls (7.34)
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and the fused estimation covariance matrix is

C=(Hw+Cl)" (7.35)

Observe that Equations [7.35| and |[7.35] are only valid if the camera and vehicle
coordinate systems have been aligned.

7.8 Summary

The visual ego-motion (or visual odometry) problem implies the extraction of the mo-
tion parameters of the camera between two time instances by analyzing the changes
of brightness patterns in the acquired images. A plethora of work on ego-motion
computation has been published in the last two decades. All ego-motion methods
can be classified as belonging to one of two main groups; monocular methods and
multi-ocular methods. The main difference between both groups is the type of result
obtained. Multi-ocular methods recover the rigid body transformation of the cam-
era platform between two time instances. Monocular methods, instead, can solve
the relative orientation problem. The missing scale factor can be recovered by mak-
ing assumptions about the motion of the camera, or about the structure of the scene.
Both groups are classified according to the way in which they integrate the time com-
ponent: optical flow-based methods, normal flow-based methods, direct methods,
and landmark-based methods. This chapter has reviewed some main contributions
on ego-motion estimation for each category.

One of the contributions from this chapter is the Smoothness Motion Constraint.
The SMC is an effective rejection rule applied to detect outliers (moving points and
false correspondences) from the cloud of points. It also helps to reduce the contri-
bution of noisy measurements by assigning weights to the data. Two versions of the
SMC are proposed, one version for the weighted least squares and one version for
total least squares approach. The WLS version of the SMC determines the weight
which defines the contribution of the pair of points as a whole, without discrimi-
nation of their components. A weight of zero is applied when the pair of point do
not show a coherent motion. Otherwise, the method weighs the pair of points ac-
cording to the distance between prediction and measurement. The TLS version of
the SMC allows to establish a weight matrix for each 3D point. The applied weights
also depend on the error between prediction and measurement, but propagating the
prediction error from the image to the 3D Euclidean space.

Simulation results are carried out with Gaussian and Slash noise showing the su-
periority of the SMC version over the standard weighting methods. An important
result from the simulations is that, under Gaussian noise the TLS solution for rotation
is not necessarilly better than for WLS. This is a consequence of the penalization
imposed in the closed form solution of the method, as already addressed in Chapter
[l On all other simulation scenarios, the TLS version outperformed the WLS version,
showing a more stable performance. An analysis of the stability of the results when
dealing with outliers was also carried out, showing break down points larger than
50%. The decision between choosing WLS and TLS for the ego-motion computa-
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tion should depend upon; the number of tracks available, the expected noise, the
expected number of contaminated data (i.e. outliers), the time requirements and the
accuracy required. The simulations shown in this chapter can help in the selection.

The algorithm proposed in this chapter for the computation of ego-motion carries
out four main steps: 1) motion prediction; 2) application of the SMC; 3) motion
correction; and 4) motion integration. If these four steps are carried out iteratively,
a predictor/corrector algorithm is obtained. This chapter proposes a method that
carries out the four steps, integrating at each time a new cloud of points into the
estimation. This allows to reduce the accumulation of errors when concatenating
multiple estimates in a single global estimation. Simulation results are shown and
the improvements achieved are presented.

This chapter also describes the integration of the filtered data into the ego-motion
estimation, avoiding positive feedback loops using a firewall. Finally, the covariance
matrix for the inertial sensor (velocity and yaw-rate sensor) of the vehicle are derived.
This allows to fuse inertial sensor information with the visual odometry estimation
for a more robust estimation.



Chapter 8

Experimental Results

8.1 Introduction

This chapter shows some experimental results of the visual ego-motion estimation
presented in the previous chapter and of the estimation of point position and veloc-
ity as presented in chapter 4. Although the methods presented in this dissertation
were developed for traffic scenarios, the application area can easily be extended to
other application, areas such as robotics in indoor environments, Simultaneous Lo-
calization And Mapping (SLAM) applications, reconstruction of 3D scenes, or object
pose estimation. After a short description of the optical flow and stereo algorithms
in Section Section [8.2| shows some results of ego-motion estimation with two
real world sequences of stereo images in typical traffic situations. Section ap-
plies the method in an off-road scenario, where the vehicle drives over a uneven
surface. The results of ego-motion are shown by reconstructing the scene viewed by
the cameras over the sequence. Results of an indoor environment are shown in Sec-
tion Finally, Section shortly describes how to apply the method for object
pose-estimation and shows some results used for crash test analysis.

8.1.1 Optical Flow and Stereo Implementation

The flow and stereo algorithms that can be used for the estimation of ego-motion and
point velocity are not constrained to a specific implementation. In fact, our approach
was tested with different algorithms obtaining almost identical results. Nevertheless,
we describe shortly the stereo and optical flow algorithms used in the experimental
results of this chapter.

The stereo algorithm we use in this chapter is described in Franke [Fra00] and
Badino [Bad02]. It works based on a coarse-to-fine scheme in which a Gaussian pyra-
mid for left and right images is constructed, with a sampling factor of 2. The search
for the best disparity is only performed at the top level of the pyramid and then a
translation of the disparity map is made to the next level, where a correction is done
within an interval 1 of the calculated disparity. We use the sum of squared differ-
ences (SSD) as the default correlation function. Different filters and constraints are
applied between pyramid translations. The zero-mean normalized cross-correlation
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(@) UTA vehicle. (b) Installation of the camera system.

Figure 8.1: Urban Traffic Assistance Research Vehicle (UTA)

(ZNCC) is used in order to check the confidence of the match. A match is considered
reliable if the ZNCC coefficient is larger than a predefined threshold. Dynamic pro-
gramming can also be applied between pyramid translations, in order to eliminate
matches which invalidate the ordering constraint. Finally a sub-pixel disparity map is
computed as the last step in the pyramid. This is achieved by fitting a second degree
curve to the best match and its neighbors, and finding the sub-pixel disparity where
the slope is zero for the quadratic function.

The tracking algorithm we use for the computation of optical flow is the
Kanade/Lucas/Tomasi (KLT) tracker. An extended description of the algorithm can
be found in [TK91] and and therefore we skip the description of this method
here. Our experience with different tracker algorithms has shown that the KLT tracker
can track feature points with a small error over dozens of frames. In all sequences,
when not stated otherwise, a maximal amount of 2000 tracks points were tracked
over time. The selection of new features is carried out according to the selection
method of the KLT algorithm [ST94], maximizing the quality of tracking. Further-
more, in order to obtain a better distribution of the features over the image, the
algorithm constraints new features to have a minimal distance to any other feature in
the image.

The first three sequences of images evaluated in this chapter were taken with the
research vehicle shown in Figure [8.1]

8.2 Traffic Scenarios

This section shows the application of the ego-motion and Kalman filter methods
to two long sequences of images. Aerial views of the path traveled for the two
sequences can be seen in Figure The frame rate for both sequences was 10
frames per second. The baseline of the stereo camera is 0.35 meters and the images
have a standard VGA resolution (640 x 480 pixels).
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Figure 8.2: aerial views of the traveled path for sequences Curves and Ring.
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Figure 8.3: Color encoding.

8.2.1 Sequence Curves

The sequence Curves was taken as the vehicle was traveling the road shown in Figure
[B.2(a)] at velocities between 20 km/h and 60 km/h. The sequence covers a distance
of 1.25 km with 1128 stereo images. Ego-motion was computed using only the visual
information, i.e. , the inertial sensors of the vehicle were not used for the computa-
tion of ego-motion. A Kalman Filter, as described in Chapter[4} is initialized for every
new feature and the filter is updated over time as the feature is tracked and a stereo
disparity for the feature is computed. This way we obtain an improved position of
the point and an estimation of its velocity.

The results for the estimated ego-position of the camera are shown in Figure
where the ego-position was plotted over the aerial view in order to analyze the
accordance of the results with the real path. Some reference points were marked over
the map; the sequence starts at reference point 1 and ends at reference point 9. Ego-
motion was computed with Weighted Least Squares using a multi-frame estimation
of maximal level 5. Although a small deviation from the real path occurs at the
end of the sequence, because of error propagation (observe that the last curve with
reference points 7 and 8 deviates slightly from the road), the estimated path matches
the road almost everywhere, not only in position, but also in orientation.



8.2.1 Sequence Curves 119

Figure 8.4: Ego-Motion estimation result for the sequence Curves.

Figure shows snapshots corresponding to the reference points of Figure
The vectors show the predicted 3D position of each feature in 0.5 seconds back-
projected into the image. The color encodes the velocity of the point as Figure
indicates. Features with an estimated low velocity are shown as green points
without an attached vector. Only features which have been tracked at least 2 times
are shown, avoiding displaying velocity estimates for false stereo or flow correspon-
dences. Features wrongly tracked tend to disappear in the next two frames (i.e. the
tracker is not able to find a correspondence for that feature any more). It can be
seen in the snapshots that very few wrong tracked features with an age of 3 images
survive. The different coloring of the vectors corresponding to the same object occur
mainly because of the different ages of the features. Young features which have not
converged, have an estimated velocity smaller than the real one, since the filter is
initialized as being static. Those features tends to have a green color in Figure (8.5

When a feature is incorrectly tracked the feature shows an arrow with a complete
wrong direction or length for the corresponding object (an example can be seen in
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Figure 8.5: Snapshots of the estimated velocity of tracked points for the sequence
Curves.

snapshot 8 of Figure [8.5] where a feature corresponding to the static background has
a large red arrow pointing downwards).

The sequence presents a total of 25 oncoming vehicles, many of them are shown
in the snapshots. Even when a very large percentage of the image is occupied with
independently moving objects, the algorithm is able to compute robustly the ego-
motion of the vehicle. The snapshot 7 shows this case. Ego-motion computation was
here possible thanks to the static points of the background.

Figure shows some additional information for snapshot number 8. The two
top images show optical flow and stereo results. The color encodes the length of
the optical flow in left image and the estimated depth of the features in the image
at the right (see Figure [8.3). The bottom-left image shows the feature vectors which
survived the Smoothness Motion Constraint (i.e. , the inliers). The color encodes the
error between prediction and measurement, where green means no error and red
means large error. The bottom-right figures shows also the features selected by the
Smoothness Motion Constraint but for level 3 of Multi-Step estimation. The last 4
tracked positions for each selected feature are shown. Observe in both cases that
all features corresponding to the moving vehicle are avoided and not used for the
computation of ego-motion.
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Figure 8.6: Stereo computation, optical flow computation and optical flow vectors
used in single and multi-step computation

8.2.2 Sequence Ring

The sequence Ring corresponds to the road shown in Figure [8.2(b). The velocity
of the vehicle varies between 0km/h and 40 km/h. The sequence has a total of
1550 images and covers more than 1.3 km. In the sequence, the vehicle travels two
times round the block completing 720°. The amount of features to track was set to
2000. The results of the ego-motion algorithm are shown in Figure[8.7(a)|, where the
ego-position was plotted over the aerial view in order to analyze the accordance of
the results with the real path. The first round was plotted in red, while the second
round was plotted in green. The speed and yaw rate of the the inertial sensors of
the vehicle were used in this sequence, as specified in Section Some reference
points were marked in the map and Figure[8.7(b)|shows the corresponding snapshots.
The vehicle started at the position marked by the reference point 1 and finished at
reference point 9 after driving twice round the block.

This sequence has only a few independently moving objects, in contrast to the
sequence Curves. One of them is shown in the snapshot 6 of Figure where
an oncoming vehicle forces the ego-vehicle to stop, since the street is too narrow for
the two vehicles. In the next round, the vehicle drives more centered on the street,
at the same position as shown in the snapshot 8. Observe that even this difference is
reflected in the estimated ego-position, since the first round marked in red in Figure
[.7(@)] is displaced a little to the left in comparison to the second round marked in
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Figure 8.7: Results for the sequence Ring.

green (reference points 6 and 8).
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8.2.3 Computation Times

8.2.3.1 Absolute Orientation Computation

Optimized implementations of the absolute orientation algorithms of Chapter
allow a very fast computation of the optimal rotation and translation between cloud
of points. The following table shows the time requirements for each method. All the
measurements are in milliseconds. The test were made with a Intel™Pentium™M
Processor 2.00 GHz.

Nr Of Points  WLS (quat) TLS (Wengetal.) TLS Powell

500 0.205 2.491 13.4
1000 0.443 6.924 22.48
1500 0.722 7.304 31.80
2500 1.514 12.841 46.87
5000 4.684 33.155 122.56

Table 8.1: times are measured in milliseconds.

Only time results for the quaternion method are shown, since the SVD and polar
decomposition methods have the same computational complexity and the times are
equivalent. The closed form solution of Weng et al. [WC90] allows an implemen-
tation which requires little computational power, as can be seen in the table and
makes it a very appealing method for the computation of the TLS. For comparison
purposes Equation was solved by an iterative method. The average iterations
required for obtaining a solution was of 2.04.

8.2.3.2 Full cycle times

The average computation times corresponding to the parameters used in the above
two sequences are the following:

Module: Time [ms]
Ego-Motion: 8.509
Kalman Filter: 9.798
Stereo: 14.643
KLT Tracker: 90.413

8.3 Off-Road and Country Scenarios

Although the application area for which this method was designed for is the field
of assistance driver systems in typical traffic situations, it can also be used in other
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Figure 8.8: Snapshots of the sequence Forest.

environments such as country scenarios. The application area can also be used for
3D scene reconstruction, as this section shows.

The differences between a typical downtown driving scenario and that of driving
on a forest/field/dessert are given by:

e The type of object expected to be found, e.g. buildings, trees, etc.
e The behavior of the objects, e.g. moving or static.

e The textureness, e.g. low textureness on walls, high textureness on trees or
bushes.

e The type of motion expected, e.g. planar, vibrating, etc.

e Expectation of repetitive structures; cities and forest contain many vertical
repetitive structures like windows and trunks which might lead to false cor-
respondences; on the other hand a sand desert might contain no vertical struc-
tures at all.

e Object materials; in populated areas some surfaces might reflect light rays into
the camera, in natural environments such reflections are less probable.

A method might become useless if applied to a different area than that for which
it was designed for.
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The ego-motion method presented in this dissertation can be applied to different
application areas since it does not make any assumptions about the type of motion
expected. The main requirement is that the optical flow and stereo algorithm deliver
a high enough number of point correspondences. As already shown in the previous
chapter, the condition of at least 50% of non-contaminated data is not even required,
since the method is able to work relatively well, even when more than half of the
data are outliers.

This section shows the ego-motion results with a sequence taken as the vehicle
drove on a unpaved roadway in a forest. The road is quite uneven and the vehicle
motion is different to that expected on a road. In order to compensate for the rough
motion of the vehicle, the frame rate was set to an average of 24 frames/sec. Figure
shows some snapshots of the sequence. Observe that the top-right image shows
a rotation of about 9° around the optical axis, which is normally not expected to
happen in normal roads. In sequences Curves and Ring the maximal rotation around
the optical axis was about 2.5°. The sequence is composed of 800 stereo images and
the vehicle drives at slow speed a distance of approx. 120 meters.

The reconstruction of the scene in this section is achieved by just plotting the 3D
points observed through the sequence. Since every observed 3D point is actually
measured and estimated in a camera coordinate system (i.e. the camera position is
always at the origin), the direct plotting of 3D points will not regenerate the structure
of the scene (unless the camera is static). Instead, the clouds of points obtained at
each frame are translated and rotated according to the corresponding position and
orientation of the camera (i.e. , its ego-motion) obtaining continuity of the scene.
The points to plot are not those directly obtained with stereo. Instead, the Kalman
filtered 3D positions of the points are the optimal candidates to plot. A point is
selected for plotting (together with its grey value) if its estimated velocity is below a
threshold. This way, we avoid the plotting of points with large error terms. This basic
information might be used by more efficient reconstruction methods (e.g. [KESFKO5]
JLO3] [GS04] [Mor02]), all of which are out of the scope of this dissertation.

Snapshots of the reconstruction are shown in Figure The maximal number
of tracks was 3000. Ego-motion was computed with a maximal multi-step integration
level of 15. A total of approx. 1.7 x 10° 3D points with corresponding grey value
were collected trough the sequence. The path traveled by the camera is shown in
red.

8.4 Indoor Environment

The main difference between outdoor and indoor environments is the mean and
variance distance to the observed objects. In indoor environments both variables are
quite a bit smaller than in outdoor environments. For stereo applications this means,
mainly, that the noise affecting the 3D position will be smaller. On the other hand,
images of indoor environments might contain more and bigger untextured areas, like
walls, and therefore less information. As long as the images contain enough texture
to allow the computation of optical flow and stereo, the method presented in this
dissertation can be used to compute the ego-motion of a freely moving camera in
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Figure 8.9: scene reconstruction for the sequence Forest

indoor environments, as this section shows.

In order to obtain some ground truth information about the motion of the camera,
a special sequence was constructed. A normal sequence of about 468 images was
recorded in an office while a person was moving. A second sequence was generated
from the first sequence by just reversing the playing order of each image. Finally the
latter was attached to the former in order to obtained a complete sequence of 936
images. The start and end position of the camera for the whole sequence is exactly
the same and therefore the complete integration of motion must be zero at the end
of the sequence. The camera configuration has a baseline of 12¢m and a focal length
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Figure 8.10: Snapshots of the sequence Office.

of 0.4cm. The images have a standard VGA resolution. A maximal integration depth
of 80 frames was used for this sequence. Large integration levels are achieved only
when the feature can be tracked over so many frames.

Figure shows some snapshots of the sequence Office. A person holds the
camera and moves it to different position and orientations throughout the sequence.
The sequence shows a person, who stays still and partially occluded at the beginning
of the sequence (first three top images of Figure[8.10] The person then moves to the
left, then to the right, once again to the left and finally towards the camera. At
this point (last image of Figure the sequence is repeated in backward order.
In the snapshots, it can be seen that there are some velocity vectors of the points
corresponding to the moving person. The color encoding is the same as shown in
Figure [8.3] but where red means 1.75m/s. The different colors of the vectors obey
principally to the different velocities of the body-parts. Since the scene contain many
repetitive structures (e.g. , the folders in the filling cabinet at the background and the
blinds at the left), some velocity vectors for static objects are incorrectly estimated,
but without major consequences.

Observe that as a consequence of the special construction of the sequence, the
results for the total camera motion over time must be symmetric. Figure shows
the estimation of the total rotation and translation as a function of image number.
Observe the high symmetry in the motion estimation for all motion parameters. A
consequence of this symmetry is that the motion estimation at the end of the se-
quence should be the same as in the beginning of the sequence, i.e. zero. Any
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Figure 8.11: Results for the sequence Office
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Component Error Total
Pitch 0.209064 °

Rotation Yaw 0.180416° 0.4012°
Roll —0.291064 °
X —0.016799 m

Translation | Y 0.01174m | 0.02245m
Z 0.009168 m

Table 8.2: Total accumulated motion error for sequence Office over 936 images.

deviation from that shows the total accumulated error, which is shown in Table [8.2]

8.5 Pose-Estimation for Crash Test Analysis

Computing the ego-motion of the camera requires the definition of a reference frame.
Until now, the reference frame was implicitly given by the static scene (the world),
with origin and orientation given by the position of the camera in the first image
of the sequence. When the motion to estimate is caused by the change in position
and/or orientation of the camera over time, with respect to its reference frame, we
refer to it as computing the ego-motion of the camera. If, instead, the camera remains
static and the motion to estimate is given by the change in position and/or orientation
of some observed object, then this is referred to as object pose-estimation. Ego-
motion and pose estimation are related problems and can be solved using the same
mathematical framework (see e.g. [LHM98]). Pose estimation is a problem that has
undergone much research in Computer Vision. For an overview of robotic camera
pose estimation techniques refer to [GKA98]. Most pose estimation algorithms rely
on models of the observed object (see e.g. [RPS05]). This section shows how to
perform a model-free pose estimation applied to crash analysis. The results have
been initially published in [GehOQ6].

In our pose estimation scenario, the stereo camera system remains static and the
observed object moves. The whole method remains the same, since the relative
motion is identical. However, the Smoothness Motion Constraint is not related to
the motion of the camera any more, but instead to the observed object. We obtain
the initial object position with the initial stereo computation. From there, we trans-
form the motion of the object back into the static reference frame and compare the
predicted position via Smoothness Motion Constraint to the measured position. This
way, tracks that are not on the observed object can be eliminated for pose estimation.

The main difference with previous applications is the reduced angular resolution
of the object. When the region of interest is the whole image, as in the previous
examples, the angular resolution is approx. 42° x 32° for a typical image of 640 x 480
pixels and focal length of 8mni'l On the other hand, in crash analysis the FOV of
the object of interest can be as small as 2°. Investigations on pose estimation of

'In the sequence Office the FOV after rectification was approx. 61° x 45° because the focal length
of the camera was 4mm.
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Experimental Results

Figure 8.12: Smallest and largest simulated dice of the synthetic sequence.

. . . 0.25m 0.50m 0.75m 1.00m
Obiject size (10m distance) 70[piz] 140[piz] 210[pia] 280[pia]
Horizontal Angular Resolution ~ 2° ~ 4° ~ 6° ~ 8°
Number of tracks 2000 8000 11000 12000
Mean Error (£ std deviation)
A pitch[°/ frame] 0.04 £0.07 | 0.00+£0.02 0.00 £0.01 | 0.00 £ 0.003
A yawl[®/ frame] 0.1240.25 | 0.01 £0.08 0.01 +0.02 0.00 4+ 0.02
A roll[°/ frame] 0.01 £0.01 | 0.00£0.003 | 0.00+0.001 | 0.00+0.001
integrated pitch[°] 0.52+0.19 | 0.06 4+ 0.09 0.06 £0.02 | 0.01 £0.01
slope of integrated yaw[°/ frame] | 0.08 £0.30 | 0.00 £ 0.07 0.00 +£0.05 | 0.00+0.03
integrated roll[°] 0.50 £0.18 | —0.06 +0.09 | —0.03 +0.02 | 0.03 £0.01
Maximum Error
A pitch[°/ frame] 1.9 0.42 0.19 0.11
A yawl[®/ frame] 4.3 2.9 1.1 0.46
A roll[°/ frame] 0.3 0.13 0.04 0.04
integrated pitch [°] 6.9 1.6 0.4 0.2
integrated yaw [°] 10.0 2.3 0.8 0.4
integrated roll [°] 6.7 0.7 0.38 0.22

Table 8.3: Accuracy of pose estimation for varying object sizes. Motions are de-
scribed in the camera coordinate system, pitch motion around the horizontal axis,
yaw around the vertical axis and roll in the image plane.

small objects covering only a small field of view, are rare in the literature. In order
to verify the obtainable accuracy of the algorithm, a simulation scene with a dice of
variable size is used. Image dimensions are 1600 x 1200 pixels (comparable to high
speed/high resolution cameras used in crash analysis), and the dice is set at 10m
distance (see Figure [8.5). We varied the size of the dice and let it rotate around the
vertical axis to obtain a yaw motion of 2°/ frame from the camera perspective. The
obtained errors are listed in Table [8.3] and show that even small objects allow an
accurate pose estimation. The maximum errors, including the integrated pose errors
over 100 frames, stay within 10°, the average errors stay well below 1°. Multi-frame
estimation up to 20 frames was used. Other publications rarely show data on pose
estimation algorithms for small objects, so no reasonable comparison data can be
provided.

We illustrate the performance with real images showing results of an offset crash.
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Figure 8.13: Snapshots of the sequence Crash Test. Top-Left and bottom-right images
show the first and last frame the sequence. The top-right image shows the moment
of deepest airbag penetration. The bottom-left image shows the image at which the
head is totally visible once again.

The object of interest is the head of a dummy, which almost disappears in the airbag
at one moment in the sequence. Figure[8.5shows some snapshots of the sequence.
The sequence is recorded at 1000H z and consists of 300 images. Here, we used
multi-frame estimation up to 100 frames in order to cope with the massive occlusion.

The object of interest is selected manually in the scene. From there on, the object
is tracked automatically using the average motion vector of the observed object. To
obtain the motion vector, all tracks that originate within the selected region of interest
are considered for pose estimation. But only tracks that pass the Smoothness Motion
Constraint are used for average motion computation. This way, partial occlusion is
handled easily, since these flow vectors are not consistent with the current pose.
Therefore, the manual selection does by no means require being precise, as long as
the majority of the flow vectors in the selected region corresponds to the object of
interest.

To check the plausibility of the measurements, we also tracked the region of the
driver door, specifically the letters. Knowing the vehicle dynamics of offset crashes,
we expect a yaw motion away from the barrier and a slight camera roll motion due
to jumping. Both behaviors can be clearly seen in the plot of the integrated angles of
the estimated poses in Figure[8.14(c). The pitch motion is expected to remain around



132 Experimental Results

0°, and the deviations from that illustrate the noise level of the measurements.

Figure[8.T4(a) shows the optical flow and multi-steps tracks for image number 200
of the sequence. In the left image the circle shows the tracked region of interest. Most
good tracks stay at the five-dot-marker at the right part of the head that stays visible
throughout the sequence. Figure [8.T4(b)shows a 3D view of the scene. The position
of the camera is based on the obtained pose, and transforms the head to its initial
orientation, viewed from 2.5m distance. The right image depicts the transformed
pose of image 200 after reappearing from the airbag. Note the good agreement to
the initial pose shown in the left image.
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(b) 3D view of the scene
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(c) Results of the pose-estimation algorithm.

Figure 8.14: Optical flow, Tracks and aligned 3D Views.



Chapter 9

Conclusions and Outlook

9.1 Summary

This dissertation presents a complete framework for the real time estimation of the
scene structure, the detection and estimation of the independently moving points,
and the accurate estimation of the 6 degrees of freedom of ego-motion. These are
basic components required for building many intelligent automotive applications,
which support the driver in traffic situations. The complete framework works ex-
clusively with the information provided by a binocular platform. Furthermore, the
presented approach is a passive technique, in the sense that the method does not
call for any data acquisition strategy, i.e. the stereo images are just processed as they
are provided. This avoid any interference with other vision applications that could
make use of the cameras (e.g. lane detection) and which control their functionality.

The proposed framework is divided in three main blocks.

e The Registration of Image Features is the block that receives, as input, the
rectified images and provides, as output, a list of tracked image features with
their corresponding 3D position. The method presented in this dissertation is
independent of the actual implementation used for the registration of image
features.

e The Ego-Motion block carries out four mains steps in an iterative way: motion
prediction, application of the Smoothness Motion Constraint, absolute orien-
tation computation, and motion integration. The SMC is a powerful constraint
for the rejection of outliers and for the assignment of weights to the measured
3D points. The absolute orientation is computed with a weighted or a total
least squares approach in closed form. Each iteration provides a new motion
hypothesis, which is integrated into the current motion estimation. We call
this approach, Multi-Frame Estimation (MFE), in contrast to the Two-Frame Es-
timation (TFE), which considers only the current and previous frames for the
computation of ego-motion.

e The Kalman Filter represents the third block. By means of Kalman Filters, an
iterative refinement of the 3D point position is achieved. The motion of a static
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it

Figure 9.1: Homography computed with ego-motion parameters.

world point is given by the rigid body motion of the background. Any deviation
from this movement implies an independent motion, which is estimated by the
differentiation of the point position over time.

The second block, i.e. the computation of the ego-motion of the camera consti-
tutes the core of this dissertation. A variety of simulations have validated the im-
plementation of the proposed methods. The experimental results have shown the
robustness and accuracy of the method using large sequences of stereo images.

9.2 Conclusions

The robust and real-time computation of the 6 degrees of freedom of ego-motion
from stereo sequences has shown to be possible. This is true if the image sequence
fulfills some minimal requirements, as presented in Section When this require-
ments are not fulfilled, the inertial sensor data, if available, can be used to increase
robustness. The method has shown to be adaptable to many scenarios and applica-
tion areas. The experimental results have shown the potential applicability of this
method to the Simultaneous Localization and Mapping problem, by building a 3D
cartography of the scene. Indoor applications have been tested with positive results.
Finally, a model-free pose-estimation of small objects has also been performed.

9.3 Future Work

The information provided by this framework can be used by advanced intelligent
vehicle driving assistance systems, like obstacle detection, autonomous navigation
and self localization. Furthermore, within the framework much can still be done, es-
pecially referring to the block Registration of Image Features. In the dissertation, this
block was not addressed in detail, allowing some flexibility in the actual implemen-
tation. Nevertheless this block takes more than 2/3 of the total time requirements.
Improving the quality of the output of this block will automatically improve the rest
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of the estimates. Decreasing its computation time will be beneficial too, not only
because of the larger resolution time, but also because the correspondence problem
becomes simpler for smaller motions.

One way to increase speed and quality is using the prediction stage of the Kalman
Filter. If the prediction happens to be accurate, the time required for finding a match
reduces and the probability of finding a correct match increases. Another way to
increase accuracy is by integrating the ego-motion information in the matching pro-
cess. Thanks to the computation of ego-motion the complete transformation of the
scene between any two times is known. This allows for the computation of the ho-
mography of image patches. An example is given in Figure where the first and
last images of a sequence are shown. A patch image was tracked over time and the
corresponding homography was computed with the ego-motion information at reg-
ular intervals. A tracking method can make use of this information to increase the
performance of the algorithm.

9.4 Outlook

The computational power of computers increases day by day and new and better
computer vision algorithms and methods are continuously developed. Open com-
petitions like the DARPA Grand Challenge (http://www.grandchallenge.org) and re-
search initiatives like INVENT (http://invent-online.de) are helping to accelerate re-
search and to promote the development of more advanced systems. Some applica-
tions, like autonomous navigation, have already proven to work well in controlled
environments (http://www.darpa.mil/grandchallenge05/GCO5winnerv2.pdf). Much
more is expected in the near future.

Intelligent vehicles of the future will contain a redundant set of sensors and
sources of information; such as cameras, infra-red-sensors, lasers, radars, geograph-
ical data bases and digital maps, GPS data and even the exchange of data between
different vehicles. The redundancy obtained by multiple sensors provides a con-
siderable improvement in overall data quality, compared to the information from
individual sensors. A camera is the sensor which provides more information and its
use has not been completely exploited. In this thesis, the use of sequences of images
to estimate ego-motion information has been proven.
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Quaternions

Quaternions are denoted by the set H and are a non-commutative extension of the
set of complex numbers C. Being the set C = R + R, the set of quaternions is
defined as

H=C+Cj, with j2=—1 and ij = —ji (A.1)

By expanding Equation a quaternion ¢ is defined as

o

g = (qo+ i)+ (qy+ q.1)j
= Qo+ @Gt+q)+a17, 9,9 0,9 €R (A.2)

The complex term 77 is usually replaced with & for simplicity. The set of quaternions
H is isomorphic to the Euclidean set E* and has a structure of non-commutative
algebra. Observing that

2 -9 - _ 2 -
ro= b Lok ; (A.3)
1] = k, gk = 1, ik = —j
and the anti-commutative properties
ji = —k, kj = —i, ki = j (A.4)

the product between a quaternion p = py + p,i + p,j + p.k and the quaternion ¢ is

Pqd = (Poqo — PGz — PyQy — P-4~

(

(Poqe + P20 + Pyqz — D2qy)t
(

(

J
k.

pOQy — Pzqz + prO + P24z
Poq: + P2Qy — Pyqz + P=q0

)
)
)
)

+
_I_
+

The product ¢p has similar structure but with some signs changed, i.e.
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qp = Poqo — Paxdx — Dyqy — P29-

( )
+ (pOQm + Pzqo — prz +pZQy)Z
+ (pOQy + Pzqz + PyQO - szm)j
+ )

P0Gz — Paly + Pyle + D2qo)k

and therefore, in general, the product of two quaternions is not commutative, i.e.
pq # Gp. When considering a quaternion as a 4 dimensional column vector, the
product of quaternions can be expressed as the product of a 4 x 4 matrix and the
vector, i.e.

s | Pz Po Pz Dy s — P& (A.5)
PI=1p, p. po - | 1771

D —Dy Dz Do

One can choose also to associate the matrix to the second quaternion, i.e.

Po —DPz _py —DP:z

S — Pz Po Pz _py S P ° (A 6)
P Py —DP: Do Pz 1 q

D2 py Pz Do

Qo

noting that P and P differ only on lower-right hand 3 x 3 sub-matrix, which is
transposed.

The dot products of quaternions is the scalar obtained as the sum of the products
of the corresponding components:

P-4 = poqo + Dule + PyQy + -G (A.7)

and the dot product of a quaternion with itself defines the square of the norm of the
associated vector, i.e.

gl =4¢ -4 (A.8)

Observing the anti-commutative rules of Equation the conjugate of a quater-
nion is obtained negating its imaginary part, i.e.

d" = qo— 1 — qyJ — ¢:k (A.9)

In order to obtain the associated matrices of the conjugate of a quaternion, the as-
sociated matrices for the original quaternion must be transposed. Observe also that
the associated matrices are orthogonal and therefore PPT = ¢ - ¢ 144 (and also

PP" = G- §1I,..). The product of a quaternion with its conjugate is real:

i =@+i+a+aE=4-4 (A.10)
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The inverse of a nonzero quaternion is defined as

o %

gl=12 (A.11)

A subgroup of H is the set of unit quaternions, i.e. the group of quaternions with
unity norm. They are denoted with S* and defined as

S*={GeH]||q?=1} (A.12)

The set of all unit quaternions is simply the unit sphere in R*. The rotation group
SO(3) is embedded into the group S3. To see this, first observe that dot products are
preserved, i.e.

(gp) - (¢7) = (QP)-(Q7F) (A.13)
)

Il
N o
~
QO
. N
Q
<o

since the matrices associated with quaternions are orthogonal. Being ¢ a unit quater-
nion we can conclude that

(gp) - (g7) =p -7 (A.14)

A quaternion can be seen as the pair (gy,q) where ¢ € R and g € T3,
i.e. a pure imaginary quaternion represents a vector in Euclidean space, i.e.
d = 0+ ¢, + g, + q. represents the vector g = ¢, + ¢, + ¢. (at the same time, scalars
in R can be represented by real quaternions with zero imaginary part). The rotation
of a pure imaginary quaternion 7 with a rotation unit quaternion ¢ is obtained as the
composite product:

? = §rq* (A.15)

where #' is also pure imaginary. Expanding Equation we obtain:

¥ = §rq = (QF)§ = Q' QF (A.16)
=T .
Q Q being equal to
G- g 0 0 0
olg=| 0 @tea-¢-¢) 2wt - w) 2(¢:q- + qogy)
0 2(qyqe + 04=) (@ -G +a;— a2 2(99 — 90x)
0 2(¢02 + qoay) 2(¢:0y — 90¢=) (@ — & — 4 +¢2)

Since ¢ is a unit quaternion, @ and Q are both orthonormal and ¢ - ¢ = 1 and the
lower right hand 3 x 3 sub-matrix is also orthonormal. It can also be demonstrated
that the determinant of the sub-matrix is +1. Indeed the sub-matrix corresponds to
the orthonormal rotation matrix of the group SO(3).

The inverse process, i.e. obtaining a unit rotation quaternion from a orthonor-
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mal rotation matrix can be accomplished using the following combinations of the
diagonal elements of Equation

L+ 711 + oo + r33 = 4¢)
1+ 71 — 190 — 133 = 4¢>
L — 711+ rog — 733 = 4Aq;
1 =7y —rog + 733 = 4q2
where the first quaternion component to extract is the largest (in order to ensure

numerical accuracy). The other 3 components of the quaternion are obtained from
the following off-diagonal sums and differences:

r13 — T31 = 4qoqy riz + 131 = 4q.q,
To1 — T2 = 4qoq. To1 + T2 = 4q,qy
r32 — T3 = 4qoq, r32 + rog3 = 4qyq.

replacing the first component found and solving for remaining components.

Unit quaternions can be used to interpolate rotations. The direct linear interpola-
tion of unit quaternions would not produce a rotation since quaternions live on the
unit hyper-sphere. Instead, a spherical linear interpolation is performed. The spheri-
cal linear interpolation is usually defined as a function Slerp(g, p,t) where 0 <¢ <1
and g and p are the quaternions to be interpolated. The spherical linear interpolation
is defined as

sin((1 —¢)Q) . sin(tQ)
sin € + sin € p

where Q = arccos(q - p) is half the angle between ¢ and p. From Equation it
can be easily be seen that

Slerp(g,p,t) = (A.17)

o

Slerp(q,p,0) =G and Slerp(q,p,1) =p (A.18)

and the corresponding symmetry of interpolation

Slerp(qg, p,t) = Slerp(p,q,1 —t). (A.19)
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Abbreviations and Symbols

The following symbols, abbreviations and notation conventions are used throughout
the thesis.

Notation

Scalars are denoted by Roman or Greek lower-case letters in italic form, e.g. a, (3.
Vectors are denoted with lower case bold-italic symbols, e.g. p, z.

Matrices are denoted with upper case bold-italic symbols, e.g. M, W'

A vector joining two points is denoted with right arrow over the points, e.g. P—Q>
An homogeneous vector is denoted as a vector with a point at the left, e.g. 'P, ‘m.
The real unavailable value of a variable is denoted with a bar, e.g. p, R.

Functions are denoted according to the type of variable returned, e.g. g(a) or f(s).
Quaternions are denoted with aring, e.g. p, q, 7.

The transposed of a matrix A is denoted as A”.

The identity n x n matrix is denoted as I,,,,.

The null n x m matrix is denoted as 0,,,,.

Abbreviations
CRLB Cramér-Rao Lower Bound.
CvV Computer Vision.
EKF Extended Kalman Filter.
KF Kalman Filter.
LS Least Squares.
LMedS Least Median of Squares
MFE Multi-Frame Estimation.
RANSAC Random Sample Consensus.
SAD Singular of Absolute Differences.

SLAM Simultaneous Localization and Mapping.
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Abbreviations and Symbols

Symbols

(S

SMC
SSD
SvD
TFE
TLS

p.d.f.
d.o.f.

Smoothness Motion Constraint.
Singular of Squared Differences.
Singular Value Decomposition.
Two-Frame Estimation.

Total Least Squares.

Probability density function.
Degrees of freedom.

Rotation Matrix.

Translation Vector.

Homogeneous Transformation Matrix.
Cycle time k.
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