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A B S T R A C T   

The filamentous ascomycete Podospora anserina is a well-established model system to study organismic aging. Its 
senescence syndrome has been investigated for more than fifty years and turned out to have a strong mito-
chondrial etiology. Several different mitochondrial pathways were demonstrated to affect aging and lifespan. 
Here, we present an update of the literature focusing on the cooperative interplay between different processes.   

1. Introduction 

Basic research often requires the availability of model systems which 
allow the efficient experimental investigation of specific questions. In 
aging research, different models are used, from different cell models up 
to whole organisms such as Drosophila melanogaster, Caenorhabditis ele-
gans and mice. Certainly, research with models closely related to the 
human species provides results which can be transferred to humans 
more easily. However, some characteristics make “simpler” model sys-
tems far more attractive. Especially in aging research, a short-lived 
model allows the convenient identification of lifespan-extending path-
ways. Such a model organism is the filamentous ascomycete Podospora 
anserina. Its wild type “s” [1] is characterized by a short life-span of 
about 3–4 weeks, which can be simply measured through the time 
period an individual can grow on solid medium. Already in the 1980s 
the reason for this short lifespan was uncovered: An intron within the 
mitochondrial DNA (mtDNA) encoded cytochrome c oxidase I gene 
(PaCoxI) leads to mtDNA instabilities and accelerates the aging process. 
More specifically, it was shown that the intron gives rise to the formation 
of a covalently closed circular DNA, termed plasmid-like DNA (plDNA), 
which thereafter reintegrates at specific sites into the mtDNA (Fig. 1). 
Subsequent recombination between repetitive integrated plDNA se-
quences leads to gross mtDNA rearrangements and loss of larger parts of 
the mtDNA including sequences coding for essential mitochondrial 
proteins [2,4–13]. This rather unique feature makes P. anserina an ideal 
candidate to investigate mitochondria-related processes that affect 

lifespan, since processes interfering with mitochondrial functions are 
expected to directly impact the onset of senescence. These studies are 
facilitated by the availability of convenient methods to isolate large 
amounts of age-matched mitochondria for physiological and biochem-
ical analyses. 

In fact, during the last decades, several mitochondrial processes have 
been shown to affect the lifespan of P. anserina (Table 1). Surprisingly, in 
some cases the outcome of these studies was rather unexpected and 
could only be explained by more complex interactions between different 
processes. Some of them cooperate synergistically and extend lifespan 
while the interaction of others accelerates aging. Overall, now a more 
holistic view about the molecular control of P. anserina aging is 
emerging. In this review, we will highlight recent findings on the 
interplay of mitochondrial processes and how these interactions affect 
lifespan in P. anserina. For a more comprehensive treatise and discussion 
of P. anserina aging and the relevance of this work for aging in general, 
the reader is referred to a recent review and earlier reviews cited herein 
[14]. 

2. Pro-death signaling: detrimental interaction of different 
mitochondrial processes 

Autophagy describes a conserved process of “self-eating” which is 
required to maintain cellular homeostasis [56,57]. While non-selective 
or general autophagy is mainly thought to recycle nutrients during 
starvation, selective autophagy acts as quality control pathway. It is 
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dedicated to remove superfluous but also damaged cellular components, 
such as dysfunctional mitochondria by mitophagy (reviewed in [58]). 
However, in certain settings, mitophagy turned out to be rather detri-
mental and results in lifespan reduction. The first P. anserina mutant, in 
which such a role was observed, strongly overexpresses the gene coding 
for PaCYPD, a mitochondrial peptidyl prolyl-cis, trans-isomerase, 
implicated in the regulation of the mitochondrial permeability transition 
pore (mPTP). Strong constitutive overexpression of PaCypD lowers 
mitochondrial membrane potential suggesting that opening of the mPTP 
is induced leading to the dissipation of the membrane potential. Lifespan 
is strongly decreased in the corresponding mutant [52] and goes along 
with an increase in general autophagy but to a much higher extent 
mitophagy [43]. Accordingly, deletion of PaCypD significantly reduces 
mitophagy and general autophagy. A pro-survival role of autophagy, 
which was demonstrated for the wild type [59], can be excluded in the 
PaCypD overexpressor because concomitant deletion of PaAtg1 encoding 
a core component of the autophagy machinery, does not result in 
additional lifespan reduction. Thus, it can be concluded that the 
observed autophagy/mitophagy induction is not beneficial for the 
PaCypD overexpressor. In another mutant, an even detrimental role of 
excessive mitophagy is observed. Deletion of the gene encoding the 
mitochondrial superoxide dismutase PaSOD3 impairs mitochondrial 
superoxide scavenging. As expected, this mutant is highly sensitive 

against paraquat [60], a generator of superoxide at the mitochondrial 
respiratory chain [61,62]. The mutant's lifespan is strongly reduced on 
paraquat containing medium. This reduction depends on a functional 
autophagy machinery [60]. It seems that the over-activation of 
mitophagy leads to a dramatic shortage of functional mitochondria 
resulting in lifespan reduction. 

Not only impaired mitochondrial superoxide scavenging but also the 
function of mitochondrial F1Fo-ATP-synthase (complex V) is linked to 
excessive mitophagy induction. Dimeric complex V regulates mito-
chondrial ultrastructure and ablation of the assembly factor PaATPE, 
which is required for dimer formation, leads to premature death in P. 
anserina [21]. Excessive PaCYPD-dependent induction of mitophagy was 
found to be responsible for this lifespan reduction [22]. 

These different examples demonstrate that impairments in different 
mitochondrial processes such as the regulation of mPTP, superoxide 
scavenging, and complex V function, are linked to a detrimental 
mitophagy induction. Excessive mitophagy induction thus seems to be a 
crucial negative feedback mechanism leading to lifespan reduction upon 
mitochondrial impairments. 

3. Pro-survival signaling: lifespan extension through positive 
feedback mechanisms 

3.1. Mitohormesis: mild oxidative stress results in lifespan extension 

At least eleven distinct sites in mitochondria were demonstrated to 
generate superoxide or hydrogen peroxide in isolated mitochondria 
(reviewed in [63]). Although both molecules are ROS, their potential 
impact on the cellular function is quite different. Superoxide hardly 
permeates membranes, it is short-lived, and thus mostly affects mole-
cules in the close vicinity and has low direct signaling potential. Matrix- 
localized superoxide dismutase continuously converts superoxide into 
hydrogen peroxide, which readily passes membranes and thus is able to 
transmit signals to the cytosol or other organelles. In the presence of 
copper or iron ions hydrogen peroxide induces the formation of hy-
droxyl radicals, which are highly reactive and immediately causes mo-
lecular damage. Strong oxidative stress is undoubtedly detrimental and 
accelerates the aging process by damaging various cellular compounds 
including proteins, lipids and DNA. Also mild oxidative stress was long 
time considered to reduce lifespan. However, within the last about 15 
years, the role of mild oxidative stress has been reconsidered. The term 
“mitohormesis” describes the beneficial alterations induced upon sub- 
lethal mitochondrial stress [64]. Nowadays, the concept of mitohorm-
esis is well accepted and describes the induction of an adaptive response 
to ROS produced in mitochondria. This retrograde response results in a 
health-promoting long-term reduction of oxidative stress (reviewed in 
[65]) and thus is able to lead to lifespan extension. The mitohormetic 
response in C. elegans is completely lost upon treatment with antioxi-
dants [66]. In humans antioxidants prevent health-promoting effects of 
physical exercise, which also increases mitochondrial ROS production. 
Obviously, the beneficial effects of mild oxidative stress strictly depend 
on ROS levels. Such a mitohormetic response was also observed in P. 
anserina. It was demonstrated that paraquat increases wild-type's life-
span at low concentrations up to 2.5 fold [43,60,67]. This lifespan 
extension is at least partly dependent on the autophagy machinery [60] 
and requires PaCYPD, suggesting that formation of the mitochondrial 
permeability transition pore (mPTP) is involved in signal transmission 
from mitochondria to the cytosol. Mild mitochondrial oxidative stress 
through paraquat treatment induces mitophagy [60], resulting in an 
overall increased capacity to handle mitochondrial damage. Not only 
paraquat exerts such a beneficial effect, but also curcumin, a natural 
polyphenol from the rhizome of turmeric, Curcuma longa. In P. anserina, 
curcumin increases lifespan in an autophagy- and superoxide dismutase- 
dependent manner [68]. Neither a mutant ablated for the core auto-
phagy protein PaATG1 nor for all superoxide dismutases responds to 
curcumin treatment, suggesting that a retrograde response, similar to 

Fig. 1. In P. anserina during aging massive reorganization of the mtDNA occurs. 
The mtDNA of P. anserina wild type “s” consists of about 94 kbp. Regions coding 
for proteins are depicted in light green. ND1, ND2, ND3, ND4, ND4L, ND5 
encode subunits of complex II. Cytb is the gene coding for a subunit of complex 
III, while CoxI, CoxII, and CoxIII encode the respective subunits of complex IV. 
ATPase6 and ATPase8 are the genes for the mitochondria-encoded subunits of 
complex V. Additional open reading frames with hitherto unknown function are 
ORFC, ORFP', ORFQ', and ORF11. The mitochondrial tRNA genes are shown in 
red (single letter code), and genes encoding the large and small mitochondrial 
ribosomal RNA subunits (LrRNA and SrRNA) are depicted in blue. With the 
exception of the pl-intron (pl) of the CoxI gene (marked in black), all introns are 
indicated in dark green. By a yet unknown mechanism the pl-intron forms 
stable covalently closed DNA circles, the so-called “plasmid-like” DNA (plDNA). 
The amount of plDNA dramatically increases during wild-type aging and forms 
the basis for gross mtDNA rearrangements. Single plDNA molecules are able to 
re-integrate into the mtDNA, specifically at two positions: Either at the CoxI 
exon/first intron site in a process termed “homing-like” integration or ectopi-
cally between tRNAI and tRNAS (I, S1, encoding the tRNAisoleucin and tRNAserine) 
[2,3]. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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that induced by paraquat, is responsible for the curcumin-dependent 
lifespan extension [68]. 

Such a retrograde response is not only induced by drug treatment but 
also during aging. Recently, a complexome study of P. anserina 

mitochondria uncovered an up-regulated recruitment of proteasome 
components and endoplasmic reticulum proteins to mitochondria dur-
ing aging [69]. It appears that intimate mitochondria/ER contact and 
CDC48 mediated proteasomal protein surveillance act as salvage 

Table 1 
Mitochondrial processes affecting P. anserina lifespan.  

Process/ 
gene 

Protein function/description Kind of mutation Impact on lifespan Reference 

Energy metabolism 
Nuo19.3 19.3 kDa subunit of complex I Deletion Increase [15] 
PaAnt1 Adenine nucleotide translocator PaAnt1M106P, PaAnt1A121P Increase or decrease, outcome depends on PaRmp1 

allele 
[16] 

PaAnt1S296M Decrease 
PaAox Alternative terminal oxidase Overexpression Decrease in complex IV and cyc1 mutants [17,18] 

Deletion Lethal in complex III or IV-mutants [19] 
PaAtp9 Subunit of complex V, two paralog genes 

(Atp9-5 and Atp9-7) exist 
Deletion of either of the two paralogs Exclusive use of Atp9-7 increases lifespan while 

exclusive use of Atg9-5 decreases lifespan 
[20] 

PaAtpe Subunit of complex V Deletion Decrease [21,22] 
PaAtpg Subunit of complex V Deletion Decrease [21] 
PaCox1 Subunit 1 of complex IV Deletion of first intron and few adjacent 

nucleotides of upstream exon 
Increase [10] 

PaCox5 Subunit 5 of complex IV Deletion Increase [15,19,23,24] 
PaCox17 Chaperone delivering copper to complex IV Deletion Increase [25] 
PaCyc1 Cytochrome c1 Mutation Increase [18,19] 
PaNdi1 Internal alternative NADH oxidase Overexpression Decrease in complex I-mutant [15] 
PaOxa1 Respiratory complex assembly Thermosensitive allele oxa1ts Increase or decrease, outcome depends on PaRmp1 

allele 
[26] 

PaRcf1 Supercomplex assembly Deletion Decrease [27] 
Overexpression Increase 

PaRse2 Transcription factor required for PaAox 
expression 

Deletion Decrease, lethal in complex III/IV mutants [28] 
Mutation leading to increased PaAox 
expression 

Decrease in complex III/IV mutants 

PaRse3 Transcription factor required for PaAox 
expression 

Deletion Decrease, lethal in complex III/IV mutants [28] 
Mutation leading to increased PaAox 
expression 

Decrease in complex III/IV mutants  

Mitochondrial proteostasis 
PaClpP Mitochondrial matrix protease Deletion Increase [29–31] 
PaIap Mitochondrial inner membrane protease Deletion Increase [29,32,33] 
PaLon1 Mitochondrial matrix protease Overexpression Increase [34] 

Deletion Decrease [35]  

Protein import 
PaTim54 Component of mitochondrial inner 

membrane transport complex 
Mutation which impairs it expression Increase, level depends on PaRmp1 allele [36] 

PaTom70 Component of mitochondrial outer 
membrane transport complex 

Mutation altering the last 97 amino acids Increase [37]  

Reactive oxygen species (ROS) scavenging 
PaMth1 Mitochondrial methyltransferase Overexpression Increase [38] 

Deletion Decrease [39] 
PaNdk1 Mitochondrial NAD(H) kinase Deletion Increase [40] 
PaSod3 Mitochondrial MnSOD Overexpression Decrease [41–43]  

mtDNA integrity 
mtHMG1 mtDNA binding? Deletion Decrease [44] 
pAl2-1 Mitochondrial plasmid Presence Decrease of calorie-reduction-mediated longevity [45,46] 

Integration in mtDNA Increase [46]  

Others 
Grisea Transcription factor, regulation of copper 

homeostasis 
Loss-of-function mutation Increase [47–49] 

Pa_1_10620 Component of mitochondrial ribosome? Overexpression Increase [50] 
PaAif2 Mitochondrial AIF-like oxidoreductase Deletion Increase [51] 
PaAmid2 Mitochondrial AIF-like oxidoreductase Deletion Increase [51] 
PaCrd1 Cardiolipin synthase Deletion Decrease [33] 
PaCypD Mitochondrial peptidyl prolyl-cis, trans- 

isomerase 
Overexpression Decrease [43,52] 

PaDnm1 Mitochondrial fission factor Deletion Increase [53] 
Overexpression Decrease [54] 

PaMdm10 Component of ERMES Missense mutation Decrease in mat- (PaRmp1-1) [37] 
PaMt1 Cytosolic metallothionein (copper 

chaperone) 
Targeting to mitochondria Increase [55]  
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pathways helping mitochondria to counteract the age-dependent accu-
mulation of damage. 

Also in a PaSod3 deletion mutant retrograde signaling is observed. 
Here, the compensatory induction of a mitohormetic response leading to 
mitophagy induction explains the mild phenotype of the mutant under 
standard growth conditions [60]. These data demonstrate that the 
analysis of mutants impaired in pathways considered to be required for a 
long healthspan, allows the identification of compensatory pathways. 

3.2. Induction of alternative respiration 

An outstanding function of mitochondria is the generation of ATP 
through oxidative phosphorylation at the respiratory chain (Fig. 2). 
Standard respiration requires the interaction of three large protein 
complexes: complex I (NADH:ubiquinone oxidoreductase), complex III 
(ubiquinol:cytochrome c oxidoreductase), and complex IV (cytochrome 
c oxidase). Electron transport through these complexes leads to the 
translocation of protons across the inner mitochondrial membrane 
resulting in the formation of a protonmotive force which drives ATP 
synthesis at complex V (F1Fo-ATP-synthase). At complex I and complex 
III single electron transfer to molecular oxygen is possible leading to the 
formation of the superoxide anion, a ROS. In addition to the three core 
complexes, branching points of the respiratory chain exist in filamentous 
fungi which allow them to cope with varying environmental conditions 
such as nutrient and co-factor availability, development or oxidative 
stress (reviewed in [70]), and also were shown to play a pivotal role in 
aging of P. anserina. By-passing complex I is possible either via the use of 
complex II (succinate dehydrogenase), which feeds electrons from suc-
cinate into the respiratory chain, or of alternative NADH:ubiquinone 
oxidoreductases that either transfer electrons from matrix-located 
NADH (internal NADH dehydrogenases) or from the intermembrane 
space (external NADH dehydrogenases) to ubiquinol. Finally, instead of 
complex IV (and complex III) an alternative quinol oxidase, the sali-
cylhydroxamate (SHAM)-sensitive alternative oxidase AOX, which is 
described in plants, algae, some protists, and in P. anserina as in most 
other fungi (reviewed in [71]) can be used (Fig. 2). 

In P. anserina a number of studies demonstrate the induction of 
PaAox transcription, respectively AOX-dependent respiration associated 
with lifespan extension. Aox induction results from mutational changes 
in the mtDNA [49], impairment of complex IV assembly [23,27], lack of 
the complex IV essential co-factor copper [25,48,49,55,72,73], muta-
tion in the adenine nucleotide translocase gene PaAnt1 [16], deletion of 
the gene encoding the mitochondrial NAD(H) kinase PaNDK1 [40], 
down-regulation of PaTIM54, a homolog of the yeast mitochondrial 

inner membrane import machinery component Tim54p [36], mutation 
of the cytochrome c gene [18], impaired respiratory complex assembly 
[26], and oxidative stress [42,67]. In all these mutants, lifespan is 
affected (see Table 1). Since AOX-dependent respiration by-passes 
complex III and IV, it results in a lower mitochondrial membrane po-
tential, and less superoxide formation since complex III-dependent ROS 
formation is circumvented. Both consequences alleviate or prevent 
oxidative stress not only directly by omitting complex III but also indi-
rectly by decreasing the reduction state of coenzyme Q which provides 
the reduction equivalents for AOX. Although the AOX protein is barely 
detectable in young P. anserina wild type under standard conditions, 
oxygen consumption measurements demonstrate a partly SHAM- 
sensitive AOX-dependent respiration even at young age [69,74]. Dur-
ing aging, the membrane potential dissipates. Addition of SHAM leads to 
a further reduction of this residual membrane potential [75] supporting 
earlier findings that during aging respiration becomes more SHAM- 
sensitive [76]. PaAox transcript can be readily detected in middle- 
aged cultures and its level increases during aging [77]. Recently the 
age-dependent induction of AOX was demonstrated [69]. This suggests, 
that AOX (at least in low amounts) is constitutively present, and thus 
AOX induction is a highly effective measure to rapidly adapt to variable 
environmental and physiological conditions. 

AOX induction is not only linked to lifespan extension but also to 
reduced mycelial pigmentation, growth retardation, and female steril-
ity. Especially the latter two most probably result from the lowered ATP 
production during AOX-dependent respiration. The organism seems to 
counter-act these ATP limitations by the transcriptional induction of 
glycolytic enzymes [24]. Interestingly, deletion of the gene encoding 
PaMED13, a component of the evolutionary conserved Mediator com-
plex, improves growth rate and pigmentation of the complex IV- 
deficient mutant ΔPaCox5, but still results in lifespan extension [24]. 
Mediator regulates gene expression by integrating different input signals 
and transducing them to the RNA polymerase II machinery (reviewed in 
[78]). In ΔPaMed13/ΔPaCox5 the transcription of genes encoding 
glycolytic enzymes, such as hexokinase, fructose-biphosphate aldolase, 
triose phosphate isomerase, phosphoglycerate kinase, enolase, and py-
ruvate kinase, is even higher than in ΔPaCox5 and thus glycolytic ATP 
production might be enhanced without detrimental effects on lifespan. 
Taken together, these data suggest that not AOX induction per se is 
lifespan-extending but rather the (mild) reduction of the mitochondrial 
membrane potential and electron flow through the respiratory chain 
accompanied by a decreased reduction state of coenzyme Q. Further up- 
regulation of AOX level and thereby most probably also the mitochon-
drial ATP production restores wild-type fertility and pigmentation, but 

Fig. 2. The respiratory chain of P. anserina. The electrons from internal NADH enter the respiratory chain either at complex I or at the internal NADH dehydrogenase 
(aNADH-DH int), while electrons from external NADH are transferred to ubiquinone (UQ) via two different alternative external NADH dehydrogenases (aNADH-DH 
ext. 1 and 2). Alternatively, electrons from succinate are delivered to ubiquinone (UQ) via complex II. The electrons from reduced ubiquinone are transferred to 
complex III and subsequently via cytochrome c (Cytc) to complex IV, or alternatively, to the alternative terminal oxidase AOX. At complex I, III, and IV protons are 
pumped across the inner mitochondrial membrane resulting in a protonmotive force which is used by complex V to produce ATP. At complex I and III single electron 
transfer to molecular oxygen results in the formation of superoxide anion (•O2

− ), a free radical. 
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also reduces lifespan to wild-type level [17], supporting this idea. 
The individual respiratory complexes I, III, and IV are assembled 

together into supercomplexes in so-called respirasomes ([79], see recent 
review by [80]). The functional relevance of their formation is still not 
completely elucidated. Supercomplexes have been suggested to allow 
efficient substrate transfer between the individual complexes (“substrate 
channeling”, [79]). A recent study questions this role. To test for sub-
strate channeling, AOX was incorporated in mammalian heart mito-
chondria to create a competing pathway for quinol oxidation [81]. The 
authors demonstrated that the quinol generated in the supercomplexes 
by complex I is more rapidly reoxidized by the AOX outside the super-
complexes than by complex III within supercomplexes. Quinone/quinol 
freely diffuse in and out of the supercomplexes and therefore, it seems 
that substrate channeling does not occur and is not required for respi-
ration. However, one commonly accepted role of supercomplexes at 
least in mammals is the assembly and/or stabilization of the largest 
respiratory complex, complex I. Consequently, in mammals complex III 
and IV are required for complex I stability/assembly [82–85]. On the 
one hand, supercomplexes might provide a scaffold that helps to 
assemble complex I [86]. On the other hand, inactivation of complex III 
and IV results in over-reduction of coenzyme Q, and stimulates reverse 
electron transport (RET) that generates superoxide [87]. Its formation 
damages complex I proteins inducing their degradation. Unlike in 
mammals, in P. anserina complex III [18], or complex III together with IV 
are not required for stabilization/assembly of complex I [19], and the 
authors speculate that instead AOX is involved in complex I stabiliza-
tion. This idea is supported by the observation that PaAox expression is 
induced in a complex I-deficient mutant (mentioned in [15]), possibly as 
a compensatory response. Interestingly, in mouse cell lines heterologous 
expression of a fungal Aox gene stabilizes complex I in the absence of 
complex III and IV [87]. It is thus rather plausible that in fungi (and 
plants) AOX plays naturally an important role in complex I stabilization 
and may thus also be induced upon complex I impairment. Indeed in 
maize plants, complex I deficiency also results in AOX induction [88]. 
However, until now, no evidence exists for a direct interaction of AOX 
with complex I. Obviously, further studies on a potential interplay be-
tween complex I stability and AOX are required to fully understand the 
extent of compensatory capacity of AOX induction. 

Beside AOX induction, another form of alternative respiration linked 
to longevity was demonstrated to occur upon complex I deficiency [15]. 
In this case, the alternative internal NADH dehydrogenase PaNDI1 is 
required for viability of a mutant impaired in complex I assembly to by- 
pass complex I at the expense of strongly reduced male and female 
fertility. Interestingly, similar to the senescence-restoring effect by over- 
expressing PaAox in complex III or IV mutants, overexpression of PaNdi1 
also restores the short wild-type lifespan. This again strongly argues for a 
beneficial role of lowered membrane potential and decreased coenzyme 
Q reduction state while preserving the electron flow through the respi-
ratory chain. In accordance with the data described above, by-passing 
complex I and II by an oleic acid diet recently also was shown to in-
crease P. anserina lifespan, here without negatively affecting growth rate 
[89]. Moreover, even at the level of complex V composition lifespan can 
be modulated. P. anserina encodes two different c-subunit isoforms, 
ATP9-5 and ATP9-7, which antagonistically affect longevity [20] 
(Table 1). 

Overall, these data demonstrate that the plasticity of the composition 
of the respiratory chain provides efficient compensatory mechanisms 
which are able to delay the aging process. 

3.3. Impairments in mitochondrial proteostasis 

The mitochondrial proteome consists of about 1000 to 1500 different 
proteins. Most of them are imported from the cytosol. Their processing, 
import, and also folding has to be tightly controlled. To ensure proper 
mitochondrial function, the degradation and replacement of dysfunc-
tional proteins is necessary. Moreover, as part of a rewiring program to 

adapt to altered metabolic conditions, the removal of superfluous pro-
teins is essential. A diverse group of proteases evolved that forms the so- 
called mitodegradome (reviewed in [90]). Some of these proteases 
control proteins just in one mitochondrial compartment, e.g. the matrix, 
while others control proteins in several compartments, such as the outer 
mitochondrial membrane (OMM), the intermembrane space (IMS), and 
the inner mitochondrial membrane (IMM) (recently reviewed in [91]). 
An example for the latter one is an i-AAA protease located in the inner 
mitochondrial membrane (PaIAP in P. anserina, YME1 in yeast, YME1L 
in humans). This protease controls protein import, lipid metabolism, 
mitochondrial dynamics and the level of different IMM, IMS, and OMM 
proteins (reviewed in [91]). It was thus unexpected and surprising to 
observe a pronounced lifespan extension in the PaIap deletion mutant of 
P. anserina. This effect is seen at 27 ◦C growth temperature. At 37 ◦C, the 
mutant turned out to be short-lived [32], indicating that PaIAP is 
required for heat-stress adaptation. A recent study links the altered lipid 
metabolism of this mutant to the observed role in lifespan control [33]. 
It was found that PaIAP regulates the level of the cardiolipin synthase 
PaCRD1 and other enzymes in phospholipid (PL) metabolism to allow 
adaptation to different conditions (e.g. temperature changes). Its abla-
tion results in a stimulation of cardiolipin synthesis and a pronounced 
reorganization of the mitochondrial PL profile. At standard conditions, 
these alterations lead to lifespan extension. Thus, ablation of a compo-
nent of the mitochondrial protein quality control system beneficially 
affects PL metabolism. These data imply a compensatory role of mito-
chondrial PL composition rewiring upon proteostasis impairment. 

Proteostasis is also impaired in mutants lacking another mitochon-
drial protease, the matrix-located caseinolytic protease CLPP. While the 
phenotypic consequences of CLPP ablation are quite different, its role in 
degrading subunits of the N-module of complex I [92] is conserved 
across eukaryotes (recently reviewed in [93]). Similar to what is seen 
with PaIAP, a P. anserina mutant ablated for PaCLPP shows a pro-
nounced lifespan extension [29]. Like in mammals and plants, complex I 
subunits as well as components of the pyruvate dehydrogenase complex 
and the tricarboxylic acid cycle are presumable substrates of PaCLPP 
[94]. Accordingly, ablation of PaCLPP affects the TCA cycle, glucose and 
amino acid metabolism and nucleotide levels [31]. PaCLPP therefore 
obviously plays a central role in controlling energy metabolism. The 
lifespan extension of the deletion mutant is thus rather unexpected. 
Subsequent investigations revealed that induction of autophagy is not 
only able to compensate the deficits in energy metabolism of the mutant 
but leads to the observed lifespan extension [30]. Surprisingly, 
concomitant deletion of PaSnf1, the gene encoding the catalytic α-sub-
unit of AMP-activated protein kinase (AMPK), a master regulator of 
autophagy, does not shorten lifespan but results in dramatic lifespan 
extension on glucose-containing medium [31]. Such a synergistic 
interaction indicates that AMPK signaling limits the lifespan of the 
PaClpP deletion mutant. AMPK is not only involved in autophagy in-
duction but also in the stimulation of various catabolic processes 
(reviewed in [95]) and was shown in yeast to be required for the 
metabolic switch from glycolysis to respiration [96]. It seems that in the 
PaClpP deletion mutant – on glucose-containing media – such a switch is 
unfavorable, perhaps by overwhelming mitochondrial metabolism. 
Interestingly, the level of this synergistic interaction depends on the 
presence of fully functional PaRMP1 [31]. This protein is homolog to the 
yeast SLS1 protein, which coordinates transcription of mtDNA encoded 
genes and the subsequent translation [97]. In accordance, PaRMP1 was 
linked to respiratory complex assembly [26], but unfortunately, a con-
crete function has not yet been elucidated. Nevertheless, the data ob-
tained with the ΔPaClpP/ΔPaSnf1 mutant suggest that translation of 
mitochondria-encoded proteins is relevant for the longevity pheno-
type. Indeed, this idea is supported by findings in mice. Here, CLPP was 
shown to regulate mitoribosome maturation [98]. Ablation of CLPP 
delays maturation and in a mouse mutant with dysfunctional mito-
chondrial translation, ClpP deletion results in a strong lifespan extension 
[99]. Taken together, these studies suggest that downscaling of 
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mitochondrial metabolism by preventing AMPK signaling and impairing 
mitochondrial translation is highly beneficial upon PaCLPP ablation. 

As indicated by the above introduced examples, impairments in 
mitochondrial proteostasis do not necessarily accelerate aging, but 
might rather stimulate compensatory pathways. 

4. Conclusions 

Each of the above described processes is obviously important for the 
maintenance of mitochondrial function. However, one should not un-
derestimate the ability of other – non-redundant – processes to respond 
to disturbances in mitochondrial function. In a changing environment 
with different temperatures, limited nutrient availabilities or fluctuating 
oxidative stress load, different pathways gain differential importance 
and therefore allow a high plasticity to respond to changes. Model or-
ganisms such as P. anserina have invaluable advantages compared to 
complexer organisms to study such aspects, because they often show low 
redundancy of pathways. It is thus much less complicated to efficiently 
interfere in these pathways. Moreover, intervention in processes, which 
in animal models are lethal, e.g. because of being involved in embryonic 
development, are often feasible to study in models like P. anserina. 
Especially the latter feature allows to uncover compensatory in-
teractions upon mitochondrial impairment not only on a cellular basis 
but also in fully developed organisms. Translation of this knowledge to 
humans is possible in cases in which evolutionary conserved processes 
are studied. Such studies can provide valuable tools to overcome mito-
chondrial dysfunction. One example for this is the elaborate study of 
alternative respiration in fungi. The hereby identified alternative res-
piratory complexes allow to study the distinct consequences of complex I 
deficiency in mammals. For example, heterologous expression of the 
gene encoding the yeast alternative internal NADH dehydrogenase NDI 
was found to increase survival of a complex I-deficient mouse mutant 
[100]. While NDI prevents neuro-inflammation, it does not prevent 
ataxia, demonstrating that other processes than impaired NAD+ regen-
eration contribute to the development of motor dysfunction in this 
mouse model. Also another study provided valuable information on the 
processes affected upon respiratory impairments. Heterologous expres-
sion of fungal Aox restores electron transport in mtDNA-less mouse cells 
[101] and helped to uncover the role of coenzyme Q over-reduction in 
complex I destabilization in human cells [87]. Since mitochondrial 
dysfunction in humans is associated with aging and a number of age- 
associated diseases (for recent reviews see: [102–104]), information 
about compensatory or counteractive mechanisms should facilitate the 
development of suitable treatments to improve the healthy period, the 
healthspan, in the life of organisms including our own species. 
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[1] G. Rizet, Sur l’impossibilité d’obtenir la multiplication végétative ininterrompue 
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