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Note on a theorem of Professor X.

Levent Alpöge

Abstract.

Between his arrival in Frankfurt in 1922 and and his proof of his famous
finiteness theorem for integral points in 1929, Siegel had no publications.
He did, however, write a letter to Mordell in 1926 in which he explained a
proof of the finiteness of integral points on hyperelliptic curves. Recogniz-
ing the importance of this argument (and Siegel’s views on publication),
Mordell sent the relevant extract to be published under the pseudonym
"X".

The purpose of this note is to explain how to optimize Siegel’s 1926
technique to obtain the following bound. LetK be a number field, S a finite
set of places of K, and f ∈ oK,S[t] monic of degree d ≥ 5 with discriminant
∆f ∈ o

×
K,S . Then:

#|{(x, y) : x, y ∈ oK,S, y
2 = f(x)}| ≤ 2rank Jac(Cf )(K) ·O(1)d

3·([K:Q]+#|S|)
.

This improves bounds of Evertse-Silverman and Bombieri-Gubler from
1986 and 2006, respectively.

The main point underlying our improvement is that, informally speak-
ing, we insist on "executing the descents in the presence of only one root
(and not three) until the last possible moment".

1 Introduction.

The technique introduced in Siegel’s 1926 letter to Mordell [8] to prove the
finiteness of integral points on hyperelliptic curves1 can be summarized as: 2-
descent on the curve, then 3-descent on Gm. From this summary the intuitive
guess for the bound that the argument "should" produce is of course something
of shape 2rank · 3# of prime factors of the discriminant. However a consultation of the
literature yields worse estimates.2

In this note we rectify the situation.

1By this common and incorrect abbreviation we really mean integral solutions of y2 = f(x).
Siegel’s 1926 proof does not control integral solutions of e.g. y3 + x · y = x4, or, said another way,
integral points with respect to an effective divisor containing no nonzero divisor symmetric under
the hyperelliptic involution. Baker effectivized Siegel’s 1926 argument and thus gave an effective
finiteness proof in the y2 = f(x) cases, but he did not effectivize Siegel’s 1929 finiteness theorem
in the case of hyperelliptic curves.

2To our knowledge the best bounds in the literature are the 2006 estimate of Bombieri-Gubler
[4, Theorem 5.3.5] and the 1986 estimate of Evertse-Silverman [6]. In both bounds the "expected"
2rank factor is replaced by a power of the size of the 2-part of the class group of an extension gotten
by adjoining three Weierstrass points.
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Theorem 1.1. Let K/Q be a number field. Let S be a finite set of places of K . Let f ∈
oK,S[t] be monic of degree d ≥ 5 with discriminant ∆f ∈ o

×
K,S . Let Caff.

f : y2 = f(x)
be the Weierstrass model of the hyperelliptic curve Cf corresponding to f . Then:

#|Caff.
f (oK,S)| ≤ 2rankJac(Cf )(K) · O(1)d

3·([K:Q]+#|S|).

Also, for all K-irreducible gi ∈ oK,S [t] with
∑

i deg gi ≥ 3 and
∏

i gi
∣

∣f ,

#|Caff.
f (oK,S)| ≤

(

∏

i

#|Cl(oKgi
,S)[2]|

)

·O(1)d
3·([K:Q]+#|S|),

where Kgi := K[t]/(gi) and oKgi
,S := oKgi

⊗oK
oK,S .

We include the second statement in case e.g. the product of the linear and
quadratic irreducible factors of f is of degree at least 3.

In the elliptic curve case an even stronger bound is available because one
can execute the whole descent over K (following Mordell) [1]3. In the superel-
liptic (ym = f(x),m > 2) case as usual one does not need to execute a 3-descent
on Gm so the bound also improves.

Let us explain how the argument goes. First, the 2-descent. À la Fermat,
given y2 = f(x), adjoin a root ρ and conclude that x− ρ is almost a square, say
x− ρ = α · β2 with α, β ∈ K[ρ] := K[t]/(f).

Now adjoin three roots. Let L/K be an extension containing three roots, say
ρ1, ρ2, ρ3. Then, for all K-maps σ : K[ρ] → L, we find x − σ(ρ) = σ(α) · σ(β)2.
Thus (obvious notation) ρj − ρi = αi · β2

i − αj · β2
j .

Now pass to L′ := L(
√
α1,

√
α2,

√
α3). We obtain the six elements γij,± :=

βi
√
αi ± βj

√
αj , all divisors of ρj − ρi. By hypothesis they are therefore all

S′-units, with S′ the set of places of L′ above a place in S.
Now for the 3-descent. We may then write γij,± = δij,± · ε3ij,± with δij,±

representatives for o
×
L′,S′/3. The relation γ12,+ − γ23,+ = γ13,− becomes the

cubic Thue equation δ12,+
δ13,−

·
(

ε12,+
ε13,−

)3

− δ23,+
δ13,−

·
(

ε23,+
ε13,−

)3

= 1.
We conclude with a bound of Evertse.
As a last remark: note that 2rank Jac (Cf )(K) is ≪ 1 on average (ordering as

usual by height) [3, 7]. This statement is why we tried for the stronger bound
[1] in the elliptic curve case, after which we questioned why a similar bound
did not exist in the hyperelliptic curve case.
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3See also Chapter 2 of [2], which is based on the same work.
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3 Proof of Theorem 1.1.

Proof of Theorem 1.1. Let g ∈ oK,S [t] with g|f be a monic divisor of f with
deg g ≥ 3 (for the first part of the theorem we will take g = f ). Write f =: gh
with h ∈ oK,S [t]. Let L/K be an extension of minimal degree containing at
least three roots of g.

Factorize g =:
∏

i gi into K-irreducible factors gi ∈ oK,S [t]. Note that
(gi, gj) = (1) for each i 6= j because ∆f ∈ o

×
K,S . Thus Kg ≃

⊕

i Kgi , with
Kgi := K[t]/(gi) and Kg := K[t]/(g). We will repeatedly write oKgi

,S etc. for
the evident localizations, e.g. oKgi

,S := oKgi
⊗oK

oK,S . Write ρ(i) for the image
of t in Kgi = K[t]/(gi).

By the Chebotarev density theorem (and its explicit error term) applied to
the Hilbert class field of Kgi , each ideal class of Kgi contains a prime of norm
≪ |∆Kgi

|O(1). (We will only use existence.) Let then P (i) be a minimal set of
prime representatives of Cl(oKgi

,S)[2] in Kgi of norm ≪ |∆Kgi
|O(1).

Now let us begin the argument. For (x, y) ∈ Caff.
f (oK,S), (y)2 = (x − ρ(i)) ·

(

gi(x)
x−ρ(i)

)

· ∏j 6=i(gj(x)) · (h(x)) as ideals in oKgi
,S . Without loss of generality

f(x) 6= 0. Since ∆f ∈ o
×
K,S , it follows that there is an ideal ai ⊆ oKgi

,S with
(x − ρ(i)) = a2i . Thus there is a pi ∈ P (i) with pi ≡ ai modulo principal ideals
of Kgi . Hence ai is principal in oKgi

,S∪{pi} (obvious meaning).
Let αi ∈ oKgi

,S∪{pi} be such that ai = (αi) as ideals of oKgi
,S∪{pi}. Thus

x− ρ(i) = α2
i · (∈ o

×
Kgi

,S∪{pi}
), where (∈ o

×
Kgi

,S∪{pi}
) denotes an element of the

(S ∪ {pi})-units of Kgi .
Let U (i) be a minimal set of representatives of o×

Kgi
,S∪{pi}

/2 (that is, modulo

squares). It follows that there are γi ∈ U (i) and u(i) ∈ o
×
Kgi

,S∪{pi}
such that

x− ρ(i) = γi · (αi · u(i))2. Let ηi := αi · u(i). Thus x− ρ(i) = γi · η2i .
Therefore we find that, for each K-embedding σ : Kgi →֒ L, we have x −

σ(ρ(i)) = σ(γi) · σ(ηi)2.
By definition of L, for each 1 ≤ k ≤ 3 there is an ik and a K-embedding

τk : Kgik
→֒ L such that the corresponding roots τk(ρ(ik)) are pairwise distinct.

Let then:

κk := τk(ρ
(ik)),

λk := τk(γik),

µk := τk(ηik).

Hence x−κk = λk ·µ2
k as elements of L. Hence for k 6= ℓ we find that κℓ−κk =

λk · µ2
k − λℓ · µ2

ℓ .
We are done with the 2-descent on Cf . Now it is time for the 3-descent on

Gm. Let Lkℓ := L
(√

λk,
√
λℓ

)

. Thus (1) = (κℓ − κk) =
(√

λkµk −
√
λℓµℓ

)

·
(√

λkµk +
√
λℓµℓ

)

as ideals of oLkℓ,S∪{pk,pℓ} (obvious meaning), the first equal-
ity following from ∆f ∈ o

×
K,S .
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Let Vkℓ be a minimal set of representatives of o×
Lkℓ,S∪{pk,pℓ}

/3 (that is, mod-
ulo cubes). It follows that there are vkℓ,± ∈ Vkℓ, ζkℓ,± ∈ o

×
Lkℓ,S∪{pk,pℓ}

for which√
λkµk ±

√
λℓµℓ = vkℓ,± · ζ3kℓ,±. Hence:

0 = (
√

λ1µ1 ±
√

λ2µ2)∓ (
√

λ2µ2 ±
√

λ3µ3)− (
√

λ1µ1 −
√

λ3µ3)

= v12,± · ζ312,± ∓ v23,± · ζ323,± − v13,− · ζ313,−.

We may of course rearrange this as v12,±
v13,−

·
(

ζ12,±
ζ13,−

)3

∓ v23,±
v13,−

·
(

ζ23,±
ζ13,−

)3

= 1.

Now for Evertse’s bound. LetF±(X,Y ) :=
v12,±
v13,−

·X3∓ v23,±
v13,−

·Y 3 ∈ oL123 [X,Y ],

with L123 := L(
√
λ1,

√
λ2,

√
λ3). Then F± is a cubic form with nonzero discrim-

inant. Moreover if F±(X,Y ) = F±(tX, tY ) = 1 then t3 = 1. Therefore by [5]
the number of solutions of F±(X,Y ) = 1 with (X,Y ) ∈ oL123,S∪{p1,p2,p3} is
≪ O(1)[L:Q]+[L:K]·#|S|.

We are done with the argument. Now let us examine the tally. Let us first

show that our original point (x, y) can be recovered from the pairs
(

ζ12,±
ζ13,−

,
ζ23,±
ζ13,−

)

up to O(1) many possibilities. To see this first multiply the two X-coordinates
together to form ζ12,+·ζ12,−

ζ2
13,−

. Note that:

v12,+ · v12,− · ζ312,+ · ζ312,− = (
√

λ1µ1 +
√

λ2µ2) · (
√

λ1µ1 −
√

λ2µ2)

= λ1µ
2
1 − λ2µ

2
2

= κ2 − κ1.

Thus it follows that ζ312,+ · ζ312,− = κ2−κ1

v12,+·v12,−
. Hence the cube of the product

of the two X-coordinates is ζ−6
13,− ·

(

κ2−κ1

v12,+·v12,−

)

. We note that the term in paren-

theses is fixed (in terms of our choices up til now). Thus we may recover ζ613,−,
and hence ζ13,− up to at most six choices. Having done so we return to the
X-coordinates of both solutions and recover ζ12,+ and ζ12,−. Then the equality

2
√

λ1µ1 = (
√

λ1µ1 +
√

λ2µ2) + (
√

λ1µ1 −
√

λ2µ2)

= (v12,+ · ζ312,+) + (v12,− · ζ312,−)

implies that we can recover 2
√
λ1µ1. Squaring this we find that we can recover

4λ1µ
2
1 = 4(x − κ1). Since κ1 is fixed we can recover x, and then there are at

most two choices for y given x, so we can indeed recover the point up to O(1)
many choices.

So we see that a point (x, y) ∈ Caff.
f (oK,S) is determined up to O(d3) (arising

from the choice of three roots in L) many choices by the data

(p1, p2, p3, γ1, γ2, γ3, v12,+, v12,−, v23,+, v23,−, v31,−).

The number of choices for each pi is #|P (i)| = #|Cl(oKgi
,S)[2]|. The number of

choices for each γi ∈ U (i) is #|U (i)| ≪ 2deg gi·(#|S|+[K:Q]) by Dirichlet. Similarly
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the number of choices for each vkℓ,± ∈ Vkℓ is #|Vkℓ| ≪ 34·[L:Q]+4·[L:K]·#|S|. Of
course [L : K] ≤ d3.

Therefore the total number of tuples (p1, p2, p3, γ1, γ2, γ3, v12,+, v12,−, v23,+, v23,−, v31,−)
is

≪
(

∏

i

#|Cl(oKgi
,S)[2]|

)

· O(1)d
3·([K:Q]+#|S|).

We are done with the second part of the theorem.
So take g = f , and let us count the ideal classes of

⊕

i oKgi
,S ≃ oKf ,S that

could possibly arise in the 2-descent step (we have bounded said count by
≤
∏

i#|Cl(oKgi
,S)[2]| and we claim it is also ≪ 2rank Jac (Cf )(K) ·O(1)d).

Let Jf := JacCf . Let W ⊆ Cf (Q) be the set of Weierstrass points of
Cf . Let ∞ ∈ W be a point at infinity. We embed Cf →֒ Jf = Pic0(Cf )
via P 7→ P − ∞. Thus as Gal(Q/K)-modules Jf [2] ≃ F2[W − {∞}]/F2 ·
(

∑

P∈W−{∞} P
)

. In other words, IndKf

K F2 ≃ F2⊕Jf [2], where we have written

Ind
Kf

K (•) :=⊕i Ind
Kgi

K (•). Thus H1(Kf ,F2) ≃ H1(K, Ind
Kf

K F2) ≃ H1(K,F2)⊕
H1(K, Jf [2]), where the first isomorphism follows by Shapiro’s lemma (and
H1(Kf , •) :=

⊕

i H
1(Kgi , •)). By Kummer it follows that H1(K, Jf [2]) ≃ (K×

f /2)Nm=�.
Thus by taking invariants of 0 → Jf [2] → Jf → Jf → 0we obtain Jf (K)/2 →֒

H1(K, Jf [2]) ≃ (K×
f /2)Nm=�. Write G ⊆ H1(K, Jf [2]) for the image of this

map. Note that the restriction of this map to Cf (K)−W is simply (x, y) 7→ x−ρ,
so similarly write G′ ⊆ G for the image of Caff.

f (oK,S)−W .
We have already seen that each g ∈ G′ ⊆ G →֒ (K×

f /2)Nm=� gives rise
to a class represented by an α ∈ K×

f for which vp(α) is even for all primes
p ⊆ oKf ,S (because ∆f ∈ o

×
K,S). From such a class we may produce an element

of Cl(oKf ,S)[2] via α 7→ a such that (α) = a2 as ideals of oKf ,S .
The corresponding map Caff.

f (oK,S) − W → Cl(oKf ,S)[2] is precisely (up
to our choice of representatives) our map (x, y) 7→ (pi)i. It therefore suffices
to show that #|G′| ≪ 2rankJf (K) · O(1)d. However #|G| = #|(Jf [2])(K)| ·
2rankJf (K) and G′ ⊆ G.
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