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ZUSAMMENFASSUNG 
 

 
 
 
Die Bohmsche Mechanik hat seit ihrer Einführung durch David Bohm im 

Jahr 1952 die Entwicklung leistungsfähiger Simulationsmethoden zur Lösung 
komplizierter quantenmechanischer Probleme inspiriert. Trotz seiner Vorteile 
stand dieser Ansatz auch im Zentrum von Kontroversen, die bis ins Jahr 1952 
zurückreichen und bis heute anhalten. 

 
Der Ursprung der Diskreditierung von Bohms Ansatz rührt von der Kritik 

her, die Heisenberg und Pauli im selben Jahr erhoben, als Bohm seine beiden 
berühmten Arbeiten über die Theorie der verborgenen Variablen (heutzutage als 
Bohmsche Mechanik bekannt) veröffentlichte. Heisenberg und Pauli wiesen 
unabhängig voneinander auf die mangelnde Symmetrie des von Bohm 
vorgeschlagenen Modells hin. In der Tat beschränkt sich die Bohmsche Mechanik 
allein auf die Behandlung jeglicher Probleme im Konfigurationsraum. Das 
bedeutet, dass, zusätzlich zu den prinzipiellen Problemen des 
Trajektorienkonzepts, die Theorie selbst einer Darstellung eine bevorzugte Rolle 
einräumt. Dies steht im Widerspruch zu den konzeptuellen Säulen der 
Quantenmechanik: Wie in der linearen Algebra gibt es keine bevorzugte Basis; 
die Beschreibung von Quantensystemen darf nicht an eine bestimmte 
Darstellung gebunden sein, hingegen kann die Wahl einer solchen die 
Berechnungen erleichtern. In diesem Sinne ist beispielsweise die fehlende 
Formulierung der Bohmschen Mechanik im Impulsraum ein schwerwiegender 
konzeptioneller Nachteil. Wegen der andererseits ansprechenden Idee einer 
kausalen Interpretation der Quantenmechanik führte dies schon gleich nach der 
Veröffentlichung von Bohms Arbeiten zu einer Polarisierung der ,,Scientific 
Community‘‘. Daher gab es seitdem Versuche, die Bohmsche Mechanik 
zumindest im Impulsraum zu formulieren. Das Hauptproblem bei diesen liegt 
darin, dass sie auf der Einführung von ad hoc definierten Operatoren oder der 
Wahl spezieller Zustände basieren. 
 
Als weiterer Punkt kommt hinzu, dass bei der Behandlung atomarer Phänomene 
das lokale Konzept der Trajektorie bereits aufgegeben wurde, als Schrödinger 
1926 seine bahnbrechenden Arbeiten veröffentlichte. Eines der unmittelbaren 
Probleme beim Konzept von Trajektorien ist die Implikation der Instabilität von 
Atomen, was aber experimentell nicht beobachtet wird. Daher ist die 
Zurückhaltung der Wissenschaftler, einen alternativen Ansatz, der auf dem 
Konzept von Trajektorien basiert zu akzeptieren, verständlich. Ferner wurde 



schon frühzeitig darauf hingewiesen, dass es bedeutungslos sei zu sagen, dass 
die Trajektorien das Problem lösen können, wenn diese zunächst die Kenntnis 
der Wellenfunktion erfordern, die ihrerseits bereits die Lösung des Problems 
darstellt. Darüber hinaus gab es keine neuen Vorhersagen, die die 
konventionelle Theorie nicht auch machen konnte. Das Konzept der Trajektorien 
schien daher in jener Zeit eher dekorativ als praktisch zu sein. 
 
Ein dritter Nachteil der Bohmschen Theorie ist die eigentliche Einführung neuer 
Postulate. Eines davon ist die Existenz eines surrealen Objekts, das auch als 
Bohmsche Trajektorie bekannt ist. Was die anderen Postulate betrifft, so wären 
die Gleichgewichtshypothese und die ,,Bewegungsgleichung‘‘ (guidance law) für 
die Trajektorien zu nennen. Erstere besagt, dass die lokale Dichte von 
Trajektorien als die Meßwahrscheinlichkeit für das Auffinden des atomaren 
Systems in der Nähe des Punktes interpretiert werden muß. Letztere legt 
andererseits fest, dass das Geschwindigkeitsfeld der Trajektorien ein 
rotationsfreies Feld ist, dessen Potential mit der Phase der komplexen 
Wellenfunktion übereinstimmt. Das Problem der zusätzlichen Postulate ist deren 
Begründung. In der Tat wurden die Postulate der konventionellen 
Quantenmechanik durch die zahlreichen experimentellen Befunden an 
atomaren Systemen inspiriert; man könnte den Formalismus als positivistisch 
einordnen. Andererseits wurden die Bohmschen Postulate, wie Bohm selbst in 
seinem ersten Artikel von 1952 feststellt, in der Hoffnung eingeführt, dass 
letztendlich der technologische Fortschritt den Nachweis der postulierten 
Trajektorien ermöglichen und diese dadurch rechtfertigen würde. 
 
„Letztendlich wurden jedoch Effekte gefunden, die den Vorhersagen 
widersprachen, die durch Extrapolation bestimmter rein makrophysikalischer 
Theorien in den Bereich des sehr Kleinen erhalten wurden und die unter der 
Annahme, dass Materie aus Atomen besteht, richtig verstanden werden konnten. 
In ähnlicher Weise schlagen wir vor, dass, wenn verborgene Variable der 
vorliegenden Quantentheorie zugrunde liegen, diese höchstwahrscheinlich im 
atomaren Bereich zu Effekten führen werden, die auch mit den üblichen 
quantenmechanischen Konzepten angemessen beschrieben werden können.“ 
 

Bis zu diesem Punkt sind die drei Hauptnachteile der Bohmschen Theorie 
im Wesentlichen: die Asymmetrie der Formulierung bezüglich Orts- und 
Impulsdarstellung, die Interpretation der Trajektorien und die Notwendigkeit 
zusätzlicher Postulate. Bezüglich des ersten Kritikpunkts lieferten Heisenberg 
und Pauli 1952 eine fundierte Argumentation. Die Interpretation von 
Trajektorien als lokale Beschreibung atomarer Systeme wurde 1976 mittels des 
optischen Experiments von A. Aspect durch die Verletzung der Bellschen 



Ungleichung als falsch erwiesen. Der Aspekt betreffend die Konsistenz der 
zusätzlichen Postulate wurde ebenfalls in einem Experiment von M. O. Scully im 
Jahr 1998 mit einer Stern-Gerlach-Apparatur in Kombination mit einem 
optischen Hohlraum analysiert. Er zeigte, dass die Bohmschen Trajektorien (als 
reelle Teilchenpfade interpretiert) im oben genannten Experiment falsche 
Vorhersagen liefert würden. Diese dynamische Kontroverse um die Bohmsche 
Mechanik scheint bereits beigelegt zu sein. Dennoch ist es erwähnenswert, dass 
die oben erwähnten Experimente die Interpretation der Bohmschen 
Trajektorien als Teilchenpfade verworfen, aber nicht deren Verwendung. Daher 
besteht immer noch die Notwendigkeit, eine korrekte physikalische 
Interpretation für diese Trajektorien zu finden. Trotzdem gibt es immer noch ein 
loses Ende in der Geschichte. Trotz der schwerwiegenden Nachteile der 
Bohmschen Formulierung liefert sie dennoch ein funktionierendes Werkzeug für 
Simulationen in der Quantenmechanik, die ansonsten übermäßig zeitaufwändig 
wären. Daher ist die Bohmsche Mechanik gegenwärtig zwar eine schlechte 
definierte Theorie, aber ein leistungsfähiges Rechenwerkzeug. Es besteht somit 
ein begründetes Interesse daran, diese Diskrepanz aufzuklären und den 
Bohmschen Formalismus aus der Perspektive der konventionellen Theorie neu 
zu formulieren, überflüssige Postulate zu vermeiden und gerade die 
angemessene mathematische Behandlung zu finden. 
 
In diesem Zusammenhang will diese Arbeit einen vermittelnden Standpunkt 
zwischen der Bohmschen Mechanik und der konventionellen Quantenmechanik 
einnehmen, erstere ausgehend von letzterer neu formulieren und ihr ihren 
angemessenen Platz im quantenmechanischen Formalismus, ohne zusätzliche 
Postulate, Interpretationen oder philosophische Argumente zuordnen. Zu 
diesem Zweck basiert diese Arbeit auf drei Grundpfeilern: eine von der 
gewählten Darstellung unabhängige Formulierung, eine rationale Kritik der 
Bohmschen Trajektorie und nicht zuletzt die Struktur der lokalen 
Transportgleichungen, die den Bohmschen Trajektorien zugeordnet sind. 
 

Kapitel 2 dient der Neuformulierung der Bohmschen Mechanik. In 
Abschnitt 2.1 wird gezeigt, dass die Kontroverse über die Formulierung der 
Bohmschen Mechanik in der Impulsdarstellung immer noch von Interesse ist; 
siehe Tabelle 2.2 für die mit der Kontroverse verbundenen Argumente. In 
Abschnitt 2.2 werden mittels der Polardarstellung (2.6) der Wellenfunktion 
gemäß der Vorschrift (2.9) komplexen Bohmsche Größen wie Ort, Impuls, 
kinetische und potenzielle Energien für die Orts- (2.12-2.15) und 
Impulsdarstellung (2.22-2.25) definiert. Die bemerkenswerteste Eigenschaft der 
Bohmschen Größen ist, dass sie in allgemeinen komplex sind. Eine Ausnahme 
betrifft Ort und Impuls, diese sind in ihren jeweiligen Darstellungen reelle 



Großen, ansonsten aber auch komplex. Ferner enthalten quadratische Größen 
wie kinetische und potenzielle Energien nicht nur die Quadrate von Real- und 
Imaginärteil der entsprechenden komplexen Großen, sondern auch einen 
zusätzlichen imaginären Beitrag, der die ursprünglichen Real- und Imaginärteile 
koppelt. 
 
Vorteile durch die Verwendung der Bohmschen Formulierung in der 
Impulsdarstellung werden anhand eines linearen Potenzials für stationäre 
Zustände illustriert. Arbeitet man im Ortsraum ergibt sich die Schwierigkeit bei 
der Lösung eines Problems aus der quadratischen Struktur der kinetischen 
Energie und des daraus resultierenden Quantenbeitrags in der modifizierten 
Hamilton--Jacobi-Gleichung. Verwendet man hingegen die in dieser Arbeit 
eingeführte Formulierung der Bohmschen Mechanik im Impulsraum, resultiert 
der Quantenbeitrag aus den quadratischen Termen des Potenzials. Beim 
linearen Potenzial gibt es aber gar keinen quadratischen Beitrag. Dies bedeutet, 
dass die Komplikation infolge des Quantenbeitrags in der Impulsdarstellung der 
Bohmschen Methode gar nicht auftritt. 
 
In Abschnitt 2.3 wird festgestellt, dass selbst wenn die modifizierte Hamilton--
Jacobi-Gleichung in der Bohmschen Mechanik eine Hamiltonsche Struktur 
nahelegt, diese aufgrund des Fehlens kanonisch konjugierter Variablen jedoch 
nicht vorliegt. Dennoch ähneln die komplexen dynamischen Gleichungen den 
Newtonschen Gegenstücken, siehe zum Beispiel (2.60-2.62) für die Orts- und 
(2.70-2.72) für die Impulsdarstellung. Ferner erweisen sich diese Gleichungen als 
nützlich beim Auffinden von Konstanten der Bewegung, wie z.B. der Ermakov 
Invarianten für zeitabhängige Zustände wie die generalisierten kohärenten 
Zustände. 
 
In Abschnitt 2.4 erweist es sich, dass das Quantenpotenzial, im Rahmen der in 
dieser Arbeit eingeführten Formulierung, mit dem Quantenbeiträgen zur Orts- 
und Impulsbestimmtheit zusammenhängt, siehe (2.159-2.160) und (2.162-
2.163). In der Tat erlaubt die vorgeschlagene Formulierung des Bohmschen 
Ansatzes die Unbestimmtheiten in zwei Arten von Beiträgen zu trennen, wobei 
einer von den klassischen Großen herrührt, während der andere seinen 
Ursprung im sogenannten „Quantenpotenzial“ hat. In diesem Sinne macht die 
vorgeschlagene Formulierung deutlich, dass das Quantenpotenzial, auch wenn 
der Begriff es nahelegt, kein Potenzial ist, sondern ein kinetischer Term, der sich 
aus den Unbestimmtheiten ergibt, die den klassisch konjugierten Variablen 
zugeordnet sind. Außerdem ist es nun möglich, das Heisenbergsche 
Unbestimmtheitsprodukt in der Form (2.164) darzustellen, da nun die Orts- und 



Impulsversionen der Bohmschen Mechanik vorliegen. Dies wird am Beispiel der 
generalisierten kohärenten Zustände demonstriert. 
 

Kapitel 3 befasst sich mit einer Neudefinition und Neuinterpretation der 
Bohmschen Trajektorien. Zu diesem Zweck wird in Abschnitt 3.1 auf die 
Unzulänglichkeit der zusätzlichen Postulate bei der Definition und Einführung 
der Bohmschen Trajektorien hingewiesen. Insbesondere ist die mathematische 
(und physikalische) Begründung des ,,Führungsgestzes‘‘ (guidance law) (3.4) 
inkonsistent. 
 
In Abschnitt 3.2 werden Bohmsche Trajektorien ohne zusätzliche Postulate 
hergeleitet. Dies ist das Ergebnis einer spezifischen Parametrisierung der 
jeweiligen Kontinuitätsgleichungen, im Fall des Ortsraums durch (3.19) mit der 
Definition (3.23) der zugehörigen Bohmfunktion und im Impulsraum durch (3.49) 
mit der Bohmfunktion (3.48). 
 
Dies wird durch die Verwendung eines einfachen thermodynamischen 
Verfahrens erreicht, das Maxwell-Beziehungen beinhaltet (siehe Kasten 3.2.1). 
Davon ausgehend werden nach Durchführung eines Linienintegrals im (x,t)-
Raum  die für die Bohmschen Trajektorien charakteristische Nichtkreuzungsregel 
und die Erhaltung der Wahrscheinlichkeit bewiesen. Dies deutet natürlich darauf 
hin, Bohmsche Trajektorien, nicht wie allgemein angenommen wird, als (reale) 
Pfade zu interpretieren, sondern als Begrenzung von 
„Wahrscheinlichkeitsbahnen“. Diese Idee wird mit Hilfe generalisierter 
kohärenter Zustände veranschaulicht. Es wird auch vorgeschlagen, dass dies die 
Grenzen der Anwendbarkeit der Bohmschen Mechanik einschränkt. Diese 
Interpretation zeigt, dass die Stärke der Trajektorien in deskriptiver Statistik liegt, 
d.h. in der Bestimmung von Perzentilbereichen. Dies bedeutet, dass die 
Verwendung von Trajektorien bei all jenen Problem angeraten ist, bei denen 
man daran interessiert ist, wie die Nachweiswahrscheinlichkeit in einem 
bestimmten Gebiet verteilt ist, wie z.B.  bei Tunnel- oder Streuproblemen. Ist das 
Ziel jedoch die Berechnung von Mittelwerten (oder höheren Momenten), ist die 
Bohmsche Mechanik recht umständlich, und generell die Anwendung des 
konventionellen Formalismus ratsam. 
 
In Abschnitt 3.3 wird ein Zusammenhang zwischen konventioneller 
Quantenmechanik und Bohmscher Mechanik durch den Wignerformalismus 
gefunden. Der Bohmsche Formalismus kann als projizierter Aspekt der 
Wignerfunktion betrachtet werden, siehe z.B. (3.75) und (3.76). Dies bekräftigt 
die in Kapitel 2 eingeführte Idee komplexer Bohmscher Größen, da sie 



Projektionen von Observablen auf eine kontinuierliche Darstellung 
repräsentieren.  
 
In Abschnitt 3.4 wird die neue Interpretation angewandt, um eine Ionenfalle, 
charakterisiert durch einen parametrischen Oszillator mit der Frequenz 1/(at+b), 
zu analysieren. Im Gegensatz zu den üblichen Frequenzen bei Ionenfallen ist 
diese offensichtlich aperiodisch, aber dennoch kann dank der neuen 
Interpretation und Anwendung Bohmscher Trajektorien gezeigt werden, dass 
eine solche Falle zum Einfang eines Systems für Zeitintervalle in einer 
Größenordnung von Mikrosekunden nützlich wäre. Wenn 
längere ,,Trappingzeiten‘‘ benötigt werden, ist diese Frequenz natürlich nicht 
adäquat. Immerhin kann die ,,Trappingzeit ‘‘ durch Veränderung des Parameters 
dieses Oszillators variiert werden (siehe Abbildungen 3.6-3.8). 
 

Als dritter Aspekt wird in Kapitel 4 eine systematische Behandlung der 
hydrodynamischen Betrachtungsweise der Bohmschen Mechanik vorgestellt. In 
Abschnitt 4.1 wird das Fehlen konsistenter hydrodynamischer Gleichungen für 
die Orts- und Impulsdarstellung zusammengefasst. Die lokalen Bohmschen 
Gleichungen für Impuls und Energie besitzen nicht die Struktur von 
Transportgleichungen. 
 
In Abschnitt 4.2 werden die komplexen hydrodynamischen Gleichungen erhalten. 
Im Gegensatz zu dem, was in der aktuellen Literatur zu finden ist, haben sie alle 
dieselbe Struktur: es sind Transportgleichungen. Man muß jedoch vorsichtig sein 
hinsichtlich Spekulationen über mögliche Transportphänomene, da die 
involvierten Größen nicht reelle sondern komplexe sind (für dir Ortsdarstellung 
siehe (4.26) für die Impulsdarstellung (4.83)).  
 

Mit all den oben genannten Resultaten versucht diese Arbeit die losen 
Enden der Bohmschen Mechanik zu verknüpfen, sodass sie als echt kompatibler 
und wertvoller Teil der konventionellen quantenmechanischen Theorie 
betrachtet werden kann. 



SUMMARY 

 

 

 

 

Since its introduction by David Bohm in 1952, Bohmian mechanics has inspired 
the development of performant simulation methods for solving complicated 
quantum mechanical problems. Despite its benefits though, this approach has 
also been at the center of a controversy that dates back to 1952 and continues 
to the present day.  
 
 The origin of the discrediting of Bohm's proposal originates from the 
criticism Heisenberg and Pauli made in the same year Bohm published his two 
famous papers on the theory of hidden variables (nowadays known as Bohmian 
mechanics). Heisenberg and Pauli independently pointed out the lack of 
symmetry in the proposed scheme by Bohm. Indeed, Bohmian mechanics is 
limited to the treatment of any problem in the configuration space. This means 
that, in addition to the fundamental problems of the trajectory concept, the 
theory itself gives a preferential role to the coordinate representation. This 
contradicts the conceptual pillars of quantum mechanics: Likewise in linear 
algebra, there is no preferred basis; the description of quantum systems must 
not be tied to a specific representation, however the choice of such a 
representation can facilitate the calculations. In this sense, for example, the lack 
of a formulation of Bohmian mechanics in momentum space is a serious 
conceptual disadvantage.  On the other hand, because of the appealing idea of 
a causal interpretation of quantum mechanics, this led to a polarization of the 
scientific community immediately after the publication of Bohm’s papers. 
Therefore, since then there have been attempts to formulate Bohmian 
mechanics at least in momentum space. The main problem with these is that 
they are based on the introduction of ad hoc defined operators or the choice of 
special states.  
 
Another point is that in the treatment of atomic phenomena, the local concept 
of the trajectory had already been abandoned when Schrödinger published his 
pioneering papers in 1926. One of the immediate problems with the concept of 
trajectories is the implication of the instability of the atom, which is not observed 
experimentally. Hence the reluctance of scientists to accept an alternative 
approach based on the concept of trajectories is understandable. Furthermore, 



it was pointed out early on that it is meaningless to say that the trajectories can 
solve the problem if they first require the knowledge of the wavefunction, which 
in turn already represents the solution to the problem. Furthermore, there were 
no new predictions that the conventional theory could not also make. The 
concept of trajectories therefore seemed more ornamental than practical at the 
time. 
 
A third disadvantage of the Bohmian theory is the actual introduction of new 
postulates. One of them is the existence of a surreal object, also known as 
Bohmian trajectory. As far as the other postulates are concerned, the 
equilibrium hypothesis and the guidance law for the trajectories should be 
mentioned. The former states that the local density of trajectories must be 
interpreted as the detection probability for finding the atomic system in the 
vicinity of the point. The latter, on the other hand, establishes that the velocity 
field of the trajectories is an irrotational field whose potential corresponds to the 
phase of the complex wavefunction. The problem with the additional postulates 
is their justification. Indeed, the postulates of conventional quantum mechanics 
were inspired by the abundant experimental results on atomic systems; one 
could classify the formalism as positivistic; on the other hand, as Bohm himself 
states in his first article from 1952, the Bohmian postulates were introduced in 
the hope that in the end technological progress would make it possible to prove 
the existence of the postulated trajectories and thereby justify them: 
 
 “Ultimately, however, effects were found which contradicted the predictions 
obtained by extrapolating certain purely macrophysical theories to the domain 
of the very small, and which could be understood correctly in terms of the 
assumption that matter is composed of atoms. Similarly, we suggest that if there 
are hidden variables underlying the present quantum theory, it is quite likely that 
in the atomic domain, they will lead to effects that can also be described 
adequately in the terms of the usual quantum-mechanical concepts”. 
 
 Up to this point, the three main disadvantages of the Bohmian theory 
are essentially: the asymmetry of the formulation with regard to position and 
momentum representation, the interpretation of the trajectories and the need 
for additional postulates. Concerning the first point of criticism, Heisenberg and 
Pauli provided sound arguments in 1952. The interpretation of trajectories as a 
local description of atomic systems was proven wrong in 1976 by means of the 
optical experiment of A. Aspect by violating Bell’s inequality. The aspect 
concerning the consistency of the additional postulates was also analyzed in an 
experiment by M. O. Scully in 1998 with a Stern--Gerlach apparatus, in 
combination with an optical cavity. He showed that the Bohmian trajectories 



(when interpreted as real paths of particles) in the above experiment provide 
false predictions. This dynamic controversy around Bohmian mechanics seems 
to have already been settled; nevertheless, it is worth noticing that the above-
mentioned experiments discarded the interpretation of Bohmian trajectories as 
paths of particles, but not the use of them. Therefore, there is still a need to find 
a properly physical interpretation for those trajectories. Even so, there is still a 
loose end in the story. Despite the serious drawbacks of the Bohmian 
formulation, it still provides a performant tool for simulations in quantum 
mechanics that would otherwise be excessively time-consuming. Therefore, 
currently Bohmian mechanics constitutes an ill-defined theory, but a powerful 
computational tool. There is therefore a justified interest in clearing up this 
discrepancy and reformulating the Bohmian framework from the perspective of 
the conventional theory, avoiding superfluous postulates and precisely finding 
the appropriate mathematical treatment. 
 
In this context, this thesis aims to take a mediating standpoint between Bohmian 
mechanics and conventional quantum mechanics, reformulate the former based 
on the latter and assign it its appropriate place in the quantum mechanical 
formalism, without additional postulates, interpretations or philosophical 
arguments. For this purpose, this work is based on three major pillars: a 
formulation that is independent of the chosen representation, a rational 
criticism of the Bohmian trajectory and, last but not least, the structure of the 
local transport equations that are assigned to the Bohmian trajectories. 
 

Chapter 2 serves to reformulate Bohmian mechanics. Section 2.1 shows 
that the controversy over the formulation of Bohmian mechanics in momentum 
representation is still of interest; see Table 2.2 for the arguments related to the 
controversy. In Section 2.2, using the polar decomposition (2.6) of the wave 
function according to (2.9), complex Bohmian quantities such as position, 
momentum, kinetic and potential energies for the position (2.12-2.15) and 
momentum representation (2.22-2.25) are defined. The most remarkable 
property of these Bohmian quantities is that they are generally complex. One 
exception concerns the position and momentum, these are real quantities in 
their respective representations, but otherwise they are also complex. 
Furthermore, quadratic quantities such as kinetic and potential energies contain 
not only the squares of the real and imaginary parts of the corresponding 
complex quantities, but also an additional imaginary contribution that couples 
the original real and imaginary parts. 
 
Advantages of using the Bohmian formulation in the momentum representation 
are illustrated using a linear potential for stationary states. Working in position 



space, the difficulty in solving a problem arises from the quadratic structure of 
the kinetic energy and the resulting quantum contribution in the modified 
Hamilton--Jacobi equation. Using, on the other hand, the Bohmian formulation 
in momentum space introduced in this work, the quantum contribution 
originates from the quadratic terms of the potential. For the linear potential, 
however, there is no quadratic contribution at all. This means that the 
complication due to the quantum contribution is absent in the momentum 
representation for the Bohmian framework. 
 
In Section 2.3, it is stated that even if the modified Hamilton--Jacobi equation in 
Bohmian mechanics suggests a Hamiltonian structure, this is not the case due to 
the lack of canonically conjugated variables. Nevertheless, the complex 
dynamical equations are similar to the Newtonian counterparts, see for example 
(2.60-2.62) for the position and (2.70-2.72) for the momentum representation. 
Furthermore, these equations prove to be useful in finding constants of motion, 
such as the Ermakov invariant for time-dependent states like the general 
coherent states. 
 
In Section 2.4 it turns out that the quantum potential, within the scheme of the 
formulation introduced in this work, is related to the quantum contribution to 
the position and momentum uncertainties, see (2.159-2.160) and (2.162-2.163). 
Indeed, the proposed formulation of Bohm’s approach allows the uncertainties 
to be separated into two types of contributions, one originating from the 
classical quantities, while the other arises from the so-called “quantum 
potential”. In this sense, the proposed formulation makes it clear that the 
quantum potential, even if the term suggests it, is not a potential, but a kinetic 
term that results from the uncertainties associated with the classically 
conjugated variables. In addition, it is now possible to represent Heisenberg’s 
uncertainty product in the form (2.164) since the position and momentum 
versions of Bohmian mechanics are now avaible. This is demonstrated using the 
example of the general coherent states. 
 

Chapter 3 deals with a redefinition and reinterpretation of the Bohmian 
trajectories. For this purpose, Section 3.1 points out the inadequacy of the 
additional postulates in the definition and introduction of the Bohmian 
trajectories. In particular, the mathematical (and physical) justification of the 
“guidance law” (3.4) is inconsistent. 
 
In Section 3.2, Bohmian trajectories are derived without additional postulates. 
This is the result of a specific parametrization of the respective continuity 
equations, in the case of the position space by (3.19) with the definition (3.23) 



of the associated Bohm function and in the momentum space (3.49) with the 
Bohm function (3.48). 
 
This is achieved through the use of a simple thermodynamic procedure that 
involves Maxwell relations (see Box 3.2.1). Starting from this, after performing a 
contour integral in the (x; t)-space, the non-crossing rule, characteristic of 
Bohmian trajectories, and the conservation of the probability are proven. Of 
course, this indicates that Bohmian trajectories should not be interpreted as 
(real) paths, as is generally assumed, but rather as the borders of “probability 
lanes”. This idea is illustrated using general coherent states. It is also suggested 
that this limits the applicability of Bohmian mechanics. This interpretation shows 
that the strength of the trajectories lies in the descriptive statistics, i.e., in the 
determination of percentile regions. This means that the use of trajectories is 
advisable for all those problems where one is interested in how the dection 
probability is distributed in a certain region, such as in tunneling or scattering 
problems. However, if the goal is to calculate mean values (or higher moments), 
Bohmian mechanics is rather cumbersome and the use of the conventional 
formalism is generally advisable. 
 
In Section 3.3 a connection between conventional quantum mechanics and 
Bohmian mechanics is found through the Wigner formalism. The Bohmian 
framework can be viewed as a projected aspect of the Wigner function, see e.g. 
(3.75) and (3.76). This confirms the idea of complex Bohmian quantities 
introduced in Chapter 2, since they represent projections of observables onto 
continuous representations. 
 
In Section 3.4 the new interpretation is used to analyze an ion trap, characterized 
by a parametric oscillator with the frequency 1/(at+b). In contrast to usual 
frequencies for ion traps, this one is obviously aperiodic, but thanks to the new 
interpretation and the application of Bohmian trajectories it can be shown that 
such a trap would be useful for trapping a system for time intervals in the range 
of microseconds. If longer trapping times are required, this frequency is of course 
not adequate. At least the trapping times can be varied by changing the 
parameter of this oscillator (see Figures 3.6-3.8). 
 

As a third aspect, a systematic treatment of the hydrodynamic viewpoint 
of Bohmian mechanics is presented in Chapter 4. Section 4.1 summarizes the 
lack of consistent hydrodynamical equations for position and momentum 
representation. The local Bohmian equations for momentum and energy do not 
have the structure of transport equations. 
 



The complex hydrodynamical equations are obtained in Section 4.2. Contrary to 
what can be found in the current literature, they all have the same structure: 
they are transport equations. However, one must be careful with regard to 
speculations about possible transport phenomena, since the quantities involved 
are not real but complex (for the position representation see (4.26) and for the 
momentum representation (4.83)). 
 
With all the above results, this thesis seeks to connect the loose ends of Bohmian 
mechanics, so that it can be viewed as a genuinely compatible and valuable part 
of the conventional quantum mechanical theory. 
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Chapter 1
Introduction

Undoubtedly, in quantum mechanics no other topic than Bohmian mechanics has
been the reason of so much ink in publications: as criticism to discredit Bohm’s
proposal, or as an argument in favor of the theory. The reason for such a con-
troversy dates back to 1952, when Bohm claimed that his proposal was a causal
alternative to the conventional approach to quantum mechanical phenomena. Nev-
ertheless, in doing so, Bohm had to introduce three postulates; one of which is a
surreal object, also known as Bohmian trajectories. Regarding the other postu-
lates, we can take into account the equilibrium hypothesis and the guidance law;
both of them basically establish the structure and interpretation of the above men-
tioned trajectories which cannot be measured. Hence, Bohm’s approach violates
the quantum paradigm established with the Copenhagen interpretation, i.e., the
building blocks of the theory must be related to a feasible measurement. Shortly
after the introduction of Bohmian mechanics, the criticisms did not take long to
wait for. Indeed, the arguments of Heisenberg and Pauli were sufficient for the
community to discredit Bohm’s proposal.

Ever since, the Bohmian community has undertaken the task of exploiting the
benefits of the Bohmian trajectories to solve numerically complicated quantum
problems in a more efficient way than other conventional approaches. With this
pragmatic scope for the rehabilitation of Bohm’s proposal, the roots of the ini-
tial controversy have been ignored though. Indeed, most of the publications of
Bohmian supporters since 1952 only restate how reasonable is the introduction
of Bohmian trajectories, even though counter experiments have been already pre-
sented against the real existance of Bohmian trajectories. The absence of a critical
revision of the Bohmian postulates rises the question how is it possible that a
powerfull simulation tool as Bohmian mechanics results from postulates already
proven incorrect?

1



2 1 Introduction

Regarding this problematic situation, three major flaws can be found in Bohmian
mechanics as it is currently formulated. First of all, there is no systematic treat-
ment of other representations than configuration space (this was already pointed
out by Heisenberg and Pauli, back in 1952). Second, the Bohmian trajectories are
inadequately defined and inconsistently used. Third, the Bohmian hydrodynamic
treatment seems to be composed of unrelated dynamical equations.

In this context, this thesis presents a conciliating standpoint of Bohmian me-
chanics, reformulates it from the conventional quantum mechanical framework,
and finds its right place in this formalism, without introducing additional pos-
tulates, interpretations or philosophical arguments. To accomplish that goal the
thesis is organized around three major pillars: the basic formulation, a rational
criticism of the Bohmian trajectory and last but not least, the structure of the local
transport equations associated to the Bohmian trajectories is studied.

Chapter 2 starts treating the basic formulation of Bohmian mechanics. In Sec-
tion 2.1, the controversy of Bohmian mechanics is revisited, regarding its lack of
a systematic formulation in other representations. Next, in Section 2.2 new com-
plex Bohmian quantities are defined, what allows the formulation of Bohmian
mechanics in any arbitrary continuous representation, for instance, the momen-
tum representation. Concerning Section 2.3, it is shown that contrary to common
belief, Bohmian mechanics has no Hamiltonian structure, despite the presence of
a modified Hamilton–Jacobi (mHJ) equation. Still it is found that the Bohmian dy-
namical equations ease the search for new constants of motion like the Ermakov
invariant for generalized coherent states. In Section 2.4 it is analysed how to ex-
press the Heisenberg principle in Bohmian mechanics, and the possibility to in-
terpret the quantum potential as a quantum contribution to the uncertainties is
found as well. Section 2.5 provides a brief summary of the results obtained in this
Chapter.

Concerning the second aspect, Chapter 3 deals with a redefinition and rein-
terpretation of the Bohmian trajectories. For that purpose, in Section 3.1 a brief
account of the status quo of the Bohmian trajectories is given. Next, Section 3.2
offers a new definition of the Bohman trajectories from the handling of the conti-
nuity equation, without any need of additional postulates or interpretations. Fur-
ther, in Section 3.3 it is found that the Wigner formalism is the connection between
conventional quantum mechanics and Bohmian mechanics. Bohmian mechanics
can be considered as a projective aspect of the Wigner function. Regarding Sec-
tion 3.4, the proposed definition and interpretation of Bohmian trajectories is il-
lustrated through an ion trap, characterized by a parametric oscillator with a non
periodic frequency. In Section 3.5 the results of the Chapter are summarized.
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As a third point, Chapter 4 presents a sytematic treatment of the hydrodynamic
scheme of Bohmian mechanics. In Section 4.1 a brief summary of the transport
equations in Bohmian mechanics is given. Next, in Sections 4.2 and 4.3 a unified
hydrodynamic treatment is found for Bohmian mechanics in position and momen-
tum representation.

In Chapter 5 conclusions of this thesis are drawn.





Chapter 2
Theoretical framework

Objective
Since its introduction in 1952, Bohmian mechanics [Bohm(1952a), Bohm(1952b)] claims to
be a deterministic and self-consistent alternative to the conventional paradigm of quantum
mechanics. Nevertheless, shortly after the publication of Bohm’s first paper, the scientific
community rejected it as an alternative on the same level as the Heisenberg picture or the von
Neumann formalism. This was due mainly to the absence of a formulation of Bohmian me-
chanics in arbitrary representations [Pauli(1952)]; because every result is centered upon the
position representation. Apart from this drawback, difficulties appeared when applying the
framework even to simple systems that were already solved in the 1920′s. Finally, concern-
ing the conceptual field, Bohmian mechanics introduces new postulates that are not based
on experimental facts and going against the positivism of quantum mechanics, it asigns an
inherent reality to unmeasurable objects, named Bohmian trajectories.

In this chapter it is shown how to circumvent all the criticisms mentioned above by
reformulating Bohmian mechanics, not from the rhetorical stand point, but from the conven-
tional framework of quantum mechanics and reveal the link between both formulations, so
that Bohmian mechanics can be put in its right place. Therefore, as a start, in Section 2.1
a concise summary of the typical Bohmian mechanics formulation is given. In Section 2.2,
it is proven how to extend the Bohmian framework to other representations, for instance,
momentum representation, by extending the original idea of David Bohm. Next, in Section
2.3 a complex formulation of Bohmian mechanics is obtained that allows to find dynamical
invariants for time-dependent Hamiltonians. This is considered for both, the position and
momentum representations. Finally, the important concept of the Heisenberg uncertainty
principle is obtained in 2.4, for the Bohmian mechanics approach.

5
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2.1 Overview

2.1.1 Conventional Bohmian mechanics

The realism of the system as an existing object with well defined properties in-
dependently of the observer can be traced back to the Newtonian formalism. In
the first Scholium of the Principia [Newton(1687)] it is stated: “Place is a part of
space which a body takes up, and, is according to the space, either absolute or rel-
ative”. Namely, the object occupies a well defined place in space independently of
the observer and therefrom, the mechanical properties that depend on the position
of the system are always simultaneously well defined. Their precise value depends
on the relationship between object and observer. All the mechanical information
in classical mechanics is contained in the trajectory followed by the object.

Experimentaly the position can vary from measurement to measurement, due
to experimental uncertainties though; nevertheless, the introduction of statistical
tools in mechanics during the XIXth century in metrology and notably in statistical
mechanics, related the position of a system to a probability distribution, thereby
the other dynamical variables are also described by probability distributions. It
is worth noticing that clasically, all the probability distributions of the dynamical
variables may shrink simultaneously in an indefinite way, leading again to the
Newtonian realism even for small sized systems as the molecules in a gas.

During the crisis of physics in the begining of the XXth century, two ap-
proaches for the study of physical systems appear: Relativity does not require that
distances are independent to the observer. It is the speed of light that must be taken
as an independent quantity though; still every object occupies a well defined place
in space-time. Quantum mechanics, on the other hand, states that the measurement
performed by the observer on a microscopic system introduces uncontrollable per-
turbations, such that individual detections cannot be predicted, but only statistical
patterns that in turn cannot be simultaneously precise [Bohr(1948)], this is de-
picted in Figure 2.1. Even if the relativity alters the way of studying the object,
quantum mechanics genuinely renounces to the realism of the object. The identity
of the object strongly depends on the statistical patterns obtained once a measure-
ment apparatus is used: not every dynamical property can be simultaneously well
defined. This is known as the Copenhagen interpretation, which up to date is the
conventional paradigm of quantum mechanics.

In this context, the two papers of David Bohm [Bohm(1952a), Bohm(1952b)]
challenged the standpoint of the Copenhagen interpretation. He suggested in a
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Fig. 2.1 Statistical patterns from single electron detection, once the electron is sent
out through a double slit, for (b) 100, (c) 3000, (d) 20000 and (e) 70000 electrons
[Tonomura(1989)].

reverse logic, that the assumption of a system with simultaneously well defined
properties (hidden variables), at that time, was similar to the proposal of the atomic
hypothesis in the XIXth century:

“Now it may be asked why these hidden variables should have so long re-
mained undetected. To answer this question, it is helpful to consider as an anal-
ogy the early forms of the atomic theory, in which the existence of atoms was
postulated in order to explain certain large-scale effects, such as the laws of
chemical combination, the gas laws, etc. On the other hand, these same effects
could also be described directly in terms of existing macrophysical concepts (such
as pressure, volume, temperature, mass, etc.); and a correct description in these
terms did not require any reference to atoms. Ultimately, however, effects were
found which contradicted the predictions obtained by extrapolating certain purely
macrophysical theories to the domain of the very small, and which could be un-
derstood correctly in terms of the assumption that matter is composed of atoms.
Similarly, we suggest that if there are hidden variables underlying the present
quantum theory, it is quite likely that in the atomic domain, they will lead to
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effects that can also be described adequately in the terms of the usual quantum-
mechanical concepts; while in a domain assoriated with much smaller dimen-
sions, such as the level associated with the “fundamental length” of the order
of 10−13 cm, the hidden variables may lead to completely new sects not con-
sistent with the extrapolation of the present quantum theory down to this level.”
[Bohm(1952a)].

He postulated that the subatomic systems: electrons, protons, etc. do possess
well defined mechanical properties and therefore, the individual detections are in-
deed predictable (see Figure 2.2). The name of the paths that he claimed particles
would follow are nowadays known as Bohmian trajectories q = q(t). Every hid-
den variable would depend on those trajectories in analogy to classical mechanics;
therefore, Bohmian mechanics, since 1952 was restricted conceptually to the po-
sition representation. The main difference with the quantum mechanical approach
is that Bohmian mechanics claimed to be able to express any prediction in terms
of such trajectories, while quantum mechanics simply expresses the predictions in
terms of the experimental preparation of the system, i.e., the quantum state of the
system |ψ(t)〉.

Bohmian mechanics is based on two main postulates (see Box 2.2.1): the equi-
librium hypothesis states the relationship of the realism of the hidden variables
and the statistical outcomes in the experiment; regarding the second postulate, the
guidance law establishes the structure of the velocity field1 υ(x, t) of Bohmian
trajectories.

Box 2.1.1

Guidance law [Holland(1995)]
The particle motion is obtained as solution q = q(t) to the equation,

d
dt

q(t),
1
m

∂

∂x
Sx(x, t)

∣∣
x=q(t), (2.1)

1 Without loss of generality, one dimensional systems are considered hereafter.
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where Sx is the phase of the complex wave function ψ(x, t). To solve this
equation it is required to specify the initial condition q0 , q(0). This speci-
fication constitutes the only extra information introduced by the theory that
is not contained in ψ(x, t) (the initial velocity is fixed once we know S). An
ensemble of possible motions associated with the same wave is generated by
varying q0.

Equilibrium hypothesis [Holland(1995)]

The probability that a particle in the ensemble lies between the points x
and x+dx at time t is given by

ρx(x, t)dx, |ψ(x, t)|2dx. (2.2)

This postulate has the effect of selecting, from all the possible motions
implied by the guidance law (2.1), those that are compatible with an initial
distribution |ψ(x,0)|2dx.

In this sense, for Bohmian mechanics the wave function is just a convenient
way to condense all the information of the hidden variables into a single complex
function, as follows:

ψ(x, t) =
√
|ψ|2︸ ︷︷ ︸

spatial
density

exp
[ i

h̄
Sx︸︷︷︸

velocity
field

]
. (2.3)

The dynamics of Bohmian mechanics is given by a system of coupled differen-
tial equations: The continuity equation (CE) (2.5) describes the spatial distribu-
tion of the Bohmian trajectories, while the modified Hamilton–Jacobi equation
(mHJE) (2.4) rules the dynamics of the phase Sx, related to the velocity field.
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Fig. 2.2 Bohmian trajectories through two Gaussian slits [Philippidis(1979)]. The spatial
density ρ is expressed through the shrinking or spreading of the fan of trajectories. The
velocity field is related to the local slopes of the trajectories.

∂

∂ t
Sx +

( ∂

∂xSx)
2

2m
+V − h̄2 1

2m

∂ 2√ρx
∂x2√

ρx︸ ︷︷ ︸
quantum

contribution

= 0,

∂

∂ t
ρx +

∂

∂x
·
(

ρx

∂

∂xSx

m

)
= 0.

(2.4)

(2.5)

The conceptual core of Bohmian mechanics arises from this system of equa-
tions. The CE (2.5) justifies the interpretation of ρx as a probability density and
∂

∂xSx as the momentum field. The latter being associated to streamlines known as
Bohmian trajectories. Regarding equation (2.4), it shows that those streamlines

follow a classical-like dynamics (except for the presence of the term −h̄2 1
2m

∂2√ρx
∂x2√

ρx

which is called “quantum potential”) with Sx the associated action. The Bohmian
idea can be summarized as follows: Every quantum system, described by a pure
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state, is associated to a fluid whose density corresponds to the probability of de-
tecting the system in a position. The streamlines are derived from a potential flow
that is associated with action Sx. The dynamics of the fluid under consideration is
ruled by classical mechanics with the additional term of the quantum potential.

2.1.2 Problems with Bohmian mechanics

As it was mentioned in Section 2.1.1, the scope of Bohmian mechanics at the be-
ginning [Bohm(1952a), Bohm(1952b)] was to ease the understanding of individ-
ual events in quantum dynamics through the use of trajectories and the non-local
concept of a “quantum potential” in the configuration space. Even if appealing,
shortly after the publication of Bohm’s papers, his proposed idea clashed with
a criticism concerning the asymmetry of his formulation [Passon(2005)]. The
main objections arose from Pauli [Pauli(1952)] and Heisenberg [Passon(2005),
Bacciagaluppi(2009)]. Pauli and Heisenberg stressed that, besides the lack of ex-
perimental evidence of the hidden variables, the asymetric role of the canoni-
cal variables in Bohm’s theory was a fundamental drawback. While conventional
quantum mechanics is formulated independently of a particular representation,
Bohmian mechanics is solely expressed in terms of the position representation
with no traces of other possible representations, for instance, momentum repre-
sentation. Basically, the criticism against Bohmian mechanics during the 50’s is
summarized in the idea that the the absence of a description in terms of momen-
tum and its unique description in terms of the position was a contradiction to the
claimed generality of the theory proposed by Bohm. Not to mention that the phys-
ical meaning of his trajectories was not proven at the time. A brief summary of the
chronology of the criticisms on the absence of other representations in Bohmian
mechanics as shown in Table 2.1.

From the side of the Bohmian community, shortly after the criticism of Bohm’s
papers [Bohm(1952a), Bohm(1952b)], Epstein suggested in a note [Epstein(1953a)]
the possibility of expressing Bohm’s approach in the momentum representation by
a polar decomposition. The same year Bohm himself [Bohm(1953)] objected to
the idea by evoking the Coulomb potential and a supposed misconception on the
canonical transformation within his hidden variables framework. Not long after
Epstein illustrated this possibility in another note [Epstein(1953b)]. He did not
write down the associated continuity equation though and was unable to deter-
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Supporters Detractors
Pauli [Pauli(1952)]
Heisenberg [Passon(2005), Bacciagaluppi(2009)]

Epstein [Epstein(1953a), Epstein(1953b)] Bohm [Bohm(1953)]
Freistadt [Freistadt(1957)]

Polavieja [Polavieja(1996a), Polavieja(1996b)]
Hiley [Hiley(2000)]

Table 2.1 Summary of the timeline of the controversy about Bohmian mechanics in mo-
mentum representation.

mine the form of the quantum contribution in the Hamilton–Jacobi equation. He
expressed the potential term as a convolution integral and did not specify for what
kind of potential an analogous quantum term is obtained for the momentum rep-
resentation.

Years later, Freistadt critiziced concisely that polar decomposition in a review
about the causal description of quantum mechanics [Freistadt(1957)]. Freistadt ar-
gued that the unspecified form of the potential prevents the dynamical equations in
momentum representation from presenting a causal form as in the case of the posi-
tion representation. It should also be mentioned that, to our knowledge, Polavieja
[Polavieja(1996a), Polavieja(1996b)] was the first to go beyond Bohmian mechan-
ics in configuration space by means of a projection technique similar to the one
used in this thesis. He obtained a phase space description by performing a polar
decomposition of the Husimi function in the basis of generalized coherent states
(that are elements of a nonlinear submanifold of the Hilbert space, as a superpo-
sition of two coherent states no longer belongs to this space), not on a basis of the
momentum space wave functions (that span the whole Hilbert space).

As a matter of fact, Struyve published a possible method to express Bohmian
mechanics causally in momentum representation [Struyve(2010)]. Nevertheless,
all along the paper he was not able to write down explicitely for specific systems
neither the CE nor the HJE in momentum representation. Therefore, since the
works of Epstein [Epstein(1953a), Epstein(1953b)] there have been no explicit
dynamical equations in a causal form for the momentum representation.

Recently an extension of the Bohmian formulation [Hiley(2000)] has been
implemented to a free representation framework through the introduction of a
phase operator. Nevertheless, its major drawback is the ad hoc introduction of the
phase operator. This means, the missing symmetry between position and momen-
tum representation argued by Pauli [Pauli(1952)] was formally established. The
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dynamics was shown to be gauge invariant and every representation has its own
associated phase space. It is also worth pointing out the attempt for formulating
Bohmian mechanics in terms of the denisty matrix [Maroney(2005)]. An outline
of the main arguments involved in the controversy of Bohmian mechanics in mo-
mentum representation is shown in Table 2.2.

Now in this present work, the extension of Bohmian mechanics to momentum
representation is achieved without the need of any ad hoc introduction of new
operators. The original idea of Bohm is simply used and extended. This is shown
in the next Section.

2.2 Continuous representation

2.2.1 Extension principle

The main feature and limitation of Bohm’s proposal [Bohm(1952a), Bohm(1952b)]
are its foundation exclusively in the position representation {|x〉}. As it was men-
tioned in Section 2.1.2, in [Hiley(2000)] a formulation of Bohmian mechanics
for any representation was achieved through the use of the Quantum Liouville
equation and the introduction of a quantum phase operator in an ad hoc way.
However, as will be seen in the following, the extension of Bohmian mechanics
to any continuous representation {|a〉} can be based on the most basic concept:
The projection of the state, formulated using the polar form of the complex wave
function.

In quantum mechanics [Dirac(1931), Newton(2004)] all measurable informa-
tion is embedded in the quantum state |ψ(t)〉 that can be given in different rep-
resentations, depending on the chosen independent variable a. That variable can
be, e.g., position, momentum, energy, etc., leading to the projection 〈a|ψ(t)〉 ∈C.
Instead of introducing a quantum phase operator as a new concept, we will use
the original method of Bohm (the polar decomposition) in a broader sense. As the
projection of the state is a complex quantity for any representation, we can express
it always in polar form:

〈a|ψ(t)〉=
√

ρa(a, t)exp
(

i
Sa(a, t)

h̄

)
(2.6)

with ρa = |〈a|ψ(t)〉|2 associated with the probability density function of the ex-
perimental detections. We have to bear in mind that the bricks of the Bohmian
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Supporters Detractors
Pauli [Pauli(1952)]
Heisenberg [Passon(2005), Bacciagaluppi(2009)]
Absence of experimental detections of hidden
variables.
Absence of a representation-free formulation.

Epstein [Epstein(1953a)] Bohm [Bohm(1953)]
Suggestion of finding paths that satisfy both: There cannot be trajectories in momentum space,
d
dt q(t) ∝

∂

∂x S(x, t)
∣∣
x=q(t) since a non convergent series expansion would

arise for the Coulomb potential.
d
dt π(t) ∝

∂

∂ p S(p, t)
∣∣

p=π(t) .
Schrödinger equation in momentum representa-
tion obtained for a general potential given explic-
itly.
Neither CE nor mHJE is written down.

Freistadt [Freistadt(1957)]
The impossibility comes from the potential form.
As long as its form is not stated; then in the mo-
mentum represenation, the dynamical equations
remain just as an integral expression. Therefore
there is neither continuity nor mHJ equation.

Polavieja [Polavieja(1996a), Polavieja(1996b)]
Projection of the Husimi function with help of
generalized coherent states (state dependent rep-
resentation)
Hiley [Hiley(2000)]
Momentum representation for Bohmian mechan-
ics, as long as a “Phase operator” is introduced in
an ad hoc way.
Struyve [Struyve(2010)]
Conditions for the form of the potential to ensure
the existance of a continuity equation.

Table 2.2 Summary of the arguments in the controversy about Bohmian mechanics in
momentum representation.
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formulation are the norm ρ and the phase S, because Bohmian mechanics is a
quantum formulation of the projected state, as it will be proven in what follows.
For this purpose, the dynamics of these elements for every continuous representa-
tion must be established. To reach this goal, we take the time derivative of (2.6),
take into account Schrödinger’s equation and separate it into real and imaginary
parts:

−ρa
∂

∂ t
Sa =

1
2
〈a|
[
Ĥ, ρ̂(t)

]
+
|a〉 = 1

2
〈a|
(

Ĥρ̂(t)+ ρ̂(t)Ĥ
)
|a〉, (2.7)

h̄
2

∂

∂ t
ρa =

1
2i
〈a|
[
Ĥ, ρ̂(t)

]
−|a〉 =

1
2i
〈a|
(

Ĥρ̂(t)− ρ̂(t)Ĥ
)
|a〉, (2.8)

where ρ̂(t), in Dirac notation, correspond to the density operator of a pure state,
ρ̂(t)= |ψ(t)〉〈ψ(t)|, and is different from the density function ρa =ψ∗a (a, t)ψa(a, t).

It is important to note that the dynamics of the density ρa and the phase Sa
depends on the complex quantity 〈a|Ĥρ̂|a〉, with Ĥ being the Hamiltonian oper-
ator in the respective representation. Indeed the real part 1

2〈a|
[
Ĥ, ρ̂(t)

]
+
|a〉 and

imaginary part 1
2i〈a|

[
Ĥ, ρ̂(t)

]
−|a〉 determine the time dependence of the density

ρa and the phase Sa, respectively.
Let us consider an arbitrary observable with the corresponding operator F̂. We

will define a complex Bohmian quantity FBo
.
= F ∈ C as follows:

F(a, t) .
=
〈a|F̂|ψ〉
〈a|ψ〉

= FR + iFI. (2.9)

In other words, our complex Bohmian quantities are nothing more than the
action of the operator F̂ on the quantum state, 〈a|F̂|ψ〉, divided by the projected
quantum state 〈a|ψ〉. From now on, for the sake of simplicity, the difference be-
tween a Bohmian quantity F and an operator F̂ will be indicated by a hat on the
latter.
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Box 2.2.1

On the notation of the complex Bohmian quantities [Bonilla(2020a)]
As we will see in future Sections, the introduced notation (2.9) allows a

simplification of the analysis of quantum systems and, particularly, of time-
dependent systems. To avoid any misunderstanding though, it is necessary to
clarify an important point regarding this new notation. At first glance it would
seem inconvenient the use of F(a, t) because it does not indicate the involved
represenation. One could argue that, for instance, a complex Bohmian quan-
tity in position and momentum representation, according to (2.9) should be
written, respectively, F(x, t) and F(p, t), causing then the impression that the
relation between both quantities is a mere substitution of the type x↔ p,
which is not the case. One solution could be indicating the representation as
a subscript Fa(a, t).

Nevertheless, on one hand, Fp(x, t) and Fx(p, t) do not exist based on (2.9)
and, on the other hand, stating every time Fx(x, t) and Fp(p, t) is redundant
and slows down the reading (this goes against the initial reason for the nota-
tion (2.9) which is the simplication of the Bohmian expressions). Therefore,
in order to ease the notation the representation subscript was drop in (2.9),
and we will only indicate F(x, t) and F(p, t) instead of Fx(x, t) and Fp(p, t).

Besides, Bohmian mechanics is a projective aspect of quantum mechanics,
as we will see in Section 3.3; that means that the choice of a representation
must always be previously stated. For that reason it is always clear in which
representation we are working. Also, to ease the reading, the involved repre-
sentation is contained in the headings of the correpondent Sections. In this
sense, hereafter we will not indicate the representation subscript because the
context is clear enough to avoid a misunderstanding.
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Going back to (2.8-2.7), the Bohmian dynamical equations may be rewritten
as

−ρa
∂

∂ t
Sa = ρaHR(a, t),

h̄
2

∂

∂ t
ρa = ρaHI(a, t),

(2.10)

(2.11)

where the first corresponds to the CE (2.5) and the second to the mHJE (2.4), but
now in any continuous representation.

The latter system of equations is more fundamental than the usual Bohm’s
equations, because it is expressed in an arbitrary representation (and not re-
stricted to the position representation). Further, the advantages of working in
representations other than position, for instance, momentum representation will
be illustrated, e.g. in Section 2.2.2.3. Equations (2.10-2.11) were obtained in
[Hiley(2000)] by using the quantum Liouville equation and the introduction of
a so called quantum phase operator. The method proposed in this thesis is sim-
pler, since it is based on the general idea that the projection of a state |ψ(t)〉 on a
representation {|a〉} is a complex number, that can always be expressed in polar
form.

2.2.2 Position and momentum representations

2.2.2.1 Position representation

Let us review the derivation of Bohm’s equations to point out the key element
of the Bohmian formulation. A non-relativistic system with zero spin, under the
influence of a real potential V̂ = f (X̂) in the coordinate representation shall be
considered. Bearing in mind the polar decomposition of the projection of the state
(2.6), the following Bohmian quantities can be computed according to definition
(2.9)
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X = x real

P =
∂

∂x
Sx− i

h̄
2

∂

∂xρx

ρx
= PR + iPI complex

V = f (x)

T =
1

2m

[
P2]= 1

2m

(
(P)2− ih̄

∂

∂x
P
)

=
1

2m

[(
P2

R−P2
I + h̄

∂

∂x
·PI

)
+ i
(

2PRPI− h̄
∂

∂x
PR

)]
,

(2.12)

(2.13)

(2.14)

(2.15)

i.e.,
[
P2] 6= (P)2, what reflects the non-locality of the theory, as in general ( ∂

∂xP) 6=
0.

Like the Bohmian momentum, also the corresponding kinetic energy is a com-
plex quantity. The real part can be rewritten as

TR =
1

2m
(

∂

∂x
Sx)

2 +Vqu (2.16)

where the quantum potential Vqu is completely determined by the imaginary part
of the Bohmian momentum (2.13) according to

Vqu = −
1

2m

[
P2

I − h̄
∂

∂x
PI

]
=

h̄2

8m

(
∂

∂xρx

ρx

)2

− h̄2

4m
∂

∂x

(
∂

∂xρx

ρx

)
=− h̄2

2m

∂ 2

∂x2
√

ρx
√

ρx
. (2.17)

The complex Bohmian Hamiltonian takes then the form

Hx =

[
P2

R
2m

+V(x, t)− P2
I

2m
+

h̄
2m

∂

∂x
PI

]
− i

h̄
2ρx

∂

∂x

(
ρx

PR

m

)
. (2.18)

The real part is essentially the real part of the kinetic energy supplemented by
the real potential V (x, t), where the time-dependence may, e.g., arise from a time-
dependent frequency of a parametric oscillator, i.e., V = m

2 ω2(t)x2. The imaginary
part of the Hamiltonian is identical with the imaginary part of the kinetic energy
and can be written as
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TI =
1

2m

(
2PRPI− h̄

∂

∂x
PR

)
= − 1

2m

[
h̄
( ∂

∂xρx

ρx

)
∂

∂x
Sx + h̄

∂ 2

∂x2 Sx

]

= − h̄
2

1
ρx

∂

∂x

(
ρx

∂

∂xSx

m

)
. (2.19)

From the real part of the Hamiltonian follows according to (2.10)

− ∂

∂ t
Sx = TR +V(x, t)

=
1

2m

( ∂

∂x
Sx
)2

+Vqu +V(x, t), (2.20)

i.e., the mHJE (2.4).
In agreement with (2.11), this leads to

h̄
2

∂

∂ t
ρx = ρxTI = ρxHI

= − h̄
2

∂

∂x

(
ρx

∂

∂xSx

m

)
, (2.21)

what is, apart from a constant factor h̄
2 , just the CE (2.5).

2.2.2.2 Momentum representation

In the following the momentum space representantion will be developped in anal-
ogy to the preceding position space representation. A general quadratic potential
V̂(X̂) = a + bX̂ + 1

2mω2(t)X̂2 will be considered, particularly as the quadratic
term represents the counterpart of the quadratic form of the kinetic energy and
also provides a term corresponding to the quantum potential in position space.
For that purpose, again the polar form of the state and the definition (2.9) of the
Bohmian quantities are considered. Hence, in the momentum representation one
obtains for a given wave function ψp(p, t) =

√
ρp(p, t)exp

[ i
h̄Sp(p, t)

]
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X =− ∂

∂ p
Sp + i

h̄
2

∂

∂ pρp

ρp
= XR + iXI complex

P = p real

T =
p2

2m[
X2]= (X)2 + ih̄

∂

∂ p
X

=
(

X2
R−X2

I − h̄
∂

∂ p
·XI

)
+ i
(

2XRXI + h̄
∂

∂ p
·XR

)
.

(2.22)

(2.23)

(2.24)

(2.25)

Also in momentum space, the non-locality is expressed by the fact that
[
X2] 6=

(X)2, but differs by the term ih̄( ∂

∂ pX). The real part of [X2] is given by the square
of XR (like in position space the real part of P2 is given by P2

R), but supplemented
by a term that is formally equivalent to the quantum potential Vqu in position space,
i.e.,

[
X2]

R = (− ∂

∂ p
Sp)

2− h̄2

2

[
∂ 2

∂ p2 ρp

ρp
− 1

2

( ∂

∂ pρp

ρp

)2
]

= (XR)
2− h̄2

∂ 2

∂ p2
√

ρp
√

ρp
. (2.26)

Therefore, the Hamiltonian for the above mentioned potential can, in Bohmian
form, be written as

Hp =
p2

2m
+a+b(− ∂

∂ p
Sp)+

m
2

ω
2

[
(− ∂

∂ p
Sp)

2− h̄2
∂ 2

∂ p2
√

ρp
√

ρp

]

+i

[
b

h̄
2

∂

∂ pρp

ρp
+

m
2

ω
2
(
− h̄

ρp

∂

∂ p
(ρp

∂

∂ p
Sp)
)]

. (2.27)

According to (2.11), form the imaginary part follows

∂

∂ t
ρp =−

∂

∂ p
(−bρp)−mω

2 ∂

∂ p

(
ρp

∂

∂ p
Sp

)
(2.28)
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or, with the definition of XR,

∂

∂ t
ρp +

∂

∂ p

[
ρp
(
−b−mω

2XR
)]

= 0. (2.29)

The second term on the lhs corresponds to the momentum contribution to the
flux in phase space according to ρpṖ, if Ṗ is given by the Bohmian quantity

Ṗ =−b−mω
2XR =

(
− ∂

∂x
V(x)

)∣∣∣∣∣
x=XR

. (2.30)

From the real part of the Hamiltonian follows:

∂

∂ t
Sp +

p2

2m
+a+b(− ∂

∂ p
Sp)+

m
2

ω
2

[
(

∂

∂ p
Sp)

2− h̄2
∂ 2√ρp

∂ p2
√

ρp

]
= 0, (2.31)

or with the definition of XR,

∂

∂ t
Sp +

p2

2m
+V(XR)−

m
2

ω
2h̄2

∂ 2√ρp

∂ p2
√

ρp
= 0, (2.32)

in summary

∂

∂ t
Sp +

p2

2m
+V(XR)−

m
2

ω
2h̄2

∂ 2√ρp

∂ p2
√

ρp︸ ︷︷ ︸
quantum

contribution

=0,

∂

∂ t
ρp +

∂

∂ p

[
ρp
(
−b−mω

2XR
)]

=0.

(2.33)

(2.34)

These equations are the momentum space versions of the CE (2.5) or (2.21) and
the mHJE (2.4) or (2.20) valid in position space.

2.2.2.3 Example of application: Linear potential in momentum space

As an example, let us consider an electron of mass m and charge e acted upon by a
linear potential, e.g., a uniform, homogeneous and isotropic electric field in the x
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direction, represented by the potential V (x) = eEx, where we will exclusively con-
sider stationary states. In this case the probability density ρp does not explicitely
depend on time, thus according to (2.9) and (2.11), the Bohmian Hamiltonian is
a real quantity, H = ε ∈ R, with ε an energy of the spectrum. The conventional
treatment in coordinate representation through the Schrödinger equation is already
known [Schiff(1970)]. To solve it by means of the Bohmian mechanics in momen-
tum representation {|p〉}, the Bohmian dynamical equations (2.11-2.10) must be
written down, taking into account the real character of the Bohmian Hamiltonian
for the stationary states:

∂

∂ t
ρp = 0 = eE

∂

∂ p
ρp, (2.35)

− ∂

∂ t
Sp = ε =−eE

∂

∂ p
Sp +

p2

2m
. (2.36)

The probability density not depending explicitly on time, ∂

∂ t ρp = 0, and ∂

∂ t Sp =
−ε , is leading to

∂

∂ p
ρp = 0, (2.37)

ε = −eE
∂

∂ p
Sp +

p2

2m
. (2.38)

As the probability density does not depend explicitly neither on time nor on
momentum, the probability density is constant, ρp = const. Regarding the phase,
from (2.38) follows:

∂

∂ p
Sp =

p2

2meE
− ε

eE
. (2.39)

Therefore, this problem has as solution:

ρp = const,

Sp =
1

2meE
p3

3
− ε

eE
p− εt.

(2.40)

(2.41)

Appyling the inverse Fourier transform to the wave function, i.e. the transfor-
mation to the position representation
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√
ρx(x, t)exp

[
i
Sx(x, t)

h̄

]
=
∫

dpexp
[ i

h̄

{ 1
2meE

p3

3
− ε

eE
p− εt + xp

}]
= exp

[
− i

εt
h̄

]∫
dpexp

[
i
( 1

2mh̄eE
p3

3
+(x− ε

eE
)

p
h̄

)]
(2.42)

and introducing the following change of variable u = 1
3√2mh̄eE

p leads to

√
ρx(x, t)exp

[
i
Sx(x, t)

h̄

]
∝ exp

[
− i

εt
h̄

]∫
duexp

[
i
(u3

3
+(x− ε

eE
) 3

√
2meE

h̄2 u
)]

.

(2.43)
The integral on the right side of the equation turns out to be the integral rep-

resentation of the Airy function (see equation (2.24) in [Vallee(2004)]), leading
to

√
ρx(x, t)exp

[
i
Sx(x, t)

h̄

]
∝ Ai

[
3

√
2meE

h̄2 (x− ε

eE
)

]
exp
[
− i

εt
h̄

]
. (2.44)

The solution in the position representation can be identified as

ρx(x, t) =

(
Ai

[
3

√
2meE

h̄2 (x− ε

eE
)

])2

Sx(x, t) =−εt,

(2.45)

(2.46)

where the energy spectrum will depend on the imposed boundary conditions. For
instance, in a triangular well V (x) = eEx,∀x > 0 and V (x) = +∞ otherwise, the
imposed boundary condition is ρx(0, t) = 0. This leads to

Ai

[
3

√
2meE

h̄2 (0− ε

eE
)

]
= 0, (2.47)

ζi =− 3

√
2meE

h̄2
εi

eE
(2.48)

where ζi denotes the zeroes of the Airy function; the energy spectrum εi is then
given by
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εi =−eE
3

√
h̄2

2meE
ζi. (2.49)

With this brief example, we stress that Bohmian mechanics can ease signifi-
cantly the treatment of some systems (for instance, in the case of a linear poten-
tial), just by changing the representation.
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2.3 Complexification

2.3.1 Complex Hamiltonian

2.3.1.1 Complex Hamiltonian in position representation

In the remaining Sections of this chapter the structure of the proposed complex
Bohmian quantities (2.9) is presented.

Since the first communication of Schrödinger [Schrödinger(1926a)] there was
a search for formulating quantum mechanical behavior in a Hamiltonian way.
This task was already achieved during the 20’s with the works of Schrödinger
[Schrödinger(1926a), Schrödinger(1926b), Schrödinger(1926c), Schrödinger(1926d)],
Heisenberg, Born and Jordan [Heisenberg(1925), Born(1925), Born(1926)] and
Dirac [Dirac(1931)], amongst others. During those times the Copenhagen inter-
pretation set the conceptual structure of quantum mechanics, which was summed
up in 1948 by Bohr:

“The entire formalism is to be considered as a tool for deriving predic-
tions, of definite or statistical character, as regards information obtainable un-
der experimental conditions described in classical terms and specified by means
of parameters entering into the algebraic or differential equations of which the
matrices or the wave-functions, respectively, are solutions. These symbols them-
selves, as is indicated already by the use of imaginary numbers, are not suscep-
tible to pictorial interpretation.; and even derived real functions like densities
and currents are only to be regarded as expressing the probabilities for the oc-
currence of individual events observable under well-defined experimental condi-
tions.” [Bohr(1948)]

For that reason what has a Hamiltonian structure is the observable operator
formalism, not the actual detections, i.e., mean values, uncertainties, etc. As we
saw in Section 2.1, in 1952, Bohm [Bohm(1952a), Bohm(1952b)] critized that
the involved entities (operators and states) were deprived of an objective reality
and underlined the necessity of seeking for a law for predicting single detections
and not just statistical ensembles of detections of systems with an equal initial
preparation. He proposed therefore a causal interpretation of the indidual objects,
imposing thus the realism in quantum mechanics, by decoupling the Schrödinger
equation into real and imaginary parts (2.5-2.4), by means of a polar decomposi-
tion of the wave function (2.3). This led to the revival of the causal interpretation
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of de Broglie and Madelung [Madelung(1927)] in terms of hydrodynamical equa-
tions.

Despite the criticisms of Heisenberg and Pauli, among others (see Section
2.1), Bohmian mechanics continued being studied: The interpretation of the quan-
tum potential by Philippidis [Philippidis(1979)] and Dewdney [Dewdney(1982)];
the attempts for a formulation of momentum space by Epstein [Epstein(1953a)],
Freistadt [Freistadt(1957)], Hiley [Hiley(2000)] and Bonilla [Bonilla(2020a)];
among other contributions [Polavieja(1996a), Polavieja(1996b), Struyve(2010),
Maroney(2005)]. The main lines of Bohmian mechanics were already summed
up in [Holland(1995)]. Nevertheless, conceptually speaking, the realism proposed
in the interpretation by Bohmian mechanics was already proven to be false when
Alain Aspect violated Bell’s inequalities [Bell(1964)] in 1980 with a quantum
optical experiment [Aspect(1976)].

Besides the ontological interpretation of Bohmian mechanics (already proven
wrong), the mathematical framework is still useful because of the intuition that it
provides and the ease in computing simulations for quantum systems [Sanz(2014),
Nassar(1993), Goldfarb(2006), Poirier(2008)]. This thesis adheres to this scheme
and Bohmian mechanics is only considered as a convenient mathematical formu-
lation for treating quantum mechanics, without any aditional interpretations. That
being said, the natural question that arises is, if our proposed Bohmian structure
has a Newtonian or Hamiltonian structure, since non-relativistic quantum mechan-
ics is naturally Hamiltonian in its structure.

As it was seen in Section 2.2.2, the proposed complex quantities (2.14-2.15)
are given by

V = f (x), (2.50)

T =
1

2m

[
P2]= 1

2m

(
(P)2− ih̄

∂

∂x
P
)
. (2.51)

The Bohmian Hamiltonian is then naturally expressed as follows:

Hx =
1

2m

(
(P)2− ih̄

∂

∂x
P
)
+V. (2.52)

It is straight forward to compute the following derivatives:
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∂Hx

∂x
=

1
2m

(
2P

∂P
∂x
− ih̄

∂ 2P
∂x2

)
+

∂V
∂x

, (2.53)

∂Hx

∂P
=

1
m

P, (2.54)

∂Hx

∂ t
=

1
2m

(
2P

∂P
∂ t
− ih̄

∂ 2P
∂x∂ t

)
+

∂V
∂ t

. (2.55)

Now, if time derivatives are taken individually of the Bohmian position, mo-
mentum and Hamiltonian, using (2.11), (2.10) and (2.13) one obtains

∂X
∂ t

= 0, (2.56)

∂P
∂ t

=
∂

∂ t

(
∂

∂x
Sx(x, t)−

ih̄
2

∂

∂x
lnρx(x, t)

)
=−∂Hx

∂x
, (2.57)

∂Hx

∂ t
=

∂

∂ t

(
− ∂

∂ t
Sx(x, t)+

ih̄
2

∂

∂ t
lnρx(x, t)

)
. (2.58)

Apparently, in the Bohmian framework the Hamiltonian formalism does not
hold, due to the fact that the representation variable x = X does not depend explic-
itly on time. This rises the question on how to express the Bohmian formalism in
a Hamiltonian way, if possible. Within this framework one can introduce Q, the
conjugate variable of the Bohmian momentum, in the following way:

Q(x, t) .
=

1
m

∫
P(x, t)dt. (2.59)

In this way, we could compute again the respective derivatives and realize
that now we dispose of two conjugate dynamical variables (Q,P), and when re-
membering the definition of the Bohmian quantities (2.9), apparently we have a
Hamiltonian system of equations,

∂P
∂ t

(x, t) =− ∂

∂x
V − P

m
∂

∂x
P− ih̄

2
∂ 2

∂x2 P

=−∂Hx

∂x
6=−∂Hx

∂Q
,

∂Q
∂ t

(x, t) =
1
m

P =
∂Hx

∂P
,

− ∂

∂ t

(
Sx(x, t)−

ih̄
2

lnρx(x, t)
)
= Hx(P,

∂

∂x
P;x, t) 6= Hx(Q,P;x, t).

(2.60)

(2.61)

(2.62)
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It should be mentioned that the real part of Eq. (2.61) with PR = ∂

∂xSx is identical
with the guidance law (2.1) postulated in Bohmian mechanics, thus the real part
of Q is just the Bohmian trajectory q(t)!

Nevertheless, the Hamiltonian structure is not really obvious, because a closer
inspection reveals that, first of all the complex Hamiltonian is a function of P,
∂

∂xP, x and t, but Q does not occur. Furthermore, in (2.60) the time derivative of
the complex momentum is given by ∂P

∂ t =
∂

∂xHx, instead of ∂P
∂ t =

∂

∂QHx. It is worth
mentioning that the mHJ equation (2.4) in Bohmian mechanics served originally
as an argument supporting the idea that the structure of Bohmian mechanics is
Hamiltonian. Nonetheless, we have seen that this claim is not quite correct. That
does not mean that the structure is useless though. On the contrary, it only means
that Bohmian mechanics does not share the conventional Hamiltonian structure.
This is partly due to the fact that Bohmian mechanics is a projective version of
quantum mechanics, as it is showen in definition (2.9). But, still we have to em-
phasize that the dynamics of the system is contained in the following equation,

∂P
∂ t

+
P
m

∂

∂x
P =− ∂

∂x
V − ih̄

2
∂ 2

∂x2 P︸ ︷︷ ︸
quantum

contribution

, (2.63)

which reminds of the Newtonian equation. However, this analogy is not new in
quantum mechanics. What is new is that it is proposed to rewrite the elements of
Bohmian mechanics with complex functions (2.9) to form a complex Newton-like
equation (2.63). The latter can be decoupled with help of (2.13) and (2.17) into
real and imaginary parts, leading then to Bohm’s original expressions:

∂

∂ t
Sx +

( ∂

∂xSx)
2

2m
+V +Vqu,x = 0, (2.64)

∂ρx

∂ t
+

∂

∂x

[
ρx

PR

m

]
= 0, (2.65)

with PR = ∂

∂xSx. This system of equations corresponds to the usual Hamilton–
Jacobi-like equation in Bohmian mechanics and the associated continuity equa-
tion. That means that the structure of Bohmian mechanics is neither Newtonian
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nor Hamiltonian2, yet its dynamics is ruled by a complex Newtonian-like equa-
tion, provided complex quantities are used.

2.3.1.2 Complex Hamiltonian in momentum representation

In this Section, the results of Section 2.3.1.1 are taken to the momentum represen-
tation. For that purpose, the polar decomposition of the projection of the quantum
state [Bonilla(2020a)] is performed for the case of a non-relativistic system with
zero spin, under the influence of a general harmonic potential V̂ in the momentum
representation (see Eqs. (2.22-2.25)).
The Hamiltonian for the general quadratic potential considered in Section 2.2.2.2
has the form

Hp =
p2

2m
+a+bX+

m
2

ω
2(t)X2 + i

h̄m
2

ω
2(t)

∂

∂ p
X. (2.66)

Like in the previous Section one can compute the time derivatives [Bonilla(2021a)],

∂X
∂ t

= +
∂

∂ p
Hp =

p
m
+
(

b+mω
2X
)

∂

∂ p
X+ ih̄

mω2

2
∂ 2

∂ p2 X, (2.67)

∂P
∂ t

= 0. (2.68)

Like in Section 2.3.1.1, the Hamiltonian structure is apparently missing, since
p is in this case the representation variable. Nevertheless, in a similar way one can
define a function Π conjugated to the Bohmian position according to

Π(p, t) .
=
∫ (
−b−mω

2X(p, t)
)

dt. (2.69)

In this way, one could form a dynamical system with the two conjugate dy-
namical variables (X,Π ),

2 Even though a conjugate variable Q (2.59) can be introduced by hand.
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∂X
∂ t

=
p
m
+
(
b+mω

2X
)∂X

∂ p
+ ih̄

mω2

2
∂ 2X
∂ p2

=
∂Hp

∂ p
6=

∂Hp

∂Π
,

∂Π(p, t)
∂ t

=− ∂

∂X
Hp =−b−mω

2X

− ∂

∂ t

(
Sp(p, t)− ih̄

2
lnρp(p, t)

)
= Hp(X,

∂X
∂ p

; p, t) 6= Hp(X,Π ; p, t).

(2.70)

(2.71)

(2.72)

Notice that Π and ∂X
∂ p are not the same quantity. Indeed, the definition (2.69) of Π

shows that − 1
mω2

∂ 2Π

∂ t∂ p = ∂X
∂ p .

When defining the Bohmian force F .
=− ∂

∂XV (X, t) =−b−mω2X = ∂Π

∂ t , one
obtains a complex dynamical equation equivalent to Eq. (2.63),

∂X
∂ t

+ Π̇
∂

∂ p
X =

p
m
+ ih̄

mω2

2
∂ 2

∂ p2 X︸ ︷︷ ︸
quantum

contribution

. (2.73)

With the help of (2.22) and (2.26) this one can again be decoupled into real
and imaginary parts leading to Eqs. (2.34) and (2.33).

Since the 50’s Bohmian mechanics has provided an alternative to rethink quan-
tum mechanical problems with the claim to be based on a classical Hamiltonian
mathematical structure. Now it was shown that, on the contrary, this Hamiltonian
structure of Bohmian mechanics is not apparent. This can be seen clearly from
the dynamical system (2.60-2.62) in position representation and (2.70-2.72) in
momentum representation. In both cases, it was found that the effect of the pro-
jection of the quantum state (2.9) prevents the Hamiltonian structure to manifest
completly.

2.3.2 Constants of motion

In the previous Section it was proven that the Bohmian structure is not exactly
Hamiltonian, but this is not a problem though. Indeed, the importance that a the-
ory has a Hamiltonian structure is mainly due to the interest in searching for con-
stants of motions. Nevertheless, even though Bohmian theory does not follow this
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scheme, it is useful for finding other constants of motion, that are otherwise diffi-
cult to access.

In Section 2.2.1 it was shown how Bohmian mechanics can be formulated in
terms of complex quantities that are obtained by applying a quantum mechanical
operator F̂ onto a quantum state or wave function 〈a|ψ(t)〉 in the {|a〉} represen-
tation (bear in mind it can be either position x or momentum p representation) and
dividing the result by 〈a|ψ(t)〉, see Eq. (2.9).
The result is in general complex, however, the mean value of the imaginary part
always vanishes, 〈AI〉 = 0, i.e., it cannot be observed directly. In order to obtain
exact analytical expressions, in the following our discussion is restricted to gener-
alized coherent states as quantum states |ψ(t)〉, i.e., to Gaussian wave packets with
time-dependent width (first in position space). These functions are solutions of the
time-dependent Schrödinger equation with potentials that are at most quadratic in
the position variable. Without loss of generality, we consider the one-dimensional
case, i.e.,

ih̄
∂

∂ t
ψ(x, t) =

{
− h̄2

2m
∂ 2

∂x2 +V (x, t)
}

ψ(x, t) (2.74)

with ψ(x, t) = 〈x|ψ(t)〉, i.e. the quantum state |ψ(t)〉 in position representa-
tion; the momentum representation is discussed in the next Section. The time-
dependence of the potential V (x, t) originates from the time-dependence of the
oscillator frequence ω(t) and has the form V (x, t) = 1

2mω2(t)x2, describing the
so-called parametric oscillator.
The Gaussian solution can be written in the form

〈x|ψ(t)〉= Nx(t)exp

[
i
h̄

(m
2

C x̃2 + 〈p〉x̃+K(t)
)]

, (2.75)

where x̃ = x− 〈x〉 = x− η(t), i.e., the maximum of the wave function is at
〈x〉=

∫
∞

−∞
ψ∗(x, t)xψ(x, t)dx in agreement with Ehrenfest’s theorem that the mean

value 〈x〉 follows the classical trajectory, here denoted as η(t). The coefficient
of the quadratic term, C = C (t), is a complex function of time and 〈p〉 = mη̇ ,
where the overdots denote time-derivatives. Inserting (2.75) into (2.74) provides
two equations of motion for η(t) and C (t),

η̈ +ω
2(t)η = 0 (2.76)

and
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Ċ +C 2 +ω
2(t) = 0. (2.77)

Equation (2.76) is just Newton’s equation of motion for the trajectory, Eq. (2.77) is
a complex nonlinear Riccati equation that is connected with the time-dependence
of the wave packet width. This connection becomes clearer by introducing a new
variable α(t) and expressing C (t) in terms of α and its time-derivative as

C
.
=

α̇

α
+ i

1
α2 . (2.78)

The real part CR = α̇

α
follows from inserting CI =

1
α2 into the imaginary part of

the complex Riccati equation (2.77). With these expressions for CR and CI , the
real part of this equations turns into

α̈ +ω
2(t) =

1
α3 , (2.79)

a real nonlinear differential equation known as Ermakov equation that is equiva-
lent to the complex nonlinear Riccati equation.
The imaginary part of C shows that α(t) is directly proportional to the wave
packet width, as CI =

1
α2 = h̄

2m
1

σ2
x

with σ2
x = 〈x̃2〉 = 〈x2〉− 〈x〉2 being the mean

square deviation in position, so α(t) represents up to a constant factor the position
uncertainty.
According to (2.9), the Bohmian quantities for position, momentum, potential en-
ergy and kinetic energy for the coherent state (2.75) are obtained as

X = x real
P = mC x̃+ 〈p〉 complex

V =
m
2

ω
2(t)x2

T =
1

2m

[
(P)2 +

h̄
i

∂

∂x
P
]
=

1
2m

[
(P)2− ih̄mC

]
(2.80)
(2.81)

(2.82)

(2.83)

2.3.2.1 Dynamical invariant

In quantum mechanics a dynamical invariant Î, for a system with Hamiltonian
operator Ĥ has to satisfy the relation
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d
dt
〈̂I〉= 1

ih̄
〈
[̂I, Ĥ]−

〉
+
〈 ∂

∂ t
Î
〉
= 0 (2.84)

with [ , ]− being the commutator.
Finding such an invariant is particularly difficult when the Hamiltonian is ex-
plicitely time-dependent, as in Eq. (2.74) where the time-dependence is introduced
via the time-dependent frequency ω(t) in the potential. Already in 1880, Vladimir
Ermakov solved this problem for the classical case [Ermakov(1880)] by eliminat-
ing ω(t) between Eqs. (2.76) and (2.79), leading to an invariant named after him
in the litterature.
In the following it is shown how to obtain the same invariant without the neces-
sity of using the Newtonian equation of motion (2.76) and the Ermakov equa-
tion (2.79). This derivation is based on Hamiltonian equations for the complex
Bohmian quantities and the complex Riccati equation.
As shown in (2.60), in position space the Hamiltonian equation for the complex
momentum P is given by

∂

∂ t
P =− ∂

∂x
Hx. (2.85)

With the expressions for P as given for the generalized coherent states in (2.81)
one obtains

∂

∂ t
P =− ∂

∂x

(
1

2m
P2− ih̄

2
C +

m
2

ω
2(t)x2

)
. (2.86)

Taking into account that C (t) does not depend on position and replacing ω2(t)
using Riccati equation (2.77) leads to

∂

∂ t
P =−PC +mĊ x+mC 2x. (2.87)

These terms can be rearranged to yield

∂

∂ t
ln
(

P−mC x
)
=−C =− ∂

∂ t
lnα− i

1
α2 . (2.88)

Recalling that the logarithm of a complex number z = |z|exp
(
iφ
)

is given by
lnz = ln |z|+ iφ , Eq. (2.88) can be rewritten as,

∂

∂ t
ln
∣∣∣P−mC x

∣∣∣+ i
∂

∂ t
tan−1

(
PI−mCIx
PR−mCRx

)
=− ∂

∂ t
lnα− i

1
α2 . (2.89)
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Equating real and imaginary parts leads to two relations that have to be fulfilled,

∂

∂ t
ln
∣∣∣P−mC x

∣∣∣= ∂

∂ t
ln

1
α

(2.90)

and

∂

∂ t
tan−1

(
PI−mCIx
PR−mCRx

)
=− 1

α2 . (2.91)

After integration, the real part leads to∣∣∣P−mC x
∣∣∣∣∣∣P0−mC0x
∣∣∣ = α0

α
(2.92)

or

α
∣∣P−mC x

∣∣= α0
∣∣P0−mC0x

∣∣, (2.93)

and the imaginary part to

tan−1

(
PI−mCIx
PR−mCRx

)
=−

∫ t

0

1
α2 dt ′, (2.94)

where the lhs corresponds to the phase angle φ of the complex quantity z. The
physical meaning of this angle will be discussed in the next Subsection.

Squaring the expressions in Eq. (2.93) leads to the quadratic invariant

α
2
∣∣∣P−mC x

∣∣∣2 = α
2
0

∣∣∣P0−mC0x
∣∣∣2. (2.95)

Bearing in mind that according to (2.81) P−mC x =−mC η +mη̇ , Eq. (2.95) can
be written as

α
2
[
(−mCRη+mη̇)2+(−mCIη)2

]
=α

2
0

[
(−mCR(0)η0+mη̇0)

2+(−mCI(0)η0)
2
]
,

(2.96)
what can be reduced to

(α̇η−αη̇)2 +
(

η

α

)2
= (α̇0η0−α0η̇0)

2 +
(

η0

α0

)2
. (2.97)
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In most cases, the classical initial position η0 can be taken equal to zero, η0 = 0,
and η̇0 can in our case be expressed via the initial momentum as η̇0 =

p0
m . Then

the rhs of (2.97) can be simplified to yield

(α̇η−αη̇)2 +
(

η

α

)2
=
(

α0 p0

m

)2
. (2.98)

The lhs is, apart from a factor of 1
2 , identical to the invariant found by Ermakov,

but here neither without making use of the Newtonian equation for η nor of the
nonlinear equation for α .
Instead, the ingredients that were needed for the above derivation of this invariant
are the Hamiltonian equation of motion (2.85) for the complex Bohmian quantities
and the complex Riccati equation (2.77).

2.3.2.2 Phase angles of the complex quantities

In the last Subsection the quantity P−mC x was identified with a complex number
z = |z|exp

(
iφ
)

that can also be written in Cartesian coordinates as z = zR + izI =
|z|cosφ + i|z|sinφ with zI

zR
= tanφ . Therefore, the lhs of Eq. (2.94) is just the

phase angle φ of the complex quantity. In order to get an idea what the meaning
of this angle is, the corresponding angle −

∫ t
0

1
α2 dt ′ on the rhs of Eq. (2.94) is now

considered. How can this be related to the quantities we already know?
To answer this question the fact is used that a nonlinear Riccati equation can

always be linearized replacing the Riccati-variable by a logarithmic derivative. In
this case, an ansatz

C =
λ̇

λ
(2.99)

leads to the linear second order Newtonian-type differential equation

λ̈ +ω
2(t)λ = 0 (2.100)

for the complex variable λ =α exp
(
iϕ
)
= u+ iυ =α cosϕ+ iα sinϕ . The choice

of α for the amplitude of λ is not by chance, as can be seen inserting the polar
form of λ into (2.99), leading to

C =
α̇

α
+ iϕ̇, (2.101)

what would be in agreement with (2.78) if the relation
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ϕ̇ =
1

α2 (2.102)

is fulfilled. This can be proven easily by inserting (2.101) into the complex Riccati
equation (2.77) and checking the imaginary part of this equation. Relation (2.102),
written in the form α2ϕ̇ = 1 looks again like a conservation law, this time the
conservation of angular momentum for the motion of λ (t) in the complex plane
(for further details, see [Schuch(2018a), Schuch(1989)]). Therefore, the rhs of
(2.94) turns into −

∫ t
0 ϕ̇dt ′ =−

(
ϕ(t)−ϕ0

)
, i.e., up to a minus sign and a constant

initial angle φ0, it is just the phase angle of λ (t).
Also the lhs of (2.94) can be related to λ . For this purpose the fact is used
that the wave packet (2.75) can also be obtained by applying a time-dependent
Green function G(x,x′, t, t ′) on an initial Gaussian wave packet, i.e., ψ(x, t) =∫

dx′G(x,x′, t, t ′)ψ(x′, t ′). The time-dependent parameters occuring in the Green
function can entirely be expressed in terms of u(t) and υ(t), the real and imagi-
nary parts of λ (t). Comparing the wave packet obtained in this way with the form
in (2.75) shows that

υ =
m

α0 p0
〈x〉= m

α0 p0
η(t) (2.103)

is valid (for further details, see [Schuch(2018a), Schuch(1989)]).
Multiplying Eq. (2.98) by

( m
α0 p0

)2 and using υ = α sinϕ yields( m
α0 p0

)2(
α̇η−αη̇

)2
+ sin2

ϕ = 1. (2.104)

Therefore, the first term on the lhs must be cos2 ϕ =
( u

α

)2, leading to (up to a ±
sign)

u =
m

α0 p0

(
η̇α

2−ηα̇α
)

(2.105)

and hence to

tanϕ =
υ

u
=

η

η̇α2−ηα̇α
(2.106)

Returning now to the lhs of Eq. (2.94), using expression (2.81) for P and the
form (2.78) for C , one can write,
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tan−1

(
PI−mCIx
PR−mCRx

)
= tan−1

(
−mCIη

−mCRη +mη̇

)

= − tan−1

(
η

η̇α2−ηα̇α

)
=−ϕ, (2.107)

in agreement with −
∫ 1

α2 dt ′ =−
∫

ϕ̇dt ′ on the rhs of (2.94).
To summarize, the phase angle φ of the complex quantity P− mC x = z =
|z|exp

(
iφ
)

is identical with the phase angle ϕ of the complex quantity λ =
α exp

(
iϕ
)

whose logarithmic time-derivative is the variable of the Riccati equa-
tion (2.77), whose amplitude is proportional to the wave packet width and whose
motion in the complex plane has an “angular momentum”-type invariant accord-
ing to α2ϕ̇ = 1.

2.3.3 Momentum representation

In this Section it is shown how to recover the results in momentum space that were
obtained in position space in the previous Section. This is important, as the validity
of a constant of motion should be independent of the chosen representation.
The quantum state in momentum space corresponding to (2.75) in position space
can be obtained by Fourier transformation and can be written in the form

〈p|ψ(t)〉= Np(t)exp

[
− i

h̄

( 1
2m

U p̃2 +η p̃+g(t)
)]

, (2.108)

where p̃ = p− 〈p〉 = p−mη̇ and the complex coefficient of p̃2 is the inverse
of the quantity C (t), fulfilling the Riccati equation (2.77), i.e., U = C−1(t); the
new symbol is used just for convenience. Also the dynamics of U is ruled by a
complex Riccati equation,

−U̇ +ω
2(t)U 2 +1 = 0 (2.109)

that turns into Eq. (2.77) if U is replaced by C−1.
The Bohmian quantities [Bonilla(2020a)] for position, momentum and potential
energy for these states, obtained according to (2.9), are given by
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P = p real

X =
1
m

U p̃+η complex

V =
1
2

mω
2(t)
[
(X)2− h̄

i
∂

∂ p
X
]
=

1
2

mω
2(t)
[
(X)2 +

ih̄
m

U
]
.

(2.110)

(2.111)

(2.112)

2.3.3.1 Dynamical invariants

The procedure is repeated as in Section 2.3.2.1, only in momentum space. As
shown in [Bonilla(2021a)], in this space the Hamiltonian equation for the complex
position is

∂

∂ t
X =

∂

∂ p
Hp, (2.113)

i.e., like the classical Hamiltonian equation of motion, but with complex position
X and Hamiltonian Hp =

p2

2m +V (X, ∂

∂ pX). For the coherent state (2.108) this leads
to

∂

∂ t
X =

∂

∂ p

[
p2

2m
+

1
2

mω
2(t)
(

X2 +
ih̄
m

U (t)
)]

=
p
m
+mω

2(t)X
∂

∂ p
X =

p
m
+ω

2(t)XU . (2.114)

Using U C = 1 and eliminating ω2(t) with the help of Riccati equation (2.109),
one obtains

∂

∂ t
X =

p
m
+ω

2(t)U 2C X

=
p
m
+
(
U̇ −1

)
C X. (2.115)

Using expression (2.111) for the Bohmian position and again U C = 1, yields

∂

∂ t
X =

p
m
+ U̇

( 1
m
(p−mη̇)+C η

)
−C X, (2.116)

what can be rearranged to
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∂

∂ t

(
X−U

p
m

)
=

p
m
+ U̇

(
− η̇ +C η

)
−C X. (2.117)

With η̇ =U C η̇ and p
m =U C p

m as well as adding and substracting U p
m this turns

into

∂

∂ t

(
X−U

p
m

)
=
( 1

m
U (p−mη̇)+η−U

p
m

)
C U̇ −

(
X−U

p
m

)
C . (2.118)

Applying U̇ =− Ċ
C 2 and the expression (2.111) for X allows to write this as

∂

∂ t

(
X−U

p
m

)
=−

(
X−U

p
m

)Ċ

C
−
(

X−U
p
m

)
C (2.119)

or

∂

∂ t
ln
(

X−U
p
m

)
=− ∂

∂ t
lnC −C (2.120)

and finally, as m is not time-dependent, this can be expressed in the form

∂

∂ t
ln
(

mC X− p
)
=−C . (2.121)

Comparing this result with the corresponding one in position space, Eq. (2.88),
shows

∂

∂ t
ln
(

P−mC x
)
=−C for x-representation

∂

∂ t
ln
(

mC X− p
)
=−C for p-representation,

(2.122)

(2.123)

or, using the expressions for the Bohmian quantities X and P,

∂

∂ t
ln
(
−mC η +mη̇

)
=−C for the x-representation

∂

∂ t
ln
(
−mη̇ +mC η

)
=−C for the p-representation.

(2.124)

(2.125)

This means that the argument of the logarithm on the lhs is, up to a +/− sign
identical. Therefore, the absolute values of these two complex expressions and
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thus the dynamical invariants as well as the ratio of imaginary and real parts,
and thus the phase angles are identical too. This confirms that the invariants we
obtained are independent of the representation.

The relation to the invariant α2ϕ̇ = 1, connected with the phase angle of the
complex quantities discussed in Section 2.3.2.2, becomes more obvious if the rhs
of Eq. (2.124) is written with help of (2.99) in the form

−C =− λ̇

λ
=− ∂

∂ t
lnλ . (2.126)

Comparing this with the lhs where the constant m is replaced by the constant α0 p0
m

and using α0 p0
m η = z, Eq. (2.124) can be rewritten as

λ̇

λ
z− ż =

1
λ

(2.127)

or

λ̇ z− żλ = 1 = u̇z− żu+ i(żz− żz). (2.128)

Keeping in mind that z = α sinϕ and u = α cosϕ leads to

u̇z− żu = α
2
ϕ̇ = 1, (2.129)

i.e., the conservation law (2.102) written in the “cartesian coodinates” z and u in
the complex plane.
As relation (2.125) for the momentum representation differs from Eq. (2.124) only
by a constant factor −1, the same applies to this expression.

2.3.4 Linear potential

In this Section, the dynamical invariant associated with a linear potential V̂ =
−EX̂ along the x-axis is obtained. For that purpose, the quantities (2.12-2.15) for
a general coherent state (2.75) are computed,
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X = x real
P = mC x̃+ 〈p〉 complex
V =−Ex

T =
1

2m

(
(P)2− ih̄mC

)
.

(2.130)
(2.131)
(2.132)

(2.133)

In analogy to Section 2.3.2.1 one can proceed by handling Eq. (2.63) taking
into account these Bohmian quantities. Therefore,

∂

∂ t
P =− ∂

∂x

(
1

2m
P2− ih̄

2
C −Ex

)
, (2.134)

∂

∂ t
P =− P

m
∂

∂x
P+E, (2.135)

or

∂

∂ t
P =−PC +E. (2.136)

For the case of a linear potential, it is clear that as ∂ 2V
∂x2 = 0, then the potential

does not contribute to the Riccati equation; therefore, the Riccati equation imposes
Ċ +C 2 = 0. This helps to simplify the previous equation by adding a zero:

∂

∂ t
P =−PC +m(Ċ +C 2)x+E, (2.137)

∂

∂ t

(
P−mC x

)
=−

(
P−mC x

)
C +E. (2.138)

Due to the presence of E from the linear contribution of the potential, the
differential equation is not separable anymore unlike in the case of the parametric
oscillator. Indeed, expressing C as a logarithmic derivative of a complex function
λ , C = d

dt lnλ (see Appendix A) allows us to write down

∂

∂ t

(
λ
(
P−mC x

))
= Eλ . (2.139)

By direct integration and taking the absolute square

∣∣∣λ(P−mC x
)∣∣∣2 = E2

∣∣∣∣∣
∫ t

0
λdt ′

∣∣∣∣∣
2

, (2.140)
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one can see that the definite integral on the rhs cannot be evaluated until the mag-
nitude and phase of λ = α exp

[
iϕ
]

are specified. This means, that the Ermakov
quantity is not a constant of motion for the generalized coherent states under the
influence of a stationary linear potential.

IErmakov =
E2

2

∣∣∣∣∣
∫ t

0
λdt ′

∣∣∣∣∣
2

6= const. (2.141)

Nevertheless, one may drop the assumption of stationarity of E, E = const,
and assume, based on Eq. (2.139), the following form for the potential parameter
E,

E(t) = κ
ϕ̇

α
, (2.142)

where ϕ̇ = 1
α2 (see Appendix A) and κ represents the (constant) strength of the

potential in the units g ·cm ·s−2. With this expression, the integration of Eq. (2.139)
turns into,

∂

∂ t

(
λ
(
P−mC x

))
= κ

ϕ̇

α
λ , (2.143)

where λ = α exp
[
i
∫ 1

α2 dt ′
]
= α exp

[
iϕ
]
. Therefore, it is straightforward to ob-

tain the following expression,

∂

∂ t

(
λ
(
P−mC x

))
= κϕ̇ exp

[
iϕ
]
, (2.144)

and after direct integration in time,

λ

(
P−mC x

)
−λ0

(
P0−mC0x

)
=

κ

i
exp
[
iϕ
]
− κ

i
exp
[
iϕ0

]
(2.145)

or

λ

(
P−mC x

)
−λ0

(
P0−mC0x

)
=

κ

iα
λ − κ

iα0
λ0, (2.146)

leading to

λ

(
P−mC x+ i

κ

α

)
= λ0

(
P0−mC0x+ i

κ

α0

)
. (2.147)
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Using, as before, P−mC x=mη̇−mC η and C in the form (2.78), after taking
the square of the magnitude, one obtains

α
2
[(

mη̇−m
α̇

α
η
)2

+
(

κ

α
−m

1
α2 η

)2]
= const (2.148)

or (
mαη̇−mα̇η

)2
+
(

m
η

α

)2
+κ

2−2κm
η

α
= const. (2.149)

Dividing by m2 and taking into account that κ and m are constants, the equa-
tion might be rewritten directly as(

αη̇− α̇η
)2

+
(

η

α

)2
−2

κ

m
η

α
= const. (2.150)

It is worth noticing that if the time-dependent linear potential has the form V=
−κϕ̇

1
α

X̂, its associated Ermakov invariant IErmakov, LP differs from the Ermakov
invariant of the parametric oscillator (see Eq. (2.98)) IErmakov, PO in the following
way

IErmakov, LP = IErmakov, PO−
κ

m
η

α
= const. (2.151)

This result depends clearly on the choice of the structure of E to ensure the
integrability of Eq. (2.139). For further details see [Schuch(2018a)] page 61.

In a nutshell, for the generalized coherent states the Ermakov invariants can
be obtain for the parametric oscillator in the form IErmakov, PO = 1

2

(
(α̇η−αη̇)2+(

η

α

)2
)

. For the case of a linear potential, the Ermakov invariant takes the form

IErmakov, LP = 1
2

(
(α̇η −αη̇)2 +

(
η

α

)2
)
− κ

m
η

α
, as long as the linear potential has

the following structure: V =−κϕ̇
1
α

X̂.

2.4 Uncertainties

2.4.1 Quantum potential

Let us reinterpret the so called “quantum potential” within our approach. It is
known [Holland(1995)], within the conventional Bohmian mechanics, that the
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mHJE is written with help of the quantum potential Vqu,x, see for instance Eq.
(2.4), as

− ∂

∂ t
Sx =

( ∂

∂xSx)
2

2m
+Vqu,x +V. (2.152)

This is basically Eq. (2.10) corresponding to the real part of the Bohmian
Hamiltonian defined through (2.9). That means that the quantum potential is re-
lated to our Bohmian quantities, according to (2.15) via

Vqu,x = TR−
( ∂

∂xSx)
2

2m
. (2.153)

Let us now express the “quantum potential” via the momentum uncertainty.
The momentum uncertainty σ2

p is given by

σ
2
p = 〈ψ|P̂2|ψ〉−〈p〉2, (2.154)

what can be rearranged to,

σ
2
p =

∫
〈ψ|x〉〈x|ψ〉〈x|P̂

2|ψ〉
〈x|ψ〉

dx−〈p〉2, (2.155)

and, bearing in mind the definition of the complex Bohmian quantities (2.9) T =
1

2m
〈x|P̂2|ψ〉
〈x|ψ〉 , expressed as

σ
2
p = 2m

∫
ρxTdx−〈p〉2. (2.156)

Besides, we must not forget that the mean value of the imaginary parts of the
complex Bohmian quantities are zero. Therefore, the integral is simplified to

σ
2
p = 2m

∫
ρxTRdx−〈p〉2. (2.157)

Let us now use expression (2.153),

σ
2
p =

∫
ρx

[(
∂

∂x
Sx

)2
−〈p〉2 +2mVqu,x

]
dx, (2.158)

or
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σ
2
p = σ

2
cl,p +2m

∫
ρxVqu,xdx︸ ︷︷ ︸

quantum
contribution

, (2.159)

where the “classical uncertainty” σ2
cl,p is denoted by

σ
2
cl,p =

∫
ρx

[(
∂

∂x
Sx

)2
−〈p〉2

]
dx. (2.160)

A similar argument can be used in the momentum space. In that case, the
mHJ equation (2.33) contains again a term which is responsible for the deviation
from the classical case. For symmetry purposes, we will refer to it as “quantum
potential in momentum space” Vqu,p,

Vqu,p =
1
2

mω
2(t)[X2]R−

1
2

mω
2(t)
(

∂

∂ p
Sp

)2
. (2.161)

In analogy to the position space, for the momentum space we have to recall
also the complex Bohmian quantities (2.9) when computing the position uncer-
tainty. Then, the position uncertainty σx, calculated in momentum space, is given
by

σ
2
x = σ

2
cl,x +

2
mω2

∫
ρpVqu,pdp︸ ︷︷ ︸

quantum
contribution

, (2.162)

where the position uncertainty σx exhibits a structure similar to the momentum
uncertainty σp: there is a “classical” term and a contribution from quantum nature.
The “classical uncertainty” σcl,x is given by,

σ
2
cl,x =

∫
ρp

(
(

∂

∂ p
Sp)

2−〈x〉2
)

dp. (2.163)

Up to this point, it is worth noticing that, for both the position and momentum
spaces, the so-called “quantum potentials” in Bohmian mechanics are not interac-
tions with the system as Bohm suggested in his first publications about the topic
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[Bohm(1952a), Bohm(1952b)]. On the contrary, according to (2.159) and (2.162)
it is clear that those terms are the manifestation of the quantum fluctuations for the
kinetic and potential energy respectively. Notice that the conventional Bohmian
mechanics is able to split the structure of the position uncertainty into two parts as
it is shown in Eq. (2.162). It gives though the impression that that structure is only
possible in the position space due to the lack of a formulation in the momentum
space. Nevertheless, the Bohmian extension proposed in this thesis is useful to
show that there is a structural symmetry between the position and the momentum
spaces as it can be seen in the expressions of the momentum (2.159) and the po-
sition (2.162) uncertainties. Furthermore, it shows that the quantum contributions
of the mHJ equations are responsible for the difference between the “classical”
and quantum expression of the uncertainties.

2.4.2 Heisenberg principle

Up to date there is no treatment of the Heisenberg principle within Bohmian me-
chanics. This is due to the fixation with the trajectories in position space. This
makes it more difficult or even prevents to approach such a simple and funda-
mental relation as the Heisenberg uncertainty principle. Now, with the proposed
Bohmian scheme in this thesis, that relation is, according to (2.159) and (2.162),
easily expressed as follows,

σ
2
x σ

2
p =

(
σ

2
cl,x +

2
mω2

∫
ρpVqu,pdp

)(
σ

2
cl,p +2m

∫
ρxVqu,xdx

)
≥ h̄2

4
.

(2.164)

Let us illustrate this relation by considering a general coherent state in position
space (A.1) as well as in momentum space (A.21). For those states, the phase is
given by

Sx =
m
2

CRx̃2 + 〈p〉x̃+K(t),

Sp =−
1

2m
UR p̃2−〈x〉p̃+L(t),

(2.165)

(2.166)
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with the CR and UR being the real parts of the Riccati variable associated to the
position and momentum space, respectively. Bear in mind that they are related by
U = 1

C . Now, after taking the derivatives, their squares are

(
∂

∂x
Sx

)2
= m2C 2

R x̃2 +2mCR〈p〉x̃+ 〈p〉2, (2.167)(
∂

∂ p
Sp

)2
= 1

m2 U
2

R p̃2 + 2
mUR〈x〉p̃+ 〈x〉2. (2.168)

Considering that the uncertainties are defined as σ2
x
.
= 〈x̃2〉 and σ2

p
.
= 〈p̃2〉 and

〈x̃〉= 〈p̃〉= 0, one can directly compute the “classical uncertainties”, taking into
account the expressions (2.160) and (2.163),

σ
2
cl,p = m2C 2

R σ
2
x =

C 2
R
|C |2

σ
2
p = CRURσ

2
p ,

σ
2
cl,x =

1
m2 U 2

R σ
2
p = U 2

R |C |2σ
2
x = CRURσ

2
x .

(2.169)

(2.170)

Notice that the relation between the position and momentum uncertainties
σ2

p = m2|C |2σ2
x was used (see Appendix A, Eq. (A.8)).

Regarding the position space, Eq. (2.159) and (2.169) allow to compute the
quantum contribution of the fluctuations of kinetic energy according to (2.171).
Concerning the momentum space, similarly, Eq. (2.162) together with Eq. (2.170)
yield the quantum contribution for the fluctuation of potential energy, (2.172),

2m
∫

ρxVqu,xdx = m2C 2
I σ

2
x =

C 2
I
|C |2

σ
2
p = CIUIσ

2
p ,

2
mω2

∫
ρpVqu,pdp =

1
m2 U 2

I σ
2
p = U 2

I |C |2σ
2
x = CIUIσ

2
x .

(2.171)

(2.172)

In this way we can easily identify that the quantum effect in the uncertainty is
related not only with the spreadings σx and σp, but also with their spreading speed
σ̇x and σ̇p through the real part CR = σ̇x

σx
occurring in |C |2 = C 2

R +C 2
I .

Besides, with the proposed scheme we can fully identify the contribution to the
spreadings. For instance, in the case of a stationary bound state under the action
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of a symmetrical potential, the classical contributions cancel out, i.e., σx,cl = 0
and σp,cl = 0; hence the spreadings are due to quantum effects via the “quantum
potentials”. That is why the study of the quantum potentials allows the access to
the information of the spreading of the bound stationary states under the action
of symmetrical potentials. It is not related though, as conventional Bohmian me-
chanics suggests, to a “special kind of force”; but rather comes from fluctuations
of the kinetic and potential energies.
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2.5 Summary

� In Section 2.1, it was shown that the controversy regarding the formulation
of Bohmian mechanics in momentum representation is still of interest, see
Table 2.2.

� In Section 2.2, by means of the polar decomposition (2.6), complex
Bohmian quantities were defined according to (2.9) for position and momen-
tum representation:

Observable Position representation Momentum representation

X x − ∂

∂ pSp + i h̄
2

∂

∂ p ρp

ρp

P ∂

∂xSx− i h̄
2

∂

∂x ρx
ρx

p

V a+bx+ 1
2mω2x2 a+bX+ 1

2mω2
(
(X)2 + ih̄ ∂

∂ pX
)

T 1
2m

(
(P)2− ih̄ ∂

∂xP
)

p2

2m

Advantages for using the Bohmian formulation in the momentum repre-
sentation were illustrated with a linear potential for stationary states.

� In Section 2.3, it was found that even if the mHJE in Bohmian mechan-
ics suggest a Hamiltonian structure, it is not the case due to the absence of
canonical conjugate variables. However, the complex dynamical equations
are similar to the Newtonian counterparts,

{
∂

∂ t
+ Q̇

∂

∂x

}
︸ ︷︷ ︸

= D
Dt

P = − ∂

∂xV − ih̄
2

∂ 2

∂x2 P︸ ︷︷ ︸
quantum

contribution

in the x-space, (2.173)

{
∂

∂ t
+ Π̇

∂

∂ p

}
︸ ︷︷ ︸

= D
Dt

X = p
m + ih̄

mω2

2
∂ 2

∂ p2 X︸ ︷︷ ︸
quantum

contribution

in the p-space, (2.174)
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These equations reveal to be useful to find constants of motion, e.g. the
Ermakov invariant, for time dependent states such as the generalized coherent
states.

� In Section 2.4 the quantum potential, within our scheme, occured to be
related with the quantum contribution to the position and momentum uncer-
tainties,

Position uncertainty Momentum uncertainty

Classical contribution
∫

ρp

(
( ∂

∂ pSp)
2−〈x〉2

)
dp

∫
ρx

(
( ∂

∂xSx)
2−〈p〉2

)
dx

Quantum contribution 2m
∫

ρxVqu,xdx 2
mω2

∫
ρpVqu,pdp

Quantum potential TR−
( ∂

∂x Sx)
2

2m
1
2mω2(t)[X2]R− 1

2mω2(t)( ∂

∂ pSp)
2

Besides, the Heisenberg principle was stated in Eq. (2.164) and illustrated
through the consideration of a general coherent state.





Chapter 3
Bohmian trajectories

Objective
As stated in Chapter 1, Bohmian mechanics can be formulated save and sound through the
conventional quantum mechanics using simple and useful mathematical tools. Regarding the
Bohmian trajectories (the milestone of Bohmian mechanics), there has been a lot of reluc-
tance and suspicion towards it because it presents (according to the typical Bohmian me-
chanics) a two fold inconvenience: Using the Bohmian trajectories would imply accepting
two additional postulates, i.e., the guidance law and the equilibrium hypothesis; furthermore
they need to be regarded as real objects. Nevertheless, they have proven to be very useful
in numerical simulations for hard problems, what otherwise would be very time-consuming.
Since the usefulness of such objects has been proven over the time, it is worth reformulating
these trajectories in a way that fits in with the conventional framework of quantum mechan-
ics, so that this useful tool can find its right place within the theoretical apparatus, without
the need of additional postulates or even rhetorical reasoning.

In this chapter the focus is on the correct formulation of Bohmian trajectories. In Sec-
tion 3.1 the status quo and scope of these trajectories is briefly recalled. In Section 3.2, on
the other hand, it is shown that the continuity equation in quantum mechanics is the start-
ing point to overcome all the rhetorical and philosophical problems regarding the Bohmian
trajectories. Next, in Section 3.3 a clear and simple link to conventional quantum mechan-
ics is found with the help of the Wigner function. The proposed approach to the Bohmian
trajectories is illustrated in Section 3.4 by applying it to an ion trap, as example.
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3.1 Overview

3.1.1 Conventional Bohmian trajectories

Bohmian mechanics originated as a deterministic alternative to the (probabilistic)
Copenhagen interpretation of quantum mechanics. The latter states that individ-
ual detections cannot be predicted, e.g., due to uncontrollable interactions between
the object and the measurement apparatus. Therefore, conventional quantum me-
chanics only determines the statistical outcome of a well-defined experiment on
the microscopic scale [Bohr(1948)].

On the other hand, since its creation in 1952 the Bohmian school [Bohm(1952a),
Bohm(1952b)] claims that the individual detections can actually be predicted and
are related to a geometrical path in configuration space that they call “Bohmian
trajectory”. As Bohm points out [Bohm(1952a)], it is then stated that the micro-
scopic systems do follow those trajectories. Since the works of Bohm there is the
hope that technical advances will enable the detection of those trajectories.

Besides the interpretative character of Bohmian mechanics, it is clear that
Bohmian trajectories are fundamental elements of Bohm’s framework. Neverethe-
less, one gets the impression that within the Bohmian community there is no real
consensus what a Bohmian trajectory is, not to mention a clear physical picture of
its origin.

A quantum optical experiment by Alain Aspect [Aspect(1976)] showing a vio-
lation of Bell’s inequalities as well as more recent experiments with Stern–Gerlach
interferometers [Englert(1992), Scully(1998)] indicate that the original idea of
Bohm that his trajectories are indeed the paths that particle follow and provide an
additional parameter to conventional quantum mechanics is not correct, as it is not
in agreement with experimental results. Does this mean that the Bohmian theory
has completely lost its foundation?

There is a meaningful alternative in the litterature, the relationship between
Bohmian trajectories and the cumulative probability function (CPF) used in statis-
tics. In 1996, Oriols [Oriols(1996)] suggested the treatment of Bohmian trajecto-
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ries using the complementary CPF,
∫

∞

x |ψ(x′, t)|2dx′, in order to study dwelling
times in tunneling problems. The idea is strongly based on the noncrossing prop-
erty of the Bohmian trajectories. Shortly after, in 1998, Brandt [Brandt(1998)]
and more recently Coffey et al. [Coffey(2008)] pointed out that the dynamics
defined via the above-mentioned integral expression matches the dynamics of
the Bohmian trajectory, provided the continuity equation is fulfilled. However,
in either case, a clear mathematical link between conventional quantum theory,
Bohmian mechanics and the suggested definition of Bohmian trajectories is miss-
ing.

The question that has to be answered is therefore, what is actually a Bohmian
trajectory if it is not a particle’s trajectory and how can the answer be formulated
mathematically consistent and in a clear physical picture. In the present work it
is tried to rehabilitate the concept of Bohmian trajectories by removing all unnec-
essary metaphysical ballast. Instead, it is proven how these trajectories arise nat-
urally from the conventional theory, so Bohm’s approach is nothing but another
alternative formulation for studying quantum systems. Further, it is shown how
to define properly Bohmian trajectories in position and momentum representation
without the need of any Bohmian postulate like quantum equilibrium hypothesis
or guidance law [Holland(1995)].

3.1.2 Problems with the conventional definition of the Bohmian
trajectories

The concept of Bohmian trajectories has its origin in the pilot wave theory of
de Broglie [Solvay(1928)] in 1927 and was later adopted (independently of de
Broglie’s work) by Bohm [Bohm(1952a), Bohm(1952b)] in 1952. In Bohmian
mechanics a system is not only described by its wave function that obeys the
Schrödinger equation but in addition by its configuration, i.e., the position coordi-
nates of “quantum objects”. These are considered as “particles” with well-defined
positions. For historical reasons these additional properties are called “hidden
variables”, although in the Bohmian interpretation they should be actually the
observables. The time-evolution of the (particle) positions is determined by an ad-
ditional first order differential equation, the so-called guiding (or guidance) equa-
tion (see Eq. (2.1)). As we saw in Section 2.1.1, this equation is obtained when
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one expresses the wave function1 in polar form as shown in Eq. (2.3). In anal-
ogy to the classical Hamilton–Jacobi theory and in agreement with conventional
quantum mechanics, the quantity,

υ
.
=

1
m

∂

∂x
S(x, t) (3.1)

is interpreted as a “velocity”, actually the velocity that appears in the CE (2.5) for
the density ρ(x, t) = ψ∗(x, t)ψ(x, t), namely

∂

∂ t
ρ(x, t)+

∂

∂x

[
ρ(x, t)υ(x, t)

]
= 0. (3.2)

What is now the meaning of this velocity? It cannot be d
dt x, as x is the in-

dependent variable of the Schrödinger equation, therefore d
dt x = 0. But it is also

not the classical velocity, i.e., the time-derivative of the classical trajectory d
dt 〈x〉

(where 〈x〉 denotes the mean value of position). This is quite obvious considering
the Gaussian wave packet solutions of the time-dependent Schrödinger equation,
what will be shown explicitly in Section 6. Therefore, it is assumed that the ve-
locity on the lhs of Eq. (3.1) is the time-derivative of the Bohmian trajectory that
we will write in the following as q(t), changing (3.1) into

d
dt

q(t) .
=

1
m

∂

∂x
S(x, t). (3.3)

However, in Bohmian mechanics the equation of motion for the Bohmian tra-
jectory is given, without further justification, as

d
dt

q(t) =
1
m

∂

∂x
S(x, t)

∣∣∣
x=q(t)

, (3.4)

that means, just like a deus ex machina the independent variable x of the action S
turns into the time-dependent Bohmian trajectory q(t).

Despite this inconsistancy in the definition of the Bohmian trajectories, the
theory seems nevertheless to be able to reproduce the results of conventional
quantum mechanics. In the following it will be shown under what conditions the
replacement in (3.4) is justified and what the physical and mathematical conse-
quences are.

1 We restrict the discussion to one spatial dimension.
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3.2 Proposed definition

3.2.1 Proposal of a correct definition of the Bohmian trajectories

To illustrate our idea how to obtain the guidance law in a correct consistent way,
starting point is a little digression into thermodynamics.

Box 3.2.1 Maxwell relations

In thermodynamics it is always possible to construct a total differential
of a function that represents a thermodynamic property of the system if
Maxwell’s relations are fulfilled. For a gas described by the variables vol-
ume V and entropy S (This symbol should not be confused with the one for
the phase of the wave function, S(x, t)), the function U(V,S) is the internal
energy, the pressure P and the temperature T have to fulfill the Maxwell re-
lations

∂P
∂S

=−∂T
∂V

(3.5)

(where in each case the variable that is not the one of the partial derivative is
kept constant) and the total differential is given by the expression

dU =−PdV +T dS. (3.6)

This allows a parametrization of some processes; they can be “iso-
energetic” for U = const, “isometric” for V = const or “iso-entropic” for
S= const. For instance, the Joule expansion of a gas is an iso-energetic pro-
cess, i.e. U = const. Therefore, for this process dU = 0 is valid and one has
to consider all the points in the (S,V )-space that fulfill this condition, i.e.,

0 =−P|U=constdV |U=const +T |U=constdS|U=const . (3.7)

Considering not the whole (S,V )-space anymore, but only the subspace
that fulfills the constraint U = const, one can introduce the following
parametrization:
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(S,V )|U=const −→ (σ ,V ) (3.8)

with σ =σ(V ). It is important to mention that σ is no longer the independent
variable S, but a dependent variable in the subspace where U is constant. This
parametrization allows to rewritte Eq. (3.7) in the form

0 =−PdV +T dσ(V ), (3.9)

or

T dσ(V ) = PdV. (3.10)

Since the temperature never reaches absolute zero, one can divide by T to
obtain

dσ(V ) =
P
T

dV, (3.11)

or finally

dσ(V )

dV
=

P
T
. (3.12)

The specific form of the solutions of this equation depends on the equation
of state of the system. For an ideal gas this is given by

PV = nRT (3.13)

with R being the gas constant and n the mole number, turning Eq. (3.12) into

dσ(V )

dV
=

nR
V

. (3.14)

After integration one obtains the well-known result for the entropy change
in the Joule free expansion of an ideal gas,

σ(V ) = σ(V0)+nR ln
(V

V0

)
, (3.15)
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i.e., logarithmic curves in the (S,V )-space parametrized by σ = σ(V ) for a
given value of U . The key elements to obtain this family of curves are the
Maxwell relations (3.5), the parametrization (3.8) in the considered space
and the equation of state (3.13) of the system.

Following the same line of reasoning it will now be shown how to obtain the
Bohmian trajectories in a consistent way. For this purpose one has to keep in mind
that in quantum mechanics the probability density ρ(x, t) = ψ∗(x, t)ψ(x, t) fulfills
the CE (3.2) that is obtained from the imaginary part of the Schrödinger equation if
the polar form of the wave function, ψ(x, t) =

√
ρ(x, t)exp

[
i
h̄S(x, t)

]
is inserted.

The CE, however, can also be written in the form

∂ρ(x, t)
∂ t

=− ∂

∂x

[
ρ(x, t)

∂

∂xS(x, t)
m

]
(3.16)

that reminds of the Maxwell relation (3.5) only P and S replaced by ρ and t as
well as T and V by ρ(x, t) 1

m
∂

∂xS(x, t) and x.
Therefore, using the same mathematical arguments, one can formulate a total

differential for a function B(x, t) that is called in the following “Bohm function”
in the form2

dB(x, t) =
[
−ρ(x, t)

1
m

∂

∂x
S(x, t)

]
dt +ρ(x, t)dx. (3.17)

One should keep in mind that B is still a function of the independent variables
x and t. In analogy to the thermodynamic example, now the case B = const is
interesting, leading with dB = 0 from (3.17) to

0 = −ρ(x, t)
∣∣
B=const

1
m

∂

∂x
S(x, t)

∣∣∣∣∣
B=const

dt
∣∣
B=const

+ρ(x, t)
∣∣
B=constdx

∣∣
B=const. (3.18)

2 Compared with Eq. (3.6), the rhs of (3.17), is multiplied by minus one. This does not change
the following results, as they are based on Eq. (3.9) where the lhs is equal to zero. The form in
(3.17) is chosen to be consistent with the definition of the CPF. The opposite sign would lead to the
complementary CPF that is used by Brandt et al. [Brandt(1998)] and simply defined via 1–CPF.
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Now, one needs to find the parametrization of every point in the (x,t)-space
that belongs to the geometric locus where B is constant. This locus will be called
Bohmian trajectory in position representation,

(x, t)|B=const −→ (q, t), (3.19)

with q = q(t), so that (3.18) turns into

0 =−ρ(q, t)
1
m

∂

∂q
S(q, t)dt +ρ(q, t)dq (3.20)

or

ρ(q, t)dq = ρ(q, t)
1
m

∂

∂q
S(q, t)dt. (3.21)

As ρ(q, t) cancels on both sides, this can finally be written in the form

dq
dt

=
1
m

∂

∂q
S(q, t), (3.22)

an expression that is identical with the guidance law (3.4), but without the unjus-
tified ad hoc replacement x −→ q(t). That means, the continuity equation (3.16)
and the parametrization (3.19) are the true origin of the Bohmian trajectories, not
a simple substitution, as commonly claimed. Therefore, the current assumption of
Bohmian trajectories being paths of particles that can be observed is not correct.

It is straightforward to see that the Bohm function B(x, t) in coordinate repre-
sentation is identical with the CPF, i.e.,

B(x, t) =
∫ x

−∞

ρ(x′, t)dx′ (3.23)

with the partial derivatives

∂

∂x
B = ρ(x, t)−ρ(−∞, t) = ρ(x, t), (3.24)

as ρ vanishes for x =±∞, and
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∂

∂ t
B =

∫ x

−∞

∂

∂ t
ρ(x′, t)dx′ =

∫ x

−∞

∂

∂x′

(
−ρ

1
m

∂

∂x′
S
)

dx′

= −ρ
1
m

∂

∂x
S, (3.25)

in agreement with Eq. (3.17).
After the parametrization, the limit of integration turns from x to q(t) and thus,

the Bohm function (3.23) is, apart from a change to the complementary integration
intervall merely for convenience, identical with the probability defined in Eq. (1)
of [Brandt(1998)]. There, the integration limit xp(t) that corresponds to our q(t)
is called “quantile trajectory” with a corresponding “quantile velocity” υp(t) =
d
dt xp(t) that fulfills the guidance equation (3.4).

Concerning the physical interpretation of the Bohmian trajectory, one can
therefore quote [Brandt(1998)], stating that “for the solution of this differential
equation the initial condition x(0) = x0 is needed as a hidden parameter. If we set
Bohm’s initial position x0 equal to the initial quantile position xp(0) the quantile
trajectories are mathematically identical to Bohm’s particle trajectories. Concep-
tually, however, they are based on the probability interpretation of the conven-
tional quantum mechanics.”

Taking into account our consistent derivation of the Bohmian trajectories and
the corresponding guidance equation and the clear connection with the quantile
position based on the conventional quantum mechanical probability interpreta-
tion, one comes to the conclusion, Bohmian mechanics does not turn quantum
mechanics into a deterministic theory, but supplies an alternative formulation
of this theory. This does not necessarily diminish its importance, as it might
provide better tools to solve certain problems (like, e.g., tunneling ones, see
[Brandt(1998), Oriols(1996)]) than the established conventional formulations.

In the next Section it is tried to give a more illustrative picture of the meaning
of Bohmian trajectories.

3.2.1.1 Meaning of the Bohmian trajectories

Two properties are essential for Bohmian trajectories, the non crossing rule that
is based on the fact that the guidance equation is of first order and the relation
between the Bohmian trajectories and the probability density ρ(x, t), expressed in
the quantum equilibrium hypothesis, stating that ρ(x, t) describes both, the prob-
ability density and the density of Bohmian trajectories. That means that between
two given Bohmian trajectories the same probability is embedded in that region
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for all times. This also arises naturally from the fact that the Bohmian trajecto-
ries are just time-dependent parametrizations in the configuration space, when the
Bohm function or the CPF (3.23) is constant. Therefore, contrary to common be-
lief, Bohmian trajectories have nothing to do with physical entities, but with the
borders that separate regions that enclose a fixed amount of probability.

The box diagram in Figure 3.1 (a) shall illustrate the situation. Let us assume
each point in the long box repesents the detection of a particle at a specific instant
of time. The two smaller boxes above with the vertical borders q1, q2 and q3 rep-
resent areas that contain five points each, i.e., the same number of detections, but
the distance between q1 and q2 has not to be the same as between q2 and q3. If we
take another snapshot at a later time, the distribution of the points in the large box
has changed, so to say the point density has changed. The same applies to the two
small boxes, meaning that also the positions of the vertical lines q1, q2 and q3 has
to change so that still five points are in each box. This can be represented for more
snapshots at later times. At each snapshot the position of the qi can change, so their
position is a function of time, as indicated in Figure 3.1 (b). The Bohmian trajec-
tories are then obtained by interpolation (see dashed lines). This also illustrates
the relation between the (probability) density and the Bohmian trajectories. So it
is not necessary to introduce another postulate, the quantum equilibrium hypoth-
esis, since the Bohmian trajectories are just quantile trajectories for probabilities
that are calculated with densities that fulfill the continuity equation.

Although by definition it is now impossible to measure Bohmian trajectories as
path of a particle, this concept can still be useful. The importance of the Bohmian
trajectories arises when one is interested in determining the probability that is
distributed in configuration space. This happens to be crucial in tunneling prob-
lems, because in that case one is interested in knowing how much probability is
transmitted into a given region of configuration space.

We would also like to emphasize that Bohmian mechanics in that sense is a
complement to the Schrödinger picture. Both of them have different scopes. An
aim of the Schrödinger picture is the calculation of mean values 〈Â〉 of an observ-
able A, or higher moments 〈Ân〉, n = 2,3, · · · . For that purpose, the wave function
ψ(x, t) or the density ρ(x, t) in the whole domain of definition is needed, as well as
their time-evolution. The scope of Bohmian mechanics is rather the study of inter-
val classes (percentile, quartile, median, etc.) with the help of the Bohm function
B(x, t) =

∫ x
−∞

ρ(x′, t)dx′ through the analysis of the evolution of the limit of this
interval, q(t). The relation between Schrödinger’s and Bohm’s approach can be
compared with the relation between statistical inference and descriptive statistics.
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(a) (b)

Fig. 3.1 Snapshots of position detections for different times and evolution of correspond-
ing integration limits (=Bohmian trajectories) for three different instants of time. The
probability for a detection between two neighboring qi stays constant, only the limits
change in time, i.e., qi = qi(t). Thus the density of points changes accordingly.

3.2.1.2 Conservation of probability via “thermodynamic” cycle

In Section 3.2.1 it has been shown that there exists a total differential dB,

dB = ρdx− jdt (3.26)

with j = ρ
1
m

∂

∂xS.
This means that whenever an integration of B along a closed contour C is

performed in the (x, t)-space, the result is zero,∮
C

dB = 0. (3.27)

Having this in mind, let us choose a simple rectangular-shaped contour as
depicted in Figure 3.2 (a). The involved processes are characterized as follows:



64 3 Bohmian trajectories

(a) (b)

Fig. 3.2 (a) Contour integral within the (x, t)-space with two kinds of “processes”: 1 and
3 are iso-chronic (t = const), whereas 2 and 4 are iso-spatial (x = const). (b) Schematic
representation of the effect of integrating along horizontal and vertical processes.

Process 1: t = tA = const,
i.e., dt = 0 and xA −→ xB

Process 2: x = xB = const,
i.e., dx = 0 and tA −→ tB

Process 3: t = tB = const,
i.e., dt = 0 and xB −→ xA

Process 4: x = xA = const,
i.e., dx = 0 and tB −→ tA.

Therefore, the integrals along the respective processes have the explicit form

Process 1:
∫

1 dB =
∫ xB

xA
ρ(x′, tA)dx′,

Process 2:
∫

2 dB =−
∫ tB

tA j(xB, t ′)dt ′,

Process 3:
∫

3 dB =−
∫ xB

xA
ρ(x′, tB)dx′,

Process 4:
∫

4 dB =
∫ tB

tA j(xA, t ′)dt ′.

This can also be written as
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Process 1:
∫

1 dB = Probability
(
[xA,xB], tA

)
,

Process 2:
∫

2 dB =−
∫ tB

tA j(xB, t ′)dt ′,

Process 3:
∫

3 dB =−Probability
(
[xA,xB], tB

)
,

Process 4:
∫

4 dB =
∫ tB

tA j(xA, t ′)dt ′.

These expressions help to give a schematic representation of the line integrals
in the (x, t)-space as shown in Figure 3.2 (b). The sign is determined by the ori-
entation of the arrow: Inward arrows imply a plus sign, outward arrows a minus
sign.

Going back to the closed contour integral∮
dB =

∫
1

dB+
∫

2
dB+

∫
3

dB+
∫

4
dB = 0 (3.28)

and inserting the contributions of the line integrals, after some rearrangement, this
can be written as

Probability
(
[xA,xB], tB

)
−Probability

(
[xA,xB], tA

)
+
∫ tB

tA

(
j(xB, t ′)− j(xA, t ′)

)
dt ′ = 0. (3.29)

The difference of the probabilities at times tA and tB can also be expressed in
the form

∫ tB

tA

∂

∂ t ′
Probability

(
[xA,xB], t ′

)
dt ′

+
∫ tB

tA

(
j(xB, t ′)− j(xA, t ′)

)
dt ′ = 0. (3.30)

In a similar way, the differences of the probabilities and the currents at differ-
ent positions (but the same time) can be expressed by integrations from xA to xB,
finally leading to
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∫ tB

tA

∫ xB

xA

(
∂

∂ t ′
ρ(x′, t ′)+

∂

∂x′
j(x′, t ′)

)
dx′dt ′ = 0, (3.31)

i.e., the CE under the action of a double integration.
Considering the symmetry of the integration intervals it seems possible that

contributions of two line integrals can cancel each other, so that the overall contour
integral vanishes. But how is the situation if this symmetry is disturbed. What are
then the contributions to the integration?

To answer this question, one has to recall that along a Bohmian trajectory
B is constant, therefore, an integral of dB along a Bohmian trajectory vanishes,∫

Bohmian trajectory dB = 0. Let us therefore consider an integration along the cycle
shown in Figure 3.3, i.e., two horizontal lines of different lengths ([xA,xB] and
[xC,xD]) that connect two Bohmian trajectories at different times. As the contribu-
tions along the Bohmian trajectories vanish, the contour integral reduces to∮

dB =
∫

1
dB+0+

∫
3

dB+0 = 0, (3.32)

or

Probability
(
[xA,xB], tA

)
= Probability

(
[xC,xD], tB

)
. (3.33)

But this just reflects the typical characteristic of Bohmian trajectories: the
probability between two given Bohmian trajectories is conserved in time.

However, in the conventional literature on Bohmian mechanics there is no
mathematical proof of this property. Instead, the conventional “proof” is based
on dialectic arguments: the non-crossing rule and the equivalence between ρ(x, t)
and the density of Bohmian trajectories (the latter one is actually only postulated).
Our proof, in contrast, is a simple mathematical one that has no need to introduce
postulates with the arbitrariness of their interpretation

3.2.2 Bohmian trajectories for general Gaussian wave packets

In order to give some specific examples for Bohmian trajectories and how they
can be expressed in terms of mean values and uncertainties, cases are now con-
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Fig. 3.3 When performing a “cycle” using two Bohmian trajectories (blue lines) as sup-
ports, there is a conservation of probability along the horizontal lines between those two
Bohmian trajectories.

sidered where exact analytic expressions for the solutions of the time-dependent
Schrödinger equation,

ih̄
∂

∂ t
ψ(x, t) =

{
− h̄2

2m
∂ 2

∂x2 +V (x)
}

ψ(x, t), (3.34)

exist. This is fulfilled, as it is shown in Appendix A, for potentials that are at
most quadratic in the position variable, particularly, the free motion, V = 0, and
the harmonic oscillator, V = m

2 ω2
0 x2. In these cases solutions can be found having

the form of Gaussian wave packets (A.1), characterized by their mean value and
width, where both can be time-dependent.

Recall that the wave packets (A.1) can be written in the form

ψ(x, t) = Nx(t)exp
[ i

h̄

(m
2

C x̃2 + 〈p〉x̃+K(t)
)]

(3.35)

with x̃ = x− 〈x〉 = x− η(t), where the mean value 〈x〉 =
∫+∞

−∞
dxψ∗xψ = η(t)

corresponds to the classical trajectory and defines the maximum of the wave
packet, 〈p〉 = mη̇ represents the classical momentum, C (t) in the coefficient of
the quadratic term in the exponent is a complex function of time, related to the
wave packet width. The (possibly time-dependent) normalization factor Nx(t) and
the purely time-dependent function K(t) are not relevant for the following. The
dynamical behavior of the involved parameters is summed up in Table A.1 of Ap-
pendix A. For the case of a harmonic oscillator in position space, the mean value
η is ruled by the following Newtonian equation,
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η̈ +ω
2
0 η = 0. (3.36)

Bear in mind that η describes the evolution of the maximum or mean value (the
results for the free motion are obtained for ω0 −→ 0). The complex quantity C (t)
satisfies a complex quadratic nonlinear Riccati equation

Ċ +C 2 +ω
2
0 = 0, (3.37)

where C determines the evolution of the width of the wave packet and thus of
the position uncertainty. This can be seen from the fact that CI =

h̄
2m〈x̃2〉 where

〈x̃2〉= 〈x2〉−〈x〉2 is the mean square deviation in position space and thus describes
the position uncertainty. Introducing a new variable α(t) via CI =

1
α2 , real and

imaginary parts of C can be written as

C = CR + iCI =
α̇

α
+ i

1
α2 (3.38)

where α(t) is, via α =
√

2m
h̄ 〈x̃2〉, directly proportional to the wave packet width.

For further details on the structural properties of the generalized coherent states
see Appendix A.

The real part CR(t) is important in the following, as it is part of the phase of
the wave packet and thus enters the guidance law (3.22)

dq(t)
dt

=
1
m

∂

∂q
S(q, t) (3.39)

in the form

dq(t)
dt

= CR
(
q(t)−η(t)

)
+

1
m
〈p〉(t). (3.40)

As 1
m〈p〉(t) = η̇(t), in analogy to the definition of x̃, one can use q̃ = q−η ,

instead of q, leading to

dq̃
dt

= CRq̃ =
α̇

α
q̃, (3.41)

what can be rewritten as

d
dt

ln q̃ =
d
dt

lnα. (3.42)
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Integration from t0 = 0 to time t finally leads to

q(t) = η(t)+(q0−η0)
α(t)
α0

. (3.43)

Every Bohmian trayectory is determined by an initial point q0 (in relation to
the initial position η0 of the classical trajectory) and the initial spreading α0 of the
Gaussian wave packet. As shown in Figure 3.3, the area between two Bohmian
trajectories is important, as the probability is conserved within this interval. There-
fore, one can define an interval L = qB−qA with qA < qB between two Bohmian
trajectories qA and qB as

L(t) = L0
α(t)
α0

. (3.44)

That means the dynamics of this interval (broadening or narrowing) is deter-
mined by the evolution of α(t). In other words, one could say α determines how
for a given probability the metric of the “probability-space time” is deformed.

It has been shown (see, e.g., [Cruz(2015), Schuch(2018a)] and references
therein) how α(t) can be determined, if two linear independent solutions η1 and
η2 of the classical equation of motion (3.36) are known. Considering wave packets
whose initial uncertainty product is minimal, i.e., 〈x̃2〉0〈p̃2〉0 = h̄2

4 , one can write
α(t) in the form

α(t) =

√
1

(α0)2 (η1)2 +(α0)2(η2)2. (3.45)

It should be mentioned that due to the Gaussian shape of ψ(x, t) and thus also
of ρ(x, t), the CPF B(x, t) defined in (3.23) can always be expressed in terms of
error functions.
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Box 3.2.3

3.2.2.1 Bohmian trajectories in momentum representation

All the results obtained in the previous Sections can easily be taken over
to the momentum representation. In [Bonilla(2020a)] it was shown that for a
system of mass m under the influence of a general quadratic potential U = a+
bX+ m

2 ω2X2 with X being the (complex) Bohmian position in momentum
representation, the CE fulfilled in this case is of the same type as (3.16),
namely

∂ρp(p, t)
∂ t

+
∂

∂ p

[
ρp(p, t)

(
−b−mω

2(− ∂

∂ p
Sp(p, t))

)]
= 0. (3.46)

As in Section 3.2.1, this implies the existance of a function, let us call it
again Bohm function Bp(p, t) in momentum representation, whose differen-
tial satisfies

dBp = ρp(p, t)
(

b+mω
2(− ∂

∂ p
Sp(p, t))

)
dt +ρp(p, t)dp. (3.47)

Simple inspection shows that the Bohm function matches again the CPF
criterium, but this time in momentum space,

Bp =
∫ p

−∞

ρp(p′, t)dp′. (3.48)

Moreover, if we parametrize all the points where the Bohm function Bp is
constant, we can define the guidance equation for the momentum space as
well. So, after the parametrization

(p, t)|Bp=const −→ (π, t), (3.49)

with π = π(t) follows the equation
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dπ

dt
=−b−mω

2(− ∂

∂ p
Sp(π, t)). (3.50)

The interpretations of Section 3.2.1.1 are valid correspondingly as well
as the non-crossing property and its consequences, as discussed in Section
3.2.1.2. It is worth noticing that the expression (3.50) corresponds to the real
part of Eq. (2.69).

3.2.2.2 Free motion

In the case of the free motion, V = 0, what is for our purpose also the same as
V = const, as in both cases the force in (3.36) vanishes, two linear independent
solutions of this equation are given by η1(t) =−t, η2(t) = 1. Inserted into (3.45)
this yields

α(t) = α0

√√√√( t
α2

0

)2

+1. (3.51)

The explicit expression for the Bohmian trajectory (3.43) then takes the form

q(t) = η(t)+(q0−η0)

√√√√( t
α2

0

)2

+1 (3.52)

and

L(t) = L0

√√√√( t
α2

0

)2

+1, (3.53)

i.e., although 1
α0

is cancelled by α0 in front of the square root, q(t) and L(t) still
depend on α0 via the expression under the square root, as shown in Figures 3.4

(a) and (b), where σ =
√

h̄
2mα0.

Expression (3.52) can be rewritten as an hyperbola in the probability-space-
time,
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(
q(t)−η(t)

q0−η0

)2

−
( t

α2
0

)2
= 1. (3.54)

Therefore, the further one goes away from the center of the Gaussian, the faster
the hyperbolic trajectories get curved.

-10 -5 0 5 10
-10

-5

0

5

10

q

t

η

η+σ

η+2σ

η+3σ

-10 -5 0 5 10
-10

-5

0

5

10

q̃=q-η

t

σ

2σ

3σ

(a) (b)

Fig. 3.4 (a) Bohmian trajectories for four different points of a general coherent state under
the action of a constant potential. (b) The previous Bohmian trajectories, but now relative
to the position mean value η . In every case 1

α2
0
= 1.

3.2.2.3 Harmonic oscillator

For the harmonic oscillator with potential V = m
2 ω2

0 x2, where the frequency ω0 is
constant, two linear independent solutions of Eq. (3.36) are η1(t) = − sinω0t

ω0
and

η2(t) = cosω0t.
Inserting this into (3.45) leads to

α(t) = α0

√√√√(sinω0t
ω0α2

0

)2

+ cos2 ω0t. (3.55)
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In this case, the Bohmian trajectory q(t) and L(t) are given by

q(t) = η(t)+(q0−η0)

√√√√(sinω0t
ω0α2

0

)2

+ cos2 ω0t (3.56)

and

L(t) = L0

√√√√(sinω0t
ω0α2

0

)2

+ cos2 ω0t. (3.57)

Eq. (3.57) determines how the metric in the probability-space-time is de-
formed for a harmonic oscillator. The Bohmian trajectory (3.56), as shown in
Figure 3.5 (a) shows the superposition of two periodic evolutions, that of the clas-
sical trajectory η(t) and that of the width α(t). Changing from q(t) to the frame
q̃= q−η that moves with the classical trajectory η(t), only the periodic motion of
α(t) remains, as shown in Figure 3.5 (b). If the initial width of the Gaussian wave
packet is that of the ground state of the harmonic oscillator, then 1

α2
0
= ω0 and the

square root in (3.55) is equal to one, i.e., there is no oscillation. That corresponds
to the minimum uncertainty wave packet that Schrödinger himself found in 1926
[Schrödinger(1926e)]. In any other case, α(t) shows oscillations.

3.3 Connection between the Bohmian and the Wigner
framework

In the decades that follow the construction of the conventional structure of quan-
tum mechanics with the Copenhagen interpretation, there were different ap-
proaches to the microscopic systems that seek to propose a formulation as similar
as possible to the concept of classical phase space. We can distinguish 3 main lines
of thinking: the Wigner function, first introduced in 1932, was designed to give
a formulation of quantum mechanics with a quasi probability distribution whose
marginal distributions correspond to the position and momentum probability den-
sity functions. The term “quasi” accounts for its main conceptual drawback: the
presence of negative values. Years later, Husimi proposed in 1940 an approach
that was a smoothened version of the Wigner function with only positive values,
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Fig. 3.5 (a) Bohmian trajectories for four different points of a general coherent state under
the action of a harmonic oscillator. (b) The previous Bohmian trajectories, but now relative
to the position mean value η . In every case 1

ω2
1

α2
0
−1 = 1, i.e., ω0 6= 1

α2
0
.

but the disadvantage is that it cannot provide correctly the probability density nor
the density current. In 1952 though, Bohm claimed the possibility of a causal
treatment of quantum mechanics through the use of trajectories that characterized
individual detections. Its main critics are the lack of symmetry in position and mo-
mentum space (this was corrected by Bonilla and Schuch [Bonilla(2020a)]) and
the disagreement with the Copenhagen interpretation.

Recently there has been a claim that the Bohmian framework is a better and
more general scheme for the phase space formulation of quantum mechanics
[Colomes(2015)]. Nevertheless, in this work it will be shown that Bohmian me-
chanics is nothing more than a projection of the Wigner formalism; therefore,
Bohmian mechanics cannot be more general than the Wigner function in the
first place. This misunderstanding is partly due to the misconception about the
Bohmian trajectories themselves.
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3.3.1 Bohmian mechanics as a projection of the Wigner function

An important feauture of the Wigner function is that the marginal distributions
match the probability density functions for the position and momentum represen-
tation, respectively, as it is recalled in what follows,

∫
∞

−∞

W (x, p; t)dx = |〈p|ψ(t)〉|2 = ρp(p, t), (3.58)∫
∞

−∞

W (x, p; t)dp = |〈x|ψ(t)〉|2 = ρx(x, t). (3.59)

The corresponding cumulative probability functions (CPF) are of particular in-
terest, because one obtains precisely the Bohm functions in the respective spaces,

∫ p

−∞

∫
∞

−∞

W (x, p; t)dxdp =
∫ p

−∞

ρpdp = Bp(p, t), (3.60)∫ x

−∞

∫
∞

−∞

W (x, p; t)dpdx =
∫ x

−∞

ρxdx = Bx(x, t). (3.61)

Therefore, a Bohmian trajectory can be defined through the Wigner function.
Indeed, a Bohmian trajectory is the set of positions q = q(t) that share the same
value for the Bohm function Bx, for all instants of time. Therefore, q = q(t) is
defined via

Bx(q, t) = const, (3.62)

in the form ∫ q=q(t)

−∞

∫
∞

−∞

W (x, p; t)dpdx = const. (3.63)

A similar expression can be obtained for the momentum representation.
Now, this simple remark of the relationship between the Wigner and Bohm

functions, allows us

(1) to extend the concept of Bohmian trajectories to arbitrary representations. In-
deed, it is only necessary to express the Wigner function in a couple of canon-
ical variables (a,b); we then take the cumulative probability function of the
marginal distribution of the Wigner function. Finally we set this expression to a
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constant value, as it is indicated in what follows, for the Bohmian “trajectory”
a = a(t)

∫ a=a(t)

−∞

∫
∞

−∞

W (a′,b; t)dbda′ = const; (3.64)

(2) to extend the Bohmian treatment to discrete level states , qubits, etc., since it is
possible to assign to these cases a corresponding Wigner function.

(3) Last but not least, this rehabilitates Bohmian mechanics as a projective feature
of the Wigner formalism, leaving aside any interpretative or esoteric feature
of Bohmian mechanics, i.e., Bohmian mechanics does not need any additional
postulates or interpretations with respect to conventional quantum mechanics.

It is also worth noticing that, contrary to the usual formulation (since
1952!), Bohmian mechanics and conventional quantum mechanics are not
on the same level, because the former can be considered essentially as a pro-
jection of the Wigner function.

Nevertheless, this should not diminish the importance of Bohmian me-
chanics, but just clarifying its position in the theoretical corpus of quantum
mechanics. Moreover, knowing the status of Bohmian mechanics helps to
use this tool as a descriptive one for the probabilities in the representation-
time space, e.g. (x, t) or (p, t). Any further interpretation of the objects in this
approach is meaningless.

3.3.2 Bohmian trajectories from the Wigner function

Now, let us repeat the dynamics of the Bohmian trajectories with respect to the
Wigner function. For instance, it is known that the Bohmian trajectories q = q(t)
in position represenation are governed by the following equation:
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dq
dt

=
jx
ρx

, (3.65)

where ρx(x, t) and jx(x, t) are the probability density and probability density cur-
rent in position space. For the momentum representation, the equation is analo-
gous because, in both representations, the trajectories are parametrizations of a
function that is build up from a CE.

One can rewrite the probability density current jx by considering the Bohmian
trajectories. By definition, Bohmian trajectories q = q(t) are the locus where the
Bohmian function B(x, t) remains constant, namely∫ q=q(t)

−∞

ρx(x, t)dx = const. (3.66)

Differentiating with respect to the time t yields the following expression

0 =
d
dt

∫ q=q(t)

−∞

ρx(x, t)dx. (3.67)

As one of the integration limits, q(t), depends on time, one has to consider

0 = ρx(x, t)
dq
dt

+
∫ q

−∞

∂ρx

∂ t
dx, (3.68)

what, taking into account the relation (3.65) between the probability current and
the Bohmian trajectories, provides

jx =−
∫ q

−∞

∂ρx

∂ t
dx. (3.69)

Recall that the probability density function ρx in position space results from
the integration of the Wigner function W (x, p; t) over the complete momentum
space, therefore,

jx =−
∫ q

−∞

∫
∞

−∞

∂W (x, p; t)
∂ t

dpdx. (3.70)

Bearing in mind that the time derivative of the Wigner function is given by
∂W
∂ t =− p

m
∂W
∂x + ∂U

∂x
∂W
∂ p , leads to
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jx = −
∫ q

−∞

∫
∞

−∞

(
− p

m
∂W
∂x

+
∂U
∂x

∂W
∂ p

)
dpdx

=
∫

∞

−∞

p
m

dp
∫ q

−∞

∂W
∂x

dx−
∫ q

−∞

∂U
∂x

dx
∫

∞

−∞

∂W
∂ p

dp. (3.71)

Since, for the first integral, p is an independent variable, one can first evaluate∫ q
−∞

∂W
∂x dx. On the other hand, in the second integral, the potential U depends

exclusively on the position; therefore, one can first evaluate
∫

∞

−∞
∂W
∂ p dp. In other

words, the previous equation takes the following form,

jx =
∫

∞

−∞

p
m

(
W (q, p; t)−W (−∞, p; t)

)
dp−

∫ q

−∞

∂U
∂x

(
W (x,∞; t)−W (x,−∞; t)

)
dx.

(3.72)
Given that the Wigner function vanished at plus-minus infinity in the space

(x, p), the equation simplifies to

jx =
∫

∞

−∞

p
m

W (q, p; t)dp. (3.73)

Note, that the Wigner function inside the integral is evaluated at q, i.e. a point
belonging to the Bohmian trajectory; it is not anymore the independent variable
x. With this expression, one can finally write down the dynamics of the Bohmian
trajectory in terms of the Wigner function,

dq
dt

=
jx
ρx

, (3.74)

as

dq
dt

=
1
m

∫
∞

−∞
pW (q, p′; t)dp′∫

∞

−∞
W (q, p′′; t)dp′′

=
jx
ρx

. (3.75)

In the momentum representation, it is possible to obtain the dynamical equa-
tion for a corresponding Bohmian momentum π = π(p, t) as

dπ

dt
=

∫
∞

−∞
−∂U

∂x W (x′,π; t)dx′∫
∞

−∞
W (x′′,π; t)dx′′

=
jp

ρp
. (3.76)
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3.3.3 Application to coherent states

Let us illustrate how to recover the dynamical equation of the Bohmian trajectories
from the Wigner function for the generalized coherent states. It is known that these
states are characterized by the following Wigner function [Schuch(2018a)]

W (x, p; t) =
1

π h̄
exp

[
− 2

h̄2

(
〈p̃2〉x̃2−〈

[
x̃, p̃
]
+
〉x̃ p̃+ 〈x̃2〉p̃2

)]
, (3.77)

where x̃ .
= x−〈x〉 = x−η and p̃ .

= p−〈p〉. Rewriting the previous equation in
terms of uncertainties and correlation yields

W (x, p; t) =
1

π h̄
exp

[
− 2

h̄2

(
σ

2
p x̃2−2σx,px̃ p̃+σ

2
x p̃2

)]
(3.78)

or

W (x, p; t) =
1

π h̄
exp

[
− 4

h̄2 σ
2
x σ

2
p

(
x̃2

2σ2
x
−

σx,p

σ2
x σ2

p
x̃ p̃+

p̃2

2σ2
p

)]
. (3.79)

This expression will be used in what follows to obtain the dynamical laws of
the Bohmian trajectories for both the position and momentum space.

3.3.3.1 Position space

In this Section, Eq. (3.79) is handled in position space. For that purpose, the
quadratic momentum term has to be isolated,

W (x, p; t) =
1

π h̄
exp

[
− 2

h̄2 σ
2
x

(
σ2

p

σ2
x

x̃2−2
σx,p

σ2
x

x̃ p̃+ p̃2

)]
. (3.80)

Recall that the momentum uncertainty σp as well as the correlation σx,p are
related to the position uncertainty by a ratio (see Appendix A) so that the previous
equation can be written in the following way,
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W (x, p; t) =
1

π h̄
exp

[
− 2

h̄2 σ
2
x

(
m2|C |2x̃2−2mCRx̃ p̃+ p̃2

)]
(3.81)

or

W (x, p; t) =
1

π h̄
exp

[
− 1

mh̄CI

(
m2C 2

I x̃2 +m2C 2
R x̃2−2mCRx̃ p̃+ p̃2

)]
. (3.82)

Besides, bearing in mind that CI =
h̄

2m
1

σ2
x
= 1

α2 allows us to write

W (x, p; t) =

√
2πσ2

x
π h̄

ρx(x, t)exp
[
− α2

mh̄

(
p−
(
mCRx̃+ 〈p〉

))2]
, (3.83)

where ρx = 1√
2πσ2

x
exp
[
− x̃2

2σ2
x

]
denotes the probability density in the position

space. Now, we can identify the argument of the exponent in terms of the real part
of the Bohmian momentum, PR,

W (x, p; t) =

√
2πσ2

x
π h̄

ρx(x, t)exp
[
− α2

mh̄

(
p−PR

)2]
. (3.84)

Since this Wigner function is composed out of ρx(x, t) and a Gaussian func-
tion with maximum at PR in momentum space, calculating the mean value of
momentum via integration in momentum space leads according to (3.75) to the
probability current jx in position space and thus to

dq
dt

=
1
m

PR =
jx
ρx

. (3.85)

This is precisely the dynamical equation for the Bohmian trajectory for the
case of the generalized coherent states. In this way, it is shown how Bohmian
mechanics is just a projective aspect of a more general formalism: the Wigner
formalism.

3.3.3.2 Momentum space

In this Section, Eq. (3.79) is handled in momentum space. For that purpose, the
quadratic position term has to be isolated,



3.3 Connection between the Bohmian and the Wigner framework 81

W (x, p; t) =
1

π h̄
exp

[
− 2

h̄2 σ
2
p

(
x̃2−2

σx,p

σ2
p

x̃ p̃+
σ2

x
σ2

p
p̃2

)]
. (3.86)

Recall again that the position uncertainty σx as well as the correlation σx,p
are related to the momentum uncertainty by a ratio (see Appendix A) so that the
previous equation can be written in the following way,

W (x, p; t) =
1

π h̄
exp

[
− 2

h̄2 σ
2
p

(
x̃2−2

UR

m
x̃p̃+

|U |2

m2 p̃2

)]
. (3.87)

Bear in mind that the momentum uncertainty σp is expressed in terms of U =
1
C as σ2

p = h̄m
2

1
UI

. This allows to rewrite Eq. (3.86) as,

W (x, p; t) =
1

π h̄
exp

[
− m

h̄
1
UI

(
x̃2−2

UR

m
x̃p̃+

U 2
R

m2 p̃2 +
U 2

I
m2 p̃2

)]
. (3.88)

Besides, bearing in mind that UI
mh̄ = 1

2σ2
p

allows to write

W (x, p; t) =

√
2πσ2

p

π h̄
ρp(p, t)exp

[
− m

h̄
1
UI

(
x−
(UR

m
p̃−η

))2]
. (3.89)

where ρp =
√

UI
mh̄π

exp
[
− UI

mh̄ p̃2
]
= 1√

2πσ2
p

exp
[
− p̃2

2σ2
p

]
denotes the probability

density in the momentum space. Now, we can identify the argument of the expo-
nent in terms of the real part of the Bohmian position XR

W (x, p; t) =

√
2πσ2

p

π h̄
ρp(p, t)exp

[
− m

h̄
1
UI

(
x−XR

)2]
. (3.90)

Since this Wigner function is composed out of ρp and a Gaussian function
with maximum at XR, then Eq. (3.89) can be easily integrated and inserted into
Eq. (3.76). It is then straightforward to write down for a general coherent state in
the momentum space (do not loose sight of the fact that the generalized coherent
states are solutions for a general potential U = bX̂+ mω2(t)

2 X̂2, with ∂

∂ X̂
U = b+

mω2(t)X̂)
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dπ

dt
= b+mω

2(t)XR =
jp

ρp
. (3.91)

In this way, the dynamical law of the Bohmian trajectories in momentum space
is obtained. Also, it is shown again that Bohmian mechanics is a projective aspect
of the Wigner formalism.

3.4 Example: Ion trap

In the present Section, the results of Section 3.2 are illustrated through the exam-
ple of an ion trap. That being said, let us remember the goal of an ion trap:

“The purpose of an atom or ion trap is to confine the motion of the atomic
or ionic particles to a small region of space. The trapping of charged particles,
which is understandably far easier than the confinement of neutral atoms, as
the forces which can be exerted by electromagnetic fields on the latter are far
smaller”[Rao(2001)].

In the next Box some applications that make the use of ion traps appealing are
listed.

Box 3.4

Some applications of ion traps [Rao(2001)]

(1) Storage of charged particles in a very well controlled environment nearly
free of unwanted perturbations enables the highly precise and accurate
measurement of interaction constants, as the transit-time line broadening
is nearly eliminated.

(2) Extreme reduction of Doppler broadening can be achieved, due to the pos-
sibility of very effective cooling of the trapped ions. Several cooling tech-
niques have been developed in order to reduce the kinetic energies, thereby
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minimising the first order as well as the second-order Doppler effects and
localising the charged particles near the trap centre, thereby achieving
very high resolution and accuracy in the spectroscopic measurements.

(3) The possibility of performing experiments on few ions or even a single ion
reduces or eliminates the ion-ion Coulomb interactions and thus very rare
species like anti-proton, positron, short-lived isotopes or exotic particles
like C60, can be investigated.

(4) Ion traps are now routinely being used as a mass spectrometer. Highest
mass resolving power and accuracy are obtained by Penning traps. Mass
spectrometers based on Penning traps have been used for the accurate
mass measurements of anti-protons, mass of light ions and, recently, mea-
surements of mass of heavy ions.

Let us consider a magnesium ion of mass m = 4.03× 10−23g, with an initial
position uncertainty σx = 1µm and initial speed of η̇0 = 1µm ·µs−1, subjected to
the action of an ion trap, whose influence on the x-axis is represented by a para-
metric oscillator 1

2mω2(t)x2, with the frequency given by ω(t) = 1
at+b ∼ 1MHz.

Bear in mind from Section 2.3.2.1 that only generalized coherent states (2.75) are
being considered. Therefore, in the x-direction the quantum state of the ion is de-
cribed by 〈x|ψ(t)〉= N(t)exp

[
i
h̄

(
m
2 C x̃2+ 〈p〉x̃+ f

)]
, where the dynamics of the

involved parameters is given by (see Apendix A):

Ċ +C 2 +ω
2(t) = 0 (3.92)

d
dt
〈p〉 = −mω

2(t)η . (3.93)

Bear in mind that the complex quantity C is expressed as C = α̇

α
+ i 1

α2 , with
α2 .

= 2m
h̄ σ2

x . Since the behavior of the mean values is ruled by Newton’s equation,
it is straight forward to state η = 〈p〉0

mω
sin(ωt), where we set the initial condition

η0 = 〈x〉0 = 0 for our wave packet. The remaining dynamical parameters are de-
termined through the associated Riccati equation,

Ċ +C 2 +
1

(at +b)2 = 0. (3.94)
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The general solution will be determined with the help of a particular solution
Cp.

3.4.1 Particular solution

Given the form of the frequency ω(t) = 1
at+b , it is reasonable to propose the fol-

lowing particular solution,

Cp = γ
1

at +b
, (3.95)

where γ is a time-independent parameter to be found. Therefore the time derivative
of the particular solution is given by

Ċp =−aγ
1

(at +b)2 . (3.96)

Substitution into Riccati equation (3.94) and rearrenging terms yields,(
γ

2−aγ +1
) 1
(at +b)2 = 0. (3.97)

To obtain a non trivial solution, the parameter γ must satisfy the following
relation,

γ
2−aγ +1 = 0, (3.98)

leading to

γ =
a
2
±
√

a2

4
−1. (3.99)

That means that the parameter γ essentially depends on a. Therefore, from
now on we will denote it as γa. Now, depending on the values that a may take, γ

will have a different form. Let us consider the three possible cases:
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γa =
a
2
± i

√
1− a2

4
, for 0 < a < 2 (3.100)

γa =
a
2
, for a = 2 (3.101)

γa =
a
2
±
√

a2

4
−1, for 2 < a. (3.102)

Hereafter, we will refer to (3.100), (3.101) and (3.102) as the underdamped,
critically damped and overdamped cases, respectively.

3.4.2 General solution

As it is explained in Appendix B, the general solution C of Riccati equation (3.94)
is given by:

C =
1
Y

+Cp(t;a), (3.103)

where Y is given by equation (B.3) of Appendix B:

Y =

∫ t
0 exp

[
−2

∫ t ′Cp(t ′′;a)dt ′′
]
dt ′+ exp

[
−2

∫ 0 Cp(t ′;a)dt ′
]
Y0

exp
[
−2

∫ t Cp(t ′;a)dt ′
] . (3.104)

Bearing in mind the expression (3.95) of the particular solution Cp(t;a) and
the form (3.103) of the complex quantity C , it is straightforward to relate the
initial condition Y0 to the experimental parameters of spreading:

Y0 =
1

C0− γ

b
=

1
σ̇x,0
σx,0
− γ

b + i h̄
2m

1
(σx,0)2

(3.105)



86 3 Bohmian trajectories

3.4.2.1 Case a = 2

For the case a = 2, the quantities involved in expression (3.104) are given by (see
Appendix B):

exp
[
−2

∫ t ′

Cp(t ′′;a)dt ′′
]
=

1
2t ′+b

, (3.106)∫ t

0
exp
[
−2

∫ t ′

Cp(t ′′;a)dt ′′
]
dt ′ =

1
2

ln
(
2t +b

)
− 1

2
ln(b). (3.107)

Let us substitute the previous quantities into equation (3.101),

Y =
1
2 ln
(
2t +b

)
− 1

2 ln(b)+ 1
bY0

1
2t+b

, (3.108)

where Y0 ∈ C.
Therefore the total solution of the Riccati equation is given by:

C =
1
Y

+
1

2t +b

=
1

2t +b
+

ln(t + b
2)

(t + b
2)
[
1+ ln2(t + b

2)
] + i

(
1

(t + b
2)
[
1+ ln2(t + b

2)
]),

(3.109)

and the spreading in the position and momentum spaces are given by:

σ
2
x =

h̄
2m

1
CI

, (3.110)

σ
2
p = m2|C |2σ

2
x . (3.111)

For this critical case a = 2, we depict the spreadings behavior in Figure 3.6 (a)
and (b); we notice immediately that there is a divergent behavior in the position
uncertainty σx after t = 0.85µs.

Moreover, if we recall the proposed definition and interpretation of the Bohmian
trajectories of Section 3.2.1.1, we can calculate the correspondent Bohmian tra-
jectories for: η ±σx, η ± 2σx, η ± 3σx. This choice is due to the fact that those
are key points of a Gaussian distribution, as we can see in the following table:
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Region Area
[η−σx;η +σx] 68.3%

[η−2σx;η +2σx] 95.5%
[η−3σx;η +3σx] 99.7%

Table 3.1 Given a Gaussian distribution ρx = exp
[
− (x−η)2

2σ2
x

]
, the area

∫
ρdx is computed

for intervals of 1, 2 and 3 standard deviation σx away from the mean value η .

With Table 3.1 in mind, the Bohmian trajectories are depicted in Figure 3.6 (c).
One can observe there how practically the whole wave packet is focused for a
time ∆ t = 0.85µs, before starting a divergent spreading which tends to the free
particle behavior. Bear in mind that the main goal of an ion trap is to mantain a
wave packet within an initial region for a given time ∆ t. In this case, a parametric
oscillator with ω(t) = 1

at+b (hereafter b is set to b = 1) achieves that goal for a
time ∆ t < 2µs. If the time intervals required to be greater than that, this parametric
oscillator is not suitable for ion trapping.

3.4.2.2 Case a 6= 2

For the case when a 6= 2, the quantities involved in expression (3.104) are given
by (see Appendix B):

exp
[
−2

∫ t ′

Cp(t ′′;a)dt ′′
]
=

1(
at ′+b

)2 γ

a
, (3.112)

∫ t

0
exp
[
−2

∫ t ′

Cp(t ′′;a)dt ′′
]
dt ′ =

1
a

1
1−2 γ

a

(
at +b

)−2 γ

a+1− 1
a

1
1−2 γ

a
b−2 γ

a+1.

(3.113)

Let us substitute the previous quantities into equation (3.104),

Y =

1
a

1
1−2 γ

a

(
at +b

)−2 γ

a+1− 1
a

1
1−2 γ

a
b−2 γ

a+1 + 1
b2 γ

a
Y0

1(
at+b
)2 γ

a

. (3.114)

As in the previous Section, the total solution of the Riccati equation is given
by:
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C =
1
Y

+
γ

2t +b
, (3.115)

with γ having two possible values depending on the value of a relative to 2 (see
equations (3.100) and (3.102)). Actually, for the overdamped case a = 3 > 2, as
Figures 3.7 (a), (b) and (c) suggest, there is a more stable trapping until ∆ t =
4µs, before starting a divergent behavior which tends to the free particle behavior.
Therefore, we notice that the overdamped regime for the considered potential is
also not suitable for trapping.
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Fig. 3.6 Critical case a= 2 for a Mg-ion [Seidelin(2006)] under the action of a parametric
oscillator whose frequency has 1MHz as order of magnitude (a) Position spreading for a
general coherent state (b) momentum spreading for a general coherent state (c) Bohmian
trajectories for the mean value (black line) and two other trajectories (blue lines) that are
3σx away from the maximum of the wavepacket. The previous Bohmian trajectories, in
blue, contain 99.7% of the probability distribution according to Table 3.1 and the con-
servation equation (3.33). The initial conditions are given by η0 = 0, η̇0 = 1µm · µs−1,
σx,0 = 1µm and σ̇x = 0.
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Fig. 3.7 Overdamped case a= 3 for a Mg-ion [Seidelin(2006)] under the action of a para-
metric oscillator whose frequency has 1MHz as order of magnitude (a) Position spread-
ing for a general coherent state (b) momentum spreading for a general coherent state (c)
Bohmian trajectories for the mean value (black line) and two other trajectories (blue lines)
that are 3σx away from the maximum of the wavepacket. The previous Bohmian trajecto-
ries, in blue, contain 99.7% of the probability distribution according to Table 3.1 and the
conservation equation (3.33). The initial conditions are given by η0 = 0, η̇0 = 1µm ·µs−1,
σx,0 = 1µm and σ̇x = 0.
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Fig. 3.8 Underdamped case a = 0.1 for a Mg-ion [Seidelin(2006)] under the action of
a parametric oscillator whose frequency has 1MHz as order of magnitude (a) Position
spreading for a general coherent state (b) momentum spreading for a general coherent
state (c) Bohmian trajectories for the mean value (black line) and two other trajecto-
ries (blue lines) that are 3σx away from the maximum of the wavepacket. The previous
Bohmian trajectories, in blue, contain 99.7% of the probability distribution according to
Table 3.1 and the conservation equation (3.33). The initial conditions are given by η0 = 0,
η̇0 = 1µm ·µs−1, σx,0 = 1µm and σ̇x = 0.
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Regarding the underdamped case (a< 2), for a= 0.1, we see in Figures 3.8 (a)
and (b) that the trapping stability is assured by a spreading that slowly increases
periodically in time. The trapping function is assured to an interval of time ∆ t =
10µs, see Figure 3.8 (c).

This shows that the new interpretation of the Bohmian trajectories as “proba-
bility lanes” is useful to analyse the spatial spreading of probability. This occurs
to be important in ion traps. Furthermore, it was shown that even a non-periodic
frequency ω = 1

at+b for a parametric oscillator can assure the trapping of a mag-
nesium ion for at least intervals of times of the order of 10µs for the choice of
parameter a = 0.1, i.e., the underdamped regime.
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3.5 Summary

� In Section 3.1, it is recalled that the additional postulates are not neces-
sary when defining and introducing the Bohmian trajectories. Especially the
mathematical justification of the so called guidance law (3.4) is incoherent.

� In Section 3.2, Bohmian trajectories are found without the need of ad-
ditional postulates. They are the result of a specific parametrization of the
respective continuity equations. This was shown for position and momentum
representations

Position representation Momentum representation

Continuity equation ∂ρ(x,t)
∂ t + ∂ jx

∂x = 0 ∂ρp(p,t)
∂ t +

∂ jp
∂ p = 0

Bohm function Bx =
∫ x
−∞

ρx(x′, t)dx′ Bp =
∫ p
−∞ ρp(p′, t)dp′

Parametrization (x, t)|B=const −→ (q, t) (p, t)|Bp=const −→ (π, t)

Dynamical law dq
dt =

jx
ρx

dπ

dt =
jp
ρp

where jx = ρx(x, t)PR
m = ρx(x, t)

∂

∂x S(x,t)
m and jp = ρp(p, t)

(
−b−mω2XR

)
=

ρp(p, t)
(
− b−mω2(− ∂

∂ pSp(p, t))
)
, with ρx(x, t) and ρp(p, t) representing

the probability density in position and momentum space, respectively.

This was achieved by the use of a simple thermodynamic procedure in-
volving Maxwell relations (see Box 3.2.1). Therefrom, after performing a
contour integral in (x, t)-space, the non-crossing rule and the conservation of
probability, so characteristic of Bohmian trajectories, was proven. This sug-
gested natuarally the interpretation of Bohmian trajectories not as possible
paths, as it is commonly believed, but as borders of “probability lanes”. This
idea was illustrated with the help of generalized coherent states.
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� In Section 3.3, a connection between conventional quantum mechanics and
Bohmian mechanics was found. It was the Wigner formalism; the Bohmian
framework is just a projected aspect of the Wigner function. This reinforced
the idea of the proposed complex Bohmian quantities in Chapter 2, because
they are projected effects of an observable on a continuous representation.

� In Section 3.4, the new interpretation was used to analyse an ion trap
characterized by a parametric oscillator of frequency 1

at+b . After tuning the
parameters of that parametric oscillator, the ion trapping time can decrease or
increase. Contrary to usual frequencies in ion traps, this one is evidently non
periodic and yet, it was proven, applying the new interpretation and handling
of Bohmian trajectories, that it is useful for ion trapping when the intervals
of interest are of the order of microseconds. Otherwise this potential can be
discarded as candidate for trapping.



Chapter 4
Quantum hydrodynamics with complex quantities

Objective
In Chapter 2 a new formulation of Bohmian mechanics was introduced to clearly avoid any
rhetorical and philosophical argumentation of quantum mechanics. In this sense, the projec-
tive structure of the action of the observables revealed to be the milestone of the Bohmian
framework. On the other hand, Chapter 3 showed that the connection between conventional
quantum mechanics and the Bohmian framework is the Wigner formalism. Bohmian me-
chanics is essentially a projective aspect of quantum mechanics. This does not diminish the
importance of Bohmian mechanics. On the contrary, once the proper place of the theory is
found, it allows to interpret the Bohmian trajectories in the correct way. They happen to be
the borders of “probability lanes”. This is useful when approaching problems where the main
interest is the spatial distribution of probability over the configuration space.

In Section 4.1, the status quo of the boundary conditions within Bohmian mechanics is
mentioned. This is then extended in Sections 4.2 and 4.3 to the position and momentum rep-
resentations, respectively, what can be achieved with the complex formulation of Bohmian
mechanics.

keywords Hydrodynamic formulation, Bohmian mechanics, complex Bohmian quantities,
momentum representation, transport equations, Eulerian equations.

95
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4.1 Overview

Shortly after Schrödinger’s first communication [Schrödinger(1926a)], Madelung
published a formulation [Madelung(1927)] in terms of hydrodynamic equations
using a polar form of the complex wave function resulting in two real equations
instead of the one complex Schrödinger equation (SE). One of the equations is
a CE for the (probability) density ρ(x, t) = ψ∗(x, t)ψ(x, t) where ψ(x, t) is the
solution of the time-dependent SE and ψ∗(x, t) its complex conjugate. The second
equation is a mHJE, where the modification is an additional term depending on
the density ρ(x, t), thus introducing an (additional) coupling of Madelung’s two
equations.

This term is often called “quantum potential” or “Bohmian quantum poten-
tial”, as David Bohm used these two equations as basis for his formulation and
interpretation of quantum mechanics [Bohm(1952a), Bohm(1952b)].

In this Chapter we will not discuss Bohm’s attempt of a deterministic inter-
pretation of quantum mechanics nor any ontological aspects, but essentially the
formal similarities with hydrodynamics and extend the approach originally estab-
lished by Madelung.

Further-reaching hydrodynamic aspects of quantum mechanics have been
mentioned by other authors, e.g., by Holland in [Holland(1995)]. In the context
of quantum tunneling, Nassar [Nassar(1993)] tried to extend the similarities to
include a kind of transport or Eulerian equations, adding equations of motion for
a momentum density with an associated momentum flux density and an energy
flux with energy flux density. The expressions for these equations are given ex-
plicitly, but there are no aparent structural relations or similarities amongst them
recognizable.

In this study we want to show this missing structure using the complex quanti-
ties corresponding to physical quantities in the Bohmian formulation of quantum
mechanics. Not only the equations of Nassar can be regained, but also in a form
that is identical for the probability density (comparable to mass density in hydro-
dynamics), momentum and energy densities, but now for complex momentum and
energy quantities.

An early criticism by Pauli [Pauli(1952)] and Heisenberg [Passon(2005)]
against Bohm’s approach was the assymetric role of the canonical variables, i.e.,
the description solely in terms of position and the absence of a description in
terms of momentum, unlike in classical mechanics where the Hamiltonian for-
malism acts in phase space with position and momentum both being independent
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variables, or in standard quantum mechanics that can equally well be formulated
in position and momentum space.

In a Chapter 2 we have shown that the missing symmetry can be established
just following the original approach of Bohm leading to a consistent momentum
space version of this formalism.

This formulation will also be applied to the above mentioned transport equa-
tions in momentum space, leading to formally equivalent equations for position
density (corresponding to momentum density in position space) and energy den-
sity in momentum space.

4.2 Transport equations in position representation

4.2.1 Dynamics of Bohmian quantities in position representation

Recall that, as we saw in Chapter 2, the formal basis of Bohmian mechanics is the
already defined decomposition of the linear complex SE1

ih̄
∂

∂ t
ψ(x, t) =

{
− h̄2

2m
∂ 2

∂x2 +V (x)
}

ψ(x, t) (4.1)

into two real equations that have similarity with hydrodynamic equations (see Eqs.
(2.4-2.5)), namely the CE

∂

∂ t
ρx +

∂

∂x

[
ρx

∂

∂xSx

m

]
= 0 (4.2)

and a mHJE

∂

∂ t
Sx +

1
2m

( ∂

∂x
Sx
)2

+V − h̄2

2m

∂ 2√ρx
∂x2√

ρx
= 0 (4.3)

by using the polar ansatz (2.3) for the wave function ψ , i.e., in position repre-
sentation ψ(x, t) = 〈x|ψ(t)〉=√ρx exp

( i
h̄Sx
)
, where ρx = ψ∗ψ and the subscript

indicates the representation that is considered. This formulation was first intro-
duced by Madelung [Madelung(1927)] in 1927 and 25 years later adopted by
Bohm [Bohm(1952a), Bohm(1952b)] in his interpretation of quantum mechanics
in terms of “hidden variables”. In the following we are not going into ontological
1 Our discussion is restricted to the one-dimensional case.
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interpretations of quantum mechanics, but stick to the formal structure that was
established by Madelung and extend the similarities with hydrodynamics.

Now, we use the definition (2.9) introduced in Section 2.2.1, for Bohmian
quantities FBo corresponding to an operator F̂ (associated with an observable F),

FBo(x, t) = F(x, t) =
〈x|F̂|ψ〉
〈x|ψ〉

= FR + iFI. (4.4)

Recall that Bohmian quantities F(x, t) are in general (apart from purely multiplica-
tive c-numbers) complex.

In position representation we consider again expressions (2.12-2.15) for the
position operator X̂= x, momentum operator P̂= h̄

i
∂

∂x , Hamiltonian operator Ĥx =
h̄2

2m
∂ 2

∂x2 +V (x, t) and the energy operator Ê = ih̄ ∂

∂ t . The corresponding Bohmian
quantities are then

X = x real (4.5)

P =
∂

∂x
Sx− i

h̄
2

∂

∂xρx

ρx
=

∂

∂x
Sx− i

h̄
2

∂

∂x
lnρx = PR + iPI complex (4.6)

Hx = Tx +V(x, t) =
1

2m

[
(P)2 +

h̄
i

∂

∂x
P
]
+V (x, t) (4.7)

with

Tx =
1

2m

[
P2]= 1

2m

[(
P2

R−P2
I + h̄

∂

∂x
PI
)
+ i
(
2PRPI− h̄

∂

∂x
PR
)]

= TR+ iTI (4.8)

where

TR =
1

2m

( ∂

∂x
Sx
)2

+Vqu,x (4.9)

and

Vqu,x =−
1

2m

[
P2

I − h̄
∂

∂x
PI
]
=− h̄2

8m

( ∂

∂xρx

ρx

)2
− h̄2

4m
∂

∂x

( ∂

∂xρx

ρx

)
=− h̄2

2m

∂ 2

∂x2
√

ρx
√

ρx
.

(4.10)
The appearance of the “quantum potential” Vqu,x distinguishes the mHJE (4.3)

from the classical HJE for the action Sx.
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Finally,

E =− ∂

∂ t
Sx + i

h̄
2

∂

∂ t ρx

ρx
=− ∂

∂ t
Sx + i

h̄
2

∂

∂ t
lnρx = ER + iEI (4.11)

corresponds to the left hand side of the SE (4.1).
As shown in Section 2.2.1, combining EI with TI leads to the CE (4.2). In

general, as also has been shown in [Bonilla(2020a)], it holds in any representation
“a”, that:

HR(a, t) = ER(a, t) = −
∂

∂ t
Sa, (4.12)

HI(a, t) = EI(a, t) =
h̄
2

∂

∂ t ρa

ρa
. (4.13)

The dynamics of the Bohmian quantities can then be formulated using these
relations.

The temporal change of the complex momentum can be expressed as

∂

∂ t
P =

∂

∂ t

[
∂

∂x
Sx− i

h̄
2

∂

∂x
lnρx

]
=

∂

∂x

[
∂

∂ t
Sx− i

h̄
2

∂

∂ t
lnρx

]
= − ∂

∂x
Hx(x, t). (4.14)

Finally, the time-derivative of the Bohmian Hamiltonian can be expressed us-
ing these relations as

∂

∂ t
Hx =

P
m

∂

∂ t
P− i

h̄
2m

∂

∂x
∂

∂ t
P+

∂

∂ t
V

= − P
m

∂

∂x
Hx + i

h̄
2m

∂ 2

∂x2 Hx +
∂

∂ t
V. (4.15)

Only if the potential V is explicitly time-dependent, e.g. for a parametric oscil-
lator V = m

2 ω(t)x2, the contribution ∂

∂ t V does not vanish. But even for ∂

∂ t V = 0,
the first two terms on the right hand side of equation (4.15) remain due to the
nonlocality of the complex Bohmian Hamiltonian.
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4.2.2 Bohmian transport equations in position representation

Considering first the dynamics of the Bohmian momentum density ρxP ∈ C by
taking its time-derivative and using the CE (4.2) and Eq. (4.14) one obtains

∂

∂ t

(
ρxP
)
= P

∂

∂ t
ρx +ρx

∂

∂ t
P

= −P
[

∂

∂x

(
ρx

PR

m

)]
−ρx

∂

∂x
Hx (4.16)

where

∂

∂x
Hx =

P
m

∂

∂x
P− i

h̄
2m

∂ 2

∂x2 P+
∂

∂x
V, (4.17)

leading to

∂

∂ t

(
ρxP
)
=−P

[
∂

∂x

(
ρx

PR

m

)]
−ρx

P
m

∂

∂x
P+ i

h̄
2m

ρx
∂ 2

∂x2 P−ρx
∂

∂x
V. (4.18)

In order to obtain the equation for the complex Bohmian quantity ρxP, the
term −iP ∂

∂x

(
ρx

PI
m

)
has to be added and substracted and the definition of PI used,

resulting in

∂

∂ t

(
ρxP
)
=− ∂

∂x

[(
ρx

PR

m

)
P
]
+ i

h̄
2m

[
ρx

∂ 2

∂x2 P−P
∂ 2

∂x2 ρx

]
−ρx

∂

∂x
V. (4.19)

Adding and substracting ( ∂

∂xρx)(
∂

∂xP) and using (2.59) this can be rewritten
in a form where the time-derivative of the momentum density can be expressed
essentially by the divergence of a flux, similar to the continuity equation, with
−ρx

∂

∂xV as an external source-term,

∂

∂ t

(
ρxP
)
+

∂

∂x

[(
ρx

∂Q
∂ t

)
P+ i

h̄
2m

(
P

∂

∂x
ρx−ρx

∂

∂x
P
)]

=−ρx
∂

∂x
V (4.20)

where, according to the definition (2.59), ∂Q
∂ t = P

m .
Regarding next the Bohmian energy density ρxH ∈ C, we follow the same

scheme, i.e., using the CE (4.2) and now equation (4.15),
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∂

∂ t

(
ρxHx

)
= Hx

∂

∂ t
ρx +ρx

∂

∂ t
Hx

= −Hx

[
∂

∂x

(
ρx

PR

m

)]
−ρx

( P
m

∂

∂x
Hx

)
+ i

h̄
2m

ρx
∂ 2

∂x2 Hx +ρx
∂

∂ t
V.

(4.21)

Adding and substracting this time−iHx
∂

∂x

(
ρx

PI
m

)
and ( ∂

∂xρx)(
∂

∂xHx) and using
again the definition of PI and Eq. (2.61), this time leads to

∂

∂ t

(
ρxHx

)
+

∂

∂x

[(
ρx

∂Q
∂ t

)
Hx + i

h̄
2m

(
Hx

∂

∂x
ρx−ρx

∂

∂x
Hx

)]
= ρx

∂

∂ t
V. (4.22)

Finally, the CE can be brought into the same form, starting from

∂

∂ t
ρx +

∂

∂x

(
ρx

PR

m

)
= 0, (4.23)

adding and substracting i ∂

∂x

(
ρx

PI
m

)
and using the definition of PI and Eq. (2.61)

∂

∂ t
ρx +

∂

∂x

[
ρx

∂Q
∂ t

+ i
h̄

2m
∂

∂x
ρx

]
= 0, (4.24)

what can be rewritten in a form like the one obtained for ρxP and ρxHx by changing
ρx into ρx ·1, leading to

∂

∂ t

(
ρx ·1

)
+

∂

∂x

[(
ρx

∂Q
∂ t

)
·1+ i

h̄
2m

(
1 · ∂

∂x
ρx−ρx

∂

∂x
1
)]

= 0. (4.25)

Therefore, all three cases (4.20), (4.22) and (4.25) can be summarized in the
same (complex) form

∂

∂ t

(
ρxA

)
+

∂

∂x

[
JxA+ i

h̄
2m

(
A

∂

∂x
ρx−ρx

∂

∂x
A
)]

= f (x, t) (4.26)

where Jx
.
= ρx

P
m = ρx

∂Q
∂ t = ρx

∂

∂x Sx
m − i h̄

2m
∂

∂xρx = Jx,R + iJx,I and A can be 1, P ∈ C
or Hx ∈C. The position dependent function f (x, t) can also be written as a density
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in the form f (x) = ρx
∂

∂ t Acl where Acl is the classical quantity corresponding to
the Bohmian quantity A, therefore ∂

∂ t 1 = 0, ∂

∂ t Pcl =− ∂

∂xV and ∂

∂ t Hcl =
∂

∂ t V.
The terms in the square bracket of equation (4.26) can still be simplified by

going from a description in terms of only complex quantities (apart from ρx ·
1) to one where, like in the original CE (4.2), only the real part of the current

density is used, i.e., Jx,R = ρx
∂

∂x Sx
m instead of Jx = ρx

P
m . Equation (4.26) can then

be reformulated as

∂

∂ t

(
ρxA

)
+

∂

∂x

[
Jx,RA− i

h̄
2m

ρx
∂

∂x
A
]
= f(x, t). (4.27)

In this form it is also easy to confirm the right hand side of equation (4.26),
namely f (x, t) = ρx

∂

∂ t Acl . Going from our local description in terms of densities
to a global one by integrating equation (4.27) over the whole position space, i.e.,

∫ +∞

−∞

dx
∂

∂ t

(
ρxA

)
+
∫ +∞

−∞

dx
∂

∂x

[
ρx

( ∂

∂xSx

m

)
A− i

h̄
2m

ρx
∂

∂x
A
]
=
∫ +∞

−∞

dxρx
∂Acl

∂ t
.

(4.28)
The second integral on the left hand side yields just the values of the quantities

in the square bracket at the boundaries, i.e.

ρx

[( ∂

∂xSx

m

)
·A− i

h̄
2m

∂

∂x
A
]∣∣∣+∞

−∞

= 0, (4.29)

that vanish for square integrable wave functions, as ρx vanishes for −∞ and +∞.
In the other two integrals, integration and time-derivative can be interchanged,

leading to

∂

∂ t

∫ +∞

−∞

dxρxA =
∂

∂ t
〈A〉= ∂Acl

∂ t

∫ +∞

−∞

dxρx =
∂Acl

∂ t
(4.30)

where the pointed brackets denote mean values or expectation values of the quanti-
ties within the brackets. Therefore, Eq. (4.30) is nothing but the Ehrenfest theorem
[Ehrenfest(1927)] that states that on average, the classical equations of motion are
valid

In the following, equation (4.27) is separated into real and imaginary parts,
yielding
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∂

∂ t

(
ρxAR

)
+

∂

∂x

[
Jx,RAR +

h̄
2m

ρx
∂

∂x
AI

]
= f (x, t),

∂

∂ t

(
ρxAI

)
+

∂

∂x

[
Jx,RAI−

h̄
2m

ρx
∂

∂x
AR

]
= 0.

(4.31)

(4.32)

For A = 1+ i0 it is straightforward to see that (4.32) is trivially fulfilled and
(4.31) simply turns into the CE (4.2) or Eq. (4.23).

For A = P = ∂

∂xSx− i h̄
2

∂

∂x ρx
ρx

, the real part can be expressed as

∂

∂ t

(
ρx

∂

∂x
Sx
)
+

∂

∂x

[
ρx

∂

∂xSx

m

( ∂

∂x
Sx
)
− h̄2

4m

(
∂ 2

∂x2 ρx−
( ∂

∂xρx)
2

ρx

)]
=−ρx

∂

∂x
V,

(4.33)
or, using Nassar’s notation [Nassar(1993)]:

∂

∂ t

(
mJNass

)
+

∂

∂x

[
mPNass

]
=−ρx

∂

∂x
V (4.34)

where JNass = ρxυNass = ρx
∂

∂x Sx
m is his momentum density and PNass = ρx

( ∂

∂x Sx)
2

m2 −
h̄2

4m2

(
∂ 2

∂x2 ρx−
( ∂

∂x ρx)
2

ρx

)
his momentum flux density (where in both cases his defini-

tion contains a factor 1
m ).

The imaginary part simply provides

∂

∂x

{
∂

∂ t
ρx +

∂

∂x

(
ρx

∂

∂xSx

m

)}
= 0 (4.35)

what essentially is the momentum operator applied to the CE,( i
h̄

)
P̂op

{
CE
}
. (4.36)

Considering now A=Hx =− ∂

∂ t Sx+ i h̄
2

∂

∂ t ρx
ρx

, where (4.12) and (4.13) have been
used, the real part yields

∂

∂ t

(
−ρx

∂Sx

∂ t

)
+

∂

∂x

[
ρx

∂

∂xSx

m

(
− ∂

∂ t
Sx

)
+

h̄2

4m
ρx

∂

∂x

( ∂

∂ t ρx

ρx

)]
= ρx

∂

∂ t
V, (4.37)
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what can again be expressed using Nassar’s energy density UNass = ρx
(m

2 υ2
Nass +

V +Vqu,x
)

and his energy density flux QNass = υNassUNass +
h̄2

2m

(√
ρx

∂ 2√ρx
∂x∂ t −(∂

√
ρx

∂x

)(∂
√

ρx
∂ t

))
in the form

∂

∂ t
UNass +

∂

∂x
QNass = 0 (4.38)

where ∂

∂ t V = 0 has been assumed (to be in agreement with [Nassar(1993)]).
The imaginary part now takes the form

∂

∂ t

{
∂

∂ t
ρx +

∂

∂x

(
ρx

∂

∂xSx

m

)}
= 0 (4.39)

what again can be expressed as the corresponding operator, in this case the
energy operator Ê = ih̄ ∂

∂ t , applied on the CE,

− i
h̄

Ê
{

CE
}
=− i

h̄
Ĥ
{

CE
}
. (4.40)

4.2.3 Quantum transport equations and the associated Euler
equations in position representation

In classical mechanics a transport equation for a local density can be rewritten
as an Euler equation in a co-moving frame [Greiner(1991)], provided the CE is
fulfilled. To recall the procedure, a typical transport equation shall be considered,

∂

∂ t

(
ρA
)
+

∂

∂x

[
(ρυ)A

]
= 0, (4.41)

leading to

A
∂ρ

∂ t
+ρ

∂A
∂ t

+A∇ · (ρυ)+(ρυ) ·∇A = 0, (4.42)

what, since the CE is fulfilled, can be written as an Euler equation in the form

ρ
∂A
∂ t

+ρυ ·∇A = 0, (4.43)

or for regions with ρ 6= 0, as
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∂A
∂ t

+υ ·∇A =
D
Dt

A = 0, (4.44)

where D
Dt is the substantial time-derivative valid in a co-moving “coordinate”

frame moving with velocity υ .
This procedure is now applied to the general Bohmian transport equation

(4.27) in position representation,

∂

∂ t

(
ρxA

)
+

∂

∂x

[
JR,xA− i

h̄
2m

ρx
∂

∂x
A
]
= f(x, t),

leading to

∂A
∂ t

+
∂Q
∂ t

∂

∂x
A− i

h̄
2m

∂ 2

∂x2 A =
f(x, t)

ρx
. (4.45)

This is obviously a convection-diffusion equation or a Fokker–Planck-type
equation in position space, also called Smoluchowski equation, for an incompress-
ible medium with ∂

∂x
∂Q
∂ t = ∂

∂x
P
m = 0 and a purely imaginary diffusion coefficient2

Dx = i h̄
2m . Expressing (4.45) in terms of real and imaginary parts leads to:

∂AR

∂ t
+

PR

m
∂

∂x
AR−

PI

m
∂

∂x
AI +

h̄
2m

∂ 2

∂x2 AI =
f(x, t)

ρx
,

∂AI

∂ t
+

PR

m
∂

∂x
AI +

PI

m
∂

∂x
AR−

h̄
2m

∂ 2

∂x2 AR =0.

(4.46)

(4.47)

For A = P = PR + iPI , i.e., the complex Bohmian momentum, one obtains

∂PR

∂ t
+

PR

m
∂

∂x
PR−

PI

m
∂

∂x
PI +

h̄
2m

∂ 2

∂x2 PI = −
∂

∂x
V, (4.48)

∂PI

∂ t
+

PR

m
∂

∂x
PI +

PI

m
∂

∂x
PR−

h̄
2m

∂ 2

∂x2 PR = 0, (4.49)

what can be rewritten as

2 It should just be reminded that the time-dependent SE for the free motion, i.e., V = 0, has exactly
the form of a diffusion equation with this purely imaginary diffusion coefficient Dx = i h̄

2m .



106 4 Quantum hydrodynamics with complex quantities

∂PR

∂ t
+

∂

∂x

[
P2

R
2m
− P2

I
2m

+
h̄

2m
∂

∂x
PI +V

]
= 0, (4.50)

∂PI

∂ t
+

∂

∂x

[
PRPI

m
− h̄

2m
∂

∂x
PR

]
= 0. (4.51)

In terms of real and imaginary parts of the Bohmian Hamiltonian, this yields

∂PR

∂ t
+

∂

∂x
HR = 0, (4.52)

∂PI

∂ t
+

∂

∂x
HI = 0. (4.53)

with HR = 1
2m(

∂

∂xSx)
2 +V+Vqu,x, HI =

ih̄
2

∂

∂x lnρx and PR = ∂

∂xSx.
Exchanging temporal and spatial derivatives in (4.52) leads to

∂

∂x

[
∂

∂ t
Sx +

1
2m

(
∂

∂x
Sx)

2 +V+Vqu,x

]
= 0 (4.54)

what is just the momentum operator applied to the mHJE (4.3)

i
h̄

P̂
{

mHJE
}
. (4.55)

On the other hand, applying ∂

∂x in Eq. (4.54) and replacing ∂

∂xSx by PR, this
equation can be formulated as a Newtonian equation of motion with a substantial
time-derivative of the (real) momentum and including the quantum potential Vqu,x,

∂

∂ t
PR +

PR

m
∂

∂x
PR +

∂

∂x

(
V+Vqu,x

)
= 0, (4.56)

or

D
Dt

PR =− ∂

∂x

(
V+Vqu,x

)
. (4.57)

Equation (4.53) for the imaginary part provides

∂

∂ t

[
− ih̄

2
∂

∂x
lnρx

]
+

∂

∂x

[ ih̄
2

∂

∂ t
lnρx

]
= 0 (4.58)

what is obviously fulfilled, as spatial and temporal derivatives can be inter-
changed.
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Considering the complex Bohmian Hamiltonian, Eqs. (4.46) and (4.47) turn
into

∂HR

∂ t
+

PR

m
∂

∂x
HR−

PI

m
∂

∂x
HI +

h̄
2m

∂ 2

∂x2 HI =
∂

∂ t
V, (4.59)

∂HI

∂ t
+

PR

m
∂

∂x
HI +

PI

m
∂

∂x
HR−

h̄
2m

∂ 2

∂x2 HR = 0. (4.60)

Bearing in mind the expression of the Bohmina Hamiltonian and the Bohmian
momentum leads for the real part to

∂

∂ t

{
∂

∂ t
Sx +

P2
R

2m
− P2

I
2m

+
h̄

2m
∂

∂x
PI +V

}
= 0 (4.61)

or

∂

∂ t

{
∂

∂ t
Sx +

1
2m

( ∂

∂x
Sx
)2

+Vqu,x +V
}
= 0 (4.62)

what is, up to a constant factor, just the energy operator Ê = ih̄ ∂

∂ t applied to the
mHJE (4.3), i.e.,

− i
h̄

Ê
{

mHJE
}
. (4.63)

For the imaginary part, one obtains

∂

∂ t

{
h̄
2

∂

∂ t
lnρx−

PRPI

m
+

h̄
2m

∂

∂x
PR

}
= 0, (4.64)

what, using the terms for EI and HI , can be written as

∂

∂ t

{
EI−HI

}
= 0, (4.65)

being obviously correct according to Eq. (4.13).
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4.3 Transport equations in momentum representation

4.3.1 Dynamics of Bohmian quantities in momentum
representation

In analogy to Section 4.2.1, it is possible to formulate Bohmian mechanics in
momentum representation.

Inserting again the polar form (2.3) of the wave function in momentum space,
ψ(p, t) = 〈p|ψ〉 = √ρp exp

( i
h̄Sp
)
, into the time-dependent SE allows again to

“decouple” this complex equation into two real ones. The explicit form of these
equations depends on the specific form of the potential V that itself depends on the
position operator X̂ = − h̄

i
∂

∂ p . To show the similarity and symmetry between the
position and momentum representation, we restrict our discussion to potentials
that are at most quadratic in the position variable in momentum space, as the
kinetic energy in position space is quadratic in momentum. This will allow to
show clearly the formal correspodence between the two formulations.

Therefore, hereafter the potential V(X̂op)= a+bX̂op+
m
2 ω2X̂2

op = a−b h̄
i

∂

∂ p−
m
2 ω2h̄2 ∂ 2

∂ p2 is considered.
As we saw in Section 2.2.2.2 with Eqs. (2.33-2.34), the two hydrodynamic

equations are then given by:

∂

∂ t
Sp +

p2

2m
+V(− ∂

∂ p
Sp)+Vqu,p = 0, (4.66)

∂

∂ t
ρp +

∂

∂ p

[
ρp
(
−b−mω

2(− ∂

∂ p
Sp)
)]

= 0. (4.67)

The additional term Vqu,p in the mHJE (4.66) is a kind of “quantum potential”
in momentum space due to its formal similarity with Vqu,x in position representa-
tion, given in Eq. (4.10). The term Vqu,p is also nonlocal and has the structure

Vqu,p(p, t) =−mω
2 h̄2

4

[ ∂ 2

∂ p2 ρp

ρp
− 1

2

( ∂ρp
∂ p

ρp

)2]
=−m

2
ω

2h̄2
∂ 2

∂ p2
√

ρp
√

ρp
. (4.68)

Like in the position representation in Section 4.2.1, the Bohmian quantities
FBo defined through (2.9) are employed. In addition, similar to the position repre-
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sentation, we consider the position operator X̂p = − h̄
i

∂

∂ p (which is now a differ-

ential operator), the momentum operator P̂ = p (which is now not a differential
operator), the Hamiltonian operator Ĥp =

p2

2m +a−b h̄
i

∂

∂ p−
m
2 ω2h̄2 ∂ 2

∂ p2 and the en-

ergy operator Ê = ih̄ ∂

∂ t . The corresponding Bohmian quantities are, as we saw in
Section 2.2.2.2 with Eqs. (2.22-2.25),

P = p real (4.69)

X = − ∂

∂ p
Sp + i

h̄
2

∂

∂ pρp

ρp
=− ∂

∂ p
Sp + i

h̄
2

∂

∂ p
lnρp = XR + iXI complex (4.70)

Hp =
p2

2m
+a+bX+

m
2

ω
2
[
(X)2− h̄

i
∂

∂ p
X
]
=

p2

2m
+a+bX+

m
2

ω
2[X2] = HR + iHI

(4.71)

with

HR =
p2

2m
+a+bXR +

m
2

ω
2X2

R−
m
2

ω
2
[
X2

I + h̄
∂

∂ p
XI

]
=

p2

2m
+a−b

∂

∂ p
Sp +

m
2

ω
2(

∂

∂ p
Sp)

2 +Vqu,p (4.72)

where the above defined “quantum potential” Vqu,p can also be rewritten in terms
of the imaginary part of the Bohmian position XI as

Vqu,p =−
m
2

ω
2
[
X2

I + h̄
∂

∂ p
XI

]
(4.73)

and

HI = bXI +mω
2XRXI +mω

h̄
2

∂

∂ p
XR. (4.74)

Finally, the Bohmian energy corresponding to the left hand side of SE is given
by

E =− ∂

∂ t
Sp + i

h̄
2

∂

∂ t ρp

ρp
=− ∂

∂ t
Sp + i

h̄
2

∂

∂ t
lnρp = ER + iEI. (4.75)
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As already mentioned in Section 4.2.1, in any representation, i.e., also in mo-
mentum representation,

HR(p, t) = ER(p, t) = − ∂

∂ t
Sp (4.76)

HI(p, t) = EI(p, t) =
h̄
2

∂

∂ t ρp

ρp
=

h̄
2

∂

∂ t
lnρp (4.77)

is valid.
Using these relations, the dynamics of the Bohmian quantities in momentum

space can be formulated.
For the temporal change of the Bohmian position one obtains

∂

∂ t
X =

∂

∂ t

[
− ∂

∂ p
Sp + i

h̄
2

∂

∂ p
lnρp

]
=

∂

∂ p

[
− ∂

∂ t
Sp + i

h̄
2

∂

∂ t
lnρp

]
=

∂

∂ p
Hp(p, t). (4.78)

With the variable Π(p, t) (see Eq. (2.69)) defined previously in Chapter 2, the
time-derivative of the Hamiltonian can finally be obtained via

∂

∂ t
Hp = (b+mω

2X)
∂

∂ t
X+ i

m
2

ω
2h̄

∂

∂ p
∂

∂ t
X

= (b+mω
2X)

∂

∂ p
Hp + i

m
2

ω
2h̄

∂ 2

∂ p2 Hp

= −∂Π

∂ t
∂

∂ p
Hp + i

m
2

ω
2h̄

∂ 2

∂ p2 Hp. (4.79)

4.3.2 Bohmian transport equations in momentum representation

Following the same line of reasoning as in Section 4.2, the transport equations
for the position density ρpX, energy density ρpHp and probability density ρp in
momentum space can be derived using the CE (4.67) and the dynamical equations
(4.78) and (4.79), thus leading to:
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∂

∂ t

(
ρpX

)
+

∂

∂ p

[(
ρp

∂Π

∂ t

)
X+ i

m
2

ω
2h̄
(

X
∂

∂ p
ρp−ρp

∂

∂ p
X
)]

= ρp
P
m

= ρp
∂

∂ t
Xcl,

(4.80)

∂

∂ t

(
ρpHp

)
+

∂

∂ p

[(
ρp

∂Π

∂ t

)
Hp + i

m
2

ω
2h̄
(

Hp
∂

∂ p
ρp−ρp

∂

∂ p
Hp

)]
= ρp

∂

∂ t
V, (4.81)

∂

∂ t

(
ρp ·1

)
+

∂

∂ p

[(
ρp

∂Π

∂ t

)
·1+ i

m
2

ω
2h̄
(

1 · ∂

∂ p
ρp−ρp

∂

∂ p
1
)]

= 0. (4.82)

where ∂Π

∂ t is given by (2.71), i.e., ∂Π

∂ t =−b−mω2X.
These three equations can be summarized in the form

∂

∂ t

(
ρpA

)
+

∂

∂p

[
JpA+ i

m
2

ω
2h̄
(

A
∂

∂p
ρp−ρp

∂

∂p
A
)]

= g(p, t), (4.83)

where Jp
.
= ρp

∂Π

∂ t = ρp
(
−b−mω2XR

)
− im

2 h̄ω2 ∂

∂ pρp and A can be 1, X ∈ C or
Hp ∈ C.

The momentum dependent function g(p, t) can, similarly to the situation in
position representation, be written as g(p, t) = ρp

∂

∂ t Acl , where Acl is the classical
quantity corresponding to the Bohmian one, i.e. ∂

∂ t 1 = 0, ∂

∂ t Xcl =
p
m and ∂

∂ t Hcl =
∂

∂ t V.
Again, Eq. (4.83) containing only the complex quantities Jp and A (apart from

A = 1) can be simplified using solely the real part of the current density Jp, i.e.,
Jp,R = ρp

(
−b−mω2XR

)
like in CE (4.67), leading to

∂

∂ t

(
ρpA

)
+

∂

∂p

[
Jp,RA+ i

m
2

ω
2h̄ρp

∂

∂p
A
]
= g(p, t). (4.84)

Integrating this equation over the whole momentum space confirms, again like
in Section 4.2, Ehrenfest’s theorem, now in momentum representation.

Separating equation (4.84) into real and imaginary parts leads to
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)
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∂
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(
ρpAI

)
+

∂
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[
Jp,RAI−

m
2

ω
2h̄ρp

∂

∂p
AR

]
=0.

(4.85)

(4.86)
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For A = 1, equation (4.86) trivially vanishes and equation (4.85) turns into the
CE (4.67).

For A = X =− ∂

∂ pSp + i h̄
2

∂

∂ p ρp

ρp
= XR + iXI , Eq. (4.85) for the real part yields
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2
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4
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2
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−
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)2)]
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p
m
, (4.87)

what can be rewritten as:
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Changing the order of ∂

∂ t and ∂

∂ p in equation (4.86) shows easily that

∂

∂ p

{
∂

∂ t
ρp +

∂

∂ p

[
ρp
(
−b−mω

2XR
)]}

= 0 (4.89)

is fulfilled, what is essentially the position operator applied to the CE in momen-
tum space,

− i
h̄

X̂
{

CE
}
. (4.90)

Considering finally A = Hp =− ∂

∂ t Sp + i h̄
2

∂

∂ t ρp
ρp

= HR + iHI , the real part leads
via (4.85) to an equation formally similar to (4.88)
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(4.91)
Defining quantities similar to those used by Nassar in position space [Nassar(1993)],

namely UNass,p = ρp
( p2

2m +V +Vqu,p
)

and QNass,p =
∂ΠR
∂ t UNass,p+

m
2 ω2h̄2

(√
ρp

∂ 2√ρp
∂ p∂ t −(∂

√
ρp

∂ p

)(∂
√

ρp
∂ t

))
, one can rewrite (4.91) (for ∂V

∂ t = 0) in a form similar to (4.38) in
position space,
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∂

∂ t
UNass,p +

∂

∂ p
QNass,p = 0. (4.92)

Regarding the imaginary part HI , Eq. (4.86) can be reduced to
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∂ t
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(
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2XR
)]}

= 0, (4.93)

what is now basically the energy operator Ê = ih̄ ∂

∂ t applied to CE (4.67), i.e.,

− i
h̄

Ê
{

CE
}
=− i

h̄
Ĥp

{
CE
}
. (4.94)

4.3.3 Quantum transport equations and the associated Euler
equations in momentum representation

Similar to what has been shown for Eq. (4.27) in Section 4.2.3 for the position
representation, will now be applied to the corresponding Eq. (4.84) in momentum
space, i.e.,
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containing also a diffusion term with purely imaginary diffusion coefficient Dp =

i h̄
2mω2.

Separated into real and imaginary parts this equation yields
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(4.96)

(4.97)
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In momentum space, first the complex Bohmian position shall be considered,
leading to
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∂ t
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∂
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(4.98)
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Taking into account the time derivative (2.71) of Π and the expressions for Hp
and Vqu,p as given in (4.72)-(4.74) this can be rewritten as
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= 0, (4.100)
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or, in terms of real and imaginary parts of the Bohmian Hamiltonian as
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∂ t
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HR = 0, (4.102)
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Changing the order of differentiation in ∂XR
∂ t = − ∂
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∂ pSp = − ∂
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∂

∂ t Sp, Eq.
(4.102) can be written as
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]
= 0 (4.104)

what is nothing but applying the position operator in momentum space on the
mHJE (4.66)

i
h̄

X̂
{

mHJE
}
. (4.105)

Using the definitions of XI and HI , Eq. (4.103) turns into
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Inserting into (4.98) and (4.99) for A finally the Bohmian Hamiltonian, one
obtains
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Using (4.12) and the definitions of ∂Π

∂ t and Hp, Eq. (4.107) takes the form
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what is essentially the application of the energy operator Ê = ih̄ ∂

∂ t on the mHJE
(4.66),
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}
. (4.110)

Taking into account Eqs. (4.12) and (4.13), the equation for the imaginary part
can be expressed as
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[
bXI +mω
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ω
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]}
= 0 (4.111)

where the terms in square brackets are according to (4.74) identical to HI .
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4.4 Summary

� In Section 4.1, the lack of consistent hydrodynamical equations for posi-
tion and momentum representation is summarized.

� In Section 4.2, the complex hydrodynamical equations are found. Contrary
to what is found in the current litterature, they all share the same structurre:
a transport equation. Care must be taken not to make physical speculations
regarding possible transport phenomena because the involved quantities are
not real ones but complex ones.

For the case of position representation one obtains
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P ∈C or Hx ∈C. The position dependent function f (x, t) can also be written
as a density in the form f (x) = ρx
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∂ t Acl where Acl is the classical quantity
corresponding to the Bohmian quantity A, therefore ∂
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In the following, equation (4.27) was separated into real and imaginary
parts, yielding

∂

∂ t

(
ρxAR

)
+

∂

∂x

[
Jx,RAR +

h̄
2m

ρx
∂

∂x
AI

]
= f (x, t), (4.31)

∂

∂ t

(
ρxAI

)
+

∂

∂x

[
Jx,RAI−

h̄
2m

ρx
∂

∂x
AR

]
= 0. (4.32)



4.3 Transport equations in momentum representation 117

For the case of the momentum representation one obtains
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The momentum dependent function g(p, t) can, similarly to the situation
in position representation, be written as g(p, t) = ρp
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∂ t Acl , where Acl is the
classical quantity corresponding to the Bohmian one, i.e. ∂
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Separating equation (4.84) into real and imaginary parts leads to
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� Like in hydrodynamics, it is possible to change the description from one
that locally considers densities at a particular position (or momentum), cor-
responding to the Lagrangian point of view, to that of Euler, considering a
co-moving frame, moving with the convection velocity of the system. This
turns the transport equations for the densities into Euler equations that can
be written as complex convection-diffusion equations with purely imaginary
diffusion coefficient depending on h̄.





Chapter 5
Conclusion

In 1952, Bohm challenged the Copenhagen interpretation through the sugges-
tion of a deterministic interpretation in terms of “hidden variables” in the mi-
croscopic world [Bohm(1952a), Bohm(1952b)]. Paradoxically, Bohmian mechan-
ics originally sought to become more general than its conventional counterpart
[Bohm(1952a)], but in the process every analysis was performed solely in the
position representation, a reason for the objections of Pauli [Pauli(1952)] and
Heisenberg [Passon(2005)], mentioned in the beginning. Ever since, there have
been numerous attempts at expressing Bohmian mechanics in the momentum rep-
resentation in a causal form. It is important to bear in mind the relevant works
of Epstein [Epstein(1953a), Epstein(1953b)] and Struvye [Struyve(2010)]. Al-
though, to date, the previous works have been unable to write down explicitely
a Hamilton–Jacobi and continuity equation for the momentum representation.

Three major problems can be found in Bohmian mechanics as it is currently
formulated. First of all, there is no systematic treatment of other representations.
Second, the Bohmian trajectories inadequately defined are inconsistently used.
Third, the Bohmian hydrodynamic treatment seems to be composed of unrelated
dynamical equations.

In this context, this thesis aims to take a mediating standpoint between Bohmian
mechanics and conventional quantum mechanics, reformulate the former based on
the latter and assign it its appropriate place in the quantum mechanical formalism,
without additional postulates, interpretations or philosophical arguments. For this
purpose, this work is based on three major pillars: a formulation that is indepen-
dent of the chosen representation, a rational criticism of the Bohmian trajectory
and, last but not least, the structure of the local transport equations that are as-
signed to the Bohmian trajectories.
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Chapter 2 serves to reformulate Bohmian mechanics. Section 2.1 shows that
the controversy over the formulation of Bohmian mechanics in momentum rep-
resentation is still of interest; see Table 2.2 for the arguments related to the con-
troversy. In Section 2.2, using the polar decomposition (2.6) of the wave function
according to (2.9), complex Bohmian quantities such as position, momentum, ki-
netic and potential energies for the position (2.12-2.15) and momentum represen-
tation (2.22-2.25) are defined. The most remarkable property of these Bohmian
quantities is that they are generally complex. One exception concerns the posi-
tion and momentum, these are real quantities in their respective representations,
but otherwise they are also complex. Furthermore, quadratic quantities such as ki-
netic and potential energies contain not only the squares of the real and imaginary
parts of the corresponding complex quantities, but also an additional imaginary
contribution that couples the original real and imaginary parts.

Advantages of using the Bohmian formulation in the momentum representa-
tion are illustrated using a linear potential for stationary states. Working in po-
sition space, the difficulty in solving a problem arises from the quadratic struc-
ture of the kinetic energy and the resulting quantum contribution in the modified
Hamilton–Jacobi equation. Using, on the other hand, the Bohmian formulation
in momentum space introduced in this work, the quantum contribution originates
from the quadratic terms of the potential. For the linear potential, however, there
is no quadratic contribution at all. This means that the complication due to the
quantum contribution is absent in the momentum representation for the Bohmian
framework.

In Section 2.3, it is stated that even if the modified Hamilton–Jacobi equation
in Bohmian mechanics suggests a Hamiltonian structure, this is not the case due to
the lack of canonically conjugated variables. Nevertheless, the complex dynamical
equations are similar to the Newtonian counterparts, see for example (2.60-2.62)
for the position and (2.70-2.72) for the momentum representation. Furthermore,
these equations prove to be useful in finding constants of motion, such as the
Ermakov invariant for time-dependent states like the generalized coherent states.

In Section 2.4 it turns out that the quantum potential, within the scheme of the
formulation introduced in this work, is related to the quantum contribution to the
position and momentum uncertainties, see (2.159-2.160) and (2.162-2.163). In-
deed, the proposed formulation of Bohm’s approach allows the uncertainties to be
separated into two types of contributions, one originating from the classical quan-
tities, while the other arises from the so-called quantum potential. In this sense,
the proposed formulation makes it clear that the quantum potential, even if the
term suggests it, is not a potential, but a kinetic term that results from the uncer-
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tainties associated with the classically conjugated variables. In addition, it is now
possible to represent Heisenberg’s uncertainty product in the form (2.164) since
the position and momentum versions of Bohmian mechanics are now avaible. This
is demonstrated using the example of the generalized coherent states.

Chapter 3 deals with a redefinition and reinterpretation of the Bohmian trajec-
tories. For this purpose, Section 3.1 points out the inadequacy of the additional
postulates in the definition and introduction of the Bohmian trajectories. In par-
ticular, the mathematical (and physical) justification of the guidance law (3.4) is
inconsistent.

In Section 3.2, Bohmian trajectories are derived without additional postulates.
This is the result of a specific parametrization of the respective continuity equa-
tions, in the case of the position space by (3.19) with the definition (3.23) of the
associated Bohm function and in the momentum space (3.49) with the Bohm func-
tion (3.48).

This is achieved through the use of a simple thermodynamic procedure that
involves Maxwell relations (see Box 3.2.1). Starting from this, after perform-
ing a contour integral in the (x; t)-space, the non-crossing rule, characteristic
of Bohmian trajectories, and the conservation of the probability are proven. Of
course, this indicates that Bohmian trajectories should not be interpreted as (real)
paths, as is generally assumed, but rather as the borders of probability lanes. This
idea is illustrated using generalized coherent states. It is also suggested that this
limits the applicability of Bohmian mechanics. This interpretation shows that the
strength of the trajectories lies in the descriptive statistics, i.e., in the determina-
tion of percentile regions. This means that the use of trajectories is advisable for
all those problems where one is interested in how the dection probability is dis-
tributed in a certain region, such as in tunneling or scattering problems. However,
if the goal is to calculate mean values (or higher moments), Bohmian mechan-
ics is rather cumbersome and the use of the conventional formalism is generally
advisable.

In Section 3.3 a connection between conventional quantum mechanics and
Bohmian mechanics is found through the Wigner formalism. The Bohmian frame-
work can be viewed as a projected aspect of the Wigner function, see e.g. (3.75)
and (3.76). This confirms the idea of complex Bohmian quantities introduced in
Chapter 2, since they represent projections of observables onto continuous repre-
sentations.

In Section 3.4 the new interpretation is used to analyze an ion trap, character-
ized by a parametric oscillator with the frequency 1/(at+b). In contrast to usual



frequencies for ion traps, this one is obviously aperiodic, but thanks to the new
interpretation and the application of Bohmian trajectories it can be shown that
such a trap would be useful for trapping a system for time intervals in the range
of microseconds. If longer trapping times are required, this frequency is of course
not adequate. At least the trapping times can be varied by changing the parameter
of this oscillator (see Figures 3.6-3.8).

As a third aspect, a systematic treatment of the hydrodynamic viewpoint of
Bohmian mechanics is presented in Chapter 4. Section 4.1 summarizes the lack of
consistent hydrodynamical equations for position and momentum representation.
The local Bohmian equations for momentum and energy do not have the structure
of transport equations.

The complex hydrodynamical equations are obtained in Section 4.2. Contrary
to what can be found in the current literature, they all have the same structure: they
are transport equations. However, one must be careful with regard to speculations
about possible transport phenomena, since the quantities involved are not real
but complex (for the position representation see (4.26) and for the momentum
representation (4.83)).

With all the above results, this thesis seeks to connect the loose ends of
Bohmian mechanics, so that it can be viewed as a genuinely compatible and valu-
able part of the conventional quantum mechanical theory.



Appendix A
Time-dependent quantum systems and Riccati equation

In the time-independent case the SE possesses exact analytic solutions for the free
motion (V = 0) and the constant potential (V =V0), where both can be combined
to form a step potential, a rectangular potential barrier, or a series of such barriers.
In both cases (V = 0 and V =V0), the solutions are given by plane waves that can
be used to describe an incoming, a reflected and a transmitted part of the initial
wave.

Also in the time-dependent case there are potentials that allow exact analytic
solutions, this time in the form of Gaussian wave packets that exist for potentials
that are at most quadratic in the position variable, i.e., the free motion, a linear in-
/decreasing potential and an oscillator potential V = 1

2mω2x2. In the latter case an
analytic form of the parameters determining the evolution of the wave packet can
be given for a constant frequency ω =ω0 (i.e., the harmonic oscillator) and certain
cases with time-dependent frequency, ω = ω(t) (i.e., the parametric oscillator;
see, e.g., [Schuch(2018b)]).

As already mentioned, the case of the harmonic oscillator wave packet was al-
ready considered by Schrödinger himself [Schrödinger(1926e)] shortly after he
had published his first communications on wave mechanics. In the beginning,
Schrödinger was very confident that similar stable wave packets could also be
found, e.g., for the Coulomb problem [Schrödinger(1926e)], but already the free
motion wave packet with its spreading width showed that this was not possible
and finally favoured the probabilistic interpretation of the wave function. In any
case, it became clear that both parameters of the Gaussian function, the maximum
and the width, are in general time-dependent.

Taking this also into account one can formulate a general Gaussian ansatz for
the solution of the time-dependent SE (with at most quadratic Hamiltonian) in the
form
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ψ(x, t) = Nx(t)exp

[
i
h̄

(m
2

C x̃2 + 〈p〉x̃+K(t)
)]

, (A.1)

where C (t) is a complex time-dependent quantity that is connected with the wave
packet width via CI =

h̄
2m〈x̃2〉 with 〈x̃2〉(t) = 〈x2〉 − 〈x〉2 = σ2

x being the mean
square deviation in position space that is essentially the square of the width, x̃ =
x− 〈x〉 with 〈x〉 being the mean value of position, i.e., the classical trajectory,
indicating that the maximum of the Gaussian function is at the position of the
corresponding classical particle. The quantities N(t) and K(t) are purely time-
dependent and not relevant for the dynamics of the two essential parameters.

The equations of motion for these parameters can easily be obtained inserting
ansatz (A.1) into the time-dependent SE

ih̄
∂

∂ t
ψ(x, t) =

{
− h̄2

2m
∂ 2

∂x2 +V (x, t)
}

ψ(x, t). (A.2)

This leads to the Newtonian equation of motion for the maximum 〈x〉(t) =
η(t),

η̈ +ω
2(t)η = 0, (A.3)

(for the parametric oscillator with the special cases of the harmonic oscillator,
ω = ω0, and the free motion, ω = 0) and the complex Riccati equation

Ċ +C 2 +ω
2(t) = 0 (A.4)

for the parameter connected with the wave packet width via its imaginary part
CI(t).

Methods to solve this Riccati equation are well-known, but one gains further
inside by rewriting this equation introducing a new variable α(t) that is defined
via

C (t) =
α̇

α
+ i

1
α2(t)

(A.5)

and is thus directly proportional to the wave packet width, as α(t) =
√

2m
h̄ 〈x̃2〉=√

2m
h̄ σx. Inserting (A.5) into (A.4) shows via the imaginary part of this equation

that CR(t) = α̇

α
, i.e., the relative change in time of the width. Therefore, for wave

packets with time-dependent width the variable of the Riccati equation always
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is complex. The case of the harmonic oscillator solution with constant width is
the special case where the Riccati equation possesses a particular solution that is
constant and only exists, if the initial width of the wave packet is that of the ground
state wave function of the stationary case; in all other cases, also the width of the
harmonic oscillator wave packet oscillates (for details, see e.g. [Schuch(2006),
Schuch(2018a)]).

It is straightforward to show that position and momentum uncertainties can be
expressed in terms of CR and CI , or, α and α̇ as

σ
2
x =

h̄
2m

1
CI

=
h̄

2m
α

2 (A.6)

σ
2
p =

mh̄
2

C 2
R +C 2

I
CI

=
mh̄
2

(
α̇

2 +
1

α2

)
, (A.7)

hence the absolute square of C attains the form

|C |2 = C 2
R +C 2

I =
α̇2 + 1

α2

α2 =
1

m2

σ2
p

σ2
x
. (A.8)

Inserting CI and CR in terms of α(t) into the real part of the Riccati equation
(A.4) leads to

α̈ +ω
2(t)α =

1
α3 , (A.9)

the so-called Ermakov equation. Solving this equation directly provides the time-
dependence of the wave packet width. Further, this formulation yields the advan-
tage that the dynamics of this quantum property can be traced back to the dynam-
ics of the classical system1. It has been shown by Man’ko et al. [Malkin(1970),
Dodonov(2003)] that, knowing two linear independent solutions η1 and η2 of the
classical equation of motion (A.3), the solution of equation (A.9) can be written
as

α(t) =

√
2m
h̄

(
σ2

p,0η1(t)+σ2
x,0η2(t)∓2σx0,p0η1η2

)
(A.10)

1 There are other approaches to describe the dynamics of generalized coherent states like those
based on the Dirac–Frenkel variational method [Dirac(1930), Frenkel(1934)]; but these are not
applied here. As long as systems with exact analytical solutions are considered, they lead to the
same result as our method.
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with σ2
x0 = 〈(x−〈x〉)2〉(t = 0) = 〈x2〉(0)−〈x〉2(0), σ2

p0 = 〈(p−〈p〉)2〉(t = 0) =
〈p2〉(0)−〈p〉2(0) and σx0,p0 =

1
2〈[(x−〈x〉)(p−〈p〉)]+〉(t = 0), where η1(t) is the

classical trajectory and [ , ]+ the anticommutator (for further details, see also
[Cruz(2015), Schuch(2018a)]). But also η2(t) is defined by the Riccati equation
(A.4) up to a constant of integration. This is connected with the fact that any
Riccati equation can be linearized using a logarithmic derivative. In this case

C (t) =
λ̇

λ
(A.11)

with λ (t) being a complex variable fulfilling

λ̈ +ω
2(t)λ = 0, (A.12)

i.e., the classical equation of motion. It can be shown [Schuch(1992), Schuch(2006),
Schuch(2018a)] that the imaginary part z(t) of λ , when writing it in Cartesian co-
ordinates as λ = u+ iz, is, up to a constant factor, identical with the classical
trajectory,

z =
m

α0 p0
η(t). (A.13)

Furthermore, z and u are not independent of each other. This can be seen in-
serting definition (A.11) into the Riccati equation (A.4). From the imaginary part
one obtains

żu− u̇z = 1, (A.14)

what allows to obtain u(t) simply via integration, if z(t) is known,

u =−z
∫ t 1

z2(t ′)
dt ′. (A.15)

Therefore, u(t) is (up to a constant factor) the second solution η2 that is needed
to obtain α(t) via (A.10).

Writing λ (t) in polar coordinates as λ =αeiϕ , it can be shown [Schuch(2018a),
Schuch(2006)] that the amplitude α is identical with α defined in (A.5) and from
the imaginary part of (A.4) one obtains the conservation law (A.14) now in the
form

ϕ̇ =
1

α2 . (A.16)
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From the polar form immediately follows

λλ
∗ = α

2 = u2 + z2, (A.17)

so knowing z(t) and u(t) also directly provides α(t).
The essence of this is that, up to initial conditions that have to be fixed, the

complete dynamics of the quantum system can be obtained by solving the clas-
sical Newtonian equation of motion, because the connection between the differ-
ent dynamical variables is provided via the complex Riccati equation (A.4). This
might not be so spectacular in cases, where exact solutions of the Riccati or Er-
makov equations are available, but, e.g., for parametric oscillators without analytic
solutions this might be advantageous. In this case, still nummerical solutions of
the linear Newtonian equation can be obtained which, when fed into the above-
described algorithm, are able to supply the information about the corresponding
quantum mechanical uncertainties, responsible for the wave packet spreading and
thus scattering and tunneling properties. The algorithm is sketched again in Figure
A.1.

Fig. A.1 Schematic representation of the connection amongst the complex Riccati equa-
tion and the dynamics of the maximum and width of a Gaussian wave packet.
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One further aspect of this combined Newton–Ermakov system (A.3) and (A.9)
shall be mentioned that will not be exploited in this approach, but may open an-
other aspect how to tackle time-dependent problems of the kind under investiga-
tion.

Already, in 1880 Ermakov [Ermakov(1880)] had shown that by eliminating
the frequency ω from equations (A.3) and (A.9), a dynamical invariant can be ob-
tained that is still a constant of motion, even when for ω = ω(t) the corresponding
Hamiltonian no longer has this property. This so-called Ermakov invariant has the
form

I =
1
2

[
(η̇α− α̇η)2 +

(
η

α

)2
]
= const. (A.18)

It has been shown by Lewis [Lewis(1967)] in a quantum mechanical con-
text, i.e., replacing the momentum mη̇ by the corresponding operator in posi-
tion space, p̂op = h̄

i
∂

∂x , that one obtains a corresponding operator that has sta-
tionary solutions. It is possible to show that the problem of a time-dependent
SE can be transformed to the solution of this stationary problem [Lewis(1969),
Hartley(1982), Ray(1982)], what, in principle, should allow to apply methods
from time-independent quantum mechanics to time-dependent problems, in our
case scattering and tunneling.

Last, but not least it should also be mentioned that the operator corresponding
to the Ermakov invariant can be factorized in a similar way as the Hamiltonian
operator of the harmonic oscillator can be factorized in terms of creation and ani-
hilation operators. The factorization of the invariant leads to generalized creation
and anihilation operators [Castaños(2013)]

a†(t) = −i
√

m
2h̄

α

( 1
m

p̂op−C ∗x
)

(A.19)

a(t) = i
√

m
2h̄

α

( 1
m

p̂op−C x
)

(A.20)

that depend on the complex Riccati variable C (t) and allow to obtain general-
ized coherent states with time-dependent width in the same way as the mini-
mum uncertainty coherent states are obtained by the usual creation and anihi-
lation operators. These are obtained for α = α0 = constant, i.e., CR = α̇

α
van-

ishes and CI =
1

α2 turns into CI =
1

α2
0
= ω0. The generalized coherent states



A Time-dependent quantum systems and Riccati equation 129

are again eigenstates of the (generalized) anihilation operator with corresponding
complex eigenvalue. Whereas the Gaussian wave packet of the harmonic oscilla-
tor with constant width corresponds to the so-called frozen Gaussians (see Heller
[Heller(1975), Heller(1981), Huber(1987)]), the generalized coherent states ob-
tained using the general solutions of the complex Riccati equation could be called
“thawed” Gaussian wave packets.

Now, these states can easily be treated in momentum space as well. After
applying a Fourier transformation of (A.1), the projection of the generalized co-
herent states |ψ〉 onto the momentum representation {|p〉} is given by

〈p|ψ(t)〉= Np(t)exp

[
− i

h̄

( 1
2m

U p̃2 +η p̃+g(t)
)]

, (A.21)

where p̃ = p− 〈p〉 = p−mη̇ and the complex coefficient of p̃2 is the inverse
of the quantity C (t), fulfilling the Riccati equation (A.4), i.e., U = C−1(t), the
new symbol is used just for convenience. Also the dynamics of U is ruled by a
complex Riccati equation,

−U̇ +ω
2(t)U 2 +1 = 0 (A.22)

that turns into Eq. (A.4) if U is replaced by C−1. Because of the dual properties
relating the position {|x〉} and momentum {|p〉} representation, the wave func-
tions (A.1) and (A.21) share common properties.

It is actually elucidating to express the general property of the generalized
coherent states without recurring to the use of any representation. It is straightfor-
ward from (A.1) and (A.21) to notice that

P̃|ψ(t)〉= mC X̃|ψ(t)〉, (A.23)

X̃|ψ(t)〉= 1
mC

P̃|ψ(t)〉. (A.24)

After taking the adjoint of the previous expressions, one can compute the co-
variance σx,p of position and momentum,

σx,p
.
=

1
2
〈ψ(t)|

(
X̃P̃+ P̃X̃

)
|ψ(t)〉, (A.25)

as
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σx,p =
1
2

( σ2
p

mC ∗
+mC ∗σ2

x

)
=

1
2

(U ∗

m
σ

2
p +mC ∗σ2

x

)
. (A.26)

Up to this point one can either work in position or momentum space. For the
former, one needs to remember the correlation between the position and momen-
tum uncertainties (A.8),

σx,p =
1
2

(
mC σ

2
x +mC ∗σ2

x

)
= mCRσ

2
x . (A.27)

This directly allows to express the complex quantity C with help of (A.6) as

C =
1
m

σx,p

σ2
x

+ i
( h̄

2m

) 1
σ2

x
. (A.28)

On the other hand, if the position uncertainty σx is expressed in terms of the
momentum uncertainty σp according to (A.8) with |C |2 = 1

|U |2 , σ2
x = |U |2

m2 σ2
p , Eq.

(A.26) turns directly into

σx,p =
UR

m
σ

2
p . (A.29)

Bearing in mind (A.7), the complex quantity U can be written in the form

U = m
σx,p

σ2
p
− i
(mh̄

2

) 1
σ2

p
. (A.30)

The relations given above provide the connections between the uncertainties
and the variables fulfilling the complex Riccati equations in position and momen-
tum space.

The dynamical parameters and corresponding equations for the generalized
coherent states in position and momentum space are given in Table A.1.
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Position representation Momentum representation

mean values 〈x〉= η 〈p〉= m d
dt η

dynamical laws m d2

dt2 η =−mω2(t)η d
dt 〈p〉=−mω2(t)η

uncertainty variables C = 1
m

σx,p
σ2

x
+ i
( h̄

2m

) 1
σ2

x
U = m σx,p

σ2
p
− i
(mh̄

2

) 1
σ2

p

Riccati equations Ċ +C 2 +ω2(t) = 0 −U̇ +ω2(t)U 2 +1 = 0

Table A.1 Symmetric properties of the generalized coherent states for the position and
momentum spaces regarding the mean values and uncertainties of the corresponding wave
packets.





Appendix B
Riccati equation with a frequency ω(t) = 1

at+b

Let us consider the Riccati equation (A.4) for a frequency ω(t) = 1
at+b . As it will

be seen later, this Riccati equation is parametrized by a. The general solution
might be obtained by expressing C ∈C as a superposition of a particular solution
Cp and a function V (both functions depend on the time t and the specific value
of the parameter a as well) to be determined,

C = V +Cp(t;a). (B.1)

Once this ansatz is used in the Riccati equation (A.4) and after some algebra,
it yields the following Bernoulli equation,

Ẏ −2CpY = 1 (B.2)

where V = 1
Y . The method of integrating factor delivers the following solution,

Y =

∫ t
0 exp

[
−2

∫ t ′Cp(t ′′;a)dt ′′
]
dt ′+ exp

[
−2

∫ t
0 Cp(t ′;a)dt ′

]
Y0

exp
[
−2

∫ t Cp(t ′;a)dt ′
] , (B.3)

where Y0 ∈ C.
It should be noticed that the general solution depends on finding a particular

solution of the Riccati equation Cp. In the case of the frequency ω(t) = 1
at+b , it

is easy to see that (3.95) constitutes a particular solution as long as the condition
(3.99) is fulfilled. This in turn distinguishes three cases (3.100-3.102) depending
on the values that a might take.

In what follows the detailed calculations regarding the integrals of (B.3) are
presented depending on the different values of a.
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at+b

B.1 Computation of the involved integrals for the case a = 2

Bear in mind that, for the case a = 2, a particular solution is given by Cp =
1

2t+b .

Integral exp
[
−2

∫ t ′Cp(t ′′;a)dt ′′
]
:

exp
[
−2

∫ t ′

Cp(t ′′;a)dt ′′
]
= exp

[
−2

∫ t ′ 1
2t ′′+b

dt ′′
]
, (B.4)

= exp
(
− ln

[
2t ′+b

])
=

1
2t ′+b

. (B.5)

Integral
∫ t

0 exp
[
−2

∫ t ′Cp(t ′′;a)dt ′′
]
dt ′:

∫ t

0
exp
[
−2

∫ t ′

Cp(t ′′;a)dt ′′
]
dt ′ =

∫ t

0

1
2t ′+b

dt ′ (B.6)

=
1
2

ln
(
2t ′+b

)∣∣∣t
0
=

1
2

ln
(
2t +b

)
− 1

2
ln(b) (B.7)

B.2 Computation of the involved integrals for the case a 6= 2

Bear in mind that, for the case a 6= 2, a particular solution is given by Cp =
γ

2t+b ,
where γ is in turn a parameter whose expression depends on the specific value of
a (see for example Eqs. (3.100) and (3.102) ).

Integral exp
[
−2

∫ t ′Cp(t ′′;a)dt ′′
]
:

exp
[
−2

∫ t ′

Cp(t ′′;a)dt ′′
]
= exp

[
−2γ

∫ t ′ 1
at ′′+b

dt ′′
]
, (B.8)

= exp
(
−2

γ

a
ln
[
at ′+b

])
=

1(
at ′+b

)2 γ

a
. (B.9)
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Integral
∫ t

0 exp
[
−2

∫ t ′Cp(t ′′;a)dt ′′
]
dt ′:

∫ t

0
exp
[
−2

∫ t ′

Cp(t ′′;a)dt ′′
]
dt ′ =

∫ t

0

(
at ′+b

)−2 γ

a dt ′ (B.10)

=
1
a

1
1−2 γ

a

(
at ′+b

)−2 γ

a+1
∣∣∣t
0

(B.11)

=
1
a

1
1−2 γ

a

(
at +b

)−2 γ

a+1− 1
a

1
1−2 γ

a
b−2 γ

a+1 (B.12)
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[Heisenberg(1925)] W. Heisenberg ,Über quantentheoretische Umdeutung kinematischer
und mechanischer Beziehungen, Z. Phys. 33, 879 (1925).

[Heller(1975)] E. J. Heller, Time-dependent approach to semiclassical dynamics, J.
Chem. Phys. 62, 1544 (1975).

[Heller(1981)] E. J. Heller, Frozen Gaussians: A very simple semiclassical approxima-
tion, J. Chem. Phys. 75, 2923 (1981).

[Hiley(2000)] M. R. Brown and B. J. Hiley, Schrödinger revisited: an algebraic approach,
arXiv preprint quant-ph/0005026 (2000).



140 References

[Holland(1995)] P. R. Holland, The Quantum Theory of Motion: an Account of the de
Broglie–Bohm Causal Interpretation of Quantum Mechanics, Cambridge Univ. Press
(1995).

[Huber(1987)] D. Huber and E. J. Heller, Generalized Gaussian wave packet dynamics,
J. Chem. Phys. 87, 5302 (1987).

[John(2002)] M.V. John, Modified de Broglie–Bohm Approach to Quantum Mechanics,
Found. Phys. Lett. 15, 329 (2002).

[John(2009)] M.V. John, Probability and complex quantum trajectories, Ann. Phys. 324,
220 (2009).

[Lewis(1967)] H. R. Lewis, Classical and quantum systems with time-dependent
harmonic-oscillator-type Hamiltonians, Phys. Rev. Lett. 18, 510 (1967).

[Lewis(1969)] H. R. Lewis and W. B. Riesenfeld, An exact quantum theory of the time-
dependent harmonic oscillator and of a charged particle in a time-dependent electro-
magnetic field, J. Math. Phys. 10, 1458 (1969).

[Madelung(1927)] E. Madelung, Quantentheorie in Hydrodynamischer Form, Z. Phys. A
40, 322 (1927).

[Malkin(1970)] I. A. Malkin, V. I. Man’ko and D. A. Trifonov, Coherent states and tran-
sition probabilities in a time-dependent electromagnetic field, Phys. Rev. D 21, 371
(1970).

[Maroney(2005)] O. J. E. Maroney, The Density Matrix in the de Broglie–Bohm Ap-
proach, Found. Phys. 35 (3), 493 (2005).

[Nassar(1993)] A. B. Nassar, Boundary Conditions in Tunneling via Quantum Hydrody-
namics, NASA Conf. Publ. 3197, 149154 (1993).

[Newton(1687)] I. Newton, The Principia: mathematical principles of natural philosophy,
Univ. of California Press (1999).

[Newton(2004)] R. G. Newton, What is a State in Quantum Mechanics?, Am. J. Phys. 72
(3), 348 (2004).

[Oriols(1996)] X. Oriols, F. Martı́n and J. Suñé, Implications of the noncrossing property
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