
AM/GM-Based Optimization:
Geometry and Generalizations

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich 12
der Johann Wolfgang Goethe-Universität

in Frankfurt am Main

von
Helen Naumann

aus Frankfurt am Main

Frankfurt, 2021
(D 30)



ii

vom Fachbereich 12 der
Johann Wolfgang Goethe-Universität als Dissertation angenommen.

Dekan: Prof. Dr.-Ing. Lars Hedrich

Gutachter:

• Prof. Dr. Thorsten Theobald (Goethe-Universität Frankfurt am Main)

• Prof. Dr. Gennadiy Averkov (Brandenburgische Technische Universität Cottbus-
Senftenberg)

• Prof. Dr. Timo de Wolff (Technische Universität Braunschweig)

Datum der Disputation: 12.11.2021



iii

Authorship
I, Helen Naumann, hereby certify that the contents of this manuscript are either my
own work or represent joint work of my co-authors and myself. All references have
been quoted.

Various parts of this thesis are based on joint work with other authors. This thesis
focusses on those statements, I had major contributions in. Chapter 3 is based on
joint work with Lukas Katthän and Thorsten Theobald and is contained in [KNT21] –
although the results were obtained in a different setting. Chapter 4 is based on parts
of [Mou+21] and also partially on [Dre+20], the former is joint work with Philippe
Moustrou, Cordian Riener, Thorsten Theobald, and Hugues Verdure, the latter is
joint work with Mareike Dressler, Janin Heuer, and Timo de Wolff. Chapter 5 is
based on joint work with Thorsten Theobald and contained in [NT21b], and Chapter
6 is based on the two works [NT21a] and on selected parts of [MNT20], where the
former is joint work with Thorsten Theobald, and the latter is joint work with Riley
Murray and Thorsten Theobald. Chapter 7 is my own work, except for the results
on symmetries for the X-SAGE-cone, which come from [Mou+21].

Signature:

Date:





v

Acknowledgments
During this thesis, I was lucky to have many people to support me, consult me, guide
me and encourage me. I am very grateful to have them in my life, and they now
deserve to be mentioned in this place.

First and foremost I want to thank my Ph.D. advisor Thorsten Theobald, who
encouraged me to stay at university and to work towards gaining a Ph.D., who already
introduced me to the fascinating world of SONC and SAGE during my master thesis,
who collaborated with me in so many projects by now, who motivated me to give talks
and take on responsibility and who, most importantly, helped me face the challenges
of research and giving talks so many times. My time as a Ph.D. student would not
have been as great if he would not have been my advisor.

Moreover, I want to thank Gennadiy Averkov and Timo de Wolff for their willing-
ness to act as reviewers for this thesis, and Andreas Bernig, Ralph Neininger, Anton
Wakolbinger and Tobias Weth who agreed to participate in my doctoral committee.

I had the great opportunity to experience working with various groups on my
different projects. Besides Thorsten Theobald, I also want to thank my other co-
authors Mareike Dressler, Janin Heuer, Lukas Katthän, Philippe Moustrou, Riley
Murray, Cordian Riener, Hugues Verdure, and Timo de Wolff, as well as all the great
people I talked to during conferences and workshops. It was a pleasure working with
each one of you!

Due to the current situation, the engagement with my working group at Goethe
University was interrupted very early. Nevertheless, I want to thank Aenne Benjes,
Giulia Codenotti, Stephan Gardoll, Anna Haacke, Max Hahn-Klimroth, Sven Jarohs,
Lukas Katthän, Sebastian Manecke, Raman Sanyal, and Mahsa Sayyari for nice lunch
chats and even nicer coffee breaks.

A special thanks goes to Giulia Codenotti, Mareike Dressler, Janin Heuer, and
Theresa Kumpitsch who have been reading parts (or everything) of this thesis and
whose comments have improved this work substantially. Also I would like to thank
Melda Görür, Joel Kübler, and Laura Mader, whose councel I could always rely on.

And, of course, I want to thank my family — Pirmin, Sara, Sam, and my parents
— for always cheering me up, reading various drafts of this work, or preventing several
mental breakdowns.





vii

Contents

Authorship iii

Acknowledgments v

1 Motivation and Historical Background 1
1.1 Extremality and Duality Theory of the SAGE-Cone . . . . . . . . . . 4
1.2 A Primal-Dual View on Second-Order Representability . . . . . . . . . 6
1.3 Sublinear Circuits and the Conditional SAGE-Cone . . . . . . . . . . . 7

2 Preliminaries 11
2.1 Notation and Convexity Theory . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Polynomial and Exponential Optimization and Nonnegativity . . . . . 20

2.3.1 Sums of Squares . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 SAGE and SONC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 AGE Exponentials, Circuits and Nonnegative Circuit Exponen-
tials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 The SAGE-Cone and the SONC-Cone . . . . . . . . . . . . . . 30
2.4.3 The Conditional SAGE-Cone . . . . . . . . . . . . . . . . . . . 33

3 Extremality and Duality Theory of the SAGE-Cone 35
3.1 Reduced Circuits and Duality Theory . . . . . . . . . . . . . . . . . . 35
3.2 Extreme Rays of the SAGE-Cone . . . . . . . . . . . . . . . . . . . . . 42

4 Global Optimization via the SAGE-Cone and its Dual 47
4.1 The Signed SAGE-Cone and its Dual . . . . . . . . . . . . . . . . . . . 48
4.2 Symmetry Reduction in AM/GM-Based Optimization . . . . . . . . . 51

4.2.1 Orbit Decompositions of Symmetric Exponential Sums . . . . . 51
4.2.2 Symmetry Reduction in Relative Entropy Programming . . . . 54
4.2.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . 58

4.3 An Approximation via the Dual SAGE-Cone and Linear Programming 61
4.3.1 The Dual AGE-Cone is Contained in the Primal . . . . . . . . 61
4.3.2 Formulation of the Optimization Problem . . . . . . . . . . . . 63

5 The S-Cone and a Primal-Dual View on Second-Order Representabil-
ity 69
5.1 The S-Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Circuits and the Dual of the S-Cone . . . . . . . . . . . . . . . . . . . 74
5.3 A Primal-Dual View on Second-Order Representability . . . . . . . . . 77

5.3.1 A Second-Order Representation for the AG-Cone and its Dual 78
5.3.2 A Second-Order Representation of the S-Cone and its Dual . . 85



viii

6 Sublinear Circuits and the Conditional SAGE-Cone 91
6.1 Sublinear Circuits Induced by a Point Set . . . . . . . . . . . . . . . . 92
6.2 Sublinear Circuits in X-AGE-Cones . . . . . . . . . . . . . . . . . . . 98

6.2.1 Excursus: The Conditional S-Cone . . . . . . . . . . . . . . . . 103
6.2.2 X-Circuits and Their Supports . . . . . . . . . . . . . . . . . . 104
6.2.3 Necessary and Sufficient Conditions . . . . . . . . . . . . . . . 106
6.2.4 The n-Dimensional Cube X = [−1, 1]n . . . . . . . . . . . . . . 110

6.3 Reduced Sublinear Circuits in X-SAGE-Cones . . . . . . . . . . . . . 112
6.3.1 Definitions, Results, and Discussion . . . . . . . . . . . . . . . 113
6.3.2 Reducibility and Extremality . . . . . . . . . . . . . . . . . . . 115

6.4 Extreme Rays of Conditional SAGE-Cones in Dimension 1 . . . . . . . 120

7 Constrained AM/GM-Based Optimization 123
7.1 Exploiting Symmetries for Conditional SAGE . . . . . . . . . . . . . . 124
7.2 Constrained Optimization via the dual X-SAGE-cone and LP . . . . . 124
7.3 Second-Order Representations for the X-AGE-Cone and its Dual . . . 127

8 Résumé and Open Problems 133
8.1 The SAGE-Cone, Extremality, and its Duality Theory . . . . . . . . . 133
8.2 The S-Cone and Second-Order Representations . . . . . . . . . . . . . 133
8.3 The Conditional SAGE-Cone and Sublinear Circuits . . . . . . . . . . 134

Bibliography 137

A Deutsche Zusammenfassung 143

Deutsche Zusammenfassung 143

B Curriculum Vitae of Helen Naumann 153



1

Chapter 1

Motivation and Historical
Background

Global or constrained optimization concern the question of finding the minimum value
of a given real function f : Rn → R either over Rn or over some subset X ( Rn. This
problem occurs in many branches of mathematics and various fields of application.
The similar question of deciding whether a real function only takes nonnegative values
is a fundamental question in real algebraic geometry. Both problems can be treated
as equivalent: The infimum of a function f is the largest real scalar λ such that the
function f − λ is globally nonnegative, i.e.,

f∗ = inf{f(x) : x ∈ Rn} = sup{λ ∈ R : f − λ is nonnegative on Rn}. (1.1)

In this thesis, our functions of interest are exponential sums f =
∑
α∈A cαe

〈x,α〉

and sometimes polynomials, which can be seen as a special case of exponential
sums: When A ⊆ Nn, the transformation xi = ln yi gives polynomial functions
y 7→

∑
α∈A cαy

α on the positive orthant Rn
>0. Nonnegative polynomials or exponen-

tial sums and optimization over both types of functions are ubiquitous in applications,
and sparsity is one of the central structural properties that provide potential for effi-
cient computation. Besides classical application in control theory and robotics (see,
e.g., [HG05], [AM19] and the references therein), the more recent applications of
nonnegative polynomials and polynomial optimization can be seen in the optimal
power flow problem [Jos16], collision avoidance [AM16], shape-constrained regres-
sion [Hal18], chemical reaction networks [Mül+15; MHR19], aircraft design optimiza-
tion [ÖS19; YHD18], and epidemiological process control [NPP17; Pre+14]; see also
[EPR20] and the references therein.

Computing the minimal value f∗ from (1.1) of a given real function is NP-hard
[MK87], even in the polynomial case [Lau09]. Hence, the idea is to search for ef-
ficiently computable sufficient conditions for nonnegativity — so called nonnegativ-
ity certificates. Ideally, a huge amount of elements in the nonnegativity cone satisfy
these conditions. A well-known and large subset of nonnegative polynomials are SOS-
polynomials — sums of squares of other polynomials. They provide a relaxation for
finding the minimal value of a given polynomial. Nonnegativity of these polynomials
can be certified via semidefinite programming [Las00; Par00]; for a broader overview
of this topic see Chapter 2. A problem, however, is that a possibly unbounded degree
can occur in an SOS-decomposition causing a possibly infinite size of the semidefinite
program.

Recently, several researchers have developed sufficient conditions for nonnegativity
based on the (weighted) arithmetic-geometric (AM/GM) mean inequality. While sum
of squares nonnegativity certificates work with the degree of a polynomial and, in par-
ticular, require integer exponents, this is not the case for the techniques based on the
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AM/GM inequality. Hence, they also work for exponential sums. Building upon pre-
vious results by Reznick [Rez89], these techniques were developed further in the works
of Pantea, Koeppl, and Craciun [PKC12], Iliman and de Wolff [IW16a], and Chan-
drasekaran and Shah [CS16]. In contrast to SOS-based certificates, AM/GM-based
nonnegativity certificates preserve sparsity of a given exponential sum or polynomial
[MCW21a; Wan18a].

To introduce some notation, an exponential sum (or signomial) supported on a
finite set A ⊆ Rn is a sum

∑
α∈A cαe

〈α,x〉 with real coefficients cα. Observe that for
a set of support points A ⊆ Rn,β ∈ Rn and coefficients λ ∈ RA

+ satisfying 1Tλ = 1
and

∑
α∈A λαα = β, the weighted AM/GM inequality yields∑

α∈A
λαe

〈α,x〉 >
∏
α∈A

eλα〈α,x〉 = e〈β,x〉.

Hence, nonnegativity of exponential sums of the form∑
α∈A

λαe
〈α,x〉 − e〈β,x〉

and of similar forms on Rn can be certified via the AM/GM inequality.
The setting that is relevant in this thesis has been introduced under various names:

In 2016, Iliman and de Wolff introduced the concept of sums of nonnegative circuit
polynomials (SONC) [IW16a]. A circuit is a tuple (A,β) with A ⊆ Rn affinely
independent and β ∈ relint conv(A), and a circuit polynomial is a polynomial with
exponents in A ∪ {β} such that coefficients corresponding to A are nonnegative. A
polynomial supported on a circuit can only be globally nonnegative if A ⊆ (2N)n; for
a proof, see, e.g., [Fel+20].

Later in the same year, Chandrasekaran and Shah introduced the concept of
sums of arithmetic-geometric exponentials (SAGE) [CS16]. An arithmetic-geometric
exponential (AGE exponential, sometimes also called AM/GM exponential) is an
exponential sum with at most one negative coefficient. This definition exactly covers
the previously mentioned subclass of exponential sums whose nonnegativity can be
certified by the AM/GM inequality (explaining the name of this class of exponentials).

In various articles, the SONC approach was used for a relaxation of the global op-
timization problem (1.1), i.e., the nonnegativity condition in the problem formulation
was replaced by a SONC condition

f sonc = sup{λ ∈ R : f − λ is SONC} ≤ inf{f(x) : x ∈ Rn}. (1.2)

Iliman, de Wolff, and Dressler et al. examined a polynomial nonnegativity certificate
called the circuit number, resulting in a geometric program for certain subclasses
of SONC polynomials [IW16a; IW16b; DIW17; DKW21]. Karaca et al. studied a
combined SONC and Sums-of-Squares approach to polynomial optimization on the
nonnegative orthant [Kar+17]. Chandrasekaran, Shah, Murray and Wierman focused
on relative entropy programming approaches for both exponential sums and polyno-
mials [CS16; CS17; MCW21a], which can be computed efficiently and can be used
for general classes of exponential sums. Seidler and de Wolff proposed an algorithm
to compute circuit decompositions [Sd18]. Together with Magron [MSW19], they
compared the existing approaches on SONC-, SAGE- and SOS-based relaxations of
global optimization problems with each other. Using similar approaches to those
discussed in Chapter 3 of this thesis, Papp developed an algorithm for computing
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the optimal circuit decomposition of a given polynomial [Pap19]. Many of these op-
timization approaches are implemented in [Sd19]. In 2019, Forsgård and de Wolff
examined the algebraic boundary of the SONC-cone using a new setting (for expo-
nential sums, [FW19]) using the theory of regular subdivisions, A-discriminants, and
tropical geometry.

Besides the two formerly discussed optimization approaches, there also exists a
relation to semidefinite programming. Similar to [Kar+17], Averkov combined SONC
approaches with semidefinite approaches to polynomial optimization. He was the first
to prove that the cone of SONC polynomials can be represented as the projection of
a spectrahedron [Ave19]. Wang and Magron provided an explicit representation of
the primal SONC-cone as a second order-cone program [WM20a].

Already in 2016, Iliman and de Wolff showed that global nonnegativity of a cir-
cuit polynomial can be reduced to nonnegativity of an exponential sum with the
same support and potentially slightly modified coefficients [IW16a]. In 2018, Murray,
Chandrasekaran, and Wierman proved that this holds for general polynomials with
at most one negative term (i.e., at most one term cβx

β with cβ < 0 or β /∈ (2N)n)
[MCW21a]. Wang observed earlier in the same year that the polynomial form of an
AGE exponential is a SONC polynomial [Wan18a], and Murray, Chandrasekaran, and
Wierman gave an independent proof of the explicit statement that the extreme rays
of the cone of AGE exponentials are supported on circuits (again, see [MCW21a]).
Both thus showed the equivalence of SONC and SAGE respective to the setting of
polynomials or exponential sums.

Hence, for results that are relevant for both SONC and SAGE, it is natural to
examine only the simpler setting of exponential sums and discuss it under a com-
mon name. Building upon the approach of exponential sums introduced by Chan-
drasekaran and Shah, we use the name AGE exponentials for exponential sums with at
most one negative term, and SAGE exponential for sums of these AGE exponentials.
Note that the term exponential is here explicitely included in the name in contrast to
[CS16] — to stress the setting. Moreover, contributing to the terminology introduced
by Iliman and de Wolff, we call AGE exponentials supported on a circuit where the
possibly negative term corresponds to the inner exponent of the circuit circuit expo-
nentials. These functions are of particular interest because — as mentioned above —
all extremal rays of the SAGE-cone are supported on circuits. In this thesis, we put
a particular focus on circuits by examining the duality theory and extremality of the
SAGE-cone as well as various optimization approaches. We also consider all these
topics for constrained optimization, i.e., optimization over a subset X ( Rn.

For SOS polynomials, there are various Positivstellensatz results such as Putinar’s
Positivstellensatz [Put93]. This statement shows that under certain preconditions, a
polynomial which is nonnegative over a set of given constraints can be decomposed
using SOS and this constraint set. For the SONC and SAGE case, such a Putinar-
like Positivstellensatz unfortunately does not exist [DKW21], hence, when it comes
to examining the constrained case, the SONC and SAGE approaches suffer from
a severe disadvantage compared to the SOS approach. Dressler et. al provided a
different Positivstellensatz for SONC polynomials, which was later identified as a
special case of the Krivine-Positivstellensatz.

In 2019, Murray, Chandrasekaran, and Wierman proposed another approach to
constrained optimization for both exponential sums and polynomials [MCW21b] that
results in a certificate for nonnegativity using relative entropy programming. Using
the dual Lagrangian they arrived — similarly to the unconstrained case — at a
relative entropy program. The underlying set of constraints is represented by a so-
called support function. With this relative entropy program, one can find a hierarchy
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to approximate the optimal value. Wang et al showed that in fact this hierarchy is
complete [Wan+20] (see also [DP15]). The implemented program can be found in
[Mur20], using the solver MOSEK [DA21].

Further related work considers the exploitation of sparsity and symmetries to de-
rive specific SDP relaxations for polynomial optimization [KKW05; MCD17; Rie+13;
WML21b; WML21a; WLT18].

In this thesis, we examine the SAGE-cone, its geometry, and generalizations of it.
The thesis consists of three main parts:

1. In the first part, we focus purely on the cone of sums of globally nonnegative
exponential sums with at most one negative term, the SAGE-cone. We ex-
amine the duality theory, extreme rays of the cone, and provide two efficient
optimization approaches over the SAGE-cone and its dual.

2. In the second part, we introduce and study the so-called S-cone, which pro-
vides a uniform framework for SAGE exponentials and SONC polynomials. In
particular, we focus on second-order representations of the S-cone and its dual
using extremality results from the first part.

3. In the third and last part of this thesis, we turn towards examining the con-
ditional SAGE-cone. We develop a notion of sublinear circuits leading to new
duality results and a partial characterization of extremality. In the case of poly-
hedral constraint sets, this examination is simplified and allows us to classify
sublinear circuits and extremality for some cases completely. For constraint sets
with certain conditions such as sets with symmetries, conic, or polyhedral sets,
various optimization and representation results from the unconstrained setting
can be applied to the constrained case.

1.1 Extremality and Duality Theory of the SAGE-Cone
While many aspects of the classes of SAGE exponentials and SONC polynomials
are the subject of open questions and research efforts, they clearly exhibit some
fundamental structural phenomena that work well with sparse settings. Building upon
the earlier work of the author in [DNT21] on the dual cone of SONC polynomials,
we start by examining the dual cone of SAGE exponentials. In particular, we derive
a projection-free representation of the dual cone of SAGE exponentials and use this
representation to completely characterize extreme rays of the primal SAGE-cone.
These results can be used thereafter to examine efficient optimization approaches
based on the SAGE-cone.

We introduce the concept of reduced circuits. Reduced circuits are circuits that do
not have additional points of the overall support contained in its convex hull. Using
this concept, we provide a comprehensive characterization of the dual of the SAGE-
cone, see Theorem 3.1.5. In particular, we provide projection-free characterizations in
terms of AGE exponentials supported on the particular class of reduced circuits. The
characterizations of the dual cone go far beyond the characterizations of the dual
cone of SAGE exponentials from [CS16] and the dual cone of SONC polynomials
from [DNT21], where the dual cones are described in terms of projections. Our
proofs provide a uniform tool set for handling the various types of cones.

Based on the characterizations of the dual of the SAGE-cone, we show that ev-
ery SAGE exponential can be written as a sum of nonnegative circuit exponentials
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supported on reduced circuits, see Theorem 3.2.1, and provide an exact characteriza-
tion of the extreme rays of the SAGE-cone, see Theorem 3.2.4. This characterization
substantially sharpens the necessary conditions in [MCW21a] (also see [Wan18a]).

Symmetry Reduction in AM/GM-based Optimization

From an algebraic point of view, a problem is symmetric when it is invariant un-
der some group action. Symmetries are ubiquitous in the context of polynomials or
exponential sums and optimization since they manifest both in the problem formu-
lation and the solution set. This often makes it possible to reduce the complexity of
the corresponding algorithmic questions. Regarding the set of solutions, in 1840 it
was observed by Terquem that a symmetric polynomial does not always have a fully
symmetric minimizer (see also Waterhouse’s survey [Wat83]). However, in many in-
stances, the set of minimizers contains highly symmetric points, see, e.g., [FRS18;
MRV21; Rie12; Tim03]. With respect to the problem formulation, symmetry re-
duction has provided essential advances in many situations, see, e.g., [BV08; KS10;
DV15], especially in the context of sums of squares, see, e.g., [Bac+12; BR21; DR20;
GP04; HHS21; Ray+18; Rie+13].

We examine to which extent symmetries can be exploited in AM/GM-based opti-
mization assuming that the problem affords symmetries. With this, we provide a first
systematic study of the AM/GM-based approaches in G-invariant situations under
the action of a group G.

We prove a symmetry-adapted decomposition theorem and develop a symmetry-
adapted relative entropy formulation of SAGE exponentials in a general G-invariant
setting. This adaption reduces the size of the resulting relative entropy programs
or geometric programs, see Theorem 4.2.1, Theorem 4.2.3, and Corollary 4.2.6. As
revealed by these statements, the gain depends on the orbit structure of the group
action.

We evaluate the structural results in the thesis in terms of computations. In
situations with strong symmetry structure, the number of variables and the num-
ber of equations and inequalities becomes substantially smaller. Accordingly, the
interior-point solvers underlying the computation of SAGE bounds then show strong
reductions in computation time. In various cases, the symmetry-adapted computation
succeeds when the conventional SAGE computation fails.

We mostly focus on unconstrained optimization but the techniques can also gen-
erally be extended to the constrained case, see, e.g., Corollary 7.1.2.

Global Optimization via the Dual SAGE-Cone and Linear Program-
ming

Using the dual cone of sums of AGE exponentials, we provide a relaxation of the
global optimization problem to minimize an exponential sum and, as a special case, a
multivariate real polynomial. The key idea of this optimization approach is to relax
the problem (1.1) via optimizing over a cone with coefficients induced by the dual
SONC-cone. Our approach is motivated by the recent works [DNT21], [MCW21a],
and Chapter 3, and builds on two key observations, which are the main theoretical
contributions:

1. The dual cone of AGE exponentials is contained in the primal one; see Propo-
sition 4.3.1. Also, a variation of the dual SAGE-cone is contained in the primal
SAGE-cone.
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2. Optimizing over this modified dual cone can be carried out by solving a linear
program; see Proposition 4.3.4.

We emphasize that neither the primal nor the dual SAGE-cone is polyhedral; in
this context see also the results in [FW19]. The approach works as follows: First,
we investigate a lifted version of the dual cone involving additional linear auxiliary
variables (Theorem 4.1.6 (3)). Second, we show that the coefficients of a given ex-
ponential sum can be interpreted as being induced by variables in the dual cone;
see (4.21). Third, we observe that fixing these coefficient variables yields a linear
optimization problem only involving auxiliary variables; see Proposition 4.3.4.

Based on our two key observations stated above, we present two linear programs
solving a relaxation of (1.1).

1.2 A Primal-Dual View on Second-Order Representabil-
ity

As explained earlier, the cones of sums of arithmetic-geometric exponentials and sums
of nonnegative circuit polynomials provide nonnegativity certificates based on the
arithmetic-geometric inequality and are particularly useful in the context of sparse
polynomials and exponential sums.

In Chapter 5, we introduce and study a cone which consists of a class of generalized
polynomial functions and which provides a common framework for recent nonnega-
tivity certificates of polynomials and exponntial sums in sparse settings. Specifically,
this S-cone generalizes and unifies both the cone of SONC polynomials and the cone
of SAGE exponentials. In particular, several results in the context of these cones —
such as the characterizations of the dual cone as well as of the extreme rays — can
be transfered to the S-cone.

Since nonnegativity of a polynomial function f(x1, . . . ,xn) on Rn
+ is equivalent

to nonnegativity of f(|x1|, . . . , |xn|) on Rn, we consider the more general functions
f : Rn → R∪ {∞} of the form

f(x) =
∑
α∈A

cα|x|α +
∑
β∈B

dβx
β, (1.3)

with sets of exponents A ⊆ Rn, B ⊆ Nn \ (2N)n, which also include exponential
sums. Based on a subset of these functions, we define the S-cone CS(A,B) which pro-
vides the common generalization of the cones mentioned above, see Definition 5.1.3.
Elements in this S-cone are called AG functions or sums of AG functions. These
AG functions are functions of the form (1.3) with strong support conditions. They
can be seen as a (non-polynomial) generalization of polynomials coming from the
arithmetic-geometric inequality.

One motivation for defining this class of functions (1.3) is that it allows to cap-
ture nonnegativity of polynomials on Rn and nonnegativity of polynomials on the
nonnegative orthant Rn

+ within a uniform setting. Moreover, global nonnegativity of
the summand

∑
α∈A cα|x|α is equivalent to global nonnegativity of the exponential

sum y 7→
∑
α∈A cαe

〈α,y〉.
Both from the geometric and from the optimization point of view, it is of promi-

nent interest to understand how the different classes of cones relate to each other and
whether techniques for different cones can be combined fruitfully. We remind the
reader that, concerning relations between the various cones, Averkov has shown that
the SONC-cone can be represented as a projection of a spectrahedron [Ave19]. In
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fact, his proof applies the techniques from [BN01], which reveal that the SONC-cone
is even second-order representable. Wang and Magron gave an alternative proof based
on binomial squares and A-mediated sets [WM20b]. Both approaches only consider
the primal SONC-cone.

We study the S-cone and its dual from the viewpoint of second-order representabil-
ity — and thus, also study its specilizations. Extending results of Averkov and of
Wang and Magron on the primal SONC cone, we provide explicit generalized second-
order descriptions for rational S-cones and their duals and also take into account
extremality results from Chapter 3 to reduce the size of these problems, see Corol-
laries 5.3.18 and 5.3.19. Our proof combines the techniques for the second-order
representations from [BN01] with the concepts and the duality theory of Chapter 3
(the corresponding results in the language of the S-cone were obtained in [KNT21]).
Our derivation is different from the approach of Wang and Magron and it does not
need binomial squares or A-mediated sets. Moreover, our second-order representa-
tion prevents the involvement of redundant circuits by using a characterization of the
extreme rays of the S-cone from Chapter 3 (in the language of the S-cone, again, see
[KNT21]).

1.3 Sublinear Circuits and the Conditional SAGE-Cone
In this part of the thesis, we examine the constrained case, i.e., for a convex and
non-empty set X, we consider the constrained optimization problem

f∗X = inf{f(x) : x ∈ X} = sup{λ : f − λ ≥ 0 on X}

for an exponential sum f with sparse support A ⊆ Rn.
Historically, the conditional SONC relaxation of a constrained polynomial opti-

mization problem examined decompositions of f − λ into sums of nonnegative poly-
nomials supported on classical Rn-circuits [DKW21; DIW19]. However, in 2019,
Murray, Chandrasekaran, and Wierman proposed a different approach, namely, ex-
amining when an exponential sum with at most one negative coefficient — not nec-
essarily supported on a circuit — is nonnegative over X [MCW21b]. They used the
fact that if we are interested in nonnegativity of an exponential sum f over X which
has at most one negative coefficient cβ, i.e.,

f =
∑

α∈A\{β}
cαe
〈α,x〉 + cβe

〈β,x〉 with cα ≥ 0 for all α in A\ {β},

then we can equivalently examine nonnegativity of
∑
α∈A cαe

〈(α−β),x〉. This is a con-
vex function by construction. Hence, X-nonnegativity of this function can be exactly
characterized by applying the principle of strong duality in convex optimization lead-
ing to a relative entropy program in a dual variable ν = (να)α∈A, the exponential’s
coefficients, and involving the support function of X (see Proposition 2.4.12 for a
precise statement). The same of course holds for the optimization formulation.

Following [MCW21b], this approach is called conditional SAGE. Whenever X
is fixed, X-nonnegative exponential sums with at most one negative coefficient are
called X-AGE exponentials, and the exponential sums which decompose into a sum
of such functions are called X-SAGE in this thesis. Similarly to the unconstrained
case, deciding whether a given function f is X-SAGE can also be determined in terms
of a relative entropy program.
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Even though this relative entropy program works perfectly without considering
some circuit-like notion, it does not reveal anything about the structure of the con-
ditional SAGE-cone. Similar to many results for the unconstrained case, partially
covered in Chapter 3, see also [FW19; KNT21; MCW21a], we seek to understand
extremality, duality and numerical issues of the cone. To do so, we establish the
concept of sublinear circuits. Whenever the considered support A or constraint set X
plays an important role, we also call these objects the X-circuits of A. X-circuits of
A are nonzero vectors ν? ∈ RA at which the support function ν 7→ σX(−Aν) exhibits
a strict sublinearity condition (see Definition 6.1.2). This construction ensures that
the special case of Rn-circuits reduces to the simplicial circuits of the affine-linear
matroid induced by A, and even for real subsets X ( Rn, sublinear circuits have
affinely independent positive supports, compare Proposition 6.1.5.

Connecting the theory of sublinear circuits to X-nonnegative AGE exponentials,
Theorem 6.2.2 reveals that for every X-AGE exponential, there exists a sublinear
circuit serving as the dual variable in the relative entropy formulation. Moreover, ev-
ery normalized X-circuit λ induces a λ-witnessed X-AGE-cone CX(A,λ) satisfying
some generalized variant of the circuit number condition ([IW16a]) from the uncon-
strained case. The generalization again involves the support function of X. The
union of all these cones is the whole cone of X-AGE exponentials supported on A,
see Theorem 6.2.4. However, beyond these similarities to the unconstrained case,
Example 6.2.9 reveals that we cannot recognize a circuit solely by its support.

Section 6.3 deals with the question of which X-circuits in fact are necessary for the
representation of the X-AGE-cone as well as the X-SAGE-cone. To do so, we develop
the notion of reduced X-circuits — namely thoseX-circuits ν for which (ν,σX(−Aν))
generates an extreme ray of the circuit graph

pos ({(λ,σX(−Aλ)) : λ normalized X-circuit of A}∪ {(0, 1)}) .

In fact, we can construct the conditional SAGE-cone using only λ-witnessed AGE-
cones for reduced normalized X-circuits λ.

Sublinear circuits for polyhedral constraint sets

In the case of polyhedral constraint sets, the X-nonnegativity question simplifies
substantially and yields interesting results. Hence, we put a particular focus on
this situation. Here, the sublinear circuits can be characterized exactly in terms
of the normal fan of a certain polyhedron, see Theorem 6.1.8. This induces a rich
polyhedral-combinatorial structure and makes these sublinear circuits accessable for
effective computations. For polyhedral X, the number of sublinear circuits is finite.
This gives a decomposition of the X-SAGE-cone into finitely many X-AGE-cones,
each induced by a sublinear circuit, see Theorem 6.3.6, paraphrased below.

Let X be a polyhedron. Denote by Λ?
X(A) the set of normalized reduced X-

circuits of A. Assume λ?X(A) is non-empty and let the cone of X-SAGE
exponentials consist of at least one non-positive term over X. Then, the
cone equals the sum ∑

λ∈Λ?X (A)
CX(A,λ).

Moreover, there is no real subset Λ ( Λ?
X(A) of the set of normalized

reduced X-circuits for which
∑
λ∈Λ?X (A) CX(A,λ) =

∑
λ∈Λ CX(A,λ).
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Theorem 6.3.6 provides the most efficient description possible of the X-SAGE-cone
in terms of power cone inequalities.

Among the class of polyhedra, polyhedral cones exhibit particularly nice proper-
ties. Note that, as a very particular case, the unconstrained setting X = Rn, which
is treated in Chapter 3, also falls into the class of polyhedral cones. Every univariate
case can be transformed to one of the two conic cases R (unconstrained case), R+

(one-sided infinity interval), or to the non-conic case [−1, 1] (compact interval). In
the multivariate case, the sets Rn, Rn

+ (nonnegative orthant), and the cube [−1, 1]n
provide prominent examples for polyhedra. In contrast to the unconstrained case and
to the nonnegative orthant, the cube [−1, 1]n provides a non-conic case.

Throughout Chapter 6, we illustrate key concepts with the help of the univariate
compact interval X = [−1, 1] and the half-line X = [0,∞). We examine both the X-
circuits and the reduced X-circuits of a generic point set A ⊆ R for both sets X. This
culminates in a complete characterization of the extreme rays of the X-SAGE-cone
for X = [−1, 1] and X = [0,∞) with respect to A ⊆ R (Theorem 6.4.1).

Constrained AM/GM-Based Optimization Approaches

To strengthen the connection to our optimization results, we finish this thesis by
showing that certain optimization and decomposition results for the unconstrained
setting also hold for the constrained case.

In particular, whenever the constraint set X is G-symmetric for a group G, one
can find a symmetric decomposition of anX-AGE exponential leading to a relative en-
tropy program with substantially reduced size, see Theorem 7.1.1 and Corollary 7.1.2.

In Section 7.2, we examine optimization over some cone induced by the dual of the
X-SAGE-cone. Here, we need to make different restrictions on the constraint set X,
namely, that it is polyhedral and conic. The necessity of being conic stems from the
fact that in this case, the support function supx∈X −(Aν)Tx evaluates to 0 whenever
its value is finite. This ensures that X-AGE-like exponentials with coefficients in the
dualX-SAGE-cone are contained in the primal. The restriction ofX being polyhedral
enables us to use the result on the finiteness of the number of X-circuits – and, hence,
allows us to describe the X-SAGE-cone in terms of power-cone-inequalities. It also
ensures that the resulting optimization program is linear: If X was not polyhedral,
one might not be able to certify containment in the setX by solving linear constraints.

We also provide a second-order-cone representation for the conditional SAGE-cone
and its dual in the case that X is polyhedral and ATX is rational, see Section 7.3.
The latter already was a restriction in the unconstrained case. We need the former to
again exploit the finiteness of the set of X-circuits and the fact that in this situation,
the X-SAGE-cone is power-cone representable.
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Chapter 2

Preliminaries

In this Chapter, we collect the background and state of the art.
We start by examining convex optimization and the duality theory of convex op-

timization problems in Subsection 2.1.1, with a particular emphasis on the Lagrange
function, see Definition 2.1.7.

After that, we take a short detour and look at the basics of group theory, see
Section 2.2. We need to do this, as part of this thesis deals with the representation
and nonnegativity of symmetric exponential sums.

Section 2.3 focuses on polynomial optimization and nonnegativity. We start by
examining how these two aspects are related, namely, we show how to transform a
polynomial optimization problem into a problem of polynomial nonnegativity, (2.3).
This procedure not only works for polynomials but for general functions on Rn. We
examine the nonnegativity cone (2.4), i.e., the cone of all nonnegative polynomials.
For the univariate case, there exist several efficient approaches for certifying mem-
bership in this cone, but in general, finding the optimal value of a given polynomial
is NP-hard.

Hence, we turn to a prominent approximation method in Subsection 2.3.1 — sums
of squares (SOS). This method is based on the fact that every sum of squares of poly-
nomials is trivially nonnegative. It does, however, not cover the whole nonnegativity
cone. A prominent counterexample is the Motzkin polynomial. This polynomial is
also interesting, as its exponential version provides a member of the class this thesis
is interested in — the cone of sums of arithmetic-geometric exponentials.

Before turning to examining the state of the art of this particular cone, we take a
short look at the duality theory for the cone of sums of squares, see Theorem 2.3.4,
constraint optimization approaches using sums of squares, see Theorems 2.3.5 and
2.3.6 as well as Proposition 2.3.7, and the existing results for symmetric polynomials,
see Theorems 2.3.8 and 2.3.9.

In the last part of this chapter, Section 2.4, we finally introduce sums of non-
negative circuit polynomials (SONC) and sums of AGE exponentials (SAGE). The
former were first introduced by Iliman and de Wolff [IW16a], extending results from
Reznick [Rez89]. The latter were originally introduced by Chandrasekaran and Shah
[CS16]. In 2018, Wang and Murray, Chandrasekaran, and Wierman independently
managed to prove the de facto equivalence of these two classes of functions [Wan18a;
MCW21a] with respect to the given class of polynomials or exponential sums.

Both classes build upon sparse nonnegativity certificates. The underlying moti-
vation for the cone of sums of nonnegative circuit polynomials was the concept of
so-called circuits, which is closely related to the concept of circuits in matroid theory.
The motivation for introducing — and naming — the cone of sums of arithmetic-
geometric exponentials stems from the weighted AM/GM inequality. This inequality
proves nonnegativity of an element in the SAGE-cone.
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Besides containing elements that are nonnegative but not contained in the SOS-
cone, the SONC and SAGE-cones have the huge advantage that membership in
any of those cones can be certified by efficient convex optimization methods: Rel-
ative entropy programming [CS16] and for sub classes also geometric programming
[DIW17]. We introduce the relative entropy formulation in Theorem 2.4.2, and in
Theorem 2.4.5, we introduce the so-called circuit number, which yields a nonnega-
tivity certificate for SONC polynomials and provides the theory for the geometric
programs. In Subsection 2.4.1, we have a look at the relation of the SONC and
SAGE-cone, in Subsection 2.4.2, we give an overview over decomposition results, and
in Subsection 2.4.3, we examine constrained optimization, i.e., optimization over some
subset X ( Rn.

2.1 Notation and Convexity Theory
Throughout this article, we denote by N the set {0, 1, 2, 3, . . .}; for m ∈ N let [m]
abbreviate the set {1, . . . ,m}. Moreover, let 1 denote the all-one vector, 0 the all-zero
vector and δ(i) the i-th unit vector in Rn for some n ∈N and i ≤ n.

We write R>0 = {x ∈ R : x > 0} and R+ = {x ∈ R : x ≥ 0}. Moreover,
for A ⊆ Rn, denote by RA the set of |A|-dimensional vectors whose components
are indexed by the set A, and for β ∈ A and ν ∈ RA denote by ν\β the vector
we obtain by deleting the β-th entry from ν. For ν ∈ RA we denote its support
by supp(ν) := {α ∈ A : να 6= 0}, and we sometimes use A as a linear operator
A : RA → Rn, ν 7→ Aν =

∑
α∈A ανα. We denote by 〈·, ·〉 the standard Euclidean

inner product in Rn.
Given a set A ⊆ Rn we denote by relint(A) its relative interior, by pos(A) its

conic hull and by conv(A) its convex hull. We refer to the vertices of conv(A) as
Vert (conv(A)).

For a given linear space L, we denote by L∗ its dual, for a given cone C we denote
by C∗ its dual cone, and for a set P by rec(P )◦ its polar. The extreme rays of a cone
C are rays that cannot be written as a sum of other rays in C, and edge generators
are those elements inducing an extreme ray. A convex cone C is pointed if it contains
no lines. For two vector spaces V and W and a linear map L : V → W , we denote
by kerL := {v ∈ V : L(v) = 0} the kernel of L, and we denote the trace of an n× n
square matrix M by tr(M ) :=

∑
i≤nMi,i, where Mi,i denotes the entry of M with

index (i, i).
A subset F ⊆ S of some convex set S is called a face, denoted by F E S, if for every

x ∈ F and y, z ∈ S with x ∈ [y, z] := {λy + (1− λ)z : λ ∈ [0, 1]}, we have y, z ∈ F .
The recession cone of a set S is rec(S) := {t : ∃s ∈ S : s+ λt ∈ S for all λ ≥ 0}. All
logarithms are base e, where e is Euler’s number, and for the logarithmic function,
we use the conventions 0 ln( 0

y ) = 0, ln( y0 ) =∞ if y > 0, ln( 0
0 ) = 0, ln(0) = −∞ and

in addition 0
0 = 1 and

(y
0
)0 = 1 for y ∈ R.

For any linear operator F : Rk → Rl with k, l ∈ N, the corresponding adjoint
operator is F# : Rl → Rk with

〈Fx, y〉 = 〈x,F#y〉.

2.1.1 Convex Optimization

In this subsection, we collect the basic convex optimization principles starting with
the easiest case of linear optimization and ending with relative entropy programming
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and geometric programming, both of which are relevant in the context of sparse
polynomial and exponential optimization.

We put a particular focus on the duality theory of convex optimization and exam-
ine when the primal and dual optimal values coincide. In the end, we cover interior
point methods. Those are known efficient algorithms to solve convex optimization
problems relying on so-called barrier functions. In our context, those are of particular
interest as both relative entropy programs and geometric programs have computa-
tionally tractable barrier functions and, hence, can be efficiently solved using interior
point algorithms.

Let S ⊆ Rn. A function f : S → R is called convex on S if for all x, y ∈ S and
for all λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Convex functions provide a class of functions where the study of extreme points
is particularly easy thanks to the following theorem.

Theorem 2.1.1 (see, e.g., [BV04, p. 95]). Let S ⊆ Rn be open and convex, and
f : S → R differentiable and convex. A point y ∈ S minimizes f(x) if and only if
∇f(y) = 0.

As a direct consequence of convexity, we obtain Jensen’s inequality, which we use
frequently in the course of this thesis.

Theorem 2.1.2 (Jensen’s Inequality, see, e.g., [BV04, p. 77]). For S ⊆ Rn and a
real convex function f : S → R , x(1), . . . ,x(m) ∈ S, and positive weights (ai)i∈[m],
we have

f

(∑
i aix

(i)∑
i ai

)
≤
∑
i aif(x

(i))∑
i ai

.

Equality holds if and only if f is a linear function on S or x(i) = x(j) for all i, j ∈ [m].

Having collected these basic statements, we introduce convex optimization prob-
lems as the main subject of study in this subsection. A convex optimization problem
is a problem of the form

inf{f(x) : x ∈ C},

where f : Rn → R is a convex function and C ⊆ Rn a convex set.
The simplest example of a convex optimization problem is a linear program, where

f is a linear function and C a polyhedron. Linear programs have a long history.
Orignally, linear programming was introduced by Fourier (1827) and Kantorowitsch
(1939), while 1947 Dantzig developed the famous simplex method as an efficient way
to solve linear programs. In 1979 the first method for solving linear programs in
polynomial time was proposed by Khachiyan — the ellipsoid method — and in 1984
Karmakar provided an interior point algorithm to solve linear programs.

Generalizing linear programs leads to another prominent convex optimization
problem involving matrix inequalities, namely semidefinite programming.

An n× n symmetric real matrix M is positive definite if xTMx > 0 for all x ∈
Rn \ 0, and positive semidefinite if xTMx ≥ 0 for all x ∈ Rn. We denote this by
M < 0, and we denote by Sn the space of all real symmetric n× n matrices together
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with the inner product

〈A,B〉 = tr(ATB) = tr(A ·B).

Definition 2.1.3 (SDP). A semidefinite program (SDP) is an optimization problem
of the form

inf
X∈Rn×n

〈C,X〉

〈Ai,X〉 = bi for all i ∈ [m]

X < 0,

where Ai ∈ Sn, bi ∈ Rn and m ∈N.

In [Ave19], Averkov defined the semidefinite extension degree, which has a close
relation to semidefinite programming. The definition is in terms of linear matrix
inequalities of size k for some k ∈N and n ∈N:

A0 + x1A1 + . . .+ xnAn < 0

with symmetric k× k matrices Ai, 0 ≤ i ≤ n, and x = (x1, . . . ,xn)T ∈ Rn.

Definition 2.1.4 (Semidefinite Extension Degree [Ave19]). Let S ⊆ Rn. The min-
imal k ∈ N such that S can be described by a linear matrix inequality of size k is
called the semidefinite extension complexity of S (and is set to ∞ if such a k does
not exist).

The semidefinite extension degree of S is defined as the smallest k ∈N such that
S can be described by m linear matrix inequalities of size k for some finite m ∈ N

(and as ∞ if S has no semidefinite extended formulation).

Note that any set which can be represented as a projection of the feasible set
of an SDP has finite semidefinite extension degree. A related class of optimization
programs are programs optimizing over sets with semidefinite extension degree 2,
namely second-order representable sets:

Definition 2.1.5 (Second-Order-Cone Programs (SOCP)). For the Euclidean norm
‖ · ‖, a second-order-cone program (SOCP) is an optimization problem of the form

min
{
cTx : ||Aix+ bi||2 ≤ cTi b+ di for all i ∈ [m]

}
with real symmetric matrices Ai, vectors bi, ci, di and a vector c. A subset of Rn is
called second-order representable if it can be represented as a projection of the feasible
set of a second-order-cone program.

Second-order-cone programs are related to semidefinite programs since for a sym-
metric 2× 2-matrix, positive semidefiniteness can be formulated as a second-order
condition:

Lemma 2.1.6. (See, e.g., [NN94, §6.4.3.8], [WM20a, Lemma 4.3].) A symmetric

2× 2 matrix A =

(
a b
b c

)
is positive semidefinite if and only if the second-order

condition ∣∣∣∣∣
∣∣∣∣∣
(

2b
a− c

)∣∣∣∣∣
∣∣∣∣∣
2
≤ a+ c

is satisfied.
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Before we examine other convex optimization problems that are particularly useful
in the optimization of sparse polynomials and exponential sums, we take a detour to
duality theory.

To do so, we examine convex optimization problems of the form

inf f0(x) (2.1)
fj(x) ≤ 0 for all j ∈ [m],x ∈ Rn

where fj are convex functions for all j ∈ {0, . . . ,m}.
We start by introducing the Lagrange function, which reduces optimization of a

convex function over a convex constraint set to optimization over a single convex
function.

Definition 2.1.7 (Lagrange Function). The Lagrange function of the problem (2.1)
is the function L : Rn ×Rm → R defined as

L(x,µ) = f0(x) +
∑
j∈[m]

µjfj(x).

Following [BV04, Section 5], the infimum

inf
x∈Rn

sup
µ∈Rm+

L(x,µ)

is finite on the set of feasible x ∈ Rn for (2.1) and coincides with the optimal value
of (2.1).

The Lagrange dual problem to (2.1) is the problem

sup
µ∈Rm+

inf
x∈Rn

L(x,µ). (2.2)

Whenever we consider linear programs, i.e., for all j ∈ {0, . . . ,m}, fj is a linear
function, the optimal values of the primal and dual problems coincide as soon as
both are finite and there exists a feasible point. For non-linear functions, we can only
guarantee some weak duality argument.

Theorem 2.1.8 (Weak Duality for Convex Optimization, see, e.g., [BV04, p. 225]).
If x is a feasible solution of (2.1) and µ is a feasible solution of (2.2), then

sup
µ∈Rm+

inf
x∈Rn

L(x,µ) ≤ inf
x∈Rn

sup
µ∈Rm+

L(x,µ).

There are, however, criteria guaranteeing that there is no duality gap — the Slater
Conditions.

Theorem 2.1.9 (Strong Duality for Convex Optimization [Sla14]). For some m ∈N

and all i ∈ {0, . . . ,m} let fi : Rn → R be convex and assume that the Slater constraint
qualification

there exists x̂ ∈ Rn with fi(x̂) < 0 for all i ∈ [m]

is satisfied. Then,

sup
µ∈Rm+

inf
x∈Rn

L(x,µ) = inf
x∈Rn

sup
µ∈Rm+

L(x,µ).



16 Chapter 2. Preliminaries

So instead of the precondition of a feasible point — which is sufficient in the case
of linear constraints –, we need a strictly feasible point to guarantee coincidence of
primal and dual optimal values.

The Fenchel conjugate (or convex conjugate / Legendre conjugate) captures the
special case of the Lagrange function with linear constraint sets (see, e.g., [BV04,
Section 3.3])

Definition 2.1.10 (Fenchel Conjugate). The Fenchel conjugate of a given function
f : Rn → R is the function f∗ defined as

f∗(y) = sup
x∈Rn

(yTx− f(x))

where only the domain set dom(f) = {x ∈ Rn : f(x) < ∞} is considered. The
function f∗ is convex on its domain even if f itself is not convex.

To see the connection to the Lagrange function, consider the problem

min
x∈Rn

f(x) s.t. Ax ≤ b, Cx = d

for matrizes A ∈ Rm×n,C ∈ Rl×n and m, l ∈ N. The Lagrange dual optimization
problem then is

sup
λ∈Rm,µ∈Rl+

L(λ,µ) = sup
λ∈Rm,µ∈Rl+

inf
x∈Rn

f(x) + λT (Cx− d) + µT (Ax− b)

= sup
λ∈Rm,µ∈Rl+

− dTλ− bTµ− f∗(−CTλ−ATµ).

We use dom(L) = {(λ,µ) ∈ Rl ×Rm
+ : −CTλ−ATµ ∈ dom(f∗)}, as the Lagrange

dual has an extended domain.
Having established the duality theory, we introduce the concept of primal-dual

interior point algorithms, which show that the optimization techniques used later
for polynomial and exponential optimization are indeed efficiently solvable. Interior
point methods are algorithms solving convex optimization problems. The idea is to
transform any convex optimization problem into a problem where a linear function is
optimized subject to convex constraints, using a barrier function.

Definition 2.1.11 (Barrier Function). Let C ⊆ Rn be convex, closed and such that
intC 6= ∅. A continuous function F : Rn → R is called barrier function for C if
domF = intC and F (x)→∞ for x→ ∂F .

For an optimization problem of the form (2.1), one usually uses the logarithmic
barrier function −

∑
j∈[m] ln(fj(x)).

There exist a lot of solvers for convex optimization programs, especially for the
special case of linear programming. For the computational experiments in Chapter 4,
we want to point out the solvers MOSEK [DA21] and ECOS [DCB13], which can
both be used with the CVXPY package [DB16; Agr+18; ADB19].

As mentioned before, for polynomial or exponential optimization, i.e., for the opti-
mization of a given polynomial f =

∑
α∈A cαx

α or exponential sum f =
∑
α∈A cαe

〈α,x〉

with cα ∈ R, A ⊆ Rn and xα =
∏
i∈[n] x

αi
i , the classes of geometric and relative en-

tropy programs are of particular interest.



2.1. Notation and Convexity Theory 17

Definition 2.1.12 (Geometric Program). A geometric program (GP) is an optimiza-
tion problem of the form

min p0(x),
pi(x) ≤ 1 for all i ∈ [m],
qj(x) = 1 for all j ∈ [r],x ∈ Rn

>0

where qj are monomials, i.e., qj = djx
α(j) with dj > 0,α(j) ∈ Rn for all j ∈ [r] and

pi are posynomials, i.e., sums of monomials pi =
∑
l∈[ki] c

(i)
l x

α(il) with c(i)l > 0 for all
l ∈ [ki] and ki ∈N for all i ∈ {0, . . . ,m}.

In the form defined above, however, geometric programs are not convex in general.
Using the substitution yi = ln(xi), we can transform the program into its convex
version:

min
∑
l∈[k0]

c
(0)
l e〈α

(il),y〉,

∑
l∈[ki]

c
(i)
l e
〈α(il),y〉 ≤ 1 for all i ∈ [m],

dje
〈α(j),y〉 = 1 for all j ∈ [r].

Since

−
∑
i∈[m]

ln

− ln

∑
l∈[ki]

c
(i)
l e
〈y,α(il)〉


is a barrier function for the non-linear constraints

− ln

∑
l∈[ki]

c
(i)
l e
〈y,α(il)〉

 ≥ 0,

we can solve geometric programs using interior point methods. Geometric programs
have the advantage that — even in high dimension and with many variables — they
can be solved efficiently and remain stable [Boy+07].

We conclude this section by looking at relative entropy programming.

Definition 2.1.13 (Relative Entropy Program). Relative entropy programs (REPs)
are conic optimization problems in which a linear function under conic constraints
specified by the relative entropy cone and linear constraints is minimized:

min f0(x),
fi(x) ≥ 0 for i ∈ [m],
x ∈ REn,

where fi : Rn → R are linear functions for all i ∈ {0, . . . ,m} and the relative entropy
cone is the convex cone

REn = {(ν,λ, δ) ∈ Rn ×Rn ×Rn : νi ln(νi/λi) ≤ δi for all i ∈ [n]}.

The analysis in [CS17] reveals that optimizing over the relative entropy function
D : Rn ×Rn → R with (ν,λ) 7→

∑
i≤n νi ln(νi/λi) can be done by a relative entropy
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program:

D(ν,λ) ≤ t⇔ there exists δ ∈ Rn : (ν,λ, δ) ∈ REn and 1T δ = t.

Relative entropy programs naturally are convex, and, moreover, there exist effi-
ciently computable barrier functions [NN94]. Hence, they can be solved via interior
point methods. Note that both SOCPs as well as GPs are special cases of relative
entropy programs [Boy+07].

2.2 Group Theory
For the results in Chapter 4, we collect the basics of group theory, compare [Bos20].

We start by reminding the reader of the definition of two prominent examples of
finite groups on Rn. Let n ∈ N with n ≥ 1. The Symmetric Group Sn is the set of
all permutations of the set [n], having the composition of permutations as the group
operation. The General Linear Group GLn(R) consists of all invertible n×n-matrices
with real entries, together with matrix multiplication.

In the following chapters, we are also interested in how a group acts on a set.
Thus, we define the left and right group action.

Definition 2.2.1 (Group Action on a Set). Let G be a group with identity element
e and let A be a set.

1. A left action σ of G on A is a function

σ : G×A → A,

such that e ·α = α and g · (h ·α) = (gh) ·α for all α ∈ A and g,h ∈ G. We say,
the group G acts on A from the left.

2. Similarly, a right action σ of G on A is a function

σ : A×G→ A,

such that α · e = α and (α · g) · h = α · (gh) for all α ∈ A and g,h ∈ G. We say,
the group G acts on A from the right.

Note that a subgroup S of a group G acts on G via translation from the left, as
follows

S ×G→ G, (s, g) 7→ sg

and via translation from the right as follows

G× S → G, (g, s) 7→ gs.

Having this definition, we can now define left and right cosets as well as orbits.

Definition 2.2.2 (Cosets and Orbits). Let G be a group and S be a subgroup of G
acting on G via a right action G×H → G, (g,h) 7→ g ·h or a left action H ×G→ G,
(h, g) 7→ h · g. Then, for g ∈ G, a left coset is the orbit of g under a right action, i.e.,
a set of the form

gS = {h ∈ G : there exists s ∈ S with h = g · s},
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and a right coset is the orbit of g under a left action, i.e., a set of the form

Sg = {h ∈ G : there exists s ∈ S with h = s · g}.

For subgroups S and H of G, we denote by G/S the set of left cosets and by S\G
the set of right cosets. Moreover, we say S\G/H for the set of double cosets

S\G/H = {SgH : g ∈ G}.

Over the course of this thesis, we solely use groups acting on Rn from the left.
Hence, we assume from here on that any group G acts from the left on any subset
A ⊆ Rn.

Definition 2.2.3. Let G be a group acting on a set A from the left.

1. For every α ∈ A, the orbit of α is the set

G · α = {g · α : g ∈ G}.

We call a set Â ⊆ A a set of orbit representatives if it is inclusion-minimal and
with the property that G · Â = A.

2. For every β ∈ A, the stabilizer of β is the set

Stabβ = {g ∈ G : g · β = β}.

3. The set of all orbits of A under the action of G

A/G := {G · α : α ∈ A}.

is called orbit space.

A subset B ⊆ A is called G-invariant if

G · B = B.

The same holds for elements: An element α ∈ A is called G-invariant if g ·α = α for
all g ∈ G.

A prominent result here is the Orbit Counting Theorem (sometimes also called
Burnside’s Lemma or Cauchy-Frobenius Lemma):

Lemma 2.2.4 (see, e.g., [Sta99, Lemma 7.24.5]). Let G be a finite group acting on
a set A. Then,

|A/G| = 1
|G|

∑
α∈A
|Stabα|.

For double cosets, we can use a variation: Assume S,H are subgroups of G. Then,

|S\G/H| = 1
|S||H|

∑
(s,h)∈S×H

|{g ∈ G : s · g · h = g}|.

We close this subsection by stating the definition of a linear representation ρ
of a finite group G over a field F, as well as its dual. We assume that F is R

or C in general. A linear representation of a finite group G over a field F is a
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homomorphism ρ : G→ GL(V ), where V is a vector space over F and GL(V ) is the
general linear group of V . Given a basis of V , its representation can be expressed
as a group homomorphism into the group GLn(F), where n := dim(V ); this is a
matrix representation. Its dual representation is the linear representation ρ∗ of the
dual space V ∗ defined via

ρ∗(g) = ρ(g−1)T for all g ∈ G.

2.3 Polynomial and Exponential Optimization and Non-
negativity

As already mentioned in the introduction, finding the minimal value of a given real
function — either over Rn or any subset of it — is a fundamental question in real
algebraic geometry. Framing this question in terms of the subclass of polynomials or
exponential sums has various applications, for example in control theory and robotics
[HG05; AM19].

For x ∈ Rn, a polynomial is a function

f(x) =
∑

i1,...,in
ci1,...,in

∏
j≤n

x
ij
j

with coefficients ci1,...,in ∈ R for n ∈N and ij ∈N for all j ≤ n. For a fixed exponent
vector α ∈Nn, we denote

xα =
∏
i∈[n]

xαii .

We denote by R[x] := R[x1, . . . ,xn] the space of polynomials in n variables with real
coefficients . A sparse polynomial with support in A ⊆Nn is a function

f =
∑
α∈A

cαx
α

and, for A ⊆ Rn, a sparse exponential sum (sometimes also called signomial) is a
function

f =
∑
α∈A

cαe
〈x,α〉.

In a polynomial or exponential optimization problem, we optimize a polynomial
or exponential sum f , respectively, given some set of constraints, here referred to as
X. In the case that X ( Rn, we speak of a constrained polynomial or exponen-
tial optimization problem, and when X = Rn, we speak of a global polynomial or
exponential optimization problem.

Optimization and nonnegativity of a given real function are tightly related. Con-
sider for a polynomial or exponential sum f the following problem:

min
x∈X

f(x)

This problem is equivalent to finding the maximal real number that we can subtract
from f to obtain a nonnegative function:

sup
λ∈R

λ such that f(x)− λ ≥ 0 for all x ∈ X. (2.3)
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This way, we transfer an optimization problem into a problem of nonnegativity.
Hence, it is natural to examine the cone of nonnegative polynomials in n variables,
defined as the set

P := {f ∈ R[x1, . . . ,xn] : f(x) ≥ 0 for all x ∈ Rn}. (2.4)

For a given subset X ⊆ Rn, we can analogously define the cone of nonnegative
polynomials over X:

PX := {f ∈ R[x1, . . . ,xn] : f(x) ≥ 0 for all x ∈ X}.

More generally, in this thesis, we consider the cone of nonnegative generalized poly-
nomial (or signomial) functions; compare Chapter 5. We also use the notations P
and PX for the analogous cones of (X-)nonnegative exponential sums.

At least for the univariate case, there exist algorithms providing nonnegativity
certificates for polynomials, like Sturm sequences, which can be used to compute the
number of roots of a given polynomial [BPR06]. But for the multivariate case, even
computing whether a given polynomial with degree at least 4 is globally nonnegative
was proven to be NP-hard [DG08]. Hence, the idea is to find subclasses of the class of
nonnegative polynomials which approximate the question. A prominent subclass is
the cone of sums of squares of polynomials, which we examine in the next subsection.
Before doing so, we introduce the basic notion and the duality theory of polynomials
and exponential sums.

For A ⊆ Rn we consider the set RA of vectors with components indexed by α ∈ A,
which allows us to identify a polynomial or exponential sum with the vector of coeffi-
cients c ∈ RA; hence, we sometimes write f ∈ RA for polynomials or exponential sums
f with coefficient vectors c ∈ RA. The support of a polynomial f(x) =

∑
α∈A cαx

α

or exponential sum f(x) =
∑
α∈A cαe

〈x,α〉 is supp(f) = {α ∈ A : cα 6= 0} and the
degree of f is deg(f) = maxα∈supp(f ) |α|.

Duality is a strong aspect in this thesis. In Chapters 3, 4 and 5, we examine —
among others — the dual cones of a subcone of the nonnegativity cone P, and in
Chapters 6 and 7, we examine — again, among others — the dual cone of a subcone
of the constrained nonnegativity cone PX . Hence, it is natural to establish the duality
theory for polynomials.

Definition 2.3.1 (Natural Duality Pairing). Given a polynomial

p =
∑

α∈supp(p)
cαx

α ∈ R[x1, . . . ,xn]

with coefficients cα ∈ R \ {0} for all α ∈ supp(p) and an element v in the dual space,
the natural duality pairing is

v(p) =
∑

α∈supp(p)
cαvα.

The equivalent holds for exponential sums
∑
α cαe

〈x,α〉 or polynomial-like functions.
Then, the dual cone of nonnegative polynomials is the set

P∗ = {v : v(p) ≥ 0 for all p ∈ P}.

Again, the equivalent holds for exponential sums, polynomial-like functions, and the
constrained situation, i.e., PX .



22 Chapter 2. Preliminaries

2.3.1 Sums of Squares

We finally turn to examining the subclass of sums of squares.
The SOS-cone Σ[x] for x ∈ Rn is the cone of sums of squares of polynomials in

x. Naturally, this is a subcone of the cone of nonnegative polynomials, and in the
univariate case the converse also holds, i.e., every univariate nonnegative polynomial
of even degree is a sum of squares.

In 1888, Hilbert showed that the cones of nonnegative polynomials and sums of
squares coincide in exactly three cases:

Theorem 2.3.2 (Hilbert). Let n ≥ 2 and d be even. The cones Σn,d of sums of
squares and Pn.d of nonnegative polynomials, both in n variables and of degree d,
coincide if and only if a) n = 2, b) d = 2, or c) n = 3 and d = 4.

However, as the cone of sums of squares is a subcone of the nonnegativity cone
in any case, considering the (global or constrained) polynomial optimization problem
introduced previously, a natural relaxation for this problem is the following:

psos := min λ
s.t. p− λ ∈ Σ[x]. (2.5)

This problem provides a lower bound to the original problem: Let λ∗ be the optimal
value of (2.3) and λsos the optimal value of (2.5). Since the feasible set of the second
problem is a subset of the feasible set of the first problem, we clearly have λ∗ ≥ λsos.

The decomposition of a given polynomial into a sum of squares can be computed
by a semidefinite program:

Theorem 2.3.3 (see [Las15, Proposition 2.1]). Let p ∈ R[x1, . . . ,xn] be of even
degree 2d and let Y be the vector of monomials in x1, . . . ,xn of degree at most d.
Then, p ∈ Σ[x1, . . . ,xn] if and only if there exists Q ∈ S |Y |+ with

p = Y TQY .

The proof of this theorem relies on the fact that a polynomial p of degree 2d is
a sum of squares p =

∑
(sj(x))2 with polynomials sj(x) of degree at most d if and

only if the polynomial’s coefficient vectors sj and the vector Y of all monomials in n
variables of degree at most d satisfy

p = Y T (
∑

sjs
T
j )Y ,

i.e., if and only if the matrix
∑
sjs

T
j is positive semidefinite.

As explained above, in general, this constructed SDP leads to a lower bound. To
examine when this bound is sharp, i.e., when p∗ = psos, we take a look at the dual
of this semidefinite program, building upon the duality theory for polynomials estab-
lished in the previous subsection. In particular, this provides a method to capture
any duality gap when using the SOS relaxation.

We consider a convexified version of the global optimization problem. Let P(Rn)
denote the set of probability measures on Rn. In case the minimum is finite, we have
the equality

p∗ = min
x∈Rn

p(x) = min
µ∈P(Rn)

∫
Rn
p(x)dµ(x) =

∑
α

pαyα
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for p =
∑
α pαyα and where y = (yα)α is the moment sequence

yα =
∫

Rn
xαdµ.

Given a moment sequence y, the moment problem is the question whether there
exists some representing measure µ on Rn, i.e., some measure µ with yα =

∫
xαdµ.

For a real subset X ( Rn, the X-moment problem is the analogous question of the
existence of some representing measure on X; we discuss the constrained case in detail
at the end of this subsection.

We can interpret the moment sequence y as a linear functional L : R[x]→ R being
the integration on Rn with respect to µ, i.e., with xα 7→ yα =

∫
xαdµ. Moreover, we

often work with a bilinear form L : R[x]×R[x] → R with (p, q) 7→ L(p · q) — the
associated moment form.

For a given moment sequence, the moment matrix is the matrix

M(y) = (yα+β)α,β for α,β ∈Nn

and the truncated moment matrix is

Md(y) = (yα+β)α,β for α,β ∈Nn with |α| ≤ d, |β| ≤ d,

i.e., where the degrees of the exponent vectors α and β are bounded by d. Observe
that in particular (Md)α,β = L(xα,xβ) = L(xα+β) for all d ≥ 0 and α,β ∈Nn with
|α| ≤ d and |β| ≤ d. As L(p, p) = L(p2) =

∫
p(x)2dµ ≥ 0, whenever there exists a

measure µ such that L indeed is the integration with respect to µ, we have L(1) = 1
and L is positive semidefinite as well as Md(y) < 0 for all d ≥ 0.

The problem, however, is that the underlying matrices might have infinite dimen-
sion as the degree of the polynomials in the decomposition is not bounded above
in general. Thus, without a degree bound, this problem cannot be solved efficiently.
Hence, for a given polynomial p =

∑
α pαyα of degree 2d, one often uses the moment

relaxation

pmom = inf{
∑
α

pαyα : Md(y) < 0},

i.e., we use the truncated moment matrix bounded in size by d.
The following theorem collects an important statement concerning the relation of

the SOS relaxation and the moment relaxation in terms of duality. It also shows how
to extract an optimal point from an optimal solution of the SOS relaxation in case
this relaxation actually provides the optimal value.

Theorem 2.3.4 (see [Las15; Lau09]). Let p ∈ R[x] with p∗ = minx∈Rn p(x) and
degree 2d for d ∈N.

1. Then, psos = pmom. If, moreover, pmom > −∞, then p∗ = psos = pmom. We say
the SOS program and the moment relaxation are dual programs.

2. If p− p∗ admits an SOS decomposition, then p∗ = psos = pmom. If x∗ is a
minimal point for p in Rn, then y∗ = ((x∗)α)|α|≤2d is a minimal point for the
moment relaxation.

Moreover, the cone M = {y : y has a representing measure} is the dual of the
cone of nonnegative polynomials P. Also, the cone M+ = {y : M(y) ≥ 0} and the
cone Σ of sums of squares are duals of each other.
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We turn to examining the constrained SOS relaxation starting with Putinar’s
Positivstellensatz [Put93], see also [Las10, Theorem 2.14]. This Positivstellensatz
provides the starting point for examining constrained optimization problems of the
form

min
x∈Rn

p(x)

gi(x) ≥ 0 for i ∈ [m]

with g1, . . . , gm ∈ R[x]. We sometimes write X = {x ∈ Rn : gi(x) ≥ 0 for all i ≤ m}
to denote the constraint set.

Before stating the Positivstellensatz, recall that a quadratic module is a subset
M ⊆ R[x] which contains 1 and is closed both under addition and multiplication by
squares.

Theorem 2.3.5 (Putinar’s Positivstellensatz). Let p, g1, . . . , gm ∈ R[x] and assume
that there exists some N ≥ 1 such that N −

∑
i≤n x

2
i is contained in the quadratic

module

Q(g1, . . . , gm) :=

p0 +
m∑
j=1

pjgj with p0, . . . , pm ∈ Σ[x]

 .

If p ∈ R[x] is strictly positive on the set X, then p = p0 +
∑m
j=1 pjgj with sum of

squares polynomials p0, . . . , pm.

The precondition in the previous theorem is equivalent to Q(g1, . . . , gm) being
Archimedean, and it is well known that Q(g1, . . . , gm) is Archimedean if g1, . . . , gm
are affine, see, e.g., [Las10].

The first well-known Positivstellensatz on basic closed semi-algebraic sets goes
back to Krivine [Kri64] and was then further developed by Stengle [Ste74] — hence
it is sometimes called the Krivine-Stengle Positivstellensatz. They stated how to
represent a given function which is positive over a set of constraints and, hence,
provides a certificate of nonnegativity for this function. The assumptions made in
Putinar’s Positivstellensatz are stronger than those in the ones by Krivine and Stengle,
but in contrast to the Krivine-Stengle Positivstellensatz, a solution can be computed
efficiently.

As a Positivstellensatz provides a natural certificate of nonnegativity, building
upon Theorem 2.3.5, we construct the following SOS relaxation for the constrained
optimization problem:

psos(g1, . . . , gm) = sup{γ ∈ R : p− γ ∈ Q(g1, . . . , gm)}.

Analogously to the unconstrained situation, we can solve this relaxation via
semidefinite programming. Similarly, however, the underlying matrices might have
infinite dimension.

Before we consider a relaxation of the problem similar to the one in the uncon-
strained case, we take a brief look at the dual problem — again via moments. Similar
to the unconstrained situation, there exists a statement by Putinar, concerning the
linear functional L and the corresponding bilinear form L.

Theorem 2.3.6 (Putinar [Put93]). Suppose Q(g1, . . . , gm) is Archimedean. Then, a
linear map L : R[x] → R is the integration with respect to some measure µ on K if
and only if L(1) = 1 and L(po +

∑
j≤m pjgj) ≥ 0 for sums of squares polynomials pj

for all j ≤ m.
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An approach for working around the possibly infinite sizes of the SDPs are Lasserre
relaxations. For degree 2d ≥ deg(p), deg(gi) for all i ≤ m, the d-th Lasserre relaxation
[Las00] is the problem psos

d (g1, . . . , gm) defined as

sup{γ : p− γ = p0 +
m∑
j=1

pjgj with pi ∈ Σ[x] and deg(pjgj) ≤ 2d for all j ≤ m}.

With dgi = ddeg(gi)/2e, the analogous relaxation based on moments is the prob-
lem

pmom
d (g1, . . . , gm) = inf

y
{
∑
α

pαyα : Md(y) < 0,Md−dgi (y)gi < 0 for all i ≤ m}.

Those two problems are dual semidefinite problems which bound the optimal value
p∗X = min{p(x) : x ∈ X} below, and both problems are polynomial in their input
sizes. We state a convergence result of the two relaxations under the same precondi-
tions as for Putinar’s Positivstellensatz.

Proposition 2.3.7 ([Las00]). If Q(g1, . . . , gm) is Archimedean, then

lim
t→∞

psos
t = lim

t→∞
pmom
t = min

x∈X
p(x).

To conclude this section, we have a look at what happens in situations involving
symmetries, i.e., we consider a polynomial invariant under the action of some group
G. In 2013, Riener, Theobald, Jansson-Andrén and Lasserre provided a symmetric
version of Theorem 2.3.6 stated above.

Theorem 2.3.8 ([Rie+13]). For a group G, let g1, . . . , gm ∈ R[x] be G-invariant,
and assume the set Q(g1, . . . , gm) is Archimedean. Setting g0 := 1, a G-linear map
LG : R[x] → R is the integration with respect to some G-invariant measure on K if
and only if the bilinear forms

LGgj : R[x]×R[x]→ R,

(p, q) 7→ LG(
1
|G|

∑
σ∈G

(p · q)σ · gj)

are positive semidefinite for all 0 ≤ j ≤ m.

In the same paper, they also provided a symmetric version of Putinar’s Positivstel-
lensatz as well as a symmetry-adapted relaxation of the moment problem. We will
not examine those two theorems here in full detail as they require a lot of linear rep-
resentation theory that is irrelevant for the main results of this thesis. Nevertheless,
we collect the rough version of the Positivstellensatz below.

Theorem 2.3.9 ([Rie+13], rough version). Let G be a group, f , g1, . . . , gm ∈ R[x]
be G-invariant and Q(g1, . . . , gm), as defined above, Archimedean. If f is strictly
positive on K, then

f = ρG(
∑
i≤h

qi0 +
∑
j≤m

gj
∑
i≤h

qij),

where ρG(p) = 1
|G|
∑
σ∈G p

σ and qij are sums of squares in a set Si basically consisting
of the basis of the isotypic components of a real decomposition of R[x].
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2.4 Sums of Arithmetic-Geometric Exponentials and
Sums of Nonnegative Circuit Polynomials

Over the last years, there has been a strong interest in sparse nonnegativity certifi-
cates. The earliest results in this area are due to Reznick [Rez89], with a recent
resurgence marked by the work of Pantea, Koeppl, and Craciun [PKC12]. In 2016,
Iliman and de Wolff [IW16a], and Chandrasekaran and Shah [CS16] proposed specifi-
cally defined approaches to this topic, speaking either in the language of polynomials
or exponential sums. They called their approach sums of nonnegative circuit polyno-
mials (SONC) and sums of arithmetic-geometric exponentials (SAGE), respectively.
Both notations, however, capture the same cone in the respective language of poly-
nomials or exponentials [Wan18a; MCW21a].

Recent results (see the explanations in Equations (2.7) and (2.8) below) show
that the approximation approach for the problem of polynomial nonnegativity using
the SONC-cone can be reduced to the simpler problem of exponential nonnegativity.
Hence, it suffices to examine a subcone of the cone of nonnegative exponential sums,
which is our reason to only talk about the SAGE-cone in this thesis. Most results
immediately follow for the polynomial case as well. Various results we review in this
section — and use later on in the thesis –, however, have initially been stated for
polynomials and under the name SONC. For the sake of completeness, we introduce
SONC polynomials in this section as well, even though our setup is with respect to
exponential sums, and hence, SAGE.

2.4.1 AGE Exponentials, Circuits and Nonnegative Circuit Expo-
nentials

We start by introducing AGE exponentials. For A ⊆ Rn, an exponential sum sup-
ported on A is a function of the form

y 7→
∑
α∈A

cαe
〈α,y〉 (2.6)

with real coefficients cα. We are interested in sparse exponential sums, i.e., we con-
sider a fixed non-empty and finite support set {α : cα 6= 0}. This way, an exponential
sum can be uniquely identified by its coefficient vector. Hence, we identify RA,
the space of coefficient vectors indexed by A, with the space of exponential sums
supported on A, for A non-empty and finite. We denote both exponential sums f
supported on A as well as the corresponding coefficient vector c as elements in RA.
The space of exponential sums with support A contained in (2N)n can be viewed as
the space of polynomials supported on A and evaluated on the positive orthant by
means of the substitution |xi| = eyi .

We define AGE exponentials (sometimes also called arithmetic-geometric expo-
nentials or AM/GM exponentials) to be nonnegative sums of exponentials with at
most one negative term, i.e., for A ⊆ Rn non-empty and finite nonnegative sums∑

α∈A\{β}
cαe
〈α,x〉 + cβe

〈β,x〉

with cα ∈ R+ for all α ∈ A \ {β} and cβ ∈ R. Note that the nonnegativity of such a
sum of exponentials is already captured by the name AGE exponential.

The name AGE exponential is chosen since nonnegativity of these exponentials
can be certified using the weighted AM/GM-inequality:
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Theorem 2.4.1 (Weighted AM/GM-inequality). Let x1,x2, . . . ,xn as well as the
weights w1,w2, . . . ,wn be nonnegative and set w =

∑
i≤nwi. If w > 0, then∑

i≤nwixi

w
≥ w

√∏
i≤n

xwii .

Equality holds if and only if xk = xj for all k, j ≤ n with wk > 0,wj > 0.

As stated in the introduction, for a set of support points A ⊆ Rn, a vector
β ∈ Rn and coefficients λ ∈ RA

+ satisfying 1Tλ = 1 and
∑
α∈A λαα = β, the weighted

AM/GM inequality yields∑
α∈A

λαe
〈α,x〉 >

∏
α∈A

eλα〈α,x〉 = e〈β,x〉

and, hence, implies nonnegativity on Rn of exponential sums of the form∑
α∈A

λαe
〈α,x〉 − e〈β,x〉.

For a proof on the connection of nonnegativity of general exponential sums with at
most one negative term and the arithmetic-geometric inequality see [CS16].

In the previous subsections, we mainly focused on polynomial optimization. The
reason to switch to the language of exponential sums in this subsection and in the
rest of this thesis is the fact that for A ⊆ Nn non-empty and finite and β ∈ A, the
polynomial ∑

α∈A\{β}∩(2N)n

cαx
α + cβx

β, (2.7)

with cα ≥ 0 for all α ∈ A \ {β} is nonnegative on Rn if and only if∑
α∈A\{β}∩(2N)n

cαe
〈x,α〉 − |cβ|e〈x,β〉 (2.8)

is nonnegative on Rn. This way, we transform the problem of polynomial nonnega-
tivity into a problem of exponential nonnegativity. For the special case of A \ {β}
affinely independent and β ∈ relint conv(A) (a circuit — see below for a formal defi-
nition), this was shown by Iliman and de Wolff [IW16a], and for general polynomials
with at most one nonpositive coefficient by Murray, Chandrasekaran, and Wierman
[MCW21a].

We denote the cone of AGE exponentials supported on A ⊆ Rn with possibly
negative term β ∈ A by CAGE(A,β). By a slight abuse of notation, we also denote
the cone of coefficients of AGE exponentials by CAGE(A,β).

A prominent example of a polynomial which is nonnegative on Rn but not a sum
of squares of other polynomials is the Motzkin polynomial

1 + x2y4 + x4y2 − 3x2y2.

The term “−3x2y2” is the only negative term in this polynomial — hence, its expo-
nential version is an AGE exponential and motivates the study of AGE exponentials.

Another important aspect when choosing the approximation in terms of AGE
exponentials is the fact that containment in the cone of AGE exponentials (and,
hence, certification of nonnegativity of an exponential sum with at most one negative
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coefficient) can be solved via relative entropy programming [CS16]: For an exponential
sum f(x) =

∑
α∈A cαe

〈x,α〉 with cα ∈ R for all α ∈ A, we can check membership in
the AGE-cone using the relative entropy function known from Subsection 2.1.1.

Then, the following theorem examines nonnegativity of an exponential sum with
at most one negative term.

Theorem 2.4.2 ([CS16]). Let ∅ 6= A ⊆ Rn be finite and fix β ∈ A. The exponential
f(x) =

∑
α∈A\{β} cαe

〈α,x〉 + cβe
〈β,x〉 with cα ≥ 0 for all α ∈ A \ {β} is nonnegative if

and only if there exists some ν ∈ R
A\{β}
+ such that

∑
α∈A\{β} να(α− β) = 0 and

D(ν, ec) ≤ cβ.

One direction of this theorem can be proven immediately using the arithmetic-
geometric inequality.

An AGE exponential f with A := supp(f) ⊆ Rn is nonnegative only if all coeffi-
cients associated to vertices of conv(A) are positive; see e.g., [Fel+20] for a detailed
proof in the language of polynomials. Thus, we make the assumption

α ∈ Vert (conv(A)) ⇒ cα > 0. (2.9)

Wang and independently also Murray, Chandrasekaran, and Wierman [Wan18a;
MCW21a] proved that the extreme rays of the AGE-cone are supported on circuits:

Definition 2.4.3 (Circuit). Let A ⊆ Rn and β ∈ Rn. The tuple (A,β) is a circuit
if A consists of affinely independent vectors and β ∈ relint conv(A).

We address polynomials, exponential sums and other functions supported on cir-
cuits later on. Note that whenever we talk about polynomials supported on circuits,
we additionally need A ⊆ (2N)n and β ∈ Nn. The latter is obvious, the former fol-
lows as for polynomials, the prerequisites on the outer exponents need to be changed
to

α ∈ Vert (conv(A)) ⇒ cαx
α > 0 for all x ∈ Rn \ {0}.

Let A ⊆ Rn be non-empty and finite, and

I(A) =
{
(A,β) : A ⊆ A affinely independent, β ∈ relint(convA) ∩A

}
(2.10)

be the set of circuits (A,β) contained in A.
For singleton sets A = {α}, the tuples (A,β) are formally of the form ({α},α).

By convention, we write these circuits simply as (α), and with this convention, the
set {(α) : α ∈ A} is contained in I(A).

With this notation, we can now introduce nonnegative circuit exponentials.
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Definition 2.4.4 (Nonnegative Circuit Exponentials and Polynomials). Let A ⊆ Rn.

1. For (A,β) ∈ I(A), a nonnegative circuit exponential is an exponential sum in
RA whose support equals A∪ {β} and which is nonnegative on Rn.

2. For (A,β) ∈ I(A) with A ⊆ (2N)n and β ∈ Nn, a nonnegative circuit poly-
nomial is a polynomial in R[x1, . . . ,xn] supported on A ∪ {β} and which is
nonnegative on Rn. We denote the cone of nonnegative circuit polynomials
supported on the circuit (A,β) by PA,β.

Note that by (2.9), cα ≥ 0 for all α ∈ A for any nonnegative circuit polynomial
or exponential supported on the circuit (A,β); otherwise the corresponding function
cannot be nonnegative.

The previously considered Motzkin polynomial is not only a polynomial version
of an AGE exponential, but the Motzkin polynomial is also supported on the circuit
A = {(0, 0)T , (2, 4)T , (4, 2)T } and β = (2, 2)T ∈ relint conv(A).

A crucial fact about a circuit exponential f is that its nonnegativity can be decided
by an object Θf called the circuit number alone.

Theorem 2.4.5 ([IW16a, Theorem 1.1]). Let f(x) =
∑
α∈A cαe

〈α,x〉 + cβe
〈β,x〉 sup-

ported on a circuit (A,β), and let λ ∈ RA
>0 denote the vector of barycentric coordinates

of β in terms of A. Then, f is nonnegative if and only if cα > 0 for all α ∈ A and

−cβ ≤ Θf =
∏
α∈A

(
cα
λα

)λα
.

Remark 2.4.6. The polynomial equivalent for this theorem has the slight difference
that we need “|cβ|” instead of “−cβ” whenever β /∈ (2N)n, i.e., for A ⊆ (2N)n and
β ∈ Nn, a polynomial f(x) =

∑
α∈A cαx

α + cβx
β supported on the circuit (A,β)

with barycentric coordinates λ ∈ RA
>0 of β in terms of A is nonnegative if and only if

cα > 0 for all α ∈ A and

|cβ| ≤ Θf =
∏
α∈A

(
cα
λα

)λα
or f is a sum of monomial squares.

Forsgård and de Wolff proposed a slightly different view on circuits [FW19]: They
define a circuit as a minimally-supported nonzero vector λ ∈ kerA ⊆ RA for which∑
α∈A λα = 0. They call those circuits simplicial where λ contains a single negative

component, say λβ < 0. We usually canonically rescale λβ = −1, so that simplicial
circuits satisfy

∑
α∈suppλ\{β} αλα = β(−λβ) = β. This way, an associated normalized

circuit λ coincides with the vector of barycentric coordinates for its support with
respect to β, together with an additional coordinate λβ = −1. Simplicial circuits
therefore certify that β belongs to the relative interior of A = suppλ \ {β} ⊆ A. For
the course of this thesis, we will only talk about simplicial circuits. Hence, we drop
the term simplicial when speaking about circuits — even when using the terminology
proposed by Forsgård and de Wolff.

We mention this slightly different view on the concept of circuits here because
we need it for the results of constrained optimization and nonnegativity, examined
in Chapters 6 and 7. Whenever switching to the constrained case, the concept of
circuits is not as easy anymore, because — as we will see in Chapter 6 — we cannot
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determine the constrained version of a circuit in the sense of Forsgård and de Wolff
solely by its support.

Now, as extreme rays of the cone of AGE exponentials are supported on circuits
[Wan18a; MCW21a], we know that∑

β∈A
CAGE(A,β) =

∑
β∈A

∑
(A,β)∈I(A)

CAGE(A∪ {β},β).

This sum contains exponential monomials by the definition of I(A) in particular.
Hence, the cone of sums of AGE exponentials essentially is a cone of sums of nonneg-
ative circuit exponentials, motivating the next subsection.

2.4.2 The SAGE-Cone and the SONC-Cone

The Minkowski sum

CSAGE(A) =
∑
β∈A

CAGE(A,β) (2.11)

defines the cone of sums of arithmetic-geometric exponentials (SAGE) with support
set A [CS16] and the Minkowski sum

CSONC(A) =
∑
β∈A

∑
(A,β)∈I(A)

PA,β

defines the cone of sums of nonnegative circuit polynomials (SONC) with support
set A ⊆ Nn [IW16a; Ave19]. Both cones — as well as their subcones of AGE
exponentials and nonnegative circuit polynomials — are closed convex cones in RA

and R[x1, . . . ,xn], respectively.
As in the case of the subcones of AGE exponentials, we often overload notation

and write f ∈ CSAGE(A) for an exponential sum f with coefficients in CSAGE(A) as
well as c ∈ CSAGE(A) for the corresponding vector of coefficients.

The definition of both the SAGE-cone and the SONC-cone might seem a bit re-
strictive: per definition we do not allow support points in the support of the AGE
exponentials or nonnegative circuit polynomials appearing in the decomposition which
lie outside of the ground set A ⊆ Rn of support points of the original SAGE exponen-
tial or the ground set A ⊆Nn of the original SONC polynomial. This could happen
due to cancellation. Consider for example the two exponential sums

f (1) := 1 + e3x+y + ex+4y − ex+2y and f (2) := e3x + ex+2y − e3x+y + e4x+3y.

In the sum f := f (1) + f (2) the terms ±e3x+y and ±ex+2y cancel, hence, the overall
support of f does not contain (3, 1)T and (1, 2)T and f would not be captured in
the set of SAGE exponentials with support in A := supp(f) even though it is a
sum of arithmetic-geometric exponentials and has supp(f) ⊆ A (per definition of A),
compare Figures 2.1 and 2.2.
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f (1)

f (2)

Figure 2.1: The sup-
ports of f (1) and f (2).

f

Figure 2.2: The sup-
port of f

In fact, such a phenomen cannot happen for our setup: In 2018, Wang proved
a theorem in the language of polynomials, stating that for every SONC polynomial
there always exists a decomposition without additional support points:

Theorem 2.4.7 ([Wan18b]). Let f =
∑
α∈A cαx

α. If f is a SONC polynomial,
then f can be decomposed into a sum of nonnegative circuit polynomials f (i) with
supp(f (i)) ⊆ supp(f).

Similarly, Murray, Chandrasekaran, and Wierman proved a statement concerning
the support of SAGE exponentials [MCW21a]. It is even stronger than the one ob-
served by Wang because it additionally states that per negative term in the original
SAGE exponential, there appears only one single AGE exponential in the decomposi-
tion, and in the support of this AGE exponential all exponents corresponding to the
other negative coefficients in the original exponential sum do not appear.

Theorem 2.4.8 ([MCW21a]). If c is contained in CSAGE(A) with non-empty set
N := {β : cβ < 0}, then there exist vectors (c(β))β∈N satisfying

1. c =
∑
β∈N c

(β),

2. c(β) ∈ CAGE(A,β) for all β ∈ N ,

3. c(β)α = 0 for all α ∈ N \ {β}.

Combining Theorems 2.4.8 and 2.4.2 leads to the following nonnegativity certifi-
cate using the SAGE-cone.

Theorem 2.4.9. Let ∅ 6= A ⊆ Rn be finite and f ∈ RA with coefficients c ∈ RA and
non-empty set N := {β : cβ < 0}. Then, f ∈ CSAGE if and only if for every β ∈ N
there exist c(β) ∈ R

A\N
+ and ν(β) ∈ R

A\N
+ such that

cα =
∑
β∈N

c(β)α for all α ∈ A \N and

c
(β)
|N\{β} = 0,

∑
α∈A\N

ν(β)α (α− β) = 0 and D(ν
(β)
\N , ec(β)\N ) ≤ cβ for all β ∈ N .

Here, c(β)|N\{β} denotes the restriction of the vector c(β) to elements in N \ {β}.

There has been a lot of interest in optimization techniques for SAGE exponentials,
i.e., for the relaxation

sup
γ∈R

γ s.t. f − γ ∈ CSAGE(A)

for some non-empty, finite set A ⊆ Rn. Iliman and de Wolff showed that for polyno-
mials whose positive terms are affinely independent, containment in the SONC-cone
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can be determined by a geometric program [IW16b]. To do so, they computed a
circuit decomposition and certified nonnegativity of the polynomial via the circuit
number, i.e., they showed that each circuit polynomial in the decomposition of f − γ
then fulfills the conditions of Theorem 2.4.5. Another algorithm using the circuit
number approach tries to compute the best possible covering of circuits, see the re-
sults by Magron, Seidler and de Wolff in [MSW19]. For algorithms implemented in
POEM, see [Sd19].

Averkov stated that the SONC-cone can be written as the projection of a spectra-
hedron with semidefinite extension degree 2 [Ave19], and Wang and Magron provided
a result for second-order representability of the primal SONC-cone [WM20a].

In contrast to the results using geometric programming, which only return the
exact value for the described special case and an approximation of the SONC-cone
in other cases, the SAGE relaxation can be computed efficiently via relative entropy
programming for general cases [CS16; MCW21b; Mur20]. The approach using an
approximated circuit decomposition, however, is sometimes faster and provides lower
bounds in cases where the relative entropy computation fails. For a comparison of
the various optimization approaches, see [Sd18].

Before turning to constrained optimization and constrained nonnegativity prob-
lems, we cover the dual cone of SAGE exponentials as well as the duals of its subcones
of AGE exponentials briefly. Following the previous section, for an exponential sum
f ∈ RA with coefficient vector c ∈ RA and v(·) ∈ (RA)∗, the natural duality pairing
is

v(f) =
∑
α∈A

cαvα, (2.12)

and the dual space (RA)∗ of RA can be identified with RA. Then, the dual cone of
SAGE exponentials is defined as

CSAGE(A)∗ = {v ∈ RA : v(f) ≥ 0 for all f ∈ CSAGE(A)}

(and analogously the dual cone of SONC polynomials).
The duality theory of the SAGE-cone was examined first by Chandrasekaran and

Shah [CS16] in the language of exponential sums and later in [DNT21] in the language
of polynomials and hence, for the SONC-cone, leading to the following results.

Theorem 2.4.10 ([CS16; DNT21]). Let A ⊆ Rn be non-empty and finite.

1. The dual cone of SAGE exponentials is the set

{ν ∈ RA+ : for all β ∈ A there exists τ (β) ∈ Rn with

να ln
(
να
νβ

)
≤ (α− β)T τ (β) for all α ∈ A \ {β}}.

2. Let A ⊆Nn additionally. The dual cone of SONC-polynomials is the set

{ν ∈ RA : να ≥ 0 for α ∈ A∩ (2N)n, and for all (A,β) ∈ I(A)

there exist ν∗ ≥ |νβ|, τ ∈ Rn : ν∗ ln
(
ν∗

να

)
≤ (β − α)T τ for all α ∈ A}.

Both of these representations use projections to describe the dual of the SAGE-
and SONC-cone.
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2.4.3 The Conditional SAGE-Cone

Over the course of the years, there have been several approaches to constrained SONC
relaxations, i.e., to minimizing a SONC polynomial over some set of constraints.

The earliest approaches try to determine whether a sum of nonnegative circuit
polynomials, defined in the same manner as in the unconstrained case, is nonnegative
over some set X.

A disadvantage of this approach (and other approaches) compared to SOS is that
there does not exist a Putinar-like Positivstellensatz. A multivariate counter-example
was given in [DKW21] and a univariate one can be found in [KNT21]. In [DIW17],
Dressler, Iliman and de Wolff provided a SONC-specific Positivstellensatz, which
essentially follows from Krivine’s Positivstellensatz, see [Dre18].

In this thesis, however, we take a different approach for the conditional SAGE-cone
using a setting proposed by Murray, Chandrasekaran, and Wierman [MCW21b].

For a finite non-empty set of support points A ⊆ Rn and some convex and non-
empty set X ⊆ Rn, we define X-AGE exponentials as exponential sums with at most
one negative term being nonnegative on X. The cone of X-AGE exponentials with
support contained in A and distinguished exponent β ∈ A is denoted CX(A,β). As
in the unconstrained case, we often overload notation and consider CX(A,β) as a
cone of coefficient vectors in RA.

In this thesis, we only consider sets A and X where the functions {x 7→ e〈x,α〉}α∈A
are linearly independent on X; this assumption is necessary to prevent the nonnega-
tivity cone from containing a lineality space. A direct consequence of this assumption
is that the moment cone pos{eAT x ∈ RA : x ∈ X} is full-dimensional.

The conditional SAGE-cone again is defined analogously to the unconstrained
situation.

Definition 2.4.11. Let ∅ 6= X ⊆ Rn be a convex set. The X-SAGE-cone with
respect to exponents A is the Minkowski sum

CX(A) =
∑
β∈A

CX(A,β).

At this point, there does not exist a proper connection to SONC polynomials
(or circuits at all). Whereas in the unconstrained situation, it is necessary for the
exponent corresponding to the non-positive term to lie in the convex hull of all other
exponents, this is not necessary anymore for a real subset X ( Rn. Hence, a circuit
structure does not exist per se. However, in Chapter 6 of this thesis, we establish the
notion of sublinear circuits as a generalization of Rn-circuits and show that extremal
rays of the X-SAGE-cone are defined with respect to these objects. Hence, the
polynomial version of this X-SAGE-cone can be seen as a conditional equivalent to
the SONC-cone.

When Murray, Chandrasekaran, and Wierman introduced this concept of con-
ditional SAGE [MCW21b], they showed how to efficiently check membership in an
X-SAGE-cone whenever X is a tractable convex set using relative entropy program-
ming again and an object called the support function of the constraint set X:

σX(y) = sup
x∈X

yTx

With the notation Nβ = {ν ∈ R
A\{β}
+ ×R : 1T ν = 0} for vectors β ∈ A, we can

phrase the conditional nonnegativity certificates for SAGE exponentials by Murray,
Chandrasekaran, and Wierman as follows.
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Proposition 2.4.12 ([MCW21b], Theorem 6). Let X ⊆ Rn be a convex set, A ⊆ Rn

non-empty and finite and β ∈ A. An exponential sum f(x) =
∑
α∈A cαe

〈α,x〉 belongs
to CX(A,β) if and only if cα ≥ 0 for all α ∈ A \ {β} and some ν ∈ RA satisfies

ν ∈ Nβ and σX(−Aν) +D(ν\β, ec\β) ≤ cβ. (2.13)

For the constrained case, we can take advantage of a decomposition result analo-
gous to Theorem 2.4.8. Again, there always exists a decomposition of an X-SAGE ex-
ponential into X-AGE exponentials. There do not appear additional support points.
For every negative term, there exists exactly oneX-AGE exponential and the negative
term does not appear positively in any other exponential sum in the decomposition.

Theorem 2.4.13. If X ⊆ Rn is a convex set and c is a vector in CX(A) with
non-empty set N := {β : cβ < 0}, then there exist vectors (c(β))β∈N satisfying

1. c =
∑
β∈N c

(β),

2. c(β) ∈ CX(A,β) for all β ∈ N ,

3. c(β)α = 0 for all α ∈ N \ {β}.

An implementation of the relative entropy program certifying nonnegativity of
an exponential sum over some convex and non-empty set of constraints X using the
X-SAGE approach can be found in [Mur20]. The results can also be applied to
polynomial optimization, which was also covered by Murray, Chandrasekaran, and
Wierman in the same article.

We conclude this section with a brief look at the duality theory for constrained
SAGE. For an exponential sum f with a vector of coefficients c and some v in the
dual space, we again use the duality pairing v(f) =

∑
α∈A vαcα. With this, the dual

of the X-SAGE-cone

{v ∈ RA : v(f) ≥ 0 for all f ∈ CX(A)}

can be represented as follows.

Theorem 2.4.14. Let A ⊆ Rn non-empty and finite and X ⊆ Rn a convex set. The
dual cone of X-SAGE exponentials is the set

C∗X(A) =
{
v ∈ RA+ : vβ ln

(
vα
vβ

)
≥ (α− β)T z : z/vβ ∈ X for all β ∈ A,α ∈ A \ {β}

}
.
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Chapter 3

Extremality and Duality Theory
of the SAGE-Cone

In this chapter, we investigate the cone of SAGE exponentials as well as its dual.
We are interested in structural questions such as the form of extremal rays of the
SAGE-cone and how these can be deduced from duality theory.

We start in Section 3.1 with developing some generalized form of nonnegativity
certificate for SAGE exponentials, see Theorem 3.1.1. The statement contains certifi-
cates of nonnegativity we already know from the earlier works of Iliman and de Wolff
[IW16a] and Chandrasekaran and Shah [CS16] and partially extends those. Then, we
introduce the notion of a reduced circuit, see Definition 3.1.3. The main theorem of
this section is Theorem 3.1.5: Here, we derive projection-free representations of the
dual of the SAGE-cone. We compare them to known representations from [CS16] and
[DNT21] in Proposition 3.1.8.

Building upon the dual representations derived in the first section, in Section 3.2,
we turn to examining extremality of the SAGE-cone. In Theorem 3.2.1, we review the
proof for sparsity preservation of SAGE exponentials. In this particular setting, the
statement was already observed in [MCW21a]. Here, however, we prove it using the
dual representation from Theorem 3.1.5. The second part of Theorem 3.2.1 is novel.
Here, we show that any SAGE exponential can be decomposed into a sum of AGE
exponentials supported on reduced circuits. This leads to the main theorem of this
second section, namely, Theorem 3.2.4, which provides a complete characterization
of the extreme rays of the SAGE-cone.

3.1 Reduced Circuits and Duality Theory
Before we start by introducing reduced circuits, we revisit the existing certificates
for nonnegativity of SONC polynomials and SAGE exponentials. Particularly, we
provide a variant of the circuit number certificate, which extends to general support
sets. To do so, it is useful to introduce the following notation:

For a non-empty finite set A ⊆ Rn and β ∈ Rn \A let Λ(A,β) be the polytope

Λ(A,β) :=

{
λ ∈ RA+

∑
α∈A

λαα = β,
∑
α∈A

λα = 1
}

(3.1)

and let Λ(A) be the union
⋃
β∈AΛ(A\ {β},β) Note that Λ(A,β) 6= ∅ if and only if

β is contained in the convex hull of A, which is our reason for sometimes referring to
the set A as the set of outer exponents and to β as the inner exponent. In the special
case that A is affinely independent, Λ(A,β) consists of a single element, which we
denote by λ(A,β). In particular, the tuple (A,β) defines a circuit in this situation
and λ defines the barycentric coordinates of the set A with respect to β.
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Theorem 3.1.1. Let A ⊆ Rn be a non-empty finite set, β ∈ Rn \ A and f be an
AGE exponential of the form

f =
∑
α∈A

cαe
〈α,x〉 + cβe

〈β,x〉

where cα ≥ 0 for all α ∈ A and cβ ∈ R. Then, the following statements are equivalent:

1. f(x) ≥ 0 for all x ∈ Rn.

2. There exists a ν ∈ RA+ such that
∑
α∈A ναα = (

∑
α∈A να)β and

D(ν, e · c) ≤ cβ.

3. There exists a λ ∈ Λ(A,β) such that

∏
α∈A

(
cα
λα

)λα
≥ −cβ.

A vector λ ∈ Λ(A,β) as in this theorem is called an AGE witness. Note that
with the convention

(y
0
)0 = 1 for y ∈ R we introduced in the previous chapter, this

is well-defined even if λα = 0 for some α ∈ A.

Proof of Theorem 3.1.1. Observe that the equivalence of the first two statements is
precisely Theorem 2.4.9.

For the implication (2) =⇒ (3), set λ := (
∑
α∈A να)

−1ν. It is clear from the
properties of ν that λ ∈ Λ(A,β). The discussion in [CS16, p. 1151] shows that

∏
α∈A

(
cα
λα

)λα
≥ −D(ν, e · c),

and thus, this λ has the desired properties. The implication (3) =⇒ (1) is a direct
consequence of the weighted arithmetic-geometric mean inequality:

∑
α∈A

cαe
〈α,x〉

AM/GM-inequality
≥

∏
α∈A

(
cα
λα
e〈α,x〉

)λα
=
∏
α∈A

(
cα
λα

)λα
e〈β,x〉.

Using (3), we obtain∑
α∈A

cαe
〈α,x〉 + cβe

〈β,x〉 ≥ e〈β,x〉 · (−cβ + cβ) ≥ 0.

As we already know that (1)⇐⇒ (2), we obtain the desired statement.

Example 3.1.2. Let A = {1, 2, 3} ⊆N and consider

g(x) = ex + c2e
2x + e3x.

We seek to find the smallest c2 for which g is a nonnegative function on R. Since the
equality condition in statement (2) of Theorem 3.1.1 is satisfied for all ν = δ1 for
δ ≥ 0, we have g(x) ≥ 0 for all x ∈ R if and only if there exists a δ ∈ R+ with

2δ ln
(
δ

e

)
≤ c2. (3.2)
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Since the function x ln
(
x
e

)
attains its minimum at x = 1 yielding x ln

(
x
e

)
≥ −1, we

obtain c2 ≥ −2; hence, the minimal value for c2 is −2.

We now introduce the concept of reduced circuits, which we use to determine
a variant of the projection-free representation of the dual cone. In particular, in
the following section, we determine the extreme rays of the SAGE-cone using these
types of circuits. Recall that a circuit is a tuple (A,β) with A ⊆ Rn being affinely
independent and β ∈ relint conv(A). The set of circuits supported on some ground
set A is denoted I(A).

Definition 3.1.3. For a circuit (A,β) ∈ I(A) with A ⊆ Rn let

r(A,β) := | (conv(A) \A) ∩A|.

A circuit (A,β) is called reduced if r(A,β) = 0.

In other words, reduced circuits contain no elements of the ground set A in their
convex hull except those which are trivially there.

Example 3.1.4. Whether a circuit is reduced or not depends on the ground set A.

For example, the circuit (A,β) with A =

{(
0
0

)
,
(

4
0

)
,
(

0
2

)}
and β =

(
1
1

)

is reduced for the ground set A = A ∪ {β} ∪
{(

4
2

)}
(compare Figure 3.1 below)

but not reduced for A = A∪ {β} ∪
{(

2
0

)}
(compare Figure 3.2).

x

y

(4, 0)T(0, 0)T

(0, 2)T
(1, 1)T (4, 2)T

Figure 3.1: The cir-
cuit is reduced, as
(4, 2)T /∈ conv(A).

x

y

(4, 0)T(0, 0)T

(0, 2)T
(1, 1)T (2, 0)T

Figure 3.2: The cir-
cuit is not reduced, as

(2, 0)T ∈ conv(A).

We can now provide the following characterization of the dual SAGE-cone. Again,
we use the convention that 0 ln(0) = 0 and ln(0) = −∞.

Theorem 3.1.5. Let ∅ 6= A ⊆ Rn be finite and let v ∈ RA.

(1) If v ∈ CSAGE(A)∗, then vα ≥ 0 for all α ∈ A.

(2) If the condition of part (1) is satisfied, then the following are equivalent:

(a) v lies in the dual cone CSAGE(A)∗.
(b) For all β ∈ A and all λ ∈ Λ(A,β), it holds that

ln(vβ) ≤
∑
α∈A

λα ln(vα).

(c) For every circuit (A,β) ∈ I(A) and λ = λ(A,β), it holds that

ln(vβ) ≤
∑
α∈A

λα ln(vα).
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(d) For every reduced circuit (A,β) ∈ I(A) and λ = λ(A,β), it holds that

ln(vβ) ≤
∑
α∈A

λα ln(vα).

Formally, we included elements ({α},α) in the set of circuits, i.e., elements where
outer and inner exponent coincide. Such a circuit is always reduced, and in fact, the
statements hold for this kind of circuit trivially.

Before we prove Theorem 3.1.5, we consider the dual of the sub-cone CAGE(A,β)
of CSAGE(A). Note that one direction of this statement can be found in [MCW21a],
followed by a partial — but non-complete — statement addressing the second inclu-
sion.

Lemma 3.1.6. Let A ⊆ Rn be a non-empty finite set. For β ∈ A, the dual cone of
CAGE(A,β) consists of those v ∈ RA where

1. vα ≥ 0 for all α ∈ A and

2. ln(vβ) ≤
∑
α∈A λα ln(vα) for all λ ∈ Λ(A,β).

Proof. Let v ∈ (CAGE(A,β))∗. We show that it satisfies the claimed conditions.

1. For every α ∈ A, it holds that e〈α,x〉 ∈ CAGE(A,β). Thus, 0 ≤ v(e〈α,x〉) = vα,
as claimed.

2. Fix a λ ∈ Λ(A,β). First assume that vα 6= 0 for all α ∈ A. Then

f :=
∑
α∈A

 ∏
α′∈A

v
λα′
α′

 λα
vα
e〈α,x〉 − e〈β,x〉

is an AGE exponential and a straightforward computation shows that f satisfies
the condition (3) of Theorem 3.1.1 (with the given λ), hence, f is nonnegative.
Thus,

0 ≤ v(f) =
∏
α∈A

vλαα − vβ

which is equivalent to property (2). Since the mapping (2.12) is continuous in
v, the statements also hold if vα = 0 for some α ∈ A.

For the converse implication, assume that v satisfies conditions (1) and (2).
We need to show that every AGE exponential f =

∑
α∈A cαe

〈x,α〉 + cβe
〈x,β〉 satis-

fies v(f) ≥ 0. Let λ ∈ Λ(A,β) be an AGE witness for f as in Theorem 3.1.1. Using
the AM/GM-inequality once again, observe that

∑
α∈A

vαcα =
∑

α∈A,λα>0
λα

(
vαcα
λα

)
≥

∏
α∈A,λα>0

(
vαcα
λα

)λα

=
∏

α∈A,λα>0
vλαα ·

∏
α∈A,λα>0

(
cα
λα

)λα
≥ vβ

∏
α∈A

(
cα
λα

)λα
,

which implies

v(f) =
∑

α∈A\{β}
vαcα + vβcβ ≥ vβ

 ∏
α∈A\{β}

(
cα
λα

)λα
+ cβ

 . (3.3)

The right expression in (3.3) is nonnegative, because f is an AGE exponential.
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In addition, we need the following lemma for the proof of Theorem 3.1.5.

Lemma 3.1.7 (Essentially [MCW21a], Lemma 8). Let A ⊆ Rn be a non-empty finite
set and β ∈ conv(A). Then, every λ ∈ Λ(A,β) can be written as a sum

λ =
k∑
j=1

µjλ
(j)

with k ≥ 1, µ ∈ Rk
+,
∑k
j=1 µj = 1 and λ(j) ∈ Λ(A,β) for all j such that the support

of each λ(j) is affinely independent.

Proof. Since the polytope Λ(A,β) is the convex hull of its vertices, it suffices to show
that the support of every vertex of Λ(A,β) is an affinely independent set.

Let λ be a vertex of Λ(A,β) and A′ := {α λα > 0} be its support. Assume
to the contrary that A′ is affinely dependent. Then there exists µ ∈ RA \ {0} with∑
α∈A′ µα = 0,

∑
α∈A′ µαα = 0 and µα = 0 for α 6∈ A′. Since λα > 0 for all α ∈ A′,

for sufficiently small ε > 0 both λ+ εµ and λ− εµ are contained in Λ(A,β). But this
implies that λ = 1

2 (λ+ εµ)+ 1
2 (λ− εµ) is not a vertex of Λ(A,β), a contradiction.

Proof of Theorem 3.1.5. (1): Since e〈α,x〉 ∈ CSAGE(A) for every α ∈ A, we have
that every v ∈ CSAGE(A)∗ satisfies

0 ≤ v(e〈α,x〉) = vα.

(2): The implications (b) =⇒ (c) =⇒ (d) are trivial. For the equivalence of (a)
and (b) note that

CSAGE(A)∗ =
⋂
α∈A

(CAGE(A\ {α},α))∗,

because Minkowski sum and intersection are dual operations, see, e.g., [Sch14],
Theorem 1.6.3. Hence, the claim follows with Lemma 3.1.6.
It remains to show (c) =⇒ (b) and (d) =⇒ (c).

(c) =⇒ (b):
Now let β ∈ A and λ ∈ Λ(A,β). Then, applying Lemma 3.1.7, we can
decompose λ as λ =

∑k
j=1 µjλ

(j) with k ≥ 1, µ ∈ Rk
+,
∑k
j=1 µj = 1 and

λ(1), . . . ,λ(k) ∈ Λ(A,β) so that the support of each λ(j) is affinely independent.
Now the claim follows from

ln(vβ) =
k∑
j=1

µj ln(vβ)
(c)
≤

k∑
j=1

µj
∑
α

λ(j)α ln vα

=
∑
α

ln vα
k∑
j=1

µjλ
(j)
α =

∑
α

λα ln vα.

(d) =⇒ (c):
We proceed by induction on r = r(A,β). Since the base case r = 0 captures
exactly the reduced circuits, there is nothing to prove in this case.
Now consider a circuit (A,β) ∈ I(A) with r(A,β) > 0. Then, there exists a
β′ ∈ conv(A) ∩A with β′ /∈ A and β′ 6= β.
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Set λ := λ(A,β) and λ′ := λ(A,β′). Let τ ≥ 0 be the maximal real number
with λ̃ := λ − τλ′ ∈ RA

+. This number clearly exists, and we have τ ≤ 1
because the coordinate sums of λ and λ′ are equal. Further, it holds that
τ > 0 because all components of λ are positive.
Similarly, let τ ′ be the maximal real number with λ̃′ := λ′ − τ ′λ ∈ RA

+. As
above, it holds that 0 ≤ τ ′ ≤ 1. Moreover, note that β 6= β′ implies τ , τ ′ < 1.
The construction gives

β =
∑
α∈A

λ̃αα+ τβ′,
∑
α∈A

λ̃α + τ = 1,

β′ =
∑
α∈A

λ̃′αα+ τ ′β and
∑
α∈A

λ̃′α + τ ′ = 1.

Note that at least one of the entries of λ̃ is zero, and, moreover, τ ′ or at least
one of the entries of λ̃′ is zero. Define two new circuits (A1,β) and (A2,β′)
with A1 := supp(λ̃) ∪ {β′} and

A2 :=

{
supp(λ̃′) ∪ {β} if τ ′ > 0,
supp(λ̃′) if τ ′ = 0.

We observe conv(A1) ( conv(A), and since β′ is not counted towards r(A1,β),
it follows that r(A1,β) < r(A,β). Similarly, since conv(A2) ⊆ conv(A) and
β′ is not counted towards r(A2,β′), we obtain r(A2,β′) < r(A,β). Hence, by
induction,

ln(vβ) ≤
∑
α∈A

λ̃α ln(vα) + τ ln(vβ′) and (3.4)

ln(|vβ′ |) ≤
∑
α∈A

λ̃′α ln(vα) + τ ′ ln(vβ). (3.5)

Note that vβ′ ≥ 0 and vβ ≥ 0. Adding τ times (3.5) to (3.4) gives, due to
λ̃+ τ λ̃′ = (1− ττ ′)λ, the uniform inequality

0 ≤ (1− ττ ′)
( ∑
α∈A

λα ln vα − ln |vβ|
)

.

Since 1− ττ ′ > 0, this proves the claim.

The descriptions of the dual of the SONC-cone and of the dual of the SAGE-cone
in Theorem 2.4.10 are based on projections and differ from the one in Theorem 3.1.5.
For completeness, here we show that they are in fact equivalent.

Proposition 3.1.8. Let ∅ 6= A ⊆ Rn be a finite set and β ∈ A∩ conv(A\ {β}). For
v ∈ RA>0, the following are equivalent:

(1) ∀λ ∈ Λ(A,β) : ln(vβ) ≤
∑
α∈A λα ln(vα).

(2) ∃τ ∈ Rn, ∀α ∈ A : vβ ln
(
vβ
vα

)
≤ (β − α)T τ .

(3) ∃v∗ ≥ vβ, ∃τ ∈ Rn,∀α ∈ A : v∗ ln
(
v∗

vα

)
≤ (β − α)T τ .

In this proposition, statement (1) is the one we used earlier, statement (2) is the
description of the dual SAGE-cone used in [CS16], and statement (3) in conjunction
with Theorem 3.1.1(c) is the description of the dual SONC-cone used in [DNT21].
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Note that for general v ∈ RA+, the statement is not necessarily true:

Example 3.1.9. Let A = {(0, 0)T , (0, 1)T , (0, 2)T , (1, 1)T } and consider the AGE-
cone CAGE(A,β) with respect to β = (0, 1)T . Then, the unique λ ∈ Λ(A,β) has
λ(1,1) = 0.

According to the first formulation of Proposition 3.1.8, some element v ∈ RA

with v0,1 =
√
v0,0v0,2, v0,0 6= 0, v0,2 6= 0, and v1,1 = 0 is contained in the dual cone of

AGE exponentials. But according to (2), it is not, as v1,1 = 0 yields v0,1 = 0 in this
formulation.

This can be solved by expressing C∗SAGE(A) for A ⊆ Rn non-empty and finite
with the cleaner formulation

cl{ν ∈ RA>0 : ∀ β ∈ A ∃ τ (β) ∈ Rn : να ln
(
να
νβ

)
≤ (α− β)T τ (β) ∀ α ∈ A \ {β}}

instead of the one used in Theorem 2.4.10. Indeed, for v1,1 → 0, the witness τ ∈ R2

for the above example set A can then be obtained by choosing τ2 = v0,1 ln
(√

v0,2√
v0,0

)
and τ1 = v0,1 ln( v1,1

v0,1
)− τ2.

Remark 3.1.10. We show the equivalence via the following variant of statement (2):

(2’) ∃τ ∈ Rn, ∀α ∈ A : ln
(
vβ
vα

)
≤ (α− β)T τ .

Proof. By the precondition, vβ 6= 0 and vα 6= 0 for all α ∈ A.

(1) ⇐⇒ (2’):
Consider (2’) as the feasibility set of a system of linear inequalities in τ . (2’) is
satisfied if and only if its Farkas alternative system (in the version of Proposition
1.7 of [Zie95])

∃λ ∈ RA+ :
∑
α∈A

λα(−α+ β) = 0 and
∑
α∈A

λα ·
(
− ln

(
vβ
vα

))
< 0

does not have a solution.
We can normalize λ so that all its components sum to 1. Hence, the alternative
system simplifies to ∑

α∈A
λα ln vβ >

∑
α∈A

λα ln vα > 0,

i.e., to ln(vβ) >
∑
α∈A λα ln vα. Since this is the opposite of (1), the equivalence of

(1) and (2’) follows.

(2’) =⇒ (2):
We obtain (2) from (2’) by multiplying with vβ and replacing vβτ with −τ .

(2) =⇒ (3):
This follows by setting v∗ := vβ.

(3) =⇒ (2’):
We have that v∗ ≥ vβ > 0, and thus, we may divide the inequality in (3) by v∗ to
obtain

∃τ ′ ∈ Rn,∀α ∈ A : ln
(
v∗

vα

)
≤ (β − α)T τ ′,
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where τ ′ = τ/v∗. Note that the left-hand side of the inequality is monotonous in
v∗, and hence,

ln
(
vβ
vα

)
≤ ln

(
v∗

vα

)
≤ (β − α)T τ ′.

We further replace τ ′ with −τ ′ to obtain (2’).

3.2 Extreme Rays of the SAGE-Cone
As a first application of our description of the dual cone, we prove the following
theorem. Note that the first statement in the theorem was already observed by Wang
for SONC polynomials [Wan18b] and by Murray, Chandrasekaran an Wierman for
SAGE exponentials [MCW21a, Theorem 4].

Theorem 3.2.1. Let ∅ 6= A ⊆ Rn be finite . For every f ∈ CSAGE(A), the following
statements hold:

1. f can be written as a sum of nonnegative circuit exponentials whose supports
are contained in supp f .

2. f can be written as a sum of nonnegative circuit exponentials supported on
reduced circuits in CSAGE(A).

Note that in statement (2) of this Theorem, the supports of the reduced circuits
do not need to be contained in the support of f . The following example shows a
situation in which this phenomenon happens.

Example 3.2.2. Let A := {0, 3/4, 4}. Consider the nonnegative circuit exponential
f = 1− 4 · 3−3/4ex + e4x. Its support ({0, 4}, 1) is not reduced with respect to A,
and indeed, we can write f as sum

f =

(2
3 − 4 · 3−3/4ex +

2
3
√

3e2x
)
+

(1
3 −

2
3
√

3e2x + e4x
)

of nonnegative circuit exponentials, whose supports ({0, 2}, 1) and ({0, 4}, 2) are re-
duced. Note that the coefficient of e2x cancels in the sum.

Proof of Theorem 3.2.1. By Lemma 3.1.6 and part (c) of Theorem 3.1.5, the dual of
the SAGE-cone is

CSAGE(A)∗ =
⋂

(A,β)∈I(A)
CAGE(A,β)∗. (3.6)

Let f ∈ CSAGE(A) and assume that the support of f is given by A′ ⊆ A. By
Theorem 2.4.8, f ∈ CSAGE(A′). Apply (3.6) on the sub-cone CSAGE(A′) and dualize
that identity. Using that CSAGE(A′)∗∗ = CSAGE(A′) (because the cone is closed)
then yields

f ∈
∑

(A,β)∈I(A)
CAGE(A,β).

This shows part (1).
Part (2) then follows from part (d) of Theorem 3.1.5. Note that in this case we

cannot restrict the sets of exponents to A′ as it depends on the choice of A whether
a circuit is reduced or not.

Remark 3.2.3. If we demand supp(f) = A, we obtain the same statement about
the support in (2) as in (1).
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Our next application of our description of the dual cone is a precise characteri-
zation of the extreme rays of CSAGE(A). This sharpens the result in [Wan18a] and
[MCW21a, Theorem 4], where the necessary condition is that every extreme ray of
the SAGE-cone is supported on a single coordinate or on a circuit. The essential
concept for this characterization is provided by the reduced circuits.

Let ∅ 6= A ⊆ Rn be finite. For a circuit (A,β) ∈ I(A), i.e., A ⊆ A affinely
independent and β ∈ A∩ relint conv(A), write shortly λ = λ(A,β). Let

E(A,β) :=

{∑
α∈A

cαe
〈α,x〉 −

∏
α∈A

(
cα
λα

)λα
e〈β,x〉 c ∈ RA

>0

}
,

and for β ∈ A let
E1(β) := R+ · e〈β,x〉.

The sets E(A,β) for circuits (A,β) ∈ I(A) contain those nonnegative circuit ex-
ponentials for which the inequality from Theorem 2.4.5 on the circuit number holds
with equality. The sets E1(β),β ∈ A provide the special case for circuits supported
on a single element.

Theorem 3.2.4. Let ∅ 6= A ⊆ Rn be a finite set and write λ = λ(A,β). The set
E(A) of extreme rays of the cone of SAGE exponentials with support in A is

E(A) =
⋃

(A,β)∈I(A),
r(A,β)=0, |A|>1

E(A,β) ∪
⋃
β∈A

E1(β)

=
⋃

(A,β)∈I(A),
r(A,β)=0, |A|>1

{∑
α∈A

cαe
〈α,x〉 −

∏
α∈A

(
cα
λα

)λα
e〈β,x〉 c ∈ RA>0

}

∪
⋃
β∈A

{
ce〈β,x〉 c ∈ R+

}
.

This statement was later also partially observed by Forsgård and de Wolff [FW19].
As mentioned in Chapter 2, in their language, circuits are minimally supported el-
ements ν ∈ ker(A) with a single negative entry, i.e., multiples of the vector of
barycentric coordinates with respect to the inner term. As we refer to the state-
ment in the following chapters again, we denote for their definition of a circuit
ν+ := {α ∈ supp(ν) : να > 0} and by ν− the single support point with negative
entry and frame the statement as follows:

Proposition 3.2.5 ([FW19, Theorem 3.2]). A vector ν is an edge generator of the
SAGE-cone (i.e., it is contained in an extremal ray) if and only if

A∩ relint conv ν+ = {ν−}.

This, in particular, captures our concept of reduced circuits, Definition 3.1.3:
Proposition 3.2.5 states that a vector ν is an edge generator of the SAGE-cone if and
only if it is a reduced circuit.

We have a look at the extreme rays from Example 3.1.4.

Example 3.2.6. Let A =

{(
0
0

)
,
(

4
0

)
,
(

4
2

)
,
(

0
2

)
,
(

1
1

)}
. The set of

reduced circuits (A,β) ∈ I(A) with |A| > 1 is pictured in Figure 3.3. Extreme rays
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x

y

(4, 0)T(0, 0)T

(0, 2)T (4, 2)T
(1, 1)T

Figure 3.3: Reduced circuits of A from Example 3.2.6.

of the SAGE-cone with fixed support set A are{
c0 + c4e

4x + c2e
2y − 4c0

1/44c4
1/42c2

1/2ex+y cα > 0 ∀ α ∈ {0, 4, 2}
}

∪
{
c0 + c(4,2)e

4x+2y + c2e
2y − 2c0

1/24c(4,2)
1/44c2

1/4ex+y cα > 0 ∀ α ∈ {0, (4, 2), 2}
}

∪ R+ ∪R+e
4x ∪R+e

2y ∪R+e
4x+2y ∪R+e

x+y.

For the cone of AGE exponentials, every circuit supports a family of extreme rays
in the AGE-cone. This is not correct for the full SAGE-cone anymore, as shown by
the following example.

Example 3.2.7. Let A = {0, 1, 2, 4},B = ∅ and f := 1 − 4 · 3−3/4ex + e4x be a
nonnegative circuit exponential with non-reduced support in terms of A. We write f
as a sum

f =
(
1− 2 · 31/4ex +

√
3e2x

)
+

(2
331/4ex −

√
3e(2x + e4x

)
of circuit exponentials, whose supports {0, 1, 2} and {1, 2, 4} are reduced.

As the cone of SONC polynomials can be deduced from the cone of SAGE expo-
nentials, we obtain a corollary for the special case of SONC polynomials.

Corollary 3.2.8. Let ∅ 6= A ⊆ Nn be a finite set and write shortly λ = λ(A,β).
The set E(A) of extreme rays of the cone of SONC-polynomials with support in A is

E(A) =
⋃

(A,β)∈I(A),
r(A,β)=0, |A|>1

{∑
α∈A

cαx
α −

∏
α∈A

(
cα
λα

)λα
xβ c ∈ RA

>0

}

∪
⋃

(A,β)∈I(A∩(2N)n,A),
r(A,β)=0, |A|>1,β∈A\(2N)n

{∑
α∈A

cαx
α +

∏
α∈A

(
cα
λα

)λα
xβ c ∈ RA

>0

}

∪
⋃

β∈A∩(2N)n

R+ · xβ.

For the proof of Theorem 3.2.4, we use a variant of Hölder’s inequality.

Theorem 3.2.9 ([HLP52, Theorem 11, p. 22]). Let n,m ∈N. Let (aij) ∈ Rn×m be
a matrix and let λ1, . . . ,λn ∈ R>0 with

∑n
i=1 λi = 1. Then

m∑
j=1

n∏
i=1

aλiij ≤
n∏
i=1

 m∑
j=1

aij

λi

and equality holds if and only if either (1) for some i, ai1 = · · · = aim = 0, or (2)
the matrix (aij) has rank 1.
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Note that in case (1) both sides of the inequality are zero.

Proof of Theorem 3.2.4. By Theorem 3.2.1, every exponential sum f ∈ CSAGE(A)
can be written as a sum of nonnegative circuit exponentials supported on reduced
circuits. Hence, it suffices to show the following two statements:

(a) Every nonnegative circuit exponential can be written as a sum of nonnegative
circuit exponentials with the same support whose circuit condition is satisfied
with equality.

(b) Every function in E(A) is indeed an extreme ray, i.e., it cannot be written as a
sum of other AGE exponentials supported on A.

(a) Let f be a nonnegative circuit exponential supported on the circuit (A,β), whose
coefficients are denoted by (cα)α∈A and cβ.
Then f can be written as the sum of nonnegative circuit exponentials with the
same support whose inner coefficient , i.e., coefficient corresponding to the inner
exponent, equals the negative of the circuit number and of some function de〈β,x〉

for d > 0. The latter is contained in E1(β).

(b) Let f ∈ E(A) with coefficients (cα)α∈A. Assume that f can be decomposed into
f =

∑k
i=1 fi with AGE exponentials f1, . . . , fk ∈ RA. Denote the coefficients of

fi by (c
(i)
α )α∈A.

Set Ã :=
⋃
i suppe(fi) = {α ∈ A ∃i : c

(i)
α 6= 0}. We claim that Ã ⊆ conv supp(f).

To show this, we consider a vertex α̃ of conv Ã. Since α̃must be an outer exponent
of each fi with c(i)α̃ 6= 0, we have c(i)α̃ ≥ 0 for all i. It follows that

∑k
i=1 c

(i)
α̃ > 0,

and thus, α̃ ∈ supp(f). As this holds for every vertex of conv Ã, we obtain that
Ã ⊆ conv supp(f).
Next, we fix β ∈ A and a circuit (A,β) ∈ I(A) and distinguish two cases de-
pending on whether f ∈ E1(β) or f ∈ E(A,β).

(1) Case f ∈ E1(β), β ∈ A: In this case, supp(fi) = {β} for each i. Thus, each
fi is a multiple of e〈β,x〉, and thus, a multiple of f .

(2) Case f ∈ E(A,β) for (A,β) ∈ I(A) with r(A,β) = 0 and |A| > 1: In this
case, our initial considerations imply that

⋃
i supp(fi) ⊆ conv(A). Since

(A,β) is reduced we can also conclude that
⋃
i supp(fi) ⊆ A∪ {β}. Hence,

each fi is of the form

fi =
∑
α∈A

c(i)α e
〈α,x〉 + c

(i)
β e
〈β,x〉. (3.7)

It follows that c(i)α ≥ 0 for all i and α ∈ A, because otherwise the fi cannot
be nonnegative. Moreover, as each fi is an AGE exponential,

− c(i)β ≤
∏
α∈A

c(i)α
λα

λα (3.8)

for all i, where again, we write λ = λ(A,β).
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In the next step, we derive

−cβ = −
k∑
i=1

c
(i)
β

(a)
≤

k∑
i=1

∏
α∈A

c(i)α
λα

λα (b)
≤
∏
α∈A

 k∑
i=1

c
(i)
α

λα

λα
(c)
=
∏
α∈A

(
cα
λα

)λα
= −cβ, (3.9)

where in (a) we use (3.8), (b) follows from Theorem 3.2.9, and (c) uses the
fact that

∑k
i=1 c

(i)
α = cα. Moreover, by Theorem 3.2.9, equality in (b) implies

that either (1) there exists an α ∈ A such that c(i)α vanishes for all i, or (2)
the |A| × k matrix with entries c(i)α /λα has rank one. However, (1) would
imply that cβ = 0 which is impossible, thus, we are in case (2). Hence,
there exist scalars ε1, . . . , εk ≥ 0 such that c(i)α = εicα for all i and all α ∈ A.
Further, equality in (a) implies that

−c(i)β =
∏
α∈A

c(i)α
λα

λα =
∏
α∈A

(
εi
cα
λα

)λα
= −εicβ.

By (3.7), it follows that every fi is of the form fi = εif . Thus, εi > 0 for
all i. But this implies that c(i)β = εicβ < 0. Hence, since the fi are AGE
exponentials, they are all multiples of f .
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Chapter 4

Global Optimization via the
SAGE-Cone and its Dual

In this Chapter, we present two optimization methods over the SAGE-cone and its
dual. To do so, we start in Section 4.1 by introducing a tool named the Signed SAGE-
cone which we use for optimization purposes. This cone contains SAGE exponentials
with fixed signs of the coefficients, see Definition 4.1.1. This is a common approach
in optimization and this restriction to certain sign patterns allows us to use slightly
different statements for the SAGE-cone and its dual which are particularly helpful
for optimization.

In Section 4.2, we present a method exploiting symmetries in a given exponential
sum. We assume G-invariance of an exponential for a group G and start by proving
a symmetry-adapted decomposition result, namely Theorem 4.2.1. Bulding upon
this decomposition result, we then show that the complexity of the relative entropy
programs in Theorem 3.1.1 can be substantially reduced by using this adaption, see
Theorem 4.2.3. For computational reasons, we exploit symmetries in this setting
even further and obtain a complex but efficient variant of Theorem 3.1.1 (2), which
substantially reduces the size of the corresponding relative entropy program and the
run time solving it. From this we can see that the improvement is dependent on the
orbit structure of the group action.

We close Section 4.2 by presenting some numerical experiments and comparing
the computational gain of the symmetrized version of the relative entropy program
to that of the conventional one. Whenever we have a strong symmetric structure,
this causes the variable, equation and inequality count to decrease a lot, yielding a
substantial reduction in computation time. We also present cases where the conven-
tional computation fails but we do obtain a solution using the symmetrized version
of the relative entropy program.

In Section 4.3, we show that the dual cone of SAGE exponentials provides a linear
programming method to approximate the global optimization problem (1.1):

f∗ = inf{f(x) : x ∈ Rn} = sup{λ ∈ R : f − λ is nonnegative on Rn}.

This result is based on the fact that the dual cone of AGE exponentials is con-
tained in the primal cone. Moreover, certain exponential sums whose coefficients can
be constructed using the dual SAGE-cone (but do not neccessarily lie in the dual
SAGE-cone) are contained in the primal SAGE-cone, and, hence, nonnegative; see
Proposition 4.3.1. This yields a linear program certifying nonnegativity of a given
function, as explained in Proposition 4.3.4. Building upon this certificate, we consider
a relaxation of a global optimization problem, (4.24), and provide two optimization
programs (LPA+) and (LPA−). We then state the main theorem of this section, The-
orem 4.3.8, which explains how to obtain a lower bound on the global optimal value
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of a given function using this developed approach.

4.1 The Signed SAGE-Cone and its Dual
Motivated by this optimization approach, we make a restriction when investigating
the SAGE-cone. For a fixed exponential sum f with support A, which we intend to
minimize, we have additional information on the signs of the coefficients of f . Using
this, we obtain a decomposition

A = A+ ∪A− (4.1)

with disjoint sets ∅ 6= A+ ⊆ A, corresponding to the set of nonnegative coefficients,
and A− ⊆ A, corresponding to the remaining negative coefficients.

Thus, we represent exponential sums in this case as

f =
∑
α∈A+

cαe
〈α,x〉 +

∑
α∈A−

cαe
〈α,x〉 (4.2)

with cα ≥ 0 for all α ∈ A+ and cα < 0 for all α ∈ A−, i.e., we explicitely distinguish
between nonnegative terms and negative terms. In case we want to emphasize the
underlying function f , we sometimes also write A+(f) and A−(f).

If we minimize a given exponential sum f using the SAGE-cone approach, we re-
strict to exponential sums respecting the sign-pattern indicated by f . This is the com-
mon, tractable approach used by various authors, e.g. in [DIW19; IW16b; MCW21a;
MCW21b]; it motivates the following definition.

Definition 4.1.1 (Signed SAGE-Cone). Let ∅ 6= A ⊆ Rn be a finite set joint with
a decomposition A = A+ ∪A− in the sense of (4.1). Then, the signed SAGE-cone
SA+,A− is the cone of all exponential sums that can be written as a sum of AGE
exponentials of the form (4.2) or as elements cαe〈α,x〉 with α ∈ A+ and cα > 0. We
denote the special case A− = {β} by SA+,β.

Following the convention from previous chapters, elements cαe〈α,x〉 with α ∈ A+

and cα > 0 are formally supported on circuits ({α},α). Note that we formally include
elements with 0-coefficients in the set A+. This ensures that for A+ ⊆ A′, we have
SA+,β ⊆ SA′,β. In reality, for A = A+ ∪A−, we mostly assume A+ ∪A− = supp(f)
whenever considering the signed SAGE-cone and elements therein.

In fact, by using a generalization of the circuit number and the subsequent nota-
tion, we can refine the representation of SA+,β. To do so, we use a refined definition
of the polytope Λ(A,β) from (3.1), namely,

Λ(A+,β) =

λ ∈ RA+

+ :
∑
α∈A+

λαα = β,
∑
α∈A+

λα = 1

 (4.3)

for β ∈ A−.
Using this definition, we may restate one part of Theorem 3.1.1 as follows:
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Theorem 4.1.2 (Essentially Theorem 3.1.1). Let A = A+ ∪ {β} be defined as in
(4.2). The signed cone of AGE exponentials SA+,β is the setf =

∑
α∈A+

cαe
〈α,x〉 + cβe

〈β,x〉 : cα ≥ 0 for α ∈ A+, cβ < 0 and

∃ λ ∈ Λ(A+,β) s.t.
∏

α∈A+ :λα>0

(
cα
λα

)λα
≥ −cβ

 .

Note here that nonnegativity of an AGE exponential can be certified directly by
using the generalized circuit number above. There is no need to decompose it into a
sum of nonnegative circuit exponentials.

We can adapt Theorem 2.4.8 to our setting, which basically states that an ex-
ponential sum in the SAGE-cone supported on A can be decomposed into a sum of
AGE exponentials supported on A+ ∪ {β}, β ∈ A−, i.e., the decomposition only uses
the support A and there is only one summand per element in A−.

Theorem 4.1.3 ([MCW21a, Theorem 2]). Let f ∈ SA+,A− with a vector of coeffi-
cients c and supp(f) ∩A+ = A+. Let A− 6= ∅. Then, there exist exponential sums
{f (β) : β ∈ A−} with coefficient vectors {c(β) : β ∈ A−} satisfying

1. c =
∑
β∈A− c

(β) ,

2. f (β) ∈ SA+,β and

3. c(β)β′ = 0 for all β′ 6= β in A−.

This leads to the following variant of Theorem 3.1.1 (2) for the signed SAGE-cone.

Theorem 4.1.4. Let A = A+ ∪A− as defined before and f be an exponential sum
respecting the sign pattern (4.2). The function f is contained in SA+,A− if and only
if for every β ∈ A− there exist c(β) ∈ RA+

+ and ν(β) ∈ RA+

+ such that∑
α∈A+

ν(β)α (α− β) = 0 for every β ∈ A−, (4.4)

D(ν(β), e · c(β)) ≤ cβ for every β ∈ A− and (4.5)∑
β∈A−

c(β)α ≤ cα for every α ∈ A+. (4.6)

In what follows, we collect statements for the dual signed SAGE-cone that we
need in Subsection 4.3.1 to show containment of the dual in the primal SAGE-cone
and in Subsection 4.3.2 to obtain a fast linear approximation for global optimization.

Due to our goals in this chapter, we here discuss duality with respect to the signed
SAGE-cone. However, everything generalizes to the full SAGE-cone immediately as
we only combine statements from the previous chapters.

We follow the definitions used for the full SAGE-cone.

Definition 4.1.5 (The Dual Signed SAGE-Cone). For an exponential sum f of the
form (4.2) with coefficient vectors c ∈ RA, we consider the natural duality pairing

v(f) =
∑
α∈A+

vαcα +
∑
α∈A−

vαcα ∈ R,
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where v(·) ∈ (RA)∗ is canonically identified with its (dual) coefficient vector, hence,
we consider v to be an element in RA. Using this definition, the dual signed SAGE-
cone is defined as the set

S∗A+,A− =
{
v ∈ RA : v(f) ≥ 0 for all f ∈ SA+,A−

}
.

For brevity, we refer to this cone simply as the dual SAGE-cone in this chapter.

The following theorem provides two representations of this cone. We need the first
one to show containment of the dual cone of AGE exponentials in the primal one,
and the second representation to obtain a linear program approximating the solution
of our global optimization problem (1.1).

Theorem 4.1.6. Let A = A+ ∪A− as in (4.1). The following sets are equal:

1. S∗A+,A−,

2.

v ∈ RA :
for all α ∈ A+, vα ≥ 0; and for all β ∈ A−, for all
λ ∈ Λ(A+,β) , ln(|vβ|) ≤

∑
α∈A+

λα ln(vα)

 ,

3. cl
{
v ∈ RA6=0 :

for all α ∈ A+, vα > 0; and for all β ∈ A− there exists
τ ∈ Rn, ln

( |vβ |
vα

)
≤ (α− β)T τ for all α ∈ A+

}

Note that, whenever A− = ∅, the cone S∗A+,A− equals the set RA+

+ . Hence, the
interesting case is whenever A− 6= ∅.

In particular, there are two differences to earlier versions of the same statement:
First, the conditions “ ln(|vβ|) ≤

∑
α∈A+

λα ln(vα)” and “ln
( |vβ |
vα

)
≤ (α− β)T τ” only

need to hold for every β ∈ A− and second, the condition “vα ≥ 0” only needs to
hold for every α ∈ A+. The reason for the first difference becomes clear with the
following statements. The second one is due to the fact that no exponential cαe〈α,x〉

with α ∈ A− and positive coefficient cα is contained in SA+,A− .
We obtain the following representation of the SAGE-cone and its dual.

Corollary 4.1.7. Let ∅ 6= A = A+∪A− ⊆ Rn as in (4.1). The following statements
hold.

1. The SAGE-cone is the Minkowski sum

SA+,A− =
∑
β∈A−

SA+,β +
∑
α∈A+

R+ · e〈α,x〉

2. The dual SAGE-cone is the set

S∗A+,A− =
⋂

β∈A−
S∗A+,β ∩ (R

A+

+ ×RA−)

Note that the second statement involves a slight abuse of notation: Formally, we
need to consider the lifted cones {v ∈ RA+∪A− : v|A+∪{β} ∈ S∗A+,β}. As cα = 0 for all
α ∈ A− \ {β} in every exponential sum f with c ∈ SA+,β, there are no restrictions on
vα for α ∈ A− \ {β}.

Proof of Corollary 4.1.7. The first statement follows with Theorem 4.1.3. For the
second statement, note that Minkowski sum and intersection are dual operations;
see, e.g., [Sch14, Theorem 1.6.3].
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In order to finally prove Theorem 4.1.6, we need another statement, which essen-
tially combines Lemma 3.1.6 and a part of the proof of Proposition 3.1.8 — namely,
Remark 3.1.10.

Lemma 4.1.8. For β ∈ A− 6= ∅, the dual of the SAGE-cone S∗A+,β consists of the
closure of the set of those v ∈ RA6=0 where the following equivalent conditions hold:

1. ln(|vβ|) ≤
∑
α∈A+ λα ln(vα) for all λ ∈ Λ(A+,β).

2. There exists τ ∈ Rn such that for all α ∈ A+ : ln
( |vβ |
vα

)
≤ (α− β)T τ .

Proof of Theorem 4.1.6. In the case A− = ∅, S∗A+,β only contains sums of nonnegative
exponentials with nonnegative coefficient, and the equality of the sets (1) − (3) is
clear. For A− 6= ∅, the statement follows by Corollary 4.1.7 and Lemma 4.1.8 .
Namely, the first representation can be deduced from (1), and the second one from
(2).

4.2 Symmetry Reduction in AM/GM-Based Optimiza-
tion

We start by examining situations involving symmetries. We provide a specific way
of writing SAGE exponentials in the presence of a group symmetry. We study how
to characterize and to decide whether a G-symmetric exponential sum is contained
in the SAGE-cone with reduced relative entropy programs and provide experimental
results of an implementation of the symmetry reduction techniques.

4.2.1 Orbit Decompositions of Symmetric Exponential Sums

In this subsection, we provide a structural result on the decomposition of symmet-
ric exponential sums in the SAGE-cone as sums of orbits of (non-symmetric) AGE
exponentials.

Let G be a finite group acting linearly on Rn on the left, namely, we have a group
homomorphism

ϕ : G → GLn(R)
σ 7→ ϕ(σ)

.

For σ ∈ G and x ∈ Rn, we denote by σ · x the image of x through ϕ(σ). In order to
get a left action on the set of functions defined on Rn, we need to take

(σ ∗ f)(x) = f(σ−1 · x) = f(ϕ(σ−1)(x)). (4.7)

For an exponential sum f(x) =
∑
α cαe

〈α,x〉, we see an exponent vector α as an
element of the dual space of Rn. Then, the dual action of G on the exponent vectors
is given by

σ ⊥ α := ϕ(σ−1)#(α).

Recall that A# denotes the adjoint operator of A. Note that this is a left action as
well. Therefore, even if the exponents and the variables lie in isomorphic spaces, the
actions of G on these spaces are different and dual to each other and satisfy

〈α,σ · x〉 = 〈α,ϕ(σ)(x)〉 = 〈ϕ(σ)#(α),x〉 = 〈σ−1 ⊥ α,x〉.
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Furthermore, for an exponential sum f ,

(σ ∗ f)(x) = f(σ−1 · x) =
∑
α

cαe
〈α,σ−1·x〉 =

∑
α

cαe
〈σ⊥α,x〉. (4.8)

From now on, in order to keep notations as light as possible, with a slight abuse of
notation, we write σ(x) = σ · x for the action on the variables, σf = σ ∗ f for the
action on functions, and σ(α) = σ ⊥ α for the dual action. Even if the actions are
different, the context should clarify the correspondence.

Recall from Chapter 2 that for a set S ⊆ Rn of exponent vectors, the orbit of S
under G is

G · S = {σ(s) : s ∈ S, σ ∈ G}.

Moreover, recall that a subset Ŝ ⊆ S is called a set of orbit representatives for S if Ŝ
is an inclusion-minimal set with (G · Ŝ) = S, and the stabilizer of an exponent vector
β is denoted by Stabβ := {σ ∈ G : σ(β) = β}.

In the following statements, we consider G-invariant exponential sums f . Here ,
it is convenient to write f in the form

f =
∑
α∈A+

cαe
〈α,x〉 +

∑
α∈A−

cαe
〈α,x〉 (4.9)

with cα > 0 for α ∈ A− and cα < 0 for α ∈ A−, i.e., f is an element of the signed
SAGE-cone SA+,A− introduced in the previous section. As already mentioned, in this
notation, the overall support set of f is A+ ∪A− = A. For the following statements,
we assume ∅ 6= A−: In the case ∅ = A−, the set SA+,A− coincides with RA+ and the
membership problem of the signed SAGE-cone is trivial.

Theorem 4.2.1. Let f be a G-invariant exponential sum of the form (4.9) and
∅ 6= Â− be a set of orbit representatives for A−. Then, f ∈ SA+,A− if and only if for
every β̂ ∈ Â−, there exists an AGE exponential hβ̂ ∈ SA+,β such that

f =
∑
β̂∈Â−

∑
ρ∈G/ Stab(β̂)

ρhβ̂. (4.10)

The functions hβ̂ can be chosen invariant under the action of Stab(β̂).

Here, ρ ∈ G/ Stab(β̂) shortly denotes that ρ runs over a set of representatives of
the left quotient space G/ Stab(β̂), defined through left cosets {σ Stab(β̂) : σ ∈ G}.
We also use the right quotient space, denoted by Stab(β̂)\G, further below.

Example 4.2.2. For the symmetric group Sn, every σ ∈ G acts on x = (x1, . . . ,xn)
through σ(x) = (xσ(1), . . . ,xσ(n)). On an exponential sum f(x) =

∑
α cαe

〈α,x〉, this
induces the action

σf(x1, . . . ,xn) = f(xσ(1), . . . ,xσ(n)).

Since σf(x) =
∑
α cαe

〈x,(ασ−1(1),...,ασ−1(n))〉, the induced action on exponent vectors α
is

σ(α) = (ασ−1(1), . . . ,ασ−1(n)). (4.11)

Let f = 4
3 + 5

9
(
e9x1 + e9x2+9x3

)
− e3x1+x2+x3 − ex1+3x2+x3 − ex1+x2+3x3 . This is

a symmetric exponential sum with respect to the symmetric group S3. In fact, this
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is also a SAGE exponential. It can be decomposed into the three exponential sums

f1 =
4
9 +

1
3e

9x1 +
1
9e

9x2 +
1
9e

9x3 − e3x1+x2+x3 ,

f2 =
4
9 +

1
9e

9x1 +
1
3e

9x2 +
1
9e

9x3 − ex1+3x2+x3 and

f3 =
4
9 +

1
9e

9x1 +
1
9e

9x2 +
1
3e

9x3 − ex1+x2+3x3 .

Fix β̂ := (3, 1, 1)T . The stabilizer is Stab(β̂) = {(123), (132)} and, with this, we
compute S3/ Stab(β̂) = {(123), (213), (312)}. Here, elements in the sets Stab(β̂)
and S3/ Stab(β̂) are written as tuples. Then, observe that

hβ̂ :=
1
6
∑
σ∈G

σfσ−1(β) = f1.

Also, ρhβ̂ = hρβ̂ and for the three elements in S3/ Stab(β̂), we have

(123)β̂ = β̂, (213)β̂ = (1, 3, 1), (312)β̂ = (1, 1, 3),

hence, f =
∑
ρ∈S3/ Stab(β̂) ρf1 =

∑
ρ∈S3/ Stab(β̂) ρhβ̂.

Proof of Theorem 4.2.1. Since it is clear that any exponential sum appearing in the
decomposition of f as defined in (4.10) is nonnegative and contains a single possibly
negative term, we only have to show the converse direction. Let f ∈ SA+,A− . By
Theorem 4.1.6, there exist AGE exponentials fβ ∈ SA+,β for every β ∈ A−, such that
f =

∑
β∈A− fβ. The G-invariance of f gives

f =
1
|G|

∑
σ∈G

σf =
1
|G|

∑
σ∈G

∑
β∈A−

σfβ. (4.12)

The idea is to group all the σfβ that have the same possibly negative term. According
to (4.8), the possibly negative term of σfβ is given by σ(β). For any β ∈ A−, the
exponential sum

hβ =
1
|G|

∑
σ∈G

σfσ−1(β)

is a sum of AGE exponentials in SA+,β, hence, it is contained in SA+,β as well. More-
over, (4.12) can be expressed as

f =
1
|G|

∑
σ∈G

∑
β∈A−

σfβ =
1
|G|

∑
σ∈G

∑
γ∈A−

σfσ−1(γ) =
∑
γ∈A−

hγ .

Let β ∈ A− and β̂ ∈ Â− be the representative of its orbit in Â−. If σ, τ ∈ G are
such that σ(β̂) = τ (β̂) = β, then τ−1σ ∈ Stab(β̂) and τ = σ in G/ Stab(β̂). Hence,

f =
∑
β̂∈Â−

∑
ρ∈G/ Stab β̂

hρ(β̂). (4.13)

Now observe that hρβ = ρhβ for every β ∈ A− and ρ ∈ G because

|G|ρhβ =
∑
σ∈G

ρσfσ−1(β) =
∑
τ∈G

τfτ−1ρ(β) = |G|hρ(β). (4.14)
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Substituting (4.14) into (4.13) gives f =
∑
β̂∈Â−

∑
ρ∈G/ Stab β̂ ρhβ̂ as desired. More-

over, the Stab(β̂)-invariance of hβ̂ for β̂ ∈ Â− follows from (4.14).

4.2.2 Symmetry Reduction in Relative Entropy Programming

Building upon the previous decomposition theorem, we provide a symmetry-adapted
relative entropy formulation for containment in the SAGE-cone.

Theorem 4.2.3. Let Â− be a set of orbit representatives for A−. A G-invariant
exponential sum f of the form (4.9) is contained in SA+,A− if and only if for every
β̂ ∈ Â− there exist c(β̂) ∈ RA+

+ and ν(β̂) ∈ RA+

+ , invariant under the action of
Stab(β̂), such that ∑

α∈A+

ν(β̂)α (α− β̂) = 0 for every β̂ ∈ Â−, (4.15)

D(ν(β̂), e · c(β̂)) ≤ cβ̂ for every β̂ ∈ Â− and (4.16)∑
β̂∈Â−

∑
σ∈Stab (β̂)\G

c
(β̂)
σ(α) ≤ cα for every α ∈ A+. (4.17)

Remark 4.2.4. The right coset condition (4.17) can equivalently be expressed in
terms of left cosets,∑

β̂∈Â−

∑
σ∈G/ Stab β̂

c
(β̂)
σ−1(α) ≤ cα for every α ∈ A+.

Namely, if β ∈ A−, β̂ ∈ Â− and σ, τ ∈ G are such that σ−1(β̂) = τ−1(β̂) = β, then
τσ−1 ∈ Stab(β̂) and τ = σ in the right quotient space Stab(β̂)\G.

The following example shows the usefulness of Theorem 4.2.3.

Example 4.2.5. Consider the S3-symmetric exponential sum

f(x1,x2,x3) = 1 +
3∑
i=1

e8xi − δ
∑

(i,j,k)∈S3

e3xi+2xj+xk − δ
∑

(i,j,k)∈S3

e2xi+xj+xk ,

and we ask for the largest δ for which f is SAGE. Let δ(i) denote the i-th unit
vector for i ∈ N, and let 0 denote the three-dimensional zero vector. The conven-
tional relative entropy program from Theorem 4.1.4 has 2 · 4 · 9 + 1 = 73 variables
(including the δ-variable) and 3 · 9 + 9 + 4 = 40 equations or inequalities. Observing
A+ = {0, 8δ(1), 8δ(2), 8δ(3)} as well as

|Â−| = |{(3, 2, 1)T , (2, 1, 1)T }| = 2,

the symmetric relative entropy program is

min δ

s.t.
∑
α∈A+ ν

(β)
α (α− β) = 0 for β = (3, 2, 1)T , (2, 1, 1)T ,

D(ν(β), e · c(β)) 6 δ for β = (3, 2, 1)T , (2, 1, 1)T ,∑
β=(3,2,1)T ,(2,1,1)T

9c(β)α 6 1 for α ∈ A+,

δ ∈ R and c(β), ν(β) ∈ R4
+ for β = (3, 2, 1)T , (2, 1, 1)T .
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Therefore, we see that the symmetric relative entropy program from Remark 4.2.4
involves 2 · 4 · 2 + 1 = 17 variables and at most 2 · 3 + 2 + 4 = 12 equations or in-
equalities.

Proof of Theorem 4.2.3. If A− = ∅, then the statement is trivially true. Hence,
assume A− 6= ∅.

If f is G-symmetric, then, by Theorem 4.2.1, there exist Stab(β)-invariant AGE
exponentials hβ ∈ SA+,β for every β ∈ Â− such that

f =
∑
β∈Â−

∑
ρ∈G/ Stab(β̂)

ρhβ.

Writing hβ in the form

hβ =
∑
α∈A+

c(β)α e〈α,x〉 + cβe
〈β,x〉

with coefficients c(β)α and cβ for α ∈ A+ and β ∈ Â−, the two conditions (4.15)
and (4.16) follow from the property hβ ∈ SA+,β. For (4.17), we observe that for
α ∈ A+, the coefficient of e〈α,x〉 in ρhβ is c(β)

ρ−1(α). We obtain inequality (4.17), even
with equality, by setting σ := ρ−1 and summing over β ∈ Â− and over σ ∈ Stab(β)\G,
following Remark 4.2.4. Moreover, the Stab(hβ)-invariance of hβ implies the Stab(β)-
invariance of c(β). In order to make ν(β) invariant under Stab(β), we can replace it
with

µ(β)α =
1

| Stab(β)|
∑

σ∈Stab(β)
ν
(β)
σ(α).

Obviously, this has no influence on (4.17). For (4.15), we have

|Stab(β)|
∑
α∈A+

µ(β)α (α− β) =
∑
α∈A+

∑
σ∈Stab(β)

ν
(β)
σ(α)(α− β)

=
∑

σ∈Stab(β)
σ−1 ∑

α∈A+

ν
(β)
σ(α)(σ(α)− σ(β))

=
∑

σ∈Stab(β)
σ−1 ∑

α∈A+

ν(β)α (α− β)) = 0.

Finally, for (4.16), using c(β)α = c
(β)
σ(α) for σ ∈ Stab(β) and applying Jensen’s inequality

on the convex function x 7→ x ln x gives, for all α ∈ A+,

µ(β)α ln µ
(β)
α

c
(β)
α

=

 1
|Stab(β)|

∑
σ∈Stab(β)

ν
(β)
σ(α)

 ln
1

| Stab(β)|
∑
σ∈Stab(β) ν

(β)
σ(α)

c
(β)
α

= c(β)α

∑σ∈Stab(β) ν
(β)
σ(α)/c

(β)
σ(α)

| Stab(β)| ln
∑
σ∈Stab(β) ν

(β)
σ(α)/c

(β)
σ(α)

|Stab(β)|


≤ c(β)α

 1
|Stab(β)|

∑
σ∈Stab(β)

ν
(β)
σ(α)

c
(β)
σ(α)

ln
ν
(β)
σ(α)

c
(β)
σ(α)

 .
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Using again the Stab(β)-invariance of c(β) and the precondition then yields

∑
α∈A+

µ(β)α ln µ
(β)
α

ec
(β)
α

≤ 1
|Stab(β)|

∑
σ∈Stab(β)

∑
α∈A+

ν
(β)
σ(α) ln

ν
(β)
σ(α)

ec
(β)
σ(α)

≤ 1
| Stab(β)|

∑
σ∈Stab(β)

cβ = cβ.

Conversely, assume that c(β̂) and ν(β̂), invariant under the action of Stab(β̂),
satisfy (4.15)–(4.17). Let β ∈ A− and β̂ ∈ Â− be the representative of its orbit in
Â−. If σ, τ ∈ G are such that σ(β) = τ (β) = β̂, then τσ−1 ∈ Stab(β̂) and τ = σ in
Stab(β̂)\G. Since c(β̂) and ν(β̂) are invariant under Stab(β̂), we have

c
(β̂)
τ (α) = c

(β̂)
σ(α), ν

(β̂)
τ (α) = ν

(β̂)
σ(α) for α ∈ A+.

Thus, we can define

c(β)α = c
(β̂)
σ(α), ν(β)α = ν

(β̂)
σ(α) for α ∈ A+,

which is independent of σ such that σ(β) = β̂. As a consequence, if τ ∈ Stab(β̂)\G,
then c(τ

−1(β̂))
α = c

(β̂)
τ (α) is well defined.

To see that the first conditions of Theorem 4.1.4 are satisfied, let β ∈ A− and
σ ∈ G such that σ(β) = β̂. Then∑

α∈A+

ν(β)α (α− β) =
∑
α∈A+

ν
(β̂)
σ(α)(α− σ

−1β̂) = σ−1 ∑
α∈A

ν
(β̂)
σ(α)(σ(α)− β̂)

= σ−1 ∑
α∈A

ν(β̂)α (α− β̂) = 0 and

D(ν(β), ec(β)) = D(ν(β̂), ec(β̂)) ≤ cβ̂ = cβ.

For the third condition of Theorem 4.1.4, we obtain∑
β∈A−

c(β)α =
∑
β̂∈Â−

∑
τ∈Stab(β̂)\G

c(τ
−1β̂)

α =
∑
β̂∈Â−

∑
τ∈Stab(β̂)\G

c
(β̂)
τ (α) ≤ cα,

which altogether shows that f ∈ SA+,A− .

The following consequence of Theorem 4.2.3 further reduces the number of vari-
ables in the relative entropy program, since a certain number of c(β̂)α and ν

(β̂)
α are

actually equal, and we can take each c(β̂), ν(β̂) in the ground set R
A+/ Stab(β̂)
+ .

Corollary 4.2.6. Let Â+ and Â− be a set of orbit representatives for A+ and A−.
A G-invariant exponential sum f of the form (4.9) is contained in SA+,A− if and only
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if for every β̂ ∈ Â− there exist c(β̂) ∈ R
A+/ Stab(β̂)
+ and ν(β̂) ∈ R

A+/ Stab(β̂)
+ such that∑

α∈A+/ Stab(β̂)

ν(β̂)α

∑
α′∈Stab(β̂)·α

(α′ − β̂) = 0 ∀ β̂ ∈ Â−, (4.18)

∑
α∈A+/ Stab(β̂)

∣∣∣Stab(β̂) · α
∣∣∣ ν(β̂)α ln ν

(β̂)
α

ec
(β̂)
α

≤ cβ̂ ∀ β̂ ∈ Â−, (4.19)

∑
β̂∈Â−

| Stab(α)|
|Stab(β̂)|

∑
γ∈(G·α)/ Stab(β̂)

∣∣∣Stab(β̂) · γ
∣∣∣ c(β̂)γ ≤ cα ∀ α ∈ Â+. (4.20)

Proof. For (4.18) and (4.19), equivalence to their versions in Theorem 4.2.3 is straight-
forward to check. For (4.20), equivalence to (4.17) follows by observing that for every
α ∈ A+

∑
σ∈Stab(β̂)\G

c
(β̂)
σ(α) =

∑
σ∈Stab(β̂)\G

1
| Stab(β̂)|

∑
τ∈Stab(β̂)

c
(β̂)
τ (σ(α)) =

1
|Stab(β̂)|

∑
ρ∈G

c
(β̂)
ρ(α)

=
| Stab(α)|
| Stab(β̂)|

∑
γ∈G·α

c(β̂)γ =
|Stab(α)|
| Stab(β̂)|

∑
γ∈(G·α)/ Stab(β̂)

∣∣∣Stab(β̂) · γ
∣∣∣ c(β̂)γ ,

and the last expression only depends on the orbit G · α rather than on α itself.

Remark 4.2.7. Note that we cannot simply assume c(β)α = c
(β)
α′ for some α′ ∈ G · α

and, similarly, we cannot simply assume ν(β)α = ν
(β)
α′ for some α′ ∈ G · α. Namely, if

an element β lies in convA+ with barycentric coordinates λ, say β =
∑
α∈A+ λαα,

then for any σ ∈ G, we have

σ(β) = σ

 ∑
α∈A+

λαα

 =
∑
α∈A+

σ(λαα) =
∑
α∈A+

λασ(α)

rather than σ(β) =
∑
α∈A+ λαα =

∑
α∈A+ λσ(α)σ(α). Of course, this caveat does not

occur whenever there is a single inner term.

To close this section, we discuss the resulting complexity reduction:
Recall that the initial relative entropy formulation, which does not take the sym-

metry into consideration, involves 2|A−||A+| variables. Furthermore, since every
vector equality in (4.18) brings n scalar equalities, it consists of |A−|n+ |A−|+ |A+|
(in)equalities.

In contrast, let us analyze the number of variables and constraints involved in the
relative entropy program in Corollary 4.2.6. Observe that A+/ Stab(β̂) is the disjoint
union of the G · α̂/ Stab(β̂) where α̂ runs through Â+. It follows that for every pair
β̂ ∈ Â−, α̂ ∈ Â+, we have exactly 2|(G · α̂)/ Stab(β̂)| variables c(β̂)γ and ν(β̂)γ .

By definition, |(G · α̂)/ Stab(β̂)| is the number of orbits
{

Stab(β̂) · γ : γ ∈ G · α̂
}
.

Since G · α̂ is in bijection with Stab α̂\G, we get a bijection between (G · α̂)/ Stab(β̂)
and the set of double cosets Stab(α̂)\G/ Stab(β̂). Therefore, the number of orbits in
question equals | Stab(α̂)\G/ Stab(β̂)|, satisfying, according to the Orbit Counting
Theorem (Lemma 2.2.4):

|Stab(α̂)\G/ Stab(β̂)| = 1
|Stab(α̂)||Stab(β̂)|

∑
σ∈Stab(α̂)
τ∈Stab(β̂)

|Gσ,τ |,
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where |Gσ,τ | is the number of elements of G fixed under the action of (σ, τ ). From
another point of view, this number can be interpreted in terms of representation
theory as follows: It is given by the inner product of the two characters corresponding
to the representations induced by the trivial representations of Stab(α̂) and Stab(β̂)
on G (see [Sta99, Exercise 7.77.a] for more details).

Furthermore, (4.18) amounts to |Â+|+ |Â−| inequalities, together with one vec-
tor equality for every element of Â−. We observe that for a given β̂, this vector
is invariant by Stab(β̂) and therefore is contained in (Rn)Stab(β̂), the subspace of
Rn of points fixed by Stab(β̂). Thus, the number of resulting equations reduces to
dim

(
(Rn)Stab(β̂)

)
by projecting onto this subspace. As a conclusion, we state the

following theorem from [Mou+21] without proof:

Theorem 4.2.8. Let Â+ and Â− be a set of orbit representatives for A+ and A−. For
α̂ ∈ Â+, β̂ ∈ Â−, denote by α̂Gβ̂ the cardinality | Stab(α̂)\G/ Stab(β̂)|, and by nβ̂
the dimension of the fixed subspace (Rn)Stab(β̂). Then, the relative entropy program
in Corollary 4.2.6 consists of

2
∑
α̂∈Â+

β̂∈Â−

α̂Gβ̂ variables,
∑
β̂∈Â−

nβ̂ scalar equalities, and |Â+|+ |Â−| inequalities.

Remark 4.2.9. For special groups such as the symmetric group, the relative entropy
programs can be simplified even more using various combinatorial techniques. Those
techniques were applied for the numerical experiments in the next subsection; the
corresponding statements can be found in [Mou+21]. They are not included here as
this would go beyond the line of research examined in this thesis.

4.2.3 Numerical Experiments

To illustrate the previous considerations, we present in this section classes of examples
that spotlight the computational gains by the comparison of calculation times in the
case of the symmetric group. For these computations, we used the ECOS solver
[DCB13] and Python 3.7 on an Intel(R) Xeon(R) Platinum 8168 CPU with 2.7 GHz
and 768 GiB of RAM under CentOS Linux release 7.9.2009.

Keeping the previous notation, for the standard method, that is the method that
does not exploit the symmetries, the input consists of A+, A− as well as the co-
efficients, while for the symmetry-adapted version, the input is Â+, Â− and the
coefficients. This difference of input is mainly due to practical considerations and
does not in itself influence the comparison of the time used by the solver. When both
methods give an answer, the bounds coincide.

In all the tables in the following, “dim” is the dimension, “Vn” and “Cn” are
the number of variables and constraints of the program, while “ts” and “tr” denote
the solver time and the overall run time (including the building of the optimization
program) in seconds. While it might happen that the standard method is slightly
faster for very small instances, the growth in size for the program in the standard
method makes it quickly practically unsolvable. In that case, this is represented by
the symbol “−” in the table. The symmetric approach however allows us to go further,
and we give all the results until the solver warns about a possible inaccuracy. In this
case, we mark the bound with “∗”.
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Example 4.2.10. Consider first the exponential sum

f (1)n =
1
n!

∑
σ∈Sn

σe〈α,x〉 − e〈β,x〉

where β = (1, . . . , 1) and α = (1, 2, . . . ,n). The numerical results are shown in
Table 4.1.

Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr
2 -0.1481 7 6 0.0113 0.0121 5 4 0.0147 0.0158
3 -0.2499 15 11 0.0148 0.0160 5 4 0.0141 0.0149
4 -0.3257 51 30 0.0304 0.0337 5 4 0.0139 0.0147
5 -0.3849 243 127 – – 5 4 0.0140 0.0147
6 -0.4327 1443 728 – – 5 4 0.0136 0.0144
7 -0.4724∗ 10083 5049 – – 5 4 0.0211 0.0222

Table 4.1: Numerical results for f (1)n .

Example 4.2.11. Consider now the exponential sum

f (2)n = (n− 1)!
n∑
i=1

en
2xi −

∑
σ∈Sn

σe〈β,x〉

where β = (1, 2, . . . ,n)T (and α = (n2, 0, . . . , 0)T ). The numerical results are shown
in Table 4.2.

Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr
2 -0.2109 13 9 0.0173 0.0185 7 5 0.0297 0.0311
3 -0.8888 49 28 0.0427 0.0454 9 6 0.0248 0.0264
4 -4.111 241 125 0.152 0.1701 11 7 0.0296 0.0318
5 -22.30 1441 726 0.7888 0.8433 13 8 0.0356 0.0384
6 -141.0 10081 5047 5.422 5.843 15 9 0.0423 0.0458
7 -1024 80641 40328 57.26 66.67 17 10 0.0491 0.0538
8 -8418 725761 362889 1514 2211 19 11 0.0568 0.0626
9 -77355 7257601 3628810 – – 21 12 0.0661 0.0835
10 79833601 39916811 – – 23 13 – –

Table 4.2: Numerical results for f (2)n .

Example 4.2.12. Next, we consider the case where both orbits are of maximal size.
Let

f (3)n =
1
n

∑
σ∈Sn

e〈α,x〉 − 1
n

∑
σ∈Sn

σe〈β,x〉

where β = (1, 2, . . . ,n) and α = (2, 8, . . . , 2n2).
The numerical results are shown in Table 4.3.
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Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr
2 -0.4178 13 9 0.0301 0.0323 7 5 0.0431 0.0465
3 -1.0323 85 31 0.0558 0.0603 15 6 0.0531 0.0569
4 -3.494 1201 145 – – 51 7 0.1212 0.1301
5 -15.13 29041 841 – – 243 8 0.5750 0.6215
6 1038241 5761 – – 1443 9 – –

Table 4.3: Numerical results for f (3)n .

Example 4.2.13. Finally, we consider the case where both orbits are small. Let

f (4)n =
1
n

n∑
i=1

en
2xi − 1

n

n∑
i=1

e(n−1)(x1+···+xn)+xi),

(β = (n,n− 1,n− 1, . . . ,n− 1) and α = (n2, 0, . . . , 0)). The numerical results are
shown in Table 4.4.

Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr
2 -0.1054 13 9 0.019 01 0.0204 7 5 0.0213 0.0229
3 -0.092 25 16 0.0268 0.0287 7 5 0.0205 0.0218
4 -0.076 41 25 0.0341 0.0367 7 5 0.0205 0.0218
68 -0.0053 9385 4761 – – 7 5 0.0475 0.0519
95 -0.0038∗ 18241 9216 – – 7 5 0.0267 0.0281

Table 4.4: Numerical results for f (4)n .

Example 4.2.14. Finally, we give an example where A+ and A− consist of two orbits
each:

Â+ = {(n2, 0, . . . , 0), (1, 4, . . . ,n2)} and Â− = {(1, . . . , 1), (1, 2, . . . ,n)}.

In this case, we are still able to compute the number of constraints and the number
of variables. With the standard approach,

Vn = 2(n! + n+ 1)(n! + 1) + 1, Cn = (n! + 1)(n+ 2) + n,

while using symmetries,

Vn = 2n! + 2n+ 9, Cn = n+ 6.

Table 4.5 shows the numerical results for the exponential sums

gn =
1
n

n∑
i=1

en
2xi +

1
n

∑
σ∈Sn

σe〈α,x〉 − ex1+···+xn − 1
n

∑
σ∈Sn

σe〈β,x〉

for α = (1, 4, . . . ,n2)T and β = (1, 2, . . . ,n)T .
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Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr
2 -0.1918 31 14 0.0272 0.0292 17 8 0.0738 0.0776
3 -0.5223 141 38 0.0679 0.0727 27 9 0.0623 0.0663
4 -2.118 1451 154 – – 65 10 0.1436 0.1539
5 -10.45 30493 852 – – 259 11 0.5856 0.6320
6 1048335 5774 – – 1461 12 – –

Table 4.5: Numerical results for gn.

4.3 An Approximation via the Dual SAGE-Cone and
Linear Programming

In this section, we provide a relaxation of the global optimization problem to min-
imize an exponential sum using the dual of the SAGE-cone, including multivariate
real polynomials as special cases. The key idea is to relax the problem (1.1) via
optimizing over a variant of the dual signed SAGE-cone S∗A+,A− . Our approach is
motivated by the recent works [DNT21], [MCW21a], and [KNT21], and builds on
two key observations, which are the main theoretical contributions:

1. The dual cone of AGE exponentials is contained in the primal one; see Propo-
sition 4.3.1.

2. Optimizing over the dual cone can be carried out by solving a linear program;
see Proposition 4.3.4.

We emphasize that neither the primal nor the dual SAGE-cone is polyhedral; see
in this context also the results in [FW19]. The approach works as follows: First, we
investigate a lifted version of the dual cone involving additional linear auxiliary vari-
ables (Theorem 4.1.6 (3)). Second, we show that the coefficients of a given exponential
sum can be interpreted as variables of the dual cone — and sums of these exponentials
can be interpreted as having coefficients induced by the dual cone; see (4.21). Third,
we observe that fixing these coefficient variables yields a linear optimization problem
only involving auxiliary variables; see Proposition 4.3.4

4.3.1 The Dual Cone of AGE Exponentials is Contained in the Pri-
mal Cone

For ∅ 6= A = A+ ∪A− defined as in (4.1), we identified the dual space of exponential
sums supported on A with RA. Now, for every v ∈ RA, we associate a function

f(x) = |A−|
∑
α∈A+

vαe
〈α,x〉 +

∑
β∈A−

vβe
〈β,x〉. (4.21)

Note that circuit exponentials and AGE exponentials are special cases of these func-
tions, and, moreover, for every v ∈ S∗A+,β, an f constructed in the sense of (4.21) has
coefficients contained in S∗A+,β, as β is the single term not contained in A+. With this
consideration, we set F∗A+,β to be the cone of exponential sums having exponents in
A+ ∪ {β} and corresponding coefficients in S∗A+,β ∩R

A+∪{β}
6=0 , and F∗A+,A− as the cone

of exponential sums |A−|
∑

α∈A+
vαe
〈α,x〉 +

∑
β∈A−

vβe
〈β,x〉 with v ∈ S∗A+,A− ∩RA6=0. Note

that not every element v ∈ S∗A+,A− induces a function in F∗A+,A− .
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Proposition 4.3.1. Let ∅ = A+ ∪A− defined as in (4.1) and β ∈ Rn. It holds that

1. F∗A+,β ⊆ SA+,β,

2. F∗A+,A− ⊆ SA+,A− .

In particular, F∗A+,β and F∗A+,A− are subcones of the nonnegativity cone. The
constructed decomposition of a SAGE exponential |A−|

∑
α∈A+

vαe
〈α,x〉 +

∑
β∈A−

vβe
〈β,x〉

with v ∈ S∗A+,A− ∩RA6=0 into AGE exponentials
∑

α∈A+
vαe
〈α,x〉+ vβe

〈β,x〉 with v ∈ S∗A+,β

for every β ∈ A− is a naive decomposition into AGE exponentials, and, hence, may
not be the best possible decomposition providing the best possible lower bound.

Remark 4.3.2. Note that in [Dre+20] (as published in the Proceedings of ISSAC
2020), this statement was framed differently. In this paper, we claimed that the
function f(x) =

∑
α∈A+

vαe
〈α,x〉 +

∑
β∈A−

vβe
〈β,x〉 is contained in SA+,A− for every (non-

scaled) vector of coefficients v ∈ S∗A+,A− . This is indeed true for |A−| = 1. However,
in 2021, Janin Heuer and Timo de Wolff pointed out that in general this is not
true for sets A− with cardinality bigger than 1 and proposed a partial solution.
All following results, including the optimization problem in the next subsection, are
adjusted accordingly and hence differ from those in [Dre+20].

Proof of Proposition 4.3.1.

1. Let f ∈ F∗A+,β with a corresponding vector of coefficients v ∈ RA6=0. Per defini-
tion, we have v ∈ S∗A+,β ∩R

A+∪{β}
6=0 . Using representation (2) of Theorem 4.1.6,

we have vα > 0 for all α ∈ A+, and for all λ ∈ Λ(A+,β), it holds that

ln(|vβ|) ≤
∑
α∈A+

λα ln(vα) ≤
∑

α∈A+,λα>0
λα ln

(
vα
λα

)
.

The last inequality holds, as λα ∈ [0, 1] for every α ∈ A+ and the logarithmic
function is monotonically increasing. Thus, −vβ = |vβ| ≤

∏
α∈A+,λα>0

(
vα
λα

)λα
.

Applying Theorem 4.1.4, we obtain the claimed result.

2. By the Definitions 4.1.1, 4.1.5 and part (1), we obtain

F∗A+,A− ⊆
∑
β∈A−

F∗A+,β ⊆
∑
β∈A−

SA+,β ⊆ SA+,A− .

The last two sets are equivalent whenever A− 6= ∅.

We remark that the reverse implication does not hold in general.

Example 4.3.3. Consider the function f(x) := 1 − 2ex + e2x with A+ = {0, 2},
β = 1 and v0 = v2 = 1, v1 = −2. As

1 =
1
2 · 0 +

1
2 · 2 and − vβ = |vβ| = (21/2)2,
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we have f ∈ SA+,β. But since∑
α∈A+

λα ln(vα) = 2
(1

2 ln(1)
)
= 0 < ln(2) = ln(|v1|),

it follows that f /∈ F∗A+,β.

4.3.2 Formulation of the Optimization Problem

In this subsection, we obtain a computationally fast approximation of the global
optimization problem

inf
x∈Rn

f(x) (4.22)

for exponential sums f ∈ RA, A = A+ ∪A− defined as in (4.1) via the representations
of the dual SAGE-cone in Theorem 4.1.6.

First, we prove that deciding membership in the cone F∗A+,A− can be done via
linear programming.

Proposition 4.3.4. Let

f = |A−|
∑
α∈A+

vαe
〈α,x〉 +

∑
β∈A−

vβe
〈β,x〉

with v ∈ RA6=0 and Vert (conv(A)) ⊆ A+.
The following linear feasibility program in |A−| many variables (τ (β))β∈A− verifies

containment in the cone F∗A+,A−:

ln
( |vβ|
vα

)
≤ (α− β)T τ (β) for all β ∈ A−, α ∈ A+ (4.23)

The condition Vert (conv(A)) ⊆ A+ in particular ensures A+ 6= ∅ or A− = ∅.
The case of a coefficient vector with v ∈ RA6=0 is chosen because this is the interesting
case for optimization purposes: Whenever we have vα = 0 for some α ∈ A we can
consider the reduced support set A\ {α}.

Proof. F∗A+,A− is the cone of all functions f = |A−|
∑

α∈A+
vαe
〈α,x〉 +

∑
β∈A−

vβe
〈β,x〉

where v ∈ S∗A+,A− . Hence, we only need to show that (4.23) verifies containment of v
in the dual SAGE-cone S∗A+,A− ∩RA6=0.

The program checks the conditions of Theorem 4.1.6 (3). Due to (2.9), the as-
sumptions Vert (conv(A)) ⊆ A+ on f are indeed necessary. As v ∈ RA is fixed, the
inequalities are linear and, hence, (4.23) is a linear program. Moreover, vα > 0 for
every α ∈ A+ holds by assumption (or we know trivially that v does not belong to the
dual SAGE-cone). The last inequalities in Theorem 4.1.6(3) are satisfied trivially.

In particular, fixing the non-auxiliary variables v in a lifted version of the dual
cone forms a polyhedron; see Theorem 4.1.6 and Proposition 4.3.4.

To show that Proposition 4.3.4 can be used to obtain an exact linear optimization
problem over the cone F∗A+,A− , recall from (1.1) that equivalently to (4.22), we can
solve the optimization problem

sup {γ : f(x)− γ ≥ 0 for all x ∈ Rn} .
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Instead of using containment in the SAGE-cone as a certificate for nonnegativity,
i.e., solving

sup
{
γ : f(x)− γ ∈ SA+,A−

}
,

we use the cone F∗A+,A− . Recall that F∗A+,A− ⊆ SA+,A− by Proposition 4.3.1. In
particular, we do not dualize the primal optimization problem to approximate the
solution but optimize f to be a function in F∗A+,A− instead of the primal cone. Hence,
we compute

fsage dual = sup
{
γ̌ : f − γ̌ ∈ F∗A+,A−

}
, (4.24)

i.e., v0 − γ̌ is the coefficient corresponding to the constant term if 0 ∈ A− and
|A−|v0 − γ̌ is the coefficient corresponding to the constant term if 0 ∈ A+.

Consider v to be given via

f(x)− γ̌ = |A−|
∑
α∈A+

vαe
〈α,x〉 +

∑
β∈A−

vβe
〈β,x〉 − γ̌

= |A−|
∑

α∈A+\{0}
vαe
〈α,x〉 +

∑
β∈A−\{0}

vβe
〈β,x〉 +

{
(|A−|v0 − γ̌) if 0 ∈ A+,
(v0 − γ̌) if 0 ∈ A−

with v ∈ RA6=0. Note that the constant term v0 of f(x) can be zero (whenever it is
not contained in A). As we need to know the cardinality of A−, we need to decide
which set to include 0 in before the computation. For A− 6= ∅, by Theorem 4.1.6(3),
and assuming

w0 :=

{
−γ̌ + v0 if 0 ∈ A−(f − γ̌),
(−1/|A−|)γ̌ + v0 if 0 ∈ A+(f − γ̌),

and wα := vα for all α ∈ A \ {0}, solving (4.24) is equivalent to solving

max
{
γ̌ :
∀ α ∈ A+,wα > 0,∀ β ∈ A−,wβ < 0; and ∀ β ∈ A−(f − γ̌)
∃ τ ∈ Rn s.t. ln

( |wβ |
wα

)
≤ (α− β)T τ∀ α ∈ A+(f − γ̌)

}
. (4.25)

Note that, as we assumed A− 6= ∅, even w0 is well defined.
Before stating the corresponding optimization program, we emphasize the fact

that 0 is not necessarily contained in A and we do not know the sign of w0 before
having solved (4.25). Hence, for the next result we need to include it either in A+

or A−, although we have to determine later which one of the sets it belongs to. In
particular, as elements α ∈ A+ have coefficients |A−|vα, with v ∈ S∗A+,A− , before
including it in either of those sets, we do not know if we have to scale it with |A−|.

First, we prove several statements addressing this choice.

Lemma 4.3.5. Let A = A+ ∪A− ⊆ Rn as in (4.1) and f ∈ F∗A+,A− with 0 ∈ A. If
f has exponents A ⊆Nn, then 0 ∈ A+.

In particular, this yields that, whenever we optimize polynomials using the dual
SONC-cone, we always have 0 ∈ A+, simplifying this technique substantially.

Proof. As A ⊆ Nn and 0 ∈ A, we necessarily have 0 ∈ Vert (conv(A)). With (2.9)
and the fact that F∗A+,A− ⊆ SA+,A− , we obtain the statement.
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Lemma 4.3.6. Let A = A+ ∪A− ⊆ Rn as in (4.1) and f ∈ F∗A+,A− with coefficient
vector v ∈ RA6=0 ∩ S∗A+,A−. For the optimal lower bound fsage dual ≤ f(x) (as defined
in (4.24)) and 0 ∈ A(f − fsage dual), we have

fsage dual =

{
|A−|(v0 − ec

∗
) if 0 ∈ A+(f − fsage dual) and

v0 + ec
∗ if 0 ∈ A−(f − fsage dual)

(4.26)

with v ∈ RA6=0 and where

c∗ =

{
ln(|v0 − (1/|A−|)fsage dual|) if 0 ∈ A+(f − fsage dual) and
ln(|v0 − fsage dual|) if 0 ∈ A−(f − fsage dual).

Proof. If 0 ∈ A+(f − fsage dual), the corresponding coefficient in f − fsage dual is pos-
itive, i.e., v0 − (1/|A−|)fsage dual > 0 implying ec∗ = v0 − (1/|A−|)fsage dual. Hence,
fsage dual = |A−|(v0 − ec

∗
).

If 0 ∈ A−(f − fsage dual), the corresponding coefficient is negative, i.e., we have
v0− fsage dual < 0 implying −ec∗ = −|v0− fsage dual| = v0− fsage dual. This yields the
statement.

From now on, for A = A+ ∪A− defined as in (4.1) with A+ 6= ∅,A− 6= ∅ and a
fixed function

|A−|
∑
α∈A+

vαe
〈α,x〉 +

∑
β∈A−

vαe
〈β,x〉

where for all α ∈ Vert (conv(A)) we have vα > 0 (i.e., f satisfies (2.9)), with lower
bound fsage dual and 0 ∈ A(f − fsage dual), we consider the following two linear pro-
grams in |A−| + 1 variables (τ (β))β∈A− and c = ln(|w0|), where the optimization
variable w0 is defined as in the representation (4.25).

max c (LPA+)

s.t. (1) for all β ∈ A−, for all α ∈ A+ \ {0} : ln
( |vβ |
vα

)
≤ (α− β)T τ (β),

(2) ln (|vβ|)− c ≤ (−β)T τ (β) for all β ∈ A−

if 0 ∈ A+(f − γ̌) and

max c (LPA−)

s.t. (1) for all β ∈ (A−) \ {0}, for all α ∈ A+ : ln
( |vβ |
vα

)
≤ (α− β)T τ (β),

(2) c− ln (vα) ≤ αT τ (0) for all α ∈ A+

if 0 ∈ A−(f − γ̌).

Lemma 4.3.7. Let

f = |A−|
∑
α∈A+

vαe
〈α,x〉 +

∑
β∈A−

vβe
〈β,x〉,

with A = A+ ∪A− defined as in (4.1), v ∈ RA6=0 and such that for the optimal lower
bound fsage dual ≤ f at least one of v0 − fsage dual < 0 or |A−|v0 − fsage dual > 0
holds. At least one of the linear programs (LPA+) and (LPA−) has a solution for its
corresponding assumption
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1. 0 ∈ A+ or

2. 0 ∈ A−,

if and only if there exists some γ̌ ∈ R such that f − γ̌ ∈ F∗A+,A−.
For either assumption, the corresponding LP is infeasible if and only if for all

γ̌ ∈ R we have f − γ̌ /∈ F∗A+,A−.

Proof. Consider f − fsage dual for the optimal lower bound fsage dual using the cone
F∗A+,A− . By assumption, the constant coefficient of f − fsage dual is nonzero, yielding
0 ∈ A(f − fsage dual). Hence, the inequalities are exactly the inequalities in The-
orem 4.1.6, except for the fact that we use c instead of ln(v0) due to the former
substitution.

We need to omit two cases here:

1. The case of a zero constant coefficient in the exponential sum f − fsage dual:
In this case ,we clearly have 0 /∈ A, fsage dual = 0 and the programs (1) and
(2) in Lemma 4.3.7 are infeasible and unbounded, respectively. To still obtain
a lower bound on the function f , one can verify containment in the subcone
F∗A+,A− of the nonnegativity cone by testing feasibility via (4.23). If f is indeed
an element in F∗A+,A− , then 0 is always a lower bound, but not necessarily the
optimal bound on F∗A+,A− .

2. The case of |A−|v0− fsage dual ≤ 0 ≤ v0− fsage dual with at least one of the terms
on the left and right-hand side of the inequality chain nonzero: By assumption,
A− 6= ∅ and, hence, at least one of the terms on the left and right-hand side
of the inequality chain can only be nonzero if |A−| > 1. Clearly v0 ≤ 0 as well
as fsage dual ≤ 0. In this case, we can assume 0 ∈ A+ leading to a lower bound
f̃ < fsage dual with |A−|v0 − f̃ ≥ 0 ≥ |A−|v0 − fsage dual, which might again not
be the optimal bound on F∗A+,A− , but is a lower bound in any case.

From the considerations above and Proposition 4.3.4 we draw the following result.

Theorem 4.3.8. Let

f = |A−|
∑
α∈A+

vαe
〈α,x〉 +

∑
β∈A−

vβe
〈β,x〉,

with A = A+ ∪A− defined as in (4.1)and v ∈ RA6=0. Moreover, let v0 − fsage dual < 0
or |A−|v0 − fsage dual > 0 for the optimal lower bound fsage dual ≤ f . The linear
programs (LPA+) and (LPA−) solve the optimization problem (4.25).

Proof. Let fsage dual be the optimal value with f ≥ fsage dual as defined in (4.24).
We set A := A ∪ {0}. First, note that we do not know the value of the constant
term before computing the optimal value, and, in particular, we do not know its sign
or whether it needs to be scaled with |A−|. Thus, we cannot determine whether
0 ∈ A+(f − fsage dual) or 0 ∈ A−(f − fsage dual) before computing the optimal value.

By the assumption on the constant term in (f − fsage dual), according to (4.3.7),
at least one of the problems (LPA+) and (LPA−) is feasible if and only if there exists
γ̌ ∈ R such that f − γ̌ · e〈0,x〉 ∈ F∗A+,A− . In the case that only one linear program
is feasible, 0 is contained in the corresponding set and, hence, this program yields
the optimal value. If both programs are feasible, there exist γ̌1 and γ̌2 such that
v0 − (1/|A−|)γ̌1 is nonnegative and f − γ̌1 · e〈0,x〉 ∈ F∗A+,A− for 0 ∈ A+(f − γ̌1), and
v0 − γ̌2 is negative and f − γ̌2 · e〈0,x〉 ∈ F∗A+,A− for 0 ∈ A−(f − γ̌2).
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Thus, we select the linear program which yields the better bound.
According to Lemma 4.3.6, the lower bound on the dual SAGE-cone is

fsage dual =

{
|A−|(v0 − ec

∗
) if 0 ∈ A+(f − fsage dual)

v0 + ec
∗ if 0 ∈ A−(f − fsage dual).

(4.27)

Note that optimizing over the dual cone does not yield the actual optimal value in
every case. Consider for example the exponential version of the Motzkin polynomial

f(x, y) = e2x+4y + e4x+2y − 3e2x+2y + 1. (4.28)

This is a nonnegative exponential sum on R2 with inf(x,y)∈R2 f(x, y) = 0. Since in
the polynomial case we always need 0 ∈ A+, it suffices to solve (LPA+), and since
|A−| = |{(2, 2)T }| = 1, the linear program (LPA+) for f is the following:

max c

s.t. ln (3) ≤ 2τ2

ln (3) ≤ 2τ1

ln (3) + 2τ1 + 2τ2 ≤ c

This LP returns the lower bound f ≥ −26 on R2.
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Chapter 5

The S-Cone and a Primal-Dual
View on Second-Order
Representability

In this chapter, we present a cone that provides a common framework for recent
nonnegativity certificates of sparse polynomials and exponential sums.

In Section 5.1, we start by introducing this cone called S-cone. Its most basic
elements are called even and odd AG-functions, see Definition 5.1.2. An important
property of the S-cone is that both the cone of sums of nonnegative circuit poly-
nomials and of sums of arithmetic-geometric exponentials are special cases of it, see
Remark 5.1.4.

In Section 5.2, we show that when examining the S-cone, we can make use of
the fact that fundamental properties of the cone of SAGE exponentials and SONC
polynomials established in Chapter 3 — such as the projection-free characterization
of the dual cone as well as the exact characterization of the extreme rays — also hold
in the more general context of the S-cone.

In Section 5.3, we focus on second-order representations of both the primal and the
dual cone. In doing so, we extend results previously obtained by Averkov and Wang
and Magron, who already examined the semidefinite extension degree [Ave19] and the
second-order representability of the primal cone of SONC polynomials [WM20a].

For both our derivations of second-order representations of the primal and dual
S-cone, we define what we call (dual) circuit matrices, see Definition 5.3.2 and 5.3.11,
show how to obtain second-order representations for both the dual and the primal
cone of AG functions, see Theorems 5.3.5 and 5.3.12, and discuss the sizes of both
resulting second-order-cone programs, see Corollaries 5.3.7 and 5.3.14.

We conclude this chapter with extending the results on second-order representa-
tions of the primal and dual cone of AG functions to the respective primal and dual of
the S-cone, see Corollaries 5.3.18 and 5.3.19. In both cases, we can take advantage of
the extremality theory established in Chapter 3, namely, using reduced circuits and,
thus, substantially reducing the size of the corresponding programs.

5.1 The S-Cone
We start by introducing the S-cone as a unified framework of SONC polynomials and
SAGE exponentials. Our main object of study are functions f : Rn → R ∪ {∞} of
the form

f(x) =
∑
α∈A

cα|x|α +
∑
β∈B

dβx
β (5.1)
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where A ⊆ Rn, B ⊆ Nn \ (2N)n are finite sets of exponents, {cα : α ∈ A} and
{dβ : β ∈ B} ⊆ R. Here, we use the notations

|x|α =
n∏
j=1
|xj |αj and xβ =

n∏
j=1

x
βj
j ,

and if one component of x is zero and the corresponding exponent is negative, then
we set |x|α =∞.

For two finite sets ∅ 6= A ⊆ Rn,B ⊆Nn \ (2N)n, let

R[A,B] := spanR({|x|α α ∈ A} ∪ {xβ β ∈ B})

denote the space of all functions of the form (5.1) with given sets of exponents. This
is a vector space of dimension dim R[A,B] = |A|+ |B|.

Remark 5.1.1.

1. If A ⊆ (2N)n, then R[A,B] is exactly the space of polynomials with exponent
vectors in A∪B. For this reason, we sometimes refer to elements of A as even
exponents and to elements of B as odd exponents.

2. If B = ∅, then R[A,B] can be identified with the space of exponential sums

y 7→
∑
α∈A

cαe
〈α,y〉

via the identification |xi| = eyi .

3. In fact, it is no restriction to exclude sets in (2N)n from B since for exponents
β ∈ (2N)n, we have |x|β = xβ.

4. A and B are not necessarily disjoint (compare Example 5.1.9 below).

We study the nonnegativity of functions in R[A,B] using the following building
blocks:

Definition 5.1.2. Let ∅ 6= A ⊆ Rn,B ⊆ Nn \ (2N)n be finite sets and let f =∑
α∈A cα|x|α +

∑
β∈B dβx

β. We say that f is

1. an even AG function if at most one of the cα is negative and all the dβ are zero;
and

2. an odd AG function if all the cα are nonnegative and at most one of the dβ is
nonzero.

A function f is called an AG function (arithmetic-geometric mean function) if f is
an even AG function or an odd AG function.

Note that nonnegative even AG functions correspond exactly to the AGE expo-
nentials studied in previous chapters.

We arrive at the central definition of this section.

Definition 5.1.3 (S-Cone). Let ∅ 6= A ⊆ Rn, B ⊆ Nn \ (2N)n be finite sets. The
S-cone CS(A,B) is defined as

CS(A,B) := pos(f ∈ R[A,B] f is a nonnegative AG function).
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Remark 5.1.4.

1. If B = ∅, then the S-cone can be identified with the cone of SAGE exponentials
using the substitution in Remark 5.1.1(2).

2. If A ⊆ (2N)n, then CS(A,B) is the cone of SONC polynomials supported on
A∪B (2.11). As stated in the preliminaries, this cone was initially defined in
terms of circuit polynomials. The equivalence of the definitions (see Chapter
2) was established in [Wan18a] and [MCW21a] and also follows from our more
general result in Proposition 5.2.6.

3. An example where the cone CS(A,B) is different from both the cone of SAGE
exponentials and the cone of SONC polynomials is given by A = {1, 4} and
B = {3}. Here, the S-cone is the set of all nonnegative functions of the form
f = c1|x|+ c4|x|4 + c3x

3 (where f being nonnegative trivially implies c1 ≥ 0
and c4 ≥ 0). Functions of these forms cannot be treated as polynomials, as
c1|x| is globally nonnegative but the polynomial version c1x of this term is not.
Also, we cannot treat any such f as an exponential sum, as x3 is not globally
nonnegative while its exponential version e3x is globally nonnegative.

For a non-empty finite set A ⊆ Rn and β ∈Nn \ (2N)n let

P odd
A,β :=

{
f f =

∑
α∈A

cα|x|α + dxβ, f(x) ≥ 0 ∀ x ∈ Rn, c ∈ RA+, d ∈ R

}

be the cone of nonnegative odd AG functions supported on (A,β), and similarly for
β ∈ Rn \A let

P even
A,β :=

{
f f =

∑
α∈A

cα|x|α + d|x|β, f(x) ≥ 0 ∀ x ∈ Rn, c ∈ RA+, d ∈ R

}

be the cone of nonnegative even AG functions supported on (A,β). Note that, by
definition,

CS(A,B) =
∑
α∈A

P even
A\{α},α +

∑
β∈B

P odd
A,β . (5.2)

This implies the following alternative representation of the S-cone.

Proposition 5.1.5. Let ∅ 6= A ⊆ Rn, B ⊆Nn \ (2N)n be finite and δ(α) denote the
unit vector in RA∪B indexed with α ∈ A∪B. Then, CS(A,B) equals the set∑

α∈A
cα|x|α +

∑
β∈B

dβx
β ∈ R[A,B] :

∑
α∈A

cα · δ(α) −
∑
β∈B
|dβ| · δ(β) ∈ CSAGE(A∪B)


=

∑
α∈A

cα|x|α +
∑
β∈B

dβx
β ∈ R[A,B] : there exists t ∈ RB such that

∑
α∈A

cα · δ(α) +
∑
β∈B

tβ · δ(α) ∈ CSAGE(A∪B), tβ ≤ −|dβ| for all β ∈ B

 .

If A∩B = ∅, we can shortly write
∑
α∈A

cα · δ(α) −
∑
β∈B
|dβ| · δ(β) = (c,−|d|), where

|d| denotes the component-wise absolute value. If there exists some β ∈ A∩B, then
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the corresponding coefficient in the SAGE-cone cβ − |dβ| appears only once in the set
RA∪B. However, by slight abuse of notation, we also write

∑
α∈A

cα · δ(α)−
∑
β∈B
|dβ| · δ(β)

shortly as (c,−|d|).

Proof. If f =
∑
α∈A

cα|x|α +
∑
β∈B

dβx
β ∈ CS(A,B), then (5.2) gives a decomposition

f =
∑
α∈A

f even
α +

∑
β∈B

fodd
β

with f even
α ∈ P even

A\{α},α for all α ∈ A and fodd
β =

∑
α∈A

c
(β)
α |x|α + dβx

β ∈ P odd
A,β for every

β ∈ B. Defining the functions

f̃ even
α = f even

α for all α ∈ A
and f̃ even

β =
∑
α∈A

c(β)α |x|α − |dβ||x|β = fodd
β − dβxβ − |dβ||x|β for all β ∈ B,

symmetry implies f̃ even
β ∈ P even

A,β . Hence, f̃ =
∑
α∈A

f̃ even
α +

∑
β∈B

f̃ even
β ∈ CS(A∪ B, ∅).

Remark 5.1.4(1) then shows that f̃ ∈ CSAGE(A∪B).
The converse direction of the first equation follows immediately with the substi-

tution in Remark 5.1.1(2).
The second equation, which exhibits the convexity of the S-cone, is an immediate

consequence of the first one.

In our definition of the S-cone, we exclude sums of nonnegative AG functions with
support A∪B for A ⊆ Rn,B ⊆ Nn \ (2N)n where the corresponding AG functions
have bigger support than A∪B. This could happen, for example, if two summands
cancel in the sum. For a better understanding of the problem, consider the following
example.

Example 5.1.6. Let A := {1
3 , 7

3},B := {1}. Consider the two nonnegative AG
functions

f1 := |x|
1
3 + x+ x2,

f2 := |x|
1
3 − x2 + |x|

7
3 ,

whose support is not contained in A∪B. But the sum

f := f1 + f2 = 2|x|
1
3 + x+ |x|

7
3

is itself a nonnegative AG function whose support is contained in A∪B.

As observed for SONC polynomials and SAGE exponentials in Chapter 2, this
restriction is not really a restriction. The following proposition states that every
sum f of nonnegative AG functions whose support is bigger than the support of the
sum can be decomposed into a sum of nonnegative AG functions whose supports are
contained in the support of f .

For the case of SAGE exponentials, see Theorem 2.4.8, and for the case of SONC
polynomials see Theorem 2.4.7.

Proposition 5.1.7. Let ∅ 6= A ⊆ Rn,B ⊆Nn \ (2N)n be finite sets and f ∈ R[A,B].
If f ∈ CS(A′,B′) for some A′ ⊇ A, Nn \ (2N)n ⊇ B′ ⊇ B, then f ∈ CS(A,B) as
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well. Equivalently, it holds that

CS(A,B) = CS(A′,B′) ∩R[A,B].

Proof. By Proposition 5.1.5, the S-cone CS(A,B) equals the set∑
α∈A

cα|x|α +
∑
β∈B

dβx
β ∈ R[A,B] :

∑
α∈A

cα · δ(α) −
∑
β∈B
|dβ| · δ(β) ∈ CSAGE(A∪B)

 ,

with δ(α) denoting the unit vector with respect to α for α ∈ A or B.
Now, let f ∈ CS(A′,B′) ∩R[A,B] with a vector of coefficients (c, d) and, hence,

(c,−|d|) ∈ CSAGE(A′ ∪B′)∩RA∪B, where the absolute value is component-wise. The
already mentioned statement for the SAGE-case [MCW21a], Theorem 2, states that
CSAGE(A ∪ B) = CSAGE(A′ ∪ B′) ∩RA∪B. Hence, (c,−|d|) ∈ CSAGE(A ∪ B) and,
again by Proposition 5.1.5, f is contained in∑

α∈A
cα|x|α +

∑
β∈B

dβx
β ∈ R[A,B] :

∑
α∈A

cα · δ(α) −
∑
β∈B
|dβ| · δ(β) ∈ CSAGE(A∪B)

 ,

which equals CS(A,B). The other inclusion is obvious.

Analogously to SONC polynomials and SAGE exponentials, nonnegative AG func-
tions can be characterized as stated in the subsequent theorem, generalizing [CS17,
Lemma 2.2] to the setting of AG functions. To do so, we remind the reader of the
definition of the polytope Λ(A,β) for a non-empty finite set A ⊆ Rn and β ∈ Rn:

Λ(A,β) :=

{
λ ∈ RA+

∑
α∈A

λαα = β,
∑
α∈A

λα = 1
}

. (5.3)

Again we use the notation λ(A,β) for the special case that A is affinely independent,
where Λ(A,β) consists of a single element.

Also, for a non-empty finite set A ⊆ Rn, we remind the reader of the definition
of the relative entropy function from Chapter 2: D : RA>0 ×RA>0 → R,

D(ν, γ) =
∑
α∈A

να ln
(
να
γα

)
, ν, γ ∈ RA>0

with continous extension to RA+ ×RA+ → R.

Theorem 5.1.8. Let A ⊆ Rn be a non-empty finite set and f be an AG function of
the form

f =
∑
α∈A

cα|x|α +
{
d|x|β with β ∈ Rn \A if f is even,
dxβ with β ∈Nn \ (2N)n if f is odd

where cα ≥ 0 for all α ∈ A and d ∈ R. Then, the following statements are equivalent:

1. f(x) ≥ 0 for all x ∈ Rn.

2. There exists a ν ∈ RA+ such that
∑
α∈A ναα = (

∑
α∈A να)β and

D(ν, e · c) ≤
{
d if f even,
−|d| if f odd.
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3. There exists a λ ∈ Λ(A,β) such that

∏
α∈A

(
cα
λα

)λα
≥
{
−d if f even,
|d| if f odd.

A vector λ ∈ Λ(A,β) as in this theorem is called an AG witness.

Proof. The statement can be immediately deduced from the proof of Theorem 3.1.1.

Example 5.1.9. Let A = B = {1} ⊆N. A typical AG function with this support is

g(x) = c1|x|+ c2x.

Since the equality condition in statement (2) of Theorem 5.1.8 is trivially satisfied,
we have g(x) ≥ 0 for all x ∈ R if and only if there exists a ν ∈ R+ with

ν ln
(
ν

ec1

)
≤ −|c2|. (5.4)

If ν ≥ 0, the latter condition can be simplified to |c2| ≤ c1. For the case ν = 0, this
is clear from our setting 0 · ln 0 = 0, and to see it for ν > 0, rewrite (5.4) as

c1

(
ν

c1

)
ln
(
ν

ec1

)
≤ −|c2|.

Since the function x ln
(
x
e

)
attains its minimum at x = 1, we obtain the claimed

result. In particular, it is the one of statement (3) in Theorem 5.1.8.

For later use, we note that our cones of interest are closed:

Proposition 5.1.10. Let Let ∅ 6= A ⊆ Rn,B ⊆ Nn \ (2N)n be finite sets and
β ∈ Rn. The cones P odd

A,β ,P even
A,β and CS(A,B) are closed pointed convex cones.

Proof. It is clear that all three cones are pointed since the only nonnegative function
f where −f is nonnegative as well is the zero function. The cones P odd

A,β and P even
A,β

are defined as (infinite) intersections of closed halfspaces, and thus, they are closed.
Finally, since finite sums of closed pointed convex cones are again closed, the cone
CS(A,B) is closed as well.

5.2 Circuits and the Dual of the S-Cone
In this section, we introduce circuit functions as an analogon to circuit exponentials
and provide several characterizations of the dual S-cone (see Theorem 5.2.5). Notably,
several important results from Chapter 3 also hold for the S-cone.

We identify the dual space of R[A,B] with R(A,B) := RA ×RB. For f ∈ R[A,B]
with coefficients (cα)α∈A, (dβ)β∈B and an element (v,w) ∈ R(A,B), we consider the
natural duality pairing

(v,w)(f) =
∑
α∈A

vαcα +
∑
β∈B

wβdβ . (5.5)

This is similar to the duality theory for polynomials and exponential sums established
in Chapter 2.
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Using this notation, the dual cone CS(A,B)∗ is defined as

CS(A,B)∗ = {(v,w) ∈ R(A,B) | (v,w)(f) ≥ 0 for all f ∈ CS(A,B)}.

Now, we consider the representation of AG functions in terms of circuit functions.
Recall that “relint” and “conv” denote the relative interior and the convex hull of a
set and that circuits are defined as follows.

Definition 5.2.1. A circuit is a pair (A,β) where A ⊆ Rn is affinely independent
and β ∈ relint conv(A). For finite sets A,B ⊆ Rn, let

I(A,B) := {(A,β) circuit A ⊆ A,β ∈ B}

denote the set of all circuits on A,B. In particular, for A ⊆ Rn,B ⊆Nn \ (2N)n we
call I(A,A) the set of all even circuits and I(A,B) the set of all odd circuits.

Note that the difference to the definition of I(A) from Chapter 2 is the fact that
we specify the set that contains the negative element — namely, it is always the
second set in I(A,B).

Definition 5.2.2. Let (A,β) be a circuit.

1. An even circuit function supported on (A,β) is an AG function of the form

f =
∑
α∈A

cα|x|α + d|x|β.

2. For β ∈ Nn \ (2N)n, an odd circuit function supported on (A,β) is an AG
function of the form

f =
∑
α∈A

cα|x|α + dxβ.

We call β the inner exponent of f and the other exponents are the outer exponents.

Remark 5.2.3. (1) As for exponential sums, the vector λ ∈ Λ(A,β) in Theorem
5.1.8 is unique in case of a circuit, and thus, the nonnegativity of f can be expressed
in terms of the circuit number

Θf =
∏
λα 6=0

(
cα
λα

)λα
, (5.6)

which was introduced in [IW16a]. For the SAGE case, compare Theorem 2.4.5.

Next, we introduce the analogous definition of reduced circuits — established in
Chapter 3 –, which is used again in the following to determine the extreme rays of
the S-cone.

Definition 5.2.4. For a circuit (A,β) let

re(A,β) := | (conv(A) \ (A∪ {β})) ∩A| and
ro(A,β) := | (conv(A) \A) ∩A|.

An even circuit (A,β) is called reduced if re(A,β) = 0 and an odd circuit (A,β) is
called reduced if ro(A,β) = 0.
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In contrast to the case of exponential sums, we need to distinguish between even
and odd circuits: For β ∈ A ∩ B, it is possible that a circuit is reduced as an even
circuit, but not reduced as an odd circuit. See Example 5.2.8 below.

Analogously to the SAGE-cone, we can provide the following characterization of
the dual S-cone CS(A,B)∗; for a proof in this setting see [KNT21]. Again, we use
the convention that 0 ln(0) = 0 and ln(0) = −∞.

Theorem 5.2.5. Let ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n be finite sets and fix an
element (v,w) ∈ R(A,B).

(1) If (v,w) ∈ CS(A,B)∗, then vα ≥ 0 for all α ∈ A.

(2) If the condition of part (1) is satisfied, then the following are equivalent:

(a) (v,w) lies in the dual cone CS(A,B)∗.
(b) For all β ∈ A (respectively β ∈ B) and all λ ∈ Λ(A,β), it holds that

ln |vβ| ≤
∑
α∈A

λα ln(vα) (respectively ln |wβ| ≤
∑
α∈A

λα ln(vα)).

(c) For every even circuit (A,β) ∈ I(A,A) (respectively for every odd circuit
(A,β) ∈ I(A,B)) and λ = λ(A,β), it holds that

ln |vβ| ≤
∑
α∈A

λα ln(vα) (respectively ln |wβ| ≤
∑
α∈A

λα ln(vα)).

(d) For every reduced even circuit (A,β) ∈ I(A,A) (respectively reduced odd
circuit (A,β) ∈ I(A,B)) and λ = λ(A,β), it holds that

ln |vβ| ≤
∑
α∈A

λα ln(vα) (respectively ln |wβ| ≤
∑
α∈A

λα ln(vα)).

The decomposition results of the SAGE-cone also hold for this specific setting;
the proof in this setting can again be found in [KNT21].

Proposition 5.2.6. Let ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n be finite sets. For every
f ∈ CS(A,B), the following statements hold.

1. f can be written as a sum of nonnegative circuit functions whose supports are
contained in supp f .

2. f can be written as a sum of nonnegative circuit functions supported on reduced
circuits in CS(A,B).

Again using reduced circuits, we derive an analogous description of the extreme
rays of CS(A,B).

Let ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n be finite sets and let (A,β) ∈ I(A,A).
Write shortly λ = λ(A,β). Then, let

Ee(A,β) :=

{∑
α∈A

cα|x|α −
∏
α∈A

(
cα
λα

)λα
|x|β c ∈ RA

>0

}
.

For (A,β) ∈ I(A,B) let

Eo(A,β) :=

{∑
α∈A

cα|x|α ±
∏
α∈A

(
cα
λα

)λα
xβ c ∈ RA

>0

}
,
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and for β ∈ A let

E1(β) :=

{
R+ · |x|β if β ∈ A \ B,
R+ · (|x|β ± xβ) if β ∈ A∩B.

Ee(A,β) and Eo(A,β) are the (even and odd) nonnegative circuit functions for which
the inequality (5.6) on the circuit number holds with equality. E1(β) again provides
the special case for circuits supported on a single element.

Proposition 5.2.7. For finite sets ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n, the set
E(A,B) of extreme rays of CS(A,B) is

E(A,B) =

 ⋃
(A,β)∈I(A,A),
re(A,β)=0,|A|>1

Ee(A,β)

∪
 ⋃

(A,β)∈I(A,B),
ro(A,β)=0,|A|>1

Eo(A,β)

∪
 ⋃
β∈A

E1(β)

 .

For a proof in this setting see again [KNT21].
The following example shows that the case distinctions in the definition of re-

ducedness are indeed necessary.

Example 5.2.8. For A := {0, 1, 2} and B := {1}, the sets of (even resp. odd) circuits
are

I(A,A) = {({0, 2}, 1), ({0}, 0), ({1}, 1), ({2}, 2)} and
I(A,B) = {({1}, 1), ({0, 2}, 1)}.

We have a closer look at those elements which are both even and odd circuits.

(1) The circuit ({0, 2}, 1) is reduced as an even circuit and non-reduced as an odd
circuit. In the context of extreme rays this is necessary. The even circuit
function a2 − 2ab|x|+ b2x2 is an element of an extreme ray, but for the odd
circuit function a2 ± 2abx+ b2x2, we have

a2 ± 2abx+ b2x2 = (a2 − 2ab|x|+ b2x2) + 2ab(|x| ± x)

and hence, this is not an extreme ray of CS(A,B).

(2) Further, it holds that

|x| = 1
2 (|x|+ x) +

1
2 (|x| − x),

so ({1}, 1) does not support an even extreme ray but in fact it does support an
odd extreme ray.

5.3 A Primal-Dual View on Second-Order Representabil-
ity

In this section, we examine the S-cone and its dual for the case of rational support
sets from the point of second-order representability. The results are motivated by a
work of Averkov [Ave19], who has shown that the cone of SONC polynomials can be
represented as a projection of a spectrahedron, using techniques from [BN01]. These
techniques can be used to prove an even stronger statement, namely, second-order
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representability of the SONC-cone. This was already shown by Wang and Magron
with an alternative proof based on binomial squares and A-mediated sets [WM20b].

In this section, we examine the problem in terms of the rational S-cone as well as
from a primal-dual viewpoint and hence, generalize the results of Averkov and of Wang
and Magron. Besides applying the techniques from [BN01], we use the extremality
and duality theory established in Chapter 3 — and its generalized versions from
Section 5.2 — to prevent the consideration of redundant circuits.

Beyond the specific representability result, the goal of this section is to offer
further insights into the use of the framework of the S-cone as a generalization of
SONC polynomials and SAGE exponentials.

5.3.1 A Second-Order Representation for the Cone of Nonnegative
AG Functions and its Dual

Here, we assume that the ground sets ∅ 6= A ⊆ Rn and B ⊆Nn \ (2N)n are disjoint,
finite sets. This is indeed a restriction, but for the interesting special cases of SONC
polynomials and SAGE exponentials the S-cone is built on this restriction holds
anyway. Moreover, the S-cone CS(A,B) is called rational if A ⊆ Qn. Hence, we
consider functions f : Rn → R∪ {∞} of the form

f(x) =
∑
α∈A

cα|x|α +
∑
β∈B

cβx
β ∈ R[A,B] (5.7)

with real coefficients cα, α ∈ A∪B (i.e., we call all coefficients cα, which can be done
because the sets of exponent vectors are disjoint).

As we did in previous chapters, we can identify the dual space of R[A] with RA,
and for f ∈ R[A] with coefficients c ∈ RA and an element v ∈ RA, we consider the
natural duality pairing

v(f) =
∑
α∈A

vαcα . (5.8)

Using this notation, the dual cone (CS(A))∗ is defined as

(CS(A))∗ =
{
v ∈ RA : v(f) ≥ 0 for all f ∈ CS(A)

}
.

In contrast to the introduction of the S-cone, we have the dual vector v instead
of (v,w) here.

The following statement expresses the dual S-cone in terms of the dual cone of
SAGE exponentials.

Proposition 5.3.1. Let ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n be disjoint and finite.
The dual cone of the S-cone CS(A,B) is

CS(A,B)∗ =
{
(v,w) ∈ RA ×RB : (v, |w|) ∈ CSAGE(A∪B)∗

}
(5.9)

=
{
(v,w) ∈ RA ×RB : ∃u ∈ RB (v,u) ∈ CSAGE(A∪B)∗, u ≥ |w|

}
.

(5.10)
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Figure 5.1: Circuit
(A,β)

x

y

(4, 2)T

(0, 0)T

(2, 4)T

(1, 1)T

Figure 5.2: Circuit
(A′,β′)

Proof. We use Proposition 5.1.5, which provides a characterization for the primal
cone CS(A,B) in terms of an existential quantification. Consider its lifted cone

ĈS(A,B) := CSAGE(A∪B)×RB ∩ {(c, t, d) : tβ ≤ −|dβ| for all β ∈ B}
= CSAGE(A∪B)×RB ∩ {(c, t, d) : tβ ≤ dβ, tβ ≤ −dβ for all β ∈ B}

(5.11)

in the space RA×RB ×RB. The dual cone of the right-hand cone in (5.11) is the set

pos
{
(0, . . . , 0,−δ(β),±δ(β)) : β ∈ B

}
,

where δ(β) denotes the unit vector with respect to β ∈ B. As intersection and
Minkowski sum are dual operations, we obtain

ĈS(A,B)∗ = CSAGE(A∪B)∗ × {0}+ pos
{
(0, . . . , 0,−δ(β),±δ(β)) : β ∈ B

}
.

Identifying the S-cone with its coefficients, we can express CS(A,B)∗ in terms of
the lifted cone ĈS(A,B) by

CS(A,B)∗ = ĈS(A,B) ∩
{
(v, s,w) ∈ RA ×RB ×RB : s = 0

}
.

Thus, (v,w) ∈ CS(A,B) whenever (v, |w|) ∈ CSAGE(A∪B)∗. Convexity then implies
the second characterization (5.10).

Hence, as in the primal case, it suffices to study even AG functions in the dual
situation. We will make use of a representation of the dual of the S-cone from
Theorem 5.2.5. As A ∩ B = ∅, for a finite set ∅ 6= A ⊆ Rn, the set of circuits
supported on A reduces to the set

I(A) =
{
(A,β) : A ⊆ A affinely independent, β ∈ relint(convA) ∩ (A\A)

}
.

Two examples of circuits are the pairs (A,β) with A = {0, 6} and β = {2} (see
Figure 5.1) and (A′,β′) with A′ = {(0, 0)T , (4, 2)T , (2, 4)T } and β′ = (1, 1)T (see
Figure 5.2).

Let ∅ 6= A ⊆ Rn be finite. In the previous section, we proved that a point v ∈ RA

is contained in the dual S-cone CS(A)∗ if and only if v ≥ 0 and

ln(vβ) ≤
∑
α∈A

λα ln(vα) for every circuit (A,β) in I(A) and λ = λ(A,β). (5.12)
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In order to provide a second-order representation for the S-cone and its dual, the
main task is to capture the cone of nonnegative AG functions and its dual. For a
comprehensive collection of techniques for handling second-order-cones, we refer to
[BN01].

Throughout the section, let (A,β) be a fixed circuit with rational barycentric
coordinates λ ∈ QA

+, which represent β as a convex combination of elements in A,
i.e., β =

∑
α∈A λαα and

∑
α∈A λα = 1. Let p ∈ N denote the smallest common

denominator of the fractions λα for α ∈ A, i.e., λα = pα
p with pα ∈ N for all α ∈ A

and p is minimal. Recall that whenever |A| = 1, then A = {β} by definition.
With the given circuit (A,β) ∈ I(A), we associate a set of dual circuit variables

(yk,i)k,i, (5.13)

where k ∈ [dlog2(p)e] and i ∈ [2dlog2(p)e−k]. We denote the collection of these∑dlog2(p)e
k=1 2dlog2(p)e−k = 2dlog2(p)e− 1 variables as yA,β or shortly as y. Further, denote

the restriction of a vector v ∈ RA to the components of A ⊆ A by v|A.

Definition 5.3.2. A dual circuit matrix C∗A,β(v|A, vβ, y) is a block diagonal matrix
consisting of the block vβ ≥ 0 if |A| = 1 and, if |A| > 1, consisting of the blocks(

yk−1,2i−1 yk,i
yk,i yk−1,2i

)
for k ∈ {2, . . . , dlog2(p)e} and i ∈ [2dlog2(p)e−k], (5.14)

the singleton blocks (vβ), and (ydlog2(p)e,1 − vβ) as well as 2dlog2(p)e−1 blocks of the
form (

u y1,l
y1,l w

)
for l ∈ [2dlog2(p)e−1] (5.15)

where, in each of these blocks, u and w represent a variable of {vα : α ∈ A} ∪ {vβ}
such that altogether each vα appears pα times and vβ appears 2dlog2(p)e − p times.

Note that in this definition, the exact order of appearances of the variables in the
set {vα : α ∈ A} ∪ {vβ} is not uniquely determined. However, since this order of
appearances will not matter, we speak of the dual circuit matrix. The case distinction
depending on the size of A ensures that also circuits supporting an atomic extremal
ray of the S-cone are captured.

Remark 5.3.3. Note that this corrects [NT21b], where the dual circuit variables as
well as the dual circuit matrix were defined slightly different, causing a problem for
p = 2.

Remark 5.3.4. Each block of the type (5.15) contains two (not necessarily identical)
variables from {vα : α ∈ A} ∪ {vβ}. Since

∑
α∈A λα = 1, we have

∑
α∈A pα = p and,

hence, the total number of occurrences of variables from the set {vα : α ∈ A} ∪ {vβ}
in the blocks of type (5.15) is∑

α∈A
pα + (2dlog2(p)e − p) = 2dlog2(p)e,

which is twice the number of blocks of type (5.15).

Note that every yk,i only serves as an auxiliary variable to make the non-linear
constraints ln(vβ) ≤

∑
α∈A λα ln(vα) of the dual S-cone description from (5.12) linear.
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In the end, we will only multiply those constraints to obtain the original ones. In
particular, factors vβ serve to cover cases where p is not a power of 2. For the purpose
of the second-order descriptions, it does not matter in which order the variables appear
in the blocks (5.15), because only the product of these blocks will be considered.

The goal of this subsection is to show the following characterization of the dual
cone of nonnegative even AG functions P even

A,β supported on the circuit (A,β). Recall
that positive semidefiniteness of a symmetric matrix is denoted by “� 0”.

Theorem 5.3.5. The dual cone (P even
A,β )∗ of the cone of nonnegative even AG func-

tions P even
A,β supported on the circuit (A,β) ∈ I(A) is the projection of the spectrahe-

dron {
(v, y) ∈ RA ×R2dlog2(p)e−1 : C∗A,β(v|A, vβ, y) < 0

}
(5.16)

on (v|A, vβ). (P even
A,β )∗ is second-order representable.

Here, the second-order representability follows immediately from the represen-
tation (5.16) in connection with Lemma 2.1.6. Let us consider an example for the
theorem.

Example 5.3.6. Let A = {0, 6},B = {2} and consider the circuit (A,β) with A = A
and β = 2 (compare Figure 5.1). We have p = 3, p0 = 2, p6 = 1 and y consists of the
components

y1,1, y1,2, y2,1.

A vector (v0, v2, v6) is contained in (P even
A,β )∗ if and only if 0 ≤ v2 ≤ y2,1 and the three

2× 2-matrices (
v6 y1,1
y1,1 v2

)
,
(

v0 y1,2
y1,2 v0

)
,
(
y1,1 y2,1
y2,1 y1,2

)

are positive semidefinite.

In [Ave19], Averkov considers the size of the blocks in the SDP-representation of
SONC-polynomials but does not give a number or bound on the number of blocks.
Here, for the S-cone, we provide a bound on the number of inequalities of a second-
order representation, which also gives a bound on the number of 2× 2-blocks in a
semidefinite representation. The bound depends on the smallest common denomina-
tor of the barycentric coordinates representing the inner exponent of a circuit as a
convex combination of the outer ones.

Corollary 5.3.7. The matrix C∗A,β(v|A, vβ, y) consists of 2dlog2(p)e − 1 blocks of size
2× 2 and two block of size 1× 1 if |A| > 1 and one 1× 1-block if |A| = 1.

Proof. Counting the 2× 2-blocks, there are
∑dlog2(p)e
k=2

(
2dlog2(p)e−k

)
= 2dlog2(p)e−1 −1

blocks of type (5.14) and 2dlog2(p)e−1 blocks of type (5.15).

Remark 5.3.8. It is useful to record the set inequalities characterizing the positive
semidefiniteness of the matrix C∗A,β(v|A, vβ, y) in the case that |A| > 1. Besides the
nonnegativity conditions for the variables,

v|A ≥ 0, vβ ≥ 0, (5.17)

and yk,i ≥ 0 for all k ∈ {2, . . . , dlog2(p)e − 1}, i ∈ [2dlog2(p)e − k], (5.18)
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these are the determinantal conditions arising from the positive semidefiniteness of
the second singleton block and the matrices in (5.14) and (5.15):

(0 ≤) vβ ≤ ydlog2(p)e,1, (5.19)

y2
k,i ≤ yk−1,2i−1yk−1,2i for all k ∈ {2, . . . , dlog2(p)e}, i ∈ [2dlog2(p)e−k] (5.20)

and uw ≥ (y1,l)
2 for l ∈ [2dlog2(p)e−1] (5.21)

for u,w ∈ {vα : α ∈ A} ∪ {vβ} such that vα appears pα times for every α ∈ A and
vβ appears 2dlog2(p)e − p times.

The next lemma prepares one inclusion of Theorem 5.3.5.

Lemma 5.3.9. Let v ∈ RA,β such that there exists some vector y ∈ R2dlog2(p)e−1 with
C∗A,β(v|A, vβ, y) < 0. Then v|A is nonnegative and satisfies

vpβ ≤
∏
α∈A

vpαα .

Proof. If |A| = 1, the claim is obvious, so assume |A| > 1. By (5.17), we have v|A ≥ 0
and vβ ≥ 0. Moreover, (5.19) and successively applying (5.20) gives

vβ ≤ ydlog2(p)e,1 ≤
(
ydlog2(p)e−1,1 ydlog2(p)e−1,2

)1/2

≤
(
ydlog2(p)e−2,1 ydlog2(p)e−2,2

)1/4 (
ydlog2(p)e−2,3 ydlog2(p)e−2,4

)1/4

=
(
ydlog2(p)e−2,1 ydlog2(p)e−2,2 ydlog2(p)e−2,3 ydlog2(p)e−2,4

) 1
2dlog2(p)e−(dlog2(p)e−2)

≤ · · · ≤
((∏

α∈A
vpαα

)
· (vβ)2dlog2(p)e−p

) 1
2dlog2(p)e .

This is equivalent to

(vβ)
2dlog2(p)e · (vβ)p−2dlog2(p)e ≤

∏
α∈A

vpαα ,

which implies vpβ ≤
∏
α∈A v

pα
α .

Now we prepare the converse inclusion of Theorem 5.3.5.

Lemma 5.3.10. For every v ∈ RA,β with v|A∪{β} ≥ 0 and vpβ ≤
∏
α∈A v

pα
α , there

exists y ∈ R2dlog2(p)e−1 such that C∗A,β(v|A, vβ, y) < 0.

Proof. Again, if |A| = 1, the claim is obvious, so assume |A| > 1. Define y inductively
by

y1,l =
√
uw for those u,w which occur in the block with y1,l,

yk,i =
√
yk−1,2i−1yk−1,2i for all k ∈ {2, . . . , dlog2(p)e}, i ∈ [2dlog2(p)e−k].

It suffices to show that the inequalities (5.17)-(5.21) in Remark 5.3.8 are satisfied.
The nonnegativity conditions (5.17) and (5.18) hold by assumption and by definition
of y. The construction of y also implies that a subchain of the chain of inequalities
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considered in the previous proof even holds with equality, namely,

ydlog2(p)e,1 =
(
ydlog2(p)e−1,1 ydlog2(p)e−1,2

)1/2

=
(
ydlog2(p)e−2,1 ydlog2(p)e−2,2

)1/4 (
ydlog2(p)e−2,3 ydlog2(p)e−2,4

)1/4

=
(
ydlog2(p)e−2,1 ydlog2(p)e−2,2 ydlog2(p)e−2,3 ydlog2(p)e−2,4

) 1
2dlog2(p)e−(dlog2(p)e−2)

= · · · =
((∏

α∈A
vpαα

)
· (vβ)2dlog2(p)e−p

) 1
2dlog2(p)e .

By the assumption vpβ ≤
∏
α∈A v

pα
α , we obtain vβ ≤ ydlog2(p)e,1, which shows inequal-

ity (5.19). The remaining inequalities (5.20) and (5.21) are satisfied with equality by
construction.

Finally, we can conclude the proof of Theorem 5.3.5.

Proof of Theorem 5.3.5. As the claim is clear for |A| = 1, assume |A| > 1. Let p
be defined as in Definition 5.3.2 and let λ ∈ QA

+ with λα = pα
p and pα ∈ N for all

α ∈ A denote the barycentric coordinates representing β as a convex combination of
the elements in A, i.e., β =

∑
α∈A λαα and

∑
α∈A λα = 1. By (5.12), we have

(P even
A,β )∗ =

{
v ∈ RA,β : v|A∪{β} ≥ 0, ln(vβ) ≤

∑
α∈A

λα ln(vα)
}

=
{
v ∈ RA,β : v|A∪{β} ≥ 0, vpβ ≤

∏
α∈A

vpαα

}
.

Applying Lemmas 5.3.9 and 5.3.10, C∗A,β(x, vβ) < 0 if and only if v ∈ P ∗A,β.

Our derivation of the second-order representation of the dual cone (P even
A,β )∗ also

suggests a simple way to derive a second-order representation of the primal cone
P even
A,β . For the dual cone, (5.12) gives — besides nonnegativity-constraints on vα for
α ∈ A and on vβ — the condition ln(vβ) ≤

∑
α∈A λα ln(vα) for every (A,β) ∈ I(A).

These conditions can — as done in the previous proof — be stated as

vpβ ≤
∏
α∈A

vpαα where p = pα
λα

.

The conditions for the primal cone can be reformulated similarly. Namely, an
even circuit function f with a vector of coefficients c is nonnegative if and only if
−cβ ≤

∏
α∈A (cα/λα)

λα by (5.6), which we write as

(−cβ)p ≤
∏
α∈A

(
cα
λα

)pα
.

This motivates to carrying over the definition of the dual circuit matrix to the
primal case as follows. Since cβ may be negative (in contrast to the dual case), we
introduce the primal circuit variables, or simply circuit variables,

(xβ, (xk,i)k,i)

where k ∈ [dlog2(p)e] and i ∈ [2dlog2(p)e−k]. As in the dual case, we refer to these
1 +

∑dlog2(p)e
k=1 2dlog2(p)e−k = 2dlog2(p)e variables as xA,β or shortly as x.
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Definition 5.3.11 (Circuit Matrix). The circuit matrix CA,β(c|A∪{β},xβ,x) is the
block diagonal matrix consisting of the block cβ ≥ 0 if |A| = 1 and, if |A| > 1,
consisting of the blocks(

xk−1,2i−1 xk,i
xk,i xk−1,2i

)
for k ∈ {2, . . . , dlog2(p)e}, i ∈ [2dlog2(p)e−k],

the two singleton blocks(
xdlog2(p)e,1 −

(∏
α∈A(λα)

λα
)
xβ

)
and

(
xβ + cβ

)
, (5.22)

as well as 2dlog2(p)e−1 blocks of the form(
u x1,l
x1,l w

)
for l ∈ [2dlog2(p)e−1] (5.23)

where u,w ∈ {cα : α ∈ A} ∪ {
(∏

α∈A(λα)
λα
)
xβ} such that cα appears pα times for

every α ∈ A and
(∏

α∈A(λα)
λα
)
xβ appears 2dlog2(p)e − p times.

Note that for a circuit (A,β), the product
(∏

α∈A(λα)
λα
)
is always nonzero be-

cause β ∈ relint convA and A consists of affinely independent vectors.
Whenever |A| > 1, in contrast to the dual cone, there is no sign constraint on cβ

in the primal cone. If p is not a power of 2, then xβ appears on the main diagonal
of (5.23). In our coupling of xβ with cβ, the constraint xβ+ cβ ≥ 0 results in −cβ ≤ xβ
and thus, reflects these sign considerations.

Note that the primal cone consists of circuit functions, whereas in our definition
of the dual cone, the elements are coefficient vectors. Therefore, the projection con-
sidered in Theorem 5.3.5 only delivers the coefficients of the circuit functions rather
than the cone itself.

Theorem 5.3.12. The set of coefficients of the cone P even
A,β of nonnegative even cir-

cuit polynomials supported on the circuit (A,β) coincides with the projection of the
spectrahedron P̂ even

A,β defined as{
(c,x) ∈ RA ×R2dlog2(p)e : CA,β(c|A∪{β},xβ,x) < 0, c|A\(A∪{β}) = 0

}
(5.24)

on (c|A, cβ). The cone P even
A,β is second-order representable.

The last equality constraint in (5.24) is redundant and can be omitted. We include
it here because this formulation is needed in Section 5.3.2 for the description of the
S-cone supported on the full set A.

Proof. As the claim is clear for |A| = 1, assume |A| > 1.
First, let (c,x) ∈ P̂ even

A,β . The positive semidefiniteness of the 2 × 2-blocks in
CA,β(c|A∪{β}, xβ,x) implies the inequalities

c|A ≥ 0 and (−xβ)p ·
(∏

α∈A
λα

λα
)p
≤
∏

α∈A
cpαα .

The two 1× 1-blocks from (5.22) give the inequalities xdlog2(p)e,1 ≥
(∏

α∈A λ
λα
α

)
xβ

and xβ ≥ −cβ. They imply −cβ
(∏

α∈A λ
λα
α

)
≤ xβ

(∏
α∈A λ

λα
α

)
≤ xdlog2(p)e,1. Hence,
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similar to Lemma 5.3.9,

xβ
(∏

α∈A
λλαα

)
≤ xdlog2(p)e,1 ≤

(
xdlog2(p)e−1,1 xdlog2(p)e−1,2

)1/2

≤
(
xdlog2(p)e−2,1 xdlog2(p)e−2,2

)1/4 (
xdlog2(p)e−2,3 xdlog2(p)e−2,4

)1/4

=
(
xdlog2(p)e−2,1 xdlog2(p)e−2,2 xdlog2(p)e−2,3 xdlog2(p)e−2,4

) 1
2dlog2(p)e−(dlog2(p)e−2)

≤ · · · ≤
((∏

α∈A
cpαα

)
· (xβ)2dlog2(p)e−p

(∏
α∈A

λλαα

)2dlog2(p)e−p
) 1

2dlog2(p)e

.

This is equivalent to

x2dlog2(p)e
β ·

(∏
α∈A

λλαα

)2dlog2(p)e

· xp−2dlog2(p)e

β ·
(∏

α∈A
λλαα

)p−2dlog2(p)e

≤
∏

α∈A
cpαα .

Altogether, we obtain (−cβ)p ≤
∏
α∈A(cα/λα)pα and further c|A∪{β} ∈ P even

A,β .
For the converse inclusion, we remind the reader that λα > 0 for all α ∈ A. We set

xβ := xdlog2(p)e,1

(∏
α∈A

(
1
λα

)λα)
and, similar to the proof of Lemma 5.3.10, define

x inductively by

x1,l =
√
uw for those u,w which occur in the block with x1,l,

xk,i =
√
xk−1,2i−1xk−1,2i for all k ∈ {2, . . . , dlog2(p)e}, i ∈ [2dlog2(p)e−k].

Analogous to that proof, the construction of x gives CA,β(cA∪{β},xβ,x) � 0.
Second-order representability is then an immediate consequence according to

Lemma 2.1.6.

Example 5.3.13. Let A = {0, 2}, B = {1} and consider the circuit (A,β) with
A = A and β = 1. Since

1 =
1
2 · 0 +

1
2 · 2,

we have p1 = p2 = 1 and the smallest common denominator p = 2. Hence,
dlog2(p)e = log2(p) = 1 and 2dlog2(p)e − p = 2− p = 0 as well as

∏
α∈A

λλαα =
1
2 and x =

(
x1
x1,1

)
.

A given vector (c0, c1, c2) is contained in PA,β if and only if

x1,1 −
1
2x1 ≥ 0, x1 + c1 ≥ 0 and

(
c0 x1,1
x1,1 c2

)
� 0.

Similar to Corollary 5.3.7, we can determine the number of blocks.

Corollary 5.3.14. The matrix CA,β(c|A∪{β},xβ,x) consists of 2dlog2(p)e− 1 blocks of
size 2× 2 and two blocks of size 1× 1 if |A| > 1 and of a single 1× 1-bock if |A| = 1.

5.3.2 A Second-Order Representation of the S-Cone and its Dual

In the previous subsection, we obtained second-order representations of the subcones
of nonnegative even circuit functions and their duals, under the condition that the
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x

y

(4, 0)T(0, 0)T

(0, 2)T
(1, 1)T (4, 2)T

Figure 5.3: The cir-
cuit is reduced, as
(4, 2)T /∈ conv(A).

x

y

(4, 0)T(0, 0)T

(0, 2)T
(1, 1)T (2, 0)T

Figure 5.4: The cir-
cuit is not reduced, as

(2, 0)T ∈ conv(A).

barycentric coordinates are rational. We now assume that A and B are rational and
derive an explicit second-order representation of the rational S-cone CS(A,B) and its
dual. In the primal case, those cones are obtained via projection and Minkowski sum,
and in the dual case, they arise from projection and intersection. First we consider
the lifted cones for the dual case.

Taking all circuits (A,β) into account would induce a highly redundant represen-
tation. To avoid those redundancies, we make use of the following characterization of
the extreme rays of the S-cone from the first section of this chapter, and with this,
recall the following definition.

For finite and disjoint sets ∅ 6= A,B ⊆ Rn, the set of reduced circuits contained
in A∪B is the set

R(A,B) =
{
(A,β) : A ⊆ A affinely independent, β ∈ relint(convA) ∩ (B \A),

A∩ (conv(A)) \ (A∪ {β}) = ∅
}

.

Less formally, this is the set of all circuits (A,β) with outer exponents in A and
inner exponents in B without additional support points contained in the convex hull
of A. In particular, for every β ∈ A, the circuit (A,β) ∈ I(A,A) with |A| = 1 (i.e.,
with A = {β}) is a reduced even circuit.

Note that for A ⊆ Rn and B ⊆ Nn \ (2N)n disjoint and finite, the set R(A,A)
is exactly the set of even reduced circuits and the set R(A,B) is exactly the set of
odd reduced circuits. The set R(A,A ∪ B) denotes the set of all reduced circuits
(A,β) with A ⊆ A and β ∈ A∪B. A circuit function supported on a reduced circuit
in R(A,A∪B) has nonnegative coefficients corresponding to exponents in A and a
possibly negative coefficient corresponding to a single exponent in A∪B.

Recall that the question whether a circuit is reduced or not depends on the ground

set A. For example, the circuit (A,β) with A =

{(
0
0

)
,
(

4
0

)
,
(

0
2

)}
and

β =

(
1
1

)
is reduced for the ground set A = A ∪ {β} ∪

{(
4
2

)}
(compare Figure

5.3) but not reduced for A = A∪ {β} ∪
{(

2
0

)}
(compare Figure 5.4).

The following proposition is a direct consequence of Theorem 5.2.5(d).

Proposition 5.3.15. Let ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n be finite and disjoint
sets. Then,

CS(A,B) =
∑

(A,β)∈R(A,A)
P even
A,β +

∑
(A,β)∈R(A,B)

P odd
A,β .
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Using this decomposition, we can exclude many circuits from our consideration.
Thus, the second-order-cone program will be much smaller than the one considering
all circuits.

In the previous subsection, we only considered even circuits. To use Proposi-
tion 5.1.5 and obtain the conditions for odd circuits as well, we extend the dual
circuit variables for odd circuits to

(yβ, (yk,i)k,i)

for k ∈ [2dlog2(p)e] and i ∈ [2log2(p)−k]. Nevertheless, we call them yA,β for a fixed
circuit (A,β) ∈ R(A,B).

For the dual case, we consider the coordinates

yA,B =
{
(yA,β) : (A,β) ∈ R(A,A∪B)

}
,

which consist of
∑

(A,β)∈R(A,A∪B) 2dlog2(pA,β)e components. Here, pA,β denotes the
smallest common denominator of the barycentric coordinates λA,β of the circuit (A,β)
representing β as a convex combination of A.

For the primal case, we consider

xA,B =
{
(xA,β) : (A,β) ∈ R(A,A∪B)

}
,

which also consist of
∑

(A,β)∈R(A,A∪B) 2dlog2(pA,β)e components.
Using Proposition 5.1.5, we can use our earlier characterizations of P even

A,β to obtain
the following second-order characterization for P odd

A,β .

Corollary 5.3.16. Let (A,β) ∈ R(A,B) an odd reduced circuit with rational set
A ⊆ A ⊆ Qn and rational β ∈ B.

(1) Let f be an odd AG function supported on (A,β) with coefficient vector c.
Then, f is nonnegative if and only if there exists x ∈ R2dlog2(p)e such that
CA,β(c|A,xβ,x) < 0 and (

xβ cβ
cβ xβ

)
< 0. (5.25)

(2) A vector v ∈ RA,β is contained in
(
P odd
A,β

)∗
if and only if there exist some

y ∈ R2dlog2(p)e−1 and yβ ∈ R such that C∗A,β(v|A, yβ, y) < 0 and(
yβ vβ
vβ yβ

)
< 0. (5.26)

Note that, as for odd circuits (A,β) we don’t necessarily have vβ ≥ 0 for all v in
the dual cone, the second argument of C∗A,β(v|A, yβ, y) is now yβ instead of vβ, as we
had in Theorem 5.3.5.

Proof. As we only consider odd circuits, |A| > 1 in every case.
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1. The semidefinite condition on the matrix (5.25) is equivalent to xβ ≥ 0 and
|cβ| ≤ xβ. Hence, altogether we obtain

f ∈ P odd
A,β if and only if |cβ| ≤

∏
α∈A

(
cα
λα

)λα
for barycentric coordinates λ ∈ RA

+ decomposing β as a convex combination of
elements in A. This is exactly Theorem 5.1.8(b).

2. If v ∈ (P odd
A,β )

∗, then, in the notation of (5.10), there exists some u such that
(v,u) ∈ (P even

A,β )∗ and u ≥ |vβ|. In particular, u ≥ 0 is necessary for containment
in
(
P even
A,β

)∗
. The semidefinite constraints (5.26) are equivalent to yβ ≥ 0 and the

latter inequality u ≥ |vβ|, and the constraint C∗A,β(v|A, yβ, y) < 0 is equivalent
to (v, yβ) ∈

(
P even
A,β

)∗
by Theorem 5.3.5.

Now, for every odd reduced circuit (A,β) ∈ R(A,B), define the block diagonal
matrix Ĉ∗A,β(v|A∪{β}, yβ, y) consisting of the dual circuit matrix C∗A,β(v|A∪{β}, yβ, y)
and (5.25) for the dual cone. Considering all the reduced circuits, these lifting ma-
trices define the lifted cone

Ĉ∗(A,B) =
{
(v, yA,B) : Ĉ∗A,β(v|A∪{β}, yβ, y) < 0 for all (A,β) ∈ R(A,B),

C∗A,β(v|A, vβ, y) < 0 for all (A,β) ∈ R(A,A)
}

,

where the variable vector v lives in the space RA,B.
For a fixed odd reduced circuit (A,β) ∈ R(A,B), let

P̂ odd
A,β =

{
(c,xA,B) : ĈA,β(c|A∪{β},xβ,xA,β) < 0, c|A∪B\(A∪{β}) = 0

}
,

where ĈA,β(c|A∪{β},xβ,xA,β) is defined analogously to the dual case. We define the
lifted cone

Ĉ(A,B) =
∑

(A,β)∈R(A,A)
P̂ even
A,β +

∑
(A,β)∈R(A,B)

P̂ odd
A,β .

Here, for every (A,β) ∈ R(A,A), P̂ even
A,β is the set from Theorem 5.3.12.

Corollary 5.3.17.

(1) The rational S-cone CS(A,B) is the projection on the coordinates v ∈ RA,B of
Ĉ(A,B).

(2) The dual of the rational S-cone C∗S(A,B) is the projection on the coordinates
v ∈ RA,B of Ĉ∗(A,B).

Applying this lifting to the second-order representations of Theorems 5.3.12 and
5.3.5 in standard form also gives second-order representations of the cones CS(A,B)
and C∗S(A,B) in standard form.

Corollary 5.3.18 (Second-order representation of the dual rational S-cone). A vector
v ∈ R(A,B) is contained in the rational S-cone C∗S(A,B) if and only if the dual circuit
vector yA,B satisfies for every reduced odd circuit (A,β) ∈ R(A,B)
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1.
(
yA,β
k−1,2i−1 yA,β

k,i
yA,β
k,i yA,β

k−1,2i

)
� 0, 2 ≤ k ≤ dlog2(pA,β)e ∀i ∈ [2dlog2(pA,β)e−k],

2.

 yA,β
dlog2(pA,β)e,1 yA,β

β

yA,β
β yA,β

dlog2(pA,β)e,2

 � 0,

3.
(

u yA,β
1,l

yA,β
1,l w

)
� 0 for l ∈ [2dlog2(pA,β)e−1] and u,w ∈ {vα : α ∈ A} ∪ {yA,β

β }

such that yA,β
β appears 2dlog2(pA,β)e − pA,β times and vα appears (pA,β)α times

for each α ∈ A,

4. ||vβ||2 ≤ y
A,β
β , yA,β

β ≤ yA,β
dlog2(pA,β)e,1

and for every reduced even circuit (A,β) ∈ R(A,A) the conditions of Theorem 5.3.5.

We need to write yA,β instead of just writing y in the previous corollary, since
different yA,β may appear for every reduced circuit (A,β).

For the primal case, we have to consider every reduced circuit as well. Here, sums
take the role of the intersections from the dual case.

Corollary 5.3.19 (A Second-Order Representation of the Rational S-Cone). A func-
tion f ∈ R[A,B] with coefficient vector c is contained in the rational S-cone CS(A,B)
if and only if there exists cA,β for (A,β) ∈ R(A,A∪B) with c =

∑
(A,β)∈R(A,A∪B)

cA,β

and for the circuit vector xA,B and for every (A,β) ∈ R(A,A ∪ B), the following
inequalities hold.

1.
(
xA,β
k−1,2i−1 xA,β

k,i
xA,β
k,i xA,β

k−1,2i

)
< 0, 2 ≤ k ≤ dlog2(pA,β)e, i ∈ [2dlog2(pA,β)e−k],

2. xA,β
dlog2(pA,β)e,1 −

(∏
α∈A λ

(pA,β)α
α

)
xA,β
β ≥ 0,

3. xA,β
β + cβ ≥ 0,

4. ||cβ||2 ≤ x
A,β
β if (A,β) is an odd circuit,

5. as well as in both the even and the odd case,(
u xA,β

1,l
xA,β

1,l w

)
< 0 for l ∈ [2dlog2(λA,β)e−1]

for u,w ∈ {cα : α ∈ A} ∪
{(∏

α∈A λ
(λA,β)α
α

)
xA,β
β

}
such that cα appears (pA,β)α

times for every α ∈ A and
(∏

α∈A λ
(λA,β)α
α

)
xA,β
β appears 2dlog2(pA,β)e − pA,β

times.

Note that the cone CSONC(A) of SONC polynomials is a closed convex cone, and
it can be recognized as a special case of a rational S-cone by observing

CSONC(A) = CS(A∩ (2N)n,A∩ (Nn \ (2N)n)).

Hence, both the cone of SONC polynomials CSONC(A) and its dual are always
rational S-cones and thus, occur as a special case of Corollaries 5.3.19 and 5.3.18.
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Remark 5.3.20. The specific case of the primal cone of SONC polynomials has also
been studied in detail by Magron and Wang [WM20a]. Their approach is based on
different methods. In particular, it relies on mediated sets and intermediately uses
sums of squares representations. However, the resulting second-order programs are
structurally similar. Notably, the dependence of the size of the second-order program
on the parameter p in our derivation relates to the dependency on the size of the
rational mediated set in [WM20a]. Also note that various amendments are integrated
into the approaches (such as the handling of denominators in [WM20a] and the use
of extreme rays in our approach).
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Chapter 6

Sublinear Circuits and the
Conditional SAGE-Cone

In this chapter, we start examining the constrained version of a global optimization
problem for exponential sums, i.e., the problem

min
x∈X

f(x)

or some convex set X ⊆ Rn and some exponential sum f .
Historically, approaches examining the conditional SAGE-cone considered cones

of functions ∑
α∈A

cαe
〈α,x〉 + cβe

〈β,x〉

(or their polynomial equivalents, see, e.g., [DIW19]), where (A,β) is a circuit in
the sense of Rn, with nonnegative coefficients corresponding to the set A of outer
exponents. As already mentioned in the preliminaries, here, we build upon the circuit
definition of Forsgård and de Wolff [FW19]: They define classical Rn-circuits as
vectors ν ∈ RA with the following three conditions: The entries of ν sum up to 0,∑
α∈A ανα = 0 and exactly one entry of ν is negative. They call circuits with this last

condition simplicial; we drop this term as we are only interested in simplicial circuits.
If ν is normalized, i.e., the negative entry equals −1, then the positive entries of ν
represent the barycentric coordinates of A with respect to β in the case of affine
independence of A\ {β}.

Here, instead of focusing on Rn-circuits, we develop a new approach using so-
called sublinear circuits, see Definition 6.1.2. Sublinear circuits are generalizations
of the affine circuits from matroid theory. They arise as the convex-combinatorial
core underlying constrained nonnegativity certificates of exponential sums and of
polynomials based on the arithmetic-geometric inequality.

In Section 6.1, we start with the definition of these X-circuits of a point set A,
generalizing Rn-circuits to a constrained setting. After revealing various elementary
properties and discussing some examples, we characterize X-circuits in more geomet-
ric terms in Theorems 6.1.7 and 6.1.8. In particular, the latter theorem interprets
X-circuits in terms of normal fans for the case when X is a polyhedron. It also shows
that for polyhedral constraint sets the number of X-circuits is finite. Building upon
this, we determine the X-circuits of a univariate support set A ⊆ R for X = [−1, 1]
and X = R+ in Theorem 6.1.9.

In this part of the thesis, we only examine the case of exponential sums instead
of generalized polynomial and exponential functions as introduced in the previous
chapter. However, we can generalize the results of this chapter to a constrained
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version of the S-cone and, with this, also to polynomials as a special case of these
functions; for further explanations see Subsection 6.2.1.

In Section 6.2, we build upon the theory by Murray, Chandrasekaran, and Wier-
man [MCW21b] concerning X-AGE exponentials and X-SAGE exponentials as in-
troduced in the preliminaries as the constrained equivalents to AGE exponentials and
SAGE exponentials: We show that sums of X-AGE exponentials can be characterized
in terms of sublinear circuits, see Theorem 6.2.2. Building upon this result, we define
λ-witnessed X-AGE-cones and show that these cones actually construct the cone of
X-AGE exponentials, see Theorem 6.2.4. Those λ-witnessed X-AGE-cones are in
fact dual power-cones. Combined with the finiteness of the number of X-circuits in
the case of a polyhedral constraint set, this shows that the whole X-SAGE-cone is
power-cone representable whenever the constraint set is polyhedral. A similar repre-
sentation exists for the dual of the X-SAGE-cone, see Proposition 6.2.7.

In Subsection 6.2.2, we give results on the relation between the sublinear circuits
and their supports, and in Subsection 6.2.3, we provide necessary as well as sufficient
criteria for sublinear circuits, see, e.g., Theorem 6.2.11. Building upon the results
for polyhedral constraint sets and based on the former necessary or sufficient char-
acterizations, we provide some explicit results for conic constraint sets as well as
enumerations for the cube [−1, 1]n in Subsection 6.2.4.

In Section 6.3, we introduce the concept of reduced sublinear circuits as extremal
rays of the circuit graph, see Definition 6.3.3. In fact, it suffices to consider these cir-
cuits to construct the X-SAGE-cone, see Theorem 6.3.5. For the case of a polyhedral
constraint set, we prove that the set of reduced X-circuits is in fact the smallest set
allowing such a construction, see Theorem 6.3.6.

This again motivates studying the case of a polyhedral constraint set in detail.
As for X-circuits, we develop sufficient as well as necessary criteria for a vector ν to
be a reduced X-circuit, see Subsection 6.3.2. We put a particular focus on the case
of X = Rn

+ and X = [−1, 1]n; for the univariate special cases of these two classes,
we state the set of X-circuits completely, see Theorem 6.3.12.

In the last part of this chapter, Section 6.4, those two examples, X = [−1, 1] and
X = R+, culminate in a theorem completely characterizing the extreme rays of the
resulting X-SAGE-cones C[−1,1](A) and C[0,∞)(A).

One of the papers this chapter is based on — [MNT20] — contains various direc-
tions of research. Particularly, in various parts, we studied general convex-geometric
statements, considering general convex — and non-polyhedral — sets X. This thesis
focusses on the concept of sublinear circuits and statements for polyhedral constraint
sets. Therefore, some technical convex-geometric lemmas will be cited without proof.

6.1 Sublinear Circuits Induced by a Point Set
Throughout this chapter, we assume that X ⊆ Rn is a closed, convex, and non-empty
set.

Recall from Section 2.4.3 that for a finite and non-empty set of support points
A ⊆ Rn and some convex and non-empty set X ⊆ Rn, the cone CX(A,β) of X-AGE
exponentials supported on A with negative term corresponding to β ∈ A is the set of
those exponential sums

f =
∑

α∈A\{β}
cαe
〈α,x〉 + cβe

〈β,x〉
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where f is nonnegative on X and c\β ∈ R
A\{β}
+ , i.e., c contains at most one negative

component which has to correspond to the index β. As in the unconstrained case,
we often overload notation and also treat CX(A,β) as a cone of coefficient vectors in
RA.

We say that the cone of sums of X-AGE exponentials with respect to exponents
A is the Minkowski sum

CX(A) =
∑
β∈A

CX(A,β).

Note that this cone is not defined in terms of circuits.
For vectors β ∈ A, let

Nβ = {ν ∈ RA : ν\β ≥ 0, 1T ν = 0}. (6.1)

Recall that Murray, Chandrasekaran, and Wierman showed that it is possible to
efficiently check membership in this cone using a relative entropy program.

Proposition 6.1.1 ([MCW21b, Theorem 6]). An exponential f(x) =
∑
α∈A cαe

〈α,x〉

belongs to CX(A,β) if and only if cα ≥ 0 for all α ∈ A \ {β} and some ν ∈ RA

satisfies
ν ∈ Nβ and σX(−Aν) +D(ν\β, ec\β) ≤ cβ. (6.2)

Recall that here, for A ⊆ Rn and ν ∈ RA, we use A as a linear operator
A : RA → R, ν 7→ Aν =

∑
α∈A ναα. For A ⊆ Rn and X ⊆ Rn, we remind the

reader of the definition of the relative entropy function D : RA>0 ×RA>0 → R with
D(ν,λ) =

∑
α∈A να ln(να/λα) and of the support function σX : Rn → R with

σX(ν) = supx∈X νTx.
Following the language introduced by Murray, Chandrasekaran, and Wierman, we

call the resulting cones CX(A,β) the X-AGE-cone and CX(A) the X-SAGE-cone.
The following central definition of this section helps us to examine this set Nβ.

Definition 6.1.2. A vector ν? ∈ Nβ is an X-circuit of A (or simply, an X-circuit) if

1. it is nonzero,

2. σX(−Aν?) <∞,

3. and it cannot be written as a convex combination of two non-proportional
ν(1), ν(2) ∈ Nβ for which ν 7→ σX(−Aν) is linear on [ν(1), ν(2)].

The derived results in this section make no mention of exponential sums, and
to avoid dependence on relative entropy in this section, we frame our discussion of
X-circuits in terms of the cones Nβ for β ∈ A. However, the definition of X-circuits
is ultimately chosen to prepare for studying X-SAGE-cones.

The third condition of Definition 6.1.2 is equivalent to strict sublinearity of the
mapping ν 7→ σX(−Aν) on any line segment in Nβ that contains ν? except for the
trivial line segments which generate a single ray. The central importance of the
sublinearity condition leads us to refer to X-circuits also as sublinear circuits.

Remark 6.1.3. In the special case X = Rn, condition (2) simplifies to Aν = 0. In
conjunction with the definition of Nβ, this shows that the special case X = Rn of
Definition 6.1.2 exactly matches the definition of Rn-circuits. The only difference is
that we do not have circuits supported on a single element anymore.
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Conceptually, Definition 6.1.2 indicates that X-circuits are essential in capturing
the behavior of the augmented support function ν 7→ σX(−Aν) on the given set
Nβ. While developing this concept formally, it is convenient for us to denote the set
ν+ := {α : να > 0}, and to identify the index ν− := β ∈ A where νβ < 0. By
the definition of Nβ and the nonzero condition of an X-circuits, this index is unique.
Note that positive homogeneity of the support function tells us that the property of
being a sublinear circuit is invariant under scaling by positive constants. A sublinear
circuit is normalized if its unique negative term νβ has νβ = −1, in which case we
usually denote it by the symbol λ rather than ν. We can normalize a given sublinear
circuit by taking the ratio with its infinity norm λ = ν/‖ν‖∞ because ‖ν‖∞ = |νβ|
for all vectors ν ∈ Nβ.

Example 6.1.4. (The Conic Case.) It is straightforward to determine which ν ∈ Nβ

are X-circuits of A when X is a cone. In such a setting, the support function of X can
only take on the values zero and positive infinity. Hence, ν 7→ σX(−Aν) is trivially
linear over all of Vβ := {ν ∈ Nβ : σX(−Aν) < ∞}. The set Vβ is a cone, and
reformulating σX(−Aν) = 0 as ν ∈ (ATX)∗ gives

Vβ = (kerA+A+X∗) ∩Nβ,

where A+ denotes the pseudo-inverse of A : RA → Rn. Therefore, the X-circuits
ν ∈ Nβ are precisely the edge generators of (kerA+A+X∗) ∩Nβ.

Looking again at the special case X = Rn from this conic perspective, we have
X∗ = {0}, yielding A+X∗ = {0}, and kerA+A+X∗ = kerA, which implies that
Vβ = kerA∩Nβ. It is easy to show that edge generators of kerA∩Nβ are precisely
those ν ∈ kerA∩Nβ \ {0} for which ν+ = {α : να > 0} are affinely independent,
which recovers the matroid-theoretic notion of affine-linear simplicial circuits from
the point of view of subsets A ⊆ A.

The following proposition shows that the affine-independence property is a neces-
sary condition for all sublinear circuits. It provides insight because it shows that an
X-circuit ν with X ⊆ Rn is restricted to | supp ν| ≤ n+ 2.

Proposition 6.1.5. If ν? ∈ Nβ is an X-circuit, then (ν?)+ = supp ν? \{β} is affinely
independent.

Proof. We fix ν? ∈ Nβ, set z = −Aν? and U = {ν ∈ Nβ : −Aν = z, νβ = ν?β}. The
function ν 7→ σX(−Aν) is a constant and equal to σX(z) on U , and so in order for ν?
to be an X-circuit it must be a vertex of the polytope U . The set U is in one-to-one
correspondence with W = {w ∈ R

A\{β}
+ :

∑
α∈A\{β}(β − α)wα = z, 1Tw = −ν?β} by

identifying w = ν\β. For the matrix M with columns {(β−α, 1)}α∈A\{β} indexed by
α ∈ A \ {β}, we can write W = {w ∈ R

A\{β}
+ : Mw = (z,−ν?β)}.

Basic polyhedral geometry tells us that all vertices w? of W use an affinely in-
dependent set of columns from M . Furthermore, a given set of columns from M is
affinely independent if and only if the corresponding indices of the columns (as vec-
tors α ∈ A \ {β}) are affinely independent. Since the correspondence between ν ∈ U
and w ∈W preserves extremality, the vertices of U have affinely independent positive
support ν+.

The converse of Proposition 6.1.5 is not true. This is to say: Not every vector
ν ∈ Nβ with affinely independent ν+ is an X-circuit.

Example 6.1.6. Let A ⊆ R2 contain α1 = (0, 0), α2 = (1, 0), and α3 = (0, 1), and
consider X = {x ∈ R2 : x ≥ u} for some fixed point u ∈ R2. Observe that the vector
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ν? = (−2, 1, 1) has (ν?)− = α1 = (0, 0), and (ν?)+ = {α2,α3} = {(1, 0), (0, 1)} is
affinely independent. Considering ν(1) = (−2, 2, 0) and ν(2) = (−2, 0, 2), we have
ν? = 1

2 (ν
(1) + ν(2)) ∈ relintL for L := [ν(1), ν(2)]. Moreover, ν 7→ σX(−Aν) is linear

on L because for any µ1,µ2 ≥ 0 with µ1 + µ2 = 1, we have

σX(A(−µ1ν
(1) − µ2ν

(2))) = σX((−2µ1,−2µ2)) = −2µ1u1 − 2µ2u2

= σX((−2µ1, 0)) + σX((0,−2µ2)).

The last equality is true since the element (1, 1)T maximizes both the objective func-
tions x 7→ (−2µ1, 0)Tx and x 7→ (0,−2µ2)Tx on X.

With the basic exercise of Example 6.1.6 complete, we start characterizing sub-
linear circuits in full generality by mentioning the following theorem from [MNT20]
without proof.

Theorem 6.1.7. Fix β ∈ A. The convex cone generated by

T = { (ν,σX(−Aν)) : ν ∈ Nβ, σX(−Aν) <∞}

is pointed (i.e., it contains no lines) and closed. A vector ν? ∈ Nβ is an X-circuit of
A if and only if (ν?,σX(−Aν?)) is an edge generator for posT .

When considering the set T in Theorem 6.1.7, it is natural to expect that for
polyhedral X there are only finitely many extreme rays in posT , and hence, only
finitely many normalized X-circuits. To prove this fact, we use the concept of normal
fans from polyhedral geometry, see, e.g., [Zie95, Chapter 7] (for the bounded case
of polytopes), [GKZ94, Section 5.4] or [Stu96, Chapter 2]. For each face F of a
polyhedron P , there is an associated outer normal cone

NP (F ) = {w : zTw = σP (w) ∀ z ∈ F}.

Clearly, the support function of a polyhedron P is linear on every outer normal cone,
and, in particular, the linear representation may be given by σP (w) = zTw for any
z ∈ F . We obtain the outer normal fan of P by collecting all outer normal cones:

O(P ) = {NP (F ) : F E P}.

The support of O(P ) is the polar rec(P )◦. The full-dimensional linearity domains of
the support function are the outer normal cones of the vertices of P (see also [FI17,
Section 1]).

Theorem 6.1.8. Let X be polyhedral. Then, ν ∈ Nβ \ {0} is an X-circuit if and
only if pos{ν} is a ray in O(−ATX +N◦β). Consequently, polyhedral X have finitely
many normalized circuits.

If X is a polyhedral cone, the situation simplifies because the support function
σX(−Aν) of a circuit ν can only attain the values zero and infinity. Namely, since
O(−ATX +N◦β) = (ATX)∗ ∩Nβ and

(ATX)∗ = {ν : νT y ≥ 0 ∀y ∈ ATX} = {ν : σX(−Aν) ≤ 0},

the X-circuits ν ∈ Nβ are precisely the edge generators of {ν ∈ Nβ : σX(−Aν) ≤ 0}.
See Theorem 6.1.9 for the univariate case.



96 Chapter 6. Sublinear Circuits and the Conditional SAGE-Cone

Proof of Theorem 6.1.8. Let P = −ATX+N◦β . Using the characterization in [Roc97,
Theorem 14.2], the polar of its recession cone can be expressed as

(recP )◦ = {ν : σX(−Aν) <∞}∩Nβ,

where we have also used the property σX(−Aν) = supx∈X(−Aν)Tx = σ−ATX(ν).
In particular, this also gives σX(−Aν) = σP (ν). From P , we construct the outer
normal fan O := O(P ). We claim that pos{ν} is a ray in O.

It is clear that if a cone K ∈ O is associated to a face F E P , then we see that
σP (ν) = zT ν for any z ∈ F , and so σP (ν) ≡ σX(−Aν) is linear on K. Since the
support of O is rec(P )◦, the cones K ∈ O partition (recP )◦, i.e.,

(recP )◦ =
⋃
K∈O

relint(K),

and if K,K ′ are distinct elements in O, then relintK ∩ relintK ′ = ∅. Therefore,
every ν ∈ Nβ \ {0} for which σX(−Aν) < ∞ is associated with a unique K ∈ O by
way of ν ∈ relintK.

Fix ν ∈ (recP )◦ and let K be the associated element of O that contains ν in
its relative interior. If K is of dimension greater than 1, ν can be expressed as a
convex combination of non-proportional elements ν(1), ν(2) ∈ K, and, clearly, then
ν 7→ σX(−Aν) ≡ σP (ν) would be linear on the interval [ν(1), ν(2)]. Thus, for ν to be
an X-circuit, it is necessary that K is of dimension 1. Since P is a polyhedron, O is
induced by finitely many faces. Thus, there are finitely many K ∈ O with dimK = 1
and in turn finitely many normalized X-circuits of A.

Conversely, let ν? ∈ Nβ \ {0} and pos{ν?} be a ray in O. Since O is supported
on rec(P )◦, we have σX(−Aν) = σP (ν) <∞.

Let ν(1) ∈ Nβ and ν(2) ∈ Nβ be non-proportional and let some τ ∈ (0, 1) satisfy
ν? = τν(1) + (1 − τ )ν(2). If ν(1) or ν(2) is outside of rec(P )◦, say, without loss
of generality ν(1), then σX(−Aν(1)) = ∞, and thus, the mapping ν 7→ σX(−Aν)
cannot be linear on [ν(1), ν(2)]. Hence, we can assume that ν(1), ν(2) ∈ rec(P )◦.

We have to show that the mapping

g : [0, 1]→ R, θ 7→ σP (θν
(1) + (1− θ)ν(2))

is not linear.
Consider the restriction of the fan O to the cone C := pos{ν(1), ν(2)}, that is, the

collection of all the cones in {NP (F ) ∩C : F E P}. This is a fan O′ supported on
the two-dimensional cone S := rec(P )◦ ∩C. On the set S, we consider the restricted
mapping (σP )|S : S → R, w 7→ σP (w). The linearity domains of (σP )|S are the
two-dimensional cones in O′. Since pos{v} is a ray in the fan O and thus, also in
the fan O′, the vectors ν1 and ν2 are contained in different two-dimensional cones of
the fan O′. Hence, the mapping g is not linear. Altogether, this shows that ν is an
X-circuit.

We begin with a study of the univariate cases [0,∞) and [−1, 1]. This comple-
ments the unconstrained case X = R from Chapter 3.
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Theorem 6.1.9. Let A = {α1, . . . ,αm} ⊆ R with α1 < · · · < αm.

(a) Let X = [−1, 1]. An element λ ∈
⋃
β∈ANβ is a normalized X-circuit if and only

if it is of the form (1) λ = δ(j) − δ(i) for i 6= j, or (2)

λ =
αk − αj
αk − αi

δ(i) − δ(j) + αj − αi
αk − αi

δ(k) for i < j < k.

(b) Let X = R+. The normalized X-circuits λ ∈ Rm are the vectors either of the
form (1) λ = δ(k) − δ(j) for j < k or of the form (2)

λ =
αj − αi
αk − αi

δ(k) − δ(j) + αk − αj
αk − αi

δ(i) for i < j < k.

Note that vectors of type (2) are equivalent in both cases and satisfy Aλ = 0, and
in fact are the only vectors that also satisfy suppλ = {i, j, k}, λj = −1, λi,λk > 0,
1Tλ = 0.

Remark 6.1.10. By Theorem 6.1.8, the X-circuits of A are the outer normal vectors
to facets of polyhedra P = −ATX +N◦β (for some β). As Nβ is pointed, P is always
full-dimensional.

Proof of Theorem 6.1.9. (a) Fix j ∈ [n] and write Nj := N(αj) for short. By Theo-
rem 6.1.8, the X-circuits are the vectors spanning the rays in the outer normal
cone of the polyhedron

P = −ATX +N◦j

= conv{(α1, . . . ,αm)T ,−(α1, . . . ,αm)T }+ R · 1−
∑
i 6=j

pos{δ(i)}

= {θ(α1, . . . ,αm)T + µ1 : −1 ≤ θ ≤ 1,µ ∈ R} −
∑
i 6=j

pos{δ(i)}.

Hence, a point w is contained in P if and only if

wi ≤ θαi + µ for i 6= j and wj = θαj + µ for θ ∈ [−1, 1] and µ ∈ R.

By eliminating µ, this is equivalent to

wj −wi + θ(αi − αj) ≥ 0 for all i ∈ [m] \ {j}, −1 ≤ θ ≤ 1.

Eliminating θ then gives

wj −wi
αj − αi

{
≤ θ ≤ 1 if αi > αj ,
≥ θ ≥ −1 if αi < αj ,

which yields wj −wi
αj − αi

≥ wk −wj
αk − αj

for all i, k ∈ [m] with i < j < k as well as

wi −wj ≤ |αi − αj | for all i ∈ [m] \ {j}. Hence,

P = {w ∈ Rm : wi −wj ≤ |αi − αj | for i ∈ [m] \ {j} and (6.3)
wi(αk − αj)−wj(αk − αi) +wk(αj − αi) ≤ 0, i, k ∈ [m] : i < j < k} .

(6.4)
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We claim that none of the inequalities in the definition of P is redundant. Namely,
for each inequality

wi(αk − αj)−wj(αk − αi) +wk(αj − αi) ≤ 0

in (6.4), the point δ(i)+ δ(j)+ δ(k) satisfies this particular inequality with equality
and satisfy all of the other inequalities strictly. Similarly, for the inequalities
in (6.3), it suffices to consider the point αjδ(i) + αiδ

(j) in the case that i < j
and αiδ

(i) + αjδ
(j) in case i > j. By Remark 6.1.10, the polyhedron P is full-

dimensional. Hence, by Theorem 6.1.8, the normalized X-circuits in Nj are
exactly the ones given in the statement of the theorem.

(b) Again, we consider, for fixed j ∈ [m], the polyhedron P = −ATX +N◦j from
Theorem 6.1.8. For X = R+, this polyhedron may be expressed as

P = pos{(−α1, . . . ,−αm)}+ R · 1−
∑

`∈[m]\j
pos{δ(l)}.

The rays of its normal fan are the extreme rays of its polar P ◦ = (recP )◦ with

P ◦ = {ν ∈ Rm : (−α1, . . . ,−αm)T ν ≤ 0, 1T ν = 0, ν` ≥ 0 for ` ∈ [m] \ j}.
(6.5)

By Proposition 6.1.5, each X-circuit in Nj has at most three non-vanishing com-
ponents νi, νj , νk, and, moreover, m− 2 of the inequalities in (6.5) are binding.
If all those binding inequalities are of the form ν` ≥ 0, then with σX(−Aν) <∞,
we obtain the normalized X-circuits of A of type (1). Now assume that the in-
equality (−α1, . . . ,−αm)T ν ≤ 0 is binding for some normalized X-circuit ν of
A. Since the sign pattern (−,+,+) for (νi, νj , νk) in conjunction with 1T ν = 0
leads to (−α1, . . . ,−αm)T ν < 0, and the sign pattern (+,+,−) contradicts the
X-circuit condition σX(−Aν) <∞, we obtain the normalized X-circuits of A of
type (2).

6.2 Sublinear Circuits in X-AGE-Cones
In this section, we show how the X-AGE-cones CX(A,β) can be further decomposed
using sublinear circuits. These decompositions lay the foundation to understand the
extreme rays of the conditional SAGE-cone CX(A). Our first result here is a necessary
criterion for an X-AGE exponential f to be extremal in CX(A,β), which states
that any underlying ν must be an X-circuit (see Theorem 6.2.2). Definition 6.2.3
introduces λ-witnessed X-AGE-cones as the subset of exponential sums in CX(A,β)
whose nonnegativity is certified by a given normalized vector λ. Theorem 6.2.4 then
decomposes CX(A,β) through the λ-witnessed X-AGE-cones where λ is a normalized
X-circuit. As a consequence, for polyhedral X, the cone CX(A,β) is power-cone
representable (see Corollary 6.2.5).

In the last part of this section we consider certain necessary and sufficient condi-
tions describing properties of X-circuits.

The following lemma provides a construction to decompose anX-AGE exponential
into simpler summands, under a local linearity condition on the support function
ν 7→ σX(−Aν).
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Lemma 6.2.1. Let f(x) =
∑
α∈A cαe

〈α,x〉 be X-AGE with negative coefficient cβ < 0.
If a vector ν ∈ RA satisfying (2.13), i.e., with

ν ∈ Nβ and σX(−Aν) +D(ν\β, ec\β) ≤ cβ,

can be written as a convex combination ν =
∑k
i=1 θiν

(i) of non-proportional ν(i) ∈ Nβ

and ν̃ 7→ σX(−Aν̃) is linear on conv{ν(i)}ki=1, then f is not extremal in CX(A,β).

Proof. Construct vectors c(i) by

c(i)α =

(cα/να)ν
(i)
α if α ∈ ν+

0 otherwise
for all α ∈ A \ {β}, (6.6)

and c
(i)
β = σX(−Aν(i)) +D(ν

(i)
\β , ec(i)\β ). These c(i) define X-AGE exponentials by

construction, and they inherit non-proportionality from the ν(i). We need to show
that

∑k
i=1 θic

(i) ≤ c, which will establish that f can be decomposed as a sum of these
non-proportional X-AGE exponentials (possibly with added exponential monomials).

For indices α ∈ ν+, the construction (6.6) relative to ν and {ν(i)}ki=1 ensures∑k
i=1 θic

(i)
α = cα. For indices α ∈ supp c \ supp ν, we have

∑k
i=1 θic

(i)
α = 0 ≤ cα. The

definitions of ν(i) ensure

σX(−Aν) = σX
(
−A(

∑k
i=1 θiν

(i))
)
=
∑k
i=1 θiσX(−Aν(i)). (6.7)

Meanwhile, the construction (6.6) provides ν(i)α /c(i)α = να/cα, which may be combined
with

∑k
i=1 θiν

(i)
α = να for all α ∈ A to deduce

k∑
i=1

θiD(ν
(i)
\β , ec(i)\β ) = D(ν\β, ec\β). (6.8)

We combine (6.7) and (6.8) to obtain the desired result

k∑
i=1

θic
(i)
β =

k∑
i=1

θi
(
σX(−Aν(i)) +D(ν

(i)
\β , ec(i)\β )

)
= σX(−Aν) +D(ν\β, ec\β) ≤ cβ.

Theorem 6.2.2. Let f(x) =
∑
α∈A cαe

〈α,x〉 be an X-AGE exponential with negative
coefficient cβ < 0. If ν ∈ RA satisfies (2.13) but is not an X-circuit, then f is not
extremal in CX(A,β).

Proof. If f is an X-AGE exponential with cβ < 0 and ν satisfies (2.13), then we must
have ν 6= 0 and σX(−Aν) <∞. By the definition of an X-circuit, ν may be written
as a convex combination ν = θν(1) + (1− θ)ν(2) where ν̄ 7→ σX(−Aν̄) is linear on
[ν(1), ν(2)] and ν(1) and ν(2) are non-proportional. We can therefore use Lemma 6.2.1
to prove the claim.

We turn to eliminating the degree of freedom associated with ν lying on a ray.
For each β ∈ A, following the notation in Chapter 3, we introduce the notation

ΛX(A,β) = {λ ∈ Nβ : λ is an X-circuit of A, λβ = −1}
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for the associated set of normalized X-circuits of A. The set of all normalized X-
circuits of A is denoted ΛX(A). The main reason for introducing this notation is
how it interacts with the following definition.

Definition 6.2.3. Given a vector λ ∈ Nβ with λβ = −1, the λ-witnessed X-AGE-
cone is

CX(A,λ) =

∑
α∈A

cαe
〈α,x〉 :

∏
α∈λ+

(
cα
λα

)λα
≥ −cβ exp (σX(−Aλ)) , c\β ≥ 0

 .

(6.9)

We show below that every exponential sum in CX(A,λ) is nonnegative on X.
The term witnessed in λ-witnessed X-AGE-cone is chosen to reflect the defining role
of λ in the nonnegativity certificate.

Theorem 6.2.4. The cone CX(A,β) can be written as the convex hull of λ-witnessed
X-AGE-cones where λ runs over the normalized X-circuits, together with the union
of all atomic nonnegative exponentials supported on A, that is,

CX(A,β) = conv
⋃

λ∈ΛX (A,β)
CX(A,λ) ∪

⋃
α∈A

R+ · {e〈α,x〉}.

The second union particularly captures the case that ΛX(A,β) = ∅.

Proof. Theorem 6.2.2 already tells us that CX(A,β) may be expressed as the union of
the set of monomial exponential expressions with positive coefficients and the convex
hull of X-AGE exponentials f(x) =

∑
α∈A cαe

〈α,x〉 where (c, ν) satisfies (2.13) for
some X-circuit ν. Therefore, it suffices to show that (i) for any such function, the
normalized X-circuit λ = ν/(1T ν\β) is such that (c,λ) satisfies the condition in (6.9),
and (ii) if any (c,λ) satisfies (6.9), then, the resulting exponential sum is nonnegative
on X. We will actually do both of these in one step.

Suppose ν ∈ Nβ is restricted to satisfy ν = sλ for a variable s ≥ 0 and a fixed
λ ∈ ΛX(A,β). It suffices to show that the set of c ∈ RA for which

∃s ≥ 0 : ν = sλ and σX(−Aν) +D(ν\β, ec\β) ≤ cβ

is the same as (6.9).
Let r(ν) = σX(−Aν) + D(ν\β, ec\β). We apply positive homogeneity of the

support function to see that σX(−Aν) = |νβ|σX(Aν/|νβ|), and use ν = sλ to infer
s = |νβ| and σX(−Aν/|νβ|) = σX(−Aλ). Then, we abbreviate d := σX(−Aλ) and
substitute

∑
α∈λ+ να = |νβ| to obtain

r(ν) =
∑
α∈λ+ (να log(να/cα)− να + ναd) .

The term d may be moved into the logarithm by identifying ναd = να log(1/e−d). For
α ∈ λ+, we define scaled terms c̃α = cαe

−d so that r(ν) =
∑
α∈λ+ να log(να/c̃α)− να.

Following considerations in the appendix of [MNT20], there exists a ν = sλ for which
r(ν) ≤ cβ if and only if

− cβ ≤
∏
α∈λ+

(c̃α/λα)λα . (6.10)

Since (c̃α/λα)λα = (cα/λα)λα
(
e−d

)λα
and

∏
α∈λ+

(
e−d

)λα
= e−d, (6.10) can be

recognized as the inequality occurring within (6.9), which completes the proof.
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Theorem 6.2.4 shows how λ-witnessed X-AGE-cones provide a window to the
structure of full X-AGE-cones CX(A,β). To appreciate the benefit of this perspec-
tive, it is necessary to consider the more elementary power-cone. In our context, the
primal power-cone associated with a normalized X-circuit λ ∈ RA is

Pow(λ) = {z ∈ Rsuppλ :
∏
α∈λ+ z

λα
α ≥ |zβ|, z\β ≥ 0, β := λ−};

the corresponding dual cone is given by

Pow(λ)∗ = {w ∈ Rsuppλ :
∏
α∈λ+(wα/λα)λα ≥ |wβ|, w\β ≥ 0, β := λ−}.

It should be evident that CX(A,λ) can be formulated in terms of a dual λ-weighted
power-cone; a precise formula is provided momentarily. For now, we give a corollary
concerning power-cone representability and second-order representability of CX(A)
when X is a polyhedron, see, e.g., [Ave19; BN01] for formal definitions.

Corollary 6.2.5. If X is a polyhedron, then CX(A) is power-cone representable. If
in addition ATX is rational, then CX(A) is second-order representable and thus, has
semidefinite extension degree 2.

We provide a concrete description of the second-order-cone program in Chapter 7.

Proof. By Theorem 6.1.8, polyhedral X have finitely many X-circuits, up to multi-
ples. Apply Theorem 6.2.2 and finiteness of the normalized circuits ΛX(A) to write

CX(A) =
∑

λ∈ΛX (A)
CX(A,λ) +

∑
α∈A

R+ · e〈α,x〉.

The first claim follows as each of the finitely many sets CX(A,λ) appearing in the
above sum are (dual) power-cone representable. Elements in the sum

∑
α∈AR+ · e〈α,x〉

trivially have semidefinite extension degree one. For every other element, observe
that under the rationality assumptions, we have ΛX(A) ⊆ QA. Using β := λ− and
m := | suppλ|, it is well-known that the m-dimensional λ-weighted power-cone as
well as its dual are second-order representable when λ\β is a rational vector in the
(m− 1)-dimensional probability simplex [BN01, Section 3.4]. The last claim follows
as the semidefinite extension degree of the second-order-cone is 2 [BN01, Section
2.3].

The first part of Corollary 6.2.5 generalizes the case X = Rn considered by Papp
for polynomials [Pap19]. That aspect of the corollary has uses in computational
optimization when applied judiciously. The second part of Corollary 6.2.5 general-
izes results by Averkov [Ave19] and Wang and Magron [WM20b] for ordinary SONC
polynomials and the results on the S-cone in Chapter 5.

We now work towards finding a simple representation of dual λ-witnessed X-
AGE-cones CX(A,λ)∗. We begin this process by treating the primal as a cone of
coefficients contained in RA, and finding an explicit representation of the primal in
terms of the elementary dual power-cone Pow(λ)∗.

Proposition 6.2.6. For λ ∈ Nβ with λβ = −1 and σX(−Aλ) <∞, the λ-witnessed
X-AGE-cone admits the representation

CX(A,λ) = {c ∈ RA : β := λ−, c\β ≥ 0, w ∈ Pow(λ)∗,

w|λ+ = c|λ+ ,wβ = cβe
σX (−Aλ) − r, r ≥ 0}. (6.11)
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Proof. First, we note that some inequality constraints c\β ≥ 0 are already implied
by w ∈ Pow(λ)∗. It is necessary to include the inequality constraints explicitly to
account for the case when suppλ ( A. The condition w ∈ Pow(λ)∗ can be rewritten
as ∏

α∈λ+
(cα/λα)λα ≥ |cβeσX (−Aλ) − r|. (6.12)

Meanwhile, the minimum of |cβeσX (−Aλ) − r| over r ≥ 0 is attained at r = 0 when
cβ < 0, and at r = cβe

σX (−Aλ) when cβ ≥ 0. In the cβ < 0 case, the constraint (6.12)
becomes ∏

α∈λ+
(cα/λα)λα ≥ −cβeσX (−Aλ).

In the cβ = 0 case, the constraint (6.12) is meaningless, since
∏
α∈λ+(cα/λα)λα ≥ 0 is

implied by c\β ≥ 0. As the constraint in the preceding display is similarly meaningless
when cβ > 0, we see that it can be used instead of (6.12) without loss of generality.

We can appeal to Proposition 6.2.6 to find a representation for CX(A,λ)∗ which
is analogous to Equation (6.9). Again, the dual is computed by treating the primal
as a cone of coefficients.

Proposition 6.2.7. For λ ∈ Nβ with λβ = −1 and σX(−Aλ) < ∞, the dual λ-
witnessed X-AGE-cone is given by

CX(A,λ)∗ =

v ∈ RA+ : β := λ−, eσX (−Aλ) ∏
α∈λ+

vλαα ≥ vβ

 . (6.13)

Proof. Let β = λ− as is usual. To v ∈ RA associate

inf{vT c : c ∈ CX(A,λ)}. (6.14)

A vector v belongs to CX(A,λ)∗ if and only if inf{vT c : c ∈ CX(A,λ)} = 0. We will
find constraints on v so that the dual feasible set for (6.14) is non-empty, which in
turn implies the claim.

We begin by noting that for any element α ∈ A \ suppλ, the only constraints
on cα, vα for c ∈ CX(A,λ), v ∈ CX(A,λ)∗ are cα ≥ 0, vα ≥ 0; therefore we assume
A = suppλ for the remainder of the proof. When considering the given expression for
(6.14) as a primal problem, we compute a dual using (6.11) from Proposition 6.2.6.
Under the assumption A = suppλ, the constraint c\β ≥ 0 is implied by w ∈ Pow(λ)∗

for w|λ+ = c|λ+ ,wβ = cβe
σX (−Aλ) − r, r ≥ 0. Therefore, when forming a Lagrangian

for (6.14) using (6.11), the dual variable to c\β ≥ 0 may be omitted.
For the remaining constraints w ∈ Pow(λ)∗ and r ≥ 0, we use dual variables

µ ∈ Pow(λ) and t ∈ R+, respectively; the Lagrangian is

L(c, r,µ, t) = vT c−
∑
α∈λ+

µαcα − µβ(cβeσX (−Aλ) − r)− tr

=
∑
α∈λ+

cα(vα − µα) + cβ(νβ − µβeσX (−Aλ))− r(t− µβ).

Since we have assumed suppλ = A and σX(−Aλ) < ∞, for the Lagrangian to be
bounded below over c ∈ RA and r ∈ R, it is necessary and sufficient that vα = µα
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for all α ∈ λ+, νβe−σX (−Aλ) = µβ and µβ = t. Hence,

inf{vT c : c ∈ CX(A,λ)}

= inf
{

sup{L(c, r,µ, t) : (µ, t) ∈ Pow(λ)×R+} : (c, r) ∈ RA ×R

}

= sup
{

inf{L(c, r,µ, t) : (c, r) ∈ RA ×R} : (µ, t) ∈ Pow(λ)×R+

}
=0.

The proposition follows by applying the definition of Pow(λ).

6.2.1 Excursus: The Conditional S-Cone

Nonnegativity certificates of a given exponential sum f on a convex set X ⊆ Rn

were originally studied and introduced by Murray, Chandrasekaran, and Wierman
(not only for exponential sums but also for polynomials). Even though we study
the setting of exponential sums in this chapter, there exist similar X-nonnegativity
certificates for elements in the S-cone, i.e., generalized polynomial and exponential
functions of the form f =

∑
α∈A

cα|x|α +
∑
β∈B

dβx
β.

Let X ⊆ Rn be convex and closed. We consider the set CS(X,A,B) of functions
of the form (5.1) supported on A and B that are nonnegative on X. In contrast to
the situation studied in Chapter 5, in the constrained case, observe that even if the
term dβx

β for every element β ∈ Nn \ (2N)n is never globally nonnegative, there
might exist some convex and closed X ⊆ Rn such that dβxβ is nonnegative on X.

Let A ⊆ Rn, B ⊆ Nn \ (2N)n, and f =
∑
α∈A

cα|x|α +
∑
β∈B

dβx
β with cα, dβ ∈ R

for all α ∈ A and β ∈ B.

Theorem 6.2.8. Let X ⊆ Rn be closed and convex and suppose there exists exactly
one nonpositive term, i.e., either

1. there exists a designated β′ ∈ B such that dβ′xβ
′
< 0 for some x ∈ X, dβxβ ≥ 0

for all β ∈ B \ {β′},x ∈ X and cα ≥ 0 for all α ∈ A or

2. there exists a designated α′ ∈ A such that cα′ < 0, cα ≥ 0 for all α ∈ A \ {α′}
and dβxβ ≥ 0 for all β ∈ B and x ∈ X.

Then, f is nonnegative if and only if

1. for Xβ′ = X ∩ {x ∈ Rn : dβ′xβ
′
< 0}, there exists ν ∈ R

A,B\{β′}
+ such that

σXβ′

 ∑
α∈A∪(B\{β})

να(β
′ − α)) +D(ν|A, ec) +D(ν|B, ed

 ≤ −|dβ|
for case (1), and

2. for Xα′ = X ∩ {x ∈ Rn : cα′ < 0}, there exists ν ∈ R
A\{α′},B
+ such that

σXα′

 ∑
α∈(A\{α′})∪B

να(β − α)) +D(ν|A, ec) +D(ν|B, ed

 ≤ cβ,

for case (2).
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Proof. We only prove the first statement. The second one is an immediate con-
sequence of the statement on exponential sums by Murray, Chandrasekaran, and
Wierman [MCW21b].

Let Xβ′ be defined as declared above and let

δXβ′ (x) =

{
0 if x ∈ Xβ′ ,
−∞ otherwise

.

Following the proof of Murray, Chandrasekaran, and Wierman for conditional SAGE
certificates, f is nonnegative if and only if

p∗ = inf{δXβ (x) +
∑
α∈A

cα|x|α +
∑

β∈B\{β′}
dβx

β + dβ′x
β′ ,x ∈ Rn} ≥ 0.

With the definition of δXβ′ , we assume, without loss of generality, dβ′xβ
′
= −|dβ′ ||xβ

′ |
and f =

∑
α∈A

cα|x|α +
∑

β∈B\{β′}
|dβ||x|β − |dβ′ ||x|β

′ because we have dβxβ ≥ 0 for all

β ∈ B \ {β′}.
Hence, we can equivalently compute

f∗ = inf{δXβ′ (x) +
∑
α∈A

cα|x|α−β
′
+

∑
β∈B\{β′}

dβ|x|β−β
′ ,x ∈ Rn}

= inf{δXβ′ (x) +
∑
α∈A

cαe
〈x,(α−β′)〉 +

∑
β∈B\{β′}

dβe
〈x,β−β′)〉,x ∈ Rn} ≥ |dβ′ |.

Following [MCW21b], this is equivalent to

sup
v∈RA+

σXβ′

 ∑
α∈A∪(B\{β′})

να(α− β′)) +D(ν|A, ec) +D(ν|B, ed

 ≤ −|cβ′ |,
Hence, f is X-nonnegative if and only if there exists ν ∈ R

A,B\{β′}
+ such that

σXβ′

 ∑
α∈A∪(B\{β′})

να(α− β′)) +D(ν|A, ec) +D(ν|B, ed

 ≤ −|cβ′ |,

Of course, having B = ∅, this should match the case of X-AGE exponentials, and
it indeed does because for cα′ < 0 for some α′ ∈ A, we naturally have cα′ = −|cα′ |.

Note moreover that in the constrained case, in general we do not have (as we
have in the unconstrained case) that a polynomial is X-nonnegative if and only if
the corresponding exponential sum is X-nonnegative, because −X ⊆ X does not
necessarily hold in every case.

6.2.2 X-Circuits and Their Supports

In this subsection, we study the relationship between X-circuits and their supports.
As stated in the introduction, in the classical case of affine circuits, the normal-

ized circuits are uniquely determined by their supports. Moreover, as a consequence
of Theorem 6.1.9, in the case X = [−1, 1], the normalized X-circuits are uniquely
determined by their signed supports. As explained in the following, this phenomenon
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does not extend to sublinear circuits for arbitrary sets. In the special case of sublin-
ear circuits supported on two elements, the two nonzero entries are additive inverses
of each other, so that, for a given β and a given support, this signed support in-
deed uniquely determines the circuit up to a positive factor. In order to exhibit the
mentioned phenomenon, we present a counterexample with support size 3.

Example 6.2.9. Let A = {α1,α2,α3} =
{
(0, 0)T , (1, 0)T , (0, 1)T

}
⊆ R2. We show

that for β := α1, there are two non-proportional circuits which are supported on all
three elements of A. Specifically, we construct an example in which

ν(1) := (−2, 1, 1)T and ν(2) := (−3, 1, 2)T

are sublinear circuits. Note that both of them have the same signed support but they
are not multiples of each other. Observe that

−Aν(1) = (−1,−1)T , −Aν(2) = (−1,−2)T .

We set up X in such a way that (−1,−1)T and (−1,−2)T are normal vectors of X.
For example, choose X as the cone in R2 spanned by (−1, 1)T and (2,−1)T . We
obtain

−ATX = pos


 0 0

1 0
0 1

( 1
−1

)
,

 0 0
1 0
0 1

( −2
1

)
= pos


 0

1
−1

 ,

 0
−2

1


 .

Since N◦β = N◦(0,0) = R · (1, 1, 1)T + R×R≤0 ×R≤0, it can be verified (for example,
using a computer calculation) that ν(1) and ν(2) are indeed sublinear circuits, and
that they are the only ones having a negative component νβ up to scaling by a positive
factor.

In the example, the two distinct sublinear circuits ν(i), 1 ≤ i ≤ 2, with identical
signed supports, have different expressions Aν(i), that is, Aν(1) 6= Aν(2). By the
following statement, it is not possible to have two distinct sublinear circuits with the
same signed support and identical nonzero values of Aν(i).

Lemma 6.2.10. Let ν(1) and ν(2) be sublinear circuits with the same signed support
and such that Aν(1) = Aν(2). Then, ν(1) and ν(2) are proportional, and in case
Aν(1) = Aν(2) 6= 0, the equality ν(1) = ν(2) holds.

Proof. Let ν(1) and ν(2) have the same signed support with Aν(1) = Aν(2). Set β
as the index of the negative component of ν(1) and ν(2). Assuming ν(1) 6= ν(2), the
precondition supp ν(1) = supp ν(2) implies that for sufficiently small ε > 0, the vectors

ν ′ := ν(1) − εν(2) and ν ′′ := ν(1) + εν(2)

are both contained in Nβ \ {0} as well. Observe that

σX(−Aν ′) = σX(−Aν(1))− εσX(−Aν(2)) <∞ and
σX(−Aν ′′) = σX(−Aν(1)) + εσX(−Aν(2)) <∞.
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Moreover, ν(1) is a convex combination ν(1) = 1
2ν
′ + 1

2ν
′′ for which ν 7→ σX(−Aν) is

linear on [ν ′, ν ′′]. Since Aν(1) = Aν(2), the vectors ν(1) and ν(2) are non-proportional
or we have Aν(1) = Aν(2) = 0. In both cases, if ν(1) and ν(2) are non-proportional,
then this contradicts that ν(1) is a sublinear circuit.

6.2.3 Necessary and Sufficient Conditions

In this subsection, we obtain some criteria for elements ν ∈
⋃
β∈ANβ to be X-circuits

of some fixed set X. These criteria only involve the supports rather than the exact
values of the coefficients. Recall that for an X-circuit ν, we denote by ν− the single
index β with νβ < 0 and ν+ := {α : να ≥ 0}. Moreover, recall that in the classical
case of affine matroids, any simplicial circuit ν supported on at least three elements
has no other support point except ν− contained in the relative interior of the convex
hull of all its support points, and the coefficients of ν+ are positive multiples of the
barycentric coordinates of β, i.e., relint conv(supp(ν))∩ν+ = ∅ andAν = 0 (compare
Chapter 3 or see, e.g., [FW19]). In the following theorem, we generalize this property
to the case of X-circuits.

Theorem 6.2.11. If λ ∈ ΛX(A,β) for β ∈ A, then relint conv(supp(λ)) ∩ λ+ = ∅.
Moreover, if β ∈ conv(λ+), then Aλ = 0.

Proof. Fix λ ∈ ΛX(A,β). For the first statement, suppose there exists ᾱ ∈ λ+ such
that ᾱ ∈ relint conv(supp(λ)). Hence, there exist θα ∈ [0, 1) for α ∈ (λ+ \ {ᾱ})∪{β}
such that ∑

α∈λ+\{ᾱ}
θα + θβ = 1 and

∑
α∈λ+\{ᾱ}

θαα+ θββ = ᾱ.

Let τ ∈ (0, 1] be maximal such that τθαλᾱ ≤ λα for α ∈ (λ+ \ {ᾱ}) ∪ {β} and
(1 + τ )λᾱ < 1. As λᾱ < 1, this does indeed exist. The two vectors ν(1) and ν(2)

defined by

ν(1)α =

{
λα + τθαλᾱ for α ∈ (λ+ \ {ᾱ}) ∪ {β},
(1− τ )λᾱ for α = ᾱ

and ν(2)α =

{
λα − τθαλᾱ for α ∈ (λ+ \ {ᾱ}) ∪ {β},
(1 + τ )λᾱ for α = ᾱ

(and 0 outside of λ+ ∪ {β}) are non-proportional elements of Nβ with (ν(i))+ ⊆ λ+

for i = 1, 2. Moreover, Aν(i) = Aλ for i = 1, 2 and λ ∈ relint[ν(1), ν(2)], which
contradicts the X-circuit property of λ. For the second statement, suppose that
β ∈ conv(λ+) and Aλ 6= 0. Then, there exists a normalized λ′ ∈ Nβ with λ+ = (λ′)+

and Aλ′ = 0. Let τ be the maximal real number with ν(1) := λ − τλ′ ∈ Nβ.
That maximum clearly exists, and, since (λ′)+ = λ+, the number τ is positive.
Moreover, since λ and λ′ are normalized, we have τ ≤ 1. The sublinear circuit
ν(2) := λ + τλ′ is also clearly contained in Nβ. Since λ,λ′ are non-proportional
and τ > 0, the sublinear circuits ν(1) and ν(2) are non-proportional. Further, since
ν(1) + ν(2) = 2λ, we see that λ can be written as a convex combination of the two
non-proportional elements ν(1) ∈ Nβ and ν(2) ∈ Nβ. Due to Aλ′ = 0, we obtain
σX(−Aν(1)) = σX(−Aν(2)) = σX(−Aλ), and thus

σX(−Aλ) =
1
2 (σX(−Aν

(1)) + σX(−Aν(2))).

Hence, λ /∈ ΛX(A,β).
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We can provide the following two cases of the converse of Theorem 6.2.11. In
particular, both cases will be applicable for X = [−1, 1]n. We can assume that
β ∈ conv(λ+)− rec(X)∗ since otherwise any λ ∈ Nβ \ {0} will have σX(−Aλ) = ∞
and hence, violate condition (1) in the definition of an X-circuit.

Lemma 6.2.12. Given β ∈ A, let λ ∈ Nβ \ {0} be a normalized element such that
λ+ consists of affinely independent vectors and with β ∈ conv(λ+)− rec(X)∗.

1. If | supp(λ)| = 2 or

2. if X is full-dimensional, β ∈ conv(λ+), Aλ = 0,

then λ ∈ ΛX(A,β).

Note that, since in the previous theorem, λ+ consists of affinely independent
vectors, we have relint conv(λ+) ∩ λ+ = ∅.

Remark 6.2.13. If the property of full-dimensionality is omitted in the second condi-
tion, the statement is not true anymore. As a counterexample, let X be the singleton
set X = {1} and let A = {1, 2, 3}. Then λ = 1

2 (1,−2, 1)T is not an X-circuit because
λ = 1

2λ
(1) + 1

2λ
(2) with λ(1) = (1,−1, 0)T and λ(2) = (0,−1, 1)T and ν → σX(−Aν)

is linear on [λ(1),λ(2)]. Note that the functions x 7→ e〈x,α〉, α ∈ A are not linearly
independent on X.

Proof of Lemma 6.2.12. For the first statement, suppose there exist ν(1), ν(2) ∈ Nβ

decomposing λ. Then, supp(ν(i)) ⊆ supp(λ) for i ∈ {1, 2} because the cancellation
of terms not contained in supp(λ) is not possible, as the negative term always corre-
sponds to β. Since ν(1)β < 0 and ν(2)β < 0 and | supp(λ)| = 2, both ν(1) and ν(2) are
proportional to λ.

Now, consider the second condition. Since the property of being an X-circuit
is invariant under translation of X, we can assume, without loss of generality, that
0 ∈ intX. Suppose that there exist non-proportional, normalized λ(1),λ(2) ∈ Nβ and
θ1, θ2 ∈ (0, 1) with θ1 + θ2 = 1 such that

2∑
i=1

θi(λ
(i),σX(−Aλ(i))) = (λ,σX(−Aλ)).

We distinguish two cases. If Aλ(1) = 0, then Aλ(2) = − θ1
θ2
Aλ(1) = 0. Hence, the

uniqueness of the barycentric coordinates with respect to a given affinely independent
ground set implies λ(1) = λ(2), which is a contradiction to their non-proportionality.

By the argument above Aλ(2) = 0 implies Aλ(1) = 0. Hence, if Aλ(1) 6= 0, we
have Aλ(2) = − θ1

θ2
Aλ(1) 6= 0 as well. Then 0 ∈ intX implies σX(−Aλ(1)) > 0 and

σX(−Aλ(2)) > 0. Since σX(−Aλ) = −σX(0) = 0, the mapping ν 7→ σX(−Aν)
cannot be linear on [λ(1),λ(2)].

X-Circuits of Polyhedral Cones X

As discussed after Theorem 6.1.8, in the case of polyhedral cones X, we have that
σX(−Aλ) = 0 whenever this value is finite. Since we will reduce the determination
of the sublinear circuits ΛX(A) for a cone X in some prominent cases to the classical
affine circuits ΛRn(A) (which of course is also a case of a polyhedral cone), we first
look at an example for the latter case. In the following, we examine sublinear circuits
for various sets X ⊆ Rn (for some n ∈ N) and support sets, which have the form



108 Chapter 6. Sublinear Circuits and the Conditional SAGE-Cone

A = {(i, j) : 1 ≤ i, j ≤ k}, k ∈ N. In these situations, we can write a sublinear
circuit ν as a matrix M (ν) ∈ Rk×k such that M (ν)

i,j = ν(i,j) for all (i, j) ∈ A.

Example 6.2.14. For X = R2 and support A = {(i, j) : 1 ≤ i, j ≤ 3}, there are
16 sublinear circuits (up to multiples). Namely, there are 8 sublinear circuits with
support size 3 (all of them have nonzero entries 1,-2,1; they appear in the three rows,
the three columns and the two diagonals of the 3× 3-matrix). Moreover, there are
the following 8 sublinear circuits of support size 4. Here, the upper left entry of the
matrices refers to the support point (1, 1): 1 0 1

0 −4 0
0 2 0

 and

 0 1 0
1 −3 0
0 0 1

 , (6.15)

as well as the 90-degree, 180-degree and 270-degree rotations about the (2, 2)-element
of these matrices. As 0 ∈ int R2 and rec(R2)∗ = {0}, in particular this reflects the
statements of Theorem 6.2.11 and Lemma 6.2.12.

Next, we consider the sublinear circuits of the nonnegative orthant Rn
+. For a non-

empty subset S ⊆ [n] and a support point α ∈ A ⊆ Rn, we write αS for the projection
of α onto the components of S, i.e., αS := (αs)s∈S . We also set AS := {αS : α ∈ A}
and for a matrix M with n rows, we set MS as the submatrix of M defined by the
rows with indices in S, which, in particular, yields MSλ = (Mλ)S .

Theorem 6.2.15. Let X = Rn
+ and β ∈ A. A normalized element λ ∈ Nβ is

contained in ΛX(A,β) if and only if there exists a non-empty subset S ⊆ [n] such
that |{αS : α ∈ suppλ}| = | supp(λ)| and where λ is an R|S|-circuit for the support
set AS and (Aλ)[n]\S > 0.

Remark 6.2.16. The latter condition in Theorem 6.2.15 implies βS = (Aλ+)S and,
hence, βS ∈ relint conv((λ+)S) and β[n]\S ∈ conv((λ+)[n]\S)−R

[n]\S
+ .

Proof of Theorem 6.2.15. Let λ ∈ ΛX(A,β). Hence, Aλ ≥ 0. For every s ∈ [n]
with (Aλ){s} > 0, we observe that λ is also an Rn−1

+ -circuit for An\{s}. Similarly,
the X-circuit property of λ necessarily implies that there exists at least one s ∈ [n]
with (Aλ){s} = 0. Let S be the inclusion-maximal subset S ⊆ [n] with (Aλ)S = 0.
By the initial considerations, S 6= ∅ and λ is an R|S|-circuit of AS . This implies the
cardinality statement |{αS : α ∈ suppλ}| = | supp(λ)|. By definition of S, we have
(Aλ)[n]\S > 0. Conversely, let S ⊆ [n] with |{αS : α ∈ suppλ}| = | supp(λ)| such
that λ is an R|S|-circuit of AS and (Aλ)[n]\S > 0. Then λ is an R

|S|
+ -circuit for AS

and, further, an X-circuit for A.

Theorem 6.2.15 can be used in the reduction of the enumeration of all X-circuits
to the enumeration of all classical affine circuits.

Example 6.2.17. For X = R2
+ and the support set A = {(i, j) : 1 ≤ i, j ≤ 3},

there are 65 normalized sublinear circuits. Namely, by Theorem 6.2.15, there are

1. 27 normalized sublinear circuits of cardinality 2, namely, λ = −δ(i1,j1) + δ(i2,j2)

for 1 ≤ i1 ≤ i2 ≤ 3, 1 ≤ j1 ≤ j2 ≤ 3; that is, the entry 1 appears in the lower
right quadrant of the entry −1.

2. 16 normalized sublinear circuits in which the entries 1
2 ,−1, 1

2 appear in columns
1,2, and 3, respectively, such that the entry −1 appears above the line through
the two entries 1

2 .
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3. 16 normalized sublinear circuits in which the entries 1
2 appear in rows 1,2, and

3, respectively, such that the −1 appears to the left of the line containing the
two entries 1

2 .

4. 8 R2-circuits of cardinality 4, which are the normalized versions of the ones
from Example 6.2.14.

Since the diagonal and the anti-diagonal are counted both in cases (2) and (3), we
have to subtract 2, which gives 27+ 16+ 16+ 8− 2 = 65. The following table shows
the number of sublinear circuits with ν− = {(i, j)} in row i and column j .

1 2 3
1 8 14 2
2 14 21 2
3 2 2 0

Exemplarily, for the case ν− = {(2, 1)}, there are five circuits of type (1) as well as
the following nine (in the subsequent list not normalized) sublinear circuits ν with
ν− = {(2, 1)}, i.e., the component with index (1, 2) is the negative component. As
before, the upper left entry of the matrices refers to the support point (1, 1): 1 −2 1

0 0 0
0 0 0

 ,

 1 −2 0
0 0 1
0 0 0

 ,

 1 −2 0
0 0 0
0 0 1

 ,

 0 −2 1
1 0 0
0 0 0

 ,

 0 −2 0
1 0 1
0 0 0

 ,

 0 −2 0
1 0 0
0 0 1

 ,

 0 −2 1
0 0 0
1 0 0

 ,

 0 −2 0
0 0 1
1 0 0

 ,

 0 −2 0
0 0 0
1 0 1

 .

The following theorem characterizes the connection between the X-circuits and
the Rn-circuits for more general polyhedral cones X.

Theorem 6.2.18. Let X = pos{v(1), . . . , v(k)} be an n-dimensional polyhedral cone
spanned by the vectors v(1), . . . , v(k) where k ≥ n. Then,

{λ ∈ ΛX(A) : Aλ = 0} = ΛRn(A). (6.16)

In the definition of ΛRn(A) we use in this chapter, there are no elements in
ΛRn(A) which describe circuits supported on a single element as we used them in
Chapters 3, 4 and 5.

Proof. Fix β ∈ A and denote by W the k× n-matrix whose rows are the transposed
vectors (v(1))T , . . . , (v(k))T . Hence, X∗ = {x ∈ Rn : Wx ≥ 0}. The set ΛX(A,β)
is the set of normalized vectors spanning the extreme rays of the cone

KX = {ν ∈ Nβ : σX(−Aν) ≤ 0} = {ν ∈ Nβ : Aν ∈ X∗}
= {ν ∈ Nβ : WAν ≥ 0}

and the set Λn
R(A,β) is the set of normalized vectors spanning the extreme rays of

the cone

KRn = {ν ∈ Nβ : σRn(−Aν) ≤ 0} = {ν ∈ Nβ : Aν = 0}.
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Since the matrix W has rank n, the linear mapping x 7→ Wx is injective, and thus,
its kernel is {0}. Hence, KRn = {ν ∈ Nβ : WAν = 0}. The cone KRn is contained
in KX . Consequently, if λ ∈ Nβ is not contained in the right hand side of (6.16),
it is not contained in the left hand side. Conversely, let λ ∈ Nβ be contained in
the right hand side of (6.16). Then, Aλ = 0 and WAλ = 0. Assume there exists
a decomposition into a convex combination λ = θ1λ

(1) + θ2λ
(2) with WAλ(1) 6= 0.

At least one component of WA(λ− θ1λ
(1)) = WAθ2λ

(2) is smaller than zero since
WAλ = 0 as well as WAλ(1) ≥ 0 and nonzero. This is a contradiction. Hence, λ is
contained in the left hand side of (6.16).

6.2.4 The n-Dimensional Cube X = [−1, 1]n

We discuss the sublinear circuits of the n-dimensional cube [−1, 1]n, which is a
prominent case of a compact polyhedron. Throughout this subsection, we assume
X = [−1, 1]n for some fixed n ∈ N and A ⊆ Rn non-empty and finite. We can al-
ready apply some of the former statements to gain knowledge about the structure of
X-circuits. For example, as rec(X)∗ = Rn = − rec(X)∗, Lemma 6.2.12 implies that
every element supported on exactly two points is an X-circuit. Hence, we examine
the structure of those X-circuits λ ∈ ΛX(A) that have more than two support points.
We begin with a necessary criterion.

Lemma 6.2.19. Let λ ∈ Nβ with λβ = −1 for some β ∈ A and | supp(λ)| ≥ 3. If
for all j ∈ [n] (

αj ≤ βj for all α ∈ λ+
)

or
(
αj ≥ βj for all α ∈ λ+

)
, (6.17)

then λ /∈ ΛX(A).

Note that the precondition expresses that there exists a vertex v of [−1, 1]n such
that for all α ∈ λ+, the maximal face of the function x 7→ (β − α)Tx contains v.

Proof. We can assume β /∈ relint(conv(λ+)) since otherwise the preconditions imply
β = α for all α ∈ λ+, violating | supp(λ)| ≥ 3. Hence, we have Aλ 6= 0 and the
supremum of x 7→ (−Aν)Tx is attained at some vertex of [−1, 1]n.

Now assume λ ∈ ΛX(A). In order to come up with a contradiction, we construct a
decomposition of λ =

∑
α∈λ+ ν

(α) with supports supp{ν(α)} = {α,β} of cardinality 2
by setting

θαν
(α)
α := λα and θαν

(α)
β := −θαν(α)α = −λα for all α ∈ λ+.

We observe that ν(α) ∈ Nβ for all α ∈ λ+ and (θα)α∈λ+ can be chosen with the
property

∑
α∈λ+ θα = 1. Moreover,

∑
α∈λ+

θαν
(α) = λ and

∑
α∈λ+

θασX(−Aν(α)) =
∑
α∈λ+

θα

n∑
j=1

∣∣∣ν(α)α (αj − βj)
∣∣∣ = ∑

α∈λ+

n∑
j=1
|λα(αj − βj)|

(6.17)
=

n∑
j=1

∣∣∣∣∣∣
∑
α∈λ+

λα(αj − βj)

∣∣∣∣∣∣ = σX(−Aλ).

By distinguishing the cases αj = βj and αj 6= βj , it is straightforward to see that
this expression in terms of a convex combination is locally linear. Hence, λ cannot
be an X-circuit, which is the contradiction.
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We provide a slightly more general version of Lemma 6.2.19, whose proof is anal-
ogous.

Lemma 6.2.20. Let λ ∈ Nβ with λβ = −1 for some β ∈ A and | supp(λ)| ≥ 3.
Further, suppose that for J(λ) := {j : βj =

∑
α∈A λααj}, the support can be disjointly

decomposed into the two sets

A(1) = {α : αj = βj ∀ j /∈ J(λ)} and A(2) = {α : αj = βj ∀ j ∈ J(λ)} 6= ∅

such that for all j ∈ [n] \ J(λ), we have(
αj ≤ βj for all α ∈ A(2)

)
or

(
αj ≥ βj for all α ∈ A(2)

)
.

Then, λ is not an X-circuit of A.

Example 6.2.21. The planar case [−1, 1]2. For the planar square X = [−1, 1]2, we
provide some explicit descriptions of the sublinear circuits for support sets located on
a grid {(i, j) : 1 ≤ i, j ≤ k} for some k ∈N. If λ is a normalized [−1, 1]2-circuit, then,
due to rec([−1, 1]2)∗ = − rec([−1, 1]2)∗ = R2, there is no restriction on the location
of the negative coordinate. However, using Theorem 6.2.11, we can exclude potential
sublinear circuits λ ∈ Nβ for some β ∈ A where relint conv(supp(λ)) ∩ λ+ 6= ∅ and
those where β ∈ conv(λ+) but Aλ 6= 0; in particular, the latter situation excludes the
case β ∈ conv(λ+) \ relint conv(λ+). Moreover, using Lemma 6.2.19, we can exclude
all those potential [−1, 1]2-circuits where | supp(λ)| ≥ 3 and [(αj ≤ βj for all α ∈ λ+)
or (αj ≥ βj for all α ∈ λ+)]. For A = {(i, j) : 1 ≤ i, j ≤ 3}, i.e., for the case k = 3,
the structural statements allow us to obtain the exact set of sublinear circuits. Up to
multiples, there are 132 X-circuits:

1. 72 sublinear circuits supported on two elements, namely, δ(i1,j1) − δ(i2,j2) for
1 ≤ i1, i2, j1, j2 ≤ 3 with (i1, j1) 6= (i2, j2).

2. 27 sublinear circuits in which the entries 1
2 ,−1, 1

2 appear in columns 1,2, and 3,
respectively.

3. 27 sublinear circuits in which the entries 1
2 ,−1, 1

2 appear in rows 1,2, and 3,
respectively.

4. 8 sublinear circuits supported on 4 elements.

Since the diagonal and the anti-diagonal are counted both in cases (2) and (3), this
gives 72+27+27+8-2 = 132 sublinear circuits. The following table shows the number
of normalized sublinear circuits λ with λ− = {(i, j)} in row i and column j.

1 2 3
1 8 17 8
2 17 32 17
3 8 17 8

The subsequent list contains all 17 – not necessarily normalized – X-circuits ν with
ν− = {(1, 2)}, i.e., where the component with index (1, 2) is the negative component.
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As before, the upper left entry of each matrix refers to the support point (1, 1): 1 −1 0
0 0 0
0 0 0

 ,

 0 −1 0
1 0 0
0 0 0

 ,

 0 −1 0
0 0 0
1 0 0

 ,

 0 −1 0
0 1 0
0 0 0

 ,

 0 −1 0
0 0 0
0 1 0

 ,

 0 −1 1
0 0 0
0 0 0

 ,

 0 −1 0
0 0 1
0 0 0

 ,

 0 −1 0
0 0 0
0 0 1

 ,

 1 −2 1
0 0 0
0 0 0

 ,

 0 −2 1
1 0 0
0 0 0

 ,

 0 −2 1
0 0 0
1 0 0

 ,

 1 −2 0
0 0 1
0 0 0

 ,

 0 −2 0
1 0 1
0 0 0

 ,

 0 −2 0
0 0 1
1 0 0

 ,

 1 −2 0
0 0 0
0 0 1

 ,

 0 −2 0
1 0 0
0 0 1

 ,

 0 −2 0
0 0 0
1 0 1

 .

The case k = 4. In the case A = {(i, j) : 1 ≤ i, j ≤ 4}, a computer calculation
shows that there are 980 normalized X-circuits, which come in the following classes
with regard to λ−:

1 2 3 4
1 15 47 47 15
2 47 136 136 47
3 47 136 136 47
4 15 47 47 15

Note that in this case, the criteria of this and the previous section are not sufficient
to determine the set of sublinear circuits.

6.3 Reduced Sublinear Circuits in X-SAGE-Cones
The previous section showed that an X-SAGE-cone is generated using only X-circuits
and nonnegative exponentials supported on a single point. In this section, we seek to
understand whether all X-circuits are necessary in this representation.

The answer to this question depends on whether one means to reconstruct an
individual X-AGE-cone, or the larger X-SAGE-cone. For example, by reinterpreting
results from [MCW21a], we may infer that every simplicial Rn-circuit λ ∈ ΛRn(A,β)
generates a λ-witnessed AGE-cone containing an extreme ray of CRn(A,β). In this
way, every Rn-circuit is needed if one requires complete reconstruction of individual
AGE-cones. However, in Chapter 3, we showed that many extreme rays of AGE-cones
are not extreme when considered in the sum CRn(A) =

∑
β∈ACRn(A,β). Specifically,

an Rn-circuit λ ∈ ΛRn(A) is only needed in CRn(A) if exactly one element of A hits
the relative interior of conv(suppλ), see Chapter 3, Theorem 3.2.1. Circuits satisfying
this property were called reduced.

The goal of this section is to develop a reducedness criterion for X-circuits that
yields the most efficient construction of CX(A) by λ-witnessed X-AGE-cones, see
Theorems 6.3.5 and 6.3.6. We also seek to providing sufficient and necessary criteria
for extremality in certain polyhedric special cases.
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6.3.1 Definitions, Results, and Discussion

The definition of a reduced Rn-circuit is of a purely combinatorial nature, involving
the circuit’s support. This is appropriate because when speaking of affine-linear
simplicial circuits, the normalized vector representation λ is completely determined
by its support. As explained in the previous section, in the context of X-circuits, we
no longer have this property.

Therefore, when developing reduced X-circuits, it is useful to have a different
characterization of reduced Rn-circuits. Here, we can consider how Forsgård and de
Wolff defined the Reznick cone of A as the conic hull RRn(A) := pos ΛRn(A) and —
in the language of Chapter 3 — subsequently proved that an Rn-circuit λ is an edge
generator of RRn(A) if and only if it is reduced [FW19].

Our definition of reduced X-circuits involves edge generators of a certain cone in
a dimension one higher than the Reznick cone. To describe the cone and facilitate
later analysis, we need the following definition.

Definition 6.3.1. The functional form of an X-circuit ν ∈ RA is φν : RA → R

defined by
φν(y) =

∑
α∈A

yανα + σX(−Aν).

We routinely overload notation and use φν = (ν,σX(−Aν)) ∈ RA ×R to denote
the functional form of a given X-circuit. When representing the functional form of
an X-circuit by a vector in RA ×R, the scalar φν(y) can be expressed as an inner
product φν(y) = (y, 1)Tφν .

Definition 6.3.2. The circuit graph of (A,X) is

GX(A) = pos ({φλ : λ ∈ ΛX(A)} ∪ {(0, 1)})

where (0, 1) ∈ RA ×R.

While the cones from Theorem 6.1.7 are considered for one β ∈ A at a time, the
circuit graph accounts for all X-circuits at once. We note that

GX(A) = pos ({φλ : λ ∈ Λ?
X(A)} ∪ {(0, 1)}) . (6.18)

For the proof, we refer to [MNT20], Section 5.
The circuit graph also includes an extra generator that ultimately serves to make

the following definition more stringent.

Definition 6.3.3. The reduced X-circuits of A are vectors ν where ν/‖ν‖∞ ∈ ΛX(A)
and the corresponding functional form φν generates an extreme ray of GX(A). The
set of normalized reduced X-circuits is henceforth denoted by Λ?

X(A).

There is a subtle issue here that, in order for reduced X-circuits to be of any use
to us, the circuit graph must be pointed. This is ensured by our assumption of linear
independence of the functions {e〈α,x〉}α∈A on X (stated in Chapter 2). Regardless of
whether or not the circuit graph is pointed, the following theorem holds; for a proof,
compare [MNT20].

Theorem 6.3.4. CX(A)∗ = cl{exp y : (y, 1) ∈ GX(A)∗}.

Theorem 6.3.4 is a tool that we combine with convex duality to obtain the follow-
ing results.
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Theorem 6.3.5. If ΛX(A) is empty, then CX(A) = RA+. Otherwise,

CX(A) = cl
(
conv

⋃{
CX(A,λ) : λ ∈ Λ?

X(A)
})

. (6.19)

Proof. Using the representation GX(A) = pos ({φλ : λ ∈ Λ?
X(A)} ∪ {(0, 1)}) pro-

vided by (6.18), we can express

(y, 1) ∈ GX(A)∗ ⇔ (y, 1)T (λ,σX(−Aλ)) ≥ 0 ∀ λ ∈ Λ?
X(A). (6.20)

We obtain the following refined definition of CX(A)∗ by combining (6.20) with The-
orem 6.3.4:

CX(A)∗ =

v ∈ RA+ : ∀λ ∈ Λ?
X(A), β := λ−, eσX (−Aλ) ∏

α∈λ+
vλαα ≥ vβ

 . (6.21)

Whenever ΛX(A) 6= ∅, we can write Equation 6.21 as CX(A)∗ =
⋂
λ∈Λ?X (A) CX(A,λ)∗.

We appeal to conic duality principles (see [Roc97, Corollary 16.5.2]) to obtain the
claim of the theorem.

We point out how Theorem 6.3.5 involves a closure around the union over λ-
witnessed X-AGE-cones, while Theorem 6.2.4 has no such closure. The need for the
closure here stems from an application of an infinite version of conic duality in the
course of the theorem’s proof, while our proof of Theorem 6.2.4 required no duality
at all. The requisite use of conic duality is simpler when X is a polyhedron, as the
following theorem suggests.

Theorem 6.3.6. If X is a polyhedron and ΛX(A) is non-empty, then the associated
conditional SAGE-cone is given by the finite Minkowski sum

CX(A) =
∑

λ∈Λ?X (A)
CX(A,λ). (6.22)

Moreover, there is no proper subset Λ ( Λ?
X(A) for which CX(A) =

∑
λ∈Λ CX(A,λ).

The first part of Theorem 6.3.6 follows easily from the arguments we use to prove
Theorem 6.3.5. The second part of the theorem is much more delicate, and, in
fact, is the reason why GX(A) is defined in the manner of 6.3.2 rather than merely
pos{φλ : λ ∈ ΛX(A)}. We will use another statement without proof from Section 5
of [MNT20]:

Lemma 6.3.7. If X is polyhedral and Λ ( Λ?
X(A), then there must exist a ỹ ∈ RA

satisfying φλ′(ỹ) ≥ 0 for all λ′ ∈ Λ, yet for some λ ∈ Λ?
X(A) \Λ, we have φλ(ỹ) < 0.

Moreover, if ỹ ∈ RA satisfies φλ(ỹ) < 0 for some λ ∈ ΛX(A), then we have
exp ỹ 6∈ CX(A)∗.

Proof of Theorem 6.3.6. Using Theorem 6.3.4, we can work with the dual description
CX(A)∗ = cl{exp y : (y, 1) ∈ GX(A)∗}. Applying (6.18) then gives

CX(A)∗ = cl{exp y : φλ(y) ≥ 0 ∀λ ∈ Λ?
X(A)},

as ΛX(A) 6= ∅. We rewrite the condition on φλ(y) as a condition on v = exp y using
the power-cone formulation in Proposition 6.2.7. Since X is polyhedral, Theorem
6.1.8 tells us that there are finitely many normalized X-circuits ΛX(A). We may
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therefore express CX(A)∗ as a finite intersection of dual λ-witnessed X-AGE-cones,

CX(A)∗ =
⋂

λ∈Λ?X (A)
CX(A,λ)∗.

Moreover, each dual λ-witnessed X-AGE-cone CX(A,λ)∗ is an outer approximation
of the full-dimensional moment cone pos{eAT x : x ∈ X}, hence, there exists a point
v0 in the interior of the moment cone where v0 ∈ intCX(A,λ)∗ for all λ ∈ Λ?

X(A).
Therefore, by [Roc97, Corollary 16.4.2] we have

CX(A) = (CX(A)∗)∗ =
∑

λ∈Λ?X (A)
(CX(A,λ)∗)∗ =

∑
λ∈Λ?X (A)

CX(A,λ),

which establishes the first part of the theorem.
For the second part of the theorem, suppose Λ is a proper subset of Λ?

X(A). Con-
sider the set C =

∑
λ∈Λ CX(A,λ) and its dual C∗ =

⋂
{CX(A,λ)∗ : λ ∈ Λ}. Clearly,

since C ⊆ CX(A), we have C∗ ⊃ CX(A)∗ — we will show that this containment is
strict, i.e., C∗ ) CX(A)∗. Once this is done, duality will tell us that C ( CX(A).

Since C is contained within the exponential sum nonnegativity cone, we have
that C∗ contains the moment cone but is still contained in the nonnegative orthant.
As we have assumed X is non-empty, CX(A)∗ contains a point exp(ATx) ∈ RA++,
so CX(A)∗ ∩ relint RA+ 6= ∅. Rockafellar’s [Roc97, Theorem 18.2] states that every
relatively open set in RA+ is contained in the relative interior of some face of RA+. By
our assumption CX(A)∗ ∩RA++ 6= ∅, the only face of RA+ which contains CX(A)∗ is
RA+ itself. Since relintCX(A)∗ is relatively open, we have relintCX(A)∗ ⊂ RA++, and
the claim follows by the identity CX(A)∗ = cl relintCX(A)∗. So, C∗ = cl(C∗ ∩RA++).

Work with C∗ over the positive orthant using Proposition 6.2.7 to express it as
C∗ = cl{exp y : φλ(y) ≥ 0 ∀λ ∈ Λ}. By the first statement of Lemma 6.3.7 there
exists an element ỹ ∈ Y for which some λ ∈ Λ?

X(A) \Λ satisfies φλ(ỹ) < 0. Apply
the second statement of Lemma 6.3.7 to this pair (φλ, y) to see that exp ỹ can be
separated from the closed convex set CX(A)∗. We have therefore found a point ỹ
where exp ỹ ∈ C∗ and yet exp ỹ can be separated from CX(A)∗, so we conclude
C∗ ) CX(A)∗.

The task of actually finding the reduced X-circuits of A is difficult. When X
is a polyhedron, there are finitely many such X-circuits, but the naive method for
finding them involves Fourier-Motzkin elimination on a set of potentially very high
dimension. There is more hope for this problem when X is a cone. In that case,
X-circuits are the extreme rays of (kerA+A+X∗) ∩Nβ for β ∈ A, and no lifting
is needed to find these extreme rays with a computer. The reduced X-circuits could
then be computed by finding the extreme rays of the convex cone generated by the
X-circuits.

6.3.2 Reducibility and Extremality

By Theorem 6.3.6, the reduced sublinear circuits provide an irredundant decom-
position of conditional SAGE-cones. In this section, we discuss some criteria and
key examples for reduced sublinear circuits. As an application of the criteria, we
will determine the extreme rays of the R+-SAGE-cone in Theorem 6.4.1 and of the
[−1, 1]-SAGE-cone in Theorem 6.4.2. Remember from Chapter 3, Proposition 3.2.5,
that for the classical case of affine circuits supported on a finite set A, the following
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exact characterization in terms of the support is known. For the course of this section,
we fix A ⊆ Rn non-empty and finite.

Proposition 6.3.8. (also compare [KNT21, Corollary 4.7], [FW19, Theorem 3.2]) A
vector ν is a reduced Rn-circuit if and only if

A∩ relint conv ν+ = {ν−}.

For example, with regard to the two matrices in (6.15) of Example 6.2.14, the left
one is not reduced, but the right one is. The following theorem gives a generalization
to the constrained situation for the necessary direction of Proposition 6.3.8 when X
is a non-empty, convex set in Rn.

Theorem 6.3.9. Let λ ∈ ΛX(A,β). If there exists β′ ∈ A \ suppλ and some nor-
malized λ′ ∈ Nβ′ where (λ′)+ ⊆ supp(λ) and Aλ′ = γAλ for some γ ≥ 0, then λ is
not reduced.

Before providing the proof within this section, we discuss its consequences.

Corollary 6.3.10. Let λ ∈ ΛX(A,β). If (conv(supp(λ)) ∩A) \ supp(λ) 6= ∅, then
λ is not reduced. Consequently,

{λ ∈ Λ?
X(A) : Aλ = 0} ⊆ Λ?

Rn(A).

Proof. Let (λ′)+ denote the vertices of supp(λ) and set γ = 0. Then, the first
statement is a consequence of Theorem 6.3.9 for β′ ∈ conv(supp(λ)) \ supp(λ). The
second one is a direct consequence of Proposition 6.3.8 and the fact that for X = Rn

all X-circuits λ have the property Aλ = 0.

Using this corollary, we can provide an analogue to Theorem 6.2.18.

Theorem 6.3.11. Let X = pos{v(1), . . . , v(k)} be an n-dimensional polyhedral cone
spanned by the vectors v(1), . . . , v(k) where k ≥ n. Then,

{λ ∈ Λ?
X(A) : Aλ = 0} = Λ?

Rn(A). (6.23)

As in Theorem 6.2.18, there are no elements in Λ?
Rn(A) which describe circuits

supported on a single element, as we used them in Chapters 3, 4 and 5.

Proof. By Corollary 6.3.10, every λ ∈ Λ?
X(A) is contained in Λ?

Rn(A). Suppose there
exists some λ ∈ Λ?

Rn(A) that is not contained in Λ?
X(A). By Theorem 6.2.18, we

have λ ∈ ΛX(A). As λ /∈ Λ?
X(A), there exist m ∈ N and X-circuits ν(1), . . . , ν(m),

non-proportional to λ, which satisfy
∑
i≤m(ν

(i),σX(−Aν(i))) = (λ,σX(−Aλ)). Since
σX(−Aλ) = 0 and σX(y) ∈ {0,∞} for all y ∈ Rn, we have σX(−Aν(i)) = 0 for all
i ∈ [m].

As in Theorem 6.2.18, denote by W the k × n-matrix whose rows are the trans-
posed vectors (v(1))T , . . . , (v(k))T . Again,

σX(−y) <∞ if and only if Wy ≥ 0.

Since Aλ = WAλ = 0, we obtainWAν(i) = 0 and, as the kernel ofW is {0}, further,
Aν(i) = 0 for all i ∈ [m]. Hence, ν(i) ∈ Λ?

Rn(A) and therefore λ /∈ Λ?
Rn(A), which is

a contradiction.
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We illustrate the applicability of Theorem 6.3.9 in determining the reduced sub-
linear circuits by returning to the univariate examples X = [−1, 1] and X = R+,
which were started in Theorem 6.1.9.

Theorem 6.3.12. Let A = {α1, . . . ,αm} be sorted ascendingly where m ≥ 3.

(a) Let X = [−1, 1]. Then, Λ?
X(A) consists of those X-circuits which have the form

(1) λ = δ(2) − δ(1) or λ = δ(m−1) − δ(m) or (2)

λ =
αi−1 − αi
αi−1 − αi+1

δ(i−1) − δ(i) + αi−1 − αi
αi−1 − αi+1

δ(i+1) for some i ∈ {2, . . . ,m− 1}.

(b) Now, let X = R+. Then, Λ?
X(A) consists of those X-circuits which have the

form (1) λ = δ(2) − δ(1) or (2)

λ =
αi−1 − αi
αi−1 − αi+1

δ(i−1) − δ(i) + αi−1 − αi
αi−1 − αi+1

δ(i+1) for some i ∈ {2, . . . ,m− 1}.

Note that, in particular, this gives

Λ?
X(A) ∩

λ ∈ ⋃
β∈A

Nβ : | supp(λ)| = 3

 = Λ?
R(A)

for both cases. Remember from Chapter 3 that

Λ?
R(A) =

{(
αi+1 − αi
αi+1 − αi−1

)
ei−1 +

(
αi − αi−1
αi+1 − αi−1

)
ei+1 − ei : 1 < i < m

}
.

Proof of Theorem 6.3.12.

(a) By Theorem 6.1.9 and Corollary 6.3.10, the only candidates for normalized re-
duced X-circuits are

(i) λ = δ(i) − δ(i±1) or

(ii) λ =
αi − αi+1
αi−1 − αi+1

δ(i−1) − δ(i) + αi−1 − αi
αi−1 − αi+1

δ(i+1) for i ∈ {2, . . . ,m− 1}.

For every X-circuit δ(i+1)− δ(i) with i > 1, the X-circuit δ(i+1)− δ(1) satisfies the
precondition of Theorem 6.3.9 and for every X-circuit δ(i−1) − δ(i) with i < m,
the X-circuit δ(i−1)− δ(m) satisfies the precondition of Theorem 6.3.9. Hence, all
those X-circuits are not reduced.
We see that for all i ∈ [m], there is precisely one normalized X-circuit λ that
appears in the listed set of possible reduced X-circuits. As rec(X)∗ = R, there
exists at least one X-AGE exponential where the i-th coefficient is negative,
hence, CX(A,αi) 6= ∅ for all i ∈ [m]. As CX(A,αi) is the union of several λ-
witnessed X-AGE-cones and — by results earlier in this chapter — those cones
can be solely represented by reduced X-circuits, for every i ∈ [m], there exists at
least one reduced X-circuit in CX(A,αi). With this, the statement follows.

(b) As a first step towards seeing this, observe that since X = [0,∞) is a cone,
the functional form of a [0,∞)-circuit ν is simply φν(y) =

∑m
i=1 yiνi. Hence,

the reduced [0,∞)-circuits are exactly the edge generators of the cone pos Λ[0,∞)

generated by all the [0,∞)-circuits of types (1) and (2) listed in Theorem 6.1.9.
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Therefore, we have to show that {δ(2)− δ(1)}∪Λ?
R(A) are exactly the normalized

edge generators of pos Λ[0,∞).

For the X-circuits δ(j) − δ(i) (j > i) of type (1) in Theorem 6.1.9, we show that
they decompose if j > i+ 1 or i > 1. For j > i+ 1, this is apparent from the
decomposition

δ(j) − δ(i) = (δ(j) − δ(j−1)) + (δ(j−1) − δ(i)).

For j = i+ 1 and i > 1, δ(i+1) − δ(i) decomposes into(
−αi+1 − αi
αi − αi−1

δ(i−1) +
αi+1 − αi
αi − αi−1

δ(i)
)

+

(
αi+1 − αi
αi − αi−1

δ(i−1) − αi+1 − αi−1
αi − αi−1

δ(i) + δ(i+1)
)

,

i.e., into X-circuits with three non-vanishing components. As final consideration
for type (1), the X-circuit δ(2) − δ(1) cannot be written as a conic combination
of X-circuits with three nonzero entries because any conic combination of those
X-circuits has a positive entry in its non-vanishing component with maximal
index. For X-circuits of type (2) from Theorem 6.1.9, simply note that these are
also R-circuits. Therefore a necessary condition for a type (2) X-circuit λ to be
extremal in pos Λ[0,∞) is that λ belongs to Λ?

R(A).
It remains to be shown that none of the remaining X-circuits can be written as a
convex combination of the others. First note that an X-circuit ν ∈ Λ?

R(A) cannot
be decomposed into a sum which involves an X-circuit ν̃ with two vanishing
components. Namely, since Aν = 0 and Aν̃ > 0, we would obtain ν − ν̃ with
the property A(ν − ν̃) < 0, and thus, σ[0,∞)(−A(ν − ν̃)) = ∞, a contradiction.
And of course it is trivially true that no element λ ∈ Λ?

R(A) can be written as a
convex combination of other such elements. Since pos Λ[0,∞) is finitely generated
and there is no S ( {δ(2) − δ(1)} ∪ Λ?

R(A) for which pos Λ[0,∞) = posS, we
conclude that {δ(2) − δ(1)} ∪Λ?

R(A) are the reduced X-circuits of A.

Proof of Theorem 6.3.9. Since λ and λ′ are normalized elements in Nβ and Nβ′ , we
have ∑

α∈λ+ λα = 1 and λβ = −1, λα ≥ 0 for α ∈ A \ {β},∑
α∈(λ′)+ λ

′
α = 1 and λ′β′ = −1,λ′α ≥ 0 for α ∈ A \ {β′}.

Let τ be the maximal real number in [0, 1/γ] (with the convention 1/γ := ∞
if γ = 0) such that ν(1) := λ− τλ′ ∈ Nβ. That maximum clearly exists, and since
(λ′)+ ⊆ supp(λ), the number τ is positive. Moreover, since λ and λ′ are normalized
and distinct, we have τ < 1.

Similarly, let τ ′ be the maximal real number in [0, γ] with ν(2) := λ′ − τ ′λ ∈ Nβ′ .
Here, we have 0 ≤ τ ′ ≤ 1 (and, in particular, τ ′ = 0 if γ = 0 or (λ′)+ ( λ+). Hence,
ν(1) ∈ Nβ, ν(2) ∈ Nβ′ and 1− ττ ′ ∈ (0, 1].

Since ν(1) + τν(2) = λ− τλ′+ τλ′− ττ ′λ = (1− ττ ′)λ, we see that λ can be writ-
ten as a conic combination of the two non-proportional (not necessarily normalized)
elements ν(1) ∈ Nβ and ν(2) ∈ Nβ′ . Due to Aλ′ = γAλ and as both 1− τγ ≥ 0 and
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γ − τ ′ ≥ 0, we obtain

σX(−Aν(1)) = σX(−Aλ+ τAλ′) = σX(−Aλ+ τγAλ)
= (1− τγ)σX(−Aλ) = σX(−Aλ)− τσX(−Aλ′),

σX(−Aν(2)) = σX(−Aλ′ + τ ′Aλ) = σX(−γAλ+ τ ′Aλ)
= (γ − τ ′)σX(−Aλ) = σX(−Aλ′)− τ ′σX(−Aλ)

and further

σX(−Aλ) =
1

1− ττ ′ (σX (−Aλ)− τσX (−Aλ′) + τσX (−Aλ′)− ττ ′σX (−Aλ))

=
1

1− ττ ′
(
σX

(
−Aν(1)

)
+ τσX

(
−Aν(2)

))
,

which shows that (λ,σX(−Aλ)) does not generate an extreme ray in GX(A). By
definition of a reduced sublinear circuit, λ ∈ Λ?

X(A).

Example 6.3.13. The reduced sublinear circuits for the cube [−1, 1]2. We consider
again the support A = {(i, j) : 1 ≤ i, j ≤ k} for some k ∈ N. In the case k = 3,
there are 24 normalized reduced X-circuits, which come in the following classes:

1. 12 sublinear circuits with entries 1,−1, namely,

(a) 8 with entry −1 in a corner and entry +1 beside or below the corner,
(b) 4 with entry −1 in a non-corner boundary entry and entry +1 in the

central, interior entry,

2. 8 sublinear circuits, where the sequence 1
2 ,−1, 1

2 appears in a row (3 possibili-
ties), in a column (3 possibilities) or on the diagonal or antidiagonal,

3. 4 sublinear circuits supported on 4 elements, namely 0 1/3 0
1/3 −1 0

0 0 1/3

 ,

as well as the 90-degree, 180-degree and 270-degree rotation of this matrix.
Note that when starting from the set of all sublinear circuits λ for [−1, 1]2,
Theorem 6.3.9 is applicable to rule out that λ is reduced in a number of cases.
For example, the matrices 0 0 1/2

1/2 −1 0
0 0 0

 and

 0 0 1/2
1/2 0 0

0 −1 0


represent sublinear circuits λ and λ′ with the property Aλ = (−1/2, 0)T and
Aλ′ = (−3/2, 0)T , to which Theorem 6.3.9 can be applied in order to show that
λ is not reduced. Also note that all reduced R2-circuits for the support set A are
also reduced [−1, 1]2-circuits. Namely, since for all other [−1, 1]2-circuits λ, we
have σX(−Aλ) 6= 0, those circuits cannot be used to decompose an R2-circuit
(which has σX(−Aλ) = 0).

In the case k = 4 with 16 support points, a computer calculation shows that there
are 72 reduced sublinear circuits.
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6.4 Extreme Rays of Conditional SAGE-Cones in Di-
mension 1

In the previous section, we showed that by appropriate appeals to convex duality,
one may derive representations of CX(A) with little to no redundancy. Here we build
upon those results to completely characterize the extreme rays of the X-SAGE-cone
for the univariate cases X = [0,∞) and X = [−1, 1].

Theorem 6.4.1. For α1 < · · · < αm, the extreme rays of C[0,∞)({α1, . . . ,αm}) are:

(1) R+ · eα1x

(2) R+ · {eα2x − eα1x}

(3) R+ · {ci+1e
αi+1x + cie

αix + ci−1e
αi−1x : 2 ≤ i ≤ m− 1} with

ci+1 > 0, ci−1 > 0, and ci = −
(
ci−1
λi−1

)λi−1 ( ci+1
λi+1

)λi+1

where

λi+1 =
αi − αi−1
αi+1 − αi−1

, λi−1 =
αi+1 − αi
αi+1 − αi−1

, and ci−1
ci+1

≥ λi−1
λi+1

Theorem 6.4.2. Let X = [−1, 1] and A = {α1, . . . ,αm} be sorted ascendingly where
m ≥ 3. The extremal rays of CX(A) are the following:

1. R+ · (eα2x − eα1−α2eα1x)

2. R+ · (eαm−1x − eαm−1−αmeαmx)

3. R+ · {ci−1e
αi−1x + cie

αix + ci+1e
αi+1x}, with

ci−1 > 0, ci+1 > 0 and ci = −
(
ci−1
λi−1

)λi−1 ( ci+1
λi+1

)λi+1

where

λi−1 =
αi+1 − αi
αi+1 − αi−1

, λi+1 =
αi − αi−1
αi+1 − αi−1

and

αi−1 − αi+1 ≤ ln ci−1λi+1
ci+1λi−1

≤ αi+1 − αi−1

The rest of this section focuses on the proofs of the previous two theorems.

Proof of Theorem 6.4.1. Let A = {α1, . . . ,αm}. By Theorem 6.3.12, all edge genera-
tors of C[0,∞)(A) are either monomials or λ-witnessed X-AGE exponentials where λ
is a reduced [0,∞)-circuit. By Theorem 6.1.9, Λ?

[0,∞)(A) = {e
2− e1}∪Λ?

R(A). Since
n = 1, by Proposition 6.1.5 all X-circuits λ have | suppλ| ≤ 3. We therefore divide
the proof into considering cases of monomials and cases of X-AGE exponentials with
two or three terms.

First we address the monomials. Given f(x) = eαix with i > 1, we can write
f = f1 + f2 with f1(x) = eαix − eαi−1x and f2(x) = eαi−1x — the summand f1 is
nonnegative on [0,∞) because αi > αi−1, and f2 is globally nonnegative. Therefore,
the only possible extremal monomial in C[0,∞)(A) is f(x) = eα1x. Since X = [0,∞),
the leading term of any g ∈ CX(A) must have a positive coefficient. Moreover, if g
is non-proportional to f , the leading term of g must have an exponent greater than
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α1. Therefore, any convex combination of X-AGE exponentials g ∈ C[0,∞)(A) which
are non-proportional to f must disagree with f(x) in the limit as x tends to infinity.
We conclude f is extremal in C[0,∞)(A).

Now we consider the 2-term case, where, by Theorem 6.3.12, we have to consider
exponential sums of the form f(x) = c2e

α2x− c1e
α1x. We observe that f is nonnega-

tive on [0,∞) if and only if c2 ≥ c1 ≥ 0, and, furthermore that such exponential sums
are nonextremal unless c1 = c2. To see that f(x) = eα2x − eα1x is indeed extremal,
note that f cannot be written as a convex combination involving any 3-term X-AGE
exponentials because any conic combination of 3-term X-AGE exponentials has a
leading term with positive coefficient on eαix for some i ≥ 3.

We have already proven cases (1) and (2) of the proposition. By Theorem 6.3.12,
we know that any extremal 3-term X-AGE exponential belongs to a λ-witnessed
X-AGE-cone where λ is a reduced R-circuit. These reduced R-circuits have the
property suppλ = {i− 1, i, i+ 1} αi−1λi−1 + αi+1λi+1 = αi, λi = −1. Any X-AGE
exponential with such a witness is nonnegative on all of R. Therefore, any 3-term
X-AGE exponential f that is extremal in C[0,∞)(A) is also extremal in CR(A) ⊆
C[0,∞)(A), thus Theorem 3.2.1 implies

f(x) = ci+1e
αi+1x −

((
ci+1
λi+1

)λi+1 ( ci−1
λi−1

)λi−1
)
eαix + ci−1e

αi−1x. (6.24)

We have arrived at the final phase of proving part (3) of this proposition. By the
equality case in the AM/GM inequality and using eαix =

(
eλi+1αi+1x

) (
eλi+1αi−1x

)
,

one finds that the unique minimizer x? for functions (6.24) satisfies(
ci+1e

〈x?,αi+1〉

λi+1

)
=

(
ci−1e

〈x?,αi−1〉

λi−1

)
⇔ x? = ln

(
ci−1
ci+1

λi+1
λi−1

)
/(αi+1 − αi−1).

If Vi(λ, c) := (ci−1λi+1)/(ci+1λi−1) satisfies Vi(λ, c) < 1, then x? < 0 and, by conti-
nuity, we have inf{f(x) : x ≥ 0} > 0 — hence, the condition Vi(λ, c) ≥ 1 is necessary
for extremality. Furthermore, if Vi(λ, c) > 1, then the unique minimizer of f given by
(6.24) occurs at x? > 0. Such f cannot be decomposed as a convex combination which
involves 1-term or 2-term X-AGE exponentials (which have f(x) > 0 for x > 0), and
cannot be written as a convex combination consisting solely of 3-term X-AGE ex-
ponentials, see Theorem 3.2.1, therefore any f given by (6.24) with Vi(λ, c) > 1 is
extremal in C[0,∞)(A). All that remains is to show extremality of functions (6.24)
with Vi(λ, c) = 1. This follows from the same argument as Vi(λ, c) > 1, but we must
use the stationarity condition f ′(0) = 0 to preclude using 2-term extremal X-AGE
exponentials in a decomposition of f .

To prove the case X = [−1, 1], we first deal with the atomic extreme rays, that
is, extreme rays which are supported on a single element. These extreme rays are not
captured by the X-circuit view.

Lemma 6.4.3 (Atomic Extreme Rays of CX(A) for Compact Sets X). Let X ⊆ Rn

be a compact set and A ⊆ Rn be finite with |A| ≥ 2. Then, there are no atomic
extreme rays of CX(A).

Proof. As in Lemma 6.2.12, we use the invariance of the X-circuits under translation
of X and can, without loss of generality, assume 0 ∈ X. Let α 6= β ∈ A be arbitrary.
Assume that f = cαe

〈x,α〉 with cα > 0 is extremal. We observe that λ ∈ Nβ with
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λα = 1 = −λβ is an X-circuit inducing the ray

R+ ·
(
e〈x,α〉 − 1

es
e〈x,β〉

)
where s ≥ 0 is finite and such that σX(−Aλ)) = s. Hence, the X-AGE exponentials

f (1) = cαe
〈x,α〉 − cα

es
e〈x,β〉, f (2) = cα

s
e〈x,β〉

sum to f , contradicting the extremality of f .

Proof of Theorem 6.4.2. Let A = {α1, . . . ,αm} be sorted ascendingly. By Lemma
6.4.3, there are no atomic extreme rays, and by Theorems 6.3.12 and 6.3.6, all the
extreme rays are supported on two or three elements.

We start by considering the 2-term case. By Theorem 6.3.12, the only candidates
for extreme rays are the ones given in the cases (1) and (2) in this statement. Since
these cases are symmetric, it suffices to consider the case (1), i.e., some function
f(x) = eα2x − eα1 − α2eα1x. As a conic combination of 3-term AGE exponentials
and of functions of case (2) has a lowest-exponent term with positive coefficient, f
cannot be written as a convex combination involving any 3-term X-AGE functions
and of functions of case (2). Thus, f is indeed extremal.

Now, consider the 3-term case. By Theorem 6.3.12, the only candidates for ex-
treme rays are of the form f(x) = ci−1e

αi−1x + cie
αix + ci+1e

αi+1x with ci−1 > 0,
ci+1 > 0 and ci < 0. The proof of Theorem 6.4.1 shows that f must have a zero in
[−1, 1] and that the location x∗ of the zero is

x∗ = ln
(
ci−1λi+1
ci+1λi−1

)
/(αi+1 − αi−1)

where λi−1 and λi+1 are defined as in case (3) of this theorem. This gives the defining
condition for ci as well as the inequality conditions in case (3).

Any decomposition of f cannot involve a 2-term X-AGE exponential. For x∗ ∈
(−1, 1), this follows from the strict positivity of the 2-term X-AGE functions of type
(1) and (2). For the boundary situations x∗ ∈ {−1, 1}, we can additionally use the
derivative condition f ′(x∗) = 0 to exclude the 2-term X-AGE exponentials.

It remains to show that the 3-term X-AGE exponential f cannot be decomposed
in terms of 3-term AGE exponentials. However, since f has a zero in [−1, 1], and
thus, in R, by Theorem 3.2.1 it induces an extremal ray of the cone CR(A) and
cannot be decomposed using only 3-term X-AGE exponentials.
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Chapter 7

Constrained AM/GM-Based
Optimization

As an application of the concepts introduced in the previous chapter, we examine
some constrained optimization approaches based on the results for the unconstrained
case studied in Chapters 4 and 5. Here, we are no longer interested in the optimal
value of a given exponential sum on Rn but in the optimal value on a given set X.

As in the unconstrained case, we use sign constraints and the signed X-SAGE-
cone, i.e., A = A+ ∪A− where cα > 0 for all α ∈ A+ and where cα < 0 for each
α ∈ A−, and consider functions of the form

f =
∑
α∈A+

cαe
〈x,α〉 +

∑
α∈A−

cαe
〈x,α〉. (7.1)

Then, for a closed and convex set X ⊆ Rn and a finite set ∅ 6= A ⊆ Rn with
decomposition A = A+ ∪A− in the sense of (7.1), the conditional signed SAGE-cone
SX(A+,A−) is the cone of all functions that can be written either as a sum of X-AGE
exponentials of the form (7.1) or as elements cαe〈x,α〉 with α ∈ A+ and cα > 0. Again,
we denote the special case A− = {β} as SX(A+,β).

Then, we examine the problem

inf
x∈X

f(x) (7.2)

for functions f ∈ RA and A = A+ ∪A− as defined in (7.1).
In Section 7.1, we start by stating a symmetry-adapted decomposition theorem

that is analogous to the unconstrained case, namely, Theorem 7.1.1. It is followed
in Corollary 7.1.2 by a reduced relative entropy program certifying nonnegativity for
G-symmetric constraint sets.

In Section 7.2, we take the dual point of view again. For a certain subset of the X-
SAGE-cone that can be described by elements in the dual cone and a polyhedral conic
constraint set, we present a linear program yielding a certificate for nonnegativity,
which is based on two linear programs (LPXA+) and (LPXA−), see Theorem 7.2.3.

In the last part of this chapter, Section 7.3, we do not have the optimization
viewpoint anymore — in particular, we consider the original X-SAGE-cone instead
of the signed X-SAGE-cone. Here, we derive a second-order representation of the X-
SAGE-cone and its dual for polyhedral constraint sets X and under the assumption
on the support set A that ATX is rational, see Corollaries 7.3.9 and 7.3.10. The sizes
of the second-order-cone programs only depend on the number of sublinear circuits,
which, by Chapter 6, is finite, their structure, and the number of constraints in the
matrix representation of the polyhedral constraint set. Similar to the unconstrained
case, the techniques used in this subsection feature a (dual) circuit matrix.
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7.1 Exploiting Symmetries for Conditional SAGE
Both the symmetry-adapted decomposition theorem as well as the symmetrized rel-
ative entropy program in Chapter 4 allow a generalization to the constrained setting
as soon as we have a symmetric constraint set. Exploiting this structure can be used
to reduce the computation time of the resulting implementations.

First, we provide the constrained version of Theorem 4.2.3 for symmetric con-
straint sets X.

Theorem 7.1.1. Let X ⊆ Rn be convex and G-invariant, let f be a G-invariant
exponential sum of the form (7.1) and let Â− be a set of orbit representatives for
A−. Then, f ∈ SX(A+,A−) if and only if for every β̂ ∈ Â−, there exists an X-AGE
exponential hβ̂ ∈ SX(A+, β̂) such that

f =
∑
β̂∈Â−

∑
ρ∈G/ Stab(β̂)

ρhβ̂. (7.3)

The functions hβ̂ can be chosen to be invariant under the action of Stab(β̂).

Similarly, we obtain a symmetrized version of the corresponding relative entropy
program, analogous to Corollary 4.2.6.

Corollary 7.1.2. Let X ⊆ Rn be convex and G-invariant. A G-invariant exponential
sum f of the form (7.1) is contained in SX(A+.A−) if and only if for every β̂ ∈ Â−,
there exist c(β̂) ∈ RA+ and ν(β̂) ∈ RA+ such that

D(ν(β̂), e · c(β̂)) + σX
(
−

∑
α∈A+

ν
(β̂)
α (α− β̂)

)
≤ cβ̂ for every β̂ ∈ Â− and∑

β̂∈Â−

∑
σ∈Stab β̂\G

c
(β̂)
σ(α) ≤ cα for every α ∈ A+.

Both statements can be proven following the respective proofs for the uncon-
strained setting from Chapter 4.

7.2 Constrained Optimization via the Dual of the X-
SAGE-Cone and Linear Programming

Following the unconstrained case, in this subsection, we obtain a computationally fast
approximation of constrained optimization problems with polyhedral conic constraint
sets X ⊆ Rn via the dual X-SAGE-cone

S∗X(A
+,A−) =

{
v ∈ RA : v(f) ≥ 0 for all f ∈ SX(A+,A−)

}
.

As we did in the unconstrained case, we associate a function

f = |A−|
∑
α∈A+

vαe
〈α,x〉 +

∑
α∈A−

vαe
〈α,x〉

with every dual variable v ∈ S∗X(A
+,A−) ∩ RA6=0, and call the constructed cone

F∗X(A+,A−); for the special case A− := {β}, we define the cone F∗X(A+,β) analo-
gously.

Proposition 7.2.1. Let X ⊆ Rn be a conic, closed, convex set. It holds that
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1. F∗X(A+,β) ⊆ SX(A+,β) for any A+ ⊆ Rn and β ∈ Rn and

2. F∗X(A+,A−) ⊆ SX(A) for any A+ ⊆ Rn and A− ⊆ Rn.

As in the unconstrained case, in particular, every function in F∗X(A+,β) is non-
negative on X.

We emphasize the fact that constraints describing the primal X-SAGE-cone in-
volve some term “−σX(−Aλ)” on the greater side of the inequality whereas con-
straints describing the dual X-SAGE-cone involve some term “σX(−Aλ)” on the
greater side of the inequality. Indeed, this fact makes it necessary to use the assump-
tion that X is conic to prove the statement.

Proof.

1. Let X ⊆ Rn be a polyhedral, non-empty, and finite set, and A = A+ ∪ {β}
be defined as in (7.1). We first recall that for polyhedral sets X ⊆ Rn, the
conditional signed SAGE-cone is the set

SX(A
+,β) =

 ∑
α∈A+

cαe
〈x,α〉 + cβe

〈x,β〉 : cα ≥ 0 for all α ∈ A+, cβ < 0 and

∃ λ ∈ ΛX(A,β) with
∏
α∈λ+

(
cα
λα

)λα
eσX (−Aλ) ≥ −cβ

 .

Moreover, for polyhedral X, we can use the representaion of the proof of Corol-
lary 6.2.5. Then, applying Proposition 6.2.7, the dual of the signedX-AGE-cone
can be described asv ∈ RA :

for all α ∈ A+, vα ≥ 0; and for all β ∈ A−,
for all λ ∈ ΛX(A,β) , |vβ| ≤

∏
α∈λ+

vλαα eσX (−Aλ)

 .

As X is a cone, we have σX(−Aλ) = 0 for all normalized X-circuits λ, and
with this, in particular, σX(−Aλ) = 0 = −σX(−Aλ). Let f ∈ F∗X(A+,β)
with a corresponding vector of coefficients v ∈ SX(A+,β) ∩R

A+∪{β}
6=0 . By the

representation of the dual cone above, we have vα > 0 for all α ∈ A+, vβ < 0
by the definition of F∗X(A+,β), and for all λ ∈ ΛX(A,β), it holds that

−vβ ≤ |vβ| ≤
∏
α∈λ+

vλαα eσX (−Aλ) ≤
∏
α∈λ+

vα
λα

λα
e−σX (−Aλ).

The last inequality holds — besides the previous discussion on σX(−Aλ) — for
the same reason as in Proposition 4.3.1.

2. Applying the definitions of the primal and dual signed X-SAGE-cone and part
(1), we obtain

F∗X(A+,A−) ⊆
∑
β∈A−

S∗X(A
+,β) ⊆

∑
β∈A−

SX(A
+,β) ⊆ SX(A+,A−).

As X = Rn is indeed a polyhedral cone, we know from examinations concerning
the Rn-SAGE-cone that the reverse implication does not hold in general.
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As in the unconstrained case, an approximation of the constrained optimization
problem using the dual X-SAGE-cone can be computed via linear programming.

Corollary 7.2.2. Let X ⊆ Rn be a polyhedral cone and

f = |A−|
∑
α∈A+

vαe
〈x,α〉 +

∑
α∈A−

vαe
〈x,α〉

with v ∈ RA6=0 and A+ 6= ∅.
The following linear feasibility program in |A−| many variables (x(β))β∈A− verifies

nonnegativity of f by certifying that f ∈ F∗X(A+,A−) and, equivalently, containment
of v in the dual X-SAGE-cone with respect to X.

ln
( |vβ|
vα

)
≤ (α− β)Tx(β) for all β ∈ A−, α ∈ A+, xβ ∈ X (7.4)

Proof. Applying Theorem 2.4.14 together with Theorem 2.4.13, the dual of the signed
X-SAGE-cone can be expressed as

cl
{

v ∈ RA :
for all α ∈ A+, vα > 0; and for all β ∈ A−

there exists x ∈ X, ln
( |vβ |
vα

)
≤ (α− β)Tx for all α ∈ A+

}
.

Then, the proof of Corollary 7.2.2 can be deduced from the proof of Proposition 4.3.4.
The only difference is the replacement of “τ ∈ Rn” by “xβ ∈ X”. Note that here,
we use the polyhedral condition on X: A polyhedron can be described using a set
of linear inequalities, hence, the condition “xβ ∈ X” ensures the linearity of the
program.

Note that the previous proofs reveal that this is not the only reason we need the
polyhedral condition here: It also ensures that the set of X-circuits is finite, and thus,
we can describe the dual cone S∗X(A+,A−) in terms of a power-cone, which allowed
us earlier to prove containment of the cone FX(A+,A−) in SX(A+,A−).

We proceed as we did in the unconstrained case.
For A = A+ ∪A− defined as in (7.1) and a fixed function

|A−|
∑
α∈A+

vαe
〈α,x〉 +

∑
α∈A−

vαe
〈α,x〉,

we define a variable w0 :=

{
−γ̌ + v0 if 0 ∈ A−(f − γ̌), and
(−1/|A−|)γ̌ + v0 if 0 ∈ A+(f − γ̌)

.

Then, we consider the following two linear programs in |A−| variables (x(β))β∈A−
and c = ln(|w0|).

max c (LPXA+)

s.t.
(1) for all β ∈ A−, for all α ∈ A+ \ {0} : ln

( |vβ |
vα

)
≤ (α− β)Tx(β),

(2) ln (|vβ|)− c ≤ (−β)Tx(β) for all β ∈ A−,
(3) x(β) ∈ X

,

if 0 ∈ A+(f − γ̌) and
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max c (LPXA−)

s.t.
(1) for all β ∈ A− \ {0}, for all α ∈ A+ : ln

( |vβ |
vα

)
≤ (α− β)Tx(β),

(2) c− ln (vα) ≤ αT τ (0)for all α ∈ A+,
(3) x(β) ∈ X

if 0 ∈ A−(f − γ̌).
As in the unconstrained case, we can draw the following result.

Theorem 7.2.3. Let X ⊆ Rn be a polyhedral cone and

f = |A−|
∑
α∈A+

vαe
〈α,x〉 +

∑
α∈A−

vαe
〈α,x〉,

with ∅ 6= A = A+ ∪A− defined as in (7.1), and let f sage dual
X be the optimal value

with f ≥ f sage dual
X on X. Assume that f sage dual

X satisfies −f sage dual
X + v0 < 0 or

−f sage dual
X + |A−|v0 > 0 . The linear programs (LPXA+) and (LPXA−) solve the con-

strained optimization problem.

In the statement above, we omitted the same cases as in Chapter 4, namely,

1. −f sage dual
X + v0 = 0 = −f sage dual

X + |A−|v0 and

2. −f sage dual
X + v0 ≥ 0 ≥ −f sage dual

X + |A−|v0.

Both, however, can be treated precisely as in the unconstrained case.

7.3 Second-Order Representations for the Cone of X-
AGE Exponentials and its Dual

Building upon the duality theory for constraint sets X ( Rn as examined in Chap-
ter 6, we follow the approach from Chapter 5. We show that for polyhedral constraint
sets X and the assumption on both the constraint and the support set A ⊆ Rn that
ATX is rational, the conditional SAGE-cone as well as its dual can be represented by
a second-order-cone program. This completes the observations in Corollary 6.2.5. The
restriction on the constraint set stems from the result on power-cone representability
of the X-SAGE-cone for polyhedral sets X, which we exploit in the following. The
assumption on ATX ensures that the set of normalized X-circuit ΛX(A) is rational.

Let ∅ 6= A ⊆ Rn be finite. Proposition 6.2.7 in conjunction with Corollary 6.2.5
and the representation in its proof tells us that a point v ∈ RA is contained in the
dual X-SAGE-cone C∗X(A) if and only if v ≥ 0 and

vλ− ≤
∏
α∈λ+

vλαα eσX (−Aλ) for every λ ∈ ΛX(A). (7.5)

We emphasize that for a fixed sublinear circuit λ, this only differs from the un-
constrained case by the factor on the right hand side of the inequality. Moreover,
in Theorem 6.1.8, it was shown that the amount of sublinear circuits is finite in the
case of a polyhedral constraint set X. Throughout this section, we consider a fixed
rational sublinear circuit λ ∈ ΛX(A,β) for some β ∈ A.

With this, we can proceed as we did in the unconstrained case — even obtaining
the same sizes.
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Fix a sublinear circuit λ ∈ ΛX(A,β) ∩QA. For |λ+| > 1, let p ∈ N denote the
smallest common denominator of the fractions λα for α ∈ λ+, i.e., λα = pα

p with
pα ∈ N for all α ∈ λ+ and p is minimal. And for |λ+| = 1, let p = pα = 2 for
{α} = λ+. This way, we treat any sublinear circuit supported on more than two
elements the same way as in the unconstrained case, but for the special case of a
sublinear circuit supported on exactly two elements, we need a different procedure.

The associated set of dual circuit variables then is

(yk,i)k,i (7.6)

where k ∈ [dlog2(p)e] and i ∈ [2dlog2(p)e−k]. We denote the collection of these∑dlog2(p)e
k=1 2dlog2(p)e−k = 2dlog2(p)e − 1 variables by yλ or shortly by y. Further, we

denote the restriction of a vector v ∈ RA to the components of λ+ ⊆ A by v|λ+ .

Definition 7.3.1. A constrained dual circuit matrix C∗X,A,λ(v|λ+ , vβ, y) with respect
to an X-circuit λ is a block diagonal matrix consisting of the blocks(

yk−1,2i−1 yk,i
yk,i yk−1,2i

)
for k ∈ {2, . . . , dlog2(p)e} and i ∈ [2dlog2(p)e−k], (7.7)

the singleton blocks (vβ), and (ydlog2(p)e,1− vβe
−σX (−Aλ)) as well as 2dlog2(p)e−1 blocks

of the form (
u y1,l
y1,l w

)
for l ∈ [2dlog2(p)e−1] (7.8)

where in each of these blocks u and w represent a variable of the set

{vα : α ∈ λ+} ∪ {vβe−σX (−Aλ)}

such that altogether each vα appears pα times and vβe−σX (−Aλ) appears 2dlog2(p)e− p
times.

Remark 7.3.2. Note that for a sublinear circuit λ ∈ ΛX(A,β) supported on exactly
two elements with β ∈ A and α denoting the unique element in λ+, the dual circuit
matrix consists of the singleton blocks (vβ), (y1,1− vβe−σX (−Aλ)), and the single 2× 2
block (

vα y1,1
y1,1 vα

)
,

yielding vα ≥ y1,1 ≥ vβe−σX (−Aλ) ≥ 0.

The following theorem provides the analogous statement to Theorem 5.3.5.

Theorem 7.3.3. The dual cone C∗X(A,λ) of the λ-witnessed X-AGE-cone CX(A,λ)
is the projection of the spectrahedron{

(v, y) ∈ RA ×R2dlog2(p)e−1 : C∗X,A,λ(v|λ+ , vβ, y) < 0
}

(7.9)

on (v|λ+ , vβ). C∗X(A,λ) is second-order representable.

Proof. The first part of the proof can be deduced from the proof of Theorem 5.3.5
with the observation that for polyhedral X the number of X-circuits is finite. For the
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second part, supposeX = {x ∈ Rn : Cx ≤ d} for some C ∈ Rm×n and d ∈ Rm. Then,
−σX(−Aλ) can be computed using a linear program with m inequalities. Now, again
following the proof of Theorem 5.3.5, we obtain second-order representability.

Naturally, for the size of the matrix C∗X,A,β(v|A, vβ, y) , we also find an analogous
statement.

Corollary 7.3.4. The matrix C∗X,A,λ(v|λ+ , vβ, y) consists of 2dlog2(p)e − 1 blocks of
size 2× 2 and two blocks of size 1× 1.

Following the discussion in Chapter 5, the same analogon works in the primal case
for polyhedral constraint sets with circuit variables,

(xβ, (xk,i)k,i)

where k ∈ [dlog2(p)e] and i ∈ [2dlog2(p)e−k]. As in the dual case, we refer to these
1 +

∑dlog2(p)e
k=1 2dlog2(p)e−k = 2dlog2(p)e variables as xA,β or shortly as x.

Definition 7.3.5. The circuit matrix CX,A,λ(c|λ+∪{β},xβ,x) is the block diagonal
matrix consisting of the blocks(

xk−1,2i−1 xk,i
xk,i xk−1,2i

)
for k ∈ {2, . . . , dlog2(p)e}, i ∈ [2dlog2(p)e−k],

the two singleton blocks(
xdlog2(p)e,1 −

(∏
α∈A(λα)

λα
)
eσX (−Aλ)xβ

)
and

(
xβ + cβ

)
, (7.10)

as well as 2dlog2(p)e−1 blocks of the form(
u x1,l
x1,l w

)
for l ∈ [2dlog2(p)e−1] (7.11)

where u,w ∈ {cα : α ∈ A} ∪ {
(∏

α∈A(λα)
λα
)
eσX (−Aλ)xβ} such that cα appears pα

times for every α ∈ A and
(∏

α∈A(λα)
λα
)
eσX (−Aλ)xβ appears 2dlog2(p)e − p times.

Theorem 7.3.6. The set of coefficients of the cone CX(A,λ) coincides with the
projection of the spectrahedron

̂CX(A,λ) :=
{
(c,x) ∈ RA ×R2dlog2(p)e : CX,A,λ(c|λ+∪{β},xβ,x) < 0, c|A\supp(λ) = 0

}
on (c|λ+ , cβ). The cone CX(A,λ) is second-order representable.

Again, the proof can be deduced from the one in the unconstrained case and the
fact that X is polyhedral.

Corollary 7.3.7. The matrix CX,A,λ(c| supp(λ),xβ,x) consists of 2dlog2(p)e − 1 blocks
of size 2× 2 and two blocks of size 1× 1.

We have obtained second-order representations of the λ-witnessed X-AGE-cones
under the condition that the sublinear circuit λ is rational and X is polyhedral. We
now assume that ATX is rational, which — as already pointed out in the proof of
Corollary 6.2.5 — immediately implies ΛX(A) ⊆ QA. We call an X-SAGE-cone with



130 Chapter 7. Constrained AM/GM-Based Optimization

ATX rational the rational X-SAGE-cone with support in A, and derive an explicit
second-order representation of the rational X-SAGE-cone CX(A) and its dual.

We cannot follow the unconstrained approach as easily as we did in the case of the
X-AGE-subcones. This is due to the fact that whereas there does exist a computable
purely combinatorial criterion for an X-circuit λ to be reduced for X = Rn, such a
thing is not known for general constraint sets X — and not even for polyhedric sets
X. Nevertheless, we are able to obtain a second-order representation — just without
the advantage of reducing the size of the program using the set of reduced X-circuits.

As we only consider exponential sums and not generalized polynomial functions
as in Chapter 5, we do not need to introduce additional variables for covering the odd
case. Hence, we consider the dual variables

yA =
{
(yλ) : λ ∈ ΛX(A)

}
,

consisting of
∑
λ∈ΛX (A)(2dlog2(pλ)e − 1) components, where pλ denotes the maximum

of 2 and the smallest common denominator of λ We similarly consider the primal
variables

xA =
{
(xλ) : λ ∈ ΛX(A)

}
,

also consisting of
∑
λ∈ΛX (A)

(
2dlog2(pA,β)e − 1

)
components.

We define

Ĉ∗(A) =
{
(v, yA) : C∗X,A,λ(v|λ+ , vβ, y) < 0 for all λ ∈ ΛX(A)

}
where the variable vector v lives in the space RA and

Ĉ(A) =
∑

λ∈ΛX (A)

̂CX(A,λ).

Here, for every λ ∈ ΛX(A,β), ̂CX(A,λ) is the set from Theorem 7.3.6.

Corollary 7.3.8.

(1) The dual of the rational X-SAGE-cone C∗X(A) is the projection of Ĉ∗(A) on
the coordinates v ∈ RA.

(2) The primal rational X-SAGE-cone CX(A) is the projection of Ĉ(A) on the
coordinates v ∈ RA.

We apply this to the second-order representations from Theorems 7.3.6 and 7.3.3.

Corollary 7.3.9 (Second-Order Representation of the Dual RationalX-SAGE-Cone).
Let X be polyhedral and ATX rational. A vector v ∈ RA is contained in the ratio-
nal dual X-SAGE-cone (C∗X(A)) if and only if the circuit vector yA satisfies the
inequalities of Theorem 7.3.3 for every λ ∈ ΛX(A).

Corollary 7.3.10 (A second-order representation of the rational X-SAGE-cone).
Let X be polyhedral and ATX rational. A function f ∈ RA with coefficient vector c
is contained in the rational X-SAGE-cone CX(A) if and only if there exists cλ for
λ ∈ ΛX(A) with c =

∑
λ∈ΛX (A)

cλ and for the circuit vector xA and the conditions of

Theorem 7.3.6 hold for every λ ∈ ΛX(A).

We demonstrate the results of this subsection using a modified version of Exam-
ple 5.3.13.
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Example 7.3.11. Let A = {0, 1, 2} and X = R+. As the (normalized) reduced
circuits in the case X = R+ are completely determined by Theorem 6.3.12, namely,
they either have the form (−1, 1, 0) or (1/2,−1, 1/2), we can even sharpen our result
for this particular example:

In the first case, as the sublinear circuit is supported on exactly two elements, we
set p = 2 = p0. According to Remark 7.3.2, we obtain vα ≥ y1,1 ≥ vβe−σX (−Aλ) ≥ 0,
which simplifies to vα ≥ vβ ≥ 0, as for any R+-circuit, the support function evaluates
to 0.

With the same argumentation, the second case is completely analogous to the
unconstrained case.

Hence, a vector (v0, v1, v2) is contained in CX(A)∗ if and only if vα ≥ 0 for all
α ∈ {0, 1, 2}, v1 ≤ v0, and there exists some y ∈ R such that y ≥ v1 and(

v0 y
y v2

)
< 0. (7.12)
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Chapter 8

Résumé and Open Problems

8.1 The SAGE-Cone, Extremality, and its Duality The-
ory

In Chapter 3, we have provided characterizations of the dual cone of SAGE exponen-
tials and presented several new and several improved results associated with the dual
viewpoint. Prominently, we have shown a complete characterization of the extreme
rays of the SAGE-cone.

It remains a future task to further understand the relation of the SAGE-cone and
its specializations to the underlying class of all nonnegative polynomials or exponen-
tial sums, both from the primal and the dual point of view. Specifically, the relation
of the cone of SONC polynomials to the cone of sparse nonnegative polynomials and
of the dual SONC-cone to sparse moment cones (as studied by Nie [Nie14]) deserve
further study. It is an open question whether SONC polynomials are dense inside the
nonnegative ones.

In Chapter 4, we have studied two optimization approximations using the SAGE-
cone and its dual.

In the case of symmetric exponential sums, we showed that our orbit reduction
allows for substantial computational gains both theoretically and practically. This
motivates a theoretical study of the strength of the AM/GM bounds in this frame-
work. In particular, it encourages the comparison of the symmetric SAGE-cone with
the cone of symmetric nonnegative exponential sums.

Moreover, building upon the projection-free descriptions of the dual cones from
Chapter 3, we examined further computational aspects. The results presented in this
section provide an effective algorithm for optimizing over a cone induced by the dual
SAGE-cone. Recall that this resulting cone is a proper subset of the corresponding
primal cone; see Subsection 4.3.1. In particular, we get a bound using an algorithm
which is independent of the existing primal SONC, SAGE, and SOS algorithms.

A possibility for future research would be to investigate the polyhedron we dis-
covered in Proposition 4.3.4. From duality theory, we know that there has to exist a
primal polyhedron as well. The primal SAGE-cone itself is, however, not polyhedral;
see, e.g., [FW19]. Hence, it might be interesting to examine the relation of this primal
polyhedron to the SAGE-cone.

8.2 The S-Cone and Second-Order Representations
In Chapter 5, we have introduced the S-cone as a unified framework for the classes
of SAGE exponentials and SONC polynomials; thus, it exhibits a prominent compu-
tationally tractable class within the class of sparse nonnegative polynomials.



134 Chapter 8. Résumé and Open Problems

We have provided second-order representations for primal and dual rational S-
cones. These statements also remain valid for non-rational sets A as long as all the
relevant barycentric coordinates are still rational. It is an open question whether an
S-cone and its dual are also second-order representable in the general non-rational
case. Also, despite the use of reduced circuits, the second-order representation of
the S-cone is still rather large. The question remains whether smaller second-order
representations for the S-cone exist.

8.3 The Conditional SAGE-Cone and Sublinear Circuits
In the third part of the thesis, we examined the conditional SAGE-cone. Building
upon results by Murray, Chandrasekaran, and Wierman, we introduced the notion of
sublinear circuits as objects inducing the X-SAGE-cone in Chapter 6. We showed a
variety of properties of these X-circuits including affine independency of the positive
support and that the X-SAGE-cone can indeed be constructed using these X-circuits
as the only witnesses. We constructed several results to determine whether a vector
ν ∈ Nβ is an X-circuit, which are either necessary or sufficient.

For extremality of the set of X-circuits and, in particular, the conditional SAGE-
cone, we introduced the concept of reducedness based on the notion of the circuit
graph. Here, we were also able to provide either necessary or sufficient results for this
characterization.

Throughout this part of the thesis, we put a particular emphasis on the case
of polyhedral constraint sets. We have studied the connection of sublinear circuits
and their supports as well as the sublinear circuits for polyhedral sets X. Since the
number of X-circuits is finite for polyhedral sets, this allows to apply polyhedral and
combinatorial techniques. In particular, the X-SAGE-cones can be decomposed into
a finite number of power cones, which arise from the reduced sublinear circuits.

In the last chapter of this thesis, we have explored optimization and representa-
tion approaches for the conditional SAGE-cone. We have shown that for symmetric
constraint sets, we can exploit existing symmetries in exponential sums to reduce the
size of the relative entropy program which certifies containment in the X-SAGE-cone
(and also serves as an approximation of the constrained optimization problem).

Following the approach in the first part of the thesis, we then examined a variation
of the dual X-SAGE-cone in Chapter 7 and presented a linear program for polyhedral
conic constraint sets X to approximate the constrained optimization problem.

Finally, we presented a second-order representation of the X-SAGE-cone and its
dual as well as of the subcones of AGE exponentials (and their respective duals).
Those representations work for polyhedral constraint sets and under the assump-
tion that ATX is rational. The former is due to the fact that, only for polyhedral
constraint sets X, we could prove that the number of X-circuits is finite, the latter
restriction ensures that the set of X-circuits is contained in QA. This allows us to
define the second-order-cone programs in terms of the coordinates of the sublinear
circuits.

The obvious pending line of further research is an advanced combinatorial under-
standing of X-circuits and, in particular, reduced X-circuits. Although we provided
necessary and sufficient criteria for being a (reduced) X-circuit, we do not have a
criterion that is both necessary and sufficient — not even for the case of polyhedral
X. These results would be particularly useful for practical optimization techniques as
they significantly reduce the number of elements we have to consider in any X-SAGE
decomposition.
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Another line of further research are non-polyhedral sets X, where in general the
number ofX-circuits is not finite anymore. It remains a future task to study necessary
and sufficient criteria for sublinear circuits of structured non-polyhedral sets, such as
sets with symmetry. In a different direction, Forsgård and de Wolff have characterized
the boundary of the SAGE-cone through a connection between circuits and tropical
geometry [FW19]. It also remains for future work to establish a generalization of
this work, aiming at connecting the conditional SAGE-cone and sublinear circuits to
tropical geometry.

All three presented optimization and representation methods using the X-SAGE-
cone (or its dual) have severe restrictions on the sets X they work for. It remains of
further interest to understand what happens if we have constraint sets X that do not
satisfy these restrictions and whether we can derive other computationally tractable
optimization approaches then.
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Appendix A

Deutsche Zusammenfassung

Globale Optimierung und Optimierung unter Nebenbedingungen untersucht die Fra-
ge, welchen Minimalwert eine gegebene reelle Funktion f : Rn → R entweder über Rn

oder über einer Teilmenge X ( Rn annehmen kann. Dieses Problem tritt in vielen
Zweigen der Mathematik und deren Anwendungsgebieten auf. Die ähnliche Frage, ob
eine reelle Funktion nur nichtnegative Werte annimmt, ist eine grundlegende Frage in
der reell-algebraischen Geometrie. Beide Probleme können als äquivalent behandelt
werden: Das Infimum einer Funktion f ist der größte reelle Wert λ, sodass die Funk-
tion f − λ, die man durch Subtraktion des Skalars von f erhält, global nichtnegativ
ist, d.h,

f∗ = inf{f(x) : x ∈ Rn} = sup{λ ∈ R : f − λ ist nichtnegativ auf Rn}. (A.1)

In dieser Arbeit werden vor allem Exponentialsummen f =
∑
α∈A cαe

〈α,x〉 und
ggf. Polynome betrachtet, die als Spezialfall von Exponentialsummen angesehen wer-
den können: Für A ⊆ Nn ergibt die Substitution xi = ln yi Polynomfunktionen
y 7→

∑
α∈A cαy

α auf dem positiven Orthanten Rn
>0. Nichtnegative Polynome oder

Exponentialsummen und Optimierung über beide Funktionen sind allgegenwärtig in
Anwendungen, und Dünnbesetztheit ist eine der zentralen Struktureigenschaften, die
Potenzial für effizient berechenbare Approximationen bieten. Neben klassischen An-
wendungen in Kontrolltheorie und Robotik (siehe z.B., [HG05], [AM19]), treten neue-
re Anwendungen von nichtnegativen Polynomen und polynomieller Optimierung in
dem Problem der Lastflussoptimierung [Jos16], Kollisionsvermeidung [AM16], Re-
gressionsproblemen mit formbeschreibenden Nebenbedingungen [Hal18], chemischen
Reaktionsnetzwerken [Mül+15; MHR19], Optimierung von Flugzeugdesigns [ÖS19;
YHD18], ebenso wie in epidemiologischer Prozesskontrolle [NPP17; Pre+14] auf; sie-
he auch [EPR20] und die dortigen Verweise.

Die Berechnung des Minimalwerts f∗ aus dem Einführungsproblem sowie die Ent-
scheidung über die Nichtnegativität einer gegebenen reellen Funktion ist NP-schwer
[MK87], selbst im Fall polynomieller Optimierung [Lau09]. Daher besteht die Idee
darin, nach effizient berechenbaren hinreichenden Bedingungen für die Nichtnegati-
vität zu suchen – sogenannten Nichtnegativitätszertifikaten. Im Idealfall erfüllt eine
große Teilmenge der Elemente im Nichtnegativitätskegel diese Bedingungen. Eine be-
kannte und große Teilmenge nichtnegativer Polynome sind SOS-Polynome – Summen
von Quadraten anderer Polynome. Sie bieten eine Relaxation für die Suche nach dem
Minimalwert eines gegebenen Polynoms. Die Nichtnegativität dieser Polynome kann
mittels semidefiniter Programmierung verifiziert werden [Las00; Par00]; für einen brei-
teren Überblick über dieses Thema siehe Kapitel 2. Es stellt sich jedoch das Problem,
dass die Elemente der Zerlegung einen möglicherweise unbeschränkten Grad haben
können, der eine möglicherweise unendliche Größe des semidefiniten Programms ver-
ursacht.

In jüngster Vergangenheit haben mehrere Forscher hinreichende Bedingungen
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für Nichtnegativität basierend auf der arithmetisch-geometrischen (AM/GM) Un-
gleichung entwickelt. Während SOS-Nichtnegativitätszertifikate mit dem Grad eines
Polynoms arbeiten und insbesondere ganzzahlige Exponenten erfordern, ist das bei
diesen auf der AM/GM-Ungleichung basierenden Verfahren nicht der Fall. Daher
funktionieren sie auch für Exponentialsummen. Aufbauend auf früheren Ergebnis-
sen von Reznick [Rez89] wurden die Verfahren in den Arbeiten von Pantea, Koeppl
und Craciun [PKC12], Iliman und de Wolff [IW16a], und Chandrasekaran und Shah
[CS16] weiterentwickelt. Im Gegensatz zu SOS-basierten Zertifikaten erhalten diese
AM/GM-basierten Nichtnegativitätszertifikate die Dünnbesetztheit einer gegebenen
Exponentialsumme oder eines Polynoms [MCW21a; Wan18a].

Formal ist eine Exponentialsumme (oder ein Signom) mit endlicher Trägermenge
A ⊆ Rn definiert als Summe

∑
α∈A cαe

〈α,x〉 mit reellen Koeffizienten cα. Betrachtet
man beispielsweise eine Menge von Trägerpunkten A ⊆ Rn,β ∈ Rn und Koeffizienten
λ ∈ RA

+ mit 1Tλ = 1 und
∑
α∈A λαα = β, dann ergibt die gewichtete AM/GM-

Ungleichung ∑
α∈A

λαe
〈α,x〉 >

∏
α∈A

eλα〈α,x〉 = e〈β,x〉.

Demzufolge kann die Nichtnegativität auf Rn von Exponentialsummen der Form∑
α∈A

λαe
〈α,x〉 − e〈β,x〉

mittels der AM/GM-Ungleichung verifiziert werden.
Das für diese Arbeit relevante Rahmenwerk wurde unter verschiedenen Namen

eingeführt: In 2016 führten Iliman und de Wolff das Konzept der Summen nichtne-
gativer Kreispolynome (SONC) ein [IW16a]. Ein Kreis ist ein Tupel (A,β) mit affin
unabhängiger Menge A ⊆ Rn und einem Element β ∈ relint conv(A). Ein Kreispo-
lynom ist ein Polynom mit Exponenten in A ∪ {β}, so dass die Koeffizienten, die
zu A korrespondieren, nichtnegativ sind. Ein Polynom, dessen Träger ein Kreis ist,
kann nur dann global nichtnegativ sein, wenn A ⊆ (2N)n; für einen Beweis siehe z.B.
[Fel+20].

Später im selben Jahr führten Chandrasekaran und Shah das Konzept der Sum-
men arithmetisch-geometrischer Exponentiale (SAGE) ein [CS16]. Ein arithmetisch-
geometrisches Exponential (AGE-Exponential) ist eine Exponentialsumme mit höchs-
tens einem negativen Koeffizienten. Diese Definition umfasst genau die zuvor erwähn-
te Unterklasse von Exponentialsummen, deren Nichtnegativität durch die AM/GM-
Ungleichung verifiziert werden kann (was den Namen dieser Klasse von Exponential-
summen erklärt).

Der SONC-Ansatz wurde in verschiedenen Arbeiten zur Relaxation globaler Opti-
mierungsprobleme verwendet, d.h. die Nichtnegativitätsbedingung wurde durch eine
SONC-Bedingung

f sonc = sup{λ ∈ R : f − λ ist SONC} ≤ inf{f(x) : x ∈ Rn} (A.2)

ersetzt. Iliman, de Wolff und Dressler et al. untersuchten Nichtnegativitätszertifika-
te, die zu einem geometrischen Programm für bestimmte Unterklassen von SONC-
Polynomen führen [IW16a; IW16b; DIW17; DKW21]. Karaca et al. kombinierten den
SONC-Ansatz mit dem Sums-of-Squares-Ansatz zur polynomiellen Optimierung auf
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dem nichtnegativen Orthanten [Kar+17]. In einem verwandten Rahmen konzentrier-
ten sich Chandrasekaran, Shah, Murray und Wierman auf Ansätze, die auf ein rela-
tives Entropie-Programm sowohl zur Optimierung von Exponentialsummen als auch
von Polynomen führen [CS16; CS17; MCW21a]. Diese relativen Entropie-Programme
haben den großen Vorteil, dass sie effizient und für allgemeine Klassen von Exponenti-
alsummen berechnet werden können. Seidler und de Wolff stellten einen Algorithmus
zur Berechnung von Kreiszerlegungen vor [Sd18], und zusammen mit Magron vergli-
chen sie die bestehenden Ansätze SONC-, SAGE- und SOS-basierter Relaxationen
globaler Optimierungsprobleme [MSW19]. Unter Verwendung ähnlicher Ansätze wie
sie in Kapitel 3 dieser Arbeit diskutiert werden entwickelte Papp einen Algorithmus
zur Berechnung der optimalen Kreisszerlegung eines gegebenen Polynoms [Pap19].
Viele dieser Optimierungsansätze sind in [Sd19] implementiert.

In 2019 stellten Forsgård und de Wolff eine neue Sprache zur Untersuchung von
Exponentialsummen mit Kreisen als Trägermenge vor. In dieser neuen Sprache un-
tersuchten sie den algebraischen Rand des SONC-Kegels (für Exponentialsummen,
[FW19]) unter Verwendung der Theorie regulärer Unterteilungen, A-Diskriminanten
und tropischer Geometrie.

Neben den beiden zuvor besprochenen Optimierungsansätzen gibt es auch einen
Bezug zur semidefiniten Programmierung. Ähnlich wie in [Kar+17] kombinierte Aver-
kov SONC-Ansätze mit semidefiniten Ansätzen zur polynomiellen Optimierung. Er
zeigte, dass der Kegel der SONC-Polynome als Projektion eines Spektraeders darge-
stellt werden kann [Ave19]. Wang und Magron lieferten später eine explizite Dar-
stellung des primalen SONC-Kegels als Projektion eines Kegels zweiter Ordnung
[WM20a].

Bereits 2016 zeigten Iliman und de Wolff, dass die globale Nichtnegativität eines
Kreispolynoms auf die Nichtnegativität einer Exponentialsumme mit derselben Trä-
germenge und möglicherweise leicht modifizierten Koeffizienten reduziert werden kann
[IW16a]. In 2018 bewiesen Murray, Chandrasekaran und Wierman, dass dies für all-
gemeine Polynome mit höchstens einem negativen Term (d. h., höchstens einem Term
cβx

β mit cβ < 0 oder β /∈ (2N)n) gilt [MCW21a]. Wang bemerkte schon zuvor im
selben Jahr, dass die polynomielle Form eines AGE-Exponentials ein SONC-Polynom
ist [Wan18a], und Murray, Chandrasekaran und Wierman führten einen unabhängi-
gen Beweis für die explizite Aussage, dass die Trägermengen von Extremalstrahlen
des Kegels der AGE-Exponentiale Kreise sind (wieder [MCW21a]). Beide zeigten so-
mit die Äquivalenz von SONC und SAGE in Bezug auf die gewählte Sprache der
Polynome oder Exponentialsummen.

Daher ist es naheliegend, Ergebnisse, die sowohl für SONC als auch für SAGE re-
levant sind, nur für die einfachere Sprache der Exponentialsummen und unter einem
gemeinsamen Namen zu diskutieren. Aufbauend auf dem von Chandrasekaran und
Shah eingeführten Ansatz für Exponentialsummen wird in dieser Arbeit der Name
AGE-Eponentiale für Exponentialsummen mit höchstens einem negativen Term und
SAGE-Exponentiale für Summen dieser AGE-Exponentiale verwendet. Darüber hin-
aus werden, in Anlehnung an die von Iliman und de Wolff eingeführte Terminologie,
AGE-Exponentiale, deren Träger einen Kreis bildet und bei dem der möglicherweise
negative Term dem inneren Exponenten des Kreises entspricht, Kreisexponentiale ge-
nannt. Diese Funktionen sind von besonderem Interesse, weil – wie oben erwähnt –
die Träger aller Extremalstrahlen des SAGE-Kegels Kreise sind. In dieser Arbeit wird
ein besonderer Fokus auf Kreise gelegt: Zuerst wird die Dualitätstheorie untersucht,
dann die Extremalstrahlen des SAGE-Kegels, verschiedene Optimierungsansätze und
schließlich all diese Themen für die Optimierung unter Nebenbedingungen.
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Für das Problem der Optimierung unter Nebenbedingungen haben die SONC-
und SAGE-Ansätze einen gravierenden Nachteil gegenüber dem SOS-Ansatz, nämlich,
dass es keinen Putinar-ähnlichen Positivstellensatz gibt, der ein Polynom in Summen
von Quadraten und gegebene Nebenbedingungen zerlegt, sofern es nichtnegativ auf
der gewählten Menge der Nebenbedingungen ist [DKW21]. Dressler et. al lieferten in
der gleichen Arbeit einen anderen Positivstellensatz für SONC-Polynome, der aber
später als ein Spezialfall des Krivine-Positivstellensatzes identifiziert wurde.

In 2019 untersuchten Murray, Chandrasekaran und Wierman einen anderen An-
satz zur Optimierung unter Nebenbedingungen, sowohl für Exponentialsummen als
auch für Polynome [MCW21b], der wiederum zu einem Nichtnegativitätszertifikat
unter Verwendung relativer Entropieprogrammierung führt. Unter Verwendung der
Lagrangedualität kommen sie – ähnlich wie im Fall globaler Optimierungsprobleme –
zu einem relativen Entropie-Programm. Die zugrundeliegende Menge der Nebenbedin-
gungen wird durch eine sogenannte Stützfunktion repräsentiert. Mit diesem relativen
Entropie-Programm lässt sich eine Hierarchie finden, um den optimalen Wert der
gegebenen Funktion zu approximieren. Wang et. al konnten in der Tat zeigen, dass
diese Hierarchie vollständig ist [Wan+20] (siehe auch [DP15]). Das implementierte
Programm ist in [Mur20] zu finden, unter Verwendung des Solvers MOSEK [DA21].

Als weitere verwandte Arbeit sei hier die Ausnutzung von Dünnbesetztheit und
Symmetrien zur Ableitung spezifischer SDP-Relaxationen für polynomielle Optimie-
rung [KKW05; MCD17; Rie+13; WML21b; WML21a; WLT18] genannt.

In dieser Arbeit wird der SAGE-Kegel untersucht, seine Geometrie und Verallge-
meinerungen davon. Die Arbeit besteht aus drei Hauptteilen:

1. Der erste Teil konzentriert sich auf den Kegel global nichtnegativer Exponential-
summen mit höchstens einem negativen Term. Insbesondere werden Dualitäts-
theorie, Extremalstrahlen des Kegels und zwei effiziente Optimierungsansätze
über den SAGE-Kegel und seinen dualen Kegel untersucht.

2. Im zweiten Teil wird der sogenannte S-Kegel eingeführt. Dieser Kegel bietet
ein einheitliches Rahmenwerk für SAGE-Exponentiale und SONC-Polynome.
Insbesondere konzentriert sich diese Arbeit auf Darstellungen zweiter Ordnung
des S-Kegels und seines Dualen unter Verwendung von Extremalitätsergebnis-
sen aus Teil 1.

3. Der dritte und letzte Teil dieser Arbeit wendet sich der Untersuchung des be-
dingten SAGE-Kegels zu. Mittels sublinearer Kreise werden neue Dualitätser-
gebnisse und eine partielle Charakterisierung der Extremalität erarbeitet. Im
Fall polyedrischer Nebenbedingungen vereinfacht sich diese Untersuchung und
erlaubt es, sublineare Kreise und Extremalität für einige Fälle vollständig zu
klassifizieren. Für Zulässigkeitsbereiche mit bestimmten Bedingungen, wie z. B.
Mengen mit Symmetrien, konische oder polyedrische Mengen, können verschie-
dene Optimierungs- und Darstellungsergebnisse des unrestringierten auf den
restringierten Kegel angewendet werden.

Extremalitäts- und Dualitätstheorie des SAGE-Kegels
Während viele Aspekte der Klassen der SAGE-Exponentiale und SONC-Polynome
mit offenen Fragen und Forschungsanstrengungen verbunden sind, weisen sie ein-
deutig einige grundlegende strukturelle Phänomene auf, die sich gut im Rahmen der
dünnbesetzten Trägermengen ausnutzen lassen. Aufbauend auf den früheren Arbeiten
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der Autorin in [DNT21] über den dualen Kegel der SONC-Polynome beginnt dieser
Abschnitt mit der Untersuchung des dualen Kegels der SAGE-Exponentiale. Insbeson-
dere wird eine projektionsfreie Darstellung des dualen Kegels der SAGE-Exponentiale
hergeleitet und verwendet, um die Extremalstrahlen des primalen SAGE-Kegels voll-
ständig zu charakterisieren. Diese Ergebnisse können anschließend verwendet werden,
um effiziente Optimierungsansätze auf Basis des SAGE-Kegels zu untersuchen.

Im Rahmen dieses Abschnitts wird das Konzept reduzierter Kreise eingeführt.
Reduzierte Kreise sind Kreise, die keine zusätzlichen Punkte der Gesamtträgermen-
ge in ihrer konvexen Hülle enthalten. Unter Verwendung dieses Konzepts wird ei-
ne umfassende Charakterisierung des dualen SAGE-Kegels hergeleitet, siehe hierfür
Theorem 3.1.5. Diese Charakterisierung liefert insbesondere projektionsfreie Charak-
terisierungen in Form von AGE-Exponentialen, deren Träger reduzierte Kreise sind.
Die Charakterisierungen des dualen Kegels gehen weit über die Charakterisierun-
gen des dualen Kegels der SAGE-Exponentiale aus [CS16] und des dualen Kegels der
SONC-Polynome aus [DNT21] hinaus, wo die dualen Kegel in Form von Projektionen
beschrieben werden.

Basierend auf den Charakterisierungen des Dualen des SAGE-Kegels wird gezeigt,
dass jedes SAGE-Exponential als Summe nichtnegativer Kreisexponentiale geschrie-
ben werden kann, deren Trägermengen reduzierte Kreise bilden, siehe Theorem 3.2.1,
und eine exakte Charakterisierung der Extremalstrahlen des SAGE-Kegels hergelei-
tet, siehe Theorem 3.2.4. Diese Charakterisierung verschärft die notwendigen Bedin-
gungen in [MCW21a] (siehe auch [Wan18a]) wesentlich.

Symmetriereduktion in AM/GM-Basierter Optimierung

Aus algebraischer Sicht ist ein Problem symmetrisch, wenn es invariant unter einer
Gruppenoperation ist. Symmetrien sind im Kontext von Polynomen oder Exponen-
tialsummen und Optimierung allgegenwärtig, da sie sich sowohl in der Problemfor-
mulierung als auch in der Lösungsmenge manifestieren. Dadurch lässt sich oft die
Komplexität der entsprechenden algorithmischen Fragestellungen reduzieren. Bezüg-
lich der Lösungsmenge wurde bereits 1840 von Terquem beobachtet, dass ein symme-
trisches Polynom nicht immer einen vollständig symmetrischen Minimierer hat (siehe
auch die Übersicht von Waterhouse [Wat83]). In vielen Fällen enthält die Menge der
Minimierer jedoch symmetrische Punkte, siehe z. B. [FRS18; MRV21; Rie12; Tim03].
Im Hinblick auf Problemformulierungen hat die Symmetriereduktion in vielen Situa-
tionen wesentliche Fortschritte gebracht, siehe z.B. [BV08; KS10; DV15], insbesondere
im Kontext von Summen von Quadraten, siehe z.B. [Bac+12; BR21; DR20; GP04;
HHS21; Ray+18; Rie+13].

Dieser Abschnitt untersucht, inwieweit Symmetrien in der AM/GM-basierten Op-
timierung ausgenutzt werden können, unter der Annahme, dass das Problem selbst
Symmetrien aufweist. Damit wird eine erste systematische Untersuchung AM/GM-
basierter Ansätze in G-invarianten Situationen für eine gewählte Gruppe G betrach-
tet.

Es wird ein Symmetrie-adaptiertes Zerlegungstheorem bewiesen und eine ange-
passte relative Entropieformulierung von G-invarianten SAGE-Exponentialen ent-
wickelt. Diese Adaption reduziert die Größe der resultierenden relativen Entropie-
Programme oder geometrischen Programme, siehe Theorem 4.2.1, Theorem 4.2.3 und
Korollar 4.2.6. Wie aus diesen Aussagen hervorgeht, hängt die Verbesserung von der
Orbitstruktur der Gruppenoperation ab.

Die strukturellen Ergebnisse in dieser Arbeit werden in Form von Berechnun-
gen ausgewertet. In Situationen mit starker Symmetriestruktur verringert sich die
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Anzahl der Variablen und die Anzahl der Gleichungen und Ungleichungen wesent-
lich. Dementsprechend reduziert sich die Rechenzeit der Inneren-Punkte-Verfahren,
die der Berechnung von SAGE-Schranken zugrunde liegen. In verschiedenen Fällen
ist die symmetrieangepasste Berechnung sogar erfolgreich, wenn das konventionelle
SAGE-Programm versagt.

Globale Optimierung Mittels des Dualen SAGE-Kegels und Linearer
Programmierung

Unter Verwendung des dualen Kegels der Summen von AGE-Exponentialen wird in
diesem Abschnitt eine Relaxation globaler Optimierungsprobleme zur Minimierung
einer Exponentialsumme und, als Spezialfall, eines multivariaten reellen Polynoms
geliefert. Die Idee dieses Optimierungsansatzes besteht darin, das globale Optimie-
rungsproblem (1.1) durch Optimierung über einen Kegel mit Koeffizienten zu relaxie-
ren, der durch den dualen SONC-Kegel induziert wird. Dieser Ansatz ist motiviert
durch die aktuellen Arbeiten [DNT21] und [MCW21a] sowie Kapitel 3 in dieser Ar-
beit und baut auf zwei Beobachtungen auf, die die wichtigsten theoretischen Beiträge
liefern:

1. Der duale Kegel der AGE-Exponentiale ist im primalen enthalten, siehe Pro-
position 4.3.1. Auch eine Variante des dualen SAGE-Kegels ist im primalen
SAGE-Kegel enthalten.

2. Die Optimierung über diesen modifizierten dualen Kegel kann durch Lösen eines
linearen Programms erfolgen, siehe Proposition 4.3.4.

Es sei darauf hingewiesen, dass weder der primale noch der duale SAGE-Kegel po-
lyedrisch ist; siehe in diesem Zusammenhang auch die Ergebnisse in [FW19]. Der An-
satz funktioniert wie folgt: Zunächst wird eine geliftete Version des dualen Kegels mit
zusätzlichen linearen Hilfsvariablen untersucht (Theorem 4.1.6 (3)). Als Zweites wird
gezeigt, dass die Koeffizienten einer gegebenen Exponentialsumme als durch Variablen
im dualen Kegel induziert interpretiert werden können, siehe (4.21). Drittens wird er-
läutert, dass durch Fixierung dieser Koeffizientenvariablen ein Optimierungsproblem
entsteht, das nur die linearen Hilfsvariablen beinhaltet, siehe Proposition 4.3.4.

Basierend auf den beiden oben genannten Schlüsselbeobachtungen werden zwei
lineare Programme vorgestellt, die eine Relaxation des Problems (1.1) lösen.

Eine Primal-Duale Sicht auf Darstellbarkeit Zweiter Ord-
nung
Wie bereits erläutert bilden die Kegel der Summen arithmetisch-geometrischer Expo-
nentiale und Summen nichtnegativer Kreispolynome Nichtnegativitätszertifikate auf
Basis der arithmetisch-geometrischen Ungleichung und sind besonders nützlich im
Zusammenhang mit dünnbesetzten Polynomen und Exponentialsummen.

In Kapitel 5 wird ein Kegel eingeführt und untersucht, der aus einer Klasse von
verallgemeinerten Polynomfunktionen besteht und der einen gemeinsamen Rahmen
für aktuelle Nichtnegativitätszertifikate von dünnbesetzten Polynomen und Expo-
nentialsummen bietet. Dieser S-Kegel verallgemeinert und vereinheitlicht sowohl den
Kegel der SONC-Polynome als auch den Kegel der SAGE-Exponentiale. Insbeson-
dere können mehrere Ergebnisse im Zusammenhang mit diesen Kegeln — wie die
Charakterisierungen des dualen Kegels und der Extremalstrahlen — auf den S-Kegel
übertragen werden.
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Da die Nichtnegativität einer Polynomfunktion f(x1, . . . ,xn) auf Rn
+ äquivalent

zur Nichtnegativität von f(|x1|, . . . , |xn|) auf Rn ist, werden in diesem Abschnitt
allgemeinere Funktionen f : Rn → R der Form

f(x) =
∑
α∈A

cα|x|α +
∑
β∈B

dβx
β, (A.3)

mit Exponentenmengen A ⊆ Rn, B ⊆Nn \ (2N)n betrachtet, welche auch die Expo-
nentialsummen erfassen. Basierend auf einer Teilmenge dieser Funktionen wird der
S-Kegel CS(A,B) definiert, der eine Verallgemeinerung der oben genannten Kegel
darstellt, siehe Definition 5.1.3. Dieser S-Kegel enthält sogenannte AG-Funktionen
und Summen dieser Elemente. AG-Funktionen sind Funktionen der Form (1.3) mit
gewissen Trägerbedingungen. Sie können als eine (nicht-polynomielle) Verallgemeine-
rung von Polynomen angesehen werden.

Eine Motivation für die Einführung dieser Klasse von Funktionen ist, dass sie
die gemeinsame Betrachtung der Nichtnegativität von Polynomen auf Rn und die
Nichtnegativität von Polynomen auf dem nichtnegativen Orthanten Rn

+ ermöglicht.
Außerdem ist die globale Nichtnegativität der Summanden

∑
α∈A cα|x|α äquivalent

zur globalen Nichtnegativität der Exponentialsumme y 7→
∑
α∈A cαe

〈α,y〉.
Sowohl vom geometrischen als auch vom Optimierungsstandpunkt aus ist es von

großem Interesse, zu verstehen, wie die verschiedenen Klassen von Kegeln miteinander
verwandt sind und ob Techniken für verschiedene Kegel kombiniert werden können.
Hier sei daran erinnert, dass Averkov bereits zeigte, dass der SONC-Kegel als Projek-
tion eines Spektraeders dargestellt werden kann [Ave19]. In der Tat verwendet sein
Beweis die Techniken von [BN01], die zeigen, dass der SONC-Kegel sogar mittels
Kegel zweiter Ordnung darstellbar ist. Wang und Magron gaben einen alternativen
Beweis basierend auf binomialen Quadraten und A-gemittelten Mengen an [WM20b].
Beide Ansätze betrachten nur den primalen SONC-Kegel.

In dieser Arbeit wird der S-Kegel und sein dualer Kegel unter dem Gesichtspunkt
der Darstellbarkeit zweiter Ordnung betrachtet — und damit auch seine Speziali-
sierungen. Durch die Erweiterung der Ergebnisse von Averkov und von Wang und
Magron, die den primalen SONC-Kegel betreffen, werden explizite verallgemeinerte
Second-Order-Cone-Programme für rationale S-Kegel und ihre Dualen unter Berück-
sichtigung der Extremalitätsergebnisse aus Kapitel 3 geliefert, um die Größe dieser
Probleme zu reduzieren, siehe Korollare 5.3.18 und 5.3.19. Der Beweis in dieser Arbeit
kombiniert die Techniken für die Darstellungen zweiter Ordnung aus [BN01] mit den
Konzepten und der Dualitätstheorie aus Kapitel 3 (die entsprechenden Ergebnisse in
der Sprache des S-Kegels sind in [KNT21] zu finden). Die Herleitung der Ergebnisse
in dieser Arbeit unterscheidet sich von dem Ansatz von Wang und Magron, und sie
benötigt keine binomialenen Quadrate oder A-gemittelte Mengen. Außerdem werden
in den Second-Order-Cone Programmen, dank der Charakterisierung der Extremal-
strahlen des S-Kegels aus Kapitel 3 (in der Sprache des S-Kegels siehe wiederum
[KNT21]), keine redundanten Kreise berücksichtigt.

Sublineare Kreise und der Bedingte SAGE-Kegel
In diesem Teil der Arbeit wird der restringierte Fall untersucht, d. h. für eine konvexe
und nichtleere Menge X wird das Optimierungsproblem unter Nebenbedingungen

f∗X = inf{f(x) : x ∈ X} = sup{λ : f − λ ≥ 0 auf X}
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für eine Exponentialsumme f mit dünnbesetzter Trägermenge A ⊆ Rn betrachtet.
In der Vergangenheit wurden als bedingte SONC-Relaxation eines polynomiel-

len Optimierungsproblems unter Nebenbedingungen zumeist Zerlegungen von f − λ
in Summen nichtnegativer Polynome untersucht, deren Träger klassische Rn-Kreise
bilden [DKW21; DIW19]. In 2019 entwickelten Murray, Chandrasekaran und Wier-
man jedoch einen anderen Ansatz. Sie untersuchten, wann eine Exponentialsumme
mit höchstens einem negativen Koeffizienten — deren Träger nicht notwendigerweise
einen Kreis bilden muss — nichtnegativ auf einer gegebenen konvexen Menge X ist
[MCW21b]. Sie nutzten die Tatsache, dass äquivalent zur Untersuchung der Nichtne-
gativität einer Exponentialsumme f auf X mit höchstens einem negativen Koeffizi-
enten cβ, d.h.,

f =
∑

α∈A\{β}
cαe
〈α,x〉 + cβe

〈β,x〉 mit cα ≥ 0 für alle α in A\ {β},

auch die Nichtnegativität von
∑
α∈A cαe

〈(α−β),x〉 untersucht werden kann. Dies ist per
Konstruktion eine konvexe Funktion. Daher kann die X-Nichtnegativität dieser Funk-
tion genau charakterisiert werden, indem man das Prinzip der starken Dualität aus der
konvexen Optimierung anwendet. Dies führt zu einem relativen Entropie-Programm
in einer dualen Variablen ν = (να)α∈A und den Koeffizienten der Exponentialsumme,
unter Einbeziehung der Stützfunktion vonX (siehe Proposition 2.4.12 für die explizite
Formulierung). Das Gleiche gilt natürlich auch für die Optimierungsformulierung.

In Anlehnung an [MCW21b] wird dieser Ansatz bedingtes SAGE genannt. WennX
fest gewählt ist, werden die X-nichtnegativen Exponentialsummen mit höchstens ei-
nem negativen Koeffizienten X-AGE-Exponentiale genannt; die Exponentialsummen,
die sich in eine Summe solcher Funktionen zerlegen lassen, werden in dieser Arbeit
X-SAGE genannt. Ähnlich wie im unrestringierten Fall kann mittels eines relativen
Entropie-Programms entschieden werden, ob eine gegebene Funktion f X-SAGE ist.

Obwohl dieses relative Entropie-Programm auch ohne Berücksichtigung eines
Kreis-ähnlichen Begriffs funktioniert, verrät es nichts über die Struktur des bedingten
SAGE-Kegels. Ähnlich wie viele Ergebnisse für den unrestringierten Fall, die teilweise
in Kapitel 3 behandelt werden, siehe auch [FW19; KNT21; MCW21a], dient dieser
Abschnitt dem Versuch, Extremalität, Dualität und numerische Probleme des Kegels
zu verstehen. Dazu wird das Konzept der sublinearen Kreise — manchmal auch die
X-Kreise von A genannt, wenn die betrachtete Träger- oder Nebenbedingungsmen-
ge eine wichtige Rolle spielt — eingeführt. X-Kreise von A sind Nicht-Null-Vektoren
ν? ∈ RA, bei denen die Stützfunktion ν 7→ σX(−Aν) eine strikte Sublinearitätsbedin-
gung aufweist (siehe Definition 6.1.2). Die Konstruktion stellt sicher, dass der Spezi-
alfall der Rn-Kreise auf die simplizialen Kreise des durch A induzierten affin-linearen
Matroids reduziert wird. Auch für reelle Teilmengen X ( Rn haben sublineare Kreise
affin unabhängige positive Trägermengen, vgl. Proposition 6.1.5.

Verbindet man die Theorie der sublinearen Kreise mit X-nichtnegativen AGE-
Exponentialen, so zeigt Theorem 6.2.2, dass für jedes X-AGE-Exponential ein sub-
linearer Kreis existiert, der als duale Variable in der relativen Entropieformulierung
dient. Außerdem induziert jeder normierteX-Kreis λ einen λ-bezeugten X-AGE-Kegel
CX(A,λ), der eine verallgemeinerte Variante der Kreiszahl-Bedingung ([IW16a]) vom
unrestringierten Fall erfüllt. Die Verallgemeinerung bezieht wieder die Stützfunktion
vonX mit ein. Die Vereinigung all dieser Kegel ist wiederum der gesamte Kegel derX-
AGE-Exponentiale, deren Träger in A enthalten ist, siehe Theorem 6.2.4. Abgesehen
von diesen Ähnlichkeiten zum unrestringierten Fall zeigt Beispiel 6.2.9 jedoch, dass
ein sublinearer Kreis im Allgemeinen nicht allein anhand seines Trägers identifizieren
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werden kann.
Abschnitt 6.3 geht der Frage nach, welche X-Kreise tatsächlich für die Darstellung

des X-AGE-Kegels sowie des X-SAGE-Kegels notwendig sind. Dazu wird der Begriff
der reduzierten X-Kreise entwickelt — diejenigen X-Kreise ν, für die (ν,σX(−Aν))
einen Extremalstrahl des Kreisgraphen

pos ({(λ,σX(−Aλ)) : λ normierter X-Kreis von A}∪ {(0, 1)})

erzeugt. Tatsächlich kann der bedingte SAGE-Kegel nur mit λ-bezeugten X-AGE-
Kegeln konstruiert werden, sofern alle λ aus der Menge der reduzierten normierten
X-Kreise betrachtet werden.

Sublineare Kreise für Polyedrische Zulässigkeitsbereiche

Im Fall polyedrischer Nebenbedingungen vereinfacht sich die Frage der X-Nichtne-
gativität erheblich und liefert interessante Ergebnisse. Daher wird ein besonderer
Fokus auf die Situation polyedrischer Mengen X gelegt. In diesem Fall lassen sich
die sublinearen Kreise exakt durch den Normalenfächer eines bestimmten Polyeders
charakterisieren, siehe Theorem 6.1.8. Für polyedrische X ist die Anzahl der sublinea-
ren Kreise endlich, und dies ergibt Zerlegungen der X-SAGE-Kegel in endlich viele
Summanden, induziert von sublinearen Kreisen, siehe Theorem 6.3.6, im Folgenden
paraphrasiert.

Sei X ein Polyeder. Es bezeichne Λ?
X(A) die Menge der normierten re-

duzierten X-Kreise von A. Sei Λ?
X(A) nichtleer, und der Kegel der X-

SAGE-Exponentiale bestehe aus mindestens einem nichtpositiven Term
über X. Dann ist der Kegel gleich der Summe∑

λ∈Λ?X (A)
CX(A,λ).

Außerdem gibt es keine echte Teilmenge Λ ( Λ?
X(A) der Men-

ge der normierten reduzierten X-Kreise mit
∑
λ∈Λ?X (A) CX(A,λ) =∑

λ∈Λ CX(A,λ).

Theorem 6.3.6 liefert die effizienteste mögliche Beschreibung des X-SAGE-Kegels in
Form von Potenzkegel-Ungleichungen.

Innerhalb der Klasse der Polyeder weisen polyedrische Kegel besonders schöne
Eigenschaften auf. Man beachte, dass der unrestringierte Spezialfall X = Rn, der in
Kapitel 3 behandelt wird, ebenfalls in die Klasse der polyedrischen Kegel fällt. Jeder
univariate Fall kann in einen der beiden Kegelfälle R (unrestringierter Fall), R+ (ein-
seitiges Unendlichkeitsintervall), oder in den nicht-konischen Fall [−1, 1] (kompaktes
Intervall) überführt werden. Im multivariaten Fall sind die Polyeder Rn, Rn

+ (nicht-
negativer Orthant) und der Würfel [−1, 1]n prominente Beispiele. Im Gegensatz zum
unrestringierten Fall und zum nichtnegativen Orthanten liefert der Würfel [−1, 1]n
einen nicht-konischen Fall.

Im gesamten Kapitel 6 werden Resultate mit dem univariaten kompakten Intervall
X = [−1, 1] und der Halbgeraden X = [0,∞) veranschaulicht. Des Weiteren werden
die X-Kreise einer Punktmenge A ⊆ R für beide Mengen X sowie die entsprechenden
reduzierten X-Kreise untersucht. Dies mündet in einer vollständigen Charakterisie-
rung der Extremstrahlen des X-SAGE-Kegels für X = [−1, 1] und X = [0,∞) und
A ⊆ R (Theorem 6.4.1).
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AM/GM-Basierte Optimierung unter Nebenbedingungen

Als Verbindung zu den im Rahmen dieser Arbeit erzielten Optimierungsergebnis-
sen für den unrestringierten Fall zeigt der Abschluss dieser Arbeit, dass bestimmte
Optimierungs- und Zerlegungsergebnisse für den unrestringierten Fall auch im re-
stringierten gelten.

Insbesondere kann immer dann, wenn die Menge der Nebenbedingungen X für
eine Gruppe G symmetrisch ist, ebenfalls eine symmetrische Zerlegung eines X-AGE-
Exponentials gefunden werden, die zu einem relativen Entropie-Programm mit we-
sentlich reduzierter Größe führt, siehe Theorem 7.1.1 und Korollar 7.1.2.

In Abschnitt 7.2 wird die Optimierung über einen Kegel, der durch das Duale
des X-SAGE-Kegels induziert wird, betrachtet. Hier müssen verschiedene Einschrän-
kungen an die Menge X der Nebenbedingungen gemacht werden, nämlich, dass sie
polyedrisch und kegelförmig ist. Die Notwendigkeit der Kegelförmigkeit ergibt sich
aus der Tatsache, dass in diesem Fall die Stützfunktion supx∈X −(Aν)Tx immer dann
zu 0 auswertet, wenn ihr Wert endlich ist. Dadurch wird sichergestellt, dass die X-
AGE-artigen Exponentiale mit Koeffizienten im dualen X-SAGE-Kegel im primalen
enthalten sind. Die Einschränkung, dass X polyedrisch ist, führ dazu, dass die An-
zahl der Kreise endlich ist, was die Potenzkegeldarstellung induziert. Außerdem stellt
sie sicher, dass das resultierende Optimierungsprogramm linear ist: Wäre X nicht
polyedrisch, könnte die Menge X nicht durch das Lösen linearer Nebenbedingungen
beschrieben werden.

Des Weiteren wird auch eine Kegeldarstellung zweiter Ordnung für den bedingten
SAGE-Kegel und seinen dualen Kegel für polyedrische X und rationale Ausdrücke
ATX geliefert, siehe Abschnitt 7.3. Letzteres war bereits eine Einschränkung im un-
restringierten Fall. Ersteres wird erneut für das Endlichkeitsresultat der Menge der
X-Kreise sowie für die Potenzkegeldarstellbarkeit des X-SAGE-Kegels in diesem Fall
benötigt.
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