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Abstract 

Background:  The application of chemical dispersants is a common remediation strategy when accidental oil spills 
occur in aquatic environments. Breaking down the oil slick into small droplets, dispersants facilitate the increase 
of particulate and dissolved oil compounds, enhancing the bioavailability of toxic oil constituents. The aim of the 
present work was to explore the effects of water accommodated fractions (WAF) of a naphthenic North Sea crude oil 
produced with and without the addition of the chemical dispersant FINASOL OSR 52 to adult zebrafish exposed for 
3 and 21 d. Fish were exposed to environmentally relevant concentrations of 5% and 25% WAFOIL (1:200) and to 5% 
WAFOIL+D (dispersant–oil ratio 1:10) in a semi-static exposure setup.

Results:  The chemically dispersed WAF presented a 20-fold increase of target polycyclic aromatic hydrocarbons 
(PAHs) in the water phase compared to the corresponding treatment without dispersant and was the only treatment 
resulting in markedly bioaccumulation of PAHs in carcass after 21 d compared to the control. Furthermore, only 5% 
WAFOIL+D caused fish mortality. In general, the undispersed oil treatments did not lead to significant effects compared 
to control, while the dispersed oil induced significant alterations at gene transcription and enzyme activity levels. 
Significant up-regulation of biotransformation and oxidative stress response genes (cyp1a, gstp1, sod1 and gpx1a) was 
recorded in the livers. For the same group, a significant increment in EROD activity was detected in liver along with 
significant increased GST and CAT activities in gills. The addition of the chemical dispersant also reduced brain AChE 
activity and showed a potential genotoxic effect as indicated by the increased frequency of micronuclei in erythro‑
cytes after 21 d of exposure.

Conclusions:  The results demonstrate that the addition of chemical dispersants accentuates the effect of toxic com‑
pounds present in oil as it increases PAH bioavailability resulting in diverse alterations on different levels of biological 
organization in zebrafish. Furthermore, the study emphasizes the importance to combine multilevel endpoints for 
a reliable risk assessment due to high variable biomarker responses. The present results of dispersant impact on oil 
toxicity can support decision making for oil spill response strategies.
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Background
Oil spills represent one of the most important poten-
tial sources of pollution in aquatic environments [140]. 
Anthropogenic activities such as offshore oil exploitation 
and transportation, or other contaminations caused by 
shipwrecks and industrial discharges, pose a high risk of 
an oil spill that could result in devastating consequences 
to aquatic organisms, such as fish [19, 52, 55]. Crude 
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oils are complex mixtures of different toxic compounds 
that volatilize, dissolve, emulsify or disseminate through 
the water column [19, 115, 128]. Oil composition and 
environmental factors such as temperature and salinity 
are key elements determining the magnitude of the bio-
logical impact of an oil spill which—along with natural 
weathering and the selected remediation strategies—may 
influence the adverse aftermath of these accidents [18, 
69, 106]. Polycyclic aromatic hydrocarbons (PAHs), for 
example, represent up to 60% of crude oil constituents 
present in water accommodated fractions (WAF) [40]. 
Their capacity to provoke diverse toxic effects in aquatic 
organisms is well known. These effects range from car-
diotoxicity and malformations at early developmental 
stages up to behavioural alterations and carcinogenesis in 
adults [27, 54, 78, 129].

The use of chemical dispersants is a common practice 
applied to limit the spreading of the oil slick, thus pre-
venting it from reaching coastal areas and mitigating its 
possible toxicological impacts on mainly birds and mam-
mals populations [19, 44, 70, 90]. Chemical dispersants 
are composed of hydrocarbon solvents with anionic and 
non-ionic surfactants, displaying both hydrophilic and 
lipophilic properties that enable a rupture in the inter-
facial tension between oil and water [32, 44, 70, 90]. 
Thus, they are capable of breaking down the oil slick into 
smaller droplets which have been suggested to  be more 
easily degraded by bacteria or photo-oxidation [137]. 
However, through a massive surface increase and direct 
ingestion of the droplets, chemical dispersion simultane-
ously enhances the bioavailability of toxic oil constitu-
ents, such as PAHs, shifting the ecotoxicological damage 
towards pelagic species [19]. The potential adverse out-
comes of the application of chemical dispersant remains 
a subject of major concern [17, 44, 46], which is why their 
effectiveness, benefits and impacts resulting from their 
use need to be further evaluated.

The EU Horizon 2020 funded project GRACE focused 
on a holistic approach to investigate the environmental 
effects of oil spills and response measures [65]. As a part 
of this, the present study focused on adult zebrafish due 
to multiple advantages as an (eco)toxicological model 
including small size, fast development, low maintenance 
cost, ease of reproduction and large spawn. Furthermore, 
the zebrafish is a well-established animal model for the 
assessment of oil spill toxicity [34, 66, 126] and response 
strategies, such as chemical dispersion [75, 101]. Bio-
marker changes in gene transcription, development, 
metabolism, or even behaviour can be efficient tools to 
provide evidence of an exposure to pollutants [10, 31]. 
Measuring biomarkers on molecular and enzymatic level 
can indicate the exposure to toxic substances before 
an evident tissue-level damage occurs or even when 

pollutant concentrations in the media are below detec-
tion limits, supplying valuable information for environ-
mental health evaluations [106, 121].

One of the sensitive biomarkers selected for the current 
study, which is linked to crude oil exposure, is the induc-
tion of phase I metabolism [10, 29, 121]. Alterations of 
ethoxyresorufin-O-deethylase (EROD) activity manifest 
changes on the expression of cytochrome P450 (e.g., the 
CYP1A subfamily), an essential mechanism along with 
the likewise investigated glutathione S-transferase (GST) 
activity in the phase II biotransformation reactions of 
xenobiotic detoxification [48, 78]. Furthermore, when 
these two phases of metabolism are not well coupled, the 
reactive metabolites produced in phase I may generate 
DNA adducts, which might lead to genotoxic effects [54, 
94, 138]. The potential of oil constituents such as PAHs to 
induce DNA damage has been demonstrated previously, 
making genotoxicity also a relevant endpoint for crude 
oil toxicity assessment [12, 79, 112]. Since DNA adducts 
might intercalate into the DNA inducing strand breaks, 
genotoxicity assessment in the current study includes 
the investigation of micronuclei formation in peripheral 
blood samples in addition to selected molecular marker 
genes related to cell cycle control and apoptosis (tp53, 
casp3a). An imbalance between the appearance of reac-
tive oxygen species (ROS) from phase I biotransforma-
tion and enzymatic antioxidant defence mechanisms, 
such as glutathione peroxidase (GPX) or catalase (CAT) 
activities [116, 121], can lead to an oxidative damage of 
cells and tissues, which, ultimately, could be translated 
into necrosis, apoptosis or carcinogenesis [53, 78, 100, 
116, 121]. The assessment of the redox status or health 
status in general through biochemical or molecular tech-
niques is frequently addressed in gills as the first barrier 
and contact with crude oil compounds present in the 
WAF, or in liver as a main detoxifying organ [42, 121] and 
hence was selected in the current study as well. Finally, 
the neurotoxic potential of crude oil constituents was 
investigated by measuring acetylcholinesterase (AChE) 
inhibition in brain. Though not commonly investigated 
in oil toxicity studies, recent studies indicate that petro-
leum hydrocarbons can impact neuronal development 
and induce neurotoxicity via transcriptional alterations, 
neurotransmitter regulations or behaviour analyses [45, 
125, 133].

Comprehensive studies addressing different levels of 
biological organization in parallel and offering conclu-
sions about the mechanisms associated with crude oil 
and the response strategy’s toxicity are rather scarce. 
Therefore, the aim of the present study was to explore 
the transcriptomic, biochemical and genotoxic effects in 
adult zebrafish (Danio rerio) exposed to different WAF 
dilutions of a naphthenic North Sea (NNS)  crude oil, 
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produced with and without the addition of the chemical 
dispersant FINASOL OSR 52. Furthermore, by means of 
a comprehensive chemical analysis of target PAHs from 
the exposure water phase and fish tissue, the biological 
responses were aimed to be linked to a potential bioaccu-
mulation of oil constituents. Sensitive effect-based meth-
ods and biomarkers could further support the need for 
the implementation of biological monitoring for water 
quality assessment in the Marine Strategy Framework 
Directive (MSFD) [130].

Materials and methods
Zebrafish maintenance
Wild-type zebrafish of AB Salk strain from the facilities 
of the University of Basque Country (UPV/EHU) were 
used in the present study. Hatched larvae were grown 
until 5–6  months of age prior to the experiment. Fish 
were maintained in a temperature-controlled room at 
28 ± 1  °C with a constant light–dark rhythm (12:12) in 
100 L tanks equipped with mechanical and biological 
filters. Water was in continuous movement triggered by 
the action of an aeration siphon. Water was previously 
conditioned by passage through an osmosis membrane 
and then buffered to a pH of 7.2 with Sera pH plus (Sera, 
Heinsberg, Germany) and remineralized to a conductiv-
ity of 600  μs  cm−1 with commercial marine salt (Sera). 
Fish were fed twice a day with live brine shrimp larvae 
(Artemia sp, INVE Aquaculture, Salt Lake City, USA) and 
Vipagran baby (Sera).

Preparation of water accommodated fractions
A naphthenic North Sea (NNS) crude oil (Equinor, Sta-
vanger, Norway) and the dispersant FINASOL OSR 52 
(TOTAL Special Fluids, Paris, France) were used in the 
present study. Water accommodated fractions (WAF) of 
oil (WAFOIL) and chemically dispersed oil (WAFOIL+D) 
were prepared in 5 L (WAFOIL+D) or 20 L (WAFOIL) glass 
flasks according to Singer et al. [114] with modifications. 
Briefly, oil or a dispersant–oil mixture (1:10, w/w) was 
gently applied on the surface of formulated fish water 
(remineralized osmosis water) at an oil-to-water ratio of 
1:200 (w/w). Regardless glass flask volumes the ratio of 
water, oil and dispersant and headspace were kept con-
stant. Both setups were stirred for 40 h at 20 °C in dark 
with low energy avoiding a vortex in the water phase. 
Water fractions were then carefully drained off from a 
stopcock at the bottom part of the flask and immediately 
used for exposure.

Exposure regime
Exposure concentrations were selected based on pre-
tests. A pilot experiment was carried out to test the gen-
eral toxicity of 25% WAFOIL and 5% WAFOIL+D on adult 

zebrafish exposed for 6 d with a solution renewal at day 
3 resulting in a 100% survival. For the main experiment, 
eight glass tanks with 45 L capacity covering 1 control 
and 3 treatment groups (5% WAFOIL, 25% WAFOIL and 
5% WAFOIL+D) in duplicate were established in a tem-
perature-controlled room (28  °C) with 12:12 light:dark 
rhythm. Formulated fish water for the control group, 
and exposure solutions for the treatments were already 
filled into the tanks 3 d before fish were added in order 
to saturate the system. Biological and mechanical filters 
were not used during the experiment to avoid interfer-
ence with the exposure. Tank internal water circulation 
was maintained using a circulatory pump. Fifty adult 
zebrafish (AB Salk) at the age of 5–6 months were placed 
in each tank at a sex ratio of approximately 1:1. Exposure 
medium was renewed every 3 d at a 75% exchange rate. 
During the experiment, fish were fed twice a day with 
live brine shrimp larvae. After 3 and 21 d of exposure, 
50 adult zebrafish per treatment were individually anes-
thetized in a benzocaine solution (200 mg L−1) prepared 
in a 1:9 (v/v) ethanol–water stock, and immediately dis-
sected. For both sampling timepoints one of the two rep-
licate tanks was used. As several biomarker responses are 
reported to be influenced by fish gender [36, 121, 132], 
males and females were separated for individual bio-
markers as described in detail below.

Chemical analysis of exposure media and fish tissue
Chemical analysis of target PAHs in exposure media
Chemical analysis of exposure media was performed 
using stir-bar (twister, Gerstel GmbH & Co. KG, Mül-
heim an der Ruhr, Germany) sorptive extraction (SBSE) 
technique according to Prieto et  al. [104]. Twisters 
(20  mm length and 0.5  mm film thick) were placed on 
magnetic stirrers in the control and treatment tanks and 
exchanged at 6, 12, 24, 36, 48, 60 and 72  h during two 
complete exposure cycles of 3 d in order to evaluate the 
concentrations of PAHs in exposure media along the 
experiment.

Detection of PAHs was performed using gas chroma-
tography–mass spectrometry (GC (Agilent 6890)–MS 
(Agilent 5975), Agilent Technologies, Santa Clara, USA) 
analysis according to the protocol described in Prieto el 
al., [104] with modifications. A mix standard solution of 
16 PAHs (NS 9815: S-4008-100-T, Norwegian Standard 
supplied by Chiron, Trondheim, Norway) was used for 
calibration (Additional file 1: Table S1).

PAHs were desorbed from the twisters using a com-
mercial thermal desorption TDS-2 unit connected to a 
CIS-4 injector (Gerstel GmbH & Co. KG, 10 min, 300 °C, 
flow 23 mL min−1, cryo-focusing − 50°, 7 psi). An Agilent 
DB-5MS + DG column (Agilent Technologies) was used 
to separate analytes in a helium stream (1.3 mL  min−1). 
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Transfer line, ion source and quadrupole analyser tem-
peratures were maintained at 300, 230 and 150  °C, 
respectively. The following temperature program was 
used for target PAHs and lineal hydrocarbons: 170 °C for 
5 min; ramp at 30 °C min−1 to 260 °C; ramp at 8 °C min−1 
to 300  °C and hold 15 min. The mass selective detector 
was operated in selected ion monitoring for quantifica-
tion of target compounds.

Chemical analysis of target PAHs in fish tissue
After 21 d of exposure, fish carcasses from the bio-
logical endpoints (described below) were preserved at 
− 20 °C for the analysis of the bioaccumulation of PAHs. 
The analysis of PAHs in the fish samples was carried 
out according to Navarro et al. [93]. Briefly, the fish tis-
sue samples were pooled for each group before analy-
sis. Tissue sample (0.5  g) was accurately weighed in the 
extraction vessel and 5  mL of acetone were added. The 
PAHs extraction was performed by focused ultrasound 
solid–liquid extraction using a SONOPULS HD 2070 
(Bandelin electronic GMBH & Co. KG, Berlin, Germany) 
provided with a 3 mm titanium microtip at 45% of ultra-
sound amplitude and 0 °C during 120 s. The extracts were 
filtered by Millex® HV PVDF 0.45  μm (Millipore, Car-
rigtwohill, Ireland) and concentrated to ~ 0.5 mL under 
a nitrogen stream (TurboVap LV, Zymark, Barcelona, 
Spain) after the addition of ∼  1  mL of iso-octane. The 
concentrated extracts were cleaned with 5 g Florisil car-
tridges previously conditioned with n-hexane, and eluted 
with 25  mL of n-hexane:toluene 75:25 mixture. Subse-
quently, they were concentrated to dryness, redissolved 
in iso-octane and kept at −  20  °C in the dark until the 
GC–MS analysis (previously described).

Gene transcription analysis
Livers of 15 male zebrafish per experimental group and 
sampling time were dissected, transferred individually to 
cryovials prefilled with RNA later (Sigma-Aldrich, Merck 
KGaA, Darmstadt, Germany) and immediately frozen in 
liquid nitrogen. Samples were preserved at − 80 °C until 
analysis. We prioritised the use of males for the gene 
transcription levels based on the results obtained in pre-
vious studies [71, 72, 83].

Total RNA was extracted from a pool of 3 male fish 
livers with 5 replicates for each of the 4 experimental 
groups and for each sampling timepoint, except in the 
case of 5% WAFoil+D group sampled at 21 d with 4 rep-
licates due to the mortality recorded in this treatment. 
Tissue was homogenized in 300  µL of Trizol using an 
electric disperser (Pellet Pestle® Cordless Motor, Kim-
ble Kontes, Merck KGaA). RNA was extracted using 
the Trizol reagent method (Invitrogen, Thermo Fisher 
Scientific, Waltham, USA) following the manufacturer’s 

instructions with minor modifications. Samples were 
transferred to Phase Lock Gel Heavy pre-filled tubes 
(Quantabio, Beverly, USA) prior to the first centrifuga-
tion at 12,000  g and 4  °C for 15  min. RNA was diluted 
in 50 µL RNAse- and DNAse-free distilled water (Invit-
rogen). Sample concentration and quality control were 
evaluated through an Agilent 2100 Bioanalyzer System 
(Agilent Technologies) using the Agilent RNA 6000 Nano 
Kit and the corresponding 2100 Expert Software.

First-strand cDNA was synthesized from 2 µg of RNA 
using the AffinityScript QPCR cDNA Synthesis Kit (Agi-
lent Technologies) following the manufacturer’s protocol. 
The conditions for cDNA synthesis were: primer anneal-
ing at 25  °C (5 min), cDNA synthesis at 42  °C (15 min) 
and reaction termination at 95  °C (5  min). cDNA was 
stored at − 20 °C. The Quant-iT OliGreen ssDNA Assay 
Kit (Thermo Fisher Scientific) was used for quantification 
of cDNA samples according to manufacturer’s instruc-
tions using a Synergy HT Multi-Mode Microplate Reader 
with Gen5 Microplate Reader and Imager Software 
(BioTek Instruments, Agilent Technologies, Santa Clara, 
USA).

Quantitative real-time PCR was performed using 
TaqMan Gene Expression Assays (Applied Biosys-
tems, Thermo Fisher Scientific, reaction efficiency 
reported from manufacturer 100 ± 10%) inventoried 
for cyp1a (Dr03112441_m1), gstp1 (Dr03118992_g1), 
cat (Dr03099094_m1), sod1 (Dr03074068_g1), gpx1a 
(Dr03071768_m1), tp53 (Dr03112086_m1), and casp3a 
(Dr03131690_m1). The reaction mixture had a total vol-
ume of 20 µL containing 10 µL TaqMan Gene Expression 
Master Mix (2X), 1 µL TaqMan gene expression assay 
(20X), 7 µL RNAse-free distilled water (Invitrogen), and 2 
µL cDNA sample dilution. Samples and process controls 
(cDNA synthesis control and no-template control) were 
performed using a 7500 Real-Time PCR system (Applied 
Biosystems) at the manufacturer’s standard thermal 
cycling conditions: initial incubation at 50  °C (2  min), 
activation at 95 °C (10 min), 40 cycles of denaturation at 
95 °C (15 s) and annealing and extension at 60 °C (1 min). 
Transcript levels were normalized by the cDNA concen-
trations previously quantified according to Valencia et al. 
[120]:

where ΔCT = CT sample − CT plate internal control.

Biochemical marker analysis
Livers, gills and brains of 12 female zebrafish per treat-
ment were dissected, individually transferred to cryovials 
and shock frozen in liquid nitrogen. Samples were stored 

RQ =

[

(

1+ Efficiency
)

−�CT

cDNA(ng)

]
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at − 80 °C until further usage. A pool of 3 livers, gills or 
brains were homogenized in 300 µL cold homogenization 
buffer (50 mM potassium phosphate buffer, pH 7.5, 1 mM 
ethylenediaminetetraacetic acid, 0.5  mM dithiothreitol, 
0.4  mM phenylmethylsulfonyl fluoride) for 15  s on ice 
using an electric disperser (Kimble Kontes) resulting in 4 
samples per treatment. Subsequently, homogenates were 
centrifuged at 10,000 g and 4  °C for 15 min (Eppendorf 
5415R refrigerated centrifuge, Sigma-Aldrich). After-
wards, the supernatant was carefully transferred to new 
tubes and aliquoted on ice for different enzymatic and 
protein measurement in order to avoid repeated thawing 
and freezing. Supernatants were stored at − 80  °C until 
further usage.

7‑Ethoxyresorufin‑O‑deethylase (EROD) activity in livers 
and gills
Measurement of EROD activity in liver and gill super-
natants was performed according to Brinkmann et  al. 
[25] with minor modifications. Briefly, 20 µL of sample 
(in triplicate) and a resorufin (Sigma-Aldrich) calibra-
tion series (1:2 dilution series from 0.004 to 1  µM) in 
duplicates were transferred to a 96-well plate. Resorufin 
standard and stock solutions were prepared in Tris-KCl 
buffer (pH 7,4; Trizma base 0.1 M, KCl 0.15 M). 200 µL 
of 7-ethoxyresorufin (0.5 µM, Sigma-Aldrich) were added 
to each well followed by 10 min incubation at room tem-
perature in darkness. Shortly, before kinetic measure-
ment of fluorescence for 25 min (kinetic intervals: 30 s) in 
a microplate reader (FLx800, BioTek Instruments), 20 µL 
NADPH (1  mM, Sigma-Aldrich) were added. Substrate 
deethylation was determined by measuring the formed 
resorufin at 540  nm excitation and 590  nm emission 
wavelengths. Quantification of EROD activity was per-
formed based on the resorufin calibration and expressed 
in pmol resorufin mg−1 min−1.

Glutathione‑S‑transferase (GST) activity in liver and gills
Measurement of GST activity in zebrafish liver and 
gills was performed according to Habig et  al. [49] with 
modifications regarding the adaption to 96-well plates 
described in Velki et  al. [123]. 12  µL of supernatant as 
well as 180  µL of 1-chloro-2,4-dinitrobenzene (1  mM, 
dissolved in phosphate buffer pH 7.2, Sigma-Aldrich) and 
50  µL of reduced glutathione (25  mM, Sigma-Aldrich, 
dissolved in MilliQ water) were added to a 96-well plate. 
Immediately thereafter the increase in absorbance as 
a result of S-(2,4-dinitrophenyl) glutathione formation 
was measured in triplicates at 340 nm for 15 min in 10 s 
intervals using a microplate reader (Multiskan Spectrum, 
Thermo Fisher Scientific). Resulting data were controlled 
for linearity in absorbance increase (R2 ≥ 0.98) and mini-
mum increase of absorbance over time (Δt3min ≥ 0.1). 

Only data fulfilling these criteria were used for further 
calculations. Enzymatic activity was calculated as nmol 
conjugated glutathione min−1  mg−1. The molar extinc-
tion coefficient of 9600 M−1 cm−1 was used.

Catalase (CAT) activity in liver and gills
Measurement of catalase (CAT) activity in zebrafish liver 
and gill supernatants was performed according to the ini-
tial protocol developed by Claiborne [28] adapted to UV 
96-well plates (Thermo Fisher Scientific). 5 µL superna-
tant were added to 295 µL of H2O2 solution (20.28 mM, 
Sigma-Aldrich). Immediately thereafter the decrease in 
absorbance was measured kinetically at 240 nm for 5 min 
in 10  s intervals using a microplate reader (Multiskan 
Spectrum). In addition, the absorption of an H2O2 dilu-
tion series (0.4–20.28 mM) was measured for quantifica-
tion of H2O2 consumption. Calibration series as well as 
samples were measured in quadruplicates. Based on the 
increase of measurement-disturbing O2 bubbles, the lin-
ear part of the reaction (until 1  min) was used for cal-
culations. Enzyme activity was expressed as µmol H2O2 
consumption min−1 mg−1 using the calibration series.

Acetylcholinesterase (AChE) activity in brain
Measurement of AChE in brain tissues was conducted 
according to the initial protocol established by Ellman 
et  al. [43] with modifications according to Velki et  al. 
[123] for 96-well plates. Briefly, 7.5 µL sample super-
natant as well as 180 µL potassium phosphate buffer 
(0.1 M, pH 7.2), 10 µL 5,5′-dithiobis(2-nitrobenzoic acid 
(1.6 mM, Sigma-Aldrich), and 10 µL acetylcholine iodide 
(156 mM, Sigma-Aldrich) were added to a 96-well plate. 
The increase in absorbance was immediately measured in 
triplicates at 412  nm for 25  min in 10  s intervals using 
a microplate reader (Multiskan Spectrum). Resulting 
data were controlled for linearity in absorbance increase 
(R2 ≥ 0.98) and minimum increase of absorbance over 
time (Δt3min ≥ 0.1). Only data fulfilling these criteria 
were used for further calculations. Enzymatic activity was 
calculated as nm acetylcholine hydrolyzed min−1  mg−1. 
For the calculations, the molar extinction coefficient of 
13,600 M−1 cm−1 was used.

Protein measurement
Whole protein of supernatants (brain, liver, gill) was 
measured in triplicates using a DC protein assay kit 
(BioRad, Hercules, USA) according to the manufac-
turer’s instructions and quantified with a dilution series 
of bovine serum albumin as an external standard (1.5–
0.15 mg mL−1) measured in quadruplicates.
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Micronucleus frequency in peripheral erythrocytes
Peripheral blood samples of 7–11 individual males per 
treatment were taken from the caudal blood vessel of 
euthanized individuals after cutting the fish tail. The 
assessment of micronuclei in males and not in females 
was related to the sampling logistics and not to sex. 
One smear per individual was immediately prepared 
on microscopy slides. After drying, samples were fixed 
using a Hemacolor rapid staining kit according to manu-
facturer instructions (Merck KGaA) and mounted using 
Kaiser’s glycerine gelatine (Merck KGaA).

A microscope (Eclipse 50i Nikon Instruments, Düssel-
dorf, Germany) with 100 × magnification and the associ-
ated software NIS element (v.5.11, Nikon, GmbH) was 
used to generate images of erythrocytes. The proportion 
of micronuclei in peripheral erythrocytes was deter-
mined for 1000 cells per individual sample with the fol-
lowing scoring criteria according to Carrasco et  al. [26] 
and Bolognesi and Hayashi [21] for the identification of 
micronucleated cells: (a) cells with oval appearance and 
intact cytoplasm, (b) micronuclei less than or equal to 
one third of the nucleus, (c) micronuclei clearly separated 
from the main nuclei and d) the micronuclei had the 
same staining intensity as normal nuclei.

Data analysis
Statistical analyses were performed using SPSS Statistics 
26th version (IBM, New York, USA; p < 0.05). Metric data 
including gene transcription level, enzyme activity and 
micronucleus frequency analysis were tested for normal 
distribution (Shapiro–Wilk) and equal variance (Levene). 
For data fulfilling those criteria, a one-way ANOVA with 
HSD Tukey’s post-hoc test was performed to identify sig-
nificant differences between treatment groups. Data that 
were not normally distributed and/or of unequal vari-
ances were logarithmically transformed. If the transfor-
mation failed, data were analyzed using non-parametric 
Kruskal–Wallis on ranks with Dunn–Bonferroni test. 
For statistical comparison of exposure regimes (3, 21 d) 
Student’s T test was performed for normally distributed 
and homoscedastic data. For data not fulfilling the crite-
ria, the Welch test or non-parametric Mann–Whitney’s 
U test were applied depending on the normality of data.

Results
Chemical analysis of target PAHs
Target PAHs in exposure media
PAH levels in the tanks were measured over two consec-
utive exposure cycles. In control tanks, concentrations of 
all target PAHs were below the limits of detection (LOD). 
The concentration of total PAHs was reduced for all 
treatments along the exposure cycle in the open test sys-
tems (Fig. 1). After exposure solutions were exchanged, a 

new peak in dissolved PAH concentration was measured. 
The concentration of total PAHs at the beginning of the 
cycle increased from 224.4 ± 17.7  ng L−1 (5% WAFOIL, 
6 h) over 1,724.3 ± 497.5 ng L−1 (25% WAFOIL, 12 h) up to 
5,744.1 ± 119.8 ng L−1 (5% WAFOIL+D, 6 h). With medium 
exchange, the chemically dispersed WAF (WAFOIL+D) 
contained target PAH in concentrations > 20-fold higher 
than the corresponding dilution without the dispersant 
application (5% WAFOIL). Details of the concentration of 
individual target PAHs in corresponding exposure media 
can be found in Additional file 1: Tables S2–S4.

The most dominant PAH across all WAF exposure 
media was phenanthrene followed by pyrene and fluoran-
thene (Additional file 1: Tables S2–S4). Phenanthrene was 
detected in concentrations up to 2674.4 ± 229.8 ng L−1 in 
chemically dispersed WAF within the first 6 h sampling 
interval after medium exchange. The highest concentra-
tions of phenanthrene shortly after medium exchange 
(start of exposure cycles) in the case of the WAFOIL dilu-
tions were 147.8 ± 18.0 ng L−1 (6 h) and 1251.7 ± 324.1 ng 
L−1 (12 h) in 5% and 25% WAFOIL, respectively. Overall, 
the concentration of dissolved target PAHs increased 
with decreasing log Kow of individual compounds. High 
molecular weight PAHs were not quantifiable or even 
below the detection limits in both WAFOIL groups, while 
the application of the chemical dispersant resulted in the 
detection of benzo[a]anthracene, chrysene and benzo[b]
fluoranthene in ng L−1 ranges.

Bioaccumulation of target PAHs in fish tissue
At the end of the experiment (21 d) target PAHs were 
detected in fish carcass across all treatments including 
the unexposed control (Fig.  2). Overall, with the excep-
tion of phenanthrene and pyrene, PAH levels in fish 
exposed to both undispersed oil treatments were in a 
comparable range of the unexposed control. A markedly 
increased bioaccumulation of target PAHs was found 
only for the dispersed oil treatment (5% WAFOIL+D). 
Low molecular weight PAHs such as phenanthrene 
and fluoranthene were detected up to 782.1  ng  g−1 and 
238.4  ng  g−1, respectively. Furthermore, higher molecu-
lar weight PAHs including benzo[a]anthracene, chrysene, 
indeno[1,2,3-cd]pyrene or benzo[ghi]pyrelene, which 
were scarcely detected or even below detection limits in 
the water phases of all treatments (Additional file 1Tables 
S2–S4), were detected in the fish tissues, with the high-
est concentrations up to 604.0  ng  g−1 (benzo[a]anthra-
cene + chrysene) (Additional file 1: Table S5).

Survival and peculiar behaviour
The chemically dispersed oil treatment (5% WAFOIL+D) 
led to a mortality rate of 23% at 21 d, whereas 100% 
survival was observed for the 5% and 25% WAFOIL as 
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well as the control. Up to 6 deceased fish were found 
from day 3 of exposure until the end of the experiment 
in 5% WAFOIL+D group. Overall, chemically dispersed 
oil exposed fish presented a cyclic stunned behaviour, 
with fish swimming abnormally close to the surface 

in a tilted position and apparently ignoring the pro-
vided food shortly after each medium exchange. This 
demeanour was progressively attenuated within the 
first 24 h of the exposure cycle. Fish exposed to 5% and 
25% WAFOIL did not show abnormal swimming behav-
iour and were comparable to the control individuals.
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Fig. 1  Sum of target PAHs in exposure media over two exposure cycles. Exposure media were exchanged every 72 h. PAHs were extracted from 
media using stir bar sorptive extraction and analyzed using GC–MS

5 % WAFOIL 25 % WAFOIL 5 % WAFOIL+D

0

200

400

600

800

1000

ta
rg

et
 P

A
H

 a
cc

um
ul

at
io

n
re

la
tiv

e 
to

 c
on

tro
l

[%
]

phenanthrene
fluoranthene

pyrene

benzo[a]anthracene + chryene

benzo [g,h,i] pyrelene

Fig. 2  Target PAHs detected in fish carcass after 21 d of exposure to WAF dilutions of crude oil (5% and 25% WAFOIL) and chemically dispersed crude 
oil (5% WAFOIL+D) relative to unexposed control. Target PAHs were analysed by GC–MS. Bars represent PAH concentration of a pool of collected 
carcasses. Red line indicates PAH levels in the control group set to 100%
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Gene transcription levels
In an overview, only the exposure to 5% WAFOIL+D 
caused statistically significant alterations on mRNA lev-
els after short- and long-term exposure (Fig. 3).

Both investigated biotransformation metabolism-
related genes (cyp1a, gstp1) were significantly up-
regulated for the 5% WAFOIL+D treatment after 3 d of 
exposure (Fig.  3A, B). After 21 d the cyp1a and gstp1 
mRNA levels of fish exposed to chemically dispersed 
WAF were significantly decreased compared to the first 
sampling timepoint but still remained significantly higher 
compared to the control (Fig. 3A, B).

The oxidative stress response genes sod1 and gpx1a 
were statistically significant up-regulated by the 5% 
WAFOIL+D treatment after 3 d of exposure (Fig.  3D, E). 
Transcription levels of cat did not show statistically sig-
nificant differences between treatment groups. The high-
est induction of cat was recorded in fish exposed to 25% 
WAFOIL at 3 d (Fig.  3C). Overall, the up-regulation of 
oxidative stress genes (sod1, gpx1a and cat) significantly 
declined from short- (3 d) until the end of long-term (21 
d) exposure, albeit not differing from the control. Fish 
exposed to 5% WAFOIL+D still showed the highest values 
(Fig. 3C–E).

In contrast, no differences on the transcription levels 
of cell cycle- and apoptosis-related genes (tp53, casp3a) 
were found across treatments or compared to unexposed 
fish at any sampling timepoint (Fig. 3F, G).

Biochemical marker responses
Overall, the chemically dispersed crude oil (5% 
WAFOIL+D) showed the strongest effects on enzymatic 
biomarker levels. Enzyme activities corresponding to the 
xenobiotic metabolism phase I (EROD) and II (GST) as 
well as the antioxidant defence mechanism (CAT) were 
investigated in zebrafish liver and gill.

No notable changes in EROD activity were recorded 
for both undispersed crude oil treatments (5 and 25% 
WAFOIL) independent of the sampled tissues or the expo-
sure period (Fig. 4A, B). In contrast, the chemically dis-
persed crude oil exposure (5% WAFOIL+D) resulted in 
significantly increased EROD activity in liver after both 
exposure periods up to tenfold compared to the unex-
posed control. Gill GST was found to be significantly 
increased after the exposure to chemically dispersed 
crude oil at both exposure times (Fig. 4D). For liver, no 

alterations were recorded after 3 d of exposure in any 
treatment. However, after 21 d all treated groups showed 
higher activity, which was significantly higher compared 
to the previous sampling in the case of 5% WAFOIL and 
5% WAFOIL+D.

While for liver tissue the 5% WAFOIL treatment did 
not lead to significant differences in CAT activity after 
21 d when comparing treatments to the control group, 
in gills the chemically dispersed WAF presented signifi-
cant higher CAT activity than the control group after 21 
d (Fig. 4E, F). However, long-term exposure induced an 
overall trend of markedly increased CAT activity in fish 
gills exposed to the remaining treatments compared to 
control.

As a biomarker of neurotoxicity, the acetylcholinester-
ase (AChE) activity in brain was significantly decreased 
in fish exposed to the chemically dispersed oil (5% 
WAFOIL+D) compared to the corresponding non-dis-
persed WAF dilution (5% WAFOIL) at both short and 
long-term exposure (Fig.  5). Nevertheless, AChE activ-
ity was not significantly different for any treatment com-
pared to the control group.

Relative induction of enzyme activity individually nor-
malized to control can be found in the Additional file 1: 
Table S6.

Micronuclei frequency in peripheral erythrocytes
Both WAFOIL exposure dilutions resulted in micronu-
clei formation in a comparable range to the unexposed 
control  (Fig.  6). The long-term exposure to the chemi-
cally dispersed oil WAF (21 d) was the only treatment 
inducing significantly more micronuclei in erythrocytes 
than the 5% WAFOIL exposure with a resulting induction 
factor of 2.2 (all induction factors can be found in Addi-
tional file 1: Table S7).

Discussion
PAH exposure and bioaccumulation
With the time-resolved chemical analysis of the 
water phase across 2 exposure cycles we were able to 
show the dynamic partitioning of target PAHs in 2 
ways. First, a fast concentration decrease of analyzed 
PAHs in the water phase of up to 92% was observed 
within 3 d, which is most likely associated with physi-
cal (evaporation, absorption) and biological (uptake 
by fish) responses of the system [115]. These findings 

Fig. 3  Transcription levels of biotransformation (cyp1a, gstp1), oxidative stress response (cat, sod1, gpx1a), cell cycle (tp53) and apoptosis (casp3a) 
genes in male adult zebrafish livers after 3 and 21 d of exposure to WAF dilutions of crude oil (5% and 25% WAFOIL) and chemically dispersed crude 
oil (5% WAFOIL+D). Data are represented as median (line) with boxes showing the 25–75 percentile and whiskers representing min to max values 
of 4–5 replicate groups per treatment. Letters indicate statistically significance between treatments within the same sampling point and asterisks 
indicate statistically significance between sampling timepoints (p < 0.05)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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demonstrate the dynamic peak exposure in semi-static 
open systems and hence the overall importance of 
continuous exposure solution analysis as well as care-
ful selection of the exposure setup according to the 
research question.

Second, the present results showed the strong impact 
of the dispersant on dissolved PAHs in the water col-
umn. The observed oil compound mobilization caused 
by the addition of the chemical dispersant has already 
been reported in several studies [5, 33, 75, 89]. This 

Fig. 4  Biomarker activity in adult female zebrafish liver and gill tissue after 3 and 21 d of exposure to WAF dilutions of crude oil (5% and 25% 
WAFOIL) and chemically dispersed crude oil (5% WAFOIL+D). 7-ethoxyresorufin-O-deethylase (EROD) activity (A, B), glutathione S-transferase (GST) 
activity (C, D) and catalase (CAT) activity (E, F). Data representation as in Fig. 3. Letters indicate statistically significance between treatments within 
the same sampling point and asterisks indicate statistically significance between sampling timepoint (p < 0.05)
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phenomenon seems to be the result of the ability of dis-
persants to break the oil into a high number of small 
droplets, incrementing the contact surface of oil and 
water, while at the same time, the reduced size and the 
high surface-to-volume ratio of these oil droplets con-
tribute to the partitioning of PAHs from the oil into the 
water column [88, 105]. Furthermore, the chemical dis-
persant altered the composition of the PAH mixture 
present in WAF, which might further affect the complex 
toxicity. Within this, high molecular weight PAHs such 
as benzo[a]pyrene and benzo[g,h,i]perylene were only 
quantifiable in the chemically dispersed oil WAF, show-
ing that the dispersants do not interact equally with all 

hydrocarbons and are prone to ease the dissolution of the 
less hydrophilic compounds [86].

Lower molecular weight PAHs such as fluorene and 
phenanthrene are known to be more easily dissolved in 
water and hence more bioavailable for fish than PAHs of 
higher molecular weight [16] leading to the assumption 
that those cause the observed adverse effects. In fact, tri-
cyclic PAHs detected in the WAFs, such as phenanthrene 
as the most dominant target PAH, are well known tox-
icity drivers in fish resulting in cardiotoxicity, malforma-
tions and behavioral changes (reviewed, e.g., in [52, 54]). 
However, though detected in relatively low concentra-
tions in the present study, high molecular weight PAHs 
are potent agonists of the aryl hydrocarbon receptor, the 
molecular initiating event of several mechanisms related 
to toxic effects in fish, such as cardiotoxicity [54]. Hence, 
the observed adverse effects in zebrafish are likely a 
response to the complex mixture toxicity of high and low 
molecular weight PAHs and even other crude oil con-
stituents, such as alkylated and heterocyclic derivatives, 
which have been shown to cause even stronger effects in 
different fish models compared to parent PAHs [4, 24, 82, 
110]. Each crude oil is a unique complex sample that can 
induce various degrees of toxicity via diverse pathways 
depending on the mutual interference of constituents 
[76]. It has to be considered that only a limited fraction 
of oil constituents was investigated. However, even a very 
comprehensive chemical profile would not guarantee the 
explanation of the observed mixture toxicity by individ-
ual compounds, since some previous studies successfully 
established such a correlation between biological effects 
and chemical profiles [73], while others did not establish 
a very clear correlation [56].

Due to a high PAH biotransformation capacity of fish 
[76, 121] an efficient metabolization and elimination was 
expected [116]. This was experimentally indicated in the 
present study by the activity of corresponding molecular 
and enzymatic biomarkers (e.g., CYP1A activity, detailed 
discussion in Sect.  3 below). However, bioaccumulation 
of low and high molecular weight PAHs was notable in 
fish exposed to the chemically dispersed WAF. The accu-
mulation of individual PAHs has been observed in several 
previous studies addressing dispersed oil toxicity [16] 
or toxicokinetic of PAH accumulation in fish [126, 127]. 
The accumulation of PAHs might be related to water-
borne uptake via the gills and the skin as demonstrated 
for exposure of adult zebrafish to phenanthrene (100 ng 
L−1) reaching an equilibrium concentration in all tissues 
measured within 4 d of exposure [127]. Though detected 
in low concentrations in the water phase, the relatively 
strong enrichment of high molecular weight compounds 
(benzo[a]anthracene + chrysene, benzo[ghi] pyrelene, 
indene[1,2,3-cd]pyrene in carcass tissues after 21 d of 
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exposure was potentially related to lower detoxification 
rates compared to lighter PAHs with lower logKow. Fur-
thermore, it has to be kept in mind that bioaccumulation 
of PAHs could have been caused also by oil droplet inges-
tion followed by desorption through the gut [15, 139], 
since stable micro-droplets were expected in the water 
column of the present set up due to constant water circu-
lation. This contribution of oil droplets for bioaccumula-
tion could have been more relevant for PAHs of higher 
than for those of lower molecular weight. This has been 
indicated in previous studies [51] and shown in the pre-
sent study in particular for benzo[g,h,i]pyrelene, which 
was scarcely detected in the water phase of WAFOIL+D 
(54.2 ng L−1 at 60 h, see Table S4) but in concentrations 
up to 215 ng g−1 in the WAF OIL+D fish tissues.

Mortality and peculiar behaviour
The mortality observed in the chemically dispersed oil 
WAF exposure tanks might have been caused by the 
increased concentration of PAHs compared to the undis-
persed WAFs. Despite the diversity of oils or chemical 
dispersants and the variety of tested dilutions, which lim-
its a direct comparison between studies, similar results 
of elevated toxicity after the application of a chemical 
dispersant have been reported for zebrafish [75, 101]. In 
addition, the results of no mortality in 5% and 25% WAF 
approaches were in compliance to a previous study with 
zebrafish exposed to the same oil type even in higher 
exposure concentrations compared to the present WAFs 
[10].

The administration of the exposure media containing 
dispersant triggered a certain cyclical stunned behaviour 
in exposed fish of occupying the upper part of the tank 
for 1 d every time the solution was renewed. This behav-
iour correlated with the measured PAH concentration in 
the tanks, which sharply decreased after 24 h. Acute and 
chronic exposure to PAHs found in high concentrations 
in our study (fluorene, phenanthrene and pyrene) has 
been shown to reduce locomotion, induce lethargy in fish 
and increase boldness behaviour in exploration tests [47, 
50]. In addition, the exposure to water-soluble fractions 
of native and chemically dispersed crude oil significantly 
reduced the critical swimming speed of fish in a concen-
tration-dependent manner [135]. Moreover, the mixture 
of oil and the chemical dispersant FINASOL OSR 52 
induced several alterations on fish exploration behaviour 
[7]. The fish posture description indicated by Aimon et al. 
[7] of still and anaesthetic-like sedative state agrees with 
our observations.

Different studies link altered swimming behaviour 
caused by oil constituents to cardiac alterations as an 
initiating adverse effect leading to altered metabolic 
rates and the observed behaviour [77, 124]. Another 

explanation might be an avoidance behaviour of fish 
due to odor and medium turbidity in combination with 
hypoxia. Though oxygen was not limited in the water 
phase (data not shown), chemical dispersants have been 
found to affect gill ion regulation and overall increase 
gill lesions in oil WAF exposed fish indicating the dis-
turbance of oxygen transport [6, 39]. Gill membrane 
functionality could also simply be affected by the physi-
cal accumulation or disruption of oil droplets and hydro-
phobic oil constituents such as the high molecular weight 
PAHs. However, this previously suggested baseline tox-
icity of membranes (narcosis) [37, 84] is controversially 
discussed [54]. It is important to consider behavioural 
disruptions, since they may imply severe consequences to 
fish survival and reproductive fitness.

Biotransformation response
Biotransformation biomarkers have been applied in sev-
eral studies focusing on the toxicity pathways behind 
PAH exposure in zebrafish [53, 64]. Representative for 
biotransformation phase I oxygenase activity, mRNA lev-
els of cyp1a1 and protein levels of EROD activity have 
been found to be up-regulated in fish after the expo-
sure to individual PAHs, such as phenanthrene [80, 97]. 
Besides, Arukwe et  al. [10] observed an increment in 
cyp1a1 mRNA levels and EROD activity in a comparable 
experiment to the present study applying the identical oil 
type and zebrafish. In our study, the biotransformation 
activities were not affected by exposure to the two dilu-
tions of undispersed WAF, emphasizing again the role of 
the dispersant for the toxicity of crude oil by enhancing 
the bioavailability of PAHs. A concurrent induction of 
both mRNA and enzymatic levels of CYP1A suggests a de 
novo synthesis of the protein most likely initiated by AhR 
activation by typical receptor agonists [54, 78]. In addi-
tion, in accordance with the present findings, up-regula-
tion of phase I biotransformation strongly initiated by the 
application of a chemical dispersant has been observed 
in several previous studies [5, 29, 101, 105] including in 
particular experiments with the presently used FINASOL 
OSR 52 [35, 41], which has also mainly been related to 
the increment of PAHs in the exposure solution [105].

After the transformation of PAHs to more hydrophilic 
compounds by phase I enzymes, the resultant molecules 
experience a conjugation by phase II enzymes, such as 
GST, in order to promote its excretion [57]. In this con-
text, levels of gstp1 were also significantly increased at 
both sampling timepoints in fish exposed to the chemi-
cally dispersed crude oil. However, the enzymatic activ-
ity of GST in liver was not correspondent with the 
increased transcription, but its lack of significance could 
be related to instable measurement on protein level with 
not all replicates meeting the established quality criteria. 
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The discrepancy could also be related to the endpoints 
itself, since previous studies concluded that the induc-
tion responses of phase II systems, such as GST activity, 
are less uniform and, therefore, less reliable compared to 
phase I enzymes [68, 121]. In this context, while different 
PAHs have been shown to increase GST activity in fish 
[33, 53, 58, 92], other studies found that PAHs decreased 
GST activity [80, 98, 129], some showed contrary results 
of both inhibition and induction [116], or even no altera-
tions of GST activity by PAH exposure [68] in liver, gills 
or kidney of fish.

As the most immediate organ in proximity with the 
exposure media and, therefore, the compounds present 
in it, gills can rapidly metabolize PAHs before reaching 
the liver and thus playing an important role in the bio-
transformation process [64]. Hence, an elevated biotrans-
formation activity might be expected in gills. However, 
when comparing both liver and gill tissues, no consistent 
trend of biotransformation activity was observed. Even 
though its induction has been described as a biomarker 
for crude oil contaminants in fish [2, 3, 64], in our study, 
the EROD activity in gills of fish exposed to dispersed oil 
was nearly three times lower than in livers and not sig-
nificantly different from control. In contrast, for GST 
activity we observed a significantly higher induction 
only in gills. These findings of variable biotransformation 
activities in different tissues highlight the complexity of 
biological responses and in particular the sensitivity of 
liver samples in chronic exposure studies with petroleum 
constituents.

Oxidative stress response
Transcriptional and biochemical results of the present 
study indicate that the chemically dispersed oil induced 
oxidative stress in fish, which is in compliance with the 
overall knowledge on WAF-dominating PAHs inducing 
ROS [78, 92, 111, 116, 118]. For catalase, no direct corre-
lation between transcriptomic and enzymatic responses 
could be observed. The significant increase in CAT activ-
ity in gills but not in liver in our study indicates that gills 
represent an important organ for detoxification acting as 
a primary defence line for fish. The lack of CAT induction 
in liver might be explained by its suppression or impair-
ment of the system caused by a severe oxidative damage, 
as indicated in a previous study [116]. Overall, several 
studies indicate that CAT could play a secondary role on 
enzymatic defence against the oxidative stress [33, 98]. 
The varying results after oil WAFs or PAH exposure have 
led to the assumption that CAT is a less stable biomarker 
and rather enzymes such as GPX are principal actors 
responding to ROS, such as H2O2 [33, 91, 98]. In this 
context, zebrafish embryos exposed to a WAF of Arabian 
Light crude oil for 96 h showed the same pattern as our 

results, with an upregulation of gpx and sod genes but 
no regulation of cat [100]. However, while other studies 
on different fish species observed comparable trends [11, 
97], Milinkovitch [87, 89] did not report significant differ-
ences of CAT, SOD and GPx activities in fish exposed to 
chemically dispersed crude oil. All these different results 
reflect how the antioxidant response is conditioned by 
the organ or species studied and, certainly, by the condi-
tions of the exposure to crude oil compounds. Our find-
ings support the higher relevance of SOD and GPx as 
oxidative stress biomarker over CAT due to the concomi-
tant and strong transcriptomic induction of sod1a and 
gpx1a. In addition, the high EROD activity observed in 
the present study is in line with oxidative stress, as super-
oxide anion radicals (O2

•−) are a type of ROS that can be 
produced by a non-well-functioning process of the phase 
I mixed function oxygenase system [121]. Moreover, 
Luch [78] indicates that some PAHs can generate super-
oxide or hydroxyl radicals through autoxidation or PAH-
mediated inflammatory processes. Thus, the increase in 
cellular superoxide (O2

•−) production would be appeased 
by the SOD activity generating in return an excess of 
H2O2 that GPX enzymes would transform into water 
using the reductive power of a glutathione (GSH) mol-
ecule [116, 121]. Further studies on GSH content, SOD 
and GPX activity or the assessment of lipid peroxidation 
could aid to prove these assumptions.

Cellular stress including oxidative stress and DNA 
damage can lead to the activation of cell cycle arrest, 
programmed cell death (apoptosis), and repair path-
ways [38]. Associated marker genes were not signifi-
cantly regulated in the present study independent of the 
exposure solution or sampling timepoint. As previously 
reviewed, PAHs are well known for their potential to 
induce apoptosis in fish [9]. In this context, p53 acting 
as a key transcription factor to initiate the different cas-
cades including extrinsic apoptosis pathways involving 
caspases [9] has been found to be strongly upregulated by 
PAH [136] or petroleum oil exposure [30, 109]. In con-
trast, also a decrease of p53 activity compared to control 
has been reported for adult fish after dietary exposure to 
BaP [131]. It has to be considered that only two marker 
genes were investigated in the present study, which do 
obviously not cover the whole complexity of p53-regu-
lated pathways including apoptosis.

AChE activity
While previously the brain AChE activity has not been 
found to be altered in wild fish populations of heav-
ily petroleum contaminated areas [67], the present 
study observed a significant AChE inhibition after both 
short- and elongated exposures to chemically dispersed 
crude oil compared to the same dilution of undispersed 
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WAFOIL but not when compared to the control. In addi-
tion to complex petroleum mixtures, also individual oil 
constituents had led to ambiguous results regarding 
AChE inhibitory potential in fish [96]. Selected PAHs 
(e.g., phenanthrene) were found to inhibit either isolated 
AChE enzymes from fish [60] or brain homogenates [59] 
in exposure concentrations comparable to the present 
study, whereas another study reported no influence of 
PAHs on AChE activity [117]. In addition, our previous 
experiments with early life stages of zebrafish exposed 
to WAFs prepared from the identical NNS crude oil 
batch did not indicate AChE inhibition [62], even though 
embryonic stages have been described to be reliably 
responsive to neurotoxic exposure [123, 134]. However, 
since a high variability of AChE activity across the dif-
ferent treatments was observed in the current study, the 
observed AChE inhibition might be related to a gener-
ally reduced fitness of fish. Nonetheless, neurotoxicity of 
crude oil cannot be excluded simply by the measurement 
of one enzyme involved in neurotransmission. Previous 
studies focusing on whole transcriptome analysis, physi-
ological changes in brain tissue, monoamine neurotrans-
mitter regulation, and locomotor behaviour observed 
that petroleum exposure can affect the neuronal system 
in fish early life stages [45, 125, 133], indicating a neuro-
toxic potential of petroleum constituents.

Genotoxicity
Genotoxicity is a commonly addressed endpoint in crude 
oil toxicity assessment and can be investigated on several 
levels of biological organization [1, 20]. The micronu-
cleus assay showing clastogenic or aneugenic chromo-
somal aberrations is a very sensitive indicator for DNA 
damage [21, 95]. This endpoint has proven the ability to 
reveal long-term genotoxic effects in fish several years 
after large oil spills during past decades in various labora-
tory and monitoring studies [23, 102, 103]. In the present 
study, only the chemically dispersed crude oil exposure 
resulted in significantly elevated micronuclei formation. 
This might be related to the increased bioavailability of 
higher molecular weight PAHs caused by the dispersion. 
Low molecular weight PAHs such as the most domi-
nant phenanthrene have inconsistently been reported as 
inducers for chromosomal aberration. While Peng et al. 
[99] reported no significant micronuclei formation even 
for higher exposure concentrations compared to the 
present study [99], other studies detected significantly 
increased micronuclei rates for concentration ranges 
comparable to our work [97, 113]. In contrast, high 
molecular weight PAHs such as benzo[a]pyrene are well 
known to initiate a genotoxicity cascade via biotransfor-
mation activity (e.g., CYP1A, resulting in the formation 
of DNA adducts and oxidative radicals that can lead to 

DNA strand breaks and thus micronuclei formation [79, 
108, 119, 138]. Molecular and biochemical results of the 
present study indicate a high biotransformation activity 
in oil exposed fish supporting the genotoxicity pathway. 
Overall, the micronucleus rate observed for 21 d exposed 
zebrafish exposed to dispersed oil (IF = 2.2) was in the 
lower range of reported micronucleus rates in erythro-
cytes found in petroleum product WAF-exposed fish in 
comparable laboratory studies (IF = 2–5) [14, 22, 85, 122]. 
Though a comparison using induction factors accounts 
for inter-species variability [21], a direct comparison of 
different oil exposure studies is limited due to a variety 
of selected exposure conditions and oil types. Nonethe-
less, in a previous study using the identical NNS crude 
oil batch we also found stronger micronucleus formation 
in acutely exposed (48 h) permanent zebrafish liver cells 
[61]. The higher sensitivity of the cell line compared to 
erythrocytes demonstrates the lack of toxicokinetics in 
in vitro bioassays and highlights the in situ micronucleus 
assay as a relevant endpoint for a more reliable ecotoxi-
cological risk assessment of oil WAFs.

Critical considerations for dispersant toxicity interpretation 
in chronic exposure studies
Overall, our results highlight the importance of consid-
ering the effect of chemical dispersants in the toxicity 
assessment of oil spill response measures, very noticeable 
when comparing the biological endpoints of identical 
oil loadings with and without the addition of FINASOL 
OSR 52. As concluded in several previous studies (e.g., 
[107]), further supported by the current time-resolved 
chemical analysis, the dispersant-induced increased tox-
icity has been attributed to an enhanced bioavailability 
of toxic compounds present in oil. However, the overall 
toxicity interpretation should be considered cautiously 
as oil and dispersant toxicity seems to be species-specific 
and is further influenced by the exposure methods and 
oil types. In a worst-case scenario, this might lead to an 
underestimation of the risk towards more sensitive spe-
cies compared to zebrafish.

While the present chemical analysis supported the 
overall theory of a dispersant-induced increase in dis-
solved PAH fractions, a toxicity of the dispersant 
itself cannot be excluded with the experimental setup. 
According to previous studies FINASOL OSR 52 has 
been considered as moderately toxic [17]. In particular, 
compared to Corexit EC9500A, another chemical dis-
persant frequently used as oil spill response measure, 
a higher toxicity has been found for FINASOL OSR 52 
in different fish species (Menidia beryllina, Cyprino-
don variegatus) after short and long-term exposure [13, 
35]. It is important to mention that an additional con-
trol group with the dispersant alone was not included 
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within the current study to experimentally address the 
role of the dispersant. From our previous studies with 
the dispersant Finasol OSR 51, which shows high com-
parability to Finasol OSR 52 used in the present study, 
we have to emphasize that the toxicity of the disper-
sant alone or in combination with an inert oil cannot 
be excluded per se [61–63]). Nonetheless, the disper-
sant-induced general toxicity (oxidative stress induc-
tion) or acute toxicity to zebrafish embryos and larvae 
were found in exposure concentrations highly elevated 
compared to the exposure concentrations used in the 
present study. Hence, it could be assumed that in the 
present scenario no effects from the dispersant itself 
might be expected.

Another aspect that needs to be considered for toxic-
ity interpretation is the applied dispersant to oil ratio 
(DOR). While the DOR used in the current study (1:10) 
is rather recommended for heavy oils due to relatively 
high viscosity and hence a higher dosage need for dis-
persion success [74], also other studies working with 
much lower DORs (e.g., 1:800) observed adverse effects 
in fish [39]. Hence, the current DOR can be interpreted 
as a worst-case scenario with environmental relevance. 
Besides species sensitivity variations and DOR the 
exposure concentrations need to be critically addressed. 
The exposure concentrations of the present study can 
be considered as environmentally relevant. PAH con-
centrations detected in the water phase (200–5700  ng 
L−1) were in the lower range of concentrations detected 
in the water column after oil spills (up to 600,000  ng 
L−1) as summarized by Perrichon et al. [100]. After the 
Deep Water Horizon blowout, concentrations up to 
189,000 ng L−1 were reported [19]. However, it has to be 
considered that even though environmentally relevant 
exposure concentrations were used, the chronic expo-
sure remains a worst-case scenario. A previous study 
acutely exposing fish to chemically dispersed crude oil 
in a concentration range of tenfold increase compared 
to the current setup did conclude no ecological impact 
after a long-term recovery phase of fish population in 
semi-natural mesocosms [81]. This might indicate that 
the observed sublethal effects in the current study are 
maximum temporary without severe consequences. 
However, long-term studies are still scarce, and more-
over, recovery phases need to be addressed in future 
research. Especially additional stressors under real field 
conditions such as ecological or anthropogenic pol-
lution might impact the overall stress tolerance and 
survival and alter the overall biomarker responses com-
plicating reliable forecasts. In this context, it has been 
shown that, e.g., global warming-induced temperature 
increase has a huge impact on acute and chronic stress 
physiology in fish [8].

Conclusion—combining multilevel endpoints 
for risk assessment
Due to the high complexity of oil exposure and the high 
variability of biological responses, it can be concluded 
that for a reliable ecotoxicological risk assessment, it is 
important to combine different biomarkers across dif-
ferent levels of biological organization. With significant 
molecular and enzymatic alterations of biotransforma-
tion and antioxidant defences, the present study supports 
previously reported endpoints for oil toxicity testing as 
sensitive biomarkers in adult zebrafish. In addition, while 
the micronucleus induction in peripheral blood eryth-
rocytes is only one apical endpoint in genotoxicity and 
several other mechanisms can lead to DNA damage, the 
observed oxidative stress and biotransformation system 
activation supports the hypothesis of genotoxicity indi-
cated by this biomarker. Comparing biomarker analyses 
between different studies can be a difficult task due the 
complexity discussed above. However, it is undeniable 
that a comprehensive investigation possesses an inher-
ent value. Especially the low exposure concentrations as 
well as the elongated exposure period up to 21 d are valu-
able information for the scientific community in order 
to characterize oil toxicity and can assist decision mak-
ing for oil spill response strategies. Nonetheless, future 
experiments should include an elongated recovery phase 
to take into account an environmentally relevant short-
term peak exposure scenario. The present study further 
emphasizes the importance of a temporally resolved 
chemical characterization of the exposure water phase 
for effect interpretation. In addition, further research 
should different toxicity drivers among oil constituents 
and study results must be cautiously interpreted lead-
ing always to protective actions based on the essential 
precautionary principle that ensures the environment 
preservation.
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