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Response of Fruit Body Assemblage
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Henrik Oechler and Franz-Sebastian Krah*

Faculty of Biological Sciences, Institute for Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt am Main,
Germany

Understanding how species relate mechanistically to their environment via traits is a
central goal in ecology. Many macroecological rules were found for macroorganisms,
however, whether they can explain microorganismal macroecological patterns still
requires investigation. Further, whether macroecological rules are also applicable in
microclimates is largely unexplored. Here we use fruit body-forming fungi to understand
both aspects better. A recent study showed first evidence for the thermal-melanism
hypothesis (Bogert’s rule) in fruit body-forming fungi and relied on a continental spatial
scale with large grid size. At large spatial extent and grid sizes, other factors like dispersal
limitation or local microclimatic variability might influence observed patterns besides the
rule of interest. Therefore, we test fungal assemblage fruit body color lightness along a
local elevational gradient (mean annual temperature gradient of 7◦C) while considering
the vegetation cover as a proxy for local variability in microclimate. Using multivariate
linear modeling, we found that fungal fruiting assemblages are significantly darker at
lower mean annual temperatures supporting the thermal-melanism hypothesis. Further,
we found a non-significant trend of assemblage color lightness with vegetation cover.
Our results support Bogert’s rule for microorganisms with macroclimate, which was also
found for macroorganisms.

Keywords: color, community mean, climate, traits, thermal-melanism hypothesis, Bogert’s rule

INTRODUCTION

Coloration in organisms functions during thermoregulation (Caro, 2017; Cuthill et al., 2017;
Delhey, 2019). Studying the relationship between organism traits and their thermal environment is
traditionally an integral part of ecology and has led to formulating many universal rules (Bergmann,
1847; Allen, 1877; Rensch, 1929). Yet, understanding community shifts and identifying which
functional traits respond to changes in the thermal environment remains important in times of
global warming (McGill et al., 2006). One such rule, the thermal-melanism hypothesis (TMH)—
Bogert’s rule—assumes an advantage of dark-pigmented ectotherms in cold habitats (Bogert, 1949).
Macroecological patterns supporting this rule have been found in macroorganisms like insects
(Zeuss et al., 2014; Heidrich et al., 2018), reptiles (Clusella-Trullas et al., 2008; Castella et al., 2013;
Broennimann et al., 2014), and also in microorganisms such as yeasts (Cordero et al., 2018; Pinkert
and Zeuss, 2018) and fruit-body-forming fungi (Krah et al., 2019). Fungal fruit body assemblages,
recorded across 40 years, were darker at colder macroclimatic temperatures on a continental
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scale (Krah et al., 2019), supporting the thermal-melanism
hypothesis. Despite these insights, we still require more studies
investigating the macroecological rules for microorganisms,
as a recent review suggested (Dickey et al., 2021). Further,
besides cold environments via macroclimate, closed vs. open
vegetation cover can result in cold habitats, with potential
effects on fruit body color. Macroecological studies typically
cannot account for the local variability due to their large grid
size—100 km × 100 km (Rahbek, 2005; Chown and Gaston,
2016). Thus, we do not know whether macroecological rules
can also explain trait responses in local thermal variability, e.g.,
mediated via vegetation cover. Finally, on macroecological
scales, other processes, than climate, may produce the
observed pattern, e.g., dispersal limitation (MacArthur and
MacArthur, 1961; Leibold et al., 2004; Vellend, 2010; Peay
et al., 2012). Therefore, we investigated Bogert’s rule for
fruit body-forming fungi along a macroclimatic elevational
gradient and assessed vegetation cover as a proxy for local
microclimatic variability.

To our knowledge, changes in color lightness along
an elevational gradient have not been studied before in
fruit body-forming fungi. Diez et al. (2020) demonstrated
that many species fruited at higher elevations across a
50 years dataset, likely in response to global warming,
but we currently lack a mechanistic understanding of the
driving processes involved. On a latitudinal scale, Krah
et al. (2019) found that assemblages are darker in colder
macroclimates. Although fruit bodies only represent an
ephemeral stage in fungal development, sessile fruit body-
forming fungi are dependent on the dispersal of spores
released by their sexual reproductive organ (Halbwachs et al.,
2016). Suboptimal dispersal of spores would decrease the
chance of reaching new habitats or escaping unfavorable
conditions (Norros et al., 2015), lowering fecundity and
fungal genetic diversity (Lee et al., 2010). According to the
thermal-melanism hypothesis, darker pigmentation may be
advantageous because it allows for more rapid heating through
solar radiation (Clusella-Trullas et al., 2008; Castella et al.,
2013; Broennimann et al., 2014; Krah et al., 2019). Although
a detailed understanding of the physiological processes is
currently lacking, there is evidence that miotic recombination
(step after karyogamy, when typically four haploid spores
are produced) is enhanced by a higher temperature of the
fruit body (Kües, 2000). Fruit body temperatures above
the ambient is thus assumed to benefit the fruit body-
forming fungus by faster or enhanced spore development.
Other mechanisms may also lead to darker fruit bodies in
higher elevations. Precipitation increases with the elevational
gradient, leading to more humid environments. Such moist
habitats may correspond with higher pathogen pressure
(cf. Yin et al., 2016) and pigments exhibit antimicrobial
properties (Cordero and Casadevall, 2017). Thus, darker fruit
body assemblages with increasing precipitation would be
plausible. We thus expect darker fruit body assemblages with
higher precipitation.

Besides macroclimate (Tedersoo et al., 2014a; Vìtrovskı
et al., 2019), fungal fruiting community composition is also

influenced by the microclimate (Krah et al., 2018; Müller
et al., 2020). The vegetation cover strongly drives microclimate
in forest ecosystems: beneath a dense tree vegetation cover,
macroclimatic mean conditions can be buffered, whereas the
loss of vegetation cover leads to increased solar radiation and
thus higher temperatures, UV radiation, and vapor pressure
deficit (Scharenbroch and Bockheim, 2007; Thom et al., 2020;
Frenne et al., 2021). Depending on the vegetation cover,
the microclimatic variability can even exceed the variability
of the macroclimate (Zellweger et al., 2020). Although in
deciduous forests with completely closed vegetation cover, less
than 10% of direct beam and diffuse radiation reaches the
forest floor, they still experience diurnal fluctuations in near-
ground temperature (Reifsnyder et al., 1971; Hutchison and
Matt, 1977; Boehnke, 2021). Further, the loss of vegetation
canopy has increased with climate warming and is likely
to increase further due to enhanced disturbances and tree
die-off due to climate change (Schelhaas et al., 2003; Seidl
et al., 2014). Vegetation canopy cover has thus frequently
been used as proxy for stand microclimate (Scharenbroch
and Bockheim, 2007; Seibold et al., 2016; Krah et al., 2018;
Müller et al., 2020; Thom et al., 2020; Vogel et al., 2020).
We have no prior knowledge of fruit body coloration in
microclimates; thus, different responses are theoretically possible.
First, dark forest stands with high vegetation cover are colder
than those under open vegetation cover. Since darker forest
stands are not free of radiation (Reifsnyder et al., 1971;
Hutchison and Matt, 1977), we would expect even darker
fruit bodies under high vegetation cover if the thermal-
melanism hypothesis can explain their pattern. Further, when
considering the harsher conditions under open vegetation
cover—higher maximum temperatures, drought, radiation—
both more light-colored or more dark-colored fruit bodies
could be expected under open vegetation cover. Under open
vegetation cover, dark fruit bodies may heat up rapidly
and overheat and thus weak pigmentation may reduce heat
stress [“thermal-melanism hypothesis” (Bogert, 1949)]. However,
strong pigmentation of fruit bodies may also lower the
damaging effect of radiation and desiccation under open
canopies because pigments can reduce oxidative stress (Cordero
and Casadevall, 2017) [“melanism-desiccation hypothesis” (Law
et al., 2020) and “photo-protection hypothesis” (Rensch, 1929;
Law et al., 2020)].

Here we thus test the response of the assemblage
fruit body color lightness, calculated as the assemblage
mean, along with a local elevational gradient (mean
annual temperature difference ca. 7◦C between highest
and lowest plot) and a vegetation cover gradient as
proxy for microclimate (Figure 1). We hypothesize the
following pattern: (1) the assemblage fruit body color
lightness decreases with macroclimatic temperature; (2)
The assemblage fruit body color lightness decreases with
higher vegetation coverage (lower microclimatic temperature);
however, alternative patterns are also possible, as outlined
above by the melanism-desiccation hypothesis or photo-
protection hypothesis. These hypotheses further relate to
whether macroecological rules are similar between macro-
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FIGURE 1 | Study setting, gradients and expected pattern of assemblage fruit body color lightness. Displayed are the elevational gradient reflecting the
macroclimatic temperature gradient. Further, displayed is the closed and open vegetation cover, which we use as a proxy for the microclimate. We investigate
whether the pattern of the assemblage fruit body color lightness follows predictions of the thermal-melanism hypothesis (TMH), which states darker pigmented
individuals in colder environments. Alternative hypotheses for the microclimate include the photo-protection hypothesis (PPH; vegetation cover as a proxy for UV
radiation) and the melanism-desiccation hypothesis (MDH; vegetation cover as a proxy for drought).

and microorganisms and whether they can also apply to
microclimatic temperature.

MATERIALS AND METHODS

Study Site and Design
Our data set was assembled within the BIOKLIM-project, which
was installed to investigate the dependency of various taxa on
the environmental factors and the expected effects of climate
change on mountain range forest ecosystems in Central Europe
(Bässler et al., 2009). The BIOKLIM-project is situated both
inside and outside the boundaries of the Bavarian-Forest National
Park, located in southeastern Germany (48◦54′ N, 13◦29′ E)
along the border to the Czechia. The National Park covers an
area of approximately 242 km2 of the Bohemian massif. In
conjunction with the adjacent Czechia Šumava National Park,
it forms one of the most extensive forest landscapes in Central
Europe (Bässler et al., 2010a). It is characterized by montane

and high montane areas with slopes facing predominantly
southwest toward the Danube River. The elevational gradient
of approximately 1,100 m (between 287 and 1,420 m a.s.l.)
of the study site results in a difference in the mean annual
air temperature of 10.5◦C in valleys near the Danube River
and 3.8◦C in higher montane zones as well as the total yearly
precipitation ranging from 760 to 1,340 mm in the year 2016.
This precipitation occurs as snowfall with snow cover persisting
for 7–8 months at high elevations and 5–6 months in valleys,
respectively (Cailleret et al., 2014). The forested area of the
National Park, which accounts for 98% of its surface (Elling et al.,
1987), mainly consists of tree species such as European Beech
(Fagus sylvatica) and Norway Spruce (Picea abies). At higher
elevations, the montane forest is dominated by Norway Spruce
(Bässler et al., 2015b).

Following the elevational gradient, 157 plots were established
along four transects. The arrangement of the plots ensures to
encompass the main vegetation- and management types available
and map the elevational gradient well with several replications.
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Fruit Body Inventory
The sampling process of fungal fruit bodies followed the Alberta
Biodiversity Monitoring Program (Stokland and Sippola, 2004)
conducted from August to October 2016. Here, a total time of
2 h per plot was set for sampling an area of 0.1 ha, in which
fungal fruit bodies from a minimum of 15 dead-wood objects
representative for each plot were collected. For the remainder
of the time, fungi from as many objects as possible are sampled.
For further information regarding the sampling process also see
Bässler et al. (2009) and Bässler et al. (2010b). Species were
identified either in the field or microscopically if necessary. The
nomenclature follows that of MycoBank (Crous et al., 2004). To
study the response of assemblage mean fruit body color lightness
to components of the thermal environment, we standardized our
dataset to a group of fungal species with comparable traits due to
similar lifestyles. Wood-decaying fungi are of utmost importance
for forest ecosystems due to their role in circulating nutrients and
providing habitats for other organisms (Lonsdale et al., 2008).
Retaining diversity among this group is crucial for a forest’s
regeneration and ultimately the associated ecosystem services
it provides. Like other saproxylic organisms, however, wood-
decaying fungi are threatened by removing deadwood through
silviculture management and general loss of old growth forests
(Lindhe et al., 2004; Lonsdale et al., 2008). This threat highlights
the need to understand species composition through trait-based
assembly processes better. We selected saprotrophs within the
dataset based on an existing genus-coding (Tedersoo et al.,
2014b). Ultimately, 1,771 samples of wood-decaying fungi from
144 fungal species were considered in our study (Supplementary
Table 1), with an average of 14± 5 species per plot (mean± SD).
Please note that we also performed statistical analyses (see
below) separately for both fruit body types and retrieved highly
similar results (data not shown) and therefore analyzed both fruit
body types together.

Environmental Variables
To address our hypotheses, we investigated the response of
fungal fruit body color lightness to macro- and microclimate.
We used macroclimatic variables based on an ArcEGMO terrain
model including information on 14 main climate stations, 88
rain gauges, and 13 temperature and humidity-logger, and 30
data loggers placed on representative plots (Becker et al., 2002).
The relevant environmental variables could then be extracted
from the model for each plot (Bässler et al., 2010a). For
further details of the modeled macroclimatic data please see
Müller et al. (2009) and Bässler et al. (2010a; 2010b, 2015b;
2016). Based on this macroclimatic modeled data we calculated
the mean annual temperature of the vegetation period and
the summed precipitation of the vegetation period. We have
chosen the vegetation period as the frame for our environmental
variables as this is also the main time for mycelial activity
and fruit body formation in fungi (cf. Andrew et al., 2016;
Bässler et al., 2016). Further, we quantified vegetation cover as
the proxy for microclimatic temperature (Seibold et al., 2016;
Krah et al., 2018; Frenne et al., 2019; Vogel et al., 2020),
which was individually estimated per plot during the fruit

body sampling. The degree of vegetation coverage represents
the microclimatic conditions of the mushroom fruiting bodies,
encompassing multiple aspect of the microclimate such as
temperature, amount of UV-radiation, and vapor pressure deficit
(Scharenbroch and Bockheim, 2007; Thom et al., 2020). The
vegetation cover is defined here as the sample area shaded
by the horizontal projection of the overlaying layers of tree
foliage (upper, middle, and under layer) in percentage (Bässler
et al., 2009). Due to multiple layers, this percentage can exceed
100%. The range of this environmental variable extends from
completely open (0% vegetation cover) to covered by two layers
of vegetation (200% vegetation cover) with a mean vegetation
cover of 93.7% and a standard deviation of 48.1%. Additionally,
we quantified variables associated with the host, including
number of tree species (hosts), summed dead-wood surface
area, and average decay stage per plot. These variables were
recorded during the sampling. The number of tree species per
plot derives from the dead-wood objects hosting the sampled
fungi of each plot. The sampled dead-wood surface area was
calculated as the sum of the surface of all sampled objects.
The surface was approximated via the recorded length and
diameter describing a cylindrical shape. To calculate the average
decay stage, each dead-wood object was attributed a numerical
value relating to the progress of decay [alive (0), freshly dead
(1), bark loose or removed (2), splint already soft (3), and
log shape disappeared (4); Albrecht, 1990] which was then
averaged per plot.

Trait Data
To link the occurrence of species to their traits, we attributed
a mean cap color lightness value to each species. We adopted
a protocol previously developed and established to be accurate
(Krah et al., 2019) to determine the lightness from the HSL
(hue, saturation, lightness) color space model (van den Broek
and van Rikxoort, 2004). Here, a representative and publicly
available image for each species is selected based on the authors’
expertise to represent field conditions from different websites.1–6

The color values of nine different pixels (one in the center of
the fruit body cap and two radiating outward in four orthogonal
directions) are sampled using the program “pipette” (Stefan Trost
Media7). The three components, hue, lightness, and saturation
were averaged for each species, and the mean lightness was
used for further analyses (Supplementary Figure 1). To ensure
accurate data, we applied a quality control protocol, e.g., that
the selected images are neither over- nor underexposed and the
pixels are not sampled in areas with reflections from water or
contaminations (e.g., leaves, dirt, animals) (Krah et al., 2019). We
assumed variation in color lightness variation to be higher at the
interspecific- than intraspecific-level.

1fungi-without-borders.eu
2 123pilze.de
3 mycokey.com
4 mykoweb.com
5 mushroomobserver.org
6 mushroomexpert.com
7 http://www.sttmedia.com
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Another thermally relevant trait included in our analysis
was fruit body size (Bässler et al., 2021). The minimum and
maximum fruit body cap diameter values were obtained from
the literature (Knudsen and Vesterholt (eds), 2012) and online
resources.8–10 We calculated the average fruit body cap diameter
from these and measured fruit body size. In our analysis, we
only considered Basidiomycetes with stipitate- and sessile-pileate
fruit bodies to ensure that our samples share a comparable fruit
body morphology, and hence be subjected to similar ecological
constraints (Tóth and Feest, 2007; Bässler et al., 2015a). Fruit
body types were coded based on Sánchez-García et al. (2020).

Preparation of Community Matrix and
Null Model
We determined the assemblage fruit body color lightness at
the plot level. Here, a community matrix with fungal species
(Supplementary Table 1) and the sampled plots in presence-
absence data was created. Next, we calculated assemblage means
for the log10-transformed trait values of the species per plot. The
minimum number of species per assemblage (plot) is important
to ensure more meaningful communities and mean trait values.
However, larger minimum number of species per plot removes
plots from the analysis, thus reducing the elevational range and
statistical power. To maximize the number of species per plot
and the number of plots, we used at least five species per plot
(n ≥ 5). The effects of the main results remained significant with
lower and larger number of species per plot (n ≥ 3, n ≥ 7)
(Supplementary Table 2). An object-based analysis was also
considered, however, due to many fine woody debris objects
harboring only one or two species, too many data points would
have been lost from the analysis. Based on a threshold of five
species per plot, 129 plots remained for the analysis with an
elevation range from 287 to 1,420 m a.s.l., covering a mean
temperature of 7.9–14.5◦C.

The assemblage fruit body color lightness might be correlated
to the species diversity of communities, which differs with
vegetation cover (Krah et al., 2018), therefore potentially
confounding results. Further, the trait pattern observed may also
stem from a changed mycelium community, which may have
differing fruit body morphology independently of microclimate
(artifact). In this case, we would expect a random distribution
of traits with microclimate. To account and test for both an
uneven number of species and to test against the artifact, we
used a null model (“independentswap,” Gotelli and Entsminger,
2003) that randomizes species occurrence across sites but fixes
both marginal sums for sites (i.e., species richness of sites)
and marginal sums for species (i.e., occupancy of logs across
the plots). We used the function randomizeMatrix from the
R package picante (Kembel et al., 2010). We calculated the
observed logarithmic assemblage mean (OBS) as well as the
standardized effect size (SES) based on Cohen (2013) with
10,000 randomizations. Here, the expected mean across the

8 http://www.fungi-without-borders.eu
9 http://www.pilze-ammersee.de
10 https://www.mycoquebec.org

10,000 randomizations is subtracted from the observed mean,
and the difference is divided by the standard deviation of the
randomizations for each plot.

Statistical Analysis
We used a multivariate linear model to test the response
of assemblage fruit body color lightness to macro- and
microclimate. We computed separate models with the observed
assemblage mean (OBS) and the standardized effect sizes (SES)
as the response variable. Our main goal was to test, whether
the assemblage mean fruit body color lightness responds to
the thermal environment. Therefore, we included temperature
(mean annual temperature of the vegetation period) and
vegetation cover as explanatory variables. We further added
the summed precipitation during the vegetation period as
predictor to the model.

Additional to the macroclimate, host-related parameters may
further influence our analysis and therefore we considered the
number of host species, the sampled surface and the decay stage
as covariates: (i) The host tree species was found to influence
certain traits of wood-inhabiting fungi (Purhonen et al., 2020).
Although we did not expect a response regarding color lightness,
we included the number of host tree species in the model to
account for potential effects. (ii) To account for sampling bias and
standardize each plot for sampling effort, the log10-transformed
summed surface area of all sampled dead-wood objects was
also incorporated. (iii) Further, the stage of decay is associated
with water content and temperature stability of the dead-wood
(Pouska et al., 2016). Therefore, certain decay stages could favor
specific fruit body traits and ultimately affect fungal community
composition (Rajala et al., 2012; Pouska et al., 2017). Therefore,
we added it to the model. (iv) Fruit body size in fungi was recently
a thermally relevant fruit body trait (Bässler et al., 2021). We
accounted for potential correlations between color lightness and
size traits in response to temperature by including fruit body
size in our model.

Finally, collinearity amongst the predictor variables might
affect the model performance. To avoid collinearity, Dormann
et al. (2013) recommend that all pairwise correlation coefficients
should not exceed the threshold of | r| < 0.7. The variables
exhibit only weak collinearity (| r| < 0.6), and thus all could
be used (Supplementary Figure 2). Especially, temperature and
vegetation cover showed no substantial collinearity (r = 0.38).
Thus, macroclimatic temperature was not substantially correlated
to vegetation cover.

RESULTS

Our multivariate linear model found that temperature was the
most important predictor variable (highest effect size of the
model predictors, Table 1). The model showed an explained
variance of 29% (R2 = 0.29). Further, note that temperature
alone had an adjusted R2 of 0.19 when considered as univariate
predictor (Figure 2). Overall mean temperature positively
affected the assemblage fruit body color lightness (t = 5.25,
p < 0.001; Table 1 and Figure 2). Assemblage fruit body
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TABLE 1 | Multivariate linear model testing the effect of temperature on
assemblage fruit body color lightness.

Predictor variable t-value (OBS/SES) P-value (OBS/SES)

Intercept −4.4/−2.01 <0.001/0.047

Temperature 5.25/4.74 <0.001/<0.001

Vegetation cover −0.95/−0.45 0.345/0.656

Precipitation 2.18/2.32 0.031/0.022

Nr. of host species 0.49/0.37 0.623/0.715

Dead-wood surface 0.14/−0.63 0.89/0.533

Decay stage −3.15/−3.12 0.002/0.002

Fruit body size −2.72/−1.92 0.007/0.057

Adj. R2 0.29/0.27

Displayed are the t-values of the observed (OBS) assemblage fruit body color
lightness as response variable, as well as the t-values for the standardized effect
size (SES) of the assemblage fruit body color lightness and the corresponding
p-values. Bold numbers indicate significant effects (p < 0.05). As goodness of
fit we report the adjusted R2-values.

color lightness was further positively influenced by precipitation
(t = 2.18, p = 0.031; Table 1) and negatively by average decay
stage (t = −3.15, p = 0.002; Table 1). However, the assemblage
mean color lightness was not significantly affected by vegetation
cover (t = −0.95, p = 0.345; Table 1 and Figure 2). The observed
assemblage fruit body lightness responses were consistent with
the responses of the standardized effect sizes of the assemblage
lightness based on the null model (Table 1 and Figure 3).

DISCUSSION

We tested patterns predicted by the thermal-melanism
hypothesis (Bogert’s rule) for fruit body-forming fungi on a
local macro- and microclimatic gradient. We found significantly
darker fungal assemblages in colder macroclimatic temperatures
and lower precipitation. However, we did not find a significant
effect of the vegetation cover (proxy for microclimate) on fungal
color lightness. Our findings thus support the thermal-melanism
hypothesis for ectotherm macrofungi. However, fruit body
coloration of wood-inhabiting fungi does not seem to explain
fruiting community changes between microclimates.

Multiple macroecological studies investigating color lightness
of different species groups along macroclimatic latitudinal
gradients, have found broad support of the thermal-melanism
hypothesis (Lindgren et al., 2014; Zeuss et al., 2014; Heidrich
et al., 2018; Stelbrink et al., 2019). Besides latitudinal gradients,
darker coloration has also been found at higher elevations
in ants, bees, flies, wasps, and moths (Bishop et al., 2016;
McCabe et al., 2019; de Souza et al., 2020; Heidrich et al.,
2021). Thus, currently most macroecological support comes from
macroorganisms (Dickey et al., 2021).We can add such a local
pattern for microorganismal fruit body-forming fungi with this
study. Thus, accumulating evidence suggests the generality of
darker organisms in colder climates. However, according to
Cordero et al. (2018), three elements should be fulfilled upon
which the thermal-melanism hypothesis could be confirmed: (1)
spatial trait patterning with temperature, (2) elevated heating

of dark-colored individuals under same conditions, and (3) a
fitness advantage of dark-colored individuals in cold climates.
For fruit body-forming fungi, there is now support for (1), via
our findings and one previous study (Krah et al., 2019). Further,
Krah et al. (2019) also could show more rapid heating of darker
fruit bodies. However, it is currently unclear whether darker fruit
body coloration leads to a fitness advantage in colder climates
than light-colored fruit bodies. Further studies should thus add
this missing link to the thermal-melanism hypothesis for fruit
body-forming fungi, e.g., by measuring fecundity (fruit body
biomass and number of viable spores) of differently light-colored
species within experimental settings where temperature can be
independently manipulated. Besides temperature, we also found
darker fruit body assemblages with low precipitation (Table 1),
which is in contrast to our expectation that moister habitats
contain a higher pathogen pressure resulting in more defense via
pigmentation. Our results thus suggest that drier conditions are
related to pigmentation, however, please note that our elevational
gradient is situated in an area with overall high precipitation and
thus our study site is not able to resolve drought conditions as
e.g., occurring in Spain.

Further, regarding microclimate, we did not find a significant
response of assemblage fruit body color lightness of wood-
inhabiting fungi with vegetation cover. Studies testing the
coloration of assemblages in microclimates are otherwise rare.
One study tested moth color along an elevational gradient and
found 10–20% explained variation of vegetation cover but did
not find marked differences in color between closed and open
stands consistent with our findings (Heidrich et al., 2021).
Another study investigated color lightness in ant communities
within different tree strata and found that they are darker
in the canopy than near the ground, which the authors
attribute to increased UV radiation (Law et al., 2020). We
can think of three possible ecological explanations for a
lack of response of assemblage fruit body color lightness
with microclimate (for data limitations, see below): First, we
used mean species traits and although a significant change
in community composition was found between microclimates
(Krah et al., 2018; Müller et al., 2020), changes in traits
may be more subtle. Thus, intraspecific trait variability of
individuals occurring under closed and open canopies may
explain trait change, which is not covered by species mean traits
(Krah and Bässler, 2021). Second, fruit bodies may react to
microclimate via biochemical rather than morphological traits
(Krah et al., 2021), i.e., because responses need to happen
rapidly and phenotypic changes may be too slow compared
with biochemical responses such as heat shock proteins. Third,
not only abiotic factors affect fruit body coloration along
with environmental gradients. Further studies should thus also
include biotic predictor variables, intraspecific trait variability
and biochemical traits.

Finally, certain limitations arise from our data. First, we
used presence/absence analyses because fruit body counts
are not a good measure of abundances for fruit body-
forming fungi since multiple fruit bodies can arise from a
single or multiple mycelia. Thus individual-based abundances
are not reliable when using fruit body counts. However,
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FIGURE 2 | Response of the assemblage fruit body color lightness. (A) Response of the assemblage fruit body color lightness with the mean temperature.
(B) Response of the assemblage fruit body color lightness with the vegetation cover. The blue line indicates the univariate linear regression line with the standard
error of the mean (shaded area). Statistics within plots are from univariate linear models. For multivariate statistics see Table 1.

FIGURE 3 | Response of the standardized effect size of the assemblage fruit body color lightness. Here we used the null model “independentswap.” Response of
the standardized effect size (SES) of the assemblage mean fruit body color lightness (A) to the mean temperature, and (B) to the vegetation cover per plot. The blue
line indicates the univariate linear regression line with the standard error of the mean (shaded area). For multivariate statistics see Table 1.

presence/absence analyses can be considered conservative in their
interpretation. Second, we used vegetation cover as a proxy
for the microclimatic conditions, an established proxy in the
literature (Scharenbroch and Bockheim, 2007; Seibold et al.,
2016; Krah et al., 2018; Müller et al., 2020; Thom et al., 2020;
Vogel et al., 2020). However, more fine-scale measurements
would allow a more detailed estimate of the microclimate,
e.g., via data loggers. Manipulative canopy removal and the
elevational gradient would further allow standardization of

the microclimate (Krah et al., 2018). However, to account for
additional effects of microclimate, we have included several
explanatory variables in our model, which might influence
the response of the fruiting community. Especially dead
wood itself may influence the microclimate. Therefore, we
added as covariates to the model, the number of host tree
species, the sampled surface and the decay stage. We thus
accounted for possible confounding effects of the host on
microclimate. Only decay stage had a significant negative
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effect on the assemblage color lightness. Thus, with higher decay
stage we found darker fruiting assemblages. Generally dead
wood increases in water content over time (Pichler et al., 2012)
and would thus be able to maintain cooler temperatures as
compared with wood of lower water content. However, whether
water content is the driving factor here remains speculative
as other properties are also correlated to decay stage, e.g.,
C:N ratio or other organisms associated with wood decay (cf.
Rajala et al., 2012; Pouska et al., 2016). Third, color lightness
values were obtained by sampling representative images of fruit
bodies for each species. This methodology of sampling color
values using representative images has been used in previous
studies (Zeuss et al., 2014; Heidrich et al., 2021). Concerning
fungi, color values obtained through this approach have also
been confirmed to accurately represent the average fruit body
color (Krah et al., 2019). However, this approach is limited in
the ecological interpretations of our results. Ideally the color
lightness should be measured for each fruit body during the
sampling process in the field which might better reflected
trait variations in response to microclimate. Fourth, our data
is limited to understanding the underlying processes shaping
fruiting communities. Environmental treatments may or may
not affect the mycelium community. If the fruiting community
only reflects the changes of the mycelium community, we would
expect a random response of the community fruit body lightness
with the gradients. We include a null model in our analysis to
test against the random response of fruit body traits. We found
consistent results of the observed and standardized effect sizes
with our treatment (Table 1) and thus conclude that our effects
do likely not simply reflect mycelium shifts. Nevertheless, null
models cannot replace parallel investigations of the mycelium
and fruiting community to understand how climate affects the
fungal organism.

CONCLUSION

In conclusion, we found significantly darker fungal fruit
body assemblages in colder macroclimates, following predicted
pattern of the thermal-melanism hypothesis (Bogert’s rule).
However, microclimate did not significantly affect assemblage
fruit body color lightness in our study. Our results thus add
support for the thermal-melanism hypotheses which seems to

be applicable for macro- and microorganisms, however, more
research is needed on how microclimate affects macrofungal
traits. Studies should investigate intraspecific trait variability,
fecundity-color relationships, and biotic factors to understand
coloration in fungi better.
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