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Abstract: Diabetes mellitus is the fifth most common cause of death worldwide. Due to its chronic
nature, diabetes is a debilitating disease for the patient and a relevant cost for the national health
system. Type 2 diabetes mellitus is the most common form of diabetes mellitus (90% of cases) and
is characteristically multifactorial, with both genetic and environmental causes. Diabetes patients
display a significant increase in the risk of developing cardiovascular disease compared to the rest
of the population. This is associated with increased blood clotting, which results in circulatory
complications and vascular damage. Platelets are circulating cells within the vascular system that
contribute to hemostasis. Their increased tendency to activate and form thrombi has been observed
in diabetes mellitus patients (i.e., platelet hyperactivity). The oxidative damage of platelets and the
function of pro-oxidant enzymes such as the NADPH oxidases appear central to diabetes-dependent
platelet hyperactivity. In addition to platelet hyperactivity, endothelial cell damage and alterations
of the coagulation response also participate in the vascular damage associated with diabetes. Here,
we present an updated interpretation of the molecular mechanisms underlying vascular damage in
diabetes, including current therapeutic options for its control.

Keywords: diabetes; oxidative stress; platelet hyperactivity; NADPH oxidase; NFkB; thrombosis;
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1. Introduction

Diabetes mellitus (DM) is a heterogeneous metabolic disorder characterized by persis-
tent hyperglycemia (HG), which can be diagnosed by quantifying glycated hemoglobin
(HbA1c) in peripheral blood. The HbA1c test provides information about glycemic levels
in the 3 months preceding blood collection and allows one to distinguish pre-diabetes
(HbA1c between 5.7% and 6.5%) from diabetes (HbA1c > 6.5%). Insufficient release of
insulin by pancreatic β cells or loss of responsiveness of cells to insulin are the cause of
HG in DM. Two main forms of DM are described: type 1 (or T1DM), which is caused by
genetic deficiency in insulin release, and type 2 (or T2DM), which is caused by insulin
resistance and has mixed genetic and lifestyle determinants. Poor glycemic control in
DM patients is accompanied by altered hematological parameters, such as hypercholes-
terolemia and dyslipidemia, and by a range of serious health complications, including
cardiovascular diseases, nerve damage (neuropathy), kidney damage (nephropathy), eye
damage (retinopathy), and limb and other peripheral tissue conditions.

Population studies suggest an increase in DM diagnosis from a current count of over
415 million patients globally to over 600 million in 2042 [1]. Six percent of the world mor-
tality rate (i.e., over 3 million deaths annually) is attributed to complications of diabetes.
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DM patients display a two- to fourfold increase in mortality caused by cardiovascular
diseases as compared to the normal population [2]. The risk of developing microvascular
complications is particularly increased with HbA1C > 7.9% (>53 mmol/mol) [3]. Disturbed
glycemic control increases the propensity for microvascular complications (e.g., retinopa-
thy, neuropathy, and nephropathy) and contributes significantly to the risk factors for
macrovascular events, such as age, physical activity, lifestyle, and ethnicity, leading to
cardiovascular disease [4].

Longitudinal studies suggest that women with diabetes (35–59 years) have a higher
mortality rate due to vascular occlusion than healthy women. However, men with diabetes
have increased risk of developing cardiovascular diseases later in life (59–70 years) [5].
Overall, sexual dimorphism in the cardiovascular risk in diabetes is attributable to a
combination of diabetes symptoms like dyslipidemia and hormonal control of vascular
balance [6].

The vascular damage associated with DM appears to have multiple and simultane-
ous causes. Platelet hyperactivity, blood hypercoagulability, reduced thrombolysis, and
endothelial damage have all been reported and appear to contribute to vascular frailty in
DM patients.

2. Platelet Hyperactivity in Diabetes

Platelets are anucleated circulating cells derived from megakaryocytes and function
to prevent blood loss resulting from injury (i.e., hemostasis). They patrol the vasculature
in healthy individuals and are activated in the presence of vascular insults like endothe-
lial denudation, leading to sub-endothelial collagen exposure, or in response to other
injury-dependent stimuli such as thrombin and von Willebrand factor (vWF). Platelets also
play a pivotal role in thrombotic and inflammatory pathologies [7]. Increased responsive-
ness of platelets (hyperactivity) has been suggested as a critical driver for cardiovascular
complications of diabetes [8,9]. Platelet hyperactivity is suggested by the detection of
increased levels of thromboxane B2 in the urine of T2DM patients [10,11]. Thromboxane
B2 is a stable degradation product of thromboxane A2, a secondary agonist released by
activated platelets.

DM-associated HG affects the expression of key platelet enzymes and receptors at the
megakaryocyte stage. The expression levels of the receptor of the negative platelet regulator
prostacyclin are decreased in T2DM, which in turn enhances platelet responsiveness [12]. In
parallel, P2Y12, a key receptor for the secondary agonist adenosine diphosphate (ADP), has
been reported to be significantly upregulated in T2DM platelets [13]. The upregulation of
P2Y12 expression is supported by the activation of oxidative stress-dependent transcription
factor nuclear factor-κB (NF-κB) in megakaryocytes. Insulin-like growth factor 1 receptor
(IGF1R) is another important receptor upregulated in T2DM patients, which makes platelets
from these patients more responsive to IGF1 [14]. Since IGF1 has been described as a
positive regulator of platelet signaling and responses [15], the upregulation of IGF1R is
likely to contribute to platelet hyperactivity in T2DM. Changes in the membrane expression
levels have also been proposed for integrin β3; however, the modulation of the surface
expression of this receptor occurs in platelets by microparticle shedding [16]. Work in our
laboratory showed that platelets from DM patients with poor glycemic control express
significantly higher levels of the pro-oxidant enzyme nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase 1 (NOX1) (Figure 1). NOXs have been described as important
positive regulators of platelet activity [17–20]. In view of the pro-thrombotic role of platelet
NOXs both in vitro and in vivo (Figure 2), the upregulation of NOX1 in DM patients
contributes significantly to platelet hyperresponsiveness. Further studies in this direction
are required to elucidate the mechanism of this interaction.

In addition to changes in the proteome of platelets caused by alteration of gene
expression, transcription, or protein turnover, DM also regulates platelet function via
modulation of different signaling pathways. Markers of platelet activation, such as P-
selectin and CD40L, are increased in T1DM and T2DM patients, which suggests raised
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levels of platelet activation in these patients [21,22]. HG has been shown to directly correlate
with the levels of CD40L release (sCD40L) in vitro [22].

Antioxidants 2021, 10, x FOR PEER REVIEW 3 of 12 
 

In addition to changes in the proteome of platelets caused by alteration of gene ex-
pression, transcription, or protein turnover, DM also regulates platelet function via mod-
ulation of different signaling pathways. Markers of platelet activation, such as P-selectin 
and CD40L, are increased in T1DM and T2DM patients, which suggests raised levels of 
platelet activation in these patients [21,22]. HG has been shown to directly correlate with 
the levels of CD40L release (sCD40L) in vitro [22]. 

 
Figure 1. NOX1 upregulation in platelets from DM patients with poor glycemic control. Human platelets from patients 
with HbA1C > 7.0% were isolated and their levels of NOX1 expression were assessed by immunoblotting as previously 
described [23]. Actin was co-immunostained as a loading control. NOX1 expression was quantified by densitometry and 
expression as NOX1/actin ratio (Image J, .47v, Wayne Rasband, National Institute of Health, USA). (A) Representative 
example is shown in (A), with the statistical analysis shown in (B) (Student’s t-test, * p < 0.05, n = 10). 

 
Figure 2. The genetic silencing of NOXs in platelets abolishes thrombotic carotid occlusion induced by ferric chloride. 
Local application of 5% w/v ferric chloride induced carotid occlusion (A). Doppler ultrasound scanning measured carotid 
blood flow and complete occlusion times were plotted (B). C57BL6/J (WT) were compared to Nox1-/-/Nox2-/-/Nox4-/- (3KO) 
and thrombocytopenic 3KO mice that received infusion of WT platelets. Platelet depletion was induced in 3KO mice by 
IV injection of the anti-GPIbα antibody R300 (0.2 μg/g body weight). Twelve hours after antibody injection, 6 x 108 platelets 
from WT mice were IV injected into thrombocytopenic mice (thrombocytopenia was confirmed by blood platelet count-
ing). Data are mean ± SEM and statistical analysis was performed by one-way ANOVA with Bonferroni post-test (** p < 
0.01, n = 4–7). 

Figure 1. NOX1 upregulation in platelets from DM patients with poor glycemic control. Human platelets from patients
with HbA1C > 7.0% were isolated and their levels of NOX1 expression were assessed by immunoblotting as previously
described [23]. Actin was co-immunostained as a loading control. NOX1 expression was quantified by densitometry and
expression as NOX1/actin ratio (Image J, 47v, Wayne Rasband, National Institute of Health, USA). (A) Representative
example is shown in (A), with the statistical analysis shown in (B) (Student’s t-test, * p < 0.05, n = 10).
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Figure 2. The genetic silencing of NOXs in platelets abolishes thrombotic carotid occlusion induced by ferric chloride. Local
application of 5% w/v ferric chloride induced carotid occlusion (A). Doppler ultrasound scanning measured carotid blood
flow and complete occlusion times were plotted (B). C57BL6/J (WT) were compared to Nox1-/-/Nox2-/-/Nox4-/- (3KO) and
thrombocytopenic 3KO mice that received infusion of WT platelets. Platelet depletion was induced in 3KO mice by IV
injection of the anti-GPIbα antibody R300 (0.2 µg/g body weight). Twelve hours after antibody injection, 6 × 108 platelets
from WT mice were IV injected into thrombocytopenic mice (thrombocytopenia was confirmed by blood platelet counting).
Data are mean ± SEM and statistical analysis was performed by one-way ANOVA with Bonferroni post-test (** p < 0.01,
n = 4–7).

High plasma glucose results in increased levels of advanced glycation end products
(AGEs) in plasma [24]. AGEs have been shown to activate platelets via activation of the
receptor for AGEs (RAGE) [25]. Alternatively, the scavenger receptor CD36 also recognizes
AGEs and stimulates platelet activation [26]. Increased pro-coagulant activity of platelets
has also been described for T2DM platelets, which was integrin αIIbβ3 dependent [27].
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One of the first mechanistic explanations of the hyperactivity of platelets in diabetes
suggested a negative regulatory role of insulin in the ADP receptor P2Y12 and platelet
function. Therefore, insulin resistance and ultimately loss of insulin secretion results in the
dysregulation of platelet activation [28]. The insulin-dependent activation of the protein
kinase PKB and the modulation of the inhibitory intracellular messenger cAMP support
the negative regulatory activity of insulin. Another factor driving platelet hyperactivity
can be dyslipidemia, which is often present alongside diabetes. Increased plasma levels
of lipids and cholesterol enhance platelet reactivity. Although the evidence was initially
only observational [29], recent studies have highlighted the molecular mechanisms linking
plasma lipids (low-density lipoprotein, or LDL, in particular) to platelet responsiveness.
Typically, dyslipidemia associated with T2DM is accompanied by increased levels of LDL
oxidation (ox-LDL) [30]. Ox-LDL has been shown to activate the scavenger receptor
CD36 in different cell types, including platelets [31]. The signaling pathway activated
by CD36 includes tyrosine kinase- and protein kinase C-dependent activation of NOX2
and generation of reactive oxygen species (ROS), ultimately counteracting the negative
regulatory function of the cyclic nucleotides cyclic adenosine monophosphate (cAMP) and
cyclic guanosine monophosphate (cGMP). Recent studies from our laboratory highlighted
the involvement of both NOX1 and NOX2 in the signaling of ox-LDL [17] and confirmed
the negative modulation of the cyclic nucleotide pathways by NOXs [18]. In addition to
enzymatic ROS sources, HG causes metabolic overload in platelet mitochondria, which
results in the leakage of electrons from the respiration chain and the release of ROS [32].
As a result, protein tyrosine phosphatases are inhibited and the protein kinase signaling
pathways are potentiated, which ultimately leads to the potentiation of platelets responses.
ROS-dependent inhibition of the protein tyrosine phosphatase Src homology 2 (SH2)
domain-containing phosphatase 2 (SHP2) has been shown to lead to increased activity of
the protein kinase spleen tyrosine kinase (Syk) and the potentiation of collagen-induced
platelet responses [33–35].

The role of platelets in vascular health and disease has recently been widened by the
discovery of their involvement in the formation of neutrophil extracellular traps (NETs) [36].
NETs have been shown to contribute significantly to thrombotic diseases [37]. Diabetes has
been shown to increase NET formation [38,39]. Further studies are required to ascertain
whether platelets are a cause for increased NET formation or whether NET formation con-
tributes to DM-dependent thrombosis by inducing platelet activation and vascular occlusion.

3. Coagulation and Fibrinolysis

Increased plasma levels for different coagulation factors have been reported for DM
patients [40]. Fibrinogen (factor I), pro-thrombin (factor II), pre-kallikrein, factor V, factor
VII, factor VIII, factor X, and factor XI have been detected at higher than normal concentra-
tion in the plasma of T1DM and T2DM patients [41]. Some coagulation-related proteins are
only elevated in T2DM, such as kininogen, factor IX, and factor XIII [42,43]. Interestingly,
activated factor XII is downregulated in T1DM, while it is upregulated in T2DM [44]. Tissue
factor (TF) is elevated in both T1DM and T2DM [45], although the plasma concentration of
TF in response to experimental HG and hyperinsulinemia (HI) is increased in T2DM but not
in T1DM. In addition, several anticoagulant proteins have a reduced plasma concentration
in both types of diabetes, including anti-thrombin, protein C, and protein S [46]. Overall,
the alteration of plasma levels of coagulation factors promotes the hypercoagulative state
of DM patients [47]. Oxidative post-translational modification of plasma proteins in T2DM
(especially coagulation factor carbonylation) has been proposed as a novel and important
factor promoting the procoagulant state of this disease [48].

In parallel, the dissolution of clots (i.e., fibrinolysis) is decreased in DM. Plasminogen
activation to form plasmin is the central biochemical reaction of fibrinolysis. Plasmin is a
serine protease that acts to dissolve fibrin blood clots. The activation of plasminogen to form
plasmin via tissue plasminogen activator (t-PA) and urokinase plasminogen activator (u-PA)
promotes fibrinolysis. Increased cross-fibrin cross-linking caused by HG has been suggested
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to increase clot strength [49] and reduce the fibrinolytic rate in T2DM patients [50]. In
addition, HG in T1DM has been suggested to mediate glycation and other post-translational
modifications of plasminogen that prevent its activation and limit the formation of plasmin,
which ultimately impairs fibrinolysis [51]. Disease duration appears to have a stronger
influence on clot strength and fibrinolysis than glycemia control [52]. The implications of
this observation remain to be fully understood.

In T2DM, an increased concentration of plasminogen activator inhibitor-1 (PAI-1)
reduces fibrinolysis [53,54]. In addition, the concentration of other inhibitors of fibrinolysis,
such as thrombin-activatable fibrinolysis inhibitor (TAFI) [55] and α2-macroglobulin [56],
are increased in both T1DM and T2DM. In addition, the concentration of α2-antiplasmin is
elevated in T2DM [57], while the literature is inconclusive about α2-antiplasmin in T1DM.
Taken together, the above studies suggest that reduced fibrinolysis is a likely source of
increased thrombotic risk for DM patients. As the consensus is that hypercoagulation is
particularly relevant for venous thrombosis, while platelet hyperactivity participates in
the onset and progression of arterial thrombosis, the imbalance between coagulation and
fibrinolysis may explain the increased risk of both venous and arterial thrombosis in DM
patients.

4. Endothelial Cell Dysfunction

The endothelium is a cellular monolayer that lines the whole of the vasculature. One
of the key physiological roles of the endothelium is the release of antithrombotic signals,
such as nitric oxide (NO) and prostacyclin. Endothelial damage induces thrombotic compli-
cations by reducing the bioavailability of the abovementioned antithrombotic substances
and exposing subendothelial substances that stimulate blood platelets and coagulation (via
exposure of platelet activators such as collagen). Vascular inflammation and endothelial
cell damage have also been shown to increase the release of vWF [54] and plasminogen
activator inhibitor-1 (PAI-1) [58] by endothelial cells. Therefore, as vWF promotes platelet
adhesion [59] and PAI-1 inhibits fibrinolysis [60], the overall effect of DM-dependent en-
dothelial cell damage is the increase in platelet adhesion and clot formation. Ultimately,
the endothelial cell-dependent modulation of platelets and fibrinolysis participates in
the increase in thrombotic risk for DM patients [9]. Raised systemic levels of vWF are
associated with vascular comorbidities, making them cardiovascular risk predictors and
diagnostic markers in T2D patients [61].

High plasma glucose results in increased levels of advanced glycation end products
(AGEs) in plasma [24] and vascular endothelial cells [62]. Endothelial damage also con-
tributes to thickening of the vascular wall, impairs vasodilation, and results in vessel
stiffening [63]. The presence of AGEs promotes the activity of the endothelial receptor for
advanced glycation end products (RAGE), which contributes to ROS production [64]. En-
dothelial oxidative stress in DM also derives from Ras-related C3 botulinum toxin substrate
1 (RAC1) and T cell lymphoma invasion and metastasis (TIAM1)-dependent activation of
NOX2 [65] and diacylglycerol (DAG)/protein kinase C (PKC)-dependent phosphorylation
and stimulation of the NOX activator p47phox [66]. Importantly, endothelial oxidative
stress is associated with the formation of superoxide anion, which directly quenches NO
by forming peroxynitrite ions and in turn inhibits endothelial nitric oxide synthase (eNOS),
a phenomenon that involves the generation of the endogenous intermediate asymmetric
dimethylarginine (ADMA), which is an eNOS inhibitor [67].

In addition to the negative regulation of eNOS activity, endothelial oxidative stress also
inhibits prostacyclin synthase [68] and activates the pro-inflammatory transcription factor
NF-κB [69]. The upregulation of endothelin-1, thrombomodulin, the adhesion molecules
ICAM, VCAM, and E-selectin [70], and the increase in the circulating levels of cytokines like
IL-1β and TNF-α and chemoattractants like MCP-1 [71] are amongst the most important
pro-inflammatory effects of NF-κB activation.
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5. Therapeutic Intervention

Antiplatelet drugs are commonly prescribed for DM patients. The cyclooxygenase-1
(COX-1) inhibitor acetylsalicylic acid (ASA), the P2Y12 receptor antagonists clopidogrel,
prasugrel, cangrelor, and ticagrelor, and the GPIIb/IIIa inhibitors abciximab (ReoPro),
eptifibatide (Integrilin), and tirofiban (Aggrastat) are the most utilized antiplatelet therapies
in clinical practice. The combination of ASA with another antiplatelet drug is known as dual
antiplatelet therapy (DAPT), and ADP receptor inhibitors such as clopidogrel, ticagrelor,
and prasugrel are usually combined with ASA [72].

Recent studies have highlighted the poor efficacy of ASA in DM patients. The AS-
CEND trial revealed almost no difference between the number of serious vascular events
between the ASA and placebo participants in high-risk DM patients within a 7-year follow-
up period [73]. A recent meta-analysis of 12 randomized studies showed that aspirin
for primary prevention only reduces major adverse cardiovascular events by 11% [74].
There is evidence for cardiovascular primary prevention in DM patients by DAPT [75].
Nonetheless, a DAPT regime of 75–100 mg ASA/day and 75 mg clopidogrel/day is only
advised for secondary prevention in patients with diabetes [76] or for primary prevention
in T1DM and T2DM patients with high cardiovascular risk, at age ≥ 50 years and no risk
of bleeding [77]. High risk is defined as a family history of at least one condition amongst
atherosclerotic cardiovascular disease, hypertension, dyslipidemia, or albuminuria. The
increase in bleeding risk for DM patients limits the adoption of DAPT for preventive pur-
poses and highlights the necessity of alternative therapeutic options [76]. Another recent
and important study focusing on DAPT concluded that DM patients have less of a posi-
tive response to continued pharmacological treatment compared to non-DM patients [78].
More encouraging results are coming from a yet-to-be-completed study exploring the
use of DAPT combining ticagrelor and ASA, which significantly reduces major adverse
cardiovascular or cerebrovascular events (MACCEs) compared to treatment with ASA
alone [79].

Alternatives to ASA may represent an improvement over existing therapeutic options.
The thromboxane synthase inhibitor picotamide did not prove more effective in preventing
mortality than aspirin, although it reduced unwanted bleeding side effects [80]. The throm-
bin inhibitor bivalirudin gave some positive results in the ACUITY study with regard to
composite ischemia and major bleeding complications [81]. P2Y12 receptor antagonists
have also been tested on their own in DM patients, highlighting a complex picture in
which, depending on comorbidities, clopidogrel, prasugrel, or ticagrelor are the preferred
therapeutic options [82]. Overall, cardiovascular prophylaxis in DM remains an unresolved
challenge. A better understanding of the molecular mechanisms increasing the cardiovas-
cular risk for DM patients may help to design novel and more efficacious treatments. For
example, the participation of oxidative stress in the vascular dysfunction in both T1DM
and T2DM may offer some interventional opportunities. NOX inhibitors have been proven
to be effective for vascular protection in DM animal models [83–88] and clinical studies in
humans are ongoing [89]. Dietary antioxidants have also shown some promise to prevent or
slow down vascular degradation in DM and protect against cardiovascular complications
of this disease. Polyphenols from mushrooms, tea, coffee, and dark chocolate have shown
some degree of effectiveness in controlling platelet hyperactivity, mitochondrial stress, and
superoxide formation [90] and decreasing the level of plasma oxidized LDL [91]. Food
supplements may therefore be designed that help to protect vascular health in DM patients.

In addition to antiplatelet drugs, anticoagulants have been investigated for the treat-
ment of vascular conditions in DM patients. The factor X inhibitor anticoagulant rivarox-
aban has been shown to increase the effectiveness of DAPT (ASA + clopidogrel) against
MACCEs in acute coronary syndrome patients [92]. As anticoagulants are generally pre-
scribed for atrial fibrillation [93], recent studies have focused on the comparison between
traditional vitamin K inhibitor anticoagulants (e.g., warfarin) and novel oral anticoagulants
(NOACs, e.g., apixaban, dabigatran, rivaroxaban, and edoxaban). NOACs display better
efficacy against thromboembolism events and major adverse limb events than warfarin
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in DM patients [94]. In addition, NOACs appear to be safer than warfarin as they are
associated with a lower risk of major bleeding [95,96]. NOACs should therefore be consid-
ered in the diabetic AF population with a high atherosclerotic burden, although a negative
interaction with insulin treatment has been noted, which limits their therapeutic efficacy in
DM [89].

Although endothelial cell damage is an established pathological mechanism in dia-
betes, and despite ongoing clinical studies on the use of NADPH oxidase inhibitors [97],
there are no effective drugs for endothelial cell protection that have been adopted in
this disease.

6. Conclusions

Taken together, the correlation between vascular frailty and DM has been described,
which underlies the increased incidence of cardiovascular diseases in both T1DM and
T2DM. Multiple mechanisms have been suggested affecting platelets, the coagulation
cascade, or the physiology of the vascular endothelium (Figure 3). Although a significant
amount of research in recent years has led to important advances in our understanding of
the causes for increased cardiovascular risk in DM, several questions remain unanswered
in this area of medical research. In particular, there is an urgent need to improve the
therapeutic options available for the clinical management of cardiovascular diseases in
DM. An accelerated translation of preclinical discoveries into effective clinical tools via
targeted clinical studies appears to be the only viable direction that the biomedical research
community has, to resolve this unmet clinical challenge.
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Figure 3. DM-dependent mechanisms underlying vascular damage. Platelet hyperactivity, blood
hypercoagulability, and endothelial cell dysfunction are independent drivers of cardiovascular risk in
DM patients. Abbreviation list: VWF: Von Willebrand factor; PAI-1: Plasminogen activator inhibitor;
NO: Nitric oxide; eNOS: Endothelial nitric oxide synthase; NFκB: Nuclear factor kappa B; Rac-1:
Ras-related C3 botulinum toxin substrate 1; TIAM-1: T cell lymphoma invasion and metastasis 1;
AGE: Advanced glycation end product; RAGE: Receptor for advanced glycation end products;
ROS: Reactive oxygen species; ICAM-1: Intercellular adhesion molecule 1; VCAM-1: Vascular cell
adhesion molecule; Ox-LDL: Oxidized low-density lipoprotein; CD36: Cluster of Differentiation 36;
NOX1: NADPH oxidase1; NOX2: NADPH oxidase 2; CD40L (Cluster Differentiation 40 Ligand:
CD154 (Cluster of Differentiation 154); PTP: Protein tyrosine phosphatase; SHP-2: Src homology
region 2 domain-containing phosphatase-2; cAMP: Cyclic adenosine monophosphate; cGMP: Cyclic
guanosine monophosphate; PGI2R: Receptor of prostacyclin; IGF-1R: Insulin-like growth factor
receptor; PK: Pre-kallikrein; TAFI: Thrombin-activatable fibrinolysis inhibitor.
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50. Bryk, A.H.; Konieczyńska, M.; Polak, M.; Plicner, D.; Bochenek, M.; Undas, A. Plasma fibrin clot properties and cardiovascular
mortality in patients with type 2 diabetes: A long-term follow-up study. Cardiovasc. Diabetol. 2021, 20, 47. [CrossRef]

51. Ajjan, R.A.; Gamlen, T.; Standeven, K.F.; Mughal, S.; Hess, K.; Smith, K.A.; Dunn, E.J.; Anwar, M.M.; Rabbani, N.;
Thornalley, P.J.; et al. Diabetes is associated with posttranslational modifications in plasminogen resulting in reduced plasmin
generation and enzyme-specific activity. Blood 2013, 122, 134–142. [CrossRef] [PubMed]

52. Konieczynska, M.; Fil, K.; Bazanek, M.; Undas, A. Prolonged duration of type 2 diabetes is associated with increased thrombin
generation, prothrombotic fibrin clot phenotype and impaired fibrinolysis. Thromb. Haemost. 2014, 111, 685–693. [CrossRef]
[PubMed]

53. Aso, Y.; Okumura, K.-I.; Yoshida, N.; Tayama, K.; Takemura, Y.; Inukai, T. Enhancement of Fibrinolysis in Poorly Controlled,
Hospitalized Type 2 Diabetic Patients by Short-Term Metabolic Control: Association with a Decrease in Plasminogen Activator
Inhibitor 1. Exp. Clin. Endocrinol. Diabetes 2004, 112, 175–180. [CrossRef]

54. Verkleij, C.J.N.; De Bruijn, R.E.; Meesters, E.W.; Gerdes, V.E.; Meijers, J.C.M.; Marx, P.F. The Hemostatic System in Patients with
Type 2 Diabetes with and Without Cardiovascular Disease. Clin. Appl. Thromb. 2010, 17, E57–E63. [CrossRef] [PubMed]

55. Sherif, E.M.; Elbarbary, N.S.; Al Aziz, M.M.A.; Mohamed, S.F. Plasma thrombin-activatable fibrinolysis inhibitor levels in children
and adolescents with type 1 diabetes mellitus: Possible relation to diabetic microvascular complications. Blood Coagul. Fibrinolysis
2014, 25, 451–457. [CrossRef] [PubMed]

56. Yoshino, S.; Fujimoto, K.; Takada, T.; Kawamura, S.; Ogawa, J.; Kamata, Y.; Kodera, Y.; Shichiri, M. Molecular form and
concentration of serum alpha2-macroglobulin in diabetes. Sci. Rep. 2019, 9, 12927. [CrossRef] [PubMed]

57. Fattah, M.A.; Shaheen, M.H.; Mahfouz, M.H. Disturbances of Haemostasis in Diabetes Mellitus. Dis. Markers 2004, 19, 251–258.
[CrossRef] [PubMed]
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