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Comparison of machine learning algorithms to predict clinically
significant prostate cancer of the peripheral zone
with multiparametric MRI using clinical assessment categories
and radiomic features
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Abstract
Objectives To analyze the performance of radiological assessment categories and quantitative computational analysis of apparent
diffusion coefficient (ADC) maps using variant machine learning algorithms to differentiate clinically significant versus insig-
nificant prostate cancer (PCa).
Methods Retrospectively, 73 patients were included in the study. The patients (mean age, 66.3 ± 7.6 years) were examined with
multiparametric MRI (mpMRI) prior to radical prostatectomy (n = 33) or targeted biopsy (n = 40). The index lesion was anno-
tated inMRI ADC and the equivalent histologic slides according to the highest Gleason Grade Group (GrG). Volumes of interest
(VOIs) were determined for each lesion and normal-appearing peripheral zone. VOIs were processed by radiomic analysis. For
the classification of lesions according to their clinical significance (GrG ≥ 3), principal component (PC) analysis, univariate
analysis (UA) with consecutive support vector machines, neural networks, and random forest analysis were performed.
Results PC analysis discriminated between benign and malignant prostate tissue. PC evaluation yielded no stratification of PCa
lesions according to their clinical significance, but UA revealed differences in clinical assessment categories and radiomic
features. We trained three classification models with fifteen feature subsets. We identified a subset of shape features which
improved the diagnostic accuracy of the clinical assessment categories (maximum increase in diagnostic accuracy ΔAUC= +
0.05, p < 0.001) while also identifying combinations of features and models which reduced overall accuracy.
Conclusions The impact of radiomic features to differentiate PCa lesions according to their clinical significance remains contro-
versial. It depends on feature selection and the employed machine learning algorithms. It can result in improvement or reduction
of diagnostic performance.
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Key Points
• Quantitative imaging features differ between normal and malignant tissue of the peripheral zone in prostate cancer.
• Radiomic feature analysis of clinical routine multiparametric MRI has the potential to improve the stratification of clinically
significant versus insignificant prostate cancer lesions in the peripheral zone.

• Certain combinations of standard multiparametric MRI reporting and assessment categories with feature subsets and machine
learning algorithms reduced the diagnostic performance over standard clinical assessment categories alone.

Keywords Prostate cancer .MultiparametricMRI .Machine learning . Artificial intelligence . Radiomics

Abbreviations
ADC Apparent diffusion coefficient
AFS Anterior fibromuscular stroma
AUC Area under the curve
CI Confidence interval
DCE Dynamic contrast-enhanced
DWI Diffusion-weighted imaging
FOV Field of view
GrG Gleason Grade Group
JE Joint entropy
LA Least axis
max3D Maximum 3D diameter
mpMRI Multiparametric MRI
MRI Magnetic resonance imaging
n Absolute number
NA Not available
NN Neural network
PC Principal component
PCa Prostate cancer
PI PI-RADS
PSA Prostate-specific antigen
PZ Peripheral zone
ROC Receiver operating characteristics
RPX Radical prostatectomy
SD Standard deviation
SVR Surface to volume ratio
T1w T1-weighted
T2w T2-weighted
TE Echo time
TR Repetition time
TSE Turbo-spin-echo
UA Univariate analysis
US Ultrasonography
VOI Volume of interest

Introduction

The diagnosis of prostate cancer (PCa) must be con-
firmed by tumor tissue [1, 2]. Magnetic resonance imag-
ing (MRI)–guided biopsies or ultrasonography (US)-/
MRI-fusion biopsies can improve the detection rate of

PCa [1, 3–5]. Multiparametric MRI (mpMRI) improves
patient selection for biopsy and may reduce the amount
of unnecessary invasive workup [4]. Even with image
guidance, sampling bias represents a key challenge as
conf i rmat ion of d iagnos i s i s compromised by
multifocality and the high degree of temporal and spatial
intratumoral heterogeneity [6–9]. The sampling bias is
problematic as the risk group influences the therapeutic
approach [1, 4, 8, 10]. Definition of clinically significant
PCa is a challenging dynamic process with ongoing de-
bates [10–13]. Patients with Gleason Grade Group (GrG)
≤ 2 have a much better prognosis than those with GrG
≥ 3 [11, 12]. Furthermore, patients with GrG ≤ 2 may be
feasible for active surveillance or ablative therapies [13].
There is a high need to optimize non-invasive risk strat-
ification [14]. mpMRI is the basis of the Prostate
Imaging Reporting and Data System (PI-RADS), a stan-
dardized protocol for acquisition, examination, and
reporting [3, 15]. As opposed to the reader-dependent
subjective PI-RADS [3, 15, 16], radiomic analyses rep-
resent another strategy to evaluate PCa in a quantitative
and computational manner beyond visual perception [9,
17, 18]. The ability of radiomics to support diagnostic
decision-making has been shown in numerous cancer en-
tities [3, 9, 17, 18]. Yet, the understanding of suitable
features and classification algorithms is still limited [3,
19, 20]. Bonekamp et al. have revealed an improved
prediction to differentiate GrG ≤ 1 against GrG ≥ 2 [21].
Apparent diffusion coefficient (ADC) has yielded the
highest relevance to differentiate variant GrGs [21].
Numerous studies are being conducted to stratify the best
working models for MRI-based PCa classification [3,
22–25]. The classification method has a strong impact
on the variation in performance [19]. Yet, the question
has not been addressed to what extend specific feature
and prediction model effect the diagnostic performance
to differentiate GrG ≤ 2 against GrG ≥ 3 [3, 22–26]. The
purpose of this study was to evaluate the application of
the clinical assessment categories PI-RADS and ADC-
derived radiomic features to build and compare three
prediction models and to analyze their influence on the
differentiation of clinically significant PCa.
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Materials and methods

Patient population

The study was approved by the institutional Review Board of
the Ethical Committee at the University Hospital Frankfurt
(project-number: 41/19). In total, 1125 patients were screened
for study inclusion, examined between 2014 and 2019.
Figure 1 shows the inclusion algorithm. Inclusion criteria

were (a) targeted biopsy (US-/MRI-fusion biopsy, MRI-
guided biopsy) or radical prostatectomy (RPX) in domo, (b)
histologically confirmed PCa, and (c) imaging at the same 3-T
(T) MRI scanner. Exclusion criteria were (a) incomplete/
inadequate examination protocol, (b) artifacts on mpMRI im-
ages, and (c) neoadjuvant therapy with regressive changes.
The median time from mpMRI to biopsy/RPX was 0 months
with a maximum of 7 months. Table 1 summarizes the clinical
and epidemiological characteristics.

consecutive patients with 

presumptive PCa who 

underwent MRI-guided 
biopsy with prior 3T 

mpMRI in domo between 
2014 and 2019

n=117

patients with 3T 

mpMRI at the 

same scanner in 
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excluded due to 
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non-malignant 

biopsy results

consecutive patients with 
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underwent US/MRI-
fusion biopsy between 

2014 and 2019

n=590

patients with 3T 
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n=418

patients with 3T 
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domo
n=42
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examination

n=6 patients 
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prior neoadjuvant 

therapy
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for study 
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n=33
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excluded without 
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Fig. 1 Flowchart of patient inclusion. In total, 73 patients were included
into the final study, consisting of three distinct groups: radical
prostatectomy (RPX), US-/MRI-fusion biopsy, MRI-guided biopsy.

mpMRI, multiparametric magnetic resonance imaging; PCa, prostate
cancer; n, absolute number; RPX, radical prostatectomy; T, tesla; US,
ultrasonography
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MR imaging acquisition and examination

All examinations were performed on a single 3-T scanner in
clinical routine with a standard 32-channel body coil
(Magnetom PrismaFIT, Siemens Healthineers) and built-in
spine phased-array coil. MRI examinations were performed
according to the European Society of Urogenital Radiology
(ESUR) guidelines including T1-weighted (T1w), T2-
weighted (T2w), diffusion-weighted imaging (DWI), ADC,
and dynamic contrast-enhanced (DCE) sequences. Figure 2
shows an example of a typical mpMRI of the prostate. All
MRI examinations were primarily performed and read by an
experienced radiologist and confirmed by a board-certified
radiologist. Each prostatic lesion was categorized by applying
PI-RADS v2 [15]. For the consecutive radiomics analysis, the
T2w, ADCmap (derived from DWI with b value of 0/1000 or
50/1000 s/mm2 (n = 64; n = 9)), and DCE MR images were
extracted in “Digital Imaging and Communications in
Medicine” (DICOM) format. Table 2 depicts the acquisition
parameters in detail.

MRI segmentation

In direct correlation to an institutional workstation and the
respective clinical reports, the extracted series were re-
reviewed by one investigator (S.B. with 6 months of experi-
ence and special training in uropathological imaging) under
the supervision of a board-certified radiologist (T.J.V., B.B.
with 18 or 10 years of experience in uropathological imaging)
using the open-source 3D Slicer software platform (http://
slicer.org, version 4.9.0) [27, 28] with consecutive VOI
placement. T2w and DCE images were applied within the
3D Slicer computing platform to visually correlate for lesion
definition in the ADC maps. We performed the consecutive
quantitative analysis on ADC in concordance with the study

Table 1 Clinical and epidemiological characteristics of included
patients

Variable Study cohort

Patients 73 (100)

Radical prostatectomy (RPX) 33 (45)

MRI-guided biopsy 30 (41)

MRI-/US-fusion biopsy 10 (14)

Median age at definite diagnosis (years)* 66 (35–83)

Median time (months)*, MRI to tissue (biopsy, RPX) 0 (0–7)

Prior biopsy with post-biopsy changes in T1w*** 30 (41.1)

Mean PSA (ng/mL)** 12.14 (13.9; 15.8;
8.4) [NA: 16]

Localization (index lesion)

PZ 66

PZ/AFS 7

Median number of intra-prostatic lesions* 2 (1–3)

PI-RADS, index lesion***

3 8 (11)

4 26 (36)

5 39 (53)

Gleason score, index lesion***

3 + 3 15 (21)

3 + 4 23 (32)

4 + 3 15 (21)

4 + 4 5 (7)

4 + 5 11 (15)

5 + 3 1 (1)

5 + 4 1 (1)

5 + 5 2 (3)

Gleason Grade Group, index lesion***

1 15 (21)

2 23 (32)

3 15 (21)

4 6 (8)

5 14 (19)

Available, sufficient quality of sequences ***

T2w 72 (99)

ADC 73 (100)

DCE 68 (93)

pTNM, RPX-cohort*** 33 (100)

pT2a 2 (6)

pT2b 1 (3)

pT2c 13 (40)

pT3a 12 (36)

pT3b 5 (15)

pN0 29 (88)

pN1 2 (6)

pNX 2 (6)

pM0 31 (94)

pM1 1 (3)

pMX 1 (3)

Table 1 (continued)

Variable Study cohort

pR0 24 (73)

pR1 8 (24)

pRX 1 (3)

If not otherwise depicted, the numbers without parenthesis depict abso-
lute numbers. *Data in round parenthesis are the min/max values (inter-
quartile range); **Data in round parenthesis are standard deviation and ±
95% confidence interval; ***Data in round parenthesis are relative
values; Data in square parenthesis are not available values, excluded in
the analysis; due to mathematical rounding, the summed relative values
may differ slightly from 100. ADC, apparent diffusion coefficient; AFS,
anterior fibromuscular stroma; DCE, dynamic contrast enhanced; MRI,
magnetic resonance imaging; NA, not available; PI-RADS, Prostate
Imaging Reporting and Data System; PSA, prostate-specific antigen;
PZ, peripheral zone; RPX, radical prostatectomy; T1w, T1-weighted;
T2w, T2-weighted; US, ultrasonography
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of Bonekamp et al [21]. Figure 3 depicts the standardized,
semi-automatic algorithm of the VOI annotation with volume
renderings. Manual parts were performed by applying the

paint tool of the segment editor. The benign tissue VOI was
manually defined for each patient by delineating normal-
appearing tissue of the peripheral zone (PZ) in maximum

Fig. 2 Example of a representative multiparametric MRI examination of
the prostate. Multiparametric magnetic resonance imaging (mpMRI) ex-
amination consisting of anatomical (T2w, T2-weighted; T1w, T1-weight-
ed) and functional (DWI, diffusion-weighted imaging; ADC, apparent
diffusion coefficient; DCE, dynamic contrast-enhanced) images.
Anatomical T2w images were acquired in multiparametric axial, sagittal,
and coronal planes. Functional images and T1w images were acquired in

axial plane. Typical characteristics of a malignant prostate cancer lesion
of the left peripheral zone are shown of a 60-year-old patient who pre-
sented himself with a maximum prostate specific antigen level of 64 ng/
mL. The respective Prostate Imaging Reporting and Data System catego-
ry equaled 5 and histopathologic examination of the radical prostatecto-
my specimen revealed a Gleason Grade Group of 5

Table 2 Multiparametric MRI
sequence parameters Sequence parameter T2 TSE, mean (n = 72) ADC, mean (n = 73) DCE, mean (n = 68)

TR (ms) 7511.1 3395.9 5.08

TE (ms) 104.3 59.8 1.8

Averages 2.3 7.9 1.0

Flip angle (°) 157.0 90.0 13.5

FOV (mm2) 202.8 × 202.8 94.8 × 203.2 257.9 × 259.0

Matrix (px2) 297.2 × 345.9 52.9 × 149.0 153.1 × 192.0

Bandwidth (Hz) 202.0 1203.7 260.0

Slice thickness (mm) 3.1 3.0 3.5

Orientation transversal transversal transversal

b0_1000 (n) 64

b50_1000 (n) 9

Sequence parameter for all patients included into the study (N = 73). ADC, apparent diffusion coefficient; DCE,
dynamic contrast enhanced; FOV, field of view; n, absolute number; TE, echo time; TR, repetition time; TSE,
turbo-spin-echo
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distance to the index lesion. The whole-habitat VOI was gen-
erated by a semi-automatic grow from seeds algorithm with
subsequent manual correction of artifacts with a brush-erase
tool [28–30].

Feature extraction

The Imaging Biomarkers Standardization Initiative (IBSI)
does currently not cover image preprocessing [31]. There is
no consensus with regard to preprocessing or normalization
algorithms [32, 33]. Digital image manipulation may hamper
reproducibility and it is proposed to report all processing de-
tails [32, 33]. Therefore, to ensure best transparency and com-
parability, we have limited image manipulation to the mini-
mum by using unchanged, naïve image data, in accordance
with the algorithm performed by Aerts et al [18]. We
employed the open-source package PyRadiomics [34] which
gains increasing establishment as reference standard for
radiomics analysis [32, 34] as extension within 3D Slicer
[27, 28]. From seven feature classes, all standard features were
extracted: first order statistics, shape-based, Gray Level Co-
occurrence Matrix (GLCM), Gray Level Run Length Matrix
(GLRLM), Gray Level Size Zone Matrix (GLSZM), Gray
Level Dependence Matrix (GLDM), Neighboring Gray
Tone Difference Matrix (NGTDM) leading to 105 features/
VOIs in ADC (http://pyradiomics.readthedocs.io) [34]. We
extracted the features with the default settings within
PyRadiomics, i.e., no resampling or filtering, no wavelet-

based features, bin width 25, and enforced symmetrical
GLCM (http://pyradiomics.readthedocs.io) [18, 32, 34].

Tissue specimen and MRI concordance

Tissue specimen was analyzed in the Dr. Senckenberg
Institute of Pathology (SIP), Goethe University Hospital,
Frankfurt am Main. The index lesion (and benign VOI) was
determined by correlating the mpMRI with the assessment of
the highest GrG (and prostatic tissue without evidence of ma-
lignancy) in the pathological report. J.K. (uropathologist with
10 years of experience) annotated the RPX specimen to match
the index lesion (and the benign VOI) of theMRI examination
(highest PI-RADS or no sign of malignancy). If the pathologic
assessment did not match the index lesion (highest GrG ≠
annotated mpMRI index lesion) or benign VOI, images were
reexamined and reevaluated in direct correlation to the histo-
pathologic slides. We considered the histopathological results
as ground-truth. If a patient had bioptic and RPX tissues avail-
able, we assessed the RPX tissue. For this study, we defined
GrG ≥ 3 as clinically significant PCa.

Evaluation approach

We applied ADC-derived radiomic features and the PI-RADS
categories in relation to the GrGs. We performed two-
dimensional principal component (PC) analysis and univariate
analysis (UA) to analyze benign versus malignant tissue as
well as insignificant versus significant PCa. In our cohort,

Fig. 3 Habitat definition and volume rendering. After manual definition
of tumor-bearing area (a, green) and surrounding normal-appearing tissue
(a, orange) in representative image series, a semi-automatic grow from
seeds algorithm was applied (b) obtaining a three-dimensional habitat of

the whole volume of interest (VOI) with exemplary volume rendering
from four points of view being shown (c: (a) anterior; (p) posterior; (l)
left; (r) right). For each specimen, normal-appearing peripheral zone was
delineated by manual VOI placement (d, blue)
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all PCa lesions with PI-RADS = 3 (n = 8) were clinically in-
significant and were excluded for the following analysis. We
computed significance values (p values) for all features by
UA. We chose the top four features with the lowest p value
of the two-tailed Student’s t test and Wilcoxon test as being
the most stable for further evaluation steps [19]. We per-
formed multivariate analysis of correlation to correct for col-
linearity and reduce features. Reduction of features is a com-
mon method and reduces the risk of overfitting [17, 35]. To
assess the predictive power, we generated receiver operating
characteristic (ROC) curves of support vector machines
(SVM), neural networks (NNs), and random forest (RF) anal-
ysis for 15 combinations of the predictor subsets. We
employed 100-fold cross-validation to evaluate the perfor-
mance of the prediction [36]. In each run, we randomly drew
70% of the samples for training and validated the classifier
with the remaining independent 30% of the sample data (mod-
ified as described previously [37]). We obtained the area un-
der the curve (AUC) and assessed differences in the prediction
power of the models by the application of a two-tailed
Student’s t test of the 100 values of AUC. The machine learn-
ing algorithms were conducted in Python 3.7 using the open-
source scikit-learn 0.21.3 packages SVC for SVM,
MLPClassifier for NNs and the RandomForestClassifier for
RF analysis with prior normalization of features using
StandardScaler (https://scikit-learn.org/) [38]. We conducted
further statistical analyses with Prism 6.0 (GraphPad software)
and JMP 14 (SAS). We indicated the significant values as
follows: *p < 0.05; **p < 0.01; ***p < 0.001. A flowchart of
the methodologic study design is shown in Supplementary
Document 1.

Results

Radiomic features differ in benign versus malignant
prostate tissue

PC analysis clustered benign peripheral zone (black)
against the malignant index lesion (colors, Fig. 4a).
Subclusters of variant GrGs were not visualized (green/
yellow/orange/red, PI-RADS 1/2/3/4&5; Fig. 4a). Lower
mean ADC values were revealed for malignant lesions
(p < 0.001) which is in concordance with PI-RADS [15]
(Fig. 4b). Various radiomic features differed comparing
ben ign ve r sus ma l ignan t p ros t a t e t i s sue , w i th
JointEntropy (JE, p < 0.001) being depicted exemplarily
(Fig. 4c; for all features, see Supplementary Document
2). We observed differences in a subset of radiomic fea-
tures when comparing different GrGs with mean (p(GrG
1/3, 2/3, 3/4&5) = 0.007, 0.012, 0.016) and JE (p(GrG 1/3,
1/4&5) = 0.018, 0.008) being depicted exemplarily (Fig.
4d, e; for all features, see Supplementary Document 3).

Clinically significant PCa lesions of high-risk patients
revealed differences in radiomic features

PC analysis achieved no stratification of the index lesion ac-
cording to its clinical significance (Fig. 5a). The samples were
distributed randomly (Fig. 5a; dots: green, insignificant PCa;
red, significant PCa). The PI-RADS assessment categories
were differently distributed in clinically significant PCa (Fig.
5b, likelihood ratio and Pearson p < 0.001). In our cohort, all
PI-RADS = 3 lesions were found to be clinically insignificant
(Fig. 5b). To avoid overfitting and redundancy of the predic-
tion models, PI-RADS = 3 lesions (n = 8) were excluded for
further analysis. Next, the top four features of an iterative
Wilcoxon and two-tailed Student’s t test were determined
(Fig. 5 c–f depicts data of the iterative Student’s t test; for all
data, see Supplementary Document 4). The prioritized fea-
tures surface to volume ratio (SVR), JE, least axis (LA), and
maximum 3D diameter (max3D) showed lowest p values (p =
0.008, p = 0.026, p = 0.028, p = 0.041) stratifying the clinical
significance of the examined lesions (Fig. 5c–f). High corre-
lation was revealed using multivariate testing (Fig. 5g;
Table 3). Therefore, for the consecutive prediction models,
internal combinations of the highly correlated shape features
(max3D, SVR, LA) were excluded (Table 3). Though corre-
lation was revealed for JE with the shape features (Fig. 5g;
Table 3), we performed subsets of combinations for prediction
model generation as JE represents a member of the different
feature class, GLCM.We could identify PI-RADS as the most
independent variable (Fig. 5g; Table 3; |correlation| < 0.47 for
each feature).

The prediction performance of clinically significant
PCa lesions depends on the selected feature subset
and machine learning algorithm

We trained three machine learning algorithms with 15 subsets
of radiomic features and the clinical assessment category PI-
RADS to predict the clinical significance of PCa lesions
(Fig. 6). SVM, NN, and RF showed variable prediction per-
formance comparing PI-RADS against variant feature subsets
(Fig. 6a–c). PI-RADS was superior to all subsets of radiomic
features alone in the prediction of clinical significance (Fig.
6a–c, p = 0.003 for max3D using NN and p < 0.001 for all
other models). Variant combinations of PI-RADS with
radiomic features improved or weakened the prediction per-
formance dependent on the employed machine learning algo-
rithm (Fig. 6a–c). Using SVM, the combination of PI-RADS
with SVR or LA improved the prediction performance (p =
0.008, p = 0.002, ΔAUC = + 0.04; Fig. 6a, d). Using NN,
each combination of PI-RADS with radiomic features weak-
ened the predictive performance (Fig. 6b, e; highest decrease
of AUC by adding SVR with p < 0.001, ΔAUC = − 0.08).
Using RF, the additional application of max3D outperformed
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PI-RADS alone (p < 0.001,ΔAUC = + 0.05; Fig. 6b, f) estab-
lishing the best working model (Fig. 6). The combination of
PI-RADS with max3D and JE did not improve the perfor-
mance to PI-RADS alone (p = 0.27), whereas all other com-
binations even weakened the prediction performance (Fig.
6c, f; highest decrease of AUC by adding JE with p < 0.001,
ΔAUC= − 0.17). Figure 6 d–f depicts the representative 100-
fold cross-validated ROC curves with their AUC values for
PI-RADS and its combination with the shape features SVR,
LA, and 3Dmax.

Discussion

In this study, we analyzed the effect of different subsets of
radiomic features and the clinical assessment category PI-
RADS on the predictive performance of three machine learn-
ing algorithms to stratify PCa of the PZ according to its clin-
ical significance. We first demonstrated adequate VOI place-
ment in concordance with the PI-RADS [15] assessment. Our
data demonstrates that the integration of radiomic features
using machine learning algorithms can positively or negative-
ly influence the prediction performance for clinically signifi-
cant PCa. The results emphasize the need to be cautious using
radiomic machine learning strategies but also the potential of
the features SVR, LA, and max3D to improve PI-RADS as-
sessment categories.

Gleason Grading suffers from interobserver variance with
the differentiation between GrG = 2 and GrG = 3 being espe-
cially challenging [39]. New decision support tools are critical
to reduce over- and undertreatment [10, 11, 14, 39].
Qualitative mean ADC is part of the PI-RADS [15], but fur-
ther features inherit independent data though not being part of
the current assessment categories [3, 22, 23, 25, 40].
Radiomics ability to decipher biologic and prognostic param-
eters has been shown in numerous studies [3, 9, 17, 18]. In
PCa, the mere detection of malignancy has been augmented to
the assessment of aggressiveness up to genomic risk stratifi-
cation biomarkers [3, 35, 40, 41]. In this context, ADC anal-
ysis seems to effect differentiation of PCa aggressiveness in
particular [3, 21, 40, 42]. Bonekamp et al. have been able to
show that mean ADC performs equally as complex machine
learning approaches to differentiate GrG ≤ 1 versus GrG ≥ 2
[21]. Therefore, we focused on ADC to examine our patient
cohort. Previous studies have demonstrated the ability of
mpMRI and radiomics to differentiate variant tissue types to
aid PCa diagnosis and our data supported this finding [23, 35,
43]. Nevertheless, this finding should not be overstated as it
seems to be a logic consequence to the applied methodology
of supervised VOI definition [21, 35, 44], demonstrating an
appropriate VOI placement [21, 35, 44]. Highest methodolog-
ical transparency, open-source software, and standardization
are necessary to obtain valid results and to promote interdis-
ciplinary research [32, 33, 45, 46]. Our study design aims to
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except shape features, is shown. Index lesions are color-coded according
to the respective Gleason Grade Group (GrG; 1/2/3/4&5, green/yellow/
orange/red) and normal-appearing peripheral zone is depicted in black.
Prostate tissue shows clear clustering in benign and malignant volumes of

interest, whereas different GrGs do not reveal distinguishable subcluster
(a). Box-Whisker plots for the features mean (b) and joint entropy (c) are
shown with significant differences using two-tailed Student’s t test. In d
and e, Box-Whisker plots reveal significant differences in specific GrGs,
exemplarily shown for mean (d) and joint entropy (e) using nonparamet-
ric comparison for each pair/Wilcoxon method
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propose a feasible and reproducible step-by-step approach and
usage of open-source software. For image processing and
radiomic feature definition and extraction, we applied open-
source software [28, 34], whereas numerous studies have ap-
plied house-built software, making repeatability nearly impos-
sible [33]. Image preprocessing may alter the extracted values
and may reduce reproducibility across datasets [32, 33].
Currently, no consensus exists regarding variant preprocess-
ing settings [32, 33]. We reduced image manipulation to the
minimum and performed no additional preprocessing. ADC
as a quantitative value requires no normalization [21].
Consistent with Aerts et al, we applied PyRadiomics with
default settings [18]. To reduce variability with regard to
VOI segmentation, we applied the grow from seeds algorithm
within 3D Slicer [27–30]. Parmar et al. demonstrated that UA
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Fig. 5 Radiomic features and the clinical assessment categories reveal
significant differences in clinically significant versus insignificant
prostate cancer. Two-dimensional principal component analysis of all
radiomic features of the index lesions shows random distribution of sig-
nificant (red) and insignificant (green) prostate cancer (PCa, a). In b, the
contingency table of the Prostate Imaging Reporting and Data System
(PI-RADS) categories related to clinically significant (GrG ≥ 3) and in-
significant (GrG ≤ 2) PCa is shown. Box-Whisker plots for the top four
radiomic features to differentiate clinically significant PCa are shown (c,
SVR, surface to volume ratio; d, JE, joint entropy; e, LA, least axis; f,

max3D, maximum 3D diameter). g The color map on correlation of
max3D, SVR, LA, JE, and PI-RADS, starting at green for negative
(− 1) correlation and moving to red as the correlation approaches 1.
Detailed data of the multivariate correlation is depicted in Table 3.
Statistical analysis was performed using two-tailed Student’s t test (c–f),
likelihood ratio/Pearson test (b), or multivariate measurements of corre-
lations (g). In c–g, the index lesions with PI-RADS = 3 (n = 8) were
excluded. Clinically significant PCa was defined as GrG ≥ 3, with
GrG ≤ 2 being considered as clinically insignificant PCa

Table 3 Matrix of correlations of the features used for classifier
building

max3D SVR LA JE PI

max3D 1.000 − 0.778 0.930 0.812 0.339

SVR − 0.778 1.000 − 0.726 − 0.824 − 0.467
LA 0.930 − 0.726 1.000 0.740 0.334

JE 0.812 − 0.824 0.740 1.000 0.416

PI 0.339 − 0.467 0.334 0.416 1.000

Multivariate measurements of correlations of the selected radiomic fea-
tures and the clinical assessment category PI-RADS (Prostate Imaging
Reporting and Data System) used for the generation of the prediction
models. max3D, maximum 3D diameter; SVR, surface to volume ratio;
LA, least axis; JE, joint entropy; PI, PI-RADS
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Wilcoxon test–based feature selection with RF had the highest
performance and data stability of radiomic applications [19].

Therefore, we performed UA feature selection by the
Wilcoxon method and further applied multivariate
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Fig. 6 The addition of radiomic features to the clinical routine assessment
categories using different machine learning algorithms has highly
variable effect on the discriminative accuracy to predict significant
versus insignificant PCa. Analysis of prediction performance for
clinically significant prostate cancer (PCa) using 15 variant feature sub-
sets with 3 different machine learning algorithms. The subsets were based
on PI-RADS (PI) and the top four quantitative imaging features surface to
volume ratio (SVR), joint entropy (JE), least axis (LA), or maximum 3D
diameter (max3D). The prediction models were built using support vector
machine (SVM, a, d), neural network (NN, b, e), or random forest (RF, c,
f) algorithms. a–c The Box-Whisker plots with 5–95% percentile for each
machine learning algorithm obtained by 100-fold cross-validation exper-
iments as depicted in detail in the “Materials and methods” section using
the respective area under the receiver operator characteristics (ROC)
curve to predict significant PCa. Asterisks relate to the analysis of PI

against the respective subset as indicated (a–c). Significant differences
to PI are depicted using two-tailed, unpaired Student’s t test (a–c). The
respective images of the 100-fold cross-validated (colors) ROC curve
analyses with the mean ROC curve (blue) are shown for each prediction
model for PI and its combination with SVR, LA, or max3D (e, f). The
adjacent gray area depicts ± one standard deviation (e, f). Shown are the
results of the validation cohort with 30% holdback proportion, drawn at
random. Patients with PI-RADS = 3 (n = 8) were excluded due to
training/validation redundancy, to avoid overfitting and bias as the re-
spective lesions were always insignificant PCa in the studied cohort
(Fig. 5b). SVMwas adapted for rbf-Kernel, C = 1 with probability = true.
The NN consisted of 1 layer and 3 hidden nodes, maximum iteration of
100, logistic activator, and the lbfgs solver. For RF analysis, 20 estimators
with random_state = 0 were specified
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measurement of correlation to handle collinearity [46]. We
tested and compared variant machine learning algorithms as
the choice of classification method is known to be of major
importance regarding performance variation [19, 20].
Consistent with Parmar et al., our best working model was
found using RF classification method [19].

Our study has limitations that warrant discussion. We
examined retrospective data with subsequent patient en-
rollment; a selection bias cannot be ruled out. We
employed tissue specimens, which were obtained using
three variant techniques: RPX, US-/MRI-fusion biopsy,
and MRI-guided biopsy with biopsy techniques may in-
herit sampling bias [4, 5, 7]. We did not include can-
cers of the transition zone. We applied clinical routine
protocols and an analysis of more homogeneous data
would have been preferable. Around 40% of the pa-
tients had prostatic tissue changes due to prior biopsy.
Not biopsy-naïve patients may not be regarded to be
outliers but an issue of clinical routine. We did include
those patients to reduce the selection bias. With 73 pa-
tients, our study population was limited and a larger
cohort might improve the significance of statistical anal-
ysis. In our cohort, all patients with PI-RADS lesions
equaling three (n = 8) were found to have clinically in-
significant PCa. Since these patients would bias the pre-
dictive models, they were excluded in the machine
learning analyses, though this might limit the generaliz-
ability of the obtained results. By restricting patient in-
clusion to examinations from the same 3-T scanner, we
ruled out an interscanner variability. Nevertheless,
intrascanner variability might have altered our results
as shown in a phantom study by Baeßler et al. [45].
The fact that our predictive subsets of PI-RADS with
only one radiomic feature showed better performance
compared with two features may be explained by the
observation that increased dimensionality may lead to
reduced discriminative power [3]. We have limited the
analysis to three machine learning algorithms and can-
not exclude that an unapplied algorithm might have
shown variant results. We performed annotation of in-
dex lesions with supervision of board-certified radiolo-
gists (T.J.V., B.B.) as well as in direct correlation with
an uropathologist (J.K.) and the pathology reports.
Nevertheless, even targeted biopsies and RPX specimen
have a residual uncertainty [4, 47].

In conclusion, our study underlines the potential of ADC-
derived radiomic features of prostate mpMRI examinations to
aid in the stratification of prostate cancer lesions according to
their clinical significance. We emphasized the need to be cau-
tious prior to applying computer-aided diagnostics as the pre-
dictive performance highly depends on feature and machine
learning algorithm selection at worst even reducing clinical
assessment performance. Non-invasive prediction models

may have the potential to be part of decision support tools to
aid clinicians in the selection of an adequate therapy, but we
need to be cautious before translation into clinical routine.
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