
Rewriting with Generalized Nominal Unification

Yunus Kutz and Manfred Schmidt-Schauß

Goethe-University, Frankfurt, Germany

Technical Report Frank-63

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

October 23, 2019

Abstract. Abstract. We consider matching, rewriting, critical pairs and the Knuth-Bendix confluence
test on rewrite rules in a nominal setting extended by atom-variables. Computing critical pairs is done
using nominal unification, and rewriting using nominal matching. We utilise atom-variables to formulate
rewrite rules, which is an improvement over previous approaches, using usual nominal unification, nominal
matching and nominal equivalence of expressions coupled with a freshness constraint. We determine the
complexity of several problems in a quantified freshness logic. In particular we show that nominal matching
is Πp

2 -complete. We prove that the adapted Knuth-Bendix confluence test is applicable to a nominal rewrite
system with atom-variabes and thus, that there is a decidable test whether confluence of the ground instance
of the abstract rewrite system holds. We apply the nominal Knuth Bendix confluence criterion to the theory
of monads, and compute a convergent nominal rewrite system modulo alpha-equivalence.

1 Introduction

The goal of this paper is to demonstrate the expressive power of nominal modeling with atom-variables
[23] also in applications. Therefore we consider rewriting, matching and critical pairs ala Knuth-Bendix
[12] in a higher-order language with alpha-equivalence and nominal modeling, where in the nominal uni-
fication and matching algorithm also atom-variables are permitted in addition to expression-variables
and where the rewriting is done using a corresponding form of nominal matching with atom-variables.
This improves upon the approaches in [9, 2] by modeling equivariance through atom-variables. The
application of nominal unification with atom-variables avoids guessing of (dis-)equality of atoms, which
would be necessary by the previous approaches of nominal unification in rewriting, where this is also
necessary in corresponding rewriting sequences in every single rewriting step.

Nominal techniques [18, 17] support machine-oriented reasoning on the syntactic level for higher-
order languages and support reasoning modulo alpha-equivalence. An algorithm for nominal unification
was first described in [26], which outputs unique most general unifiers. More efficient algorithms
are given in [3, 13], exhibiting a quadratic algorithm. The approach is also used in higher-order
logic programming [4, 5] and in automated theorem provers like nominal Isabelle [24, 25]. Nominal
unification was generalized to permit also atom-variables [23] where also in the generalization, unique
most general unifiers are computed, while the decision problem is NP-complete.

A simple example to motivate the use of atom-variables for nominal modeling is the reduction rule
(cpcx) in the concurrent calculus CHF [20, 19] or in other functional programming calculi. It permits
rewriting a subexpression using the rule

(let y = c x1 . . . xn in s)→ (let y = c x1 . . . xn in s′),

where s′ is the expression s where one free occurrence of the variable y is replaced by (c x1 . . . xn).
This rule can be applied as a correct transformation even if the variables xi are not pairwise different,

2 Y. Kutz and M. Schmidt-Schauß

which is in contrast to usual nominal rewriting using atoms instead of atom-variables, since a single
unifier in our proposed algorithm covers all possibilities of equal/unequal variables.

Our motivation to study nominal rewriting is to improve automated reasoning methods in higher-
order programming languages. For example program transformations can often be defined by nominal
rewriting rules. The advantageous feature is that a single nominal rewriting step is usually possible in
polynomial time and it is unique. The satisfiability check of the introduced constraints is usually in
NP, or in the polynomial hierarchy. The contrast is second-order rewriting which is usually undecidable
and not unique.

The results of this paper are as follows. We define a logic QFL over nominal constraints and
equations in Section 3 and determine the complexity of validity of freshness and equivalence formulas
which is later used to determine the complexity of matching (Corollary 3.14). We describe a matching
algorithm in Section 4 and give a definition of nominal rewriting of expressions under constraints and
with atom-variables in Section 4.1.

The complexity of nominal matching with atom-variables due to the complexity of constraint
satisfiability is proved to be Πp

2 -complete (Theorem 4.10).

A variant of the Knuth Bendix confluence test under atom-variables is described in Section 4
and proved correct for detecting confluence on the induced rewriting system on ground expressions
(Theorem 4.19). We compute the completion and prove a confluence result modulo alpha-equivalence
for the (completed) rewrite rules of the monad theory (Theorem 5.4), which is more general than
previous ones and also demonstrates the power of our method.

The structure of the paper is as follows. In Section 2 the languages of nominal expressions are
described. Section 3 describes the quantified freshness logic for quantified freshness constraints and
alpha-equivalence. Section 4 is a presentation and adaptation of rewrite rules and the Knuth-Bendix
confluence test. In Section 5 we apply nominal matching, rewriting and nominal confluence test with
atom-variables to the theory of monads. In Section 6 we give a comparison to the classical nominal
rewriting framework introduced by [7]. We conclude in Section 7.

2 Nominal Terms

We first introduce some notation [23].

Let F be a set of function symbols f ∈ F , s.t. each f has a fixed arity ar(f) ≥ 0. Let At be the
set of atoms ranged over by a, b, c. The ground language NLa is defined by the grammar:

e ::= a | (f e1 . . . ear(f)) | λa.e

where λ is a binder for atoms. The basic constraint a#e is valid if a does not occur freely in e and
a set of constraints ∇ is valid if all constraints are valid. Constructs of the form (a b) will denote a
swapping of the two atoms a, b in an expression e.

We will use the following definition of α-equivalence on NLa:

Definition 2.1. Syntactic α-equivalence ∼ in NLa is inductively defined:

a ∼ a
∀i : ei ∼ e′i

(f e1 . . . ear(f)) ∼ (f e′1 . . . e
′
ar(f))

e ∼ e′

λa.e ∼ λa.e′
a#e′ ∧ e ∼ (a b)·e′

λa.e ∼ λb.e′

Note that ∼ is identical to the equivalence relation generated by α-equivalence by renaming binders,
which can be proved in a simple way by arguing on the (binding-)structure of expressions (using
deBruijn-indices) and hence ∼ is an equivalence relation on NLa. It is also a congruence on NLa, i.e.,
for any context C, we have e1 ∼ e2 implies C[e1] ∼ C[e2].

We introduce two further languages, where we also permit permutations and atom- and expression-
variables.

Rewriting with Generalized Nominal Unification 3

Definition 2.2. Let S be the set of expression-variables ranged over by S, T and let A be the set
of atom-variables ranged over by A,B. The grammar of the nominal language NLaAS with atoms,
atom-variables and expression-variables is:

e ::= W | π·S | (f e1 . . . ear(f)) | λW.e
π ::= ∅ | (W W ′) · π′
W ::= π·a | π·A

where π is a permutation and ∅ denotes the identity.

The language NLAS ⊂ NLaAS is defined by:

e ::= V | π·S | (f e1 . . . ear(f)) | λV.e
π ::= ∅ | (V V ′) · π′
V ::= π·A

Note that we permit nested permutation expressions. The expression ((π·A) (π′·A′)) is a single
nested swapping. The inverse π−1 of a permutation π = sw1· . . . ·swn with swappings sw i is the expres-
sion swn· . . . ·sw1. The set AtVar(e) are the atom-variables contained in e, ExVar(e) the expression-
variables contained in e and Var(e) = AtVar(e) ∪ ExVar(e). Furthermore, FVar(e) denotes the set
of free variables in e, i.e. all expression-variables and all atom-variables which are not bound. These
notations will also be used for other syntactic objects.

The languages of interest in this paper are NLa and NLAS . The ground language of NLAS is NLa,
i.e. expressions s of NLAS can be instantiated to ground expressions by ground substitutions that
replace atom-variables by atoms and expression-variables by ground expressions. The language NLaAS
serves as an intermediate language during the interpretation of NLAS terms.

3 A Quantified Logic of Freshness Constraints

The logic QFL is the background logic for the analysis of the formalism in this paper. It is used to
make statements such as correctness, completeness and complexity about matching algorithms and
equivalence of constrained expressions.

Definition 3.1. The formulas of Quantified Freshness Logic QFL are defined as follows, where e
denotes NLaAS-expressions, W atom-variable suspensions as in NLaAS, X denotes an A or S, and
logical operations work as usual.

Φ := Q1X1 . . . QkXk.ϕ where Qi ∈ {∀, ∃},
ϕ := Wi#e | e ∼ e | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

Since we use NLaAS there are permutations permitted in the language of QFL. We assume that
the simplification and application of ground permutations is done if possible. Thus we can assume that
ground expressions e are in NLa.

Validity of closed formulas is defined as follows:
∃AΦ iff Φ[a/A] for some a ∈ At;
∃XΦ iff Φ[e/X] for some e ∈ NLa;
∀AΦ iff Φ[a/A] for all a ∈ At;
∀XΦ iff Φ[e/X] for all e ∈ NLa;
> is always true;

¬ϕ iff ϕ is not valid;
ϕ1 ∨ ϕ2 iff ϕ1 or ϕ2;
ϕ1 ∧ ϕ2 iff ϕ1 and ϕ2;
a#e iff a#e holds in NLa;
e1 ∼ e2 iff e1 ∼ e2 holds in NLa

For simplicity we will sometimes use the notation V =# V ′ instead of V#λV ′.V , since the
constraint is valid if and only if V and V ′ are mapped to the same atom.

Note that unlike in first order logic, QFL has an implicit fixed domain, NLa. Note also that equality
in NLa is α-equivalence implying that relations on NLa cannot distinguish between α-equivalent terms.

4 Y. Kutz and M. Schmidt-Schauß

Similar to the first order we define a variant of equality where its semantics is α-equivalence, which
is necessary, since α-equality of non-ground expressions is not as straightforward as equality in the
first-order case.

A set of of quantifier-free formulas of the form W#e is called a freshness environment or freshness
constraint. These sets are interpreted as conjunctions of their elements. Furthermore, for a free variable
X (either an expression-variable or an atom-variable) in a formula ϕ, we say that an expression e or
an atom a is an interpretation of X if we consider the formulas ϕ[e/X] or ϕ[a/X] in the context at
hand. The semantics of a formula ∃X.Φ is then equivalent to there being an interpretation of X s.t.
Φ holds and conversely; ∀X.Φ holds if for all interpretations of X the formula Φ holds.

Definition 3.2. Let ϕ be a quantifier-free formula. If there is a ground substitution γ into NLa, such
that ϕγ is closed and valid, then we say γ is solution of ϕ, and also ϕ is satisfiable.

The final satisfiability check of unification [23] for example can be written as existential formula
∃X.∇, for a computed unifier (∇, σ).

Definition 3.3. Let ∆1, ∆2 be two freshness environments s.t. ∆1 ⊆ ∆2 and let
X1 = Var(∆1), X2 = Var(∆2) \X1. Then a QFL-formula of the form :

∀X1∃X2.(∆1 =⇒ ∆2)

is called a continuation check of ∆1 to ∆2. If the formula holds we say ∆1 can be extended to ∆2.

Corollary 3.4. Let ∆1, ∆2 be two freshness environments. Then ∆1 can be extended to ∆2 iff every
solution of ∆1 can be extended to a solution of ∆2.

3.1 Decision Procedures and Complexity Analysis

We provide decision algorithms for special forms and quantification of equality e1 ∼ e2, under con-
straints and for freshness extensions.

For equality the idea is as follows: We transform equations (at positive occurrences in the formulas)
into a freshness constraint which is equivalent to the equation, i.e. ∀X.(∆ =⇒ e1 ∼ e2) iff ∀X.(∆ =⇒
∇), and then use results for equality-free constraints.

Definition 3.5. For two NLaAS-expressions e1, e2 the algorithm EqToCons starts with the pair ({e1 ∼
e2}, ∅) and applies the rules in Figure 1. If it terminates with Γ = ∅, then the output is ∇.

(M1)
(Γ ·∪{e ∼ e},∇)

(Γ,∇)
(M2)

(Γ ·∪{π1·S ∼ π2·S},∇)

(Γ,∇∪ {A#λπ−1
1 π2A.S | A ∈ AtVar(π1, π2)})

(M3)
(Γ ·∪{π1·A ∼ π2·B},∇)

(Γ,∇∪ {π1·A =# π2·B})
(M4)

(Γ ·∪{(f e1 . . . ear(f)) ∼ (f e′1 . . . e
′
ar(f))},∇)

(Γ ∪ {e1 ∼ e′1, . . . , ear(f) ∼ e′ar(f)},∇)

(M5)
(Γ ·∪{λπ1·A1.e1 ∼ λπ2·A2.e2},∇)

(Γ ∪ {e1 ∼ ((π1·A1) (π2·A2))·e2},∇∪ {π1·A1#λπ2·A2.e2})

(M6)
(Γ ·∪{e1 ∼ e2},∇)

(∅, {¬>} ∪ ∇)
If the case of e1 ∼ e2 is not covered by the other rules.

Fig. 1. Rules of EqToCons

Lemma 3.6. The algorithm EqToCons takes an equation e1 ∼ e2 and a freshness environment ∆ as
input. If ∆ is satisfiable, then it produces a freshness environment ∇ in polynomial time s.t. ∀X.(∆ =⇒
e1 ∼ e2) iff ∀X.(∆ =⇒ ∇) and only fails if ∀X.(∆ =⇒ e1 ∼ e2) is false.

Rewriting with Generalized Nominal Unification 5

Proof. It is easy to verify that the rules (M1) . . . (M5) retain exactly the set of solutions. The rule (M6)
fires, if the top symbols of the expressions e1, e2 are different. If one or two are variables or suspensions,
then only the (M2) and the (M3)-cases can occur in case there is a solution. Other possibilities prevent
solutions, for example X1 ∼ X2 for X1 6= X2 is not solvable, since both are universally quantified, and
there are sufficiently many different NLa-expressions, in particular infinitely many different atoms.
Note also that (M2) is correct, since every atom A occurring in the permutations π1, π2 contributes
the constraint A#λπ−11 π2A.S, which informally means: If A is changed by π−11 π2, then A is fresh for
S. More detailed arguments can be derived from [23], since the rules assure equivalence on ground
substitutions.

The complexity follows from the following observations: First note, that every rule strictly de-
creases the size of Γ by at least 1. So there is at most a linear number of rule applications before
termination. The only rule which can increase the size of the data structure, and in particular the size
of permutations is (M5). This increase of the total size is bounded by 1 in depth and 1 in the number
of swappings per rule application, which bound the maximum permutation-size polynomially in the
input size. It follows that every rule runs in polynomial time in the input size, yielding a polynomial
time algorithm. In particular, the rule (M2) contributes only polynomial time, because the maximal
size of any permutations and the number of atoms is polynomially bounded in the input size.

Now we define the algorithm that decides QFL-formulas containing ∼-literals

Definition 3.7. The algorithm CheckEq decides QFL(∼) formulas of the form:

∀X : (∆ =⇒ e1 ∼ e2)

as follows:

(1) Apply EqToCons to e1 ∼ e2 resulting in ∇.
(2) Check the formula ∀X : (∆ =⇒ ∇) for validity

Proposition 3.8. There is a polynomial time transformation from QFL-formulas without equations
e1 ∼ e2 to QBL maintaining validity such that the quantifier schema in the form ∀∗∃∗ . . . or ∃∗∀∗ . . .
remains the same and the complete quantifier prefix increases only quadratically.

Proof. Let ϕ = Q1X1 . . . QkXk.ϕ
′ be a QFL-formula where m is the number of atom-variables and l

the number of expression-variables. To decide the validity of ϕ it is sufficient to take NLa,m, which
is NLa, but there are only m atoms M = {a1, . . . , am}. The justification is that there are only m
atom-variables, and no atoms in the formula; hence m atoms are sufficient for the interpretation of
atom-variables. Every permutation π will be interpreted as permutation over M , and suspensions
π·A will also be interpreted by some atom in M . This holds for all interpretations. Without loss of
generality we can assume that for every interpretation the same set of atoms is chosen. An NLa-
interpretation of nominal terms e may contain more atoms, but only the atoms from M that occur
in e are relevant for the truth-value of single freshness constraint. Hence it is sufficient to interpret
expression-variables S as a subset of M and then compute the freshness constraints. Now we can use
this interpretation to argue on the complexity. Every interpretation of ϕ is of at most quadratic size
in m. In addition, the check of validity of ϕ′ under the interpretation can be done in polynomial time.
Hence the complexity of the set of freshness formulas with a fixed quantifier prefix ∀∗∃∗ . . . is in the
corresponding complexity class for QBF-formulas with the same quantifier prefix.

The number of necessary variables corresponds to the size of the interpretation of variables as
bit-strings, which is ≤ m, hence a corresponding QBF formula has at most a quadratic number of
quantifiers.

Proposition 3.8 implies the following theorem.

Theorem 3.9. QFL-formulas without equations e1 ∼ e2 are in the complexity class in the polynomial
hierarchy as indicated by the quantifier prefix interpreted as QBF quantifier prefix.

6 Y. Kutz and M. Schmidt-Schauß

Lemma 3.6 and Theorem 3.9 imply:

Corollary 3.10. The validity check of QFL-formulas ∀X : (∆ =⇒ e1 ∼ e2) and ∀V : (∆ =⇒ ∇)
is in coNP. The validity check for formulas of the form ∀X1∃X2 : (∆ =⇒ ∇) is in Πp

2 .

3.2 Hardness of the Validity Check

To demonstrate the hardness of QFL-formulas we encode quantified Boolean formulas, in fact quan-
tified 3-CNF, into QFL formulas. This is sufficient to show hardness results [14].

The following constructions are used in our proofs below:
There are two atom-variables – True and False. For a Boolean formula with the variables {x1, . . . , xn}
the set {A1, . . . , An} defines the respective atom-variables and the set of (different) atom-variables
{A1, . . . , An} their respective negation. Therefore, we define the following constraints:

(1) ∆1 = {Ai#λTrue.λFalse.Ai | 1 ≤ i ≤ n}
(2) ∆2 = {Ai#Ai} ∪ {Ai#λTrue.λFalse.Ai | 1 ≤ i ≤ n}

The constraints ∆1, ∆2 ensure that the atom-variables behave like Boolean variables.
Now one needs to encode any given 3-CNF formula. For every clause l1 ∨ l2 ∨ l3 the literal li is Aj

or Aj for some j. Let Li be either Aj or Aj depending on li. The constraint True#λL1.λL2.λL3.True
encodes that the clause must be true. For a clause set {C1, . . . , Ck} define

∇ = {True#λLi1.λL
i
2.λL

i
3.True | 1 ≤ i ≤ k}

with the construction described as above.

Theorem 3.11. Decidability of validity of QFL-formulas of the form ∀X.(∆ =⇒ ∇) and
∀X.(∆ =⇒ e1 ∼ e2) is coNP-hard.

Proof. Let ϕ be a universally quantified 3-CNF formula with variables {x1, . . . , xn}.
Let {A1, . . . , An}, {A1, . . . , An}, ∆1, ∆2,∇ be constructed as described above. Then ϕ is valid iff

∀True, False, A1, . . . , AnA1, . . . , An.({True#False} ∪∆1 ∪∆2 =⇒ ∇) is valid.

is valid. Hence the class of formulas in the first claim is coNP-hard [14].
For the second claim, we construct e1, e2 that reduce to∇ using EqToCons, and hence are equivalent

to ∇
Let True#λLi1.λL

i
2.λL

i
3.True be any constraint in ∇. Let ei1 = λTrue.(True Li1) · (λLi2.λLi3.True)

and ei2 = λLi1.λL
i
2.λL

i
3.True. Then EqToCons reduces ei1 ∼ ei2 to the required constraint. Furthermore

f e11 . . . ek1 ∼ f e12 . . . ek2 reduces to ∇. Hence the second claim of the theorem holds.

Corollary 3.12. Decidability of validity of QFL-formulas of the form ∀X.(∆ =⇒ ∇) and
∀X.(∆ =⇒ e1 ∼ e2) is coNP-complete.

Theorem 3.13. Decidability of validity of QFL-formulas of the form ∀X1∃X2 : (∆ =⇒ ∇) is
Πp

2 -hard.

Proof. Let ϕ = ∀x1, . . . , xk∃xk+1 . . . xn.ϕ
′ be a QBF with ϕ′ being a 3-CNF.

Let {A1, . . . , An}, {A1, . . . , An}, ∆1, ∆2,∇ be constructed as described above. Then ϕ is valid iff

∀True, False, A1, . . . , Ak∃Ak+1, . . . , An, A1, . . . , An.({True#False} =⇒ ∆1 ∪∆2 ∪∇)

is valid. Hence Πp
2 -hardness follows [14].

Corollary 3.14. Decidability of validity of QFL-formulas of the form ∀X1∃X2 : (∆ =⇒ ∇) is
Πp

2 -complete.

Rewriting with Generalized Nominal Unification 7

4 Nominal Rewriting

In this section we define the operations of rewriting, matching and unification for nominal expressions.
In order to reason about terms in NLa on a meta level we define this on pairs (∆, e), called constrained
expressions. The advantage is that it leads to a decidable criterion for confluence on the ground level.
As a slight disadvantage, it complicates the algorithms and reasoning. For example, the notion of
equivalence of constrained expressions would permit several variants. We will use a variant that exactly
supports the joining of critical pairs.

In the following we develop and explain the nominal matching, nominal unification, nominal rewrite
and nominal Knuth Bendix confluence check.

4.1 Nominal Rewriting, Unification and Matching

We start by defining expressions under constraints, which will be the targets to be rewritten.

Definition 4.1. Let ∇ be a freshness constraint and e be an expression in NLAS. Then the pair
(∇, e) is called a constrained expression. The semantics Sem(∇, e) is defined as the set {eρ | eρ ∈
NLa and ∇ρ is ground and valid}.

Now we define rewrite rules, which are used in two ways: to rewrite constrained NLAS-expressions,
as well as (unconstrained) NLa-expressions. First we define ground rewriting, and after some prepa-
rations we define general rewriting in Definition 4.14.

Definition 4.2. A (nominal) rewrite rule is of the form R = (∇ ` l → r), where ∇ is a freshness
context and l, r are expressions of NLAS, and FVar(r) ⊆ FVar(l). Let R = {R1, . . . , Rn} be a rewrite
system consisting of a set of rewrite rules.

The induced (semantical) rewrite relation on NLa is defined as:

R,NLa−−−−→ = {(C[liγ], C[riγ]) | (∇i ` li → ri) ∈ R, C is any NLa-context,
γ is a ground substitution, dom(γ) = Var(Ri),
∇iγ is valid}.

The equational theory =R,NLa on NLa generated by R is the equivalence and contextual closure of
R,NLa−−−−→.

A rule that fits the definition would be a version of the η-expansion rule: {B#A} ` A→ λB.A B,
since the variable B is bound by the lambda on the right hand side. We permit also rules with a non-
deterministic behavior. For example, non-determinism is generated by the rule {(A#λB.λC.A}, A→
λB.λC.A), which permits a rewrite to two different expressions that are not α-equivalent.

Another effect shows up in the rule {(A#λB.λC.A,A#λC.λD.A}, A→ λB.C), which is not valid
according to our Definition 4.2, since a free atom is introduced. However, the rule is equivalent to
{(A#λB.λC.A,A#λC.λD.A}, A→ λB.A), which is permitted.

Definition 4.3. A binary relation Q on NLa is called equivariant, if (s1, s2) ∈ Q iff π.(s1, s2) ∈ Q
for any atom-permutation π.

Proposition 4.4. For any rewrite system R, the rewrite relation
R,NLa−−−−→ as well as the equational

theory =R,NLa are equivariant.

Proof. This simply holds, since the atom names are not mentioned in R and any ground substitution
can be used.

8 Y. Kutz and M. Schmidt-Schauß

As a corollary, we obtain, for example, that =R,NLa either makes all atoms equal, or makes all
atoms different.

Unification is classically defined as an algorithm to make terms equal via a substitution, or in the
nominal case a substitution and freshness environment [27, 13, 23].

Definition 4.5. Let P = (∆,Γ) be a unification problem consisting of a freshness constraint and a
set Γ of equations si

.
= ti between NLAS-expressions. Then (∇, σ) is a nominal unifier if for every ρ

such that Pσρ is ground and ∇ρ is valid, siσρ ∼ tiσρ holds for all equations in Γ and ∆σρ holds.
Furthermore, (∇, σ) is a most general unifier if for all ground solutions ρ of P there is a ground
substitution γ s.t. ∇σγ is valid and (σ ◦ γ)(X) ∼ ρ(X) for all X ∈ Var(P).

A matcher of a matching problem l � r is usually defined as a unifier which does not instantiate
(or further restrict) the right hand side by applying a substitution to it. Again we need to slightly
adapt the previous definitions.

Definition 4.6. [Matching] Let (∆1, s), (∆2, t) be two constrained expressions that are variable dis-
joint, i.e. V1 ∩ V2 = ∅ for V1 = Var(∆1, s) and V2 = Var(∆2, t). A matcher of the matching problem
(∆1, s) � (∆2, t) is a pair (∇, θ) of a constraint and a substitution as follows:

– The right hand side is not restricted, i.e. dom(θ) ⊆ V1 and every solution of ∆2 can be extended
to a solution of ∇∪∆1θ. This corresponds to the formula

∀V2∃V1 : (∆2 =⇒ ∇∪∆1θ)

– It is a unifier of (∆1 ∪∆2, {s
.
= t})

We call the tuple a most general matcher if it is a matcher and a most general unifier of (∆1∪∆2, {s
.
=

t})

When matching is used for rewriting, the disjoint variable condition can be easily fulfilled by
completely renaming the rewrite rule.

We provide an algorithm which computes a most general matcher based on the most general unifier
algorithm of [23].

Definition 4.7 (Matching algorithm). The input of the algorithm NomMatchAS is a matching-
problem (∆1, s) � (∆2, t) with V1 = Var(∆1, s), V2 = Var(∆2, t), where V1 ∩ V2 = ∅. The matching
algorithm operates on a triple consisting of: a set of equations, a freshness environment, and a substi-
tution. The matching algorithm starts with ({s � t}, ∅, ∅).
In its first phase it performs the rules in Fig. 2 until the triple is of the form (∅,∇, θ,), i.e. Γ is empty.
If the process gets stuck, then there is no match.
Afterwards the second matching condition needs to be checked, i.e. the validity of the formula

∀V2∃V1 : (∆2 =⇒ ∇∪∆1θ)

must hold.
The output of the algorithm is (∆2 ∪∇ ∪∆1θ, θ).

Example 4.8. These examples help to understand the meaning and effects of the definition and algo-
rithm of nominal matching.

– (∅, f(S, S)) � (∅, f(S1, S2)). This problem is not solvable, since S1 and S2 cannot be made equal.
– (∅, f(A,A)) � (∅, f(A1, A2)). In this case the algorithm computes ∇ = ({A =# A1, A =# A2}, θ =
∅. The final check ∀A1, A2∃A : (∅ =⇒ ∇) fails. Thus, the problem is not matchable.

Rewriting with Generalized Nominal Unification 9

(M1)
(Γ ·∪{e � e},∇, θ)

(Γ,∇, θ)
(M2)

(Γ ·∪{π · S � e},∇, θ), S ∈ V1

(Γ [(π−1 · e)/S],∇[(π−1 · e)/S], θ ∪ {S 7→ (π−1 · e)})

(M3)
(Γ ·∪{π1·S � π2·S},∇), S ∈ V2

(Γ,∇∪ {A#λπ−1
1 π2A.S | A ∈ AtVar(π1, π2)})

(M4)
(Γ ·∪{π1·A � π2·B},∇, θ)

(Γ,∇∪ {A =# π−1
1 ·π2·B}, θ)

(M4)
(Γ ·∪{(f e1 . . . ear(f)) � (f e′1 . . . e

′
ar(f))},∇, θ)

(Γ ·∪{e1 � e′1, . . . , ear(f) � e′ar(f)},∇, θ)

(M5)
(Γ ·∪{λπ1·A1.e1 � λπ2·A2.e2},∇, θ)

(Γ ·∪{((π1·A1) (π2·A2))·e1 � e2},∇∪ {(A1#π−1
1 ·(λπ2·A2.e2))}, θ)

Fig. 2. Rules of NomMatchAS

– ({A#B}, f(A,B)) � (∅, f(A1, A2)). In this case the algorithm computes ∇ = ({A =# A1, B =#

A2}, θ = ∅. The final check ∀A1, A2∃A,B : (∅ =⇒ {A =# A1, B =# A2, A#B}) fails, since A1

and A2 can be chosen to be equal. Again, the problem is not matchable.
– (∅, f(A,A)) � ({A1#λA2.A1}, f(A1, A2)) is solvable, since only instances are valid, where A1, A2

are instantiated by the same atom.

Theorem 4.9. NomMatchAS is sound and complete and computes a most general matcher if there
is some matcher.

Proof. Soundness: Soundness of the rules follows from [23]. If the final test succeeds it is a most general
matcher, since the rules produce most general unifiers.

For completeness, we need to show, that an output is produced if a matcher exist.
Let (∆1, s) � (∆2, t) be a matching-problem which has a matcher (∇, σ) and let V1 = Var(∆1, s),

V2 = Var(∆2, t). More concretely this means that

∀V2∃V1 : (∆2 =⇒ ∆1σ ∪∇)

holds and (∇, σ) is a unifier of (∆1 ∪∆2, s
.
= t).

If the first phase failed, there could not be a matcher. So we can safely assume that it produces
some (∇̃, σ′), which is by construction a most general unifier of (∅, s .

= t). The would-be output of the
algorithm, (∆2 ∪∆1σ ∪ ∇̃, σ′), is then by construction a most general unifier of (∆1 ∪∆2, s

.
= t). Let

∇′ = ∆2 ∪∆1σ ∪ ∇̃.
One still need to show, that this output satisfies the matching formula:

∀V2∃V1 : (∆2 =⇒ ∇′)

Let γ be any ground substitution, s.t. dom(γ) = V2 and ∆2γ is valid. Let ρ by some ground
substitution, s.t. dom(ρ) = V1 and (∆1σ∪∇)γρ is valid. The conditions are equivalent to ∆2(σ ◦γ ◦ρ),
∆1(σ ◦ γ ◦ ρ) valid and ∇(σ ◦ γ ◦ ρ) is valid.

Because (∇, σ) was a unifier of (∆1 ∪∆2, s
.
= t), s(σ ◦ γ ◦ ρ) ∼ t(σ ◦ γ ◦ ρ) must also hold, which

in turn implies that (σ ◦ γ ◦ ρ) is a solution of the unification problem.
Because (∇′, σ′) was a most general unifier, there must be ρ′ s.t.

(1) For all X ∈ V1, V2: (σ′ ◦ ρ′)(X) ∼ σ ◦ γ ◦ ρ(X).
(2) ∇′(σ′ ◦ ρ′) is valid.

Because γ was chosen as an arbitrary interpretation of V2, which satisfied ∆2 and (σ′ ◦ ρ′) differs
from γ on V2 at most by α-equivalence the formula:

∀V2∃V1 : (∆2 =⇒ ∇′)

holds as well.

10 Y. Kutz and M. Schmidt-Schauß

Theorem 4.10. Matching is Πp
2 -complete.

Proof. We can encode an equivalent problem to the formula in the proof of Theorem 3.13 as a matching
problem. To that end, let ∆′1 = (∆1 ∪∆2 ∪∇)[True′/True] be a freshness environment with the same
structure as in the proof of Theorem 3.13 but with a new atom-variable True′. Then (∆′1, True

′) �
({True#False}, True) is solvable iff the formula in Theorem 3.13 is solvable. This impliesΠp

2 -hardness.
The problem is in Πp

2 because NomMatchAS runs in two phases which are both in Πp
2 .

4.2 Equivalence of Constrained Expressions

We define equivalence of two constrained expressions with the motivation to use it in a Knuth-Bendix
confluence test for the join of critical pairs.

Definition 4.11. Let (∆1, e1), (∆2, e2) be two constrained expressions, let V be a set of variables, let
Vi = Var(∆i, ei) \ V and V1 ∩ V2 = ∅.

Then (∆1, e1) ≡V (∆2, e2) iff the following holds:

(1) ∀V ∃V1, V2 : (∆1 ⇐⇒ ∆2)

(2) ∀V ∀V1, V2 : (∆1 ∪∆2 =⇒ e1 ∼ e2)

Example 4.12. We illustrate the ≡V -definition for several examples:

– (A#B, λA.B A) and (A′#B, λA′.B A′) are equal w.r.t. ≡{B}:
∀B.∃A′, A : (A#B ⇐⇒ A′#B) holds.
Also ∀B.∀A,A′ : (A#B;A′#B, =⇒ λA.B A ∼ λA′.B A′) holds.
For V = {A,B}, or V = {A′, B}, this also holds but not for V = {A,A′, B}.

– As another example consider (A#λB.A, (A,B)) and (A#λC.A, (A,C)) with V = {A}. Then
∀A∃B,C : (A#λB.A ⇐⇒ A#λC.A) holds, and
∀A,B,C : (A#λB.A,A#λC.A =⇒ (A,C) ∼ (A,B) is valid.

The relation ≡V should not be seen as some equivalence relation – especially since it is in general
not transitive. It simply provides a criterion for determining that a confluence diagram is really closed.
More specifically, every time a forking occurs in a diagram, one can choose the current variables as V
and use ≡V to check whether two constrained expressions below do in fact refer to the same related
expressions. We write this more formally as a lemma:

Lemma 4.13. Let (∆, e), (∆1, e1), (∆2, e2) be constrained expressions, let V = Var(∆, e), Vi =
Var(∆i, ei) \ V and let → be any relation on constrained expressions. Suppose

(∆, e)

vv ((
(∆1, e1) (∆2, e2)

holds, with (∆1, e1) ≡V (∆2, e2). Let γ be any ground substitution with dom(γ) = V s.t. ∆γ is valid
and let ρi be any ground substitution with dom(ρi) = Vi s.t. ∆iγρi holds. Then e1γρ1 ∼ e2γρ2.
Furthermore, such a ρ1 exists iff such a ρ2 exists.

Proof. The first claim follows directly from criterion 2 and the second one from criterion 1 of Definition
4.11.

Another way to think of Lemma 4.13 is to say, that if (∆, e) → (∆1, e1), (∆, e) → (∆2, e2)
and (∆1, e1) ≡V (∆2, e2) then the corresponding induced relations on NLa are identical modulo α-
equivalence.

Rewriting with Generalized Nominal Unification 11

4.3 Nominal Rewriting

We define nominal rewriting on NLAS on constrained expressions (∆,C[s]) as targets where s is the
sub-expression that is to be modified, C is the context representing the position, and ∆ is a freshness
constraint.

Definition 4.14. Let (∇ ` l→ r) be a rewrite rule and let (∆,C[s]) be the constrained expression to
be rewritten, where Var(∇, l→ r) ∩Var((∆,C[s]) = ∅. The condition can be achieved by renaming of
(∇, l→ r).) A rewrite step is defined as follows:

Let (∇′, σ) be a most general matcher of (∇, l) � (∆, s) computed with NomMatchAS and let
∇′′ = ∇′ ∪∇σ. Then the result of rewriting is (∆ ∪∇′′, C[rσ]).
Thus the rewrite step is (∆,C[s])→ (∆ ∪∇′′, C[rσ]).

For a rewrite system R, this defines a rewriting relation
R−→ on constrained expressions over NLAS

with transitive closure
R,∗−−→.

4.4 Overlaps, Critical Pairs and Knuth-Bendix Confluence Criterion

Now we define overlap, join and critical pairs, the adapted Knuth Bendix-criterion for confluence and
sketch completion in our setting of nominal rewriting on NLa, where rules are formulated in NLAS .

Definition 4.15. An overlap of two rewrite rules is computed by the following algorithm. First the
rewrite rules are renamed such that they are variable-disjoint, where also the same rule may be used
twice: (∇1, l1 → r1) and (∇2, l2 → r2). Select a non-variable expression-position p in l1, represented by
a context C, such that C[l′1] = l1 and the hole of C is at position p, and the expression at the position
p is not a variable. Apply the unification algorithm in [23] to (∇1, l

′
1)

.
= (∇2, l2). If there is an overlap,

then the result of the unification algorithm is a most general unifier (∇, σ). The resulting overlap is
the constrained expression is (∆, l1σ) where ∆ = (∇∪∇1 ∪∇2)σ.

The critical pair consists of the corresponding rewriting results ((∆, r1σ), (∆,Cσ[r2σ])). The
overlap triple is then ((∆, l1σ), (∆, r1σ), (∆,Cσ[r2σ])). If (∆, r1σ) ≡V (∆,Cσ[r2σ]) where V =
Var(∆, r1σ, r2σ) holds, the critical pair is trivial.

Note that the technical treatment is slightly different from the criterion on first-order theories,
insofar as rewriting and joining in NLAS uses the common freshness constraints of a rewriting sequence.

Definition 4.16 (Nominal Knuth-Bendix Confluence Criterion). Let R be a finite nominal
rewrite system over NLAS. Let the following two properties hold:

1. Rewriting terminates on NLAS.

2. All critical pairs can be joined as follows: For every overlap triple ((∆, s), (∆, s1), (∆, s2)) according
to Definition 4.15 either the critical pair is trivial, or there are R-reduction sequences (∆, s1) →
(∆1,1, s1,2) → . . . → (∆1,k1 , s1,k1) and (∆, s2) → (∆2,1, s2,2) → . . . → (∆2,k2 , s2,k2) such that
(∆1,k1 , s1,k1) ≡V (∆2,k2 , s2,k2), where V = Var((∆, s).

Then we conclude that the rewrite relation of
R,NLa−−−−→ is terminating and confluent. We can also

conclude that the congruence generated by R on NLa is decidable by rewriting.

4.5 Proofs of Correctness

Lemma 4.17. Let R be a finite nominal rewrite system over NLAS. If C is a ground context and

s
R,NLa−−−−→ s′ for two ground expressions, then also C[s]

R,NLa−−−−→ C[s′].

Proof. This follows from Definition 4.14 of rewriting.

12 Y. Kutz and M. Schmidt-Schauß

Lemma 4.18. Let R be rewrite system, and let (∆, e) be a constrained expression with Var(∆, e) = V
and let (∆1, e1), (∆2, e2) be two constrained expressions, which arise from different branches during
rewriting of (∆, e), i.e.

(∆, e)
R,∗
vv

R,∗
((

(∆1, e1) (∆2, e2)

Then (∆1, e1) ≡V (∆2, e2) holds iff the second criterion holds, i.e.

∀V ∀V1, V2 : (∆1 ∪∆2 =⇒ e1 ∼ e2)

Proof. Because (∆i, ei) arise from rewriting and no shared new variables can be introduced during the
procedure, the introduced variables along the different reduction sequences are disjoint. Due to the
the matching condition, for ∆′i = ∆ \∆i the formula ∀V ∃Vi : (∆ =⇒ ∆′i) holds.

Using this we get the equivalence between the formulas ∆1 ⇐⇒ ∆2 and ∆ =⇒ (∆′1 ⇐⇒ ∆′2).
The first condition is then equivalent to:

∀V ∃V1, V2 : (∆ =⇒ (∆′1 ⇐⇒ ∆′2))

Because for every choice of V that satisfies ∆ one can always choose Vi, s.t. ∆′i holds, the formula
must hold as well.

Theorem 4.19. Let R be a set of rewrite rules over NLAS. If the Knuth-Bendix confluence criterion

in Definition 4.16 holds, and if
R−→ is terminating, then the rewrite relation

R,NLa−−−−→ is confluent.

Proof. Due to the Hindley-Rosen Lemma, it is sufficient to show that
R,NLa−−−−→ is locally confluent. There

are three types of divergences:

(i) Two reduction steps of
R,NLa−−−−→ at independent positions in an NLa-expressions. Then the reductions

are s1
R,NLa−−−−→ s′1, s2

R,NLa−−−−→ s′2, and since reductions in contexts are always possible by Lemma 4.17:
C[s1, s2]→ C[s′1, s2] and C[s1, s2]→ C[s1, s

′
2] can both be reduced to C[s′1, s

′
2], and hence joined.

(ii) The reduction steps of
R,NLa−−−−→ are at dependent positions (the overlap at or below a variable posi-

tion) in an NLa-expression. Then the situation can be captured by C1[C2[s]]
R,NLa−−−−→ C1[C

′
2[s, . . . , s]]

and C1[C2[s]]
R,NLa−−−−→ C1[C2[s

′]], where the rewrites are ∇ ` C2[X]
R−→ C2

′
[X, . . . ,X] with

C2[s] = C2[X]γ s.t. ∇γ is valid and ∇s ` s̄0
R−→ s̄0

′ with s = C3[s0ρ] for some NLa context
C3[] and ground substitution ρ with ∇sρ valid.

Since s
R,NLa−−−−→ s′, we have C1[C

′
2[s, . . . , s]]

R,NLa−−−−→ C1[C
′
2[s
′, . . . , s′]] by Lemma 4.17. The same

rewrite step for C2[s
′] as C2[s] is permitted, since the free atoms of s′ are all contained in s, and

thus the constraints cannot block this rewrite step. It yields C1[C
′
2[s
′, . . . , s′]]. Hence, the expression

can be joined by perhaps several reduction steps.
(iii) The two reduction steps are at dependent positions, but not at or below a variable position. This

corresponds to a critical pair. Since rewriting
R,NLa−−−−→ is derived from the general rewrite rules, there

is a critical pair that has these two reductions as instance. By assumption, the critical pair can be
joined up to ≡V where V is the set of variables of the overlap. Then Lemma 4.18 shows that the
instance critical pair can be joined such that the final expressions are α-equivalent. Note that the
used ground substitution may be extended during the reductions, but only for bound variables.

Theorem 4.20. Let R be a rewrite system over NLAS. If the Knuth-Bendix Confluence Criterion in
Definition 4.16 holds, then the rewrite theory =R,NLa on NLa is decidable.

Proof. This follows from Theorem 4.19, and the fact that all (finite) critical pairs can be effectively
computed and also tested whether they are joinable. Moreover, rewriting is terminating by assumption,
the rewrite steps are effective, and the final test ≡V is also decidable.

Rewriting with Generalized Nominal Unification 13

(return X >>=F) >>=G

Idl

{{

A
++

A#F,A#G
(return X) >>= (λA.(F A) >>=G)

Idl��

(F X) >>=G oo
Bβ

A#F,A#G
((λA.(F A) >>=G) X)

(M >>=F) >>= return

Idr

||

A
++

A#F
(M >>= (λA.(F A) >>= return))

Idr��

M >>=F oo
Bη

A#F
M >>= (λA.F A)

A#F
((λA.(F A)) >>= return) X

Bβtt

Idr

%%

(F X) >>= return

Idr

��
F X

A#F
(λA.F A) XBβFX

oo

Fig. 3. Completion of the Monad Rules

Remark 4.21. For a finite rewrite System R, we have a decidable test for confluence on NLa, but not
on the general level. To investigate the issue of confluence on the constrained expressions is future
work. This might entail the generalization of the current confluence test and/or the replacement of
≡V with some ≡′ which is independent of the start expression (∆, e) of the critical triple.

5 A Convergent Rewrite System for the Monad Laws

As an extended example, illustrating also the ideas and potentials of the nominal modeling and unifi-
cation in rewriting, in particular with atom-variables, we consider the monad laws [28]. An informal
explanation is that monads are a functional implementation of sequential actions, as an extension of
the lambda calculus, where a1 >>= a2 means a sequential combination of actions: a1 is executed before
a2, and the return-value v of a1 is used in action a2, written in lambda notation as (a2 v). These
are used as programming device in Haskell [15, 11, 16] for programming with state and to implement
IO and concurrency. Besides the operational behavior, there is a set of monad laws, describing the
desired behavior of monadic combinations as a set of rewrite rules (see below). [10] used second-order
unification, which is modulo the theory defined by the α, β, and η axioms, to show confluence. How-
ever, second-order unification is undecidable, and thus the application of this idea to other examples
will in general lead to undecidable algorithmic questions. In addition, η is not correct in call-by-need
functional languages like Haskell. Thus, we use (decidable) nominal unification with atom-variables
to obtain also confluence, however, for a finer notion of unification and of equivalence, since we use
only α-equivalence. An application of the rewrite system may be normalization of larger monadic
expressions. This would require the correctness of the monad theory in the programming language in
question.
We will use the following encoding: return is a function symbol of arity 0, app and >>= are function
symbols of arity 2, where we write >>= as infix, and app as juxtaposition. A,B,C denote atom-
variables, and other upper-case letters X,F,G,M expression-variables.

14 Y. Kutz and M. Schmidt-Schauß

A#F,A#λA′.F ′ A′, A′#F ′

(λA.(F A) >>=λA′.F ′ A′) X

Bη ++Bβss
(F X) >>=λA′.F ′ A′

Bη
// ((F X) >>=F ′) (λA.(F A) >>=F ′) X

Bβ
oo

A#G
(M >>= return) >>=G

Idr

ss

A

,,
M >>=G M >>=λA.G A

Bη
oo M >>= (λA.return A >>=G)

Idl

oo

A#F
(M >>=λA.F A) >>=G

Bη

vv

A

))

(M >>=F) >>=G

A
��

B#(λA.F A), B#G
M >>= (λB.(λA.F A) B >>=G)

BβFX
��

A′#F,A′#G
M >>= (λA′.F A′ >>=G)

≡{A,F,G,M} ` B#F,B#G
M >>= (λB.F B >>=G)

A#G
(M >>=F) >>=λA.G A

Bη

vv

A

))

(M >>=F) >>=G

A
��

B#F,B#(λA.G A)
M >>= (λB.F B >>=λA.G A)

Bη
��

A′#F,A′#G
M >>= (λA′.F A′ >>=G)

≡{A,F,G,M} ` B#F,B#G
M >>= (λB.F B >>=G)

Fig. 4. Joining the nontrivial critical pairs of Monad Theory: diagrams first part.

The three monad laws are encoded as rewrite rules as follows:

(Idl) ∅ ` (return X) >>= F → F X
(Idr) ∅ `M >>= return →M
(A) A#F,A#G ` (M >>=F) >>=G →M >>= (λA.(F A) >>= G)

It is a bit unusual that there are variables in the right-hand side that do not occur in the left-hand
side. In this case we assume that the names of the introduced variables are fresh ones, i.e. these do not
occur elsewhere in the same computation. Note also that the constraints in rules essentially restrict
the introduced variables on the right hand side of rewrite rules. An overlap of the rules Idr, Idl with
A leads to two extra rules Bβ, Bη, and an overlap of Bβ with Idr to BβFX, see Fig. 3.

Note that the three rules Bη, Bβ, and BβFX are consequences of the monad laws as equations
(w.r.t. α-equivalence), see Fig. 3. Note also that β or η as more general rules are inappropriate, since
they would prevent an embedding of monad laws into call-by-need lambda calculi with contextual
equivalence due to inconsistency of η in these semantics, and since the rule β (in general) leads to
nontermination of rewrite rules [19].

(Bη) A#F ` (M >>=λA.F A) →M >>=F
(Bβ) A#F,A#G ` (λA.(F A) >>=G) X → (F X) >>= G

(BβFX) A#F ` (λA.(F A)) X → (F X)

The combined rewriting system Rmonad consists of the 6 rules {Idl, Idr, A, Bη, Bβ, BβFX}.
Note that the rewrite rules satisfy Definition 4.2, which follows, since (A) only introduces bound fresh

Rewriting with Generalized Nominal Unification 15

A#(λA′.F A′), A#G,A′#F ` A#F
λA.(((λA′.F A′) A) >>=G) X

Bβ

tt

BβFX

**
((λA′.F A′) X) >>=G

BβFX // (F X) >>=G (λA.(F A) >>=G) X
Bβ

oo

A′#F,A′#G,A#λA′.F A′ >>=G ` A#F,A#G
(λA.(λA′.(F A′) >>=G) A) X

Bβss BβFX ++
(λA.(F A) >>=G) X

Bβ
// (F X) >>=G (λA′.(F A′) >>=G) X

Bβ
oo

Fig. 5. Joining the nontrivial critical pairs of Monad Theory: BβFX and Bβ

A#F
(return X) >>=λA.F A

Bη **Idltt
(λA.F A) X

BβFX
// F X (return X) >>=F

Idl

oo

A#λA′.F A′, A′#F ` A#F
M >>= (λA.(λA′.F A′)A)

BβFX **Bηtt
M >>= (λA′.F A′)

Bη
// M >>=F M >>= (λA.F A)

Bη
oo

A#λA′.F A′, A′#F ` A#F
(λA.(λA′.F A′)A) X

BβFX **BβFXtt
(λA′.F A′) X

BβFX
// F X (λA.F A) X

BβFX
oo

A#λA′.F A′ >>=G,A′#F,A′#G
` A#F,A#G

M >>= (λA.(λA′.F A′ >>=G) A)

Bβ
**

Bη
tt

M >>= (λA′.F A′ >>=G) ≡{M,F,G}
M >>= (λA.F A >>=G)

Fig. 6. Joining the nontrivial critical pairs of Monad Theory: diagrams second part.

names, and the other rules do not introduce fresh names. It is terminating, since the rules either
strictly decrease the size, or move the >>= -bracketing to the right and increase the size by a constant
(say 3). Termination of the rewrite system is a prerequisite for applying the Knuth-Bendix confluence
test.

The nominal monad rewrite systemRmonad is between first-order and higher-order. We use nominal
unification for computing the critical pairs and nominal matching for rewriting, where we permit atom-
variables in every case.

The following table shows the overlap possibilities, where three are used for completion

Idl Idr A Bη Bβ BβFX

Idl trivial Fig.3 Fig.6 −− −−
Idr Fig.3, and 4 −− Fig.3 −−
A Fig.6 Fig.4, c) and d) −− −−
Bη −− Fig.4 and 6 Fig.6
Bβ Fig.8 Fig.5
BβFX Fig.6

16 Y. Kutz and M. Schmidt-Schauß

A#F,A#G, A′#G,A′#G′

((M >>=F) >>=G) >>=G′

A

tt

A

**(M >>=F) >>= (λA′.G A′ >>=G′)

A

��

((M >>= (λA.F A >>=G)) >>=G′

A��
B#λA.F A >>=G, B#G′

M >>= (λB.((λA.F A >>=G) B >>=G′))

Bβ

��
M >>= (λB.(F B >>=G) >>=G′)

A��
B′#F, B′#λA′.G A′ >>=G′

M >>= (λB′.F B′ >>= (λA′.G A′ >>=G′))
oo

≡{A,A′,F,G,G′,M}
(Lemma 5.2)

// C#G,C#G′

M >>= (λB.F B >>= (λC.G C >>=G′))

Fig. 7. Joining the nontrivial critical pairs of Monad Theory: the A-A-diagram
A#F,A#G, A′#(λA.F A >>=G), A′#G′

(λA′.((λA.(F A) >>=G) A′) >>=G′) X
Bβ

ss

Bβ

++((λA.(F A) >>=G) X) >>=G′

Bβ

��

(λA′.((F A′) >>=G) >>=G′) X

A��

(F X >>=G) >>=G′

A

��

B#G,B#G′

(λA′.(F A′) >>= (λB.(G B) >>=G′)) X

Bβ

��
C#G,C#G′

(F X) >>= (λC.(G C) >>=G′)
oo

≡{A,A′,F,G,G′,X}
(Lemma 5.3)

// ` A′#G
(F X) >>= (λB.(G B) >>=G′)

Fig. 8. Joining the nontrivial critical pairs of Monad Theory: the Bβ-Bβ-diagram

Where trivial means that the critical pair is trivial, and −− means there is no overlap. We omit
BβFX, since there are no overlaps.

Lemma 5.1. The final expressions in Fig. 7 can be joined under the union of all constraints.

Proof. The constraints are: A#λA′.F A′, A′#F . this implies A#F by a case analysis whether A and
A′ are equally instantiated or not. This in turn implies F ′ ∼ (A A′)·F ′.

Before we prove that the non-trivial A-A-overlap can be joined, we look at a seemingly triv-
ial overlap. It is reducing (M >>=F) >>=G in two ways using (A) on the top: One result is
M >>= (λA.(F A) >>= G) with A#F,G, and another one is M >>= (λB.(F B) >>= G) with B#F,G.
The essential step in showing ≡{M,F,G} of the resulting constrained expressions is to argue that
λA.(F A) >>= G ∼ λB.(F B) >>= G by arguing that (F A) >>= G ∼ (A B)·(F B) >>= G, where the
freshness constraints show that this reasoning is correct.

The pair arising from the proper overlap of the associativity rule (A) with itself needs a check if
the final expressions are equivalent under the union of the constraints, which requires a bit more of
computations.

Lemma 5.2. The final expressions in the A-A diagram in Fig. fig:monad-joins-B are joinable.

Proof. The freshness constraints in the A-A-diagram in Fig. 6 are as follows:

left: A#F,G A′#G,G′ B′#F B′#λA′.G A′ >>=G′

right: A#F,G A′#G,G′ B#G′ B#λA.F A >>=G C#G,G′

We can derive the following further constraints:

Rewriting with Generalized Nominal Unification 17

(1) (right): B#F,G: If γ(B) = γ(A), then this follows from A#F,G.
If γ(B) 6= γ(A), then it follows from B#λA.F A >>=G.

(2) (left) B′#G,G’: If γ(B′) = γ(A′), then this follows from A#G,G′.
If γ(B) 6= γ(A′), then it follows from B′#λA′.G A′ >>=G′.

Now we have to verify the following equivalence:

M >>= (λB′.F B′ >>= (λA′.G A′ >>=G′)
≡{A,A′,F,G,G′,M}

M >>= (λB.F B >>= (λC.G C >>=G′))

This is equivalent to verifying:

(λB′.F B′ >>= (λA′.G A′ >>=G′)) ≡{A,A′,F,G,G′,M} (λB.F B >>= (λC.G C >>=G′))

Using the given and derived constraints, and since B,B′#F,G,G′, this is equivalent to verifying:

F B′ >>= (λA′.G A′ >>=G′) ≡{A,A′,F,G,G′,M} F B′ >>= (λ(B B′)·C.(G (B B′)·C) >>=G′))

A case analysis shows the remaining parts:

(1) If γ(A′) = γ((B B′)·C), then this is correct by a direct decomposition.

(2) If γ(A′) 6= γ((B B′)·C), then after an application of (A′ (B B′)·C)), and due to A′#G,G′, and
B,B′#G,G′ a direct decomposition shows equality.

Thus, we have shown that for V = {A,A′, F,G,G′,M} the formula:

∀V : ∇l ∪∇r =⇒ (λB′.F B′ >>= (λA′.G A′ >>=G′)) ∼ (λB.F B >>= (λC.G C >>=G′))

holds. Lemma 4.18 then implies the ≡V -equivalence and the join.

Lemma 5.3. The final expressions in the Bβ-Bβ-diagram are joinable.

Proof. The proof is analogous to the proof in lemma 5.2

As a summary we obtain:

Theorem 5.4. The monad axioms (Idl), (Idr) and (A) modulo α-equivalence have as completion the
additional rewrite rules (Bη), (Bβ) and (BβFX).
The rewrite system consisting of these 6 rewrite rules is terminating and confluent (as a ground
rewriting system), and a decision algorithm for the word-problem of the rewrite-theory of monad axioms
in NLa, modulo α-equality.

Proof. This follows from our computations in this section, the join-diagrams in this section, in par-
ticular Lemma 5.2, and the correctness of the Knuth Bendix confluence test for NLAS in Theorems
4.19,4.20.

6 Comparison of Our Approach with Nominal Rewriting with Atoms

Nominal rewriting was introduced by [7] as a way to define equivariant relations on NLa similar to first
order rewriting. We provide a description of this approach while using our notations. To distinguish
it from our formalism, it will be referred to as equivariant rewriting.

Definition 6.1. Let NLaS be the nominal language built with atoms and expression-variables. Let
s, t ∈ NLaS be two expressions and let ∇ be freshness environment on NLaS-expressions. A rewrite
judgement is defined as: ∇ ` l→ r.

18 Y. Kutz and M. Schmidt-Schauß

The semantics of the induced relation on NLa can be defined as follows (note that several equivalent
definitions exist).

1) The relation → on NLa is equivariant, i.e. if e1 → e2 holds, then π · e1 → π · e2 holds as well for
all permutations π on atoms.

2) For all ground substitutions γ for which ∇γ is valid, sγ → tγ holds.

During rewriting the first condition is “hidden” in an equivariant matching procedure. That is, rather
than trying to match two NLaS constrained expressions, (∇, l) � (∆, e) with only a substitution and a
freshness environment, one can also use a permutation on atoms π to make the two expressions equal.

Specifically, this means finding a triple (∇′, θ, π) s.t. ∇′ � lπθ ∼ e and ∆ � ∇πθ ∪ ∇′, where lπ

denotes the application on π only on atoms – not on expression-variables.
As a result, the atoms in such a rewrite rule gain a variable like character. As a matter of fact, one

could define an equivalent matching procedure in NLaAS – different from the one used in this paper.
To do that, one would map every atom ai on the left side of the matching equation (∇, l) �

(∆, t) to an atom-variable Ai and utilize the additional freshness constraints ∇′ = {Ai#Aj | i, j ∈
{1, . . . , k}, i < j} to enforce, that any solution of the matching problem matches the atom-variables to
different atoms. The part of the solution which matches atom-variables to atoms would then function
like the permutation pi in equivariant matching, with the only difference of it being a bijection between
atom-variables and atoms, rather than atoms and atoms.

This brings us to the first obvious difference of our formalism to the framework of [7], the usage
of atom-variables rather than atoms.

Example 6.2. Consider a simple version of (cpcx) in the concurrent calculus CHF [20, 19] or in other
functional programming calculi, formulated as a rewrite rule:

{B#Ai | i ∈ {1, . . . , k}} ` let B = c A1 . . . Ak in B → let B = c A1 . . . Ak in c A1 . . . Ak

where we do not care about the equality/inequality of the variable names occurring in this context.
To define an equivalent relation → on NLa in equivariant rewriting, one would need to add a rule for
each variant of equality/inequality of the atom-variables, yielding exponentially many rules.

The second difference, which is more subtle and at the same time semantically more meaningful,
is which expressions can in principle be matched.

Example 6.3. Consider the η-expansion of the lambda calculus formulated as a rule in equivariant
rewriting:

a#S ` S → λa.app S a

Within the framework of equivariant rewriting, the matching problem

({a#S, s}) � (∅, S′)

has no matcher, even though there always exists an atom b, s.t. b#S′ holds. However,

({a#S, s}) � ({b#S′}, S′)

has a matcher in (∅, {S 7→ S′}, (a b)).

In equivariant rewriting no new freshness constraints can be introduced, even if such an introduc-
tion would be semantically correct. This has the benefit, that the constrained implication check of
the procedure, ∆ � ∇πθ ∪ ∇′, collapses to checking a subset property ∇πθ ∪ ∇ ⊆ ∆ which in turn
allows fixing the initial constraint set ∆. However, it introduces a mismatch between what can seman-
tically be matched and what is procedurally matched. [8]. note that “this mismatch between nominal
rewriting and nominal algebra could be solved by including fresh atom generation in the definition of
a rewriting step”. This is in fact what is happening during the rewriting step of the approach taken in
this paper, with the benefit of being able to match things like η-expansion directly and the downside
of having to reason about a changing freshness environment.

Rewriting with Generalized Nominal Unification 19

7 Conclusion

We have developed a nominal matching algorithm for constrained nominal expressions, and determined
the complexity. We succeeded in formulating a variant of the Knuth Bendix confluence test for rewrite
system based on our nominal language NLAS with atom-variables, where the objects to be rewritten
are constrained expressions. Thus we obtained a decidable criterion for testing confluence, which in
the successful case, leads to a decidable α-equivalence check for theories on NLAS , i.e. we obtain also
decidability of word-problems modulo α-equivalence.

Thus, our method extends the rewriting and confluence check method of [6] by improving the
treatment of (dis-)equality of atoms in a more systematic way.

We also investigated as an extended example the higher-order theory of monads, which illustrates
the application of the Knuth Bendix confluence criterion. We also obtained a result for theory of
monads:A confluent rewrite system for monads is constructed as a completion of the three defining
rules. This is more fine-grained than the system in [10], which uses full beta-reduction.

Future work is to investigate whether also for (general) NLAS-rewriting on constrained expressions
a variant of the Knuth Bendix criterion for confluence can be constructed. Another direction of future
work is to extend the Knuth Bendix criterion for nominal rewriting with atom-variables to rewriting
modulo an equivalence relation.

Furthermore, we hope to extend the method to equational theories that are defined in more general
ways, for example using descriptions of infinite sets of equations by context variables in rules, and
applying the nominal unification algorithm as described in [22].

We also plan to implement a confluence tester for nominal term rewriting systems using our Knuth
Bendix algorithm with atom-variables with atom-variables

A potential application are some reduction rules in the call-by-need calculus of [1] and also to the
concurrent Haskell variant CHF [20, 21], like let y = v in C[y] → let y = v in C[v], where v is a
value, or similar rules.

Bibliography

[1] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. A call-
by-need lambda calculus. In POPL’95, pages 233–246, San Francisco, CA, 1995. ACM Press.

[2] Mauricio Ayala-Rincón, Maribel Fernández, Murdoch James Gabbay, and Ana Cristina Rocha-
Oliveira. Checking overlaps of nominal rewriting rules. ENTCS, 323:39–56, 2016.

[3] Christophe Calvès and Maribel Fernández. A polynomial nominal unification algorithm. Theor.
Comput. Sci., 403(2-3):285–306, 2008.

[4] James Cheney. Nominal Logic Programming. PhD thesis, Cornell University, Ithaca, NY, August
2004.

[5] James Cheney. Equivariant unification. JAR, 45(3):267–300, 2010.

[6] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting. Information and Computation,
205(6):917–965, jun 2007.

[7] Maribel Fernández, Murdoch J. Gabbay, and Ian Mackie. Nominal rewriting systems. In Proceed-
ings of the 6th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming, PPDP ’04, pages 108–119, New York, NY, USA, 2004. ACM.

[8] Maribel Fernández and Murdoch James Gabbay. Closed nominal rewriting and efficiently com-
putable nominal algebra equality. In Karl Crary and Marino Miculan, editors, Proceedings 5th In-
ternational Workshop on Logical Frameworks and Meta-languages: Theory and Practice, LFMTP
2010, Edinburgh, UK, 14th July 2010., volume 34 of EPTCS, pages 37–51, 2010.

[9] Maribel Fernández and Albert Rubio. Nominal completion for rewrite systems with binders. In
Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Proc. 39th
ICALP Part II, volume 7392 of LNCS, pages 201–213. Springer, 2012.

[10] Makoto Hamana. How to prove your calculus is decidable: practical applications of second-order
algebraic theories and computation. PACMPL, 1(ICFP):22:1–22:28, 2017.

[11] Haskell-community. Haskell main website, 2019. www.haskell.org.

[12] D. Knuth and P. B. Bendix. Simple word problems in universal algebra. In J. Leech, editor,
Computational problems in abstract algebra, pages 263–297. Pergamon Press, 1970.

[13] Jordi Levy and Mateu Villaret. An efficient nominal unification algorithm. In Christopher Lynch,
editor, Proc. 21st RTA, volume 6 of LIPIcs, pages 209–226. Schloss Dagstuhl, 2010.

[14] C. Papadimitriou. Computational Complexity. Addison-Wesley,, Boston, MA, USA, 1994.

[15] Simon L. Peyton Jones. Haskell 98 language and libraries: the Revised Report. Cambridge Uni-
versity Press, 2003. www.haskell.org.

[16] Simon L. Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In Proc. 23rd
ACM POPL 1996, pages 295–308. ACM, 1996.

[17] Andrew Pitts. Nominal techniques. ACM SIGLOG News, 3(1):57–72, February 2016.

[18] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge Uni-
versity Press, New York, NY, USA, 2013.

[19] D. Sabel and M. Schmidt-Schauß. Conservative concurrency in Haskell. In LICS’12, pages 561–
570. IEEE, 2012.

[20] David Sabel and Manfred Schmidt-Schauß. A contextual semantics for concurrent Haskell with
futures. In Peter Schneider-Kamp and Michael Hanus, editors, Proc. 13th ACM PPDP 2011,
pages 101–112. ACM, 2011.

[21] Manfred Schmidt-Schauß and Nils Dallmeyer. Space improvements and equivalences in a func-
tional core language. CoRR, abs/1802.06498, 2018.

[22] Manfred Schmidt-Schauß and David Sabel. Nominal unification with atom and context variables.
In Hélène Kirchner, editor, 3rd International Conference on Formal Structures for Computation
and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, volume 108 of LIPIcs, pages 28:1–28:20.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

Rewriting with Generalized Nominal Unification 21

[23] Manfred Schmidt-Schauß, David Sabel, and Yunus D. K. Kutz. Nominal unification with atom-
variables. J. Symb. Comput., 90:42–64, 2019.

[24] Christian Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reasoning, 40(4):327–356,
2008.

[25] Christian Urban and Cezary Kaliszyk. General bindings and alpha-equivalence in nominal Is-
abelle. Log. Methods Comput. Sci., 8(2), 2012.

[26] Christian Urban, Andrew M. Pitts, and Murdoch Gabbay. Nominal unification. In 17th CSL,
12th EACSL, and 8th KGC, volume 2803 of LNCS, pages 513–527. Springer, 2003.

[27] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification. Theor. Comput.
Sci., 323(1–3):473–497, 2004.

[28] Philip Wadler. Monads for functional programming. In Johan Jeuring and Erik Meijer, editors,
Advanced Functional Programming, First International Spring School on Advanced Functional
Programming Techniques, B̊astad, Sweden, May 24-30, 1995, Tutorial Text, volume 925 of Lecture
Notes in Computer Science, pages 24–52. Springer, 1995.

