SUPPLEMENTARY INFORMATION

Supplementary Figure 1a: Sanger sequencing results of 5x(O)RDN5. The sequence confirms the identity of the *RDN5* copy. It covers the downstream junction between the incorporated copy and the genomic DNA (right forward donor DNA). On the upstream side, parts of another incorporated *RDN5* copy are covered, indicating the incorporation of at least two copies at this genomic site.

Manger et al. Ex vivo visualization of RNA polymerase III-specific gene activity with electron microscopy

Supplementary Figure 1b: Sanger sequencing results of 2.5x(J)*HSX1*. The sequence confirms the identity of the *HSX1* copy. It covers both the upstream and the downstream junctions between the incorporated copy and the genomic DNA (left reverse donor DNA and right forward donor DNA). At this genomic site, only one copy was incorporated.

Supplementary Figure 2: Southern blot (SB) analysis of isolated genomic DNA. Dashed arrows mark the bands of the endogenous RDN5 gene copies and the empty incorporation sites (the endogenous copies are themselves part of the rDNA repeats). (a) Exemplary SB analysis of clones created in IMX672 (WT, see dotted box) background using editing condition 5x(RDN5) (see Supplementary Table 4). The clone inside the dashed box (5x(O)RDN5) was used for further experiments. (b) SB analysis of iteratively edited and propagated clones. Clones were created in 5x(O)RDN5 background using editing condition 5x (see Supplementary Table 4). The clone inside the dashed box (5x(O)RDN5) was re-analyzed after three rounds of replating (*). (c) SB analysis of the long-term stability of the clones 2.5x(J)HSX1 and 5x(O)RDN5. Both clones were re-analyzed after > ten rounds of re-plating over the course of > six month (**) in triplicates from individual plates. We used KPL GeneRulerTM Biotinylatd DNA Ladder. The band pattern of 2.5x(J)HSX1 perfectly matches that on the SB in Figure 2 (clone from original plate). The band pattern of 5x(O)RDN5 matches that in Supplementary Figure 2b (after three rounds of re-plating) and Figure 2 (after \sim five rounds of re-plating). In comparison to the band pattern in Supplementary Figure 2a (clone from original plate), additional, higher-migrating bands are visible at the top of the pattern. These could derive from a lower DNA digestion or DNA transfer efficiency of the earliest SB or an early recombination event during strain propagation. As no further changes in band pattern occurred between more often re-plated strains in later SB analyses, we consider the first explanation to be more likely. Later SB analyses (Supplementary Figure 2c and Figure 2) have been performed with digestion and transfer times of > 16h to promote appearance of higher-migrating bands.

Supplementary Figure 3: Overview of Miller trees in chromatin spreads of (a) IMX672 (WT), (b) 2.5x(J)HSX1 and (c) 5x(O)RDN5. The rDNA repeat seems unchanged in overall appearance and numbers of Miller trees. The samples were positively stained with UA and PTA; EM images were acquired at 12,000x magnification at a defocus of $-40 \mu m$.

Supplementary Figure 4: Growth of IMX672 (WT), 5x(O)RDN5 and 2.5x(J)HSX1. The OD₆₀₀ of the strains were measured every hour over the course of 18 hours for three distinct replicates per strain. The curves were analyzed by logarithmic transformation and linear fit from t = 3 to t = 13 (exponential growth phase) with line slopes being 0.189 ± 0.006 (R² = 0.992) for IMX672 (WT), 0.185 ± 0.004 (R² = 0.996) for 5x(O)RDN5 and 0.179 ± 0.006 (R² = 0.994) for 2.5x(J)HSX1. Error bars represent standard deviations.

Supplementary Figure 5: Boxplot analysis of maximal incorporated copy numbers for all experimental conditions. Box = 25–75%, bracket = range within 1.5 IQR, horizontal line = median, square = mean, diamonds = outliers. Boxplots include only clones with a positive incorporation result. The number of positive clones and their percentage in relation to all analyzed clones are indicted below the boxes. Sample-sizes were based on the maximal number of samples that could be analyzed in parallel by Southern blotting. No data was excluded, all analyzed clones were included in the box plot.

Manger et al. *Ex vivo* visualization of RNA polymerase III-specific gene activity with electron microscopy

Supplementary Figure 6: Raw and uncropped Southern blot membranes. (a - b) Supplementary Figure 2a (c - d) Supplementary Figure 2b (e) Supplementary Figure 2c (f) Figure 2a

	Sequence 5' to 3'
Oligo I (fw)	GAGACCAACGTGGAGGAGCGTCGACGTCTGGACCCTGCCCTCATATCACC
RDN5	TG
Oligo II (rev)	CCCTGCCCTCATATCACCTGCGTTTCCGTTAAACTATCGGTTGCGGCCATAT
RDN5	
Oligo III (fw)	ACTATCGGTTGCGGCCATATCTACCAGAAAGCACCGTTTCCCGTCCGATCA
RDN5	A
Oligo IV (rev)	ACCGTTTCCCGTCCGATCAACTGTAGTTAAGCTGGTAAGAGCCTGACCGA
RDN5	GT
Oligo V (fw)	TGGTAAGAGCCTGACCGAGTAGTGTAGTGGGTGACCATACGCGAAACTCA
RDN5	GG
Oligo VI (rev)	GACCATACGCGAAACTCAGGTGCTGCAATCTTTATTTCTTTTTTTT
RDN5	
Oligo VII (fw)	TATTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
RDN5	
Oligo VIII (rev)	TTTCTAGTTTCTTGGCTTCCTATGCTAAATCCCATAACTAAC
RDN5	ATTCAGAA
Oligo IX (fw)	CATAACTAACCTACCATTCGATTCAGAAAAATTCGCACTGCAGTTAGGATT
RDN5	A
Oligo X (rev)	CGCTCCTCCACGTTGGTCTCGAGATTAGCTGCCTTTAATCCTAACTGCAGT
RDN5	GCGA
Oligo I (fw)	GAGACCAACGTGGAGGAGCGTCGACTAATAATATTACTATGCAACTTAGG
HSX1	
Oligo II (rev)	CCAACTTGGTTGAACTCTAAGAAATATGAGGTACCTAAGTTGCATAGTAAT
HSX1	A
Oligo III (fw)	TAGAGTTCAACCAAGTTGGTTCCGTTGGCGTAATGGTAACGCGTCTCCCTC
HSX1	C
Oligo IV (rev)	CGTACGGGACTCGAACCCGCAGTCTTCTCCTTAGGAGGGAG
HSX1	CA
Oligo V (fw)	CGGGTTCGAGTCCCGTACGGAACGTTGATTATTTTTTTTT
HSX1	ATA
Oligo VI (rev)	GATTATCTCATCGCAAGGTAATATCGTCTGAATTTTTTCTATAAAGAAACGA
HSX1	AAAAAA
Oligo VII (fw)	ACCTTGCGATGAGATAATCTTACCGCAGAAAGAGTGCCACAGTGGTAATC
HSX1	TGCAGTTA
Oligo VIII (rev)	GCTCCTCCACGTTGGTCTCGAGATTAGCTGCCTTTAATCCTAACTGCAGATT
HSX1	ACCACTG

Supplementary Table 1: Sequences of the oligonucleotides used to assemble the repeat unit.

Supplementary Table 2: Sequences of the donor DNA pieces.

	Sequence 5' to 3'
Left reverse donor DNA	TCCAGACGTCGACGCTCCTCCACGTTGGTCTCTAATGGAGTGCTTAAC
RDN5	TCTTCAGAAGAAGAGTGCAGCTGGATAGTGCGAATTTTTCTGAATCGAAT
	GGTAGGTTAGTTATGGGATTTAGCATAGGAAGCCAAGAAACTAGAAAAAA
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	TTCGCGTATGGTCACCCACTACACTACTCGGTCAGG
	Reverse begin of repeat + reverse 200 bp genomic DNA

Right forward donor	CTACCATTCGATTCAGAAAAATTCGCACTGCAGTTAGGATTAAAGGCA					
DNA DDN5						
KDN3						
	Forward end of repeat + forward 200 bp genomic DNA					
Long left reverse donor	TCCAGACGTCGACGCTCCTCCACGTTGGTCTCTAATGGAGTGCTTAAC					
DNA RDN5	TUTTCAGAAGAAGAGTGCAGCTGGATAGTGCGAATTTTTCTGAATCGAAT					
	GGTAGGTTAGTTATGGGATTTAGCATAGGAAGCCAAGAAACTAGAAAAAA					
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA					
	TTCGCGTATGGTCACCCACTACACTACTCGGTCAGGCTCTTACCAGCTTAA					
	CTACAGTTGATCGGACGGGAAACGGTGCTTTCTGGTAGATATGGCCGCAA					
	CCGATAGTTTAACGGAAACGCAGGTGATATGAGGGCAGGGTCCAGACATG					
	TTCAGTAGGTGGGAGTGAGAGGGGGGGGGGGGGGGGGGG					
	ATTTCATCTAATAGCAATAGGATATGACAGGTGAAAAAGCAAAAGCAATAG					
	TGCATTGTGATGTGGAGAATAAGGTGCATACGATGAAAAAGGTGATTTGTC					
	ATTTACAAGAGGTAGGTCGAAACAGAACATGAAAGTTGGTCGGTAGGTGG					
	CATGCAGAGGTAGTTTCAAGGTGACAGGTTATGAAGATATGGTGCAAAAG					
	ACAAATGGATGGTGGCAGGCATAGTAAAATGATGGTGTGGAAGACATAGA					
	TGGTATTTGTTTTGCATTTACGGCACCGGATGCGGGCGATAATGACGGGAA					
	GAGATTTAGTATGTGGGACAGAATGTCGGCGGCAGTATTGAGACCATGAG					
	AGTAGCAAACGTAAGTCTAAAGGTTGTTTTATAGTAGTAGGATGTAGAAA					
	ATGTATTCCGATAGGCCATTTTACATTTGGAGGGACGG					
	Reverse begin of repeat \pm reverse 808 bp genomic DNA					
Long right forward	CTACCATTCGATTCAGAAAAATTCGCACTGCAGTTAGGATTAAAGGCA					
donor DNA	GCTAATCTC TGCTCATTGGGTTGCTACTACTTGATATGTACAAACAATATTC					
RDN5						
KD105						
	TCTACACCCTCGTTTAGTTGCTTCTTATTCCTTCCCGCTTTCCTGCACTAAC					
	ACTCATGTTTGCCGCTCTGATGGTGCGGAAAAAACTGCTCCATGAAGCAA					
	ACTGTCCGGGCAAATCCTTTCACGCTCGGGAAGCTTTGTGAAAGCCCTTC					
	TCTTTCAACCCATCTTTGCAACGAAAAAAAAAAAAAAAA					
	AAGACCAAATAGTAAATAGTAACTTACATACATTAGTAAATGGTACACTCTT					
	ACACACTATCATCCTCATCG					
	Forward end of repeat + forward 833 bp genomic DNA					
Long left reverse donor	GCATAGTAATATTATTAGTCGACGCTCCTCCACGTTGGTCTC TAATGGA					
DNA	GTGCTTAACTCTTCAGAAGAAGAGTGCAGCTGGATAGTGCGAATTTTTCT					
HSX1	GAATCGAATGGTAGGTTAGTTATGGGATTTAGCATAGGAAGCCAAGAAACT					
	AGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA					
	ACCTGAGTTTCGCGTATGGTCACCCACTACACTACTCGGTCAGGCTCTTAC					
	CAGCTTAACTACAGTTGATCGGACGGGAAACGGTGCTTTCTGGTAGATATG					
	GCCGCAACCGATAGTTTAACGGAAACGCAGGTGATATGAGGGCAGGGTCC					
	AGACATGTTCAGTAGGTGGGAGTGAGAGGGGTGTTATGGGTGGAGGACAATT					
	TTTATTATATTCATCTAATAGCAATAGGATATGACAGGTGAAAAAGCAAAA					

Manger et al. *Ex vivo* visualization of RNA polymerase III-specific gene activity with electron microscopy

		GCAATAGTGCATTGTGATGTGGAGAATAAGGTGCATACGATGAAAAAGGT
		GATTTGTCATTTACAAGAGGTAGGTCGAAACAGAACATGAAAGTTGGTCG
		GTAGGTGGCATGCAGAGGTAGTTTCAAGGTGACAGGTTATGAAGATATGG
		TGCAAAAGACAAATGGATGGTGGCAGGCATAGTAAAATGATGGTGTGGAA
		GACATAGATGGTATTTGTTTTGCATTTACGGCACCGGATGCGGGCGATAAT
		GACGGGAAGAGATTTAGTATGTGGGACAGAATGTCGGCGGCAGTATTGAG
		ACCATGAGAGTAGCAAACGTAAGTCTAAAGGTTGTTTTATAGTAGTAGGA
		TGTAGAAAATGTATTCCGATAGGCCATTTTACATTTGGAGGGACGG
		Reverse begin of repeat + reverse 808 bp genomic DNA
Long right	forward	CAGTGGTAATCTGCAGTTAGGATTAAAGGCAGCTAATCTCTGCTCATTG
donor DNA		GGTTGCTACTACTTGATATGTACAAACAATATTCTCCTCCGATATTCCTACA
HSX1		AAAAAAAAAAAAAAAAAACACTCCGGTTTTGTTCTCTTCCCTCCATTTCCCT
		CTCTTCTACGGTTAATACTTTCCTCTTCGTCTTTTTCTACACCCTCGTTTAGT
		TGCTTCTTATTCCTTCCCGCTTTCCTGCACTAACATTTTGCCGCATTACACTA
		TATGATCGTAGTACATCTTACAACTCCGCATACCGCGTCGCCGCGTCGCCG
		CGTCGCCAAAAATTTACTTCGCCAACCATTCCATATCTGTTAAGTATACATG
		TATATATTGCACTGGCTATTCATCTTGCACTTTTCCTCTTTCTT
		AGCCTCATCCTTTTACGCTGCCTCTCTGGAACTTGCCATCATCATTCCCTAG
		AAACTGCCATTTACTTAAAAAAAAAAAAAAAAAAAAAAA
		TCACTGTTCACTGTTCACTTGTCTCTTACATCTTTCTTGGTAAAATCGTAGT
		TCGTAGTATTTTTTTTTTCATATCAAAGGCATGTCCTGTTAACTATAGGAAATG
		AGCTTTTCTCAATTCTCTAAACTTATACAAGCACTCATGTTTGCCGCTCTGA
		TGGTGCGGAAAAAACTGCTCCATGAAGCAAACTGTCCGGGCAAATCCTTT
		CACGCTCGGGAAGCTTTGTGAAAGCCCTTCTCTTTCAACCCATCTTTGCAA
		CGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
		AACTTACATACATTAGTAAATGGTACACTCTTACACACTATCATCCTCATCG
		Forward end of repeat + forward 833 bp genomic DNA

Supplementary Table 3: Sequences of all primers used.

Abbreviation	Function	Sequence
p_1.1_fw	pMEL10 linearization	GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAG
		TC
p_1.2_rev	pMEL10 linearization	GATCATTTATCTTTCACTGCGGAGAAG
p_2.1_fw	left 70 bp gRNA cassette	TGCGCATGTTTCGGCGTTCGAAACTTCTCCGCAGTGAA
		AGATAAATGATCTAGCAACCCAATGAGCATAA
p_2.2_rev	right 70 bp gRNA cassette	GTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTA
		GCTCTAAAACTTATGCTCATTGGGTTGCTA
p_3.1_fw	left reverse	TCCAGACGTCGACGCTCCTCCACGTTGGTCTCTAATGG
	donor RDN5	AGTGCTTAACTCTTCAGAAGAAG
p_3.2_rev	left reverse	CCTGACCGAGTAGTGTAGTGGGTG
	donor RDN5	
p_3.3_fw	right forward	CTACCATTCGATTCAGAAAAATTCGCACTGCAGTTAGGA
	donor RDN5	TTAAAGGCAGCTAATCTCTGCTCATTGGGTTGCTACTAC
		TTG
p_3.4_rev	right forward	ATGTTAGTGCAGGAAAGCGGGAAG
	donor RDN5	
p_3.5_fw	long left reverse	TCCAGACGTCGACGCTCCTCCACGTTGGTCTCTAATGG
	donor RDN5	AGTGCTTAACTCTTCAGAAGAAG
p_3.6_rev	long left reverse	CCGTCCCTCCAAATGTAAAATGGCCTATCGG
	donor RDN5/HSX1	

p_3.7_fw	long right forward donor	CTACCATTCGATTCAGAAAAATTCGCACTGCAGTTAGGA
	RDN5	TTAAAGGCAGCTAATCTCTGCTCATTGGGTTGCTACTAC
		TTG
p_3.8_rev	long right forward donor	CGATGAGGATGATAGTGTGTAAGAGTGTACC
	RDN5/HSX1	
p_3.9_fw	long left reverse	GCATAGTAATATTATTAGTCGACGCTCCTCCACGTTGGT
	donor HSX1	CTCTAATGGAGTGCTTAACTCTTCAGAAGAAG
p_3.10_fw	long right forward donor	CAGTGGTAATCTGCAGTTAGGATTAAAGGCAGCTAATCT
	HSX1	CTGCTCATTGGGTTGCTACTACTTG
p_5.1_fw	Pol3 RDN5/HSX1 repeat	GAGACCAACGTGGAGGAGC
	unit	
p_5.2_rev	Pol3 RDN5/HSX1 repeat	GAGATTAGCTGCCTTTAATCCTAA
	unit	
p_6.1_fw	p414-TEF1p-Cas9-CYC1t	TCTCAGCTCGGTGGAGACAGCAG
	linearization	
p_6.2_rev	p414-TEF1p-Cas9-CYC1t	TTTCCCGGGGGGATCCACTAGTTCTAG
	linearization	
p_6.3_fw	PZF1 insert generation	CTAATCTAAGTTTTCTAGAACTAGTGGATCCCCCGGGAA
		AAGTAACTGTTGAAATCGCTGTC
p_6.4_rev	PZF1 insert generation	GCGTGACATAACTAATTACATGACTCGAGGTCGACACC
		AATTGCAGTAACAAAATGGC

Manger et al.

Ex vivo visualization of RNA polymerase III-specific gene activity with electron microscopy

Supplementary Table 4: Amounts of components used to transform IMX672 for CRISPR/Cas9 incorporation experiments.

			RDN5				HSX1	
	1x	2x	2.5x	5x	10x	2.5x	5x	10x
pMEL10_ gRNA [µg]	1	2	1	5	5	1	2.5	2.5
Right_fw donor DNA [pmol]	5	10	5	14.5	16.2	6.3	11.5	9.8
Left_rev donor DNA [pmol]	5	10	5	14.5	16.2	6.3	11.5	9.8
Long right_fw donor DNA [pmol]	-			3.2	5.8	3.9	5.0	4.2
Long left_rev donor DNA [pmol]	-			3.2	5.8	3.9	5.0	4.2
Oligonucleotides (each) [pmol]	100	200	250	500	1000	250	500	1000

Supplementary Table 5: Numbers of Pol III complexes over all analyzed pairs of Miller trees from 5x(O)RDN5, 5x(O)RDN5 with TFIIIA overexpression and 2.5x(J)HSX1.

	Trees per strain					
Pol III	5x(O)RDN5	5x(O)RDN5	2.5x(J) <i>HSX1</i>			
complexes		with TFIIIA				
0	10	3	6			
1	0	1	3			
2	4	7	5			
3	6	3	5			
4	7	10	5			
5	3	10	6			
6	2	7	3			
7	1	4	0			
8	1	8	1			
9	1	0	1			
10	0	1	0			
	35	48	41	= n		