U-Pb Geochronologie, Hf Isotopie und Spurenelementgeochemie detritischer Zirkone aus rezenten Sedimenten des Orange- und Vaal River Flusssystems in Südafrika

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften

vorgelegt im Fachbereich Geowissenschaften/Geographie der Johann Wolfgang Goethe-Universität Frankfurt am Main

> von **Kai Olaf Klama** geboren in Wattenscheid

Frankfurt am Main, 2008

(D 30)

vom Fachbereich Geowissenschaften/Geographie FB11 der Johann Wolfgang Goethe Universität als Dissertation angenommen.

Dekan: Prof. Dr. Gerhard Brey

Gutachter: Prof. Dr. Gerhard Brey Juniorprof. Dr. Stefan Weyer

Datum der Disputation: 29.05.2009

Kurzfassung:

Die vorliegende Arbeit beschäftigt sich mit der geochemischen und isotopischen Analyse detritischer Zirkonminerale aus rezenten Sedimenten des weit verzweigten Orange- und Vaal River Flusssystems in Südafrika. Zirkone kristallisieren überwiegend aus krustalen Schmelzen und sind äußerst resistent gegenüber jeglicher Zerstörung und damit ein idealer Rekonstruktion früherer Krustenbildungsprozesse der geologischen Kandidat zur Erdgeschichte. Der kombinierte Ansatz der U-Pb Altersdatierung, der Hf Isotopie und der Spurenelementgeochemie mittels Laserablation und des Einsatzes induktiv-gekoppelter Sektorfeld- und Multikollektormassenspektrometer ermöglicht es die krustale Wachstumsund Entwicklungsgeschichte des südafrikanischen Kratons zu erfassen. Die mehr als 1200 U-Pb Analysen der Zirkone weisen 4 tektonische Hauptphasen des südafrikanischen Kontinents die Panafrikanische Orogenese (0.5-0.7 Ga), das Namagua-Natal nach: 1. 2. Faltengürtelorogen (1.0-1.3 Ga), 3. die Kheis Orogenese (1.8-2.0 Ga) und 4. die westliche Kaapvaal-Kratonisierung (2.9-3.2 Ga). Allerdings zeigt sich, dass die 13 Probenlokationen überwiegend lokale bzw. regionale U-Pb Altersdaten ihrer umgebenden Herkunftsgebiete liefern. Die Hf Isotopie der Zirkone der verschiedenen tektonischen Hauptphasen Südafrikas ihre differenzierte Akkretions- und Aufschmelzungsgeschichte stellen dar. Die panafrikanischen Zirkone zeigen eine ausgeprägte Durchmischung von juvenilem und recyceltem Material. Die mesoproterozoischen (Namaguan) Zirkone entstanden aus juvenilem Magma während eines Inselbogen-Kontinent-Kollisionsereignisses. Die paläoproterozoischen und archaischen Zirkone sind Produkte von aufgeschmolzener prä-existierender kontinentaler Kruste oder vom Mantel abstammende Schmelzen, die durch kontinentale Kruste kontaminiert wurden. Die berechneten Hf Modellalter, so genannte "Mantelextraktionsalter" ergeben zwei Maxima, die zwei Stadien juvenilem Krustenwachstums einschließen, einmal vor 1.4 und 3.2 Ga. Dieses krustale Wachstum zeigt eine Übereinstimmung mit den progressiv episodischen Modellen von Nagler & Kramers (1998) sowie Condie (2000) mit Höhepunkten zwischen 3.0 und 2.0 Ga sowie den Studien von Wang et al. (2008) mit krustalen Wachstumsperioden von 1.6 bis 2.2 und 2.9 bis 3.4 Ga auf dem Nordamerikanischen Kontinent und auf dem Gondwana-Kontinent (Australien) von Hawkesworth & Kemp 2006) und implizieren wohl ein globales kontinentales Krustenwachstum. Die Abgrenzung und Wiedererkennung der Zirkone anhand der chemischen Zusammensetzung zu möglichen Muttergesteinen zeigen noch keine viel versprechenden Ergebnisse. Generell weisen die Zirkone eine magmatische granitoide Zusammensetzung kontinentalen Ursprungs auf. Eine Auffälligkeit stellen die erhöhten Spuren- und leichten Seltenenerdelemente in Zirkonen jeglicher Altersklassen dar. Nachfolgende Arbeiten müssen zeigen, wie und ob diese Anreicherungen Einfluss auf die chemische Zusammensetzung, die U-Pb Datierung und vor allem die Hf-Isotopie der Zirkone haben.

Inhaltsverzeichnis

1. Einleitung	1
2. Stand der Forschung	2
2.1 in situ Messungen mittels LA-(MC)-ICP-MS	2
2.2 Modelle zur kontinentalen Krustenbildung	5
3. Geologie von Südafrika	9
3.1 plattentektonische Konfiguration	15
4. Probennahme	17
4.1 Kriterien der Probennahme	17
4.2 Lokalitäten	18
5. Analytik	20
5.1 U-Pb Datierung an Zirkonen	20
5.2 Hf Isotopie	22
5.3 Spuren- und Seltenen Erdelemente	23
5.4 Prinzipielle Darstellungen	24
6. Ergebnisse	26
6.1 Lokalität Orange River Mouth (900)	26
6.1.1 U-Pb Daten	26
6.1.2 Hf Isotopie	30
6.1.3 Spuren- und Seltenen Erdelemente	32
6.2 Lokalität Parys (901)	33
6.2.1 U-Pb Daten	34
6.2.2 Hf Isotopie	35
6.2.3 Spuren- und Seltenen Erdelemente	36

6.3 Lokalität Lesotho (902)	
6.3.1 U-Pb Daten	39
6.4 Lokalität Kheis (903)	40
6.4.1 U-Pb Daten	40
6.4.2 Hf Isotopie	41
6.4.3 Spuren- und Seltenen Erdelemente	43
6.5 Lokalität Augrabie Falls (904)	44
6.5.1 U-Pb Daten	45
6.6 Lokalität Bosluis se Pan (905)	46
6.6.1 U-Pb Daten	47
6.7 Lokalität South Africa- Namibia border (906)	48
6.7.1 U-Pb Daten	48
6.8 Lokalität Kleinzee (908)	49
6.8.1 U-Pb Daten	50
6.9 Lokalität KV 156 T (909)	51
6.9.1 U-Pb Daten	52

6.10 Lokalität Christiana (913)	53
6.10.1 U-Pb Daten	54
6.11 Lokalität Orange River sand bar (914)	55
6.11.1 U-Pb Daten	55
6.11.2 Hf Isotopie	56
6.11.3 Spuren- und Seltenen Erdelemente	58
6.12 Lokalität Riet River (915)	59
6.12.1 U-Pb Daten	60
6.13. Lokalität Taung (916)	61
6.13.1 U-Pb Daten	61

6.13.1 U-Pb Daten	61
6.13.2 Hf Isotopie	63
6.13.3 Spuren- und Seltenen Erdelemente	64

_	D • 1	•
1.	Dis	kussion
		LUDSION

7.1 Wachstums des Kontinents	
7.1.1 Daten U-Pb Gesamtaltersverteilung	66
7.1.2 Hf Isotopie-Gesamtansicht	70
7.2 Vergleich mittlere und obere Kruste	74
7.2.1 Parys (901)- Taung (916) U-Pb Alter, Hf Isotopie	77
7.3 Charakterisierungen der Zirkone anhand der Spurenelemente	80
7.3.1 Daten	80
7.3.2 Diskussion	84
8. Zusammenfassung und Ausblick	
9. Literatur	

66

Anhang

Danksagung

Lebenslauf

1. Einleitung

Neben Zirkon gibt es wohl kein weiteres Mineral, welches so tief greifend Einblicke in die Geschichte von Gesteinen und der frühen Entwicklung der Erde erbracht hat. Das akzessorische Mineral Zirkon kommt in der Natur in großer Vielfalt in sedimentären, magmatischen und metamorphen Gesteinen vor. Aufgrund der Eigenschaft verschiedene Spurenelemente in bestimmten Mengen einzubauen, bietet der Zirkon die Möglichkeit substantielle chemische und isotopische Informationen zu liefern. Die gut dokumentierte Widerstandsfähigkeit von Zirkon gegenüber Gesteinsverwitterung, Transport und Sedimentationsprozessen resultiert in der Akkumulation detritischer Zirkone als Schwerminerale in definierten klastischen Sedimentablagerungen von Flusssystemen sowie in den angrenzenden Kontinentalrändern. Geochronologische und isotopische Analysen an diesen detritischen Zirkonen aus großen Flusssystemen, ermöglicht somit die zeitaufgelöste Entwicklungsgeschichte von Krustenbereichen zu studieren. die durch die Oberflächengeologie nicht aufgeschlossen oder bereits vollständig abgetragen sind. Die meisten aussagekräftigsten krustalen Entwicklungsmodelle deuten auf ein progressives kontinentales Krustenwachstum hin, welches durch episodischen Zuwachs zu bestimmten Zeiten der Erdgeschichte geprägt ist. Durch die ständig zunehmende Anzahl an U-Pb Altersdaten, besonders von detritischen Zirkonen, ist es nun möglich eine Neuabschätzung der Verteilung von Krustenwachstumsereignissen in Zeit und Raum vorzunehmen. In dieser vorgestellten Arbeit soll der kombinierte Ansatz der U-Pb Altersdatierung, der Hf Isotopie und der Spurenelementgeochemie (einschließlich der Seltenen Erdelemente) an detritischen Zirkonen des großflächigen Orange- und Vaal River Flusssystems in Südafrika es ermöglichen, die krustale Wachstums- und Entwicklungsgeschichte des südafrikanischen Kratons zu erfassen. Die Analysen erfolgten an einem Einzelkollektor- und Multikollektorinduktiv-gekoppelten Plasma-Massenspektrometer in Verbund mit einem Ultraviolett-Laserablationssystem und eingehender Entwicklung der spezifischen Methodiken für die entsprechenden Isotopensysteme. Die U-Pb Altersdatierung an Zirkonen liefert dabei ein magmatisches und/oder metamorphes Kristallisationsaltersspektrum der Krustenbereiche. Die Hf Isotopie ermöglicht zu unterscheiden, ob die Zirkone bzw. die Schmelze aus der sie kristallisierten, aus juvenilen oder alten z.b. archaischen Krustenanteilen abstammt. Zur besseren Darstellung der Hafniumisotopie wird dafür häufig die EHf Notation verwendet, also die Abweichung des jeweiligen Wertes von der Zusammensetzung der Gesamterde (= Chondrite) zu dieser Zeit. Ein positives EHf und ein Hf-Modellalter nahe dem Kristallisationsalter zeugt von juveniler Krustenbildung, wohin dagegen ein negatives EHf und ein Hf-Modellalter >> Kristallisationsalter auf ein Wiederaufschmelzen älterer Kruste hindeutet. Die chemische Zusammensetzung der Zirkone wird seit den 1970er Jahren als potentieller Provenienz-Indikator betrachtet basierend auf der Annahme, das dessen Chemie eine ausreichende Variabilität in verschiedenen Muttergesteinen für eine Unterscheidung aufweist.

2. Stand der Forschung

2.1 insitu Messungen mittels LA-(MC)-ICP-MS

Die Entwicklung der Laser-Ablation hat seit den 80er Jahren mittels induktiv-gekoppelter Plasma-Massenspektrometrie und gleichzeitiger Verbesserung der Bildanalysetechniken zu weitgehenden Fortschritten von räumlich hochauflösenden insitu- Einzelkristall Analysen hinsichtlich der Spurenelementbestimmung und der Isotopenmessungen wie U-Pb Datierungen und der Hf Isotopie an Zirkonen bzw. anderen akzessorischen Mineralen geführt. Dahingehend hat die schnell fortschreitende Entwicklung der LA-ICP-MS Methode von Verbesserungen der Lasersysteme und der ICP-MS Geräte sowie von umfangreichen Arbeiten durch Ringversuche mehrerer internationaler Labore mit neuen Mineralstandards profitiert. Die wegweisenden Arbeiten von Feng et al. (1993), Fryer et al. (1993), Hirata & Nesbitt (1995) und Jackson et al. (1996) erläutern die potentielle Brauchbarkeit der Laser-Ablation. Gleichzeitig ist in den ersten Arbeiten auch auf die Schwierigkeiten dieser Anwendung hingewiesen worden, wie z.B. die große und variable Unterscheidung der Isotopenmassenschwankung (mass bias) verursacht durch Raumladungseffekte in den Interface-Regionen des Massenspektrometers und im elektrostatischen Linsensystem. Ein bedeutender Aspekt ist die Elementfraktionierung von U und Pb an der Ablationsstelle verursacht durch Volatilitätsdifferenzen. Die Suche nach und leider die limitierende Verfügbarkeit von geeigneten Mineralstandards, welche für die Korrektur der Massen- und Interelementfraktionierung benötigt werden, sind von grundlegender Bedeutung (Hirata & Nesbitt 1995, Jackson et al. 1996, Jeffries et al. 1996, Hirata 1997, Parrish et al. 1999, Horn et al. 2000, Russo et al. 2000, Gonzales et al. 2002, Guillong & Günther 2002, Kosler et al. 2002, Slama et al. 2008). Die ersten Veröffentlichungen von Zirkon-Datierungen beinhalten aufgrund der oben beschriebenen Schwierigkeiten auch nur ²⁰⁷Pb/²⁰⁶Pb Analysen. Es sind mehrere Ansätze durchgeführt worden, um eine optimale Signalausbeute während der Laserablation zu erzielen. Eine wichtige Rolle bei der Auswahl des Lasersystems spielt die Wellenlänge sowie die Pulsrate. Die Reduzierung der Wellenlänge des Nd:YAG Laser von 266 nm zu 213 nm (Jeffries et al. 1998) sowie des Excimer Gaslaser mit 193 nm und der Pulsrate von 2.8 ns beim 213 nm Laser zu 5 ns beim 193 nm Laser (Jochum et al. 2006), haben es ermöglicht kleinere Spotdurchmesser (Horn et al. 2000; Iizuka & Hirata 2004) zu verwenden und zu einer Reduzierung der Pb/U Fraktionierung geführt. Durch eine weitere Entwicklung der Quadrupol-ICP-MS Geräte konnte die Korrektur des gewöhnlichen Bleis "common lead" (²⁰⁴Pb Messung) und die Massenschwankung durch Zugabe einer Tl-Lösung präziser analysiert werden (Horn et al. 2000, Kosler et al. 2002). Mit fortschreitender Entwicklung Mitte der 90er Jahre sind auch Verbesserungen zum Verständnis des Aerosoltransportes sowie direkte Neuerungen an den Laserablationszellen hin zu kleineren Ablationsvolumen und speziell geformten Zell-Innerem (Augentränen-artiges Design) vollzogen worden (Jackson et al. 1996, Eggins et al. 1998, Bleiner & Günther 2001, Horstwood et al. 2005). Einige Labore verwenden für die U-Pb Datierungen Multikollektor-Massenspektrometer bei denen die verschiedenen Isotope simultan auf Faraday-Detektoren und Ionenzähler gemessen werden (Gehrels et al. 2000 und 2006, Simonetti et al. 2004, Horstwood et al. 2005). Der erste Einsatz eines Einzelkollektor-Sektorfeld-ICP-Massenspektrometer (SF-ICP-MS), die Thermo-Finnigan™ Element, ist von Tiepolo (2003) durchgeführt worden, um eine höhere Häufigkeitssensitivität, einen flacheren, gekappten peak shape und damit eine höhere Präzision bei der U-Pb Datierung an Zirkonen zu erreichen. Weitere Verbesserungen der Sensitivität, der Ablationszellen, der automatisierten Messprotokolle sowie der Unterdrückung störender Messsignale sind von Hirata et al. (2005), Iizuka & Hirata (2004), Jackson et al. (2004), Frei et al. (2005), Gerdes & Zeh (2006) und Chang et al. (2006) teils an Quadrupol- und SF-ICP-Massenspektrometern durchgeführt worden. Die Zahl der Arbeiten mit geologischen Fragestellungen ist seit 2000 rapide angestiegen und ebenso ist die Zahl der analysierten Zirkone in die mehrere Zehnertausende gegangen.

Das Lu-Hf System bietet die Möglichkeit zur Charakterisierung der geochemischen Differentiation der silikatischen Erde (Kruste und Mantel) aufgrund der Tatsache, dass eine Fraktionierung des Lutetium zu Hafnium während der Magmenbildung auftritt (Patchett & Tatsumoto 1980 und 1981, Kinny & Maas 2003, Scherer et al. 2007). Lu besteht aus den beiden natürlich vorkommenden Isotopen ¹⁷⁵Lu (natürliche Häufigkeit 97.4 %) und ¹⁷⁶Lu (natürliche Häufigkeit 2.6 %). Das ¹⁷⁶Lu ist ein unstabiles Radionuklid mit einer Halbwertszeit von 35.7 Ga und erliegt einem spontanen ß⁻ Zerfall in das stabile ¹⁷⁶Hf. Das natürliche Hf besteht aus den 6 Isotopen ¹⁷⁴Hf (Häufigkeit 0.2 %), ¹⁷⁶Hf (5.2 %), ¹⁷⁷Hf (18.6 %), ¹⁷⁸Hf (27.1 %), ¹⁷⁹Hf (13.7 %) und ¹⁸⁰Hf (35.2 %). Zur Relativangabe benutzt man im Lu-Hf- System das Isotop ¹⁷⁷Hf. Die Lu-Hf- Methode basiert auf der Zerfallsgleichung: $(^{176}\text{Hf}/^{177}\text{Hf})_{t} = (^{176}\text{Hf}/^{177}\text{Hf})_{initial} + (^{176}\text{Lu}/^{177}\text{Hf})_{t} * (e^{\lambda t} - 1), \text{ wobei t die abgelaufene Zeit und } \lambda \text{ die }$ ¹⁷⁶Lu ß⁻ Zerfallskonstante darstellt. In dieser Arbeit ist der überarbeitete λ - Wert = 1.87*10⁻ ¹¹y⁻¹ von Scherer et al. (2001) verwendet worden. Die Messung der Hafniumisotopie ist anfänglich durch konventionelle Thermische-Ionisations-Massenspektrometrie (TIMS) an Mikrogramm großen Zirkonfraktionen durchgeführt worden, in denen reines Lutetium und Hafnium aus den Zirkonen durch Säureaufschlüsse mit Kation-Austauschsäulen extrahiert worden ist (Patchett 1980a, 1981; Corfu & Noble 1992). Eine deutliche Verbesserung hinsichtlich Präzision und Effizienz der Isotopenanalyse vor allem an kleinerer Probenmengen ermöglichte die Einführung der Multikollektor-induktiv gekoppelten Massenspektrometrie (MC-ICP-MS) in der Mitte der 90er Jahre und Verbesserungen der chemischen Separationstechnik (Halliday et al. 1995, Blichert-Toft 1997, Kleinhanns et al. 2002, Ulfbeck et al. 2003, Goolaerts et al. 2004, Nebel-Jacobsen et al. 2005). Die ersten in situ Isotopenanalysen sind mit der SHRIMP Ionensonde (Sensivitive High-Resolution Ion Microprobe) von Kinny et al. (1991) durchgeführt worden. Mit dem Einsatz eines MC-ICP-MS, gekoppelt mit einem Laser-Ablationssystem, erzielten Thirwall und Walder (1995) an Zirkonen aus Schottland eine Verbesserung der Reproduzierbarkeit um das 2.5 fache gegenüber den SHRIMP Messungen. Weitere Arbeiten und Methodenentwicklungen von Griffin et al. (2002) mit einem 266 nm Nd:YAG Laser und einem Nu-Plasma MC-ICP-MS verbessern die Reproduzierbarkeit auf 0.01 % bei einem 60 µm Spot für Zirkone mit unterschiedlichen Wachstumszonen. Woodhead et al. (2004) erreichten mit einem 193 nm Excimer Laser eine Reproduzierbarkeit und Genauigkeit von 0.0001 % mit den Referenzstandards 91500, BR266 und Temora-2 über einen 9-monatigen Zeitraum. Aus dieser und darauf folgenden Arbeiten (Chu et al. 2002, Segal et al. 2003 und Vervoort et al. 2004, Iizuka & Hirata 2005, Amelin & Davis 2005, Wu et al. 2006, Gerdes & Zeh 2006, Hawkesworth & Kemp 2006b, Kemp et al. 2006, Gerdes & Zeh 2008, Kemp et al. 2008, Zeh et al. 2008) geht hervor wie entscheidend eine präzise Yb Isotopie-Bestimmung für eine genaue Korrektur der Messung des Lu und der Lu/Hf Verhältnisse während der MC-ICP-MS Analyse der Zirkonproben und der Standards sind. Die Möglichkeit aus einem kombinierten Ansatz mit der U-Pb Datierung und der Hf Isotopie wertvolle Hinweise über die krustalen Wachstumsprozesse zu bekommen, führte zu zahlreichen Forschungsvorhaben entweder in sedimentären Systemen wie rezenten Flusssystemen oder zu Zirkonanalysen direkt aus granitoiden Gesteinsassoziationen. Bedeutende Arbeiten, die auf der Provenienz detritischer Zirkone aus Flusssystemen basieren, sind von Sircombe & Freeman (1999), Bodet & Schärer (2000), Pollock et al. (2002), Erikkson et al. (2004), Wu et al. (2004), Condie et al. (2005), Rino et al. (2004) und 2008) und Wang et al. (2008) aufgezeigt worden.

Aufgrund der weiten Verbreitung von Zirkonen in magmatischen, metamorphen und sedimentären Gesteinsformationen bietet die Spurenelementzusammensetzung derselben ein Potential zur Charakterisierung des geochemischen Rahmens ihrer Magmenbildung. Es besteht somit ein Interesse bei krustalen Entwicklungsstudien mittels geochemischen "finger print" zusätzlich zu den Altersangaben die Wirtsgesteine von detritischen und xenokristischen Zirkonen bestimmen zu können. Die ersten Versuche mittels Spurenelementbestimmung und isotopischer Altersangaben Rückschlüsse auf das Quellgebiet der Zirkone zu bekommen, sind von Köppel & Grünenfelder (1971), Köppel & Sommerauer (1974) und Murali et al. (1983) durchgeführt worden, waren aber begrenzt aufgrund der Schwierigkeit die SEE (Seltenen Erdelemente) schwierigen Messmöglichkeiten und der ungenauen Bestimmung der SEE, Y und andere Spurenelemente genau im Zirkon zu bestimmen. Heamann et al. (1990) unterschied, basierend auf Neutronaktivierungsanalysen (NAA) an Kornfraktionen von 17 Zirkonpopulationen, Zirkone von Kimberliten, Karbonatiten und Nephelin-Syeniten, mafischen und ultramafischen-, felsischen- und basaltischen Proben anhand Lu, Sc, Th/U und Lu/Sm versus Hf Diagrammen. Zirkonzusammensetzungen aus einer Auswahl verschiedener Gesteinstypen wie Meteoriten, Mondgesteinen, Metamorphiten und granitoiden Gesteinen sind zuerst von Ireland and Wlotzka (1991) ermittelten worden. Ein Ergebnis dieser Arbeit ist, dass die SEE Muster der Zirkone sehr einheitlich sind, wobei die meteorischen Zirkone keine Ce Anomalie aufweisen. Hoskin & Ireland (2000) zeigen eine eindeutige Unterscheidungsfähigkeit der SEE Muster an Zirkonen mit Mantel- und krustaler Affinität, bei der die SEE Muster der Mantelzirkone deutlich flacher und niedrigere Konzentrationen aufweisen im Vergleich zu den krustalen Zirkonen. Belousova et al. (2000) hat eine umfangreiche Sammlung von Spurenelementdaten an Zirkonen verschiedener Gesteinstypen durchgeführt. Anhand der Konstruktion eines statistischen Klassifizierungs- und Regressionsbaums (CART tree) für magmatische Zirkone basierend auf den Elementen (U, Th, Y, Yb, Lu und Hf) ist ein Schlüssel für die geochemische Zusammensetzung der Wirtsgesteine bestimmt worden. Allerdings wird diese Arbeit dahingehend kritisiert, dass sie alterierte Zirkone und Körner mit Mineraleinschlüssen analysierte und damit ihre Datengrundlage für ihren Klassifizierungsbaum auf einer zerbrechlichen Grundlage steht (Hoskin & Schaltegger 2003). In einer weiteren Arbeit beschreibt Belousova et al. (2006) eine Korrelation der Hf Isotopie und der Spurenelementzusammensetzung mit der von Pupin (1980) eingeführten Zirkonmorphologie. Schulz et al. (2006) zeigen anhand des Vergleichs der geochemischen Gesamtgesteins Signatur des an verschiedenen (Meta)basiten und der Spurenelementzusammensetzung der enthaltenen Zirkone, dass der Y- Gehalt und die schweren SEE der Zirkone ausgezeichnete Parameter sind, um magmatische Provenienzen zu charakterisieren. Grimes et al. (2007) beschreiben eine Möglichkeit zur Unterscheidung der Zirkone, welche in ozeanischer und in kontinentaler Kruste kristallisierten. Ihr Unterscheidungskriterium ist das niedrigere U/Yb Verhältnis heutiger ozeanischer Zirkone, dessen Ursprungsschmelze vom verarmten Mantel abstammt und sich deutlich von kontinentalen Zirkonen jeglichen Alters unterscheidet. Als problematisch für eine genauere Klassifizierung der Zirkon-Provenienzen mittels Spuren- und Seltenen Erdelement-Geochemie erscheinen hydrothermal alterierte sowie metamorph gebildete Zirkone. Als Beispiele für hydrothermal veränderte Zirkone sind die Arbeiten von Hoskin (2005) und Rayner (2005), an Zirkonen der archaischen Jack Hill und Acasta Gneis Komplexe mit einer Anreicherung der leichten Selten Erdelemente und gleichzeitig hohen Gehalten an Fe, Ca, P und Sr, zu nennen. Whitehouse & Kamber (2002) beschreiben ebenso eine Anreicherung an leichten SEE an archaischen Gneisen und Tonaliten (3.81 Ga und 3.64 Ga) vom Itsaq Gneis Komplex, SW- Grönland. Ungewöhnliche Spurengehalte und Seltene Erdelementmuster in Zirkonen sind von Pettke et al. (2005) am W-Sn mineralisierter Mole Granit (Australien) durch magmatisch-hydrothermale Überprägung erklärt worden. Schaltegger et al. (1999) und Rubatto (2002) zeigen, dass Zirkone, die unter metamorphen Bedingungen zusammen mit anderen Mineralphasen wie Granat gewachsen sind, eine Abnahme der schweren SEE erfahren haben. Insgesamt ist eine außergewöhnliche Spurenelementzusammensetzung in Zirkonen auf vielfältige Weise zu erklären. Cavosie et al. (2006) interpretiert eine lokale Anreicherung von leichten SEE in den Jack Hill Zirkonen aufgrund älterer oder rezenter innerer Strahlungsschäden in Verbindung mit einem sehr niedrigen Fluid/Gesteins Verhältnis. Geisler et al. (2007) erläutern die Entstehung sekundärer Gefügestrukturen in Zirkonen mit Diffusion-Reaktions- oder mit gekoppelten Auflösungs- und Ausfällungs-Prozessen. Einer genauen Interpretation der Zirkon-Provenienz mittels Spurenelementgeochemie bedarf somit einer detaillierten Analysestrategie, die vielfältige Methoden, wie Auflichtmikroskopie, Elektronenstrahlmikroskopie mit Kathodolumineszenz zur Auswahl und Beschreibung der Zirkone und einer nachsichtigen Laserablation mit fortlaufender Kontrolle des Messsignals um oberflächennahe Mineraleinschlüsse zu vermeiden, einschließen.

2.2 Modelle zur kontinentalen Krustenbildung

Grundsätzlich unterliegen alle heutigen Modelle der modernen Krustenbildung mehreren Annahmen. Die erste allgemein akzeptierte Voraussetzung beinhaltet die Extrahierung der kontinentalen Kruste aus dem Erdmantel. Geochronologische und geochemische Beweise deuten an, dass die kontinentale Kruste nicht ein Produkt des frühen Akkretionsprozesses der Erde ist, sondern erst später gebildet wurde. Zweitens zeigen Dichteunterschiede zwischen ozeanischer und kontinentaler Kruste, dass die letzt genannte deutlich schwieriger zu zerstören ist. Eine Ausnahme ist die Wiederaufarbeitung der Erosionsprodukte der kontinentalen Kruste als Sediment. Drittens erfordert die Krustenbildung thermische Energiezufuhr auf verschiedene Weise abhängig vom jeweiligen Modell zur Krustenbildung. Zuletzt ist die Präsenz von Wasser bzw. Fluiden ein maßgeblicher Faktor zum Prozess der kontinentalen Krustenbildung. Heutiges Krustenwachstum wird an aktiven, destruktiven Plattengrenze beobachtet. Das allgemeine Modell (eine Zusammenfassung aus Rollinson 2007) zur Bildung der kontinentalen Kruste basiert auf vier Grundannahmen:

1. Hydratisierter Ozeanbodenbasalt beginnt im oberen Bereich einer Subduktionszone ab einer Tiefe von 50-60 km zu dehydratisieren, was zur Abgabe von Fluiden in den darüber liegenden Mantelkeil führt. Es bildet sich jedoch auch Amphibol, der Wasser weiter in die Tiefe transportiert.

2. In Tiefen von etwa 110 km kommt es zur Zersetzung des Amphibols und die entstehenden wässrigen Fluide führen zum partiellen Schmelzen des darüber liegenden Mantelkeils.

3. Die Schmelzzone (insbesondere Schmelze und Matrix) migrieren diapirartig aufwärts in heißere Regionen des Mantelkeils, welches weiteres Schmelzen induziert.

4. Die Schmelze konzentriert sich in einer Ecke des Mantelkeils aufgrund des konvektiven Fließens innerhalb des Keils.

Grundsätzlich sind zwei prinzipielle Beobachtungen erforderlich um aussagefähige Modelle über den Ursprung der kontinentalen Kruste der Erde zu bekommen. Die erste beinhaltet die Information über die Altersstruktur der Kruste und die zweite deren durchschnittliche geochemische Zusammensetzung. Diese Parameter sind in den letzten 15 bis 25 Jahren schwer zu bestimmen gewesen und daraufhin ausgiebig diskutiert worden. Es haben sich verschiedene Krustenentwicklungsmodelle in den letzten 30 Jahren aufgrund unterschiedlicher Kennwerte und Vorstellungen entwickelt. Die erste Gruppe, das so genannte "no growth" oder "steady state" Modell, bezieht sich auf ein rasches Kontinentwachstum im Hadeum (4.55-4.0 Ga) und frühen Archaikums (ab 4 Ga) aufgrund thermischer Evolutionsmodelle der Erde und der Abschätzung des Nettozuwachses der kontinentalen Kruste seit dem Phanerozoikum (Fyfe 1978; Armstrong 1968, 1981, 1991; Dewey & Windley 1981 und Reymer & Schubert 1984). Armstrong (1968, 1981, 1991) betont besonders die Bedeutung des Wiederaufarbeitens der kontinentalen Kruste zurück in den Mantel heraus. In diesem Modell spiegeln die beobachteten Altersverteilungen in den kontinentalen Wachstumskurven die Ab- und Zunahme der Kruste im Laufe der geologischen Zeit wider. Die zweite Gruppe, befürwortet ein progressives kontinentales Wachstum seit dem Archaikum und eine signifikante Zunahme der Kruste im Phanerozoikum. Diese Modelle sind auf der Basis der heutigen Verteilung der kontinentalen Kruste und ihres Alters (Hurley & Rand 1969, Condie 1998 & 2000) und aus der Evolution der isotopischen Zusammensetzung des Mantels (Moorbath 1977; O'Nions et al. 1979; Allègre 1982; McCulloch & Bennett, 1994) aufgestellt worden (Abb. 1). Das kontinentale Wachstum ist anhand der Variation des Ausmaßes der Verarmung des Mantels aufgrund der Entwicklung der Isotope Nd, Sr und Pb abgeschätzt worden. Das Transport-Bilanz Modell von Nagler & Kramers (1998) basiert auf empirisch abgeleiteten Nd-Isotopie Mantelevolutionskurven unter der Annahme, dass der obere Mantel durch Aufschmelzen basaltische Ozeankruste aufbaut, welche wiederum aufgearbeitet wird um neue kontinentale Kruste entstehen zu lassen. Dieses Modell impliziert krustales Recycling und ein ausgeglichenes Volumen zwischen neu gewachsener Kruste und in den Mantel durch Erosion und Subduktion recycelter Kruste. Patchett & Samson (2003) zeigen mit dem Ansatz der Kombination von U-Pb Zirkonalter mit Nd-Modellalter, das große Volumen des Nordamerikanischen-Europäischen Kontinents durch juveniles Wachstum in der kurzen Zeitspanne von 1.7-1.9 Ga entstanden sind. Die wahre kontinentale Wachstumsrate zu bestimmen ist bisher immer noch schwierig, weil die dürftigen Abschätzungen des Volumens des recycelten Materials das Ausmaß der vollständigen Vermengung und die Größe des verarmten Mantelreservoirs nicht genau zu beziffern sind. Eine Fortentwicklung des progressiven Models ist das episodische progressive Krustenwachstum. Dieses Model weist episodische Altershäufigkeiten juveniler Krustengesteine um 2.7, 1.9 und 1.2 Ga auf (Condie 1998, 2000 & 2005 und Rino et al. 2004). Diese Altershäufigkeiten im krustalen Wachstum werden auf Mantel Plume Aktivitäten zurückgeführt (Condie 1998). Die genaue Bedeutung dieser episodischen Verteilung der krustalen Altersmuster ist allerdings noch umstritten. Durch einen neuen Ansatz mit der Kombination von O- und Hf-Isotopie an Zirkonen haben Kemp et al. (2006) und Hakesworth & Kemp (2006) die Zeit, in der die parentalen Granitoide der Zirkone sich vom Mantel ableiten lassen, berechnet. Die O- Isotopie der Zirkone zeigt an, ob das Zirkon-Ursprungsmagma sich direkt vom Mantel ableiten lässt oder durch Aufschmelzung wiederaufgearbeiteter Sedimente entstanden. Über die Hf-Isotopie bzw.

Abbildung 1.: Kontinentale Krustenwachstumskurven aus der Literatur: H&R, Hurley & Rand (1969); C, Condie (1998); V&J, Veizer & Jansen (1979); M&T, Taylor & McLennan (1985); AL, Allegre (1982); O'N, O'Nions et al. (1979); M&B, McCulloch & Bennett (1994); R&S, Reymer & Schubert (1984), D&W, Dewey & Windley (1981); B, Brown (1979); Am, Armstrong (1981); F, Fyfe (1978).

daraus berechneter Modellalter wird der Zeitpunkt für die Extraktion aus dem Mantel abgeleitet. Das Resultat ihrer Fallstudie an Granitoiden der Lachlan Fold Belt offenbart eine Disparität zwischen den U-Pb Altersdaten der Zirkone und der Zeit der Ablösung vom Mantel um bis zu 1.5 Ga. Zirkon-Kristallisationsalter repräsentieren somit Prozesse der Krustendifferentiation und nicht der Entstehung neuer Kruste. Die auf U-Pb Alter basierenden Krustenwachstumskurven von Condie (2000) und Rino et al. (2004) können demnach nur als Minimumalter betrachtet werden und unterschätzen wahrscheinlich das wahre Krusten-Bildungsalter. Die dritte Gruppe der Krustenwachstumskurven bezieht sich auf die Analyse der wechselnden Zusammensetzung von Sedimentgesteinen, also der klastischen Sedimente (Taylor & McLennan 1985) und pelagischen Sedimente (Veizer & Jansen 1979). Jedoch ist es sehr zweifelhaft, ob die Zusammensetzung von klastischen Sedimenten eine enge Verbindung mit dem Volumen der kontinentalen Kruste besitzt. Insgesamt ist auch zu beachten, dass die Krustenbildungsprozesse im Archaikum sich deutlich vom Phanerozoikum unterschieden haben (Rollinson 2007).

3. Geologie von Südafrika

Südafrika weist in seiner langen geologischen Entwicklung eine Reihe von extensionalen und kompressiven Deformationsereignissen auf (Abb. 2). Sie lassen sich in bis zu 5 Phasen tektonischer Akkretion und drauffolgenden Riftprozessen von Beginn des Eo-Archaikums (3.6 Ga) bis zur oberen Trias (0.23 Ga) unterteilen (Hartnady 1985, de Wit et al. 1992 und Thomas 1993).

Abbildung 2.: Großtektonische Provinzen von Südafrika, modifiziert nach Hartnady et al. (1985).

1.) Nach neueren Erkenntnissen wird die Entstehung des frühen archaischen Kaapvaal Kratons durch Plattentektonische Prozesse erklärt (de Wit et al. 1992, Poujol et al. 2003, Eglington & Armstrong 2004, Schmitz et al. 2004, Anhauesser 2006 & Poujol 2007). Der Zusammenschluss erfolgte während des Archaikums episodisch in Intervallen von 100 bis 200 Millionen Jahren über einen Zeitraum von 1000 Millionen Jahren (3.5 bis 2.5 Ga) und war verknüpft mit der Ausbildung und Akkretion magmatischer Inselbögen sowie der Amalgamation mehrer eigenständiger Terrane und Blöcke (de Wit et al. 1992, Lowe 1994, Poujol & Robb 1999). Der Kaapvaal Kraton besteht somit aus dem postulierten Swaziland Terran im Südosten mit dem Ancient Gneiss Complex (3.7 Ga) und dem Barberton Greenstone Belt (3.5-3.1 Ga), dem Kimberley Terran mit dem Amalia-Kraaipan Gneiss Complex und Greenstone Belt (2.9 bis 3.25 Ga), dem Witwatersrand Terran einschließlich dem Makoppa Dome (2.8-3.01 Ga), dem Johannesburg Dome mit dazugehörigen Grünsteinen (3.11->3.3 Ga) und dem Vredefort Dome (3.4 to 2.1 Ga) zwischen den beiden und dem Pietersburg Terran im Norden. Ab 3.0 Ga wanderte der Kraton nach Norden und Westen und gipfelte in der Limpopo Gebirgsbildung um 2.7 Ga bis 2.55 Ga. Die Kimberley und

Witwatersrand Terrane sind durch das Colesberg Lineament getrennt, welche als die mögliche Suturzone (2.9 Ga) nach der Kollision beider Blöcke angesehen wird (Eglington & Armstrong 2004, de Wit & Tinker 2004, Schmitz et al. 2004). Ab 3.074 Ga (Armstrong et al. 1991) erfährt der innere Bereich des Kratons mehrmalige Riftprozesse, die zu den Dominon-, Witwatersrand- und Pongola Sedimentbecken führen und vom nachfolgenden extensiven Ventersdorp Vulkanismus um 2.7 Ga abgeschlossen wurde. Anschließend kam es zur Akkumulation der Transvaal Supergroup während einer Zeitspanne von 2.65 Ga bis 2.1 Ga, gefolgt von der Intrusion des Bushveld Komplexes um 2.06 Ga (Walraven 1997) und dem Vredefort Impakt um 2.02 Ga (Kamo et al. 1996). Brandel et al. (2006) und Robb et al. (2006) geben eine Übersicht aller archaischen Grünsteingürtel und Granitoid-Intrusionen des Kaapvaal Kraton (Abb. 3).

Abbildung 3.: Vereinfachte geologische Karte des Kaapvaal Kraton mit den postulierten archaischen Suturzonen nach Anhaeusser (2006).

2.) Der westliche Rand des südafrikanischen Kratons ist vom Kheis und Magondi Belt umgeben, welche sich im frühen Proterozoikum zwischen 2.0 und 1.7 Ga entwickelten (Stowe 1986 und 1989, Thomas 1993). Die genaue tektono-stratigraphische Einteilung der Gesteinsformationen des Kheis Gebirgsgürtel wird immer noch diskutiert (Moen & Armstrong (2008). Im Nordwesten schließt sich an diesen oben beschriebenen Gürteln die bis mittelproterozoische granitreiche Rehoboth früh Subprovinz mit vereinzelten Grundgebirgseinschüben an. Das so genannte Kheis Terran, besteht aus deformierten Gesteinen der Olifantshoek-, Kaaien- und Wilgenhoutsdrif Gruppe und definiert die Kheis Supergroup (van Niekerk 2006). Detritische Zirkone der Gesteine aus der Kheis Supergroup ergeben insgesamt identische Alterspopulation um 1.8 bis 2.3 Ga und 2.5 bis 2.7 Ga und lassen sich damit aufgrund der fehlenden paläo- und mesoarchaischen Alter nicht vom Kaapvaal Kraton ableiten. Vielmehr scheinen sie von den Magondi- und Limpopo Orogengürteln und dem Zimbabwe Kraton zu stammen (van Niekerk 2006). Nach Eglington & Armstrong (2003) gibt es bisher keine sicheren geochronologischen Daten, die im Kheis Terran magmatische und metamorphe Aktivitäten vor der Ablagerung der Olifantshoek Supergroup um 1.93 Ga (Cornell et al. 1998) belegen, trotz seismischer und tektonischer Daten (Tinker et al. 2002). Vielmehr belegen 40Ar/39Ar Datierungen an metamorphen Muskowiten, das die Deformation des Kheis Terran zwischen 1290 und 1172 Ma stattgefunden haben muss (van Niekerk 2006). Andererseits belegen paläoproterozoische Zirkon-Xenokristalle aus extrusiven und intrusiven Gesteinen der Koras Gruppe ein krustales Ereignis um 1.8-2.0 Ga (Pettersson et al. 2007). Im Magondi Belt interpretieren McCourt et al. (2001) ihr Konkordia-Alter (1997 Ma) am Hurungwe Granit als Minimumalter für die Magondi-Orogenese, welche aber somit 70 Ma älter ist als das Maximumalter der Deformation und Metamorphose im Kheis Belt. Somit sind beide paläoproterozoischen Orogengürtel nicht länger als gleichaltrig anzusehen.

3.) Entlang des westlichen und südlichen Randes wird der Kaapvaal Kraton von der tektonostratigraphischen Namaqua-Natal Provinz umgeben. Diese Provinz umfasst magmatische und metamorphe Gesteine, welche während der Namaqua (Kibaran oder Grenville) Orogenese entstanden und überprägt wurden (1.0–1.2 Ga). Sie treten großflächig in den geographischen Provinzen Northern Cape (100000km²) und KwaZulu-Natal (20000km²) auf, welche nachstehend als die Namaqua und Natal Abschnitte (Sektoren) der Namaqua-Natal Provinz bezeichnet werden (Cornell et al. 2006). Der Namagua Sektor wird in fünf Subprovinzen bzw. Terrane eingeteilt (vom Westen nach Osten): 1.) Die Richtersveld Subprovince beinhaltet 2.0 Ga niedrig- bis mittelgradige suprakrustale Gesteine und Intrusionen, welche weniger stark von der Namaqua Orogenese (1.0 Ga) erfasst worden sind als die anderen Terrane. 2.) Das Bushmanland Terran umfasst ost-west streichende granitische Gneise (2.0 Ga), 1.6 bis 1.2 Ga alte amphibolit- bis granulit-fazielle, suprakrustale Gesteine und 1.2 bis 1.0 Ga alte Granitoide. 3.) Das Kakamas Terran (auch als Gordinia Subprovinz bezeichnet) ist charakterisiert durch nordwest-streichende, wahrscheinlich 2.0 Ga alte suprakrustale Metapelite und prä- und syntektonisch intrudierte 1.0 Ga alte Granitoide. 4.) Das Areachap Terran kennzeichnet juvenile 1.3 Ga inselbogen-typische suprakrustale Gesteine und 1.0 Ga Granitoide mit einen durchgehenden Deformationsgefüge der Namaqua- Orogenese. 5.) Das Kaaien Terran wird von einer mächtigen Sequenz deformierter Quarzite (2.0 Ga) aufgebaut,

die eine Übergangszone vom Kaapvaal Kraton und der Kheis Provinz hin zu den hochgradigen Gesteinen des Areachap Terran ausmachen. Des Weiteren kommen deformierte vulkano-sedimentäre- als auch undeformierte bimodale vulkanische Gesteine mit Altern um 1.1 Ga vor. Der Natal Sektor ist charakterisiert durch die 3 juvenilen Terrane Tugela, Mzumbe und Margate, welche jeweils aus lithostratigraphisch unterscheidbaren suprakrustalen- (1.2 Ga) und intrusiven Gesteinen (1.0 Ga) bestehen.

4.) Die neoproterozoische und kambrische Periode ist in Südafrika geprägt durch die Pan-Afrikanische Orogenese (0.7-0.5 Ga) und der Konsolidierung des Superkontinents Gondwana. Eine Kette überwiegend felsischer Intrusivkörper entlang einer nordöstlich verlaufenden Linie vom Richtersveld in Südafrika bis ins südliche Namibia mit U-Pb Altern von 833 bis 771 Ma (Allsop et al. 1979 und Frimmel et al. 2001) kennzeichnen den Beginn des Auseinanderbrechens des meso- bis frühen neoproterozoischen Superkontinents Rodinia an (Greese et al. 2006). Die Damara Province in Namibia, die Gariep Supergroup und die Saldanian Subprovince sind Teilbereiche des Faltengürtels der Pan-Afrikanischen Gebirgsbildung im westlichen Südafrika und südlichen Namibia. Die metasedimentären und metavulkanischen Gesteine der Gariep Supergroup repräsentieren eine nord-nordwest verlaufende tektonische Einheit entlang der südatlantischen Küste von Lüderitz (Namibia) bis (Südafrika). Sie weisen eine ausgeprägte nach Kleinsee Verfaltungsund Überschiebungstektonik auf. Altersdaten von prä- und posttektonischen Intrusionen sowie zweier Karbonathorizonte zeigen einen weiten Bereich für das Alter der Gariep Supergroup an. Das Maximumalter ist gekennzeichnet durch U-Pb Zirkonanalysen des Gariep Grundgebirge mit 771 Ma (Frimmel et al. 2001) und das Minimumalter wird durch den spätorogenen Kuboos Pluton mit 507 Ma definiert (Frimmel 2000). Der Saldania Faltengürtel ist nur durch sporadische Aufschlüsse charakterisiert, welche zwischen dem permotriassischen Cape Foldbelt am südlichen Rand Südafrikas eingebettet ist (Thomas et al. 1993, Goodwin 1997). Er setzt sich aus grünschiefer-faziellen vulkanosedimentären Gesteinen der Malmesbury Group und den Cango- und Kaaimans Inlier zusammen, welche von syn- bis posttektonischen Granitoiden intrudiert worden sind. Das Minimumalter des Saldania Belt ist nur indirekt durch Zirkon Alter an der spät- und postorogenen Cape Granite Suite mit 547 Ma festzumachen (Da Silva et al. 1997).

5.) Die letzte Episode krustaler Akkretion erfolgte durch die Bildung des Cape Fold Belt am südlichen Rand Südafrikas. Von etwa 280 bis 230 Ma wurden die Sandsteine und Schiefer der Cape Super Group (500-330 Ma) sowie deren Vorläufergesteine und die folgenden, jüngeren Ablagerungen der Karoo Supergroup (300-182 Ma) deformiert. Sie sind durch eine Serie von nordwest-nord streichenden Falten im westlichen Bereich (Stellenbosch bis Vanrhynsdorp) und einem ost-west streichenden Faltenbau im zentralen und östlichen Bereich (Swellendarm bis Graet Fish River) gekennzeichnet (Newton et al. 2006).

Die weitere geologische Geschichte Südafrikas nach der Ablagerung der Cape Supergroup und ihrer anschließenden Deformation ist geprägt durch den neuen Sedimentationszyklus der Karoo Supergroup von 310 bis 182 Ma, welche heute zweidrittel der Landoberfläche Südafrikas ausmacht. Die Karoo Supergroup stellt einen mächtigen Stapel überwiegend sedimentärer Strata eines Retro-Arc Vorlandbeckens dar. Den Beginn der Abfolge, in der sich entwickelten Karoo Senke machen glaziale Ablagerungen der Dwyka Group aus, da sich Südafrika zum diesem Zeitpunkt am Südpol befand. Nach der weiteren Drift Gondwanas bzw. Südafrikas nach Norden kommt es nach dem Abschmelzen der Gletscher zu Fluss- und Deltaablagerungen der permischen Ecca Group bei gleichzeitigem Aufsteigen des Cape Fold Belt verursacht durch Subduktion im Süden. Die nächste Abfolge, die Beaufort Group, wird dominiert von Sanden mäandrierender Flüsse und Silt- und Lehmablagerungen auf Überschwemmungsgebieten bei fortschreitender Füllung des Karoo-Beckens. Die Abtragungsgebiete der Karoo Sedimente sind die im Norden gelegenen Cargonian Highlands und der Cape Fold Belt im Süden sowie Bereiche Südamerikas (Patagonien) und Ost-Antartikas. Die folgende Stormberg Group ist von Sedimenten geprägt, die unter ariden Klimabedingungen abgelagert wurden, mit Red Beds und Sanddünen. Das Ende der Karoo Sedimentation um 183 Ma, ist gekennzeichnet durch einen ausgedehnten extrusiven und intrusiven klassischen Kontinentalen Flutbasaltvulkanismus (Continental flood basalt – CFB) der Karoo Igneous Province (Duncan & Marsh 2007). Zusätzlich ist Südafrika von einer großen Anzahl (mehr als 600) Kimberlit-Diapiren durchzogen. Das Alter der Kimberlite schwankt zwar zwischen 1900 Ma und 70 Ma, aber das Hauptvorkommen lag in der Jura-Kreidezeit. Zwei Gruppen von Kimberliten lassen sich anhand ihrer primären Minerale, der Makrokristalle und Xenokristalle, ihrer Gesamtgesteinschemie und Isotopengeochemie unterscheiden (Skinner & Truswell 2006). Die gasreichen Kimberlite transportierten Bruchstücke des Erdmantels mit den enthaltenen Diamanten bei ihrer Eruption an die Erdoberfläche, wo man sie in den Pipes, vulkanischen Eruptivschloten, und in sekundären alluvialen Flussablagerungen sowie im Meer abbaut. Die heutige südafrikanische Landoberfläche ist geprägt vom lang anhaltenden Zerfall (Rifting) Gondwanas, der in der Zeitspanne von 180-90 Ma, in fünf Stadien unterteilt werden kann und immer noch anhält. Dieser führte zu ausgeprägten Geländeabbrüchen an den West- und Ostküsten Südafrikas und zu einer Separierung des Hinterlandes von den Küstenebenen. Das Hinterland erfuhr seit 65 Ma eine beträchtliche Erosion (bis zu 3000 m) und vor 20 Ma sowie 5 Ma eine Episode von Heraushebungen (verursacht durch einen Mantelplume) und Schiefstellung der Landoberfläche Richtung Westen (Partridge et al. 2006). Sedimentäre Überbleibsel der afrikanischen Landoberfläche sind zahlreiche Typen von Bodenkrusten (Durikrusten) wie Calcrete, Ferricrete, Silcrete und Laterite. Das känozoische Hinterland Südafrikas ist gekennzeichnet durch die zwei großen Becken: Kalahari und Bushveld. Das Kalahari Becken besteht aus terrestrischen roten, braunen und gelben äolischen Sanden, linearen Dünen und teils kieseligen Kalksteinen. Das Bushveld Becken besteht aus fluviatilen, teils kalzifizierten und silifizierten, Kies- und Sandsteinen, überlagert von grauen Tonen und Sanden. Ab dem Ende der späten Kreidezeit ist die Landoberfläche Südafrikas von einem durchgängigem, Richtung Westen zum Atlantik, entwässernden Flussnetzwerk durchsetzt. Überreste der frühen Flussläufe finden sich als grobkörnige, anastomosierende Flussablagerungen. Es werden zwei größere Paläoflüsse, der nördliche Kalahari- und der südliche Karoo River von de Wit (1999) als Vorläufer des Orange River Systems postuliert (Abb. 4). Beide Paläoflüsse werden auch als Möglichkeit zum frühen tertiären Transport der Diamanten aus den Boshoff und Kimberley Gebieten zum Atlantischen Ozean hergeleitet. Das heutige Orange River Becken ist das größte Flussbecken in Südafrika mit einem Einzugsbereich in einer Größenordnung von 1.000.000 km², von denen 600.000 km² innerhalb der südafrikanischen Republik liegen und einige Reste in Lesotho, Botswana und Namibia vorkommen. Das effektive Einzugsgebiet ist schwierig zu bestimmen, da es viele flache Ebenen und zahlreiche größere Zuflüsse mit unregelmäßigen Einträgen in das Hauptflusssystem, einschließt. Der bedeutendste Zufluss ist das Vaal River Becken. Der Orange River entspringt in den Lesotho Highlands mit 3.300 m über der Meereshöhe und erstreckt sich über 2300 km bis zur Mündung der Alexander Bay. Die natürliche Abflussmenge beläuft sich auf über 12.000 Millionen m³/a.

Abbildung 4.: Paläodrainage System in Südafrika mit diamant-führenden Kimberliten (gelbe ◊), kretazischen- (schwarze ◊), miozänen- (▲) und pliozänen (▽) alluvialen Ablagerungen (de Wit 1999).

3.1 Plattentektonische Konfiguration Südafrikas

Seit der Rekonstruktion früherer Großkontinente oder Superkontinente wie Gondwana und Pangea sind Annahmen über noch ältere Zusammenballungen verschiedener Kontinentalteile postuliert worden (Hoffmann 1991, Rogers 1996, Dalziel 1999 & 2000, Fitzsimons 2000). Mit zunehmender Kartierung der ältesten Kratonteile in Südafrika, wie der Granit-Grünstein-Gesteinsassoziation in Barberton und der sie umgebenden metamorphen Faltengürtel (z. B. Limpopo Belt), ihrer Altersbestimmung und der Messung palaeomagnetischer Daten (Breitengradbestimmung) können frühere Bewegungen der Kontinente bzw. Teile der Kontinente und somit die Rekonstruktion älterer Kontinentvereinigungen nachvollzogen werden. Demnach stellt sich Rogers & Santosh (2004) mindestens drei anfängliche Kontinente Ur, Arctica und Atlantica vor (Abb. 5a, b, c). Ur ist der älteste Kontinent mit

Abbildung 5.: Mögliche Superkontinent-Anordnungen zu verschiedenen Zeiten und die dazugehörige Lage des Kaapvaal Kratons nach Rogers & Santosh (2004).

Gesteinen von mehr als 3.0 Ga und besteht aus einem schmalen Splitter, welcher den Kaapvaal Kraton, die Pilbara Region von West-Australien und ähnliche Gesteine aus Teilen von Madagaskar und Indien umfasst. Verschiedene Ergänzungen zum Kontinent Ur sind zwischen 3.0 und 1.5 Ga, wie die Zimbabwe- und Kongo/Nordwestafrika Kontinente hinzugekommen. Der Limpopo und der Ubendian Belt bilden die Suturzonen dieser Amalgamation der Platten. Die nächste große Anordnung erfolgte nach 1.8 Ga durch die

Vergrößerung Arcticas durch alte Krustenanteile des Baltikums, Europas, der Ukraine und der westlichen USA und der östlichen Antarktika zum Kontinent Nena (Abb. 5c). Aufgrund der postulierten Zyklizität der Superkontinententstehung vermutet Rogers (1996) einen weiteren Superkontinent namens Columbia, der sich ab 1.8 Ga konsolidierte und ab 1.5 Ga wieder auseinanderbrach. Um 1.0 Ga kollidierten Ur, Nena und Atlantica zum Superkontinet Rodinia. Dabei bildeten sich große Orogengürtel, heute bekannt als Kibaran Belt in Afrika und als Grenville Belt, nach einer Region im östlichen Kanada benannt. Diese Suturzonen schließen eine Suite an verschiedensten Gesteinen ein: neu gebildete Kruste in Form von granitoiden Intrusionen; metamorphe und gefaltete sedimentäre Gesteine, welche während der Subduktion deformiert wurden; zusammengestauchte Stücke ozeanischer Kruste und akkretierte Inselbogen. Um etwa 0.7 Ga fällt der Superkontinent Rodina in die Teile Ur, verbunden mit dem östlichen Antarktika; Laurentia; Atlantica; Baltica und Siberia auseinander. Fragmente von Rodina (Ur und das östliche Antarctica) wanderten um den gesamten Globus, vereinigten sich ab 0.5 Ga mit Atlantica, welches sich um die eigene Achse drehte. Diese Landmassen wurden weiterhin vergrößert durch Zufügung der Arabischen Kontinentalmasse, um den Kontinent Gondwana zu formieren. Der Gesamtzusammenschluss von Gondwana mit Laurentia, Baltica, Siberia und Teilen des nördlichen China und Kasachstan endete um 0.3 Ga im Superkontinent Pangea. All diese Superkontinent-Ansammlungen haben die geologischen Ereignisse in Südafrika durch geologische Prozesse geprägt. Als erstes fand die Amalgamation von "kleineren" Kratonen statt, wie dem Zimbabwe Kraton, welcher ab 2.7 Ga mit dem Kaapvaal Kraton kollidierte und mit dem Limpopo Belt als Suturzone. Diese beiden Kratone waren Teile des Superkontinents Ur (3.0-1.5 Ga) und werden in der Literatur auch als Kalahari Craton bezeichnet Eglington & Armstrong (2005). Um 1.8 Ga kollidierte der Kongo Kraton mit dem Kaapvaal-Zimbabwe Kraton als Teil des Superkontinents Columbia (Rogers 2000) und baute den Ubendian Belt (in Südafrika auch als Kheis Belt bzw. in Zimbabwe als Magondi Belt bekannt) auf. Allerdings sind die Details dieses Ereignisses noch unklar und werden kontrovers diskutiert (siehe Kapitel 3.). Nach der Abtragung und Einebnung des Ubendian Belt erfuhr der westliche Rand des größeren Kratons ab 1.6 bis 1.4 Ga ein Rifting. Die neue kontinentale Kruste dünnte sich aus und senkte sich unter das Meeresspiegelniveau ab. Flachwassersedimente lagerten sich auf dem granitischen Basement ab, welche heute die Gesteine der Bushmanland Group (Terran) präsentieren. Im östlichen Namagualand brach die kontinentale Kruste vollständig auf und es bildete sich ozeanische Kruste, welche heute das Archaeap Terran ausmacht. Die neu geschaffene Ozeankruste weitete sich am gesamten südlichen Rand des Kratons bis in die heutige Region KwaZulu-Natal aus. Die Bildung des Ubendian Belt und das darauf folgende Rifting wird in Bezug zum Zusammenschluss und Auseinanderbrechen des Columbia Superkontinent angesehen. In der geologischen Zeit haben sich mindestens zwei bis drei Superkontinente gebildet und wieder geteilt, die den alten Kaapvaal Kraton eingeschlossen hatten. An diesen alten Kraton wurde im Westen der Ubendian Belt um 1.8 Ga, um 1.1 Ga der Kibaran Belt (Namaqua-Natal Belt) im Westen und Süden und um 0.5 Ga der Pan-African Belt im Süden und Westen angeschweißt. Zusätzlich baut der ältere Limpopo Belt (2.7 Ga) die Suturgrenze zwischen dem Kaapvaal Kraton und dem Zimbabwe Kraton auf.

4. Probennahme

4.1 Kriterien der Probennahme

Die Probennahme erfolgte unter mehreren Gesichtspunkten. Es wurde das komplette Flusssystems des Orange- und Vaal River sowie einzelne Zuflüsse wie der Hart River als Zufluss des Vaal Rivers und der Riet- und Caledon River als Zuflüsse des Orange River in die Probennahme eingeschlossen. Im Juli 2004 erfolgte eine Geländekampagne mit Unterstützung der de Beers Group. Die Probennahme beinhaltete 10 Stellen aus rezenten Flusssanden, wobei auch kleinere Zuflüsse wie der Hart-, Caledon- und Riet River des Orange- und Vaal River Flusssystem berücksichtigt wurden. Zusätzlich wurde eine spät-pleistozäne Strandprobe in Port Nolloth und eine miozäne Schwermineralprobe aus dem Diamanttagebau Kleinsee sowie eine Probe aus einem tertiären Paläoriversytem des Diamantabbaus "Bosluis se Pan" gewonnen. Generell kommen an allen Probenlokationen in der weiteren Umgebung alluviale bzw. marine Diamantlagerstätten vor. Die Beprobung erfolgte durch einfaches Sieben mittels Wasserflotation im Flussbett aus teilweise bis zu 80 kg Sedimentausgangsmaterial. Dabei wurden drei verschiedene Siebweiten von 2 mm, 0.7-0.425 mm bis < 0.425 mm verwendet. Die kleinste Fraktion zwischen < 0.425 mm und 0.425-0.700 mm Maschenweite wurde für die weitere Mineralseperation zurückgehalten. Die Zirkone der Kornfraktion <0.425 mm wurde durch Flotation mit Wasser auf einem Wilfley™-Rütteltisch, Behandlung mit den Schwereflüssigkeiten Bromoform (> 2.87 g/cm^3) und Diiodmethan (3.31 g/cm^3) in leichte und schwere Mineral-Fraktionen getrennt. Die Zirkonkonzentration der Schwermineral-Fraktionen wurde auf der Basis der magnetischen Suszeptibilität mit einem Frantz-Magnetscheider[™] erhöht. In Schritten von 0.2 Å ist die Stärke des Spulenstromes erhöht und bei 1.7 Å die höchste Zirkonkonzentration in dem Mineralgemenge erzielt worden. Die Zirkon-Mineralkörner wurden unter dem Stereomikroskop aus dem noch übrig gebliebenen Mineralspektrum handverlesen ausgepickt. Die Auswahl der Zirkone erfolgte soweit möglich nach dem Zufallsprinzip, so dass alle signifikanten Liefergebietskomponenten beprobt wurden. Im Unterschied zum konventionellen Ansatz wurden auch Zirkone mit Einschlüssen und komplexen Internstrukturen sowie gelblich gefärbte und milchige Kristalle (Hinweis für eine fortgeschrittene Metamiktisierung) ausgewählt, um keine künstliche Verzerrung des zu erwarteten Altersspektrums zu bewirken. Die erforderliche Höhe einer statistischen Adäquanz für eine repräsentative Population der Zirkonalter ist nach neuesten Arbeiten etwa 117 Körner (Vermeesch 2004) und für alle aussagekräftigen Proben angewendet worden. Die Zirkone wurden auf Epoxidharz gefüllte Probenträger (mounts) gesetzt, anpoliert und mit Kohlenstoff für die Rückstreuelektronen- und Kathodolumineszenzbilder beschichtet. Diese wurden mit der Elektronenstrahlmikrosonde Jeol[™] Superprobe 8900 bei Arbeitsbedingungen von 15kV Beschleunigungsspannung und einem Probenstrom von 7-30nA für alle Zirkone vor jeder U-Pb Analyse durchgeführt um interne Wachstumszonierungen und ererbte Kerne zuerkennen. Vor der Laserablation wurden die Zirkonprobenträger mit Milli-Q[®] H₂O und 2 % HNO³ gespült und mit Ultraschall behandelt. Die Analyse der Zirkone erfolgte nach einem einheitlichen Ablauf, angefangen mit der U-Pb Datierung, der Bestimmung der Hf-Isotopie und zum Schluss mit der Analyse der Spurenelemente.

4.2 Lokalitäten

- Abbildung 6.: Großtektonische Provinzen von Südafrika mit den einzelnen Probenlokationen und dem Orange- und Vaal River Flusssystem, modifiziert nach Hartnady et al. (1985).
- Die Probe Orange River Mouth (900) wurde von der Namdeb Diamond Corporation, Namibia (equal share of Government of Namibia and De Beers Centenary AG) zur Verfügung gestellt. Die Probe besteht aus 250 Zirkonen, die bei der Mineralseparation zur Diamantgewinnung an der Orange River Flussmündung gewonnen wurden.
- 2. Die Probe Parys (901) wurde aus dem Vaal River 1.8 km südöstlich der im Vredefort Dome gelegenen Stadt Parys entnommen. GPS Daten: S 26° 54' 47''; E 27° 25' 48''.
- 3. Die Probe Lesotho (902) stammt aus dem Caledon River, welcher ein rechter Nebenfluss des Orange River ist und auch als Grenzfluss zwischen Südafrika und Lesotho fungiert. Die Lokation liegt 1 km südlich Ficksburg (Südafrika, Free State) an der Grenze zu Lesotho. GPS Daten: S 28° 14' 06''; E 28° 14' 36''.
- 4. Die Probe Kheis (903) wurde dem Orange River 20 km nordwestlich von Grobershoop entnommen. GPS Daten: S 28° 50' 22. 9''; E 22° 04' 21''.
- 5. Die Probe Augrabie Falls (904) wurde aus natürlich entstandenen "potholes" (Strudellöcher des Orange River am Augrabie Wasserfall) des Augrabie Falls Natural Reserve aus dem Orange River entnommen. GPS Daten: S 28°35'41.6''; E 20° 20' 33.5''.

- 6. Die Probe Bos Luis se Pan (905) entstammt einem alluvialen Diamantenabbau des Koa River Tal, einem miozänen Paläoflusssystem mit ausgedehnten pedogenen Durikrusten (Salz- und Kalkkrusten). Die Lokation liegt 70 km südöstlich von Pofadder in der Provinz Northern Cape. GPS Daten: S 29° 51' 24.4'' E 18° 57' 55.6''.
- 7. Die Probe South Africa/Namibia border (906) wurde am Orange River 5 km östlich Vioolsdrift (Provinz Nordkap) an einer größeren Sandbank hinter kleineren Flusssteinen am rechten Flussufer gewonnen. GPS Daten S 28° 43' 24.7" E 17° 36' 33.9".
- Die Probe Port Nolloth (907) stammt von Strandsanden der westlichen Küste Südafrikas in Port Nolloth. GPS Daten S 29° 19' 38.4'' E 16° 53' 41.6''. In dieser Probe sind keine Zirkonpräparate gefunden worden.
- 9. Die Probe Kleinzee (908) stammt ebenfalls von spät pleistozänen Strandsanden von der Westküste Südafrikas. Die Strandsande befinden sich in direkter Nähe der Mündung des Buffalo River einen Bezug haben. GPS Daten S 29° 42' 32.8'' E 17° 03' 23.7''.
- Die Probe KV 156T (909) wurde einem miozänen, 95 m mächtigen Sedimenthorizont in einem Diamanttagebau in Kleinzee entnommen. Hier handelt es sich um ein 20 cm mächtiges Illmenitband.
- 11. Die Probe Gong-Gong (911) wurde dem Vaal River an kleineren Stromschnellen nordwestlich von Barkley West entnommen. Die Zirkonprobenmenge war zu gering für eine weitere Analyse. GPS Daten S 28° 31' 07.5'' E 24° 23' 10.3''.
- Die Probe Warrenton (912) stammt aus dem Vaal River, erbrachte aber eine zu geringe Ausgangsmenge für die weitere Schwermineralaufbereitung. GPS Daten S 28° 06' 25.9'' E 24° 50' 32.2''.
- 13. Die Probe Christiana (913) wurde ebenfalls aus dem Vaal River weiter flussaufwärts entnommen. GPS Daten S 27° 52' 55.7'' E 25° 12' 13.3''.
- 14. Die Probe Orange River sandbar (914) wurde aus einer Sanddüne am rechten Flussufer des Orange River südöstlich Douglas entnommen. GPS Daten S 29° 09' 15.1'' E 23° 41' 14.3'.
- 15. Die Probe Riet River (915) stammt aus dem Riet River, der nördlich von Douglas in den Orange River einmündet. Die Probenlokation liegt auf dem Gelände der Schutsekama Mining Company. GPS Daten S 28° 58' 19'' E 24° 24' 36.3''.
- 16. Die Probe Taung (916) wurde aus dem Hart River in der N\u00e4he des Taung Damm und östlich der gleichnamigen Stadt Taung (Platz des L\u00f6wen) entnommen. Der Harts River m\u00fcndet weiter s\u00fcdlich in den Vaal River. GPS Daten S 27° 34' 16.3'' E 34° 44' 33''.

5. Analytik

5.1 U-Pb Datierung an Zirkonen

In dieser Untersuchung sind mehr als 1200 Zirkon-Körner mittels der LA-SF-ICP-MS Technik an einem Thermo-ScientificTM Element2 Sektorfeldmassenspektrometer gekoppelt mit einem NewWaveTM UP-213 Ultraviolett Lasersystem am Mineralogischen Institut der Johann-Wolfgang Goethe Universität Frankfurt datiert worden. Das Massenspektrometer ist ein reverse geometrisches aufgebautes Einzelkollektor-Sektorfeld-Induktiv gekoppeltes Plasma-Massenspektrometer (Abb. 7).

Abbildung 7.: Schematisches Diagramm eines reverse geometrischen hochauflösenden SF-ICP-MS Instrument, dem Element2 (Thermo Scientific[™]), welches in drei Haupteile aufgeteilt ist: das Plasma Interface (Konusse und Ionenoptik), dem Analysator (magnetischem und elektrostatischem Analysator= ESA), und dem Detektor (Sekundär-Elektronen Verstärker= SEM).

Der hier verwendete NewWave™ UP-213 ist ein leistungsstarker Nd:YAG tief ultravioletter 213 nm Laser zweiter Generation, welcher ebene Krater nach der Ablation hinterlässt und eine hohe Absorption an opaken und transparenten Materialien liefert. Die niedrigere Wellenlänge von UV 213 nm bewirkt im Vergleich zu einem 266nm System eine feinere und gleichförmigere Partikelverteilung während der Ablation. Dieses ermöglicht eine bessere Transporteffizienz und minimale Ablagerungen im Plasma. Der Laser ist ein Nd:YAG Laser, welcher ein Kristallstab aus Yttrium, Aluminium und Granat (Y₃ Al₅O₁₅) beinhaltet, der mit bis zu 3 Gew.-% Nd₂O₃ angereichert ist und eine Wellenlänge von 1064nm liefert. Die Wellenlänge des Laserstrahls wird innerhalb des optischen Resonator durch Frequenzvervierfachung vom Ultraviolett-Bereich über drei harmonisch schwingende Kristalle (SHG- 532 nm, THG- 355 nm, 5HG- 213 nm) erzielt. Die Isotopenmassen von ²⁰²Hg, ²⁰⁴Hg + Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, ²³⁵U und ²³⁸U wurden im "peak jumping mode" mit einem 30µm großen Spot bei einer Ablationszeit von 30-90s aufgenommen. Dieser

erlaubt die Daten nicht nur am Maximum der Peak-Intensität zu erfassen, sondern an mehreren Punkten über den Peak hinweg. Erste Tests haben ergeben, dass optimale Ergebnisse der U-Pb Verhältnisse erzielt wurden, wenn an 4 Stellen über den Peak shape (Messspitze) gemessen und anschließend die Daten übern einen Zeitraum von 0.9 bis 1.3s integriert wurde. Da eine Messung von ²⁰²Hg bis ²³⁸U (mass scan) etwa 45 s betrug, entspricht dies einer Integration über 20 bis 30 solcher Messungen. Eine im Strömungsbereich "Tränenartig" geformte Laserablationszelle mit einem Volumen von ca. <3 cm³ ermöglichte eine sequentielle Beprobung der Zirkonkörner bei einer zeitlich aufgelösten Datenakquisition. Ein niedriger Blei- und Quecksilber Gehalt im Untergrund des Gasdurchflusses ist durch ein Säubern der Ablationszelle mit Aceton, den Einbau von kurzen separaten Schläuchen für den He und Ar- Gastransport, dem Weglassen des regulären Ventilsystems (purge system) des Lasers und das Verwenden von neuen Verbrauchsteilen im Plasma Interface (Konusse, Skimmer, Quarzglas etc.) ausschließlich für die U-Pb Methode erreicht worden. Die Probe und der Zirkonreferenzstandard sind gemeinsam hintereinander entlang eines laminaren Helium-Gasstromes in der Ablationszelle montiert, um eine Kontamination vom Standard auf die Probe zu vermeiden. Die Ablation in der Zelle erfolgte unter einer Helium Atmosphäre mit einer Durchflussrate von 0.1 bis 0.3 l/min und wird nachher mit dem Trägergas Argon (Durchfluss von 1 l/min) kurz vorm Eintritt in das ICP-MS vermischt. Eine Korrektur des gewöhnlichen Bleis wurde nur angewendet, wenn das Interferenz- und Untergrund-korrigierte ²⁰⁴Pb Signal oberhalb der Nachweisgrenze von circa 20 Zählereignissen pro Sekunde lag. Diese Nachweisgrenze ergibt sich aus dem Hg Gehalt im Trägergas und der Genauigkeit mit der das interferierende 204Hg über Messung des 202Hg Gehaltes während der Analyse bestimmt werden kann. Die Originaldaten wurden offline mit einem Excel® Spreadsheet verarbeitet, welches von Axel Gerdes (Goethe Universität Frankfurt, Institut für ist. Geowissenschaften) entwickelt worden Die durch den Laser induzierte Elementfraktionierung und die Massenfraktionierung des ICP-MS wurde über die Normalisierung auf den Referenz-Zirkonstandard GJ1-1 korrigiert. Für den GJ-1 gibt es publizierte ID-TIMS Daten, die leicht diskordant mit einem ²⁰⁶Pb/²³⁸U Alter von 599±0.8 Ma (2 σ) und einem ²⁰⁷Pb/²⁰⁶Pb Alter von 608.5±0.4 Ma (2 σ) sind (Jackson et al. 2004). Diese stehen in sehr guten Einklang mit den in Gießen bzw. Frankfurt (Dr. Wolfgang Dörr, persönliche Mitteilung) bestimmten Altern an dem für diese Arbeit verwendeten GJ-1 Zirkonkristall. Vor der Normalisierung der Isotopendaten wurde die Schwankung der Elementfraktionierung (z.B. das Pb/U Verhältnis als Funktion der Ablationszeit und der Kratertiefe) für jeden Satz der Isotopenverhältnisse (50) der jeweiligen Einzelspot-Analyse korrigiert. Dabei ist eine lineare Regression über alle gemessenen Verhältnisse angewendet worden, wobei mindestens 3 Ausreißer (> ± 2 S.E.) ausgeschlossen wurden und der Schnittpunkt der v-Achse als initiales Startverhältnis gewertet wird. Aufgrund der sorgsamen Kontrolle während der Ablation und bei der Auswertung der Daten können ungewöhnliche Ausreißer, die durch eindeutige unregelmäßige Pb/U Verhältnisse verursacht durch eventuelles Eindringen des Laser in das Epoxykunstharz, Mineraleinschlüsse in den Zirkonen, und/oder Zirkonbereiche mit Bleiverlust aufgrund Metamiktisierung oder Rissstrukturen ausgeschlossen werden. Der durchschnittliche Wert der internen Reproduzierbarkeit (standard error in %) für das 207Pb/206Pb und 206Pb/238U Verhältnis für die Zirkonproben und dem Referenzstandard beträgt 0.5 %. Die typische Reproduzierbarkeit (2σ) des GJ-1 ergibt für das

²⁰⁷Pb/²⁰⁶Pb Verhältnis = 0.5 % und für das ²⁰⁶Pb/²³⁸U Verhältnis = 0.9 %. Der Messfehler jeder Analyse eines Probenzirkons wurde mit der externen Reproduzierbarkeit aus 10 und/oder 12 Messungen des Referenzstandardzirkon GJ-1 innerhalb einer Sequenz von 20-30 Zirkonproben mittels quadratischer Addition fortgepflanzt. Konkordia Diagramme und kumulative Plots sind mit den Programmen Isoplot/Ex 3.41 (Ludwig 2003) und AgeDisplay/Ex (Sircombe 2004) berechnet und dargestellt worden.

5.2 Hf Isotopie

Die Lutetium-Hafnium Isotopenanalysen wurden an ausgewählten Zirkonen von fünf Probenlokationen mit dem Neptune MC-ICP-MS (Thermo Scientific[™]) gekoppelt an einem NewWave[™] UP 213 nm Laserablationssystem verwirklicht. Für die Analysen wurden die Isotope ¹⁷²Yb, ¹⁷³Yb, ¹⁷⁵Lu, ¹⁷⁶Hf, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf und ¹⁸⁰Hf simultan auf 8 Faraday-Kollektoren gemessen (Abb. 8).

Abbildung 8.: Schematisches Diagramm des hochauflösenden Multikollektor-ICP-MS, dem Neptune (Thermo ScientificTM), welches in das Interface mit Transferoptik, dem ESA (elektronischem Analysator), dem Magneten, der Zoomoptik und dem Multikollekor mit 9 Faradaydetektoren + Verstärker aufgeteilt ist.

Für die Probe Kheis (903) wurde eine leicht abgewandelte Kollektorkonfiguration gewählt. Hierbei wurde zusätzlich das ¹⁷¹Yb anstelle des Isotops ¹⁸⁰Hf analysiert. Die Analyse erfolgte während einer 60 Sekunden langen Ablation mit einem Spotdurchmesser von 40µm in der gleichen Wachstumsdomäne, wie die der U-Pb Messung des jeweiligen Zirkons. Ebenso wie bei der U-Pb Methode wurden die zeitlich aufgelösten Profile/Signale der Isotopenverhältnisse offline bearbeitet und die Homogenität der abladierten Zirkone überprüft. Helium ist als Trägergas in der Laserablationskammmer kurz vor Eintritt in das ICP-MS mit Argon vermischt worden. Stickstoff mit einer Durchflussrate von ungefähr 0.005 1/min ist zusätzlich über ein Aridus-Nebulizersystem dem Argon-Trägergas zugeführt worden. Diese Maßnahme unterdrückte die Oxidbildung und verbesserte die Signalsensitivität um etwa 30 Prozent. Die simultane Beobachtung der Isotope ¹⁷²Yb, ¹⁷³Yb und ¹⁷⁵Lu während jedem Analyseschritt erlaubt die Korrektur der isobaren Interferenzen der Isotope ¹⁷⁶Lu und ¹⁷⁶Yb auf der Masse 176. Die Werte für das ¹⁷⁶Yb und das ¹⁷⁶Lu wurden unter Berücksichtigung der instrumentellen Massenfraktionierung bei jeder Analyse unter Zuhilfenahme des ¹⁷⁶Yb/¹⁷³Yb von 0.796218 (Chu et al. 2002) und des ¹⁷⁶Lu/¹⁷⁵Lu von 0.02658 berechnet. Für die instrumentelle Massenfraktionierung wurden die Yb Isotopenverhältnisse auf das 172 Yb/173 Yb von 1.35274 (Chu et al. 2002) und die Hf Isotopenverhältnisse auf ¹⁷⁹Hf/¹⁷⁷Hf of 0.7325 normalisiert mit Hilfe des exponentiellem 176 Yb/ 177 Hf=(176 Yb/ 177 Hf)_{true} x 173 Yb/ 177 Hf)_{meas} x (M176(Yb)/M173) $^{\beta(Yb)}$ Gesetz: /(M176(Yb)/M177)^{β(Hf)}. Das Messprotokoll wurde mit wiederholten Analysen einer 50 ppb haltigen JMC475 Lösung (176 Hf/ 177 Hf= 0.282153±8, 2 σ , n=22) getestet, die mit einer variablen Menge von reinem Yb und Lu gedopt wurde. Die Genauigkeit der Interferenzkorrektur konnte mit einem ¹⁷⁶Yb/¹⁷⁷Hf Verhältnis von 0.241 und einem 176 Lu/ 177 Hf Verhältnis von 0.021 (176 Hf/ 177 Hf=0.282187±53, 2 σ , n=26) bestätigt werden. Mehrmalige LA-MC-ICP-MS Analysen der Referenzzirkone 91500 und GJ1-1 wurde über die gesamte Messkampagne durchgeführt und zeigten ¹⁷⁶Hf/¹⁷⁷Hf Verhältnisse von 0.282298 ± 26 (2 σ , n=150), welche im Fehler identisch sind im Vergleich zu Lösungsmessungen am MC-ICP-MS (Woodhead et al. 2004) mit 0.282308±8) und $(0.281998\pm7, 2\sigma;$ Gerdes, unveröffentlichte Daten). Die ϵ Hf(t)-Werte wurden mit der Zerfallskonstante 1.87×10⁻¹¹yr⁻¹ (Scherer et al. 2001) berechnet, die verarmte Mantel Evolutionslinie (DM= depleted mantle) wurde extrapoliert nach Modelldaten $((^{176}Hf)^{177}Hf)^{0} =$ $0.28325 \text{ und } ({}^{176}\text{Lu}/{}^{177}\text{Hf})^0 = 0.0384)$ für MORB-Basalte von Chauvel & Blichert-Toft (2001) sowie die Chondritic Uniform Reservoir (CHUR) Evolutionslinie wurden durch die Daten $((^{176}\text{Hf})^{177}\text{Hf})^0 = 0.282772 \text{ und } (^{176}\text{Lu})^{177}\text{Hf}^0 = 0.0332) \text{ von Blichert-Toft & Albarede (1997)}$ definiert.

5.3 Spuren- und Seltenen Erdelemente

Die Spurenelement-Bestimmungen der Zirkone wurde mit dem Thermo Scientific™ Element2 Sektorfeld-ICP-MS gekoppelt mit dem NewWave™ UP 213 nm Lasersystem durchgeführt. Isotope von 31 Elementen wurden im Peak-jumping mode mit 30-40 um großen Spotdurchmessern, einer Wiederholungsrate von 10 Hz und einer Laserenergie von ungefähr 3.5 J/cm² analysiert. Während jeder Einzelanalyse erfolgte zuerst 25 s lang eine Messung des Untergrundrauschens vor der eigentlichen 35 s andauernden Datenerfassung. Jeder Scan des kompletten Massenbereichs dauerte über eine Sekunde. Helium wurde als Trägergas für das abladierte Material benutzt und mit Argon vermischt, bevor es dem ICP-MS zugeführt wurde. Das Signal wurde so optimiert um eine maximale Sensitivität für Ce und U zu erreichen, währenddessen die Oxidbildungsrate unter 1 % gehalten wurde. Die Daten offline mit der kommerziellen Datenreduktionssoftware Glitter 4.0 wurden (GEMOC, Macquarie University, Australia) mittels interner Standardisierung mit 29Si und dem NIST 612 Standardglas (Pearce et al. 2007) als externe Kalibrierung bearbeitet. Die Analyse von Einschlüssen in den Zirkonen wurden anhand von Auffälligkeiten der einzelnen Probensignale, wie erhöhte Fe, P, Sr und Ca Werte, während der Datenauswertung berücksichtigt und dementsprechend verworfen. Mehrere gleichzeitige Analysen (30 und 40 μ m) der Referenzzirkone 91500 Zirkon bzw. GJ1-1 Zirkon wurden während der Probenmessungen durchgeführt und ergaben eine Präzision von 5–10 % für SEE (>10 ppb), Y, Ti, Sr, Nb, Ta, Th und U. Die Resultate des 91500 Zirkon weisen nur eine 2-4 prozentige Abweichung von den Mittelwerten eines Methodenringversuches mehrerer internationaler Labore auf (Wiedenbeck et al. 2004). Die Nachweisgrenze der verschiedenen SEE variiert von 0.3 bis 10 ppb.

5.4 Prinzipielle Darstellungen

Die U-Pb Datierung an Zirkonen basiert auf den einzigartigen Einbau zweier langlebiger radioaktiver Uranisotope ²³⁸U und ²³⁵U mit einer Halbwertszeit von 4.47 Ga und 0.7 Ga, die jeweils zu ²⁰⁶Pb und ²⁰⁷Pb zerfallen. Das ebenfalls eingebaute ²³²Th zerfällt zu ²⁰⁸Pb. Das vierte Pb Isotop, ²⁰⁴Pb hat kein radioaktives Mutterisotop und somit eine effektiv konstante Isotopenhäufigkeit.

Das Konkordia-Diskordia-Diagramm (U-Pb Diagramm) von Wetherill (1956) ist zur Darstellung von U/Pb-Isotopenanalysen verwendet worden. Blieb das Isotopensystem geschlossen ergeben sich aus den beiden Zerfallsreihen (²³⁸U>²⁰⁶Pb; ²³⁵U>²⁰⁷Pb) identische Alterswerte und die Datenpunkte liegen auf der Konkordia, die auf Grund der unterschiedlichen Halbwertszeiten der beiden U-Isotope gekrümmt ist. Fand dagegen eine Störung des Isotopensystems statt, sind die Alterswerte nicht kongruent und die Datenpunkte liegen oberhalb (reverse diskordant) oder unterhalb (diskordant) der Konkordia. Bei einer einmaligen Störung definieren die Analysenpunkte oftmals eine Diskordia. Der obere Schnittpunkt mit der Konkordia gibt meist das Bildungsalter der Zirkone an.

Alternativ ist das Tera-Wasserburg-Diagramm verwendet worden, in dem das ²³⁸U/²⁰⁶Pb gegen das ²⁰⁷Pb/²⁰⁶Pb Verhältnis abgebildet wird (Tera & Wasserburg 1972). Es ermöglicht Aussagen über die Zusammensetzung des gewöhnlichen Bleis in Zirkonen und liefert eine detail getreuere Darstellung jüngerer Altersdaten auf der Diskordia.

Das Hf-Isotopen Evolutionsdiagramm von Patchett et al. (1981) wurde für die ermittelten initialen ¹⁷⁶Hf/¹⁷⁷Hf-Verhältnisse der Zirkone verwendet und gegen das Bildungsalter (Kristallisationsalter) der Zirkone aufgetragen. Es zeigt die episodische chemische Differentiation der silikatischen Erde (Kruste und Mantel) zu einem bestimmten Zeitpunkt an. Das ursprüngliche einheitliche initiale Lu/Hf Verhältnis der Erde hat sich progressiv über die Zeit verändert. Die ursprüngliche Lu/Hf Zusammensetzung der Gesamterde (bulk silicate earth oder BSE) wird als identisch mit der Zusammensetzung undifferenzierter meteoritischer Chondrite, welche als chronditic uniform reservoir (CHUR) bezeichnet werden, angenommen. Betrachtet man ein einfaches partielles Schmelzereignis, in der sich Kruste aus dem Reservoir der Gesamterde (BSE) bzw. CHUR extrahiert, so besitzt diese Schmelze ein niedriges Lu/Hf Verhältnis und das verbleibende Mantelgestein (der veramte Mantel) ein

Lu/Hf Verhältnis. Im weitern Zeitverlauf divergiert höheres die isotopische Zusammensetzung der Kruste und des verarmten Mantel (DM= depletd mantle) zu niedrigen beziehungsweise höheren ¹⁷⁶Hf/¹⁷⁷Hf. Zur besseren Darstellung der Hafniumisotopie wird die εHf Notation verwendet, also die Abweichung des jeweiligen Wertes von der Zusammensetzung der Gesamterde (= Chondrite) zu dieser Zeit, die nach folgender Formel berechnet worden sind: $\epsilon Hf = [(^{176}Hf)^{177}Hf)_{Probe (t)}/(^{176}Hf)^{177}Hf)_{Chondrite(t)} - 1]*10^4$. Die Chondrite haben dementsprechend ein EHf= 0 und wird als Nulllinie dargestellt. Die sehr gut erhaltenen initialen Lu/Hf Verhältnisse der detritischen Zirkone ermöglichen eine Berechnung eines Hf-Modellalter zur Bestimmung der Abspaltung/Extraktion des Krustenmaterials von der Mantelquelle. Diese Modellalter werden als Krustenverweildauer oder Krustenbildungsalter bezeichnet. Die Hf_{TDM} Modellalter sind abhängig vom Lu/Hf Verhältnis des krustalen Reservoirs. Sie wurden deshalb mit einem Lu/Hf Verhältnis der durchschnittlichen kontinentalen Kruste von 0.081 (Rudnick & Gao 2003) berechnet und für alle Zirkone angewendet unter der Annahme, das die parentalen Magmen der Zirkone von Krustenmaterial abstammen, welches von einem primären verarmten Mantel abstammt:

 $1/\lambda \ln(((^{176}\text{Hf}/^{177}\text{Hf}_{DM(t)}-^{176}\text{Hf}/^{177}\text{Hf}_{Probe})/(0.0384-^{176}\text{Lu}/^{177}\text{Hf}_{Gesamtkruste}))+1)*10^4 + U-Pb$ Alter der Probe. Ein positives ϵ Hf und ein Hf_{TDM}-Modellalter nahe dem Kristallisationsalter zeugt von juveniler Krustenbildung, wohin dagegen ein negatives ϵ Hf und ein Hf_{TDM}-Modellalter älter als das Kristallisationsalter auf ein Wiederaufschmelzen älterer Kruste hindeutet.

Die Spurenelement-Gehalte sind als Diskriminations-Diagramme dargestellt. Die Seltenen Erden sind in Chondrit normierte-Diagramme nach (McDonough & Sun 1995) und gegen die zunehmende Ordnungszahl der SEE aufgetragen.

6. Ergebnisse

Die Analysenergebnisse der detritischen Zirkone der unterschiedlichen Probenlokationen liefern wichtige Informationen über die Herkunft und Entstehungsgeschichte der Gesteine in dem diese Minerale gebildet wurden. Die Ergebnisse sind in entsprechenden Tabellen für die U-Pb und Hf Isotopie und Spurenelemente im Anhang dargestellt. Die Hf Isotopen- und Spurenelementanalysen sind nur an Zirkonen aus 5 Probenlokationen, die räumlich und zeitlich am repräsentativstem erschienen, durchgeführt worden.

6.1 Lokalität Orange River Mouth (900)

Die Zirkonpopulation der Lokalität Orange River Mouth (900) zeigt hinsichtlich der externen Morphologie und der internen Wachstumstexturen eine große Variabilität auf. Äußerlich weisen sie unterschiedlichste Farbnuancen von klar (durchsichtig), milchig über schwach rosa bis gelb, gelbbraun und dunkelbraun bis schwarz auf. Die Größe der Kristalle erstreckt sich von 125 µm über 180 µm und >225 µm in der Längsachse. Zu 70 % überwiegen kurzprismatische gedrungene Kristallformen mit gerundeten Ecken, gefolgt von gerundeten Kristallen (20 %) und mit einem geringen Anteil (10 %) langprismatischer Zirkone. Die Kathodolumineszenzbilder zeigen ein weit gefächertes Spektrum an internen Wachstumsgefügen. Die Gruppe der größten Kristalle (> 225 um) umfasst 29 analysierte Einzelkörner mit überwiegend (ca. 70 %) komplexen, wahrscheinlich früh bis postmagmatischen Rekristallisationsgefügen. Die ursprüngliche oszillatorische Zonierung ist durch eine uneinheitliche (pattchy) bzw. konvolute Zonierung ersetzt worden (siehe auch Corfu et al. 2003). Die Zirkone aus der Fraktion 180 um (Längsachse) offenbaren eine ausgeglichene Häufigkeit der unterschiedlichen Zonierungstypen. Es kommen zu jeweils 40 % eine oszillatorische und eine uneinheitliche Zonierung vor. Der Rest zeichnet sich durch Kristalle mit Auflösungserscheinungen (resorption) und Auslaugungseffekten (leaching effects) aus. Die Rückstreuelektronen-(BSE=back-scattered electron) und Kathodolumineszenz (KL) Aufnahmen der 125 um Fraktion zeigen, dass die Zirkone mit einer uneinheitlichen (pattchy) bzw. konvoluten Zonierung (60 %) gegenüber denen mit einer oszillatorischen Zonierung (35 %) überwiegen. Bei dieser Probenlokation ist die anfängliche Einteilung der Zirkone in unterschiedliche Größenfraktionen für die Beschreibung der U-Pb Daten beibehalten worden, um eine systematische Verzerrung/Abweichung der potentiellen Zirkonpopulationen bei der nachfolgenden zufälligen Auswahl der Proben auszuschließen.

6.1.1 U-Pb Daten

Insgesamt wurden 232 Zirkone der Lokalität Orange Mouth (900) analysiert, von denen 104 Zirkone (46 %) konkordante Alter mit einem Toleranzgrad von ± 15 % aufweisen. Die LA-SF-ICP-MS U-Pb Daten, welche in einem Tera-Wasserburg Diagramm dargestellt (Abb. 9) sind, zeigen drei Altershäufungen an, wobei die Alter um 1.0 bis 1.2 Ga mit einem Maxima bei ~ 1.15 Ga dominieren. Des Weiteren gibt es Alterscluster um 600 Ma und 1.7 bis 2.0 Ga.

Die Kernbereiche und die Randzonen der 125 um-Fraktion ergeben überwiegend konkordante Alter um 1.15 Ga. Einige Zirkone (Or 105, Or 116 und Or 159) zeigen eine deutliche mehrphasige Wachstumszonierung mit alten Kern (Or 105 = 1.03 Ga, Or 116 = 1.96 Ga und Or 159 = 2.02 Ga). Die Randsäume der Zirkone ergeben dagegen U-Pb Alter von 0.58 Ga (Or 105) und 1.2 Ga (Or 116 und Or 159) und jungen Überwachsungssäumen (Or 105 = 0.58 Ga, Or 116 und Or 156 = 1.2 Ga, siehe Abb. 13). Unterschiede in diesen Zonen lassen auch die Th/U Verhältnisse erkennen, welches im Allgemeinen als Unterscheidungskriterium zwischen magmatisch und metamorph gebildeten Zirkonen (Th/U <0.1) herangezogen wird (Rubatto 2002). Der Zirkonkern Or 105 hat ein Th/U Verhältnis von 0.8, welches zum Rand auf 0.1 abfällt. Desgleichen nimmt in der Probe Or 116 das Th/U Verhältnis im Kern von 0.2 auf <0.01 im Randsaum des Zirkonkristalls ab (siehe Tabelle 1). Die konkordanten Zirkone der 180 µm großen Fraktion zeigen eine deutliche Häufung der Alter um 1.0 bis 1.2 Ga (~ 1.15 Ga). Zusätzlich gibt es ein Zirkon mit einem paläoproterozoischen Alter (1.8 Ga) und zwei Zirkone mit neoproterozoischen Altern um 500 Ma (Abb. 10). Die Analysen der größten Zirkonfraktion (>250 µm) weisen überwiegend diskordante ²⁰⁶Pb/²³⁸U Alter von 300 bis 1100 Ma auf (Abb. 11). Fünf Analysen plotten auf die Konkordia bei 685 Ma (Zirkon Or 8-2), um 956 Ma (Zirkon Or 9-1) und zwischen 1050-1085 Ma (Zirkon Or 1-1, 13-2, 13-2). Die Analysen von Or 2-3, Or 12-3 und Or 1-3 definieren eine Diskordia mit einem oberen Schnittpunkt um 1480 Ma und einem unteren Schnittpunkt um 40 Ma. Letzteres deutet auf rezenten Bleiverlust hin (Abb. 12).

Abbildung 9.: Tera-Wasserburg Diagramm aller konkordanten Zirkonen der Lokalität Orange River Mouth (900).

Abbildung 10.: U-Pb Konkordia-Diagramm aller konkordanten Zirkone der 180 µm Fraktion der Lokalität Orange River (900).

Abbildung 11.: U-Pb Konkordia-Diagramm aller Zirkone der >250 μm Fraktion der Lokalität Orange River (900).

Abbildung 12.: Diskordia Diagramm der Zirkone Or 1-4, Or 12-3 und Or 2-3 der >250 μm Fraktion der Lokalität Orange River (900).

Abbildung 13.: U-Pb Konkordia-Diagramm ausgewählter Zirkone mit ererbtem Kern der Lokalität Orange River Mouth (900). Weiße Kreise in den KL-Bildern geben den Punkt und die Größe der jeweiligen Analyse im Kristall an.
6.1.2 Hf Isotopie

Die Lu-Hf Analysen von 33 bearbeiteten Zirkonen zeigen stark variierende (initiale) 176 Hf/ 177 Hf_{ini} Werte von 0.2814 bis 0.2828. Dies entspricht einem ϵ Hf_(t) von -24.8 bis 8.6 (Abb. 14 und 15). Zirkone mit U-Pb Altern um 1.1 bis 1.3 Ga haben eine deutliche Häufung von 176 Hf/ 177 Hf_{ini} um 0.2821, mit ϵ Hf Werten von 0±5 Einheiten Abweichung vom chondritischen Reservoir = (bulk silicate earth). Überdies zeigen die Zirkone mit U-Pb Altern um 1.1 Ga auch die negativsten ϵ Hf Werte mit bis zu -25, welches auf eine mittlere Krustenverweilalter von 2.9 Ga, also auf ein Recyceln archaischer Kruste hindeutet. Paläoproterozoische Zirkone (Or 66, Or 101 und Or 181 = 1.99 Ga, 2.06 Ga und 1.79 Ga) zeigen ebenfalls stark divergierende ϵ Hf(t) von -6.5 bis + 6.8. Dies lässt vermuten, dass die Schmelzen aus denen die Zirkone kristallisierten, sowohl aus juvenilem Material wie auch aus aufgearbeiteten archaischen Krustenanteilen bestanden.

Abbildung 14.: Initiales ¹⁷⁶Hf/¹⁷⁷Hf_{ini} der analysierten Zirkone der Probe Orange River Mouth (900) gegen das Kristallisationsalter dargestellt. Verarmte Mantel Evolutionslinie (DM = depleted mantle) nach Vervoort & Blichert-Toft (1999), Chondritic Uniform Reservoir (CHUR) Evolutionslinie nach Blichert-Toft & Albarede (1997).

Abbildung 15.: EHf Diagramm der analysierten Zirkone der Probe Orange River Mouth (900) gegen das Kristallisationsalter dargestellt.

6.1.3 Spuren- und Seltenen Erdelemente

Die analysierten Zirkone der Probe Orange River Mouth (900) zeigen sehr variable SEE (Seltenen Erdelement)-Muster (Abb. 16). Dabei sind drei charakteristische Muster differenzierbar. Die erste Gruppe mit 19 Zirkonen weist (Sm/La)_N Verhältnisse von 53 bis 573 auf, welche gemäß Hoskin & Schaltegger (2003) dem typischen SEE Muster für krustale Zirkone (57-547) entsprechen. Sie weisen eine ausgeprägte positive Ce- und negative Eu Anomalie auf mit einem durchschnittlichen Ce/Ce* von 20.1 bzw. Eu/Eu von 0.1. Die zweite Gruppe zeigt niedrige $(Sm/La)_N$ Verhältnisse von 3 bis < 53. Die dritte Gruppe zeigt sehr hochangereicherte leichte SEE und hat ein absolut flaches Muster (Tabelle 19). Die Gesamthäufigkeit der SEE erstreckt sich von 152 bis zu 8164 ppm, bei einem Durchschnitt von 1712 ppm. Die Zirkone der Probe Orange River Mouth (900) können krustalen Gesteinen mit 250-5000 ppm (Hoskin & Schaltegger 2003) zugeordnet werden. Eine Mantel- bzw. Karbonatitaffinität, wie sie Belousova (1998) mit SEE-Häufigkeiten von 5-39 ppm bzw. Hoskin & Ireland (2000) mit bis zu 12 ppm beschrieben haben, kann ausgeschlossen werden. Der Y-Gehalt der Zirkone schwankt von 81 ppm bis zu 11872 ppm bei einem durchschnittlichen Anteil von 2677 ppm. Spurenelemente wie P und Sr weisen durchschnittliche Werte von 275 ppm und 11 ppm auf, welche ebenfalls im Rahmen der typischen Gehalte krustaler Zirkone liegen. Gleichzeitig muss beachtet werden, dass bei 28 Zirkonen die P Werte unterhalb der Nachweisgrenze liegen. Das mittlere Th/U Verhältnis beträgt 0.6 ähnlich denen magmatischer Zirkone mit ≥ 0.5 (Hoskin & Schaltegger 2003).

Abbildung 16.: SEE-Muster von Zirkonen der Probe 900 normalisiert auf Chondrite nach (McDonough & Sun 1995).

6.2 Lokalität Parys 901

Archaische Zirkone, der im Vredefort Dome liegenden Probe Parys 901, weisen als auffälligstes morphologisches Merkmal querschneidene planare Bruchlinien auf (siehe Abb. 17). Diese Kuriosität wurde von Kamo et al. (1996) und Moser (1997) dem Vredefort-Meteoritenimpakt zugeordnet. Äußerlich besitzen sie eine braune Eigenfarbe. Ihre Größe reicht von 50 bis 450 µm. Die Gestalt der archaischen Zirkone variiert zwischen kurz- bis langprismatischen Formen in einem Verhältnis von 60 zu 40 %. Nur vereinzelt treten subhedrale Varietäten auf. Die kurzen und subhedralen Formen sind überwiegend bruchstückhaft und gerundet. Die proterozoischen und paläozoischen Zirkone sind 50-250 µm groß, dabei gut gerundet oder zeigen eine anhedrale Form. Äußerlich sind sie eine klar oder schwach gefärbt, teils trübe. In den KL- und BSE-Bilder weisen die proterozoischen und paläozoischen Zirkone eine ausgeprägte Sektorzonierung auf. Die archaischen Zirkone zeigen eine konzentrische, oszillatorische Wachstumsbänderung auf. Der innere Bereich derselben Körner ist sehr einheitlich dunkel lumineszierend, die auf hohe U und Th Gehalte und eine spätere Rekristallisation deutet. Die äußeren Ränder der Zirkone sind teilweise resorbiert. 12 Zirkone beinhalten gerundete und elongierte, weniger als 30µm große Kerne, die für eine Analyse mittels Laserablation zu schmal sind.

Abbildung 17.: BSE- und KL-Bilder langprismatischer, archaischer Zirkone mit planaren Deformationsstrukturen (linkes Bild). Gelbe Kreise = Laserspots, Nummer des Spots.

6.2.1 U-Pb Daten

Die U-Pb Datierungen wurden an 130 Zirkonen der Probe Parys 901 durchgeführt, von denen 83 Zirkone konkordante U-Pb Alter bei einer zulässigen Toleranz von ±15 % aufweisen. Die Zirkone der Probe Parys 901 lassen sich in vier Hauptaltersgruppen einteilen: eine mesoarchaische Gruppe mit 45 Zirkonen (35 %) und U-Pb Altern um 3.0 bis 3.1 Ga, 16 meso-/neoproterozoische Körner um 1.1 Ga, eine Häufung von 32 spät-neoproterozoischen Körnern um 600 Ma und die jüngste Gruppe mit paläozoischen Altern um 520 Ma (Abb. 18). Der älteste Zirkon der Probe Parys (901) weist ein konkordantes U-Pb Alter von 3.4 Ga auf. Ein Zirkon besitzt einen alten Kern von 1.0 Ga und einen jungen Rand um 606 Ma aufweist (siehe Tabelle 2). Die Diskordanz der archaischen Zirkone wird einerseits auf das Impaktereignis des Vredefort Doms um 2.02 Ga (Kamo et al. 1996) zurückgeführt, welches Schock basierte parallele und planare Bruchmuster in Zirkonen, die in pseudotachylitischen Brekzien auftreten, verursacht hat. Hoch alterierte und metamiktisierte Zirkone wurden von Reimold et al. (2002) beschrieben. Das dominante Ereignis für den Bleiverlust wird von Armstrong et al. (2006) auf die Kibaran/Namaquan Orogenese aufgrund unterer Einstich-Konkordiadiagramm von diskordanten Zirkonen Alter im aus trondhjemitischen Melanosomen des Vredefort Domes postuliert.

Abbildung 18.: U-Pb Konkordia-Diagramm der Probe Parys (901).

6.2.2 Hf Isotopie

Die Lu-Hf Analysen der 56 analysierten Zirkone zeigen abhängig vom Alter stark variierende ¹⁷⁶Hf/¹⁷⁷Hf_{ini} Werte, die meist oberhalb von CHUR, also der mittleren Zusammensetzung der Gesamterde, liegen. Die früh paläozoischen bis spät neoproterozoischen Zirkone (500–750 Ma) haben Werte von 0.28254 bis 0.28226 auf, welche einem ϵ Hf_(t) von 5.6 bis -6.4 entsprechen (Abb. 19 und 20). Zwei Zirkone (Nr. 11 und 12) haben dagegen sehr niedrige ϵ Hf Werte von -24.7 und -23.2, woraus sich für das Wirtsmagma der Zirkone eine krustale Quelle mit paläoproterozoischer Krustenverweildauer (Verarmten-Mantel Modellalter = Hf_{TDM} > 2.2 Ga) ableiten lässt. Die Gruppe der 0.85 bis 1.16 Ga alten Zirkone haben ¹⁷⁶Hf/¹⁷⁷Hf_{ini} Werte um 0.2823, entsprechenden positiven ϵ Hf_(t) Werten von 0 bis 7.6. Dies weist auf Quellen mit jungen (mesoproterozoischen) mittleren Krustenverweilzeiten und/oder einer Beteiligung von Schmelzen aus dem verarmten Mantel zum Zeitpunkt der Magmengenese hin. Die Kristallisationsalter der archaischen Zirkone erschließen einen weiten Bereich von 2.73 bis 3.36 Ga mit einheitlicher Hf Isotopie von 0.2807 und paläoarchaischem Hf_{TDM} von 3.4 Ga. Im ϵ Hf Diagramm zeigt sich dies mit abnehmenden Kristallisationsalter als eine kontinuierliche Abnahme des ϵ Hf_(t) von -1.4 bis -11.6.

Abbildung 19.: ¹⁷⁶Hf/¹⁷⁷Hf_{ini} der analysierten Zirkone der Probe Parys (901) gegen das Kristallisationsalter dargestellt.

Abbildung 20.: EHf Diagramm der Probe Parys 901.

6.2.3 Spuren- und Seltenen Erdelemente

Die analysierten Zirkone der Probe Parys (901) zeigen abhängig von ihrem jeweiligen U-Pb Alter sehr variable SEE-Muster. Archaischen Zirkone sind durch eine große Variationsbreite und Häufigkeit der leichten SEE charakterisiert. Die Gehalte an schweren SEE sind dabei ähnlich wie bei den neoproterzoischen und paläozoischen Körner (Abb. 21). Letztere haben für Zirkone eher typische SEE-Muster mit ansteigenden Gehalten von den leichten zu den schweren SEE, eine ausgeprägte positive Cer und eine negative Europium Anomalie. Die Cer Anomalie fällt bei den archaischen Zirkonen im Durchschnitt geringer aus als bei den neoproterozoischen Zirkonen. Fünf paläozoische Zirkone zeigen eine Verarmung der schweren SEE, welches auf ein gemeinsames sub-solidus Wachstum mit Granat-Mineralen hindeutet (Rubatto 2002). Die 25 archaischen Zirkone weisen nahezu ausgeglichene (Sm/La)_N Verhältnisse von 2 bis 50 auf, wohingegen die neoproterozoischen (7 Analysen) und paläozoischen (19 Analysen) Zirkone breit gestreute (Sm/La)_N Verhältnisse von 20-667 und von 18-1120 zeigen. Die letzt genannten Zirkone entsprechen dem typischen SEE-Muster für krustale Zirkone mit (Sm/La)_N Verhältnissen von (57-547) nach Hoskin & Schaltegger (2003). Eine ähnliche Anreicherung der LSEE wurde bereits von Whitehouse & Kamber (2002 und 2005) für komplexe Zirkone an archaischen Zirkonen der Itsag und Amîtsog Gneise aus Grönland gezeigt.

Abbildung 21.: SEE-Muster von Zirkonen der Probe Parys (901) normalisiert auf Chondrite Häufigkeit nach (McDonough & Sun 1995).; schwarze Linien = 2.7-3.4 Ga; rote Linien = 0.8-1-2 Ga; blaue Linien = 0.5-0.6 Ga Zirkone.

Die SEE-Gesamthäufigkeit reicht von 111 bis zu 5797 ppm, bei einem Durchschnitt von 935 ppm können, die wiederum Zirkonen krustalem Ursprungs mit 250-5000 ppm (Hoskin & Schaltegger 2003) zugeordnet werden können. Das Th/U Verhältnis variiert von 0.1 bis 1.6 bei einem Durchschnitt von 0.5 ähnlich denen magmatischer Zirkone mit \geq 0.5 (Hoskin & Schaltegger 2003). Eine zusätzliche Auffälligkeit ist die starke Anreicherung der Spurenelemente Fe, Ca und Sr in den archaischen Zirkonen im Vergleich zu den jüngeren Zirkonen (siehe Tabelle 20).

6.3 Lokalität Lesotho (902)

Die Probe Lesotho (902) beinhaltet mit einer Größe von 100 µm bis maximal 500 µm überwiegend (75 %) langprismatische Zirkonkristalle mit subhedralen Formen. Nur vereinzelt treten kurzprismatische, stark gerundete, ca. 200 µm große Kristalle auf (siehe Abb. 22). In den KL-Bildern zeigen vierzig Prozent der Zirkone eine fein-gebänderte, oszillatorische Wachstumszonierung auf. Dreißig Prozent der Körner weisen Rekristallisationstrukturen auf, die entweder das gesamte Korn oder uneinheitliche Teilbereiche erfassen.

Abbildung 22.: BSE- und KL-Bilder lang- und kurzprismatischer Zirkone der Probe Lesotho (902). Gelbe Kreise = Laserspots, Nummer des Spots.

6.3.1 U-Pb Daten

Die U-Pb Datierungen wurden an 96 Zirkonen der Probe Lesotho (902) durchgeführt. 36 Zirkone ergaben konkordante Alter mit einer zulässigen Toleranz von ± 15 %. Die Hauptgruppe bilden meso- (12 Körner) und spät neoproterozoische (15 Körner) Zirkone mit U-Pb Altern von 1.0-1.5 Ga bzw. 0.54-0.7 Ga. Die nächste Gruppe umfasst 6 ordovizisch-kambrische Zirkone mit 0.47 bis 0.53 Ga. Eine Besonderheit sind drei Körner, von denen zwei ein oberkarbonisches (310 Ma) und ein Zirkon ein triassisches (228 Ma) U-Pb Alter aufweisen (Abb. 23).

Abbildung 23.: Tera-Wasserburg U-Pb –Diagramm der konkordanten Zirkone der Probe Lesotho (902).

6.4 Lokalität Kheis 903

Die Zirkone der Probe Kheis (903) zeichnen sich hinsichtlich ihrer Morphologie und internen Wachstumstextur durch ein sehr einheitliches Bild aus. Die durchsichtigen bis schwach milchigen Körner sind zu 85 % kurzprismatisch, dabei stark gerundet, teils birnenförmig oder kommen als Bruchstücke größerer Kristalle vor. Nur 15 % der Zirkone weisen eine langprismatische Form auf. Die Internstruktur der Zirkone ist geprägt von einer Sektorzonierung und Rekristallisationsgefügen ohne deutliche Zonierung (Abb. 24). Der hohe Abrasionsgrad der Körner deutet entweder auf einen langen Transportweg oder auf ein hochernegetisches Milieu während des Transportes.

Abbildung 24.: BSE- und KL-Bilder stark gerundeter, kurzprismatischer Zirkone der Probe Kheis (903). Gelbe Kreise = Laserspots, Nummer des Spots.

6.4.1 U-Pb Daten

Die U-Pb Datierung erfolgte an 193 Zirkonen der Probe Kheis (903), von denen 148 Körner konkordante Altersdaten bei einer zulässigen Toleranz von \pm 15 % lieferten. Die Probe Kheis (903) beinhaltet vier konkordante Hauptaltersgruppen. Die zwei Dominantesten sind eine Gruppe von 25 Zirkonen mit kambrischen U-Pb Altern von 488 bis 538 Ma und eine zweite Gruppe von 101 Körnern mit neo- bis spät mesoproterozoischen Altern um 541 bis 1054 Ma. Die nächste Gruppe stellen 12 paläoproterozoische Zirkone mit U-Pb Altern von 2027 bis 2167 Ma. Darauf folgt eine Ansammlung von fünf archaischen Zirkonen, von denen zwei leicht diskordante U-Pb Alter um 2.55 und 2.75 Ga besitzen, sowie drei konkordante mesoarchaische Körner mit U-Pb Alter einmal um 2.95 und zweimal um 3.25 Ga (Abb. 25).

Abbildung 25.: U-Pb Konkordia-Diagramm aller konkordanten Zirkone der Probe Kheis (903).

6.4.2 Hf Isotopie

Die Lu-Hf Analyse der 58 analysierten konkordanten Zirkone zeigt eine ausgeprägte Variation der ¹⁷⁶Hf/¹⁷⁷Hf_{ini} Verhältnisse von 0.2808 bis 0.2826 mit entsprechenden ɛHf_(t) Werten von -39 bis +9 an (Abb. 26 und 27). Zirkone mit U-Pb Altern von 0.5 bis 0.6 Ga weisen eine Häufung gleicher ¹⁷⁶Hf/¹⁷⁷Hf_{ini} Werte um 0.2824, also eine Streuung um CHUR mit EHf Werten von -4 bis +4. Die Schmelzen aus denen die Zirkone kristallisierten, wurden somit vermutlich durch Recyceln von Kruste mit mesoproterozoischer Krustenverweildauer gebildet. Des Weiteren zeigen drei neoproterozoische Zirkone (Nr. 18, 56 und 25) die am wenigste radiogene Zusammensetzung mit EHf(t) Werten von -21.4, -27.6 und -38.5. Die Hf_{TDM} Alter von 2.6 Ga, 2.9 Ga und 3.5 Ga deuten auf ein Recyceln von sehr alter, archaischer Kruste hin. Die nächste Gruppe umfasst drei mittel- neoproterozoischen Zirkone (653 bis 717 Ma) mit hohen radiogenen ¹⁷⁶Hf/¹⁷⁷Hf_{ini} Werten um 0.285 bis 0.286, respektive positiven ϵ Hf_(t) von +3.3 bis +9.2. Ebenso weisen drei mesoproterozoische Zirkone mit U-Pb Alter um 1023 bis 1077 Ma positive ε Hf_(t) Werte von +3.6 bis +9.2 auf, die auf eine juvenile Krustenkomponente mit mesoproterozoischen Hf_{TDM} bzw. eine Beteiligung von Schmelzen aus dem verarmten Mantel hindeutet. Die paläoproterozoische Zirkongruppe (2047 bis 2167 Ma) zeigt dagegen negative EHf Werte von -3.9 bis -11.1, welche auf ein Krustenmaterial mit im Mittel paläoproterozoischer Krustenverweildauer hindeutet. Die letzte Gruppe umfasst neo- und mesoarchaische Zirkone mit wechselnden ¹⁷⁶Hf/¹⁷⁷Hf Verhältnisse von 0.2808 bis 0.2810, respektive einem ε Hf von -12.1 bis +3.

Abbildung 26.: ¹⁷⁶Hf/¹⁷⁷Hf_{ini} der analysierten Zirkone der Probe Kheis (903) gegen das Kristallisationsalter dargestellt.

Abbildung 27.: EHf gegen U-Pb Alter der Probe Kheis (903).

6.4.3 Spuren- und Seltenen Erdelemente

Die analysierten 30 Zirkone der Probe Kheis (903) zeigen bis auf 6 Analysen das charakteristische SEE Muster krustaler Zirkone mit einem steilem Anstieg von den leichten zu den schweren SEE mit einer positiven Cer- und einer negativen Europium Anomalie. Die meisten Zirkone haben eine Häufigkeit der leichten SEE (La-Pr) von weniger 10¹x chondritisch und die schweren SEE bewegen sich bei 10³x chondritisch (Abb. 28). Die (Sm/La)_N Verhältnissen variieren von 22 bis 1285. Die Zirkone K7 und K81 sind in den schweren SEE verarmt, welches für eine Kristallisation der Zirkone bei gleichzeitigem subsolidus Wachstum von Granat hindeutet (Rubatto 2002). Eine Gruppe mit 4 Zirkonen weist eine sehr hohe Anreicherung der leichten und der schweren SEE auf, die schon bei den Probenlokationen Orange River Mouth (900) und Parys (901) in viel deutlicherem Ausmaß beschrieben worden sind. Gleichzeitig sind auch die Hauptelemente P, Ca und Fe deutlich erhöht im Vergleich zu den anderen Zirkonen, welches für alterierte Zirkone spricht (siehe Tabelle 21). Die mittleren Ce/Ce* von 20.9 bzw. Eu/Eu* von 0.2 entsprechen dem typischen krustalen Muster (Hoskin & Schaltegger 2003). Die Y-Gehalte der Zirkone bewegen sich zwischen 3152 und sehr niedrigen 42 ppm. Der Hf-Gehalt bewegt sich für alle Proben zwischen 1.0 und 2.2 Gew.-%. Das mittlere Th/U Verhältnis aller Zirkone beträgt 0.7.

Abbildung 28.: SEE-Muster von Zirkonen der Probe Kheis (903) normalisiert auf Chondrite Häufigkeit nach (McDonough & Sun 1995).

6.5 Lokalität Augrabie Falls 904

Die externe Morphologie der Zirkone der Lokalität Augrabie Falls (904) ist zu 80 % von langprismatischen, fast euhedralen Kristallen geprägt. Die Größe der Kristalle erstreckt sich von 150 bis 400 µm. Die Eigenfarbe der Körner ist dominiert von braunen bis gelbbraunen Farbtönen. Der verbleibende Anteil von 20 % machen gedrungene, kurzprismatische Formen mit einer Größe von bis zu 300 µm aus. Diese Kristalle sind durchsichtig oder weisen eine milchige äußere Erscheinung auf. Der hohe Anteil euhedraler Kristalle verwundert in dieser Probenlokation, wenn man die Beprobung des Schwermineralpräparates aus so genannten potholes (Strudellöchern) betrachtet, die wahrscheinlich aufgrund stark abradierender Steine oder groben Sediments bei hohen Fließgeschwindigkeiten entstanden sind. Der Anteil gerundeter Zirkone ist sehr gering. In den Rückgestreuten-Elektronenaufnahmen (BSE) lassen sich in den Zirkonen radial und konzentrische sowie von unregelmäßigen Punkten aus propagierende Riss- und Bruchstrukturen erkennen. Die Kathodolumineszenzbilder zeigen in den langprismatischen Zirkonen eine uneinheitliche (pattchy) bzw. konvolute Zonierung mit lokalen Rekristallisationsgefügen (Abb. 29). Eine oszillatorische Wachstumszonierung ist nur teilweise in den Körner noch erhalten. In vierzehn Zirkonen treten dunkel lumineszierende Kernbereiche auf, die auf einen hohen Urananteil hinweisen. Die gerundeten, kurzprismatischen Körner besitzen überwiegend einen homogen strukturierten und einen Sektor zonierten Internaufbau (Abb. 29).

Abbildung 29.: BSE- und KL-Bilder langprismatischer Zirkone (1, 2) und gerundeter, kurzprismatischer Zirkone (3, 4) der Probe Augrabie Falls (904). Gelbe Kreise = Laserspots, Nummer des Spots.

6.5.1 U-Pb Daten

Es wurden 81 Zirkone der Probe Augrabie Falls (904) analysiert, von denen 52 Körner konkordante U-Pb Daten mit einer zulässigen Toleranz von ±15 % erzielten. Die Hauptaltersgruppe umfasst mit 62 % mesoproterozoische Zirkone mit Altern um 1020 bis 1314 Ma. Die nächste Gruppe bilden kambrisch-neoproterozoische Körner mit U-Pb Altern von 535 bis 675 Ma. Zwei Zirkone fallen bei 2042 und 2142 Ma auf die Konkordia (Abb. 30). Eine Serie diskordanter Analysen breitet sich entlang einer schlecht definierbaren Diskordia von etwa 1166 Ma gegen den Nullpunkt aus, welches auf einen episodischen Bleiverlust schließen lässt.

Abbildung 30.: U-Pb Konkordia Diagramm aller Zirkone der Probe Augrabie Falls (904).

6.6 Lokalität Bosluis se Pan (905)

Die Zirkone der Probe Bosluis se Pan (905) weisen zwei gut zu unterscheidende Zirkontypen hinsichtlich ihrer internen Zonierung auf. Die erste Gruppe umfasst etwa 45 langprismatische Kristalle mit einer Größe in der Längsachse von 300 bis 400 µm (Abb. 31). Sie besitzen zum Teil gut gerundete Kristallkanten. In den Rückgestreuten-Elektronenaufnahmen (BSE) zeigen die langprismatischen Zirkone durchwegs auffällige Bruchmuster, die teils radial oder konzentrisch um eine Zone angeordnet sind oder um Brüche, die von mehreren Einzelbereichen ausgehen. Überwiegend durchziehen die Brüche das ganze Korn. All diese Zirkone weisen eine typische regelmäßige Internzonierung auf, mit einzelnen Unterbrechungen, in denen die ursprüngliche Zonierung resorbiert ist und eine Anlagerung neuerer Wachstumszonierungen stattgefunden hat. Die zweite Gruppe umfasst 63 meist kurzprismatische, gedrungene Zirkone mit einer Größe von 300 bis 350 µm (Abb. 32). Hierbei handelt es sich teilweise um Bruchstücke größerer Zirkone. Morphologisch weisen sie eine starke Abrundung auf. Des Weiteren zeichnen sie sich durch eine ausgeprägte interne Sektorzonierung aus.

Abbildung 31.: BSE- und KL-Bilder langprismatischer Zirkone mit Rissstrukturen der Probe Bosluis se Pan (905); gelbe Kreise = Laserspots, Nummer des Spots bzw. des Zirkons.

Abbildung 32.: BSE- und KL-Bilder gedrungener und kurzprismatischer Zirkone mit Sektorzonierung der Probe Bosluis se Pan (905).

6.6.1 U-Pb Daten

Es wurden 108 Zirkone der Probe Bosluis se Pan (905) analysiert, wobei 65 Zirkone konkordante U-Pb Alter aufweisen mit einer zulässigen Toleranz der Konkordanz von ±15 %. Die konkordanten Zirkone zeigen zwei Hauptaltersgruppen von mesoproterozoischen Zirkonen mit U-Pb Altern um 1.1 Ga und 1.2 Ga. Vier Zirkone weisen archaische Alter um 2.7, 2.8 und 3.1 Ga auf, wohingegen die beiden letzt genannten Daten nur ²⁰⁷Pb/²⁰⁶Pb Alter präsentieren (Abb. 33). Sie weisen eine starke Diskordanz (nur 9 % Konkordanz) auf, welches auf einen rezenten Bleiverlust zurückzuführen ist. Das konkordante Alter von 2.7 Ga wurde an zwei Stellen im Kern und am Rand des Zirkons 69 analysiert. Jeweils ein Zirkon (Nr. 67 und 76) erbrachte ein neoproterozoisches (572 Ma) und ein ordovizisch-kambrisches (491 Ma) U-Pb Alter (Tabelle 6). Auffällig ist die große Anzahl und Aneinanderreihung diskordanter Zirkone zwischen 1000 Ma und 200 Ma. Die Ursache der Diskordanz ist wahrscheinlich die Metamiktisierung des Kristallgitters der Zirkone (Nr. 3, 4, 6, 7, 10, 11, 12, 16, 17, 22, 23, 25, 27, 35, 58, 62, 64, 64) aufgrund der hohen Urangehalte von 736 bis zu 2880 ppm (siehe Tabelle 6). Die unterschiedliche Internzonierung wie oszillatorische und Sektorzonierung hat keinen Einfluss auf die U-Pb Altersverteilung bzw. die Diskordanz der Zirkone. Die wechselnde Modifikation der Zirkone wird von einigen Autoren wie Corfu et al. 1994, Ashwal et al. 1999 und Kelly & Harley 2005 (in Harley et al. 2007 beschrieben) durch frühe und späte Hochtemperaturreaktionen, Deformation und/oder Fluidzufluss erklärt. Diese Phänomene können für eine starke Streuung der scheinbaren U-Pb Alter von mehreren Hundertermillionen Jahren verantwortlich sein.

Abbildung 33.: U-Pb Konkordia-Diagramm Bosluis se Pan mit Ausschnittsvergrößerung der Konkordia zwischen 200 und 1400 Ma.

6.7 Lokalität South Africa–Nambia border (906)

Die Zirkone der Lokalität South Africa–Nambia border (906) sind mehrheitlich langprismatische Körner mit einer Größe von 300 bis 350 µm. Nur vier von 24 Körnern weisen eine gedrungene Form auf. Dreizehn Zirkone zeigen in den Rückstreu-Elektronenbildern (BSE), dass sie radial von Riss- bzw. Bruchstrukturen durchsetzt sind. Die Interntextur der Zirkone lässt sich in den KL-Bildern deutlich erkennen. Sie ist geprägt von einer oszillatorischen Zonierung mit dunkel lumineszierenden Kernzonen mit hohen Urangehalten von bis zu 1948 ppm (siehe Abb. 34 und Tabelle 7).

Abbildung 34.: BSE- und KL-Bilder langprismatischer Zirkone mit Rissstrukturen der Probe South Africa-Namibia border (906); gelbe Kreise = Laserspots, Nummer des Spots bzw. des Zirkons.

6.7.1 U-Pb Daten

Alle 24 Zirkone wurden analysiert, wovon genau die Hälfte der Zirkone konkordante U-Pb Alter ergaben bei einer zulässigen Toleranz von ± 15 %. Dies Analysen definieren ein einheitliches mesoproterozoisches Altersspektrum von 1182 \pm 40 Ma (Abb. 35). Nur die Zirkone 5 und 8 haben abweichende U-Pb Alter von 1.8 Ga (Paläoproterozoikum) und 0.7 Ga (Neoproterozoikum). Die Analysen an den restlichen 12 Zirkonen sind deutlich diskordant. Eine Ursache für den Bleiverlust dieser Zirkone scheint der hohe Urangehalt zu sein und damit eine einsetzende Metamiktisierung. Die diskordanten Zirkone auf (siehe Tabelle 207 Pb/ 206 Pb Alter um 0.9, 1.1, 1.2 und 1.5 Ga wie die konkordanten Zirkone auf (siehe Tabelle 7).

Abbildung 35.: U-Pb Konkordia-Diagramm South Afrika-Namibia border (906).

6.8 Lokalität Kleinzee (908)

Das Verhältnis von lang- zu kurzprismatischen Zirkon-Formen in der Lokalität Kleinzee (908) beträgt 55 zu 45 % bei 111 analysierten Kristallen. Vereinzelt sind diese Zirkone gebrochen und nur noch als Teilstücke eines größeren Korns übrig geblieben. Die Größe der Körner variiert von etwa 250 bis 400 µm. Die Internstruktur der Zirkone wird zu 80 % von einer komplexen, oszillatorischen Wachstumszonierung mit lokaler Resorption geprägt. Geringfügig tritt Sektorzonierung und eine ungleichmäßige Zonierung auf (Abb. 36).

Abbildung 36.: BSE- und KL-Bilder lang- und kurzprismatischer Zirkone mit oszillatorischer Wachstumszonierung der Probe Kleinzee (908); gelbe Kreise = Lage und Größe der Laserspots; Zahl = Analysenummer.

6.8.1 U-Pb Daten

Von den 111 analysierten Zirkonen der Probe Kleinsee (908) ergaben 82 Körner konkordante U-Pb Daten mit einer zulässigen Toleranz von ±15 %. Charakteristisch für diese Probe ist das ausgeprägte Altersmaxima (80 % aller konkordanten Zirkone) früh neoproterozoischer U-Pb Alter um 850 Ma. Des Weiteren kommen mesoproterozoische Zirkone um 1.0, 1.1 und 1.2 Ga vor. Sieben Zirkone weisen paläoproterozoische ²⁰⁷Pb/²⁰⁶Pb Zirkonalter um 1.6 bis 2.3 Ga, wobei nur ein Zirkon ein konkordantes U-Pb Alter um 1.8 Ga hat (Abb. 37). Diese Altersdaten lassen sich exzellent den verschiedenen geologischen Ereignissen des regionalen Umfeldes der Probenlokation im Gariep Belt zuordnen. Die jüngeren neoproterozoischen Zirkonaltersdaten entsprechen den Altern der Intrusivgesteine der Richtersveld Suite von 801 bis 833 Ma (Allsopp 1979) und dem Lekkersing Granite um 771 Ma (Frimmel et al. 2001). Zirkone mit mesoproterozoischen Alter (1.0-1.2 Ga) stammen vermutlich von hochgradigen Gneisen und felsischen Intrusionen des Bushmanland Terrane ab (Robb et al. 1999). Paläoproterozoische Ereignisse (1.8 Ga) sind vom Basement der Richtersveld Subprovince, dem niedrig-gradigen metamorphisierten und tektonisierten Granitoiden der Vioolsdrif Suite (Reid 1982) und dem metavulkanischen Gesteinen der Orange River Group (Reid 1997) bekannt.

Abbildung 37.: U-Pb Konkordia-Diagramm Kleinsee mit Auschnittsvergrößerung der Konkordia zwischen 700 und 1300 Ma.

6.9 Lokalität KV156T (909)

In der Probe KV156T (909) überwiegen die kurzprismatischen gegenüber den langprismatischen Zirkon-Formen mit 72 zu 28 %. Sie weisen eine ausgeprägte äußerliche Abrundung auf. Die Internstruktur der Zirkone ist gekennzeichnet durch eine Sektorzonierung vor allem in sehr abgerundeten, kugeligen Körnern (Nr. 6, 7 und 12, siehe Anhang), aber auch in den kurz- und langprismatischen Formen (Nr., 5, 17, 18). In drei langprismatischen Zirkonen (Nr. 19, 22, 30) ist in den KL-Bilder eine oszillatorische Zonierung deutlich sichtbar, die teilweise resorbiert und/oder durch Rekristallisation wieder aufgelöst wird (Abb. 38).

Abbildung 38.: BSE- und KL-Bilder lang- und kurzprismatischer Zirkone mit Sektor- und oszillatorischer Wachstumszonierung der Probe KV156T (909); gelbe Kreise = Lage und Größe der Laserspots; Zahl = Analysenummer.

6.9.1 U-Pb Daten

In der Probe KV156T (909) wurden 43 Zirkone analysiert, von denen 27 Zirkone (63 %) konkordante U-Pb Alter bei einer zulässigen Toleranz von 15 % ergaben (Abb. 39). Der mittlere Durchschnittswert der konkordanten Zirkone liegt bei 1050 Ma. Ein weiteres Cluster ergeben 6 Zirkonen mit neoproterozoischem Alter um 900 Ma. Das untere Ende des Altersspektrums definieren zwei Zirkone mit U-Pb Altern von 731 Ma und 621 Ma. Die höchsten Alter haben sechs mesoproterozoische Zirkone mit 1209 bis 1358 Ma. Das Th/U Verhältnis der Zirkone variiert von 0.3 bis 2.5 (Tabelle 9). Die höheren Verhältnisse sind eventuell auf Rekristallisation bzw. erneutes Wachstums der früheren oszillatorischen magmatischen Zonierung der Zirkone zurückzuführen (Möller 2003).

Abbildung 39.: U-Pb Konkordia-Diagramm KV156T (909).

6.10 Lokalität Christiana (913)

In der Probe Christiana (913) dominieren stark abgerundete, kugelige, teils kurzprismatische Zirkonformen mit einem Anteil von 67 % und Größen von 200 bis 350 μ m. Oft sind die Zirkone nur noch als Bruchstücke vorhanden, die keine eindeutige morphologische Zuordnung nicht mehr durchführen lässt. Die Internstrukturen der sehr abgerundeten, kugeligen Zirkone zeigen durchweg Sektorzonierung. In den Zirkonbruchstücken wechseln sich die Sektor- und oszillatorische Zonierung ab, wohingegen in den 12 langprismatischen Zirkonen (300 μ m) ausschließlich eine oszillatorische Wachstumszonierung auftritt (Abb. 40).

Abbildung 40.: KL-Bilder eines langprismatischen und zweier gerundeter Zirkone der Probe Christiana (913); gelbe Kreise = Lage und Größe der Laserspots; Zahl = Analysenummer.

6.10.1 U-Pb Daten

Es wurden 36 Zirkone der Probe Christiana (913) analysiert, von denen 16 Körner konkordante U-Pb Alter bei einer zulässigen Toleranz von ± 15 % erbrachten. Die Hauptaltersgruppe dieser Probe bilden neoproterozoische Zirkone von 540 Ma bis 700 Ma mit einem deutlichen Maximum bei 645 Ma (siehe Abb. 41 und Tabelle 10). Vier Zirkone (3 davon diskordant) ergeben neo- bis mesoproterozoische U-Pb Alter um 940 bis 1060 Ma. Die Analysen dieser Probe weisen relativ hohe Fehler insbesondere der 207 Pb/ 235 U und 207 Pb/ 206 Pb Verhältnisse von durchschnittlich 5 bis 6 % auf. Dies ist auf das recht niedrige 207 Pb Signal während der Messung zurückzuführen.

Abbildung 41.: U-Pb Konkordia Diagramm der Probe Christiana (913).

6.11 Lokalität Orange River sand bar (914)

Die Zirkone der Probe Orange River sand bar (914) weisen hinsichtlich ihrer äußeren Morphologie ein ausgeglichenes Verhältnis der lang- zu kurzprismatischen Formen von 50:50 auf. Die Größe variiert von 200 bis 350 µm bei den langprismatischen Kristallen und erreicht bei den kurzprismatischen maximal 200 µm in der Längsachse. Alle Zirkone zeigen eine Abrundung der äußeren Kanten, die bis zur vollständigen kugeligen Rundung der kurzprismatischen Zirkone führt. Die Internstrukturen der Zirkone sind gekennzeichnet einerseits durch eine regelmäßige oszillatorische, Wachstumszonierung mit einzelnen, lokal begrenzten Resorptionen und einer flächigen Sektorzonierung in den kurzprismatischen Körnern (siehe Abb. 42).

Abbildung 42.: BSE- und KL-Bilder von langprismatischen und gerundeten kurzprismatischen Zirkonen der Probe Orange River sand bar (914); gelbe Kreise = Lage und Größe der Laserspots; Zahl = Analysenummer.

6.11.1 U-Pb Daten

In der Probe Orange River sand bar (914) wurden 94 Zirkone analysiert, von denen 50 Zirkone (53 %) konkordante U-Pb Alter bei einer zulässigen Toleranz von 15 % lieferten. Das erste Maximum bilden 30 Zirkone mit einer Altersspanne von 480 bis 650 Ma. Das zweite Maximum umfasst neo- bis mesoproterozoische Zirkone um 830 bis 1200 Ma. Des Weiteren sind noch je zwei konkordante paläoproterozoische und neoarchaische Zirkone mit Altern von 1.71 und 2.22 Ga sowie 2.55 und 2.73 Ga zu nennen. Sechs Zirkone bilden eine Gruppe sehr junger diskordanter U-Pb Analysen zwischen 290 und 400 Ma und eine konkordante Analyse mit einem Alter von 239 Ma ist der jüngste Zirkon dieser Probe (Abb. 43).

Abbildung 43.: Tera-Wasserburg Diagramm aller Zirkone der Probe Orange River sand bar (914).

6.11.2 Hf Isotopie

Die ${}^{176}\text{Hf}/{}^{177}\text{Hf}_{ini}$ Werte der 50 Lu-Hf Zirkonanalysen dieser Probe variieren von 0.28134 bis 0.28262, die einem EHf_(t) von -21.7 bis +14.5 entsprechen (Abb. 44 und 45). Zirkone mit U-Pb Altern von 0.5 bis 1.3 Ga zeigen eine Häufung gleicher ¹⁷⁶Hf/¹⁷⁷Hf_{ini} Werte um 0.28225. Im Diagramm EHf versus Alter zeigt sich dies in einer positiven Korrelation zwischen Alter und EHf, was bei einem Alter von 1.3 Ga EHf Werten um +14.5 entspricht. Solche Werte sind typisch für Magmen aus dem verarmten Mantel (Patchett et al. 1981). Die Hf Isotopie der mesoproterozoischen Zirkone weist daher auf einen großen Anteil juveniler Mantelschmelzen hin, während der Genese der Schmelzen aus dem die Zirkone kristallisierten. Der generelle Trend mit abnehmenden EHf über die Zeit lässt sich mit einem Recycling der juvenilen mesoproterozoischen Kruste erklären. Einige positivere aber auch negativere EHf Werte in den kambrischen bis neoproterozoischen Zirkonen deutet auf die Beteiligung juveniler neoproterozoischer Mantelschmelzen wie auch auf die Aufschmelzung älterer meso- und paläoproterozoischer Krustenanteile. Überdies zeigen zwei Zirkone mit U-Pb Altern um 0.5 und 1.7 Ga stark negative EHf Werte um -21.7 und -12.5, welches einem Hf_{TDM} (Krustenverweilalter) von 2.5 und 3.0 Ga, also dem Recyceln von der im Archaikum gebildeten Kruste hindeutet.

Abbildung 44.: ¹⁷⁶Hf/¹⁷⁷Hf_{ini} der analysierten Zirkone der Probe Orange River sand bar (914) gegen das Kristallisationsalter dargestellt.

Abbildung 45.: EHf gegen U-Pb Alter der Probe Orange River sandbar (914).

6.11.3 Spuren- und Seltenen Erdelemente

Die Zirkone der Lokalität Orange River sand bar (914) haben wie die Mehrzahl der analysierten Zirkone aus den anderen Proben das typische SEE-Muster terrestrischer Zirkone. Die Gehalte steigen von den leichten zu den schweren SEE stark an mit einer ausgeprägten positiven Cer und negativen Europium Anomalie unabhängig vom jeweiligen U-Pb Alter. Sieben Zirkone haben entweder keine oder nur schwach ausgeprägte Cer Anomalie bei erhöhtem LSEE (Abb. 46 und Tabelle 22). Die (Sm/La)_N Verhältnisse von 24 Zirkonen der Probe streuen von 36-1207. Allerdings besitzen 35 Zirkone (Sm/La)_N Werte von < 30 und tendieren nahezu gegen 0. Die Proben verzeichnen eine durchschnittliche Ce/Ce* von 12 bzw. Eu/Eu* von 0.2. Die Y-Gehalte der Zirkone bewegen sich zwischen 3829 und 379 ppm. Die Spurenelemente wie P, Ca, und Fe haben eine mittlere Häufigkeit von 999, 825 und 353 ppm. Allerdings weist der Zirkon A26 einen überdurchschnittlichen Gehalt an Ca von > 21000 ppm auf und der Zirkon A 60 besitzt einen sehr hohen Gehalt an P (12000 ppm). Der Hf-Gehalt bewegt sich für alle Zirkone zwischen 0.9 und 1.6 Gew.-%. Das mittlere Th/U Verhältnis beträgt 0.8.

Abbildung 46.: SEE-Muster von Zirkonen der Probe Orange River Sandbar (914) normalisiert auf Chondrite Häufigkeit nach (McDonough & Sun 1995).

6.12 Lokalität Riet River (915)

Die Probe Riet River zeichnet sich durch einen hohen Anteil (90 %) von 300 µm großen, gut gerundeten, teilweise bruchstückartigen Zirkonen aus (Abb. 47). Dies lässt auf einen weiten Transportweg oder ein äußerst turbulentes hochernergetischen Milieu während des Transportes schließen. Vier Zirkone haben eine langprismatische Form bei ähnlicher Größe. Intern zeigen die gerundeten Zirkone durchwegs Sektorzonierung, teilweise kann zwischen Sektor- und oszillatorischer Zonierung nicht unterschieden werden. Die wenigen langprismatischen Zirkone lassen eine schwache Zonierung erahnen.

Abbildung 47.: BSE- und KL-Bilder gerundeter Zirkone und eines langprismatischen Korns der Probe Riet River (915); gelbe Kreise = Lage der Laserspots; Zahl = Analysenummer.

6.12.1 U-Pb Daten

In der Probe Riet River wurden 40 Zirkone analysiert, von denen 33 konkordante U-Pb Alter bei einer zulässigen Toleranz von ± 15 % ergeben haben. 23 Zirkone weisen eine ähnliche Häufung der U-Pb Daten wie bei der Probe Christiana (913) mit frühkambrischen bis spät neoproterozoischen Altern um 530 – 690 Ma auf. Ebenso verhält es sich mit sieben Zirkonen, die mit Altern von 800, 900, 1000 und 1100 Ma früh neo- bis mesoproterozoische Ereignisse andeuten. Auffällige U-Pb Daten finden sich am oberen wie auch am unteren Ende der Konkordia. Ein 150 µm großer, langprismatischer Zirkon (Nr. 35) zeigt ein archaisches U-Pb Alter von 3.25 Ga. Zwei gerundete Zirkone (Nr. 21 und 32), einer mit gerade noch tolerierbarer Konkordanz von 86 % und einem stärker diskordanten Zirkon (67 % Konkordanz) zeigen frühpermische U-Pb Alter um 275 Ma an (Abb. 48).

Abbildung 48.: U-Pb Konkordia der Probe Riet River (915) mit Ausschnittsvergrößerung für einen archaischen Zirkon.

6.13 Lokalität Taung (916)

Die Zirkone der Probe Taung 916 umfassen mit mehr als 90 % ausschließlich langprismatische Kristallformen mit einer Größe von 200 bis 350 µm. Die restlichen Formen machen kurzprismatische Zirkone und Bruchstücke aus. Die Form variiert zwischen gut gerundeten, halb gerundeten und subeuhedralen Körnern. Äußerlich haben die Zirkone eine braune Eigenfarbe. Die Internstrukturen der Zirkone zeigen in den KL-Bildern durchwegs eine feinstrukturierte, oszillatorische Wachstumszonierung. Nur zwei Körner weisen eine Sektorzonierung auf. In zehn Zirkonen erkennt man eine Unterbrechung der Wachstumsbänder, was als Auflösung und Neuwachstum interpretiert wird (Corfu et al. 2003 und Harley et al. 2007). In dreizehn Zirkonen sind ältere Kerne enthalten, die sich durch eine tief-schwarze Lumineszenz gegenüber den helleren Bereichen in den KL-Bildern abheben (siehe Abb. 49).

Abbildung 49.: BSE- und KL-Bilder archaischer Zirkone der Probe Taung (916); gelbe Kreise = Lage der Laserspots; Zahl = Analysenummer.

6.13.1 U-Pb Daten

Von der Probe Taung (916) wurden 107 Einzelkörner analysiert, von denen 68 konkordante Alter bei einer zulässigen Toleranz von ± 15 % ergaben. Die Hauptaltersgruppe der Probe stellen meso- und paleoarchaische Zirkone mit konkordanten U-Pb Altern um 2.85 und 2.91 Ga dar. Jeweils zwei Zirkone liefern Werte um 3.1 Ga bzw. 3.2 Ga (Abb. 50). Ausgehend von den erwähnten archaischen Altersdaten liegen zahlreiche Zirkone auf Diskordia-Linien, die rezenten sowie möglicherweise spät-paläozoischen Bleiverlust der Zirkone anzeigen. Die höchsten U-Pb Verhältnisse verzeichnen die Zirkone Nr. 107 und 36 mit entsprechenden Alterswerten von 3.33 und 3.47 Ga (Abb. 51). Fünf Zirkone zeigen neo- bis mesoproterozoische U-Pb Alter um 1050 Ma, wohingegen ein Korn mit einem konkordanten U-Pb Alter von 250 Ma heraus sticht (siehe Tabelle 13).

Abbildung 50.: U-Pb Konkordia Diagramm aller Zirkone der Probe Taung (916).

Abbildung 51.: U-Pb Konkordia-Diagramm der archaischen Zirkone der Probe Taung (916).

6.13.2 Hf Isotopie

Die Lu-Hf Analysen der 81 bearbeiteten Zirkone zeigen besonders für die archaischen Körner einheitliche ¹⁷⁶Hf/¹⁷⁷Hf_{ini} Werte um 0.28076 bis 0.28101, welche einem ϵ Hf_(t) von -0.2 bis +0.1 entsprechen (Abb. 52 und 53). Nur der früh-paläoarchaische Zirkon Nr. 36 weist ein niedrigeres ¹⁷⁶Hf/¹⁷⁷Hf_{ini} von 0.28041 und einem ϵ Hf von -5.1 (Tabelle 18). Die Zirkone Nr. 68 und 8 mit einem permischen (250 Ma) und einem neoproterozoischen (1050 Ma) Kristallisationsalter weisen hohe ¹⁷⁶Hf/¹⁷⁷Hf_{ini} Verhältnisse von 0.28252 und 0.28226, respektive ϵ Hf Werte von -3.6 und +4.5, auf. Die ϵ Hf Werte der archaischen Zirkone mit Altern um 2.9 Ga und 3.1 Ga variieren jeweils von -2.1 bis +3.9 und von -0.4 bis +1.8. Gleichzeitig bildet sich ein Schwerpunkt von positiven ϵ Hf Werten um +1.2 bis +2.6 für die 2.9 Ga alten Zirkone. Dies lässt auf die Kombination von Prozessen wie dem Aufschmelzen "juvenilem" Mantelmaterials und auch älterer archaischer Kruste schließen. Die höheren positiven ϵ Hf Werte von +5 bis +7 zeigen vier 3.0 bis 3.3 Ga alte Zirkone, welche direkt aus einer verarmten Mantelschmelze kristallisierten. Der Zirkon Nr. 36 hat ein Hf_{TDM} Modellalter von 4.0 Ga, was auf eine sehr frühe Differenzierung von krustalem Material aus dem Mantel hinweist (Tabelle 18).

Abb. 52.: ¹⁷⁶Hf/¹⁷⁷Hf_{ini} der analysierten Zirkone der Probe Taung (916) gegen das Kristallisationsalter dargestellt.

Abbildung 53.: EHf Diagramm der analysierten Zirkone der Probe Taung (916) gegen das Kristallisationsalter dargestellt.

6.13.3 Spuren- und Seltenen Erdelemente

Die analysierten Zirkone der Probe Taung (916) zeigen zwei sehr unterschiedliche SEE-Muster. Eine Gruppe mit 21 Zirkonen weist eine sehr hohe Anreicherung der leichten und der schweren SEE auf, welche gemäß Hoskin & Schaltegger (2003) nicht den typischen SEE-Muster krustaler Zirkone entsprecht (Abb. 54). Die beschrieben Zirkone sind zudem auch mit den Spurenelementen P (\emptyset 7404 ppm), Ca (\emptyset 5100 ppm), Fe (\emptyset 13670 ppm) und Y (\emptyset 14790 ppm) hoch angereichert (siehe Tabelle 23). Zehn Zirkone besitzen (Sm/La)_N Verhältnisse von 46-677 auf, die dem typischen krustalen Muster entsprechen und auch eine positive Ce- und negative Eu Anomalie mit einem durchschnittlichen Ce/Ce* von 67.1 bzw. Eu/Eu* von 0.5 aufweisen. Die Y-Gehalte der Zirkone bewegen sich zwischen 4400 und 806 ppm. Die Spurenelemente wie P, Ca, und Fe sind deutlich niedriger und schwanken zwischen 1452-307 ppm für P, 447-60 ppm für Ca und 2016 -26 ppm für Fe. Der Hf-Gehalt bewegt sich für alle Zirkone zwischen 1.4 und 3.1 Gew.-% und ist nicht von der hohen Anreicherung anderer Elemente beeinflusst. Das mittlere Th/U Verhältnis beträgt 0.8.

Abbildung 54.: SEE-Muster von Zirkonen der Probe Taung (916) normalisiert auf Chondrite Häufigkeit nach (McDonough & Sun 1995).
7. Diskussion

7.1 Wachstums des Kontinents

7.1.1 Daten U-Pb Gesamtaltersverteilung

Die Zirkonalter der 13 Probenlokationen weisen insgesamt drei Maxima in ihrem Spektrum auf und zwar zwischen 0.5 bis 0.7 Ga, 1.0 bis 1.3 Ga, und 2.9 bis 3.2 Ga (Abb. 55). Diese widerspiegeln 3 der 4 tektonischen Hauptphasen der südafrikanischen Akkretionsgeschichte: 1.) die Panafrikanische Orogenese, 2.) den Namaqua-Natal Faltengürtel (Kibaran Orogenese), 3.) und die Kaapvaal-Kratonisierung. Die Kheis Orogenese um 1.7 bis 1.9 Ga ist in dieser Zusammenstellung unterrepräsentiert bzw. nur schwach mit weniger als 10 Zirkonanalysen in fünf Probenlokationen ausgeprägt. Eine weitere auffällige Phase zeigt sich um 820 Ma überwiegend in der Probenlokation Kleinsee 908 welche sich direkt auf die Richtersveld Suite mit ihren granitischen bis syenitischen Intrusionsgesteinen mit einem Alter von 833 Ma bis 771 Ma zurückführen lässt (Frimmel et al. 2001). In den Abbildungen 55 und 56 sind jeweils die ²⁰⁷Pb/²⁰⁶Pb Alter dargestellt, wobei in Abb. 55 die einzelnen Altersdaten der Probenlokationen aufaddiert und farblich gekennzeichnet worden sind.

Abbildung 55.: Altersverteilung aller Zirkonproben a) Orange River-Mündung 900 (hellblau);
b) Kleinsee 908 (rot); c) Border Namibia 906 (hellgrün); d) Bosluis se Pan 905 (gelb);
e) Augrabie Falls 904 (orange); f) Kheis 903 (blau); g) Sandbar bei Douglas 914 (rosa);
h) Riet-River 915 dunkelgrün; i) Christiana 913 (dunkelbraun); j) Taung 916 (türkis);
k) Parys 901 (grün); l) Lesotho 902 (violett); Y-Achse Anzahl der Zirkone.

Das Altersspektrum der Zirkone ist jedoch sehr differenziert in den einzelnen Probenlokalitäten (Abb. 56), d.h. die Herkunft der Zirkone ist überwiegend auf lokale Liefergebiete zurückzuführen. Der Anteil der archaischen Zirkone nimmt in Richtung zur westlichen Küste kontinuierlich ab und tendiert gegen Null. Neoproterozoische und kambrische Zirkone kommen in allen Lokalitäten (901, 902, 903, 914, 915, 913) auf dem > 2.7 Ga Kraton selbst vor. Diese "ungewöhnlich jungen" Alter für den archaischen bis paläoproterozoischen Kaapvaal Kraton stammen aus umgelagerten detritischen Zirkonen der Karoo-Supergroup, hier im speziellen aus den jüngsten Schichten der Ecca Group. Veevers & Saeed (2007) postulieren anhand detritischer Zirkone aus permischen Sandsteinen der Vryheid Formation (unterste Ecca Group) eine 1000 Ma (Kibaran-Grenville) Provenienz (provenance) aus dem zentralen Antarktischen Kraton, welcher von einem 700-500 Ma (Pan-Gondwanaland) Jahre alten Faltengürtel umgeben ist (vgl. Abb. 2 und Paläorekonstruktion Abb. 5). Ebenso beschreiben Rino et al. (2008) und Armstrong (nicht veröffentlichter Prise Report 2004) U-Pb Zirkonaltersdaten von der Orange River Mündung überwiegend mit einem kibarisch-grenvillschem Altersmaximum um 1.0-1.3 Ga und einem panafrikanischem Maximum um 0.5 bis 0.7 Ga. In der Literatur sind verschiedenste Liefergebiete zur Schüttung der Sedimente in das Karoo Becken und somit auch der detritischen Zirkone postuliert worden. Aus dem nördlichen Bereich sind die Cargonian Highlands (der Name leitet sich von Carboniferous und Gondwanian ab) von Visser (1987) beschrieben worden und die Southern Highlands, welche den Cape fold belt, das Falkland Plateau oder Patagonia (Argentinien) umfassen (McCarthy & Rubidge 2005, Nguema Mve 2005, Johnson et al. 2006). Eine weitere Quelle für die meso- und neoproterozoischen Zirkone ist der großmaßstäblich auftretende 1.09 Ga Intraplatten-Magmatismus (Umkondo Igneous Province) mit Dolerit und Gabbro Gängen auf dem Kalahari-Kraton (Kaapvaal- Zimbabwe Kraton) während der Entstehung des Rodinia Superkontinents, den Reimold et al. (2000) und Hanson et al. (2004 & 2006) beschrieben haben. Einige ungewöhnliche neoproterozoische und paleozoische U-Pb Alter sind von Zirkonen aus den Witwatersrand- und Ventersdorp-Supergroups (Armstrong et al. 1991) und aus dem Vredefort Dome (Flowers et al. 2003) erwähnt worden. Die Probe Lesotho (902) aus dem Caledon Flussbett weist einen konkordanten Zirkon mit einem U-Pb Alter um 228 Ma und fünf weitere diskordante Zirkone mit einem ²⁰⁷Pb/²⁰⁶Pb Alter um 250 Ma auf, welche aus den Karoo- Doleriten und Basalten stammen können. Weitere permische bzw. triassische Zirkone treten in den Proben 914, 916 und 915 mit jeweils einem Korn um 239 Ma, 250 Ma und 275 Ma auf. Gegen die Hypothese der Abstammung der Zirkone aus den Karoo-Doleriten und Basalten sprechen die Altersdatierungen von Encarcion et al. (1996); Elliot & Fleming (2000) und Riley et al. (2006). Sie ermittelten Zirkon U-Pb Alter um 195-180 Ma und sind somit zu jung. Permische Zirkone mit U-Pb Altern um 255-275 Ma sind von Fildani et al. (2008) in Vulkanaschen aus dem SW- Bereich des Karoo-Beckens aus der Ecca Group beschrieben worden. Armstrong (nicht veröffentlichter Prise Report 2004) analysierte mit der SHRIMP II und der SHRIMP RG Zirkone mit U-Pb Altern von 240-280 Ma aus tertiären Strandsanden an der Küste Namibias und Südafrikas. Diese Zirkone stammen wahrscheinlich aus felsischen Asche- und Tuffablagerungen ab. Es könnte sich bei den vorliegenden Proben auch um Zirkone aus den permischen und triassischen Vulkanaschen handeln. Das Einzugsgebiet der beiden Lokationen Kheis (903) und Sandbar bei Douglas (914) schließt Lesotho (902) aufgrund des Zuflusses des Caledon River in den Orange River

bei einem ausgeprägtem steilen Gefälle mit ein (vgl. Abb. 56). Mesoproterozoische und frühe neoproterozoische Zirkone dominieren in den Proben nach Westen folgend ab dem Kratonrand bis hin zur Küste (904, 905, 906, 908, 900). Diese Zirkone stammen aus dem dort anstehenden Bereich des Namaqua-Natal-Gürtels. Paläoproterozoische Zirkone kommen nur vereinzelt in den Proben 900, 903 und im geringem Umfang in den Proben 903 und 904 vor. Diese Zirkone können der Richtersveld Subprovince, dem Bushmanland Terran und dem Kheis-Magondi Belt zugerechnet werden (Cornell et al. 1998; McCourt et al. 2001; Robb et al. 1999; Thomas et al. 1994). Nur die Kraton-Proben 916 (Schüttung erfolgte aus dem Nordosten des Amalia-Kraaipan Terran) und 901 (Vredefort Dome - Impaktbecken mit aufgewölbter Unterkruste) weisen hohe Anteile an archaischen Zirkonen auf. Diese lassen sich gezielt den einzelnen lokalen geologischen Gegebenheiten zuordnen. Die genauere Beschreibung erfolgt im nächsten Unterkapitel. Das fast vollständige Verschwinden von archaischen Zirkonen auf dem Weg zur Küste kann bedeuten, dass die archaischen Zirkone im Vergleich zu den "jüngeren" Zirkonen anfälliger für Zerstörung und Verwitterung aufgrund höherer Urangehalte und einsetzender Metamiktisierung sind. Eine Ausnahme bilden die tertiären Flussbettablagerungen der Probe Bosluis se Pan (905), in der spätarchaische (2.6 Ga) Zirkone gehäufter auftauchen. Sie belegen einen zeitlichen und räumlichen Unterschied in der Altersverteilung hin zu den rezenten bis subrezenten Probenlokationen entlang des Orange River auf dem Weg zur Flussmündung mit keinen oder einer sehr geringen Anzahl archaischer Zirkone. Das Fehlen der archaischen Zirkone in den rezenten Sedimenten deutet daraufhin, dass die Abtragung des Kaapvaal Kratons vornehmlich im Neoarchaikum bzw. Paleoproterozoikum erfolgte. Und die nachfolgenden Sedimentabtragungen bzw. Umlagerungen im Gebiet des Kratons nur jüngere (< 1.6 Ga) geologische Ereignisse und vor allem Sedimente der Karoo Supergroup erfasste.

Abbildung 56.: Großtektonische Provinzen von Südafrika mit den einzelnen Probenlokationen und dem Orange- und Vaal River Flusssystem, modifiziert nach Hartnady et al. (1985).

Abb. 57: ²⁰⁷Pb/²⁰⁶Pb Alter der Zirkone gegen die Entfernung der Proben von der Küste zum Kaapvaal-Kraton. 90-110 % Konkordanz a) Orange River-Mündung 900 (n=85/224); b) Kleinsee 908 (n=73/80) ; c) KV156T 909 (n=20/43); d) Border SA-Namibia 906(n=9/24); e) Bosluis se Pan 905 (n=61/108); f) Augrabie Falls 904(n=41/85); g) Kheis 903 (n=124/193); h) Sandbar Douglas 914 (n=39/94); i) Riet-River 915 (n=29/41); j) Christiana 913 (n=13/36); k) Taung 916 (n=63/106); l) Lesotho 902 (n=28/89); m) Parys 901 (n=71/130).

7.1.2 Hf Isotopie- Gesamtansicht

In Abb. 58 sind die auf CHUR (Blichert-Toft & Albarede 1997) bezogenen EHf-Werte aller Zirkone ausgewählter Probenlokationen gegen ihr Kristallisationsalter (±15 % Konkordanz) aufgetragen. Als Referenz ist die Entwicklungslinie eines verarmten Erdmantels (DM = depleted mantle) eingetragen (Blichert-Toft & Albarède 1997). Positive EHf- Werte deuten auf die Entstehung juveniler Kruste, Werte darunter auf die Wiederaufarbeitung älteren Krustenmaterials oder Mischung juveniler Kruste mit aufgeschmolzenem älterem Krustenmaterial (z.B. stark negative EHf- Werte). Betrachtet man die Variationsbreite der εHf- Werte der 4 Altersgruppen, so findet man große Unterschiede. Die jüngste Zirkongruppe mit 500–700 Ma variiert im EHf von +10 bis –38 mit einer Häufung um 0, also der mittleren Zusammensetzung der Gesamterde. Die Häufung von EHf-Werte um +10 und -10 spricht eher für eine geringe Bildung juveniler Kruste. Die Projektion einer Krustenentwicklungslinie mit einem durchschnittlichem ¹⁷⁶Lu/¹⁷⁷Hf-Verhältnis von 0.0113 (Rudnick & Gao 2003) auf DM, deutet auf eine bereits existierende und aufgearbeitete meso- bis paläoproterozoische Kruste. Hierfür sprechen die höheren Hf_{TDM} Modellalter der Zirkone. Ein zusätzliches Indiz für die Wiederaufarbeitung der Kruste sind neoproterozoische Zirkonpopulationen (0.6 bis 1.0 Ga) der Probe Orange River Mouth 900 (Or 105, Or 116 und Or 159), die ererbte meso- bis paläoproterozoische Kerne aufweisen (1.1 bis 1.85 Ga) und somit auch auf eine bereits existierende frühere Kruste hindeutet (siehe Abb. 13). Die gleiche Projektion der oben beschriebenen Krustenentwicklungslinie auf die negativsten EHf- Werte der Zirkongruppe mit U-Pb Altern um 500-700 Ma angewendet, ergibt eine Wiederaufarbeitung von archaischer Kruste. Die zwischen +10 und -38 liegenden Werte könnten das Ergebnis von Mischungen der beiden Endglieder sein, wobei die Häufung der EHf-Werte um 0 ein Mischungsverhältnis von geschätzten 80:20 anzeigen würde. Die mesoproterozoische Kruste (1.0-1.4 Ga) besteht aus juvenilen Krustenanteilen mit positiven EHf Werten von über 0 bis +13 (zwei EHf Werte fallen auf die DM- Linie). Auffallend ist die insgesamt ausgeprägte Einheitlichkeit der EHf Werte der neo- und mesoproterozoischen Zirkone aus den verschiedenen Probenlokationen im Verhältnis zu ihrer weiten räumlichen Verteilung. Die paläoproterozoischen Zirkone haben ϵ Hf-Werte von +7 bis -12, aber hauptsächlich zeigen die meisten Analysen negative Werte. Der hauptverantwortliche Krustenbildungsprozess scheint die Wiederaufarbeitung archaischer Kruste zu sein. Die EHf-Werte der archaischen Zirkone variieren zwischen +7 bis -12 (Abb. 58). Auch sie stellen wie die neoproterozoischen Zirkone vermutlich Produkte von juveniler und wieder aufgearbeiteter Kruste dar. Unterscheidet man bei den archaischen Zirkonen noch zwischen den beiden untersuchten Probenlokalitäten und nimmt noch Literaturwerte für Baberton (Amelin et al. 2000) hinzu, so findet man, dass die EHf-Werte der Taung (916) und Barberton Zirkone fast alle zwischen +5 und -3 liegen und sich über Alter zwischen 2.8 und 3.6 Ga erstrecken, während die Proben von Parys zu negativeren Werten in Abhängigkeit vom Alter fallen (Abb. 58). Die Zirkone von Barberton und Taung stammen hauptsächlich aus granitoiden Gesteinen, die in relativ oberflächennahen Krustenbereichen intrudierten, während die Proben von Parys aus Gesteinen der mittleren bis unteren Kruste stammen (Aufwölbung des Vredefort Doms).

Die Vredefort Dome- Zirkone spiegeln anscheinend eine kontinuierliche Geschichte von ständiger Wiederaufarbeitung desselben Materials wieder, während man in Barberton und

Taung auf die Bildung juveniler Kruste, wie auch die Aufschmelzung und Mischung mit Material aus der unteren Kruste schließen kann. Anders als für jüngere Krustensegmente ist im Archaikum die Wiederaufarbeitung von Material prä-existierender und unterer Kruste ein dominierender Bestandteil des Krustenbildungsprozesses. Die EHf-Werte einiger Zirkone fallen hier z.T. sogar über die DM- Linie. Sollten sich solche Werte als signifikanter Anteil des Krustenmaterials durch weitere Messungen bestätigen würde dies bedeuten, dass im südlichen Afrika im Archaikum sehr große Mengen an Krustenmaterial entstanden und wieder zerstört wurden. Verschiedenste Modelle und Abschätzungen des kontinentalen Wachstums im Archaikum sind bisher durchgeführt worden (siehe Kapitel 2.2). Unter der Annahme eines durchschnittlichen ¹⁷⁶Lu/¹⁷⁷Hf-Verhältnisses von 0.0113 (Rudnick & Gao 2003) für die Gesamtkruste und von 0.0384 (Vervoort & Blichert-Toft 1999) für den verarmten Erdmantel (DM) sind Hf_{TDM}-Modellalter für alle Zirkone berechnet werden. Die Ergebnisse sind in Abb. 59 dargestellt und ergeben zwei Maxima, die zwei Stadien von juvenilem Krustenwachstum implizieren, einmal um die Zeit des Mesoproterozoikums vor 1.4 Ga und zum anderen im Archaikum um die 3.2 Ga und einem schwächeren um 3.5 Ga. Die Modellalter sind als Maximalalter zu betrachten, da durch Mischung von juvenilem und recyceltem Material die EHf-Werte zu negativen Werten hin verschoben werden. Andererseits müssen sie als Minimumalter betrachtet werden, wenn man für die Kruste ein höheres ¹⁷⁶Lu/¹⁷⁷Hf z.B. von 0.021 annimmt, wie es für eine mafische Kruste typisch ist (Kemp et al. 2006). Eine weitere Unsicherheit steckt in der Abschätzung des richtigen Lu-Hf Verhältnisses des recycelten Krustenmaterials mit einer mafischen Krustenentwicklung im Archaikum und einer nachfolgenden felsischen Krustenentwicklung (Kramers 2007). Hawkesworth & Kemp (2007) postulieren einen unterschiedlichen Verlauf der Krustenentwicklung und der Verweilzeit der Elemente in der oberen und unteren Kruste. Auf jeden Fall müssen in der geologischen Geschichte des südlichen Afrikas zwei Perioden, eine im Mesoproterozoikum und eine zweite im Archaikum, existiert haben, während denen größere Mengen an neuer kontinentaler Kruste entstanden sind. Insgesamt zeigen die Hf_{TDM} Modellalter der Zirkone verschiedener Orogenphasen ein ähnliches Muster wie Harris et al. (1987) mit Nd(T_{DM}) Modellaltern mit einem Schwerpunkt um 3.0 und 3.5 Ga an Graniten, Sedimenten und Xenolithen aus Südafrika präsentiert haben. Die Abwesenheit von Zirkonen mit U-Pb Altern von 4.0 Ga in den detritischen Proben und die sehr geringe Anzahl von drei Zirkonen aus den Proben Parys (901) und Taung (916) mit Hf_{TDM} Modellaltern von 3.8 und 4.0 Ga deuten darauf hin, das es entweder nur zu einer geringen oder keinen Bildung granitischer Magmen (kontinentaler Kruste) kam und überwiegend eine mafische Kruste zwischen 4.5 und 4.0 Ga erzeugt wurde. Neuere Hinweise von Zeh et al. (2008) implizieren, das eine hadaische Kruste (4.3-4.45 Ga) durch magmatische Ereignisse zwischen 3.9 und 3.1 Ga wieder verjüngt wurde, verursacht durch eine Mischung älterer Krustengesteine mit jüngeren Magmen, die von einem verarmten Mantel abstammen. Krustale Wachstumskurven von Nagler & Kramers (1998) und Condie (2000) deuten darauf hin, das ein Großteil der Krustenbildung zwischen 3.0 und 2.0 Ga stattgefunden hat.

Abbildung 58.: Plot der ϵ Hf- Werte versus Kristallisationsalter von ausgesuchten konkordanten detritischen Zirkonen im Vergleich mit Daten aus Baberton (umgerechnet mit λ^{176} Lu=1.87*10⁻¹¹yr⁻¹ (Scherer et al. 2001)). Die Zirkone mit einem primitiven (positiven) ϵ Hf-Wert weisen auf einen hohen Anteil juvenilen Materials, z.B. Schmelzen aus dem verarmten Mantel, wohingegen Zirkone mit negativen ϵ Hf- Werten auf einen Aufschmelzungsprozeß älterer Kruste hindeuten. Graue Felder zeigen Hf-Entwicklungsstrends einer Kruste mit einem ¹⁷⁶Lu/¹⁷⁷Hf Verhältnis von 0.0113 (Rudnick & Gao 2003). Fallen Zirkone verschiedenen Alters entlang dieses Trends, weist dies auf wiederholtes Recycling dieser Kruste hin. Die ϵ Hf Isotopie zeigt eine hohe Varianz bei den Panafrikanischen Zirkonen, welches auf eine Mischung von juvenilen Mantelmagmen mit älterer Kruste oder ein Recycling einer Kruste mit unterschiedlich langer Krustenverweildauer (junge und sehr alte Kruste) hindeutet.

Abb. 59.: Vergleich der Kristallisationsalter und Gaußschen Wahrscheinlichkeitsverteilung der Hf_{TDM} Modellalter von detritischen Zirkone der Proben 901, 914, 903, 900 und 916. Hafnium Modellalter wurde mit einem ¹⁷⁶Lu/¹⁷⁷Hf Verhältnis von 0.0113 » Gesamtkruste berechnet (Rudnick & Gao 2003). Die Spitzen der Hf Modellalter veranschaulichen Zeiten juvenilen Krustenzuwachses um 1.4 Ga und 3.2 Ga mit einem schwächeren Peak um 3.5 Ga.

Die beiden Probenlokationen Parys (901) und Taung (916) zeigen exemplarisch die unterschiedliche Entwicklung der mittleren und oberen Kruste im Archaikum. Die Probenlokation Parys (901) befindet sich inmitten des Vredefort Dome, in der Nähe der gleichnamigen Stadt Parys am Vaal River. Die Probenlokation Taung (916) liegt etwa 30 km südwestlich der Stadt Amalia am Harts River, die auch namens gebend für den Amalia Grünsteingürtel (Amalia Terran) ist, der die Gesteinseinheiten des Grünsteingürtels durchschneidet (Abb. 60). Der 80 km weite und 2.02 Ga alte Vredefort Dome liegt 120 km südwestlich Johannesburg und ist die bisher größte bekannte Impaktstruktur auf der Erde (Gibson & Reimold 2001). Der Dome besteht aus einer zentralen Zone (45km Durchmesser) mit archaischen, granitoiden Grundgebirgsgesteinen und ist umgeben von einer Reihe von subvertikal bis teilweise überkippten mesoarchaischen bis paläoproterozoischen suprakrustalen Gesteinsformationen (Witwatersrand-, Ventersdorp-, Transvaal Supergroup (Armstrong et al. 1991; Lana et al. 2004). Die granitoiden Gesteine wurden in früheren Arbeiten als vertikal verstellte, vollständig aufgeschlossene mittlere und untere Krusteneinheit interpretiert (Hart et al. 1990) und in zwei konzentrische Zone eingeteilt und als Outer Granite Gneiss (OGG) und dem Inlandsee Leucogranofels (ILG) bezeichnet (Stepto 1990). Der Outer Granite Gneis umfasst stark gefaltete und schlierische Gesteinskompositionen, die sich von amphibolit-fazielen Quarzmonzoniten bis Tonaliten erstreckt. Lokal weisen die Gneise Megakristalle auf oder sind an manchen Orten als massiv Gefüge-freie Granite entwickelt. Oft treten kleinformatig Lagen von Grünsteingürtel-Assoziationen auf. Der im Kern der Gneis Dome Struktur aufgeschlossene Inlandsee Leucogranofels (ILG) besteht aus einem granulitfazielen Quarz-Feldspat Gneis mit Orthopyroxen-Einsprenglinge. Innerhalb des ILG existiert ein bogenförmiger Gürtel mit Resten einer vulkano-sedimentären Folge aus Amphiboliten, Hypersthene Gneis, Paragneis, granitisch bis tonalitischer Gneis und noritischer bis pyroxenitischer Granulit). Lana et al. (2004) beschreibt die prä-impakt vorherrschende Lithologie und geologischen Ereignisse der granitoiden Gesteine als eine typische archaische Tonalit-Trondhjemit-Granodiorit (TTG) Assoziation, welche eine hochgradige Metamorphose und Migmatisierung um 3.1 Ga (Walraven 1990) und nachfolgender Granitplatznahme erfahren hat. Von Stevens et al. (1997) & (Gibson et al. 1998) durchgeführte Druckabschätzungen an Gesteinen aus dem Zentrum sprechen für eine aufgedomte mittlere krustale Einheit aus etwa 20 km Tiefe. Armstrong et al. (2006) favorisiert eine dreistufige magmatische und tektonische Entwicklung im Vredefort Dome mit Bildung sialischer Gesteine (TTG) um 3.12 und 3.1 Ga in einem Inselbogensystem und hintereinander folgender Akkretion derselben auf den Kraton. Fortlaufende Akkretion der TTG's führt zur krustalen Verdickung, partielles Schmelzen und der Platznahme von Graniten und Granodioriten in der mittleren Kruste unter hochgradigen Metamorphosebedingungen um 3.1 bis 3.08 Ga. Frühere Modelle postulierten einen zweistufigen Prozess der Entwicklung des Vredefort Dome mit einer initialen >3.3 Ga TTG Komponente, welche eine partielle Schmelze um 3.13 und 3.08 Ga erfahren hat und zur Ausbildung der trondhjemitischen Gneise und Tonaliten, Graniten und Quarzsveniten geführt hat. Ultramafische Vulkanaktivitäten belegen durch Rb-Sr und Th-Pb Datierungen von mehr als 3.4 Ga die ältesten Gesteinseinheiten im Vredefort Dome mit Komatiiten, komatiitischen Basalten und Tholeiiten (Hart et al. 1981). Ebenso zeigen 3.41 Ga alte Zirkonkerne in den enderbitischen Leukosomen paläoarchaische Alter an (Armstrong et al. 2006).

Abbildung 60.: Geologische Übersicht des Vredefort Dome.

Der Amalia Greenstone Belt, als Teil des Kraaipan-Amalia Greenstone Belt oder Terran, befindet sich auf dem Kimberley Block (< 3.26 Ga). Er besteht aus einer Folge von archaischen mafischen Metavulkaniten und eingelagerten gebänderten Eisenerzen (Abb. 61). Diese Gesteine sind von einer Suite verschiedenster Granitoide umgeben, welche Tonalite und trondhjemitische Gneise, Granodiorite und undeformierte Adamellite beinhalten (Poujol et al. 2005). TIMS und SHRIMP U-Pb Daten zeigen eine episodische Granitplatznahme über einer Zeitspanne von 250 Ma von 3.01 bis 2.78 Ga mit einem Maximum um 2.88 Ga an. Darüber hinaus kann nicht ausgeschlossen werden, das einzelne Teile der Amalia-Kraaipan vulkano-sedimentären Gesteine älter als 3008 Ma sind, da sie Amphibolit-Xenolithe (Poujol 2002, 2008). Diese Zeitspanne aufweisen et al. mesoarchaischen Granitoidmagmatismus war verantwortlich für die Entwicklung eines größeren sichelförmigen magmatischen Bogens, welcher mit dem nördlichen und westlichen Rand des sich entwickelten Kaapvaal Kratonfragments zusammenwuchs (Poujol et al. 2003, 2007). Mesoproterozoische (1.1 Ga) Zirkone der Gesteinsabfolge zeigen an, das diese von krustaler Verdickung, magmatischen Ereignissen und der Peakmetamorphose der Namaqua Orogenese innerhalb des Kaapvaal Kratons betroffen sind (Poujol et al. 2002).

Abbildung 61.: Geologische Übersicht Amalia Greenstone Belt.

7.2.1 Parys (901)- Taung (916) U-Pb Alter, Hf Isotopie

Die U-Pb Daten der Proben Taung (916) und Parys (901) weisen zwei deutlich unterscheidbare Kristallisationsalter der archaischen Zirkone entsprechend ihrer Zugehörigkeit zu den postulierten mesoarchaischen Terranen des südafrikanischen Kaapvaal Kraton auf. Die Probe Taung (916) besitzt überwiegend U-Pb Alter um 2.9 Ga, einen schwächeren Peak um 3.1 sowie um 3.2 Ga. Vier Zirkone erreichen paläoarchaische U-Pb Alter von 3.4 Ga. Die Probe Parys zeichnet sich mit einem deutlichen Hauptalterspeak um 3.1 Ga aus. Drei Zirkone bilden jeweils einen schwachen Alterspeak um 2.7 und 2.9 Ga an. Nur ein Zirkon zeigt ein spät paleoarchaisches U-Pb Alter von 3.35 Ga an (Abb. 62). Beide Probenlokationen weisen eine große Anzahl diskordanter Zirkone auf, die vermutlich den archaischen Alterspeaks zugeordnet werden können, aber von starken, eventuell mehrphasigen und auch frühzeitigen Bleiverlust direkt nach der Kristallisation betroffen sind. Dies ist ebenso bekannt aus archaischen Gesteinen im westlichen Teil des Kaapvaal Kratons und aus dem Limpopo Belt (Armstrong et al. 2006, Poujol et al. 2002 & Zeh et al. 2007 und 2008).

Abbildung 62.: U-Pb Konkordia-Diagramm der Proben Taung 916 und Parys 901.

Die Hf Isotopie der archaischen Zirkone beider Probenlokationen unterscheiden sich ebenfalls deutlich (Abb. 63). Die ε Hf Werte der Probe Taung (916) variieren von +7.5 bis -5.1 bei einem deutlichen Überschuss an positiven Werten (75 % aller Daten). Die Probe Parys (901) weist dagegen ε Hf Werte von -1.4 bis -11.6. Die archaischen U-Pb Alter zur Berechnung der ε Hf Werte beider Probenlokationen haben eine Konkordanz von ± 10 %. Im Vergleich sind die Hf Isotopen Daten von Zirkonen aus Baberton (Amelin et al. 2000) mit Werten von -3 bis +2 dargestellt.

Abbildung 63.: Plot von εHf versus Kristallisationsalter von archaischen Zirkonen der Probenlokationen 901 Parys und 916 Taung im Vergleich zu Zirkonen aus Baberton (Amelin et al. 2000).

Die aus den analysierten Daten abgeleiteten krustalen und magmatischen Ereignissen der zwei Probenlokationen Parys (901) und Taung (916) stimmen sehr gut mit den vorhandenen Daten von Poujol (2002; 2005) für das Amalia Terran und mit Ergebnissen von Moser et al. (2001), Flowers et al. (2003), Lana et al. (2004), Armstrong et al. (2006) für Gesteine des Vredefort Dome überein. Schmitz et al. (2004) zeigt ähnliche U-Pb Alter und Re/Os Modellalter aus Xenolithen des Amalia Terran, die er als Beweis für eine Subduktion des Amalia Terran unter das benachbarte Witwatersrand Terran postuliert. Die mehrheitlich positiven EHf Daten zeigen für das Amalia Terran zu diesem Zeitpunkt einen wesentlichen juvenilen magmatischen Input, der für eine mögliche Akkretion eins magmatischen Inselbogen sprechen könnte (Poujol et al. 2003). Die $\epsilon Hf_{(t)}$ Werte im Baberton Grünsteingürtel deuten auf eine Mantelverarmung während des früheren Archaikums hin (Amelin et al. 2000). Die Hf_{TDM} Alter der beiden Proben sind Sm-Nd_{-TDM} Altern der ältesten Gesteine des Barbarton Greenstone Belt im Süden des Kaapvaal Kraton sehr ähnlich (Patchett, Amelin (2001). Die EHf Werte der Probe Parys (901) könnten als ein Akkretionsprozess mit einem Verhältnis von juvenilem zu recyceltem Material von mindestens 20/80 erklärt werden. Vorausgesetzt man nimmt an das die prä-existierende Kruste archaischen Ursprungs war. Dies kann als eine Art sich "lang hinziehendem Aufschmelzungsprozeß" oder einem "multiplen Aufarbeiten" älterer Kruste (>3.5 Ga) interpretiert werden. Ein Beweis für lang andauerndes Recyceln der mittleren Kruste vom Vredefort Dome zeigen neure d¹⁸O Bestimmungen von 9.2 ‰ an granitischen Gneisen des Vredefort Domes. Sie deuten auf eine Herkunft aus einer gemischten magmatischsedimentären Quelle hin, welche im großen Umfang homogenisiert wurde (Fagereng et al. 2008). Die kombinierte U-Pb und Hf Isotopensignatur der detritischen Zirkone zeigt, das die obere Kruste von bis zu drei Recycling-Episoden, um 3.5 Ga (εHf von -3 bis +2), 3.1 Ga (εHf von +6 bis -4) und 2.9 Ga (EHf von +4 bis -2) erfasst worden ist. Für die mittlere bis untere Kruste des Vredefort Domes (Probe Parys 901) kann anscheinend ein kontinuierlicher Recyclingprozess zwischen 3.2 bis 2.7 Ga postuliert werden, wobei die EHf- Werte von -2 bis -10 abfallen. Allerdings weisen die initialen ¹⁷⁶Hf/¹⁷⁷Hf Isotopendaten einen sehr einheitlichen Wert von 0.2807 auf. Dieser Datenbereich deutet eher auf einen mehrphasigen Bleiverlust in den Zirkonen, die ihr eingebautes initiales ¹⁷⁶Hf/¹⁷⁷Hf während der Magmenkristallisation erhalten haben. Die Daten belegen somit, dass der westliche Teil des südafrikanischen Kratons zwei größere magmatische Krustendifferentiationsereignisse um 3.2 und 3.5 Ga erfahren hat. Eine vermeintliche hadaische Krustenbildung um 4.1 Ga ist nur durch einige Zirkone angedeutet.

7.3 Charakterisierungen der Zirkone anhand der Spurenelemente

Krustale Entwicklungsstudien mit einem systematischen Bezug zwischen der internen chemischen Zusammensetzung der Zirkone und ihrer ursprünglichen Lithologie, aus der die Zirkone abstammen, erscheint ein viel versprechender Ansatz zu sein. Die Häufigkeit von Spurenelementen und ihrer Elementverhältnisse in Zirkonen erlauben Rückschlüsse auf das Muttergestein (Heamann at al. 1990, Hoskin et al. 2000, Belousova et al. 2002 und 2006, Veevers et al. 2005, Schulz et al. 2006). Eine wesentliche Vorrausetzung für ein "fingerprinting" detritischer Zirkone ist eine verlässliche Datengrundlage von Zirkonen aus unterschiedlichen Wirtsgesteinen (siehe Hoskin & Schaltegger 2003) und eine gezielte und verlässliche Analyse.

7.3.1 Daten

Von Belousova et al. (2002) werden Varianzdiagramme von U gegen Y und Hf gegen Y als Indikator zur Charakterisierung des Quellengesteins der detritischen Zirkone als geeignet vorgeschlagen (Abb. 64 und 65). Die analysierten Zirkone liegen im U-Y Diagramm hauptsächlich in den Granitoid-, Syenit-Pegmatit- und mafischen Gesteinsfeldern. Zwei Zirkone plotten im Kimberlit-Feld (Abb. 64). Betrachtet man das Granitoid-Feld etwas genauer so zeigt die Probe 900 eine Zugehörigkeit in das Aplit und Leukogranit-Feld. Die anderen Proben 901, 903, 914 und 916 liegen deutlich im Granodiorit und Tonalit-Feld. Ähnliches ergibt sich für Y-Hf, doch gibt es hier noch weitere Unterscheidungsmöglichkeiten. Viele Zirkone der Probe 916 haben relativ hohe Hf-Gehalte (bis zu 2 %) und liegen vor allem im Bereich der intermediären Gesteine und der felsischen Gesteine mit hohen SiO₂-Gehalten. Die Zirkone der Proben 901 und 914 fallen überwiegend in den Bereich von mafischintermediären und alkalischen Gesteinen (Abb. 65). Aufgrund der starken Überlappung der REE von Zirkonen verschiedener Gesteinstypen (Hoskin & Ireland 2000) empfehlen Grimes et al. (2007) eine Unterscheidung mit dem U/Yb Verhältnis gegen Y, welche auch die durchschnittliche Variation des Gesamtgesteins U/Yb Verhältnis widerspiegelt. In Abbildung 67. plotten die Mehrzahl der Zirkone im kontinentalen Feld, nur zehn Zirkone der Probe Taung 916 fallen ins Feld der ozeanischen Kruste. Zwei Zirkone der Probe Kheis 903 weisen eine Affinität zu kimberlitischen Zirkonen auf. Das Th/U Verhältnis der Zirkone wird gemeinhin als Kriterium zur Unterscheidung der Zirkonentstehung aus magmatischen, metamorphen und hydrothermalen Umgebungen herangezogen und auch immer noch angewendet. Ein Th/U Verhältnis mit einem Wert unter 0.3 (Schaltegger 1999) bzw. unter 0.1 (Rubatto 2002) wird weitgehend als Diskriminante von metamorphen Zirkonen angesehen. Neuere Arbeiten kommen zur einer Neubewertung dieser Aussagen anhand textureller Beobachtungen und anderer chemischen Kriterien (siehe Harley et al. 2007). In dieser Arbeit zeigen die überwiegende Mehrzahl der Zirkone ein Th/U Verhältnis von 0.3 bis 1 (Abb. 66), so dass sie nach Hoskin & Schaltegger (2003), Rubatto (2002), Williams (2001) und Schaltegger (1999) eindeutig als magmatisch eingestuft werden müssen. Nur wenige Zirkone haben ein Th/U unter 0.3 und sind wahrscheinlich metamorphen Ursprungs zuzuordnen.

Abbildung 64.: Varianzdiagramm U-Y (ppm) nach Belousova et al. (2002). Granitoide beinhalten: 1 Aplite und Leukogranite; 2 Granite; 3 Granodiorite und Tonalite.

Abbildung 65.: Hf und Y Konzentration in Zirkonen relativ zu Feldern bestimmter Zirkon-Zusammensetzung: I- Kimberlite; II- ultramafische, mafische + intermediäre Gesteine (52-65 % SiO₂); III- Quarzhaltige intermediäre und felsische Gesteine; IV- felsische Gesteine mit hohem > 75 % SiO₂ Gehalt; V- Greisen, VI- alkalische Gesteine und alkalische Metasomatite von Alkalinkomplexen, VII- Karbonatite nach Belousova et al. (2002). VI- alkalische Gesteine, VII- Karbonatite (Datengrundlage nach Belousova et al. 2002).

Abbildung 66.: U versus Th und Th/U Verhältnis der Zirkone. Linie mit Th/U= 0.3 markiert das untere Limit für magmatische Zirkone (I= igneous; M= metamorphic) nach Schaltegger (1999).

Abbildung 67.: Geochemisches Unterscheidungs-Diagramm für Zirkon mit kontinentalenund ozeanischem Ursprung nach Grimes et al. (2007).

Belousova et al. (2002) entwickelten aufgrund zahlreicher Analysen von Zirkonen verschiedener Gesteinstypen einen Klassifizierungs- und Regressionsbaum mit den Elementen Lu, Hf, Y, U und Yb. Damit lassen sich 55 % der Zirkone granitoiden Gesteinen mit SiO₂ < 65 % und 23 % der Zirkone Granitode mit einem SiO₂ Gehalt > als 65 % zuordnen. Den Rest machen karbonatitische (12 %) und syenit-monzonitische (8 %) sowie kimberlitische Gesteine (3 %) aus (Abb. 68 und 69).

Abbildung 68.: CART Baum für die Wiedererkennung der Zirkone von verschiedenen Gesteinstypen mit den Elementen Lu, Hf, Y, U, Yb nach Belousova et al. (2002).

7.3.2 Diskussion

Die Abgrenzung von Zirkonen und ihre Zuordnung zu möglichen Ausgangsgesteinen anhand der chemischen Zusammensetzung sind noch in einem frühen Entwicklungsstadium. Es zeigt sich, dass fast 80 % der detritischen Zirkone des südlichen Afrikas granitoiden Gesteinen mit SiO₂ Gehalten bis 75 % und somit einem kontinentalen Krustenursprung zugeordnet werden können. Zweitens läst sich ableiten, dass die Mehrzahl der Zirkone magmatisch gebildet worden sind. Drittens zeigen die archaischen Zirkone der Probe (901) und (916) des Kaapvaal Kratons eindeutige Hinweise auf eine granodioritische bis tonalitische Gesteinszugehörigkeit. Die Gesteinsassoziationen in den jeweiligen Gebieten umfassen TTG's und Grünstein-Granitgürtel. Niu & James (2002) ermittelten mit einer seismischen Studie des Kaapvaal Kraton eine Dicke der archaischen Kruste von 34-40 km, wobei sie eine intermediäre bis felsische Gesteinszusammensetzung annahmen. Mit gewisser Vorsicht müssen die stark erhöhten leichten SEE in den Zirkonpopulationen der Proben 916 und 901 sowie vereinzelt in den anderen Proben und die damit einhergehenden P, Ca und Fe Gehalte betrachtet werden (siehe Kapitel 6 und Tabellen im Anhang). In der Literatur sind solche Zirkone als "hydrothermale Zirkone" bezeichnet worden (Whitehouse & Kamber 2002, Hoskin 2005, Rayner et al. 2005, Geisler et al 2007). Jedoch wird der Terminus "hydrothermal" recht informell angewandt und der dazu führende Prozess nicht eindeutig eingegrenzt, ob es sich um zirkulierende hydrothermale Fluide oder um Rekristallisation oder um eine Alteration in Anwesenheit heißer Porenfluide handelt (Cavosie et al. 2006). Die braune Eigenfarbe der Zirkone aus den Proben 903 und 916 sprechen im allgemeinen für alterierte und metamikte Zirkone mit höheren Konzentrationen an U, Th, P, Y, Fe, Ca, P und leichten SEE (Philander & Rozendaal 2000). Eine zufällige Analyse von Mineraleinschlüssen wie Apatit (erhöhte Sr Werte), Monazit (erhöhte P, Th und SEE) und Xenotim (erhöhte SEE, positive Korrelation von Y und P) und Titanit (erhöhte leichte SEE) kann ausgeschlossen werden (Hoskin et al. 2000, Whitehouse & Kamber 2002, Rayner et al. 2005, Cavosie et al. 2007). Während der detaillierten Auswertung der Laser-Spektren mit der verwendeten Glitter Software 4.0 ist es möglich, Mineraleinschlüsse zu erfassen und zu eliminieren. In den hier vorgestellten Daten zeigt sich auch keine Korrelation spezifischer Elemente, die auf Mineraleinschlüsse hindeuten. Gegen eine Einstufung der Proben als "Hydrothermale Zirkone" sprechen mehrere Faktoren. Erstens weisen die Zirkone, soweit in KL- und BSE Bilder erkennbar, keine für hydrothermale Zirkone typischen porösen Internstrukturen auf (Tomaschek et al. 2003). Zweitens würden die hydrothermalen sowie metamikten Zirkone den langen sedimentären Transport nicht überstehen. Drittens zeigen die Zirkone keine erhöhten Hf-Gehalte, wie z. B. Boogy Plain mit 2.8 bis 7.6 Gew.-% (Hoskin et al. 2005). Die gemessenen Werte in den Proben erreichen bis zu 2 Gew.-% Hf. Die erhöhten Ca, Fe, P und leichten REE Werte könnten auf eine Alteration bei Temperaturen unter 650°C, bedingt durch Fluideintritt aufgrund Strahlungsschädigung in Einzelbereichen des Zirkonkristalls zurückzuführen sein. Utsunomiya et al. (2007) beschreiben solche Phänomene an Zirkonen von 3.3 Ga porphyritischen Graniten des Jack Hills, Westliches Australien. Im Gegensatz dazu stehen die konkordanten U-Pb Daten der Zirkone der Probenlokationen dieser Arbeit. Das anscheinend nicht gestörte U-Pb Verhältnis könnte mit einer raschen thermischen Ausheilung (thermal annealing) des Kristallgitters erklärt werden (Geisler 2003).

8. Zusammenfassung und Ausblick

Die Verbesserung der Technologie der Laserablation und der ICP-MS Geräte und die fortschreitende Methodenentwicklung verschiedenster Anwendungen der Isotopen- und Elementanalyse machen die LA-(MC)-ICP-MS zu einem schnellen, kosteffektiven und präzisen Instrument für die U-Pb Datierung, der Hf Isotopie- und Spurenelementbestimmung an Zirkonen und anderen akzessorischen Mineralen. Die Ergebnisse dieser Arbeit zeigen, das die kombinierte Analyse der U-Pb und Isotopie und der Spurenelementgeochemie detritischer Zirkonen aus einem weit verzweigten Flusssystem detaillierte Rückschlüsse auf die kontinentale Krustenentwicklung des südafrikanischen Kratons ergeben. Es konnten 3 tektonische Hauptorogenphasen: 1. die Panafrikanische Orogenese (0.5 bis 0.7 Ga), 2. das Namaqua-Natal Faltengürtel-Orogen (1.0 bis 1.3 Ga) und 3. die westliche Kaapvaal-Kratonisierung (2.9 bis 3.2) Ga in den Altersspektren nachgewiesen werden. Das Kheis bzw. Eburnian Ereignis ist unterpräsentiert in den U-Pb Altersgruppen, welches auf die geringe Verteilung und Ausdehnung der krustalen Bereiche zurück zuführen ist, die von der Kheis Orogenese erfasst worden sind und deren spekulativer Entwicklungsgeschichte in Südafrika. Eine wichtige Aussage dieser Untersuchung ist, dass die verschiedenen Probenlokationen überwiegend lokale bzw.- regionale U-Pb Altersdaten ihrer umgebenden Herkunftsgebiete liefern. Die beiden östlichsten, auf dem Kaapvaal Kraton liegenden Probenlokationen, Parys (901) und Taung (916) sind am stärksten von archaischen Zirkonen geprägt. Die weiter westlich, hin zur Orange River Flussmündung, gelegenen Probenlokationen werden von Altersdaten des Namaqua-Natal-Faltengürtel dominiert. Eine zusätzliche Besonderheit ist die Verbreitung neoproterozoischer und kambrischer Zirkone in fast allen weite Probenlokationen, die wahrscheinlich von umgelagerten detritischen Zirkonen aus den abstammen, welche Sedimenten der Karoo-Supergroup nahezu zweidrittel der südafrikanischen Landoberfläche sowie dem Einzugsgebiet des Orange- und Vaal River Flusssystems ausmachen. Die Hf Isotopie der detritischen Zirkone der verschiedenen tektonischen Hauptphasen Südafrikas spiegeln ihre unterschiedliche Akkretions- und Aufschmelzungsgeschichte dar. Die panfarikanischen Zirkone weisen eine ausgeprägte Durchmischung von juvenilem und recyceltem Material auf. Die mesoproterozoischen (Namaguan, Kibaran oder Grenville) Zirkone kristallisierten dagegen in einem juvenilen Magma des weitläufigen großen Inselbogen-Kontinent-Kollisionsereignis des Namaqua-Natal Orogens (Frimmel 2004). Die paläoproterozoischen Zirkone deuten mit ihrem negativen EHf Werten und archaischen Hf Modellaltern auf ein ausgeprägtes Wiederaufarbeiten (Recyceln) archaischer Kruste hin. Die archaischen Zirkone speziell der Probenlokationen Parys (901) und Taung (916) zeigen unterschiedliche Hf Isotopensignaturen. Die Probe Parys weist auf einen lang anhaltenden Recyclingprozess der mittleren Kruste hin, wohingegen die Probe Taung (916) auf eine juvenile, vom verarmten Mantel abstammende obere Krustenkomponente hindeutet, welche in Verbindung mit der Kollision des magmatischen Inselbogens des Amalia-Kraaipan Terran mit dem Kaapvaal Kraton gebracht wird (Poujol et al. 2007). Die Hf Modellalter aller Zirkone ergeben zwei Maxima, die zwei Stadien von juvenilem Krustenwachstum implizieren, einmal um die Zeit des Mesoproterozoikums vor 1.4 Ga und zum anderen im Archaikum um die 3.2 Ga und einem schwächeren um 3.5 Ga. Die

Abwesenheit von Zirkonen mit U-Pb Kristallisationsaltern von 3.8 bis 4.0 Ga und die geringe Anzahl früharchaischer Hf Modellalter deuten entweder auf einen geringen Krustenzuwachs oder eine sehr früh im Hadaikum einsetzende Verjüngung/Recyceln der früharchaischen Kruste hin (Zeh et al. 2008). Das krustale Wachstum entspricht somit den progressiv episodischen Modellen von Nagler & Kramers (1998) sowie Condie (2000) mit Höhepunkten zwischen 3.0 und 2.0 Ga. Ähnliche krustale Wachstumsperioden von 1.6 bis 2.2 und 2.9 bis 3.4 Ga sind auf dem Nordamerikanischen Kontinent von Wang et al. (2008) und auf dem Gondwana-Kontinent (Australien) von Hawkesworth & Kemp 2006) ermittelt worden und implizieren wohl ein globales kontinentales Krustenwachstum. Die Abgrenzung und Wiedererkennung der Zirkone anhand der chemischen Zusammensetzung zu möglichen den vorhandenen Modellen ist noch Muttergesteinen mit in einem frühen Entwicklungsstadium und damit sehr abhängig von der ursprünglichen Datengrundlage dieser Modelle. Grundsätzlich weisen die Zirkone dieser Arbeit eine magmatische granitoide Zusammensetzung kontinentalen Ursprungs auf, wie man es auch erwarten würde. Auffällig und deshalb generell mit Aufmerksamkeit für zukünftige Analysen zu verfolgen sind die erhöhten Spuren- und leichten Seltenenerdelemente in Zirkonen jeglicher Altersklassen. Nachfolgende Arbeiten müssen zeigen, wie und ob diese Anreicherungen Einfluss auf die chemische Zusammensetzung, die U-Pb Datierung und vor allem die Hf-Isotopie der Zirkone haben. Eine Verbesserung der Ermittlung verschiedener Krustenbildungsereignisse innerhalb des Zirkonkorns erzielt die gemeinsame Bestimmung der Sauerstoffisotopie, der U-Pb Daten und Hf Isotopie. Die erhöhte Sauerstoffisotopie ¹⁸O/¹⁶O ermöglicht eine direkte Identifikation der Ursprungsmagmen der Zirkone, welche entweder aus einem Mantelmagma oder aus wiederaufgearbeiteter sedimentärer Kruste abstammen und damit schließt man ungewöhnliche Krustenverweilalter aus (Kemp et al. 2006). Ein weiterer wegweisender Forschungsansatz, welche sowohl die Kristallisations- und Abkühlungsalter detritischer Zirkone mittels kombinierter Einzelkorn U/Pb und (U-Th)/He Analysen erhalten, erlaubt neue Einsichten in die Provenienz- und Exhumierungsgeschichte detritischer Studien (Rahl et al. 2003, Campbell et al. 2005).

9. Literatur

Allègre, C. J. (1982). Chemical geodynamics. Tectonophysics 81: 109–132.

- Allsopp, H. L., Köstlin, E. O., Welke, H. J., Burger, A. J., Kröner, A. & Blignault, H. J. (1979). Rb-Sr and U-Pb geochronology of late Precambrian-early Paleozoic igneous activity in the Richtersveld (South Africa) and southern South West Africa. Transactions of the Geological Society of South Africa 82: 185–204.
- Andersen, T., Griffin, W. L. & Pearson, N. J. (2002). Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. Journal of Petrology 43: 1725–1747.
- Anhauesser, C. R. (2007). A reevaluation of Archean intracratonic terrane boundaries on the Kaapvaal Craton, South Africa: Collisional suture zone? In Processes on the Early Earth. Eds. Reimold, W. U. & Gibson, R. L. Geological Society of America Special Paper 405, pp. 193-210.
- Amelin, Y., Lee, D.-C., Halliday, A. N. & Pidgeon, R. T. (1999). Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399: 252-255.
- Amelin, Y., Lee, D.-C. & Halliday, A. N. (2000). Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta 64: 4205–4225.
- Amelin, Y. & Davis, W. J. (2005). Geochemical test for branching decay of Lu-176. Geochimica et Cosmochimica Acta 69: 465-473.
- Armstrong, R. L. (1968). A model for the evolution of strontium and lead isotopes in a dynamic Earth: Review of Geophysics 6: 175–199.
- Armstrong, R. L. (1981). Radiogenic isotopes: the case for crustal recycling on a near-steady state no-continental-growth Earth. Philosophical Transactions of the Royal Society of London A 301: 443–472.
- Armstrong, R. L. (1991). The persistent myth of crustal growth. Australian Journal of Earth Science 38: 613–630.
- Armstrong, R. A., Compston W., de Wit, M. J. & Williams, I. S. (1990). The stratigraphy of the 3.5-3.2 Ga Barberton Greenstone Belt revisited: a single zircon ion microprobe study. Earth and Planetary Science Letters 101: 90-106.
- Armstrong, R. A., Compston, W., Retief, E. A., Williams, I. S. & Welke, H. J (1991). Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precambrian Research 53: 243-266.
- Armstrong, R. A. (2004). A SHRIMP U-Pb investigation of the age and provenance of detrital zircons from Buntfeldschuh, Sperrgebiet, Namibia. PRISE Report #A02-900 Research School of Earth Sciences, The Australian National University, Canberra, Australia, pp. 18.
- Armstrong, R. A., Lana, C., Reimold, W. U. & Gibson, R. L. (2006). SHRIMP zircon age constraints on Mesoarchean crustal development in the Vredefort Dome, central Kaapval Craton, South Africa. In Processes on the Early Earth. Eds. Reimold, W. U. & Gibson, R. L. Geological Society of America Special Paper 405, pp. 233-253.
- Aswhal, L. D., Tucker, R. D. & Zinner, E. K. (1999). Slow cooling of deep crustal granulites and Pb-loss in zircon. Geochimica et Cosmochimica Acta 63: 2839-2851.

- Ballard, J. R., J. M. Palin, J. M., Williams, I. S., Campbell, I. H. & Faunes, A. (2001). Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 29: 383-386.
- Belousova, E. A., Griffin, W. L. & Pearson, N. J. (1998). Trace element composition and cathodoluminescence properties of Southern Africa kimberlitic zircons. Mineralogical Magazine 62: 355-366.
- Belousova, E. A., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. I. (2002). Igneous zircon: trace element composition as an indicator of source rock type. Contribution to Mineralogy and Petrology 143: 602-622.
- Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. (2003a) TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology Chemical Geology 200: 155-170.
- Black, L. P., Kamo, S. L., Williams, I. S., Mundil, R., Davis, D. W., Korsch, R. J. & Foudoulis, C. (2003b). The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chemical Geology 200: 171-188.
- Bleiner, D. & Günther, D. (2001). Theoretical Description and Experimental Observation of Aerosol Transport Processes in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry 16: 449-456.
- Blichert-Toft, J. & Albarède, F. (1997). The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148: 243-258.
- Blichert-Toft J., Chauvel C. & Albarède F. (1997). Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contribution to Mineralogy and Petrology 127: 248–260.
- Bodet, F. & Schärer, U. (2000). Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochimica et Cosmochimica Acta 64: 2067–2091.
- Brandl, G., Cloete, M. & Anhaeusser, C. R. (2006). Archaean Greenstone Belts. In: The Geology of South Africa. Edited by Johnson, M. R., Anhausser, C. R. & Thomas R. J. (2006). Geological Society of South Africa, Johannesburg & Council for Geoscience, Pretoria, pp. 9-56.
- Butzer, K. W., Helgren, D. M., Fock, G. J. & Stuckenrath, R. (1973). Alluvial terraces of the lower Vaal River, South Africa: A reappraisal and reinvestigation. Journal of Geology 81: 341-362.
- Campbell, I. H., Reiners, P. W., Allen, C. M., Nicolescu, S., Upadhyay, R. (2005). He-Pb double-dating of detrital zircons from the Ganges and Indus Rivers: implication for quantifying sediment recycling and provenance studies. Earth and Planetary Science Letters 207: 402–32.
- Cavosie, A. J., Valley, J. W., Wilde, S. A. & E. I. M. F. (2006). Correlated microanalysis of zircon: Trace element, d¹⁸O, and U–Th–Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochimica et Cosmochimica Acta 70: 5601–5616.

- Chang, Z., Vervoort, J. D., Knaack, C. & McClelland, W. C. (2006). U-Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems 7 (5): 1-14, Q05009, doi:10.1029/2005GC00110.
- Chauvel C. & Blichert-Toft J. (2001). A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters 190: 137-151.
- Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., German, C. R., Bayon, G. & Burton, K. (2002). Hf isotope ratio analysis using multicollector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference: Journal of Analytical Atomic Spectrometry 17: 1567-1574.
- Condie, K. C. (1998). Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163: 97-108.
- Condie, K. C. (2000). Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322: 153-162.
- Condie, K. C., Beyer, E., Belousova, E., Griffin, W. L. & O'Reilly, S. Y. O. (2005). U-Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust. Precambrian Research 139: 42-100.
- Compston, W. & Kröner, A. (1988). Multiple zircon Growth within Early Archean Tonalitic Gneiss from the Ancient Gneiss Complex, Swaziland: Earth and Planetary Science Letters 87: 13-28.
- Corbett, I. B. (1996). A review of diamondiferous marine deposits of western Southern Africa. Africa Geoscience Review 3 (2): 157-174.
- Corfu, F. & Noble, S. R. (1992). genesis of the southern Abitibi greenstone belt, Superoir Province, Canada: evidence from zircon Hf isotope analysis using a single filament technique. Geochimica et Cosmochimica Acta 56: 2081-2097.
- Corfu, F., Heaman, L. M. & Rogers, G. (1994). Polymetamorpic evolution of the Lewsian complex, NW Scotland, as recorded by U-Pb isotopic compositions of zircon, titanite and rutile. Contributions to Mineralogy and Petrology 117: 215-228.
- Corfu F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. (2003). Atlas of zircon textures. In Hanchar, J. M. & Hoskin, P. W. O. (eds). Zircon. Mineralogical Society of America & Geochemical Society: Reviews in Mineralogy & Geochemistry, volume 53: 469-495.
- Cornell, D. H., Armstrong, R. A. & Walraven, F. (1998). Geochronology of the Proterozoic Hartley Basalt Formation, South Africa : constraints on the Kheis tectogenesis and the Kaapvaal Craton's earliest Wilson Cycle. Journal of African Earth Science 26: 5-27.
- Cornell, D. H., Thomas, R. J., Moen, H. F. G., Reid, D. L., Moore, J. M. & Gibson, R. L. (2006). The Namaqua-Natla Province. In: The Geology of South Africa. Edited by Johnson, M. R., Anhausser, C. R. & Thomas R. J. (2006). Geological Society of South Africa, Johannesburg & Council for Geoscience, Pretoria, pp. 325-379.
- Da Silva, L. C., McNaughton, N. J., Hartmann, L. A., Fletcher, I. R., Gresse, P. G. & Scheepers, R. (1997). U-Pb (SHRIMP) isotopic constraints for the evolution of southern Brazilian granitic provinces, and some correlated South African, Pan-African plutons. Abtracts International Symposium on Granites and Associated Mineralizations, Salvador, Brazil, pp. 276-277.

- Dalziel, I. W. D. (1997). Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin 108:16–42.
- Dalziel, I. W. D., Mosher, S. & Gahagan, L. M. (2000). Laurentia-Kalahari Collision and the Assembly of Rodinia. Journal of Geology 108: 499-513.
- Dewey, J. F. & Windley, B. F. (1981). Growth and differentiation of continental crust. Philosophical Transactions of the Royal Society of London A 301, 189–206.
- de Wit, M. J., Armstrong, R., Hart, R. J. & Wilson, A. H. (1987). Felsic igneous rocks within the 3.3 to 35 Ga Barberton greenstone belt: High crustal level equivalents of the surrounding tonalite-trondjhemite terrain, emplaced during thrusting. Tectonics 6: 529-549.
- de Wit, M. J., Roering, C., Hart, R. J., Armstrong, R. A., de Ronde, C. E. J., Green, R. W. E., Tredoux, M., Peberdy, E. & Hart, R. A. (1992). Formation of an Archean continent. Nature 357: 553-562
- de Wit, M. J. & Tinker, M. (2004). Crustal structures across the central Kaapvaal Craton from deep-seismic reflection data. South African Journal of Geology 107: 185-206.
- de Wit, M. C. J. (1999). Post-Gondwana Drainage and the Development of Diamond Placers in Western South Africa. Economic Geology 94: 721-740.
- Dorland, H. C. (2004). Provenance ages and timing of sedimentation of selected Neoarchean and Paleoproterozoic successions on the Kaapvaal Craton. Thesis Faculty of Science of the Rand Afrikaans University, pp. 326.
- Ducea, M. N., Gehrels, G. E., Shoemaker, S., Ruiz, J. & Valencia, V. A. (2004). Geological evolution of the Xolapa Complex, Southern Mexico. Evidence from U-Pb zircon geochronology. Geological Society of America Bulletin 116: 1016-1025.
- Duncan, A. R. & Marsh, J. S. (2006). The Karoo Igneous Province. In: The Geology of South Africa. Edited by Johnson, M. R., Anhausser, C. R. & Thomas R. J. (2006). Geological Society of South Africa, Johannesburg & Council for Geoscience, Pretoria, pp. 501-520.
- Eggins, S. M., Kinsley, L. P. J., Shelley, J. M. M. (1998). Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICPMS. Applied Surface Science 127: 278–286.
- Eggins, S. M. & Shelley, J. M. G. (2002). Compositional Heterogeneity in NIST SRM 610– 617 Glasses. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis 26: 269–286.
- Eglington, B. M. & Armstrong, R. A. (2003). Geochronological and isotopic constraints on the Mesoproterozoic Namaqua-Natal Belt: evidence from deep borehole intersections in South Africa. Precambrian Research 125: 179-189.
- Eglington, B. M. & Armstrong, R. A. (2004). The Kaapvaal Craton and adjacent orogens, southern Africa: a geochronological database and overview of the geological development of the craton: South African Journal of Geology 107: 13-32.
- Elliot, D. H. & Fleming, T H. (2000). Weddell triple junction: The principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology 28: 539-542.

- Encarnación, J., Fleming, T. H., Elliot, D. H. & Eales, H. V. (1996). Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana. Geology 24 (6): 535–538.
- Eriksson, K. A., Campbell, I. H., Palin, J. M. & Allen, C. M. (2003). Predominance of Grenvillian magmatism recorded in detrital zircons from modern Appalachian rivers. Journal of Geology 111 (6): 707-717.
- Evensen, N. M., Hamilton, P. J. & O'Nions, R. K. (1978). Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42: 1199-1212.
- Fagereng, Å., Harris, C., La Grange, M. & Stevens, G. (2008). Stable isotope study of the Archaean rocks of the Vredefort impact structure, central Kaapvaal Craton, South Africa. Contribution to Mineralogy and Petrology 155 (1): 63-78.
- Fedo, C. M. & Sircombe, K. N. (2003). Detrital zircon analysis of the sedimentary record. Zircon. In Hanchar, J. M. & Hoskin, P. W. O. Reviews in Mineralogy & Geochemistry. Zircon. Vol. 53 pp. 277-303.
- Feng, R., Machado, N. & Ludden, J. (1993). Lead geochronology of zircon by Laserprobe-Inductively Coupled Plasma-Mass Spectrometry (LP-ICP-MS): Geochimica et Cosmochimica Acta 57: 3479-3486.
- Fernandez-Suarez, J., Gutierrez-Alonso, G., Jenner, G. A. & Tubrett, M. N. (2000). New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: insights from U-Pb detrital zircon ages. Precambrian Research 102 (3-4): 185-206.
- Fernandez-Suarez, J. Garcýa, F. D., Jeffries, T. E., Arenas, R. & Abati, J. (2003). Constraints on the provenance of the uppermost allochthonous terrane of the NW Iberian Massif: inferences from detrital zircon U–Pb ages. Terra Nova 00: 1–7.
- Fildani, A., Drinkwater, N. J., Weislogel, A., McHargue, T., Hodgson, D. M. & Flint, S. S. (2007). Age controls on the Tanqua and Laingsburg deep-water systems: New insights on the evolution and sedimentary fill of the Karoo Basin, South Africa. Journal of Sedimentary Research 77: 901–908.
- Fitzsimons, I. C. W. (2000). A review of tectonic events in the East Antartic Shield and their implications for Gondwana and earlier supercontinents. Journal of African Earth Sciences 31: 3-23.
- Flowers, R. M., Moser, D. E. & Hart, R. J. (2003). Evolution of the amphibolite-granulite facies transition exposed by the Vredefort impact structure, Kaapvaal Craton, South Africa: Journal of Geology 111: 455-470.
- Frei, D., Knudsen, C., McLimans, R. K. & Bernstein, S. (2005). Fully automated analysis of chemical and physical properties of individual mineral species in heavy mineral sands by computer controlled scanning electron microscopy (CCSEM). In: Akser, M. & Elder, J. (eds): Heavy Minerals 2005. Conference Proceedings. Society for Mining, Metallurgy and Exploration, pp. 103-108.
- Frimmel, H. E. (2000). New U-Pb zircon ages for the Kuboos pluton in the Pan-African Gariep Belt, South Africa: Cambrian mantle plume or far field collison effect? South African Journal of Geology 103: 207-214.
- Frimmel, H. E., Zartman, R. E. & Späth, A. (2001). Dating Neoproterozoic continental breakup in the Richtersveld Igneous Complex, South Africa: The Journal of Geology 109: 493-508.

- Frimmel, H. E. (2004). Formation of a late mesoproterozoic supercontinet: the South Africa-East Antarctica connection (Chapter 3.10). In Developments in Precambrian Geology 12. Series editor: Condie, K. C.: The Precambrian Earth: Tempos and events. Eds.: Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller, W. U. & Catunaenu, O. Chapter 3.: Tectonism and mantle plumes through time. Elsevier, Amsterdam, pp. 240-255.
- Fryer, B. J., Jackson, S. E. & Longerich, H. P. (1993). The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in-situ (U)-Pb geochronology. Chemical Geology 109 (1-4): 1-8.
- Fyfe, W. S. (1978). The evolution of the Earth's crust: modern plate tectonics to ancient hot spot tectonics. Chemical Geology 23: 89–114.
- Gehrels, G. E., Dickinson, W. R., Darby, B. J., Harding, J. P., Manuszak, J. D., Riley, B. C. D., Spurlin, M. S., Finney, S. C., Girty, G. H., Harwood, D. S., Miller, M. M., Satterfield, J. I., Smith, M. T., Snyder. W. S., Wallin, E. T. & Wyld, S. J. (2000). Tectonic implications of detrital zircon data from Paleozoic and Triassic strata in western Nevada and northern California, in Soreghan, M. J. and Gehrels, G. E., eds., Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California; Geological Society of America Special Paper 347: 133-150.
- Gehrels, G. E., Valencia, V. & Pullen, A. (2006). Detrital Zircon Geochronology by Laser Ablation Multicollector ICPMS at the Arizona LaserChron Center, in Olszewski, T., ed., Geochronology: Emerging Opportunities: Paleontology Society Papers, Volume 12, p. 67-76.
- Geisler, T., Pidgeon, R. T., Kurtz, R., van Bronswijk, W. & Schleicher, H. (2003). Experimental hydrothermal alteration of partially metamict zircon. American Mineralogist 88: 1496–1513.
- Geisler T., Schaltegger U. & Tomaschek F. (2007). Re-equilibration of zircon in aqueous fluids and melts. In Harley, S. L. & Kelly, N. M. (2007). Zircon tiny but timely. Elements 3 (1): 45-51.
- Gerdes, A. & Zeh, A. (2006). Combined U-Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters 249: 47-61.
- Gerdes, A. & Zeh, A. (2008). Zircon formation versus zircon alteration new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology doi: 10.1016/j.chemgeo.2008.03.005.
- Gibson, R. L., Reimold, W. U. & Stevens, G. (1998). Thermal metamorphic signature of an impact event in the Vredefort Dome, South Africa. Geology 26: 787-790.
- Gibson, R. L. & Reimold, W. U. (1999). The metamorphic fingerprint of large impact events: The example of the Vredefort dome, South Africa: Meteoritics & Planetary Science 34: A42-A43.
- Gibson, R. L. & Reimold, W. U. (2001). The Vredefort Impact structure, South Africa: The scientific evidence and a two-day excursion guide: Pretoria, South Africa, Council for Geosciences Memoir 92, 111p.

- Gonzalez, J., Mao, X. L., Roy, J., Mao, S. S. & Russo, R. E. (2002). Comparison of 193-, 213- and 266-nm laser ablation ICPMS. Journal of Analytical Atom Spectrometry 17: 1108-1113.
- Gonzalez, J., Dundas, S. H., Liu, C., Mao, X. & Russo, R. E. (2006). UV-femtosecond and nanosecond laser ablation-ICP-MS: internal and external repeatability. Journal of Analytical Atomic Spectrometry 21: 778–784.
- Goodwin, A. M. (1991). Precambrian Geology: The dynamic evolution of the continental crust, Academic Press, 680 p..
- Goolaerts, A., Mattielli, N., de Jong, J., Weis, D. & Scoates, J. S. (2004). Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS. Chemical Geology 206: 1-9.
- Greese, P. G., von Veh, M. W. & Frimmel, H. E. (2006). Nambian (Neoproterozoic) to early Cambrian successions. In: The Geology of South Africa. Edited by Johnson, M. R., Anhausser, C. R. & Thomas R. J. (2006). Geological Society of South Africa, Johannesburg & Council for Geoscience, Pretoria, pp. 395-420.
- Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, A., O'Reilly, S. Y. & Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64: 133-147.
- Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O'Reilly, S. Y. (2004). Archean crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131 (3-4): 231-282.
- Grimes, C. B., John, B. E., Kelem, P. B., Mazdab, F. K., Wooden, J. L., Cheadle, M. J., Hanghøj, K & Schwartz, J. J. (2007). Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 35 (7): 643-646.
- Guilong, M. & Günther, D. (2002). Effect of particle size distribution on ICP-induced elemental fractination in laser ablation-inductively coupled plasma mass-spectrometry. Journal of Analytical Atom Spectrometry 8:831-837.
- Halliday, A. N., Lee, D. C., Christensen, J. N., Walder, A. J., Freedman, P. A., Jones, C. E., Hall, C. M., Yi, W. & Teagle, D. (1995). Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. International Journal of Mass Spectrometry and Ion Processes: 146/147: 21–33.
- Halpin, J. A., Gerakiteys, C. L., Clarke, G. L., Belousova, E. A. & Griffin, W. L. (2005). Insitu U-Pb geochronology and Hf isotope analyses of the Rayner Complex, east Antartica. Contributions to Mineralogy and Petrology 148: 689-707.
- Hanson, R. E, Crowely, J. L., Bowring, S. A., Ramezani, J., Gose, W. A., Dalziel, I. W. D., Pancake, J. A., Seidel, E. K., Blenkinsop, T. G. & Mukwakwami, J. (2004). Coeval Large-Scale Magmatism in the Kalahari and Laurentian Cratons during Rodinia Assembly: Science 304: 1126-1129.

- Hanson, R. E., Harmer, R. E., Blenkinsop, T. G., Bullen, D. S., Dalziel, I. W. D., Gose, W. A., Hall, R. P., Kampunzu, A. B., Key, R. M., Mukwakwami, J., Munyanyiwa, H., Pancake, J. A., Seidel, E. K. & Ward, S. E (2006). Mesoproterozoic intraplate magmatism in the Kalahari Craton: A review. Journal of African Earth Sciences 46 (1-2): 141-167.
- Harley, S. L., Kelly, N. M. & Möller, A. (2007). Zircon behaviour and the thermal histories of mountain chains. In Harley, S. L. & Kelly, N. M. (eds). (2007). Zircon - tiny but timely. Elements 3 (1): 25-30.
- Harris, N. B. W., Hawkesworth, C. J., Van Calsteren, P. & McDermott, F. (1987). Evolution of continental crust in southern Africa. Earth and Planetary Science Letters 83: 85-93.
- Hart, R. J., Welke, H. J. & Nicolaysen, L. O. (1981). Geochronology of the deep profile through the Archean Basement of Vredefort, with implications for early earth crustal evolution: Journal of Geophysical Research 86: 10663-10680.
- Hart, R. J., Andreoli, M. A. G., Tredoux, M., & de Wit, M. J. (1990). Geochemistry across an Exposed Section of Archean Crust at Vredefort, South-Africa - with Implications for Midcrustal Discontinuities: Chemical Geology 82: 21-50.
- Hart, R. J., Andreoli, M. A. G., Smith, C. B., Otter, M. L. & Durrheim, R. (1990). Ultramafic Rocks in the Center of the Vredefort Structure (South-Africa) - Possible Exposure of the Upper Mantle: Chemical Geology 83: 233-248.
- Hart, R. J., McDonald, I., Tredoux, M., de Wit, M. J., Carlson, R. W., Andreoli, M., Moser, D. E. & Ashwal, L. D. (2004). New PGE and Re/Os-isotope data from lower crustal sections of the Vredefort Dome and a reinterpretation of its "crust on edge" profile: South African Journal of Geology 107: 173-184.
- Hartnady, C. J., Joubert, P. & Stowe, C. (1985). Proterozoic crustal evolution in Southwestern Africa. Episodes 8: 236-244.
- Hawkesworth, C. J. & Kemp, A. I. S. (2006a). The differentiation and rates of generation of the continental crust. Chemical Geology 226: 134-143.
- Hawkesworth, C. J. & Kemp, A. I. S. (2006b). Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology 226: 144-162.
- Heaman, L. M., Bowsin, R. & Crocket, J. (1990). The chemical compositions of igneous zircon suites: implications for geochemical tracer studies. Geochimica et Cosmochimica Acta 54, 1597–1607.
- Hidaka, H., Shimizu, H. & Adachi, M. (2002). U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: evidence for an Archean provenance. Chemical Geology 187: 279-293.
- Hirata, T. & Nesbitt, R. W. (1995). U-Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochimica et Cosmochimica Acta 59: 2491-2500.
- Hirata, T. (1997). Soft ablation technique for laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 12: 1337-1342.
- Hirata, T., Iizuka, T. & Orihashi, Y. (2005). Reduction of mercury background on ICP-mass spectrometry for in-situ U-Pb age determinations of zircon samples. Journal of Analytical Atomic Spectrometry 20: 696-701.

- Hoffmann, P. (1991). Did the breakout of Laurentia turn Gondwanaland inside out? Science 252:1409–1412.
- Horn, I., Rudnick, R. L. & McDonough, W. F. (2000). Precise elemental and isotopic determination by simultaneous solution nebulization and laser ablation ICP-MS: application to U-Pb geochronology. Chemical Geology 164: 281-301.
- Hoskin, P. W. O. (1998). Minor and trace element analysis of natural zircon (ZrSiO₄) by SIMS and laser ablation ICPMS A consideration and comparison of two broadly competitive techniques. Journal of Trace & Microprobe Techniques 16: 301-326.
- Hoskin, P. W. O. & Ireland, T. R. (2000). Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28: 627-630.
- Hoskin, P. W. O. & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. In Hanchar, J. M. & Hoskin, P. W. O. (eds). Zircon. Mineralogical Society of America & Geochemical Society: Reviews in Mineralogy & Geochemistry, volume 53: p. 27-62.
- Hoskin, P. W. O. (2005). Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills. Geochimica et Cosmochimica Acta 69: 637-648.
- Horstwood, M. S. A., Foster, G. L., Parrish, R. R., Noble, S. R. & Nowell, G. M. (2003). Common-Pb corrected in-situ U-Pb acessory mineral geochronology by LA-ICP-MC-MS. Journal of Analytical Atomic Spectrometry 18: 837-846.
- Hurley, P. M. & Rand, J.R. (1969). Pre-drift continental nuclei. Science 164: 1229–1242.
- Imai, N. & Yamamoto, M.(1994). Direct analysis of laminated dolomite and zircon by laser ablation inductively coupled plasma mass spectrometry. Microchemical Journal 50: 281-288.
- Iizuka, T. & Hirata, T. (2004). Simultaneous determinations of U-Pb age and REE abundances for zircons using ArF excimer laser ablation-ICPMS: Geochemical Journal 38: 229-241.
- Iizuka, T., Hirata, T., Komiya, T., Rino, S., Katayama, I., Motoki, A. & Maruyama, S. (2005). U-Pb and Lu-Hf Isotope systematics of zircons from the Mississippi river sand: Implications for reworking and growth of continental crust. Geology 33: 485-488.
- Iizuka, T. & Hirata, T. (2005). Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation MC-ICPMS technique. Chemical Geology 220: 121-137.
- Ireland, T. R. & Wlotzka, F. (1992). The oldest zircons in the solar system Earth and Planetary Science Letters 109: 1-10.
- Jackson, S. E., Longerich, H. P., Dunning, G. R. & Fryer, B. J. (1992). The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in-situ trace-element determinations in minerals. The Canadian Mineralogist 30, Part 4: 1049-1064.
- Jackson S. E., Longerich H. P., Horn, I. & Dunning, R. (1996). The application of laser application microprobe (LAM)-ICP-MS to in situ U-Pbzircongeochronology. Journal of Conference Abstracts 1: 283.

- Jackson, S. E. & Longerich, H. P. (1998). Application of a frequency quintupled Nd-YAG source (l = 213nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals. Journal of Analytical Atomic Spectrometry 13 (9): 935-940.
- Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211(1-2): 47-69.
- Jacobsen, Y., Münker, C. & Mezger, K. (2003). Hf isotope compositions in detrial zircons as a new tool for provenance studies. Geophysical Research Abstracts 5: EAE03A-A-10282.
- Jain, J. C., Meal, C. R. & Hanchar, M. (2001). Problems associated with the determination of rare earth elements of a "gem" quality zircon by inductively coupled plasma-mass spectrometry. Geostandards Newsletter 25: 229-237.
- Jeffries, T. E., Pearce N. J. G., Perkins, W. T. & Raith, A. (1996). Chemical fractionation during infrared and ultraviolet laser ablation inductively coupled plasma mass spectrometry - implications for mineral microanalysis. Analytical Communications 33: 35-39.
- Jeffries, T. E., Jackson, S. E. & Longerich, H. P. (1998). Application of a frequency quintupled Nd-YAG source (l = 213nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals. Journal of Analytical Atomic Spectrometry 13 (9): 935-940.
- Jeffries, T. E., Fernandez-Suarez, J, Corfu, F. & Gutierrez Alonso, G. (2003). Advances in U-Pb geochronology using a frequency quintupled Nd:YAG based laser ablation system (l=213nm) and quadrupole based ICP-MS. Journal of Analytical Atomic Spectrometry 18: 847-855.
- Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. (2006). Improvement of in situ Pb isotope analysis by LA-ICPMS using a 193 nm Nd:YAG laser . Journal of Analytical Atomic Spectrometry 121: 666–675. DOI: 10.1039/b603890e.
- Johnson, M. R., van Vurren, C. J., Visser, J. N. J., Cole, D. I., Wickens, H. de V., Christie, A. D. M., Roberts, D. L. & Brandl, G. (2006). Sedimentary rocks of the Karoo Supergroup. In: The Geology of South Africa. Edited by Johnson, M. R., Anhausser, C. R. & Thomas R. J. (2006). Geological Society of South Africa, Johannesburg & Council for Geoscience, Pretoria, pp. 461-499.
- Kamo, S. L., Reimold, W. U., Krogh, T. E. & Colliston, W. P. (1996). A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and Granophyre: Earth and Planetary Science Letters 144: 369-387.
- Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A. & Kinny, P. D. (2006). Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439 (7076): 580-583.
- Kemp, A. I. S., Foster, G. L., Schersten, A., Whitehouse, M. J., Darling, J. & Storey, C. (2008). Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. Chemical Geology doi.org/10.1016/j.chemgeo.2008.06.019.

- Ketchum, J. W. F., Jackson, S. E., Culshaw, N. G. & Barr, S. M. (2001). Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin-foredeep sequence based on petrochemistry and U-Pb (TIMS and LAM-ICP-MS) geochronology. Precambrian Research 105: 331-356.
- Kinny, P. D. & Maas, R. (2003). Lu-Hf and Sm-Nd isotope systems in zircon. In Hanchar, J. M. & Hoskin, P. W. O. (eds). Zircon. Mineralogical Society of America & Geochemical Society: Reviews in Mineralogy & Geochemistry, volume 53: p. 327-341.
- Kleinhanns, I., Kreissig, K., Kamber, B. S., Meisel, T., Nägler, T. F. & Kramers, J. D. (2002). Combined chemical separation of Lu, Hf, Sm, Nd, and REEs from a single rock digest: precise and accurate isotope determinations of Lu–Hf and Sm–Nd using multicollector-ICPMS. Analytical Chemistry: 74, 67–73.
- Kosler, J., Fonneland, H., Sylvester, P., Tubrett, M. & Pedersen, R.-B. (2002). U-Pb dating of detrital zircons for sediment provenance studies - a comparison of laser ablation ICP-MS and SIMS techniques. Chemical Geology 182: 605-618.
- Kosler J., Bowes D. R., Konopasek J. & Mikova J. (2004). Evidence from laser ablation ICPMS dating of zircons in Erzgebirge orthogneisses for Early Cambrian and Early Ordovician pulses of granitic plutonism in the western Bohemian Massif. European Journal of Mineralogy 16: 15-22.
- Knudsen, T.-L., Griffin, W. L., Hartz, E. H., Andresen A. & Jackson, S. E. (2001). In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: a record of repeated crustal reworking. Contributions to Mineralogy and Petrology 141: 83-94.
- Kramers, J. D. (2007). Hierarchical Earth accretion and the Hadean Eon. Journal of the Geological Society of London 164: 3-17.
- Kröner, A., Hegner, E., Wendt, J. I. & Byerly, G. R. (1996). The oldest part of the Barberton granitoid-greenstone terrain, South Africa: Evidence for crust formation between 3.5 and 3.7 Ga. Precambrian Research 78: 105-124.
- Kröner, A., Jaeckel, P., Brandl, G., Nemchin, A. A. & Pidgeon, R. T. (1998). Evolution of the northeastern Kaapvaal craton and the central Limpopo belt, South Africa, based on single-zircon ages. Geologie En Mijnbouw 76: 361-364.
- Kröner, A., Jaeckel, P., Brandl, G., Nemchin, A. A. & Pidgeon, R. T. (1999). Singlezirconages for granitoid gneisses in the Central Zone of the Limpopo Belt, Southern Africa and geodynamic significance. Precambrian Research 93: 299-337.
- Kröner, A. & Tegtmeyer, A. (1994). Gneiss-greenstone relationships in the Ancient Gneiss Complex of southwestern Swaziland, southern Africa, and implications for early crustal evolution. Precambrian Research 67: 109-139.
- Kröner, A., Jaeckel, P., Hofmann, A., Nemchin, A. A. & Brandl, G. (1998). Field relationships and age of supracrustal Belt Bridge Complex and associated granitoid gneisses in the Central Zone of the Limpopo Belt, South Africa. South African Journal of Geology 101: 201-213.

- Lana, C., Gibson, R. L., Reimold, W. U., & Minnitt, R. C. A. (2003). Geology and geochemistry of a granite-greenstone association in the southeastern Vredefort dome, South Africa. South African Journal of Geology 106: 291-314.
- Lana, C., Reimold, W. U., Gibson, R. L., Koeberl, C. & Siegesmund, S. (2004). Nature of the Archean midcrust in the core of the Vredefort Dome, Central Kaapvaal Craton, South Africa. Geochimica et Cosmochimica Acta 68: 623-642.
- Leost, I., Stachel, T., Brey, G. P., Harris, J. W. & Ryabchikov, I. D. (2003). Diamond formation and source carbonation: mineral associations in diamonds from Namibia. Contributions to Mineralogy and Petrology 145: 15-24.
- Li, X.-H., Liang, X.-R., Sun, M., Guan, H. & Malpas, J. G. (2001). Precise ²⁰⁶Pb/²³⁸U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation. Chemical Geology 175: 209-219.
- Liu, H, Borisov, O. V., Mao, X., Shuttleworth, S. & Russo, R. E. (2000). Pb/U fractionation during Nd:YAG 213nm and 266nm laser ablation sampling with inductivley coupled plasma mass spectrometry. Applied Spectros 54:1435-1442.
- Ludwig, K. R. (2003). Isoplot v. 3.41 a geochronological toolkit for Microsoft Excel. Berkley Geochronology Center, Special publication No. 4, pp. 71.
- Machado, N., Schrank, A., Noce, C. M. & Gauthier, G. (1996). Ages of detrital zircon from Archean-Paleoproterozoic sequences: implications for greenstone belt setting and evolution of a Transamazonian foreland basin in Quadrilatero Ferriferro, SE Bazil. Earth and Planetary Science Letters 141: 259-276.
- Machado, N. & Simonetti, A. (2001). U-Pb dating and Hf isotopic composition of zircon by laser ablation-MC-ICP-MS. Laserablation-ICPMS in the Earth sciences. P. Sylvester. St John Newfoundland, Mineralogical Association of Canada. 29: 121-146.
- McCarthy, T. & Rubridge, B. (2005). The story of earth & life. A southern african perspective on a 4.6- billion- year journey. Struik Publishers, Cape Town, pp. 335.
- McCourt, S., Hilliard, P., Armstrong, R.A. & Munyanyiwa, H. (2001). SHRIMP U-Pb zircon geochronology of the Hurungwe granite north-west Zimbabwe : age constraints on the timing of the Magondi orogeny and implications for the correlation between the Kheis and Magondi Belts. South African Journal of Geology 104: 39-46.
- McDonough, W. F. & Sun, S. S. (1995). The Composition of the Earth. Chemical Geology 120: 223-253.
- Moen, H. F. G. & Armstrong, R. A. (2008). New age constraints on the tectogenesis of the Kheis Subprovince and the evolution of the eastern Namaqua Province. South African Journal of Geology 111: 79-88.
- Moorbath, S. (1977). Ages, isotopes and evolution of Precambrian continental crust. Chemical Geology 20: 151–187.
- Morton, A. C., Claoué-Long, J. C. & Berge, C. (1996). SHRIMP constraints on sediment provenance and transport history in the Mesozoic Statfjord formation, North Sea. Journal of the Geological Society (London) 153: 915-929.
- Moser, D. E. (1997). Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa. Geology 25: 7-10.
- Moser, D. E., Flowers, R. M. & Hart, R. J. (2001). Birth of the Kaapvaal tectosphere 3.08 billion years ago. Science 291: 465-468.

- Möller, A., O'Brien, P. J., Kennedy, A. & Kröner, A. (2003). Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh temperature granulites of Rogaland (SW Norway). In: Vance, D., Müller, W., Villa, I.M. (eds.) Geochronology: Linking the Isotopic Record with Petrology and Textures. Geological Society of London Special Publication 220, pp 65-81.
- Murali, A. V., Parthasarathy, R., Mahadevan, T. M. & Sankar Das, M. (1983). Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments. - A case study on Indian zircons. Geochimica et Cosmochimica Acta 41: 2047-2052.
- Nagler, T. F. & Kramers, J. D. (1998). Nd isotopic evolution of the upper mantle during the Precambrian: models, data and the uncertainty of both. Precambrian Research 91: 233-252.
- Nebel-Jacobsen, Y., Scherer, E. E., Münker, C. & Mezger, K. (2005). Separation of U, Pb, Lu, and Hf from single zircons for combined U–Pb dating and Hf isotope measurements by TIMS and MC-ICPMS. Chemical Geology 220: 105–120.
- Newton, A. R., Shone, R W. & Booth P. W. K. (2006). The Cape Fold Belt. In: The Geology of South Africa. Edited by Johnson, M. R., Anhausser, C. R. & Thomas R. J. (2006). Geological Society of South Africa, Johannesburg & Council for Geoscience, Pretoria, pp. 521-530.
- van Niekerk, H. S. (2006). The origin of the Kheis Terrane and its relationship with the Archean Kaapvaal Craton and the Grenvillian Namaqua Province in southern Africa. PhD thesis, Faculty of Science of the university of Johannesburg, 399p.
- Niu, F. & James, D. E. (2002). Fine structure of the lowermost crust beneath the Kaapvaal Craton and its implication for crustal formation and evolution. Earth Planetary Science Letters 200: 121-130.
- Nguema Mve, O. P. (2005). Petrology, Geochronoly and Provenanc of the Lainsburg and Tanqua Karoo submarine fan systems, Ecca Group, South Africa. Masterthesis, Department of Geology, University of Stellenbosch.
- O'Nions, R. K., Evensen, N. M. & Hamilton, P. J. 1(979). Geochemical modeling of mantle differentiation and crustal growth. Journal of Geophysical Research 84: 6091–6101.
- Pankhurst, R. J., Rapela, C. W., Loske, W. P., Marquet, M. & Fanning, C. M. (2003). Chronological study of the pre-Permian basement rocks of southern Ptagonia. J. South Amer. Earth Science 16; 27-44.
- Partridge, T. C., Botha, G. A. & Haddon, I. G. (2006). Cenozoic deposits of the interior. In: The Geology of South Africa. Edited by Johnson, M. R., Anhausser, C. R. & Thomas R. J. (2006). Geological Society of South Africa, Johannesburg & Council for Geoscience, Pretoria, pp. 585-604.
- Patchett, P. J. & Tatsumoto, M. (1980a). A routine high-precision method for Lu-Hf isotope geochemistry and chronology. Contributions to Mineralogy and Petrology 75: 263-267.
- Patchett, P. J. & Tatsumoto, M. (1980b). Lu-Hf totalrock isochron for the eucrite meteorites. Nature 288,57 I - 574.
- Patchett, P. J. & Tatsumoto, M. (1980c). Hafnium isotope variations in oceanic basalts. Geophysical Research Letters 7: 1077-1080.

- Patchett, P. J., Kouvo, O., Hedge, C. E. & Tatsumoto, M. (1981). Evolution of Continental-Crust and Mantle Heterogeneity - Evidence from Hf Isotopes. Contributions to Mineralogy and Petrology 78: 279-297.
- Patchett, P. J. (1983). Importance of the Lu-Hf isotopic system of planetary chronology and chemical evolution. Geochimica et Cosmochimica Acta 47: 81-91.
- Patchett, P. J. & Samson, S. D. (2003). Ages and growth off the continental crust from radiogenic isotopes. In: Holland, H. D. & Turekian, K. K. (eds) Treatise of Geochemistry. Elsevier, Amsterdam, vol. 3.10, pp. 1-28.
- Pearce, N. J. G., Perkins, W. T., Westgate, J. W., Gorton, M. P., Jackson, S. E., Neal, C. R. & Chenery, S.P. (1997). Compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 gas reference materials. Geostandard Newsletter 21 (1): 115–144.
- Pettersson, A., Cornell, D. H., Moen, H. F. G., Reddy, S. & Evans, D. (2007). Ion-probe dating of 1.2 Ga collision and crustal architecture in the Namaqua-Natal Province of southern Africa. Precambrian Research 158: 79–92.
- Pettke, T., Andreas Audétat, A., Schaltegger, U. & Heinrich, C. A. (2005). Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia).
 Part II: Evolving zircon and thorite trace element chemistry. Chemical Geology 220: 191–213.
- Philander, C. & Rozendaal, A. (2000). Geochemistry of detrital zircon: an indicator of provenance. Journal of African Earth Sciences 31: 56-57.
- Pollock, J. C., Wilton, D. H. C., van Staall, C. R. & Tubrett, M. N. (2002). Laser ablation ICP-MS geochronology and provenance of detrital zircons from the Rogerson lake conglomerate, Botwood belt, Newfoundland. Current Research: Newfoundland, Department of Mines and Energy, Geological Survey, Report: 02-1: 169-183.
- Poujol, M., Anhaeusser, C. R. & Armstrong, R. A. (2002). "Episodic granitoid emplacement in the Archaean Amalia–Kraaipan terrane, South Africa: confirmation from single zircon U–Pb geochronology." Journal of African Earth Sciences 35: 147–161.
- Poujol, M., Robb, L. J., Anhaeusser, C. R. & Gericke, B. (2003). A review of the geochronological constraints on the evolution of the Kaapvaal Craton, South Africa. Precambrian Research 127: 181-213.
- Poujol, M., Kiefer, R., Robb, L. J., Anhaeusser, C. R. & Armstrong, R. A. (2005). New U-Pb data on zircons from the Amalia greenstone belt Southern Africa: insights into the Neoarchaean evolution of the Kaapvaal Craton. South African Journal of Geology 108: 317-332.
- Poujol, M. (2007). An overview of the Pre-Mesoarchean rocks of the Kaapvaal Craton, South Africa. chapter 5. (20). In Earth's Oldest Rocks (edited by van Kranendonk, M. J., Smithies, R. H. & Bennett, V. C.) Developments in Precambrian Geology, Vol. 15 (Condie, K. C., series editor) Elsevier.
- Poujol, M., Hirner, A. J., Armstrong, R. A. & Anhaeusser, C. R. (2008). U-Pb SHRIMP data for the Madibe greenstone belt: implications for crustal growth on the western margin of the Kaapvaal Craton, South Africa. South African Journal of Geology 111: 67-78.
- Pupin, J. P. (1980). Zircon and granite petrology. Contributions to Mineralogy and Petrology 73: 207–220.

- Rahl, J., Reiners, P. W., Campbell, I. H., Nicolescu, S., Allen, C. M. (2003). Combined single grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology 31: 761–64.
- Rayner, N., Stern, R. A. & Carr, S. D. (2005). Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contributions to Mineralogy and Petrology 148: 721–734.
- Reid, D. L. (1982). Age relationships within the Vioolsdrif batholith, lower Orange River region. II. Two stage emplacement history and the extent of Kibaran overprinting. Trans. Geol. Soc. S. Afr. 85:105–110.
- Reid, D. L. (1997). Sm-Nd age and REE geochemistry of Proterozoic arc-related igneous rocks in the Richtersveld Subprovince, Namaqua Mobile Belt, Southern Africa. Journal of African Earth Sciences. 24: 621–633.
- Reimold, W. U., Pybus, G. Q. J., Kruger, F. J., Layer, P. W. & Koeberl, C. (2000). The Anna's Rust Sheet and related gabbroic intrusions in the Vredefort Dome-Kibaran magmatic event on the Kaapvaal Craton and beyond? Journal of African Earth Sciences 31 (3149: 499-521.
- Reimold, W.U., Leroux, H. & Gibson, R.L. (2002). Shocked and thermally metamorphosed zircon from the Vredefort impact structure, South Africa: A transmission electron microscopic study. European Journal of Mineralogy 14: 859-868.
- Reymer, A. & Schubert, G. (1984). Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3: 63–77.
- Riley, T. R., Curtis, M. L., Leat, P. T., Watkeys, M. K., Duncan, R. A., Millar, I. L. & Owens, W. H. (2006). Overlap of Karoo and Ferrar Magma Types in KwaZulu-Natal, South Africa. Journal of Petrology 47 (3): 541–566.
- Rino, S., Komiya, T., Windley, B. F., Katayama, I., Motoki, A. & Hirata, T. (2004). Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors 146: 369-394.
- Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M. & Zhao, D. (2008). The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Research 14 (1-2): 51-72.
- Robb, L. J., Armstrong, R. A. & Waters, D. J. (1999). The history of granulite-facies metamorphism and crustal growth from single zircon U-Pb geochronology: Namaqualand, South Africa. Journal of Petrology 40:1747–1770.
- Robb, L. J., Brandl, G., Anhaeusser, C. R. & Poujol, M. (2006). Archaean Granitoid Intrusions. In: The Geology of South Africa. Edited by Johnson, M. R., Anhausser, C. R. & Thomas R. J. (2006). Geological Society of South Africa, Johannesburg & Council for Geoscience, Pretoria, pp. 57-94.
- Rogers, J. J. W. (2000). Origin and fragmentation of the possible approximately 1.5-Ga supercontinent Columbia. Abstracts with Programs, Geological Society of America 32, 455.
- Rogers, J. J. W. & Santosh, M. (2004). Continents and Supercontinents. Oxford University Press, pp. 300.
- Rollinson, H. R. (2007). Early Earth Systems.: A Geochemical Approach. Blackwell Publishing, p. 285.
- Rubatto, D. (2002). Zircon trace element geochemistry: distribution coefficients and the link between U–Pb ages and metamorphism. Chemical Geology 184: 123–138.
- Rubatto, D. & Hermann, J. Zircon behavoiur in deeply subducted rocks. In Harley, S. L. & Kelly, N. M. (2007). Zircon tiny but timely. Elements 3 (1) 31-36.
- Rudnick, R. L. & Gao, S. (2003). The Composition of the Continental Crust, Vol. 3.01, pp. 1-64. In The Crust (ed. R.L. Rudnick) Vol. 3, Treatise on Geochemistry (eds. H. D. Holland & K. K. Turekian), Elsevier-Pergamon, Oxford.
- Russo, R. E., Mao, X., Gonzales, J. J. & Mao, S. (2002). Influence of wavelength on fractination in laser ablation ICP-MS. Journal of Analytical Atom Spectrometry 17: 1072-1075.
- Schaltegger, U., Fanning, C. M., Günther, D., Maurin, J. C., Schulmann, K. & Gebauer, D. (1999). Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology (1999) 134: 186-201.
- Scherer, E., Münker, C. & Mezger, K. (2001). Calibration of the lutetium-hafnium clock. Science 293: 1766-1766.
- Scherer, E., Whitehouse, M. J. & Münker, C. (2007). Zircon as a monitor of crustal growth. In Harley, S. L. & Kelly, N. M. (2007). Zircon tiny but timely. Elements 3 (1) 19-24.
- Segal, I., Halicz, L. & Platzner, I. T. (2003). Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure. Journal of Analytical Atomic Spectrometry 18: 1217–1223.
- Simonetti, A., Heaman, L. M., Hartlaub, R. P., Creaser, R. A., MacHattie, T. G. & Bohm, C. (2005). U-Pb zircon dating by laser ablation-MC-ICP-MS using a new multiple ion counting-faraday collector array. Journal of Analytical Atomic Spectrometry 20: 677-686.
- Sircombe, K. N. (2004). Agedisplay: an Excel workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Computers & Geosciences 30: 21-31.
- Skinner, E. M. W. & Truswell, J. F. (2006). Kimberlites. In: The Geology of South Africa. Edited by Johnson, M. R., Anhausser, C. R. & Thomas R. J. (2006). Geological Society of South Africa, Johannesburg & Council for Geoscience, Pretoria, pp. 651-659.
- Slama, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M., Morris, G. A., Nasdala, L., Norbert, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. (2008). Plesovice zircon a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249 (1-2): 1-35, doi: 10.1016/j.chemgeo.2007.11.005.
- Slama, J., Kosler, J. & Pedersen, R.-B. (2007). Behaviour of zircon in high-grade metamorphic rocks - evidence from Hf isotopes, trace elements and textural studies. Contributions to Mineralogy and Petrology 154: 335-356.

- Söderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. (2004). The ¹⁷⁶Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions, Earth and Planetary Science Letters 219: 311-324.
- Stepto, D. (1990) The geology and gravity field in the central core of the Vredefort structure. Tectonophysics 171: 75-103.
- Stevens, G., Gibson, R. L. & Droop, G. T. R. (1997). Mid-crustal granulite facies metamorphism in the Central Kaapvaal craton: the Bushveld Complex connection. Precambrian Research 82: 113-132.
- Stevenson, R. K. & Patchett, P. J. (1990). Implications for the Evolution of Continental-Crust from Hf-Isotope Systematics of Archean Detrital Zircons. Geochimica et Cosmochimica Acta 54: 1683-1697.
- Stowe, C.W. (1986). Synthesis and interpretation of structures along the north-eastern boundary of the Namaqua tectonic Province, South African Transactions of the Geological Society of South Africa 89: 185-198.
- Stowe, C.W. (1989). Discussion on 'The Proterozoic Magondi Mobile Belt in Zimbabwe a review'. South African Journal of Geology. 92: 69-71.
- Taylor, S. R. & McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312pp.
- Tera, F. & Wasserburg, G. J. (1972). U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planetary Sciences Letters 17: 281-304.
- Thomas, R. J., von Veh, M. V. & McCourt, S. (1993). The tectonic evolution of southern Africa: an overview. Journal of African Earth Sciences 16: 181-213.
- Thomas, R. J., Agenbacht, A. L. D., Cornell, D. H. & Moore, J. M. (1994). The late Kibaran of southern Africa: tectonic evolution and metallogeny. Ore Geology Revue 9: 131-160.
- Thirlwall, M. F. & Walder, A. J. (1995). In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. Chemical Geology 122: 241–247.
- Tomaschek, F., Kennedy, A. K., Villa, I. M., Lagos, M. & Ballhaus, C. (2003). Zircons from Syros, Cyclades, Greece - recrystallization and mobilization of zircon during highpressure metamorphism. Journal of Petrology 44: 1977–2002.
- Ulfbeck, D., Baker, J., Waight, T. & Krogstad, E. J. (2003). Rapid sample digestion by fusion and chemical separation of Hf for isotopic analysis by MC-ICPMS. Talanta 59: 365–373.
- Utsunomiya, S., Valley, J. W., . Cavosie, A. J., Wilde, S. A. & Ewing, R. C. (2007). Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills, Western Australia. Chemical Geology 236: 92-111.
- van Achterbergh, E., Ryan, C. G., Jackson, S. E. & Griffin, W. L. (2001). Data reduction Software for LA-ICP-MS. In: Laser-Ablation-ICPMS in the Earth Sciences. Principle and Applications. Ed. Sylvester, P., Short Course Series, v. 29, Mineralogical Association of Canada, p. 239.

- Veevers, J. J., Saeed, A., Belousova, E. A. & Griffin, W. L. (2005). U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modem sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgam Craton. Earth-Science Reviews 68 (3-4): 245-279.
- Veevers J. J. & Saeed, A. (2007). Central Antarctic provenance of Permian sandstones in Dronning Maud Land and the Karoo Basin: Integration of U-Pb and T-_{DM} ages and host-rock affinity from detrital zircons. Sedimentary Geology 202 (4): 653-676.
- Veizer, J. & Jansen, S. L. (1979). Basement and sedimentary recycling and continental evolution. Journal of Geology 87: 341–370.
- Vermeesch, P. (2004). How many grains are needed for a provenance study? Earth and Planetary Science Letters 224 (3-4): 441-451.
- Vervoort, J. D. & Patchett, P. J. (1996). Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta. 60: 3717-3723.
- Vervoort, J. D. & Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63: 533–556.
- Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. & Albarède, F. (1999). Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters 168: 79-99.
- Vervoort, J. D., Patchett, P. J., Blichert-Toft, J., Albarède, F., Downes, H. & Rudnick, R. (2000). Hf-Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters 181: 115-129.
- Vervoort, J. D., Patchett, P. J., Söderlund, U. & Baker, M. (2004). Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICP-MS, Geochemisytry, Geophysics, Geosystems 5 Q11002, doi:10.1029/2004GC000721.
- Visser, J. N. J. (1987). The palaeogeography of part of southwestern Gondwana during the Permo-Carboniferous glaciation. Palaeogeography Palaeoclimatology Palaeoecology 61: 205-219.
- Walraven, F., Armstrong, R. A. & Kruger, F. J. (1990). A chronostratigraphic framework for the north-central Kaapvaal craton, the Bushveld Complex and the Vredefort structure. Tectonophysics, 171: 23-48.
- Walraven, F. (1997). Geochronology of the Rooiberg Group, Transvaal Super Group, South Africa. Inform. Circ. Econ. Geol. Res. Unit, Univ. Witwatersrand, Johannesburg 316, 21pp.
- Wang, C. Y., Campbell, I. H., Allen, C. M., Williams, I. S. & Eggins, S. M. (2008). Rate of growth of the preserved North American continental crust: evidence from Hf and O isotopes in Mississippi detrital zircons. Geochimica et Cosmochimica Acta DOI: 10.1016/j.gca.2008.10.037.
- Wetherill, G.W. (1956). Discordant Uranium-Lead Ages. Transactions of the American Geophysical Union 37 (3): 320-326.

- Whitehouse, M. J. & Kamber, B. S. (2002). On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth's earliest magmatic differentiation. Earth and Planetary Science Letters 204: 333-346.
- Whitehouse, M. J. & Kamber, B. S. (2003). A rare earth element study of complex zircons from early Archaean Amîtsoq gneisses, Godthåbsfjord, south-west Greenland. Precambrian Research 126: 363–377.
- Whitehouse, M. J. & Kamber, B. S. (2005). Assigning Dates to Thin Gneissic Veins in High-Grade Metamorphic Terranes: A Cautionary Tale from Akilia, Southwest Greenland. Journal of Petrology 46: 291-318.
- Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. & Speigel, W. (1995). 3 Natural zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and Ree Analyses. Geostandards Newsletter 19: 1-23.
- Wiedenbeck, M., Hanchar, J. M., Peck, W. H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L. & 21 others (2004) Further Characterization of the 91500 zircon crystal. Geostandards and Geoanalysis 28: 9-39.
- Williams, I. S. (2001). Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences 48: 557–580.
- Woodhead, J., Hergt, J., Shelley, M., Eggins, S. & Kemp, R. (2004). Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology 209: 121–135.
- Yuan, H., Gao, S., Liu, X., Li, H., Guenther, D. & Wu, F. (2004). Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasmamass spectrometry. Geostandards and Geoanalytical Research 28 (3): 353-370.
- Zeh, A., Gerdes, A., Klemd, R. & Barton Jr., J. M. (2007). Archaean to Proterozoic Crustal Evolution in the Central Zone of the Limpopo Belt (South Africa-Botswana): Constraints from Combined U-Pb and Lu-Hf Isotope Analyses of Zircon. Journal of Petrology 48 (8): 1605-1639.
- Zeh, A., Gerdes, A., Klemd, R. & Barton Jr., J. M. (2008). U-Pb and Lu-Hf isotope record of detrital zircon grains from the Limpopo Belt – evidence for crustal recycling at the Hadean to early-Archean transition. Geochimica et Cosmochimica Acta (2008), doi: 10.1016/j.gca.2008.07.033.

Anhang

Tabelle 1 U-Pb Daten

Orange	207	U (nnm)	Pb (nnm)	²⁰⁶ Ph / ²⁰⁴ Ph	Th/II	²⁰⁷ Ph / ²³⁵ I	$\pm 2\sigma$	²⁰⁶ Ph / ²³⁸ I	$\pm 2\sigma$	rho	²⁰⁷ Ph / ²⁰⁶ Ph	$\pm 2\sigma$	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$	Konkordanz
Mouth	(c.p.s.)	(ppiii)	(ppiii)	10/ 10	111/0	10/ 0	(70)	10/ 0	(70)	1110	10/ 10	(70)	Alter	(abs.)	Alter	(abs.)	Alter	(abs.)	(70)
(900)																			
Or1-1	44915	255	104	428	0.2	1.90902	5.2	0.18784	5.1	0.98	0.07371	3.2	1084	56	1110	56	1034	33	107
Or1-2	56123	2204	106	362	0.3	0.84019	2.7	0.06560	1.8	0.67	0.09289	2.0	619	17	410	7	1486	29	28
Or1-3	39052	604	47	164	0.5	1.78285	5.0	0.09915	2.1	0.42	0.13041	4.6	1039	52	609	13	2104	96	29
Or1-4	46249	2823	89	326	0.2	0.61039	3.8	0.05017	3.0	0.78	0.08824	2.4	484	19	316	9	1388	34	23
Or1-5	328677	2842	251	106	0.0	3.07936	2.8	0.10070	2.0	0.73	0.22177	1.9	1428	40	619	13	2994	56	21
Or2-1	11771	229	14	78	1.4	0.82652	5.7	0.08126	2.5	0.43	0.07377	6.8	612	35	504	12	1035	70	49
Or2-2	29984	619	34	93	0.5	1.24527	5.6	0.12619	5.2	0.92	0.07157	10.2	821	46	766	40	974	99	79
Or2-3	78125	324	139	327	0.8	1.47030	2.3	0.11674	2.1	0.91	0.09134	3.8	918	21	712	15	1454	55	49
Or2-4	71149	301	159	947	0.3	1.08571	2.6	0.10505	1.9	0.72	0.07496	1.8	746	19	644	12	1067	19	60
Or3-1	42999	363	99	506	0.1	0.72779	2.8	0.07229	1.9	0.67	0.07302	1.8	555	16	450	8	1014	18	44
Or8-1	8355	83	19	198	0.4	2.96327	3.2	0.28830	2.5	0.77	0.07455	2.1	1398	45	1633	41	1056	22	155
Or8-2	4273	128	12	129	0.4	0.95357	3.4	0.11305	2.3	0.67	0.06118	2.5	680	23	690	16	645	16	107
Or9-1	9662	206	23	237	0.2	1.56265	2.8	0.15981	1.9	0.67	0.07092	2.1	956	27	956	18	955	20	100
Or10-1	35701	1369	81	533	0.1	0.83089	3.3	0.07682	2.1	0.62	0.07845	2.6	614	20	477	10	1158	30	41
Or10-2	39455	2995	96	501	0.3	0.42536	3.0	0.04559	2.2	0.71	0.06767	2.2	360	11	287	6	859	18	33
Or11-1	20896	560	31	144	0.2	1.13137	10.8	0.07285	8.7	0.81	0.11263	6.4	768	83	453	40	1842	118	25
Or11-2	17433	578	36	245	0.1	0.95587	6.1	0.08415	5.4	0.88	0.08239	2.9	681	42	521	28	1255	36	42
Or12-1	7491	38	9	77	0.3	6.43189	5.3	0.33629	4.2	0.80	0.13872	3.2	2037	107	1869	78	2211	70	85
Or12-2	19235	577	38	269	0.3	1.01060	7.8	0.08734	7.2	0.92	0.08392	3.1	709	56	540	39	1291	40	42
Or12-3	14953	489	28	203	0.0	0.92515	7.5	0.07489	7.0	0.93	0.08960	2.7	665	50	466	32	1417	38	33
Or13-1	2690	16	6	57	3.2	4.68592	7.5	0.43227	6.2	0.84	0.07862	4.1	1765	132	2316	144	1163	48	199
Or13-2	2982	38	7	49	0.6	1.83547	2.7	0.17496	2.1	0.80	0.07792	5.0	1058	28	1039	22	1145	57	91
Or13-3	627	6	1	10	0.3	1.89041	2.9	0.17595	2.0	0.68	0.08140	7.6	1078	31	1045	21	1231	93	85
Or15	19965	1879	177	227	0.1	0.68991	9.4	0.07804	5.7	0.51	0.06412	7.4	533	50	484	28	745	55	65
Or16	15590	973	164	388	0.3	1.52853	14.2	0.15185	4.9	0.36	0.07300	13.3	942	134	911	45	1014	106	90
Or17	19798	1655	203	398	0.5	1.03392	6.2	0.10183	4.0	0.20	0.07364	4.7	721	44	625	25	1032	49	61
Or18	15443	1668	145	238	0.5	0.79460	10.5	0.07772	5.7	0.28	0.07415	8.8	594	62	483	27	1045	98	46

Or19	9592	834	84	164	0.3	1.25604	18.8	0.11812	15.6	0.25	0.07712	10.4	826	155	720	112	1124	117	64
Or21	5444	706	53	93	0.1	1.06514	18.1	0.09270	17.5	0.30	0.08333	4.8	736	133	572	100	1277	62	45
Or22	16868	1876	187	315	0.2	0.82056	5.5	0.08553	2.8	0.17	0.06958	4.7	608	33	529	15	916	43	58
Or23	10290	1646	102	156	0.2	0.58106	15.4	0.05566	14.0	0.31	0.07572	6.6	465	72	349	49	1088	71	32
Or23-2	10659	1737	130	262	0.4	0.64264	9.6	0.06291	8.5	0.43	0.07409	4.6	504	49	393	33	1044	48	38
Or24	6137	192	56	121	0.8	5.04300	4.4	0.32286	2.2	0.44	0.11511	4.5	1827	80	1804	40	1882	85	96
Or26	1839	121	22	54	1.1	2.35341	4.6	0.20055	1.7	0.35	0.08350	4.5	1229	57	1178	20	1281	58	92
Or27	325	62	5	11	0.0	0.78231	13.7	0.07903	2.8	0.27	0.06763	10.0	587	80	490	14	857	86	57
Or28	936	71	12	32	0.5	2.96149	6.4	0.19623	1.8	0.34	0.10338	4.9	1398	89	1155	20	1686	82	69
Or29	470	109	8	19	0.3	0.64112	7.1	0.08195	1.7	0.23	0.06088	6.5	503	36	508	9	635	41	80
Or30	808	144	12	25	0.3	0.75192	7.5	0.08958	3.8	0.51	0.09870	6.2	569	43	553	21	1600	100	35
Or31	342	64	6	13	0.4	1.44859	7.1	0.10503	2.2	0.34	0.09699	4.5	909	65	644	14	1567	71	41
Or32	1565	97	20	44	0.8	2.76870	5.1	0.22252	1.5	0.32	0.07666	7.8	1347	68	1295	20	1112	86	116
Or33	345	26	5	10	1.1	2.13686	11.8	0.20302	2.0	0.25	0.07581	8.3	1161	137	1192	24	1090	90	109
Or34	423	61	6	13	0.5	0.87696	9.1	0.08978	2.8	0.32	0.07514	4.5	639	58	554	15	1072	48	52
Or35	3239	247	43	93	0.7	1.98108	4.2	0.18752	1.8	0.37	0.08100	5.1	1109	47	1108	20	1221	63	91
Or37	1481	324	27	61	0.2	1.03065	4.8	0.09350	2.0	0.36	0.08710	6.9	719	35	576	12	1363	94	42
Or38	253	55	4	9	0.5	1.06152	10.8	0.08631	1.7	0.24	0.09391	7.2	735	79	534	9	1506	108	35
Or39	1019	83	14	28	0.4	2.44532	8.0	0.18270	2.8	0.37	0.07843	4.6	1256	100	1082	31	1158	53	93
Or42	4941	369	63	114	0.2	2.01448	4.4	0.18758	1.6	0.34	0.07692	4.2	1120	49	1108	18	1119	47	99
Or43	9626	772	127	233	0.1	1.86317	4.2	0.18095	3.6	0.64	0.07300	5.1	1068	45	1072	38	1014	52	106
Or44	11208	2971	191	413	0.1	0.61409	6.5	0.06101	4.0	0.62	0.11419	5.0	486	32	382	15	1867	93	20
Or45	5401	196	59	142	0.9	5.13023	5.6	0.32584	2.5	0.45	0.07397	5.2	1841	103	1818	46	1041	54	175
Or46	10522	1776	178	468	0.1	1.23523	15.0	0.12112	14.0	0.94	0.08096	6.8	817	122	737	103	1221	82	60
Or47	2069	260	33	68	0.1	1.87425	12.0	0.16790	9.9	0.83	0.07974	4.8	1072	128	1001	99	1191	58	84
Or49	8521	752	133	316	0.2	2.14394	5.7	0.19500	3.0	0.53	0.08539	5.7	1163	66	1148	34	1324	75	87
Or50	4477	380	60	135	0.3	2.22357	6.3	0.18885	2.7	0.42	0.07265	4.9	1188	75	1115	30	1004	49	111
Or51	11893	1731	203	473	0.2	1.34677	5.8	0.13445	3.1	0.53	0.08328	5.4	866	50	813	25	1276	69	64
Or52	3684	334	56	120	0.2	2.12242	7.2	0.18483	4.8	0.66	0.07037	9.4	1156	83	1093	52	939	89	116
Or54	243	37	4	9	0.3	1.29626	10.6	0.13360	4.9	0.46	0.07649	8.1	844	90	808	40	1108	90	73
Or53	345	30	6	10	1.1	2.18337	8.5	0.20703	2.6	0.30	0.06764	10.0	1176	100	1213	31	858	86	141
Or55	529	133	10	22	0.9	0.80092	10.3	0.08588	2.7	0.27	0.08007	5.1	597	62	531	15	1199	61	44
Or56	4273	371	67	150	0.2	2.22392	5.8	0.20145	2.8	0.49	0.07493	6.4	1189	69	1183	34	1067	68	111
Or57	2014	144	25	50	0.5	1.84887	6.8	0.17895	2.4	0.36	0.08844	7.8	1063	72	1061	26	1392	108	76
Or58	3294	283	48	89	0.4	2.33614	8.1	0.19157	2.3	0.28	0.08424	5.0	1223	99	1130	26	1298	64	87
Or59	1732	71	14	36	1.0	3.78571	2.3	0.22279	1.1	0.50	0.11656	3.2	1590	72	1297	29	1904	61	68

Or60	13096	275	55	120	0.3	2.10412	2.0	0.18976	1.1	0.54	0.07811	3.5	1150	46	1120	25	1150	40	97
Or61	141	32	2	6	0.5	0.77107	6.3	0.07946	1.4	0.22	0.05063	11.8	580	73	493	14	224	26	220
Or62	11870	1540	102	224	0.4	0.62088	5.8	0.06982	4.5	0.79	0.07264	4.1	490	56	435	39	1004	41	43
Or63	2117	83	14	31	0.2	2.23453	2.7	0.17279	1.4	0.51	0.09241	4.9	1192	64	1027	29	1476	72	70
Or65	5675	224	45	110	0.5	2.36865	1.9	0.21847	0.6	0.34	0.07776	3.3	1233	47	1274	15	1141	38	112
Or66	19180	347	112	287	0.2	6.07212	1.7	0.36089	0.7	0.41	0.12018	3.0	1986	68	1986	28	1959	59	101
Or67	2544	150	24	62	0.3	1.76391	2.2	0.17478	0.8	0.35	0.07289	3.6	1032	45	1038	17	1011	37	103
Or68	944	76	6	15	0.5	0.69686	4.9	0.07891	1.6	0.33	0.05930	8.0	537	52	490	16	578	46	85
Or71	2328	187	15	52	0.2	0.73649	3.7	0.08897	1.3	0.34	0.06102	3.6	560	21	549	7	640	23	86
Or72	1581	144	13	56	0.2	0.81568	4.7	0.09694	3.0	0.64	0.07645	4.3	606	28	596	18	1107	48	54
Or73	2867	106	17	62	0.8	1.85269	4.5	0.17576	1.3	0.29	0.07952	2.8	1064	48	1044	14	1185	33	88
Or74	28712	1151	177	553	0.2	1.82968	3.9	0.16687	2.8	0.71	0.08735	3.0	1056	41	995	28	1368	41	73
Or76	9738	512	56	199	0.6	1.61783	5.6	0.13433	4.7	0.84	0.08225	3.3	977	55	813	38	1251	41	65
Or77	20427	924	110	389	0.4	1.50463	4.8	0.13268	3.4	0.72	0.08277	2.7	932	44	803	28	1264	34	64
Or78	11698	416	71	261	0.2	2.25435	3.3	0.19754	2.0	0.59	0.082766	3	1198	40	1162	23	1264	35	92
Or79	16769	1195	165	1649	0.0	1.85814	5.9	0.16581	3.8	0.65	0.08128	4.5	1066	62	989	37	1228	60	81
Or80	12779	986	112	1398	0.2	2.38466	11.0	0.13875	5.1	0.46	0.12465	9.8	1238	137	838	43	2024	202	41
Or81	13433	894	138	1239	0.1	1.73170	6.1	0.16984	4.6	0.75	0.07395	4.0	1020	62	1011	46	1040	47	97
Or82	8494	806	87	744	1.0	1.16454	6.2	0.11906	4.5	0.72	0.07094	4.4	784	49	725	32	956	46	76
Or83	4376	220	42	474	0.3	2.45669	5.6	0.22462	3.7	0.66	0.07932	4.2	1259	71	1306	49	1180	55	111
Or84	30245	755	186	1817	0.3	4.94711	6.1	0.28900	4.5	0.74	0.12415	4.1	1810	110	1637	74	2017	91	81
Or85	4611	1169	48	454	0.3	0.38299	5.9	0.04094	3.8	0.65	0.06785	4.5	329	19	259	10	864	42	30
Or86	18867	1238	181	1519	0.2	1.73768	5.8	0.16060	4.2	0.72	0.07847	4.0	1023	59	960	40	1159	52	83
Or87	13676	691	116	1041	0.3	1.90891	5.7	0.17634	4.0	0.70	0.07851	4.1	1084	62	1047	42	1160	53	90
Or88	2079	179	18	153	0.7	1.13284	13.4	0.09662	12.5	0.93	0.08504	4.9	769	103	595	74	1316	70	45
Or89	3628	172	34	305	0.5	2.37385	6.2	0.21513	4.7	0.75	0.08003	4.1	1235	77	1256	59	1198	54	105
Or90	10156	466	92	792	0.0	2.42736	5.6	0.21429	3.6	0.65	0.08215	4.2	1251	69	1252	45	1249	58	100
Or91	11354	913	113	1149	0.1	1.60788	6.1	0.14920	4.4	0.72	0.07816	4.2	973	59	896	40	1151	53	78
Or92	6121	330	60	606	0.1	2.10578	5.8	0.20217	3.9	0.67	0.07554	4.3	1151	67	1187	46	1083	51	110
Or93	10527	1068	68	726	0.0	1.14492	7.7	0.07150	6.1	0.80	0.11613	4.6	775	60	445	27	1897	95	23
Or94	20463	1187	162	1501	0.4	1.71892	6.7	0.12441	5.0	0.75	0.10020	4.4	1016	68	756	38	1628	79	46
Or95	8682	1128	74	782	0.1	0.81083	6.2	0.06824	4.2	0.68	0.08618	4.5	603	37	426	18	1342	66	32
Or96	2583	989	37	364	0.1	0.30763	6.2	0.04195	4.2	0.68	0.05319	4.5	272	17	265	11	337	17	79
Or97	5183	284	48	421	0.5	3.04076	11.7	0.19041	3.8	0.33	0.11582	11.0	1418	165	1124	43	1893	212	59
Or100	937	94	8	11	0.8	0.65471	5.4	0.09702	2.6	0.48	0.05507	4.8	511	28	597	15	415	103	144
Or101	9592	112	38	55	0.9	4.72373	3.4	0.37640	2.4	0.71	0.12273	2.4	1771	60	2059	50	1996	101	103

Or101-2	5365	63	21	34	0.6	6.24640	3.6	0.36020	2.6	0.72	0.12576	2.5	2011	73	1983	52	2040	100	97
Or102-1	2808	89	17	25	0.4	1.99191	3.6	0.19862	2.5	0.68	0.07997	2.7	1113	40	1168	29	1196	98	98
Or102-2	22125	1229	143	219	0.5	0.38114	24.0	0.13251	19.3	0.80	0.09758	14.3	328	79	802	155	1578	97	51
Or104-1	5506	54	20	34	0.8	6.11673	3.3	0.40391	2.4	0.72	0.13347	2.3	1993	65	2187	52	2144	95	102
Or105-1	7426	715	63	111	0.1	0.75762	3.2	0.09547	2.5	0.78	0.05873	2.0	573	15	588	2	557	11	106
Or105-2	4220	180	29	54	0.8	1.89288	3.4	0.17854	2.7	0.79	0.07350	2.1	1079	37	1059	29	1028	93	103
Or106-1	12533	427	77	149	0.3	2.22424	3.3	0.21220	2.6	0.78	0.07930	2.1	1189	40	1241	32	1180	91	105
Or106-2	7858	242	45	85	0.3	2.57738	3.5	0.21286	2.4	0.68	0.08020	2.5	1294	45	1244	30	1202	90	104
Or107-1	39808	1468	167	194	0.8	1.98107	27.7	0.13475	4.3	0.16	0.05831	27.3	1109	307	815	35	542	88	150
Or108-1	31955	1237	199	368	0.0	1.83918	5.7	0.21306	5.1	0.90	0.08103	2.5	1060	60	1245	64	1222	87	102
Or108-2	28714	1355	172	329	0.0	1.10608	5.9	0.15729	3.7	0.63	0.08522	4.6	756	45	942	35	1321	85	71
Or109-1	3976	135	24	45	0.3	2.28638	3.7	0.20219	2.7	0.73	0.08029	2.5	1208	44	1187	32	1204	84	99
Or110-1	1826	70	11	22	0.3	1.78561	5.0	0.17348	2.6	0.52	0.07698	4.3	1040	53	1031	27	1121	83	92
Or110-2	1810	79	12	24	0.3	1.02116	5.1	0.17241	2.7	0.52	0.07279	4.4	714	37	1025	27	1008	81	102
Or111-1	2055	73	14	26	0.3	1.87284	4.5	0.20802	2.5	0.56	0.07393	3.8	1072	48	1218	31	1040	80	117
Or111-2	10545	786	64	151	0.0	1.05813	9.5	0.09186	6.4	0.67	0.07777	7.1	733	70	566	36	1141	78	50
Or112-1	7922	304	50	100	0.5	1.38474	4.0	0.18673	2.5	0.62	0.08072	3.2	882	36	1104	28	1215	77	91
Or112-2	5305	205	33	67	0.2	1.86451	3.3	0.17685	2.5	0.74	0.07555	2.2	1069	36	1050	26	1083	76	97
Or113-1	10113	352	64	121	0.2	2.04987	3.2	0.19588	2.4	0.76	0.07623	2.1	1132	36	1153	28	1101	74	105
Or114-1	6800	306	45	121	85.9	1.57752	4.1	0.16673	3.5	0.85	0.07589	2.2	961	40	994	35	1092	73	91
Or115-1	5887	114	22	51	0.7	3.16430	4.7	0.21287	2.8	0.59	0.10287	3.8	1448	69	1244	35	1677	71	74
Or115-2	16921	551	102	249	0.2	2.40312	3.7	0.21240	3.0	0.80	0.07946	2.2	1244	46	1242	37	1184	70	105
Or116-1	21504	883	133	324	0.0	1.53561	4.1	0.16028	3.5	0.85	0.08061	2.2	945	39	958	34	1212	68	79
Or116-2	17632	239	72	181	0.2	5.45430	3.5	0.34457	2.7	0.78	0.12015	2.2	1893	66	1909	52	1958	67	97
Or118-1	163017	1511	103	180	1.2	0.74640	5.1	0.07674	3.1	0.61	0.07055	4.1	566	29	477	15	944	64	50
Or119-1	346008	1660	218	384	2.6	1.83104	5.5	0.17727	3.7	0.67	0.07492	4.1	1057	59	1052	39	1066	63	99
Or119-2	314105	1815	198	348	1.3	1.32228	6.1	0.13322	4.5	0.73	0.07199	4.2	856	52	806	36	986	61	82
Or120-1	196436	899	124	233	3.1	1.60344	6.3	0.13975	4.7	0.76	0.08321	4.1	972	61	843	40	1274	60	66
Or120-2	100612	364	64	121	2.6	2.41437	5.5	0.22146	3.7	0.68	0.07907	4.1	1247	69	1290	48	1174	58	110
Or123-1	208790	1170	132	281	0.4	1.37744	5.5	0.13124	3.7	0.67	0.07612	4.1	879	48	795	29	1098	57	72
Or126-1	285577	1554	180	406	0.2	1.21292	5.9	0.12199	4.4	0.76	0.07211	3.9	807	47	742	33	989	56	75
Or129-1	36054	123	23	46	10.2	2.77333	9.3	0.21150	3.6	0.39	0.09510	8.6	1348	125	1237	44	1530	54	81
Or129-2	25272	100	16	33	5.8	1.72923	5.6	0.17524	3.1	0.55	0.07157	4.6	1019	57	1041	32	974	53	107
Or131-1	61101	191	39	89	7.9	2.54169	5.1	0.21881	3.0	0.60	0.08425	4.1	1284	65	1276	39	1298	43	98
Or131-2	23190	71	15	33	8.6	2.74018	5.4	0.22841	3.1	0.57	0.08701	4.5	1339	72	1326	41	1361	41	97
Or132-1	225179	1704	142	292	1.4	0.88553	5.3	0.08133	3.4	0.64	0.07897	4.1	644	34	504	17	1171	51	43

Or133-1	129338	1089	82	174	3.2	0.69112	4.9	0.08281	3.0	0.61	0.06053	3.9	533	26	513	15	623	50	82
Or134-1	236747	1649	149	304	1.2	0.44974	6.1	0.04821	4.5	0.75	0.06766	4.0	377	23	304	14	858	49	35
Or135-1	283523	1628	179	355	1.3	1.41147	6.1	0.12927	4.6	0.76	0.07919	4.0	894	54	784	36	1177	47	67
Or135-2	198031	1770	125	254	2.0	1.21284	6.7	0.08543	4.3	0.64	0.10297	5.2	806	54	528	23	1678	46	31
Or136-1	84650	770	53	118	1.2	1.34660	7.1	0.09692	4.6	0.65	0.10077	5.4	866	62	596	27	1638	44	36
Or139-1	13140	1534	149	227	0.3	1.20061	4.9	0.11774	3.1	0.65	0.07395	3.7	801	39	718	23	1040	26	69
Or140-1	4303	282	50	81	0.2	1.99583	4.1	0.18494	2.1	0.52	0.07827	3.5	1114	46	1094	24	1154	27	95
Or141-1	5636	377	67	107	0.3	1.98006	4.1	0.18466	2.3	0.57	0.07777	3.4	1109	45	1092	25	1141	28	96
Or141-2	9206	622	106	166	0.4	1.88970	4.2	0.17581	2.4	0.57	0.07796	3.4	1077	45	1044	25	1146	29	91
Or144	143142	778	87	172	0.3	1.73071	4.4	0.14436	4.0	0.92	0.08695	1.7	1020	45	869	35	1359	31	64
Or144-2	237169	1455	144	230	0.4	1.21279	3.2	0.10895	2.4	0.74	0.08074	2.2	806	26	667	16	1215	32	55
Or145-2	531951	1763	323	582	0.0	2.06931	4.5	0.18886	4.3	0.94	0.07947	1.5	1139	52	1115	47	1184	26	94
Or147-2	373753	1786	227	456	0.3	1.81191	4.7	0.16247	4.4	0.93	0.08088	1.8	1050	49	970	42	1219	28	80
Or148-1	175753	1674	107	130	0.6	1.16886	6.0	0.10194	5.8	0.96	0.08316	1.7	786	47	626	36	1273	29	49
Or148-2	71685	1095	43	110	0.3	0.44877	5.7	0.04797	5.3	0.93	0.06785	2.1	376	21	302	16	864	22	35
Or149-1	293197	1325	178	160	0.6	1.85738	5.9	0.17007	5.6	0.95	0.07921	1.8	1066	63	1012	57	1177	28	86
Or149-2	204847	976	124	186	0.4	2.33901	4.8	0.16331	4.0	0.84	0.10388	2.6	1224	59	975	39	1695	51	58
Or150	163088	1349	99	223	0.5	1.08998	3.7	0.10044	3.3	0.89	0.07871	1.7	748	28	617	20	1165	27	53
Or151-1	193734	1040	118	318	0.4	1.47928	3.5	0.14092	3.1	0.88	0.07614	1.7	922	32	850	26	1099	25	77
Or152-1	87851	316	53	91	0.3	2.05129	2.7	0.18789	2.2	0.81	0.07918	1.6	1133	31	1110	24	1177	26	94
Or153-1	127336	455	77	42	0.3	2.25694	3.2	0.18960	2.7	0.85	0.08633	1.7	1199	38	1119	30	1346	31	83
Or154-1	28896	204	18	20	0.7	0.80051	3.2	0.09821	2.3	0.74	0.05912	2.1	597	19	604	14	571	15	106
Or154-2	41980	303	25	33	0.7	0.79986	2.9	0.09751	2.2	0.75	0.05949	1.9	597	17	600	13	585	14	102
Or155-1	127481	472	77	126	0.4	1.87104	2.7	0.18108	2.1	0.79	0.07494	1.6	1071	29	1073	23	1067	24	101
Or155-2	84127	320	51	88	0.5	1.84104	3.2	0.17590	2.3	0.72	0.07591	2.2	1060	34	1045	24	1093	29	96
Or156-1	56946	187	35	57	0.3	2.33217	2.8	0.20902	2.3	0.80	0.08092	1.7	1222	34	1224	28	1220	28	100
Or156-2	207274	680	126	276	0.1	2.35665	3.9	0.21327	3.6	0.91	0.08014	1.6	1230	48	1246	45	1200	27	104
Or157-1	235535	962	143	274	0.3	1.82778	3.7	0.15932	3.3	0.89	0.08321	1.7	1055	39	953	31	1274	29	75
Or157-2	202782	1072	123	255	0.2	1.56663	5.7	0.13139	5.3	0.93	0.08648	2.2	957	55	796	42	1349	36	59
Or158-1	215794	1472	131	311	0.0	1.13176	4.7	0.10170	4.4	0.93	0.08071	1.7	769	36	624	27	1214	27	51
Or159-1	522750	715	236	347	4.5	5.88501	4.6	0.34337	3.6	0.78	0.12430	2.9	1959	90	1903	68	2019	64	94
Or159-2	243752	616	110	223	0.4	2.55662	5.3	0.22832	3.9	0.74	0.08054	3.5	1288	68	1326	52	1210	46	110
Or160-1	189908	802	86	155	1.4	1.26528	4.9	0.11810	3.7	0.75	0.07770	3.2	830	41	720	26	1139	40	63
Or160-2	81993	201	37	70	2.7	2.29628	5.2	0.20208	3.6	0.70	0.08241	3.7	1211	63	1187	43	1255	50	95
Or162-1	169140	474	76	149	3.3	2.20933	5.0	0.18261	3.9	0.79	0.08775	3.1	1184	59	1081	43	1377	46	79
Or165-1	26651	205	12	19	0.8	0.48786	5.0	0.06390	3.5	0.70	0.05537	3.5	403	20	399	14	427	16	93

Or166-1	70824	194	32	84	2.5	2.14815	5.0	0.19132	4.1	0.81	0.08143	2.9	1164	58	1129	46	1232	40	92
Or167-1	30300	79	14	35	4.5	0.69770	5.8	0.08323	2.6	0.45	0.06080	5.2	537	31	515	13	632	34	82
Or168-1	97227	250	44	124	4.6	2.21150	5.0	0.18844	3.6	0.72	0.08512	3.5	1185	59	1113	40	1318	49	84
Or168-2	13425	37	6	19	7.6	2.10655	4.7	0.19601	3.6	0.76	0.07795	3.0	1151	54	1154	41	1146	38	101
Or169-1	16510	35	7	27	5.1	1.90662	6.0	0.17777	3.5	0.59	0.07779	4.8	1083	65	1055	37	1141	57	92
Or170-2	132389	333	60	183	2.5	2.12400	4.7	0.19334	3.7	0.79	0.07967	2.8	1157	54	1139	42	1189	37	96
Or171-1	37758	74	17	46	5.3	3.52075	5.0	0.23566	3.9	0.77	0.10836	3.1	1532	76	1364	53	1772	61	77
Or171-2	250117	586	113	343	0.3	2.33871	4.4	0.20791	3.5	0.78	0.08158	2.8	1224	54	1218	42	1236	38	99
Or173-1	525824	1473	237	706	4.0	2.06469	6.8	0.18715	6.2	0.91	0.08001	2.8	1137	77	1106	69	1197	37	92
Or173-2	115779	280	52	151	2.9	2.16075	5.2	0.19022	4.3	0.83	0.08238	2.9	1169	60	1123	48	1255	40	89
Or175-1	36836	87	17	36	7.1	2.30513	5.0	0.20714	3.5	0.70	0.08071	3.6	1214	61	1214	43	1214	47	100
Or176-1	342545	1186	154	532	1.8	1.55325	4.7	0.14669	3.7	0.79	0.07680	2.9	952	45	882	33	1116	35	79
Or177-1	123111	295	55	131	4.7	2.58197	5.1	0.23359	3.9	0.76	0.08017	3.3	1296	66	1353	52	1201	42	113
Or177-2	239880	1245	108	307	0.9	1.03104	5.0	0.10347	3.7	0.75	0.07227	3.3	719	36	635	24	994	35	64
Or178-1	299969	1234	135	464	2.1	1.51957	6.1	0.12967	5.1	0.84	0.08499	3.3	938	57	786	40	1315	47	60
Or179-1	53421	115	24	71	7.0	3.16482	6.7	0.23920	3.8	0.56	0.09596	5.6	1449	97	1383	52	1547	88	89
Or179-2	48882	126	22	68	4.5	2.14741	5.1	0.18289	3.8	0.73	0.08516	3.5	1164	60	1083	41	1319	50	82
Or180-1	223654	1054	101	324	1.6	2.06215	5.2	0.19369	3.9	0.75	0.07721	3.4	1136	59	1141	44	1127	41	101
Or181-1	173217	298	78	152	5.5	4.69585	5.8	0.32069	4.2	0.73	0.10620	3.9	1767	102	1793	76	1735	72	103
Or187-1	3498	66	17	43	0.9	4.31290	4.3	0.29904	1.9	0.45	0.10460	3.8	1696	73	1687	32	1707	67	99
Or188-1	5484	135	27	69	0.3	2.56018	4.6	0.20918	2.7	0.58	0.08877	3.8	1289	60	1224	33	1399	54	88
Or188-2	54851	1250	131	346	0.8	4.72596	5.1	0.35357	3.0	0.60	0.09694	4.1	1772	90	1952	59	1566	65	125
Or189-2	6207	186	35	87	0.3	2.29340	3.8	0.20733	0.9	0.23	0.08023	3.7	1210	46	1215	11	1203	46	101
Or190-1	25261	789	153	394	0.3	2.33416	3.6	0.21673	1.3	0.35	0.07811	3.4	1223	44	1265	16	1150	40	110
Or191-1	7553	293	44	119	0.3	2.24440	4.3	0.19829	2.5	0.58	0.08209	3.5	1195	51	1166	29	1248	45	93
Or192-1	33184	1656	207	615	0.5	1.20984	5.4	0.11002	3.5	0.66	0.07976	4.0	805	43	673	24	1191	49	56
Or193-1	3008	104	17	49	0.3	2.21997	5.3	0.18586	3.0	0.57	0.08663	4.3	1187	63	1099	33	1352	60	81
Or194-1	1421	67	7	20	0.3	1.10160	5.5	0.11463	1.2	0.21	0.06970	5.4	754	41	700	8	920	50	76
Or194-2	1111	91	9	23	0.3	0.86338	5.7	0.10840	1.9	0.33	0.05776	5.4	632	36	663	12	521	28	127
Or195-1	2050	156	15	41	0.3	0.92814	4.1	0.10738	1.1	0.26	0.06269	4.0	667	28	657	7	698	29	94
Or195-2	576	50	5	13	0.2	0.79046	6.1	0.10536	1.5	0.25	0.05441	5.9	591	36	646	10	388	23	166
Or196-1	9597	134	41	112	2.0	5.34352	3.6	0.34642	0.9	0.26	0.11187	3.5	1876	68	1917	18	1830	66	105
Or197-1	337	42	3	8	0.3	0.58100	9.8	0.08387	1.8	0.18	0.05024	9.6	465	46	519	9	206	34	252
Or197-2	574	57	4	11	0.5	0.73295	5.2	0.08597	1.3	0.24	0.06183	5.0	558	29	532	7	668	41	80
Or198-1	850	84	6	17	0.4	0.77243	6.2	0.08979	1.8	0.29	0.06239	5.9	581	36	554	10	687	38	81
Or199-1	12825	481	80	197	0.2	1.90226	3.7	0.18307	1.2	0.34	0.07536	3.5	1082	40	1084	13	1078	40	101

Or199-2	13036	480	82	213	0.3	2.07514	3.7	0.19606	1.3	0.35	0.07676	3.5	1141	43	1154	15	1115	49	104
Or200-2	3256	124	20	49	1.3	2.06219	4.3	0.18902	1.3	0.31	0.07913	4.1	1136	48	1116	15	1175	48	95
Or201-1	20168	568	112	319	0.3	2.40945	3.7	0.20209	1.2	0.33	0.08647	3.5	1245	46	1187	14	1349	43	88
Or201-2	4647	154	26	67	0.5	2.07033	4.1	0.19676	1.5	0.36	0.07631	3.8	1139	46	1158	17	1103	38	105
Or202-1	12873	762	54	281	0.1	0.75313	4.4	0.07868	3.4	0.78	0.06942	2.7	570	25	488	17	911	27	54
Or203-2	27582	1311	111	551	0.4	0.93393	5.0	0.09205	4.3	0.86	0.07358	2.5	670	34	568	25	1030	29	55
Or205-2	32802	995	123	650	0.2	1.37909	3.4	0.12920	2.5	0.72	0.07742	2.4	880	30	783	19	1132	30	69
Or206-1	36909	761	139	730	0.1	2.08407	3.1	0.19553	1.6	0.53	0.07730	2.6	1144	35	1151	19	1129	32	102
Or207-1	65052	1248	236	1372	0.4	2.13212	3.1	0.19583	2.1	0.67	0.07896	2.3	1159	36	1153	24	1171	30	98
Or207-2	10986	206	40	229	0.2	2.35996	3.1	0.21429	1.7	0.56	0.07987	2.5	1231	38	1252	21	1194	33	105
Or208-1	7310	143	27	151	0.3	2.18601	3.2	0.20271	1.7	0.55	0.07821	2.7	1177	38	1190	21	1152	33	103
Or209-1	1779	122	9	48	0.4	0.61775	3.9	0.07881	1.8	0.45	0.05685	3.5	488	19	489	9	486	18	101
Or210-1	39110	1246	150	809	0.4	1.33014	5.7	0.12462	5.0	0.87	0.07741	2.8	859	49	757	38	1132	35	67
Or210-2	20048	392	71	370	0.3	2.38970	3.2	0.21283	2.1	0.67	0.08143	2.3	1240	39	1244	26	1232	32	101
Or212-1	6573	329	30	140	0.6	0.84003	3.8	0.09949	2.1	0.54	0.06124	3.2	619	24	611	13	648	17	94
Or212-2	2003	116	10	51	0.3	0.74111	3.8	0.09430	1.7	0.46	0.05700	3.3	563	21	581	10	491	30	118
Or214-1	17517	343	61	283	0.3	2.88231	6.9	0.25575	6.3	0.92	0.08174	2.7	1377	94	1468	93	1239	46	118
Or215-1	23891	492	90	407	0.3	2.08163	3.0	0.19403	1.9	0.61	0.07781	2.4	1143	35	1143	21	1142	39	100
Or216-1	4252	77	14	60	1.1	2.33116	4.0	0.20152	2.1	0.52	0.08390	3.4	1222	49	1183	25	1290	48	92
Or216-2	3752	79	14	64	1.1	2.15364	3.8	0.20313	1.9	0.49	0.07690	3.3	1166	44	1192	22	1119	31	107
Or217-1	7305	122	24	108	0.3	2.40284	4.0	0.20624	2.0	0.49	0.08450	3.5	1243	50	1209	24	1304	30	93
Or217-2	40495	840	148	743	0.4	2.32357	3.3	0.21333	2.2	0.68	0.07900	2.4	1220	40	1247	28	1172	38	106
Or218-1	14094	294	53	273	0.7	2.20413	3.3	0.20732	2.1	0.65	0.07711	2.5	1182	38	1215	26	1124	50	108
Or218-2	11246	235	42	192	0.2	2.31046	3.7	0.20848	2.3	0.63	0.08038	2.9	1216	45	1221	29	1206	63	101
Or219-1	19708	157	49	246	0.7	5.60258	2.9	0.35342	1.6	0.56	0.11497	2.4	1916	56	1951	32	1879	75	104

Tabelle 2 U-Pb Daten

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D (001)	207	U	Pb	206 pt /204 pt	701 /U	207 51 /235 1	2σ	206 51 (238)	2σ	1	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$	207 pt /206 pt	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$	Konkordanz
Al 516 100 8 - 0.3 0.66418 7.4 0.08591 1.9 0.25 517 38 531 10 0.05607 7.2 455 33 117 A2 4317 594 61 4050 0.3 0.95666 3.0 0.10861 1.4 0.47 682 20 665 9 0.06388 2.6 7.38 2.2 90 A3 84 147 12 - 0.8 0.0667 6.3 0.08867 1.6 0.25 543 34 548 9 0.05780 6.1 5325 64 92 A4k(Arim) 19666 183 78 0.65 0.1 6.42247 4.2 0.22968 35 133 50 0.2080 1.8 2849 66 47 A6 12564 180 6.2 5458 1.0 0.17627 1.6 0.19 0.23 41 1047 16 0.07103	Parys (901)	(c.p.s.)	(ppm)	(ppm)	Pb/Pb	Th/U	Pb/U	(%)	Pb/Pb/	(%)	rho	Alter	(abs.)	Alter	(abs.)	Pb/Pb	(%)	Alter	(abs.)	(%)
A1 S16 100 8 - 0.3 0.66418 7.4 0.08501 1.4 0.47 581 331 10 0.05007 7.2 435 33 117 A2 4317 594 61 4050 0.3 0.95666 30 0.10861 14 0.47 682 20 665 9 0.05780 61 522 33 105 A4u (A4 rim) 19666 183 78 125 0.4 16.92810 6.7 0.54286 6.6 0.97 2931 197 2795 183 0.20216 1.5 3025 64 92 A4b (A5 core) 36780 826 159 605 0.1 6.42247 42 0.22935 85 1333 50 0.20280 18 2849 66 477 A6 12564 180 62 51 0.37 672 37 14 10407 16 0.07103 37 772			100	-			0.66440		0.00501	1.0	0.05		20	501	10	0.05/05				
A2 A3/1 594 61 4050 0.3 0.91061 1.4 0.47 682 20 665 9 0.0658 2.6 738 22 90 A3 834 147 12 $-$ 0.8 0.70667 63 0.08867 1.6 0.25 543 3.4 548 9 0.05706 6.1 522 33 105 A4b (A5 core) 36780 826 159 6.1 6.42247 4.2 0.2268 3.8 0.91 2035 85 1333 50 0.20280 1.8 2849 66 47 A6 12564 180 62 5458 0.8 0.873 12.1 0.11206 2.3 0.19 637 74 2058 55 0.18306 1.5 265 77 77 A7 197 31 3 375 0.5 0.86737 1.2 0.11206 2.3 0.01 44 1047 16	Al	516	100	8	-	0.3	0.66418	7.4	0.08591	1.9	0.25	517	38	531	10	0.05607	7.2	455	33	117
A3 834 147 12 - 0.8 0.70667 6.3 0.08867 1.6 0.23 543 34 548 9 0.05780 6.1 522 33 105 A4a (A4 rim) 19666 183 78 1554 0.4 1692810 6.6 0.97 2931 197 2795 183 0.22161 1.5 3025 6.6 47 A6 12564 180 62 5458 0.8 9.49002 3.1 0.37599 2.7 0.87 2387 74 2058 55 0.18306 1.5 2681 57 777 A7 197 31 3 375 0.5 0.86737 12.1 0.1026 2.3 0.19 644 501 118 458 55 1080 A8 2110 155 26 - 0.21 0.7373 37 972 39 108 A8 1012 141 12	A2	4317	594	61	4050	0.3	0.95666	3.0	0.10861	1.4	0.47	682	20	665	9	0.06388	2.6	738	22	90
Ada (A4 run) 1966 183 78 153 0.0 1692810 6.7 0.54286 6.6 0.97 2931 197 2795 183 0.22161 1.5 3025 64 92 Adb (A5 core) 36780 826 159 605 0.1 6.42247 4.2 0.22968 38 0.91 2035 85 1333 50 0.20280 1.5 264 77 A7 197 31 3 375 0.5 0.86737 12.1 0.1126 2.3 0.19 634 76 685 15 0.05614 11.8 458 55 150 A8 2110 155 26 - 0.2 1.73763 4.0 0.17627 1.6 0.39 1023 41 10471 16 0.07150 3.7 1.575 42 103 A10a (Allo core) 1012 141 12 1191 0.5 0.74823 6.1 0.09263 1.9	A3	834	147	12	-	0.8	0.70667	6.3	0.08867	1.6	0.25	543	34	548	9	0.05780	6.1	522	33	105
Adb (A5 core) 36780 826 159 605 0.1 6 4227 4.2 0.2268 3.8 0.91 2035 85 1333 50 0.20280 1.8 2849 66 47 A6 12564 180 62 5458 0.8 9.49002 3.1 0.3759 2.7 0.87 2387 74 2058 55 0.18306 1.5 2681 57 77 A7 197 31 3 375 0.5 0.87370 1.2 0.11266 2.3 0.19 634 76 6685 15 0.0514 11.8 458 55 150 A8 2110 155 2.6 - 0.2 1.73763 4.0 0.17627 1.6 0.39 1023 41 1047 16 0.07150 3.7 972 39 108 A10a (A10 core) 1012 141 12 1191 0.2 0.9289 8.6 0.10529 2.6 31 567 35 10 10.05859 5.8 552 33	A4a (A4 rim)	19666	183	78	1554	0.4	16.92810	6.7	0.54286	6.6	0.97	2931	197	2795	183	0.22616	1.5	3025	64	92
A6 1254 180 62 5488 0.8 9.49002 3.1 0.37599 2.7 0.87 2387 74 2088 55 0.18306 1.5 2681 57 77 A7 197 31 3 375 0.5 0.86737 12.1 0.1126 2.3 0.19 634 76 685 15 0.05614 11.8 458 55 150 A9 616 101 9 - 0.4 0.78453 7.4 0.09607 2.1 0.29 588 44 591 13 0.05923 7.1 575 42 103 A106 (A11 rm) 59 1345 0.5 0.74823 6.1 0.09263 1.9 0.31 567 35 571 11 0.06399 8.2 741 62 87 A12 1516 244 22 5468 0.3 0.82616 4.4 0.0992 1.7 0.40 611 27 </td <td>A4b (A5 core)</td> <td>36780</td> <td>826</td> <td>159</td> <td>605</td> <td>0.1</td> <td>6.42247</td> <td>4.2</td> <td>0.22968</td> <td>3.8</td> <td>0.91</td> <td>2035</td> <td>85</td> <td>1333</td> <td>50</td> <td>0.20280</td> <td>1.8</td> <td>2849</td> <td>66</td> <td>47</td>	A4b (A5 core)	36780	826	159	605	0.1	6.42247	4.2	0.22968	3.8	0.91	2035	85	1333	50	0.20280	1.8	2849	66	47
A7 197 31 3 375 0.5 0.86737 12.1 0.11206 2.3 0.19 634 76 685 15 0.05614 11.8 458 55 150 A8 2110 155 26 - 0.2 1.73763 4.0 0.17627 1.6 0.39 1023 41 1047 16 0.07150 3.7 972 39 108 A9 616 101 9 - 0.4 0.78433 7.4 0.0967 2.1 0.29 588 44 591 13 0.05923 7.1 575 42 103 A10a (A10 core) 1012 141 12 1191 0.2 0.9289 8.6 0.10529 2.6 0.31 667 57 645 17 0.06399 8.2 741 62 87 A12 156 244 22 58 561 31 0.0637 3.5 571 111	A6	12564	180	62	5458	0.8	9.49002	3.1	0.37599	2.7	0.87	2387	74	2058	55	0.18306	1.5	2681	57	77
A8 2110 155 26 - 0.2 1.73763 4.0 0.17627 1.6 0.39 1023 41 1047 1.6 0.07150 3.7 972 39 108 A9 616 101 9 - 0.4 0.78453 7.4 0.09607 2.1 0.29 588 44 591 13 0.05923 7.1 575 42 103 A10a (A10 core) 1012 141 12 1191 0.2 0.92899 8.6 0.10529 2.6 0.31 667 57 645 17 0.06399 8.2 7.41 62 87 A10 1516 244 22 5468 0.3 0.82616 4.4 0.0982 1.7 0.40 611 27 608 11 0.0657 4.0 624 27 97 A13 645 117 10 3602 0.2 0.33 554 34 563 11	A7	197	31	3	375	0.5	0.86737	12.1	0.11206	2.3	0.19	634	76	685	15	0.05614	11.8	458	55	150
A96161019-0.40.784537.40.096072.10.2958844591130.059237.157542103A10a (A10 core)10121411211910.20.928998.60.105292.60.3166757645170.063998.27416287A10b (A11 rim)593105913450.50.748236.10.092631.90.3156735571110.063998.27416287A1215162442254680.30.826164.40.098921.70.4061127608110.065774.06242797A136451171036020.20.725776.10.091342.00.3355434563110.056785.851631109A142161731920.31.6869310.80.186302.50.2310041081101280.0656710.579685138A151011012040.41.2657415.90.163124.20.26830132974400.0562815.446371210A1613642202033100.00.829776.40.099061.50.246133960990.06075 <td>A8</td> <td>2110</td> <td>155</td> <td>26</td> <td>-</td> <td>0.2</td> <td>1.73763</td> <td>4.0</td> <td>0.17627</td> <td>1.6</td> <td>0.39</td> <td>1023</td> <td>41</td> <td>1047</td> <td>16</td> <td>0.07150</td> <td>3.7</td> <td>972</td> <td>39</td> <td>108</td>	A8	2110	155	26	-	0.2	1.73763	4.0	0.17627	1.6	0.39	1023	41	1047	16	0.07150	3.7	972	39	108
Al0a (A10 core) 1012 141 12 1191 0.2 0.92899 8.6 0.10529 2.6 0.31 667 57 645 17 0.06399 8.2 741 62 87 Al0b (A11 rim) 593 105 9 1345 0.5 0.74823 6.1 0.09263 1.9 0.31 567 35 571 11 0.05859 5.8 552 33 104 A12 1516 244 22 5468 0.3 0.82616 4.4 0.09892 1.7 0.40 611 27 608 11 0.06057 4.0 624 27 97 A13 645 117 10 3602 0.2 0.72577 6.1 0.09134 2.0 0.33 554 34 563 11 0.05677 10.5 76 85 138 A15 101 10 1 204 0.4 1.26574 15.9 0.16312 4.2 0.26 830 132 974 40 0.05628 15.4 463 71 </td <td>A9</td> <td>616</td> <td>101</td> <td>9</td> <td>-</td> <td>0.4</td> <td>0.78453</td> <td>7.4</td> <td>0.09607</td> <td>2.1</td> <td>0.29</td> <td>588</td> <td>44</td> <td>591</td> <td>13</td> <td>0.05923</td> <td>7.1</td> <td>575</td> <td>42</td> <td>103</td>	A9	616	101	9	-	0.4	0.78453	7.4	0.09607	2.1	0.29	588	44	591	13	0.05923	7.1	575	42	103
A10b (A11 rim) 593 105 9 1345 0.5 0.74823 6.1 0.09263 1.9 0.31 567 35 571 11 0.05889 5.8 552 33 104 A12 1516 244 22 5468 0.3 0.82616 4.4 0.09892 1.7 0.40 611 27 608 11 0.06057 4.0 624 27 97 A13 645 117 10 3602 0.2 0.72577 6.1 0.09134 2.0 0.33 554 34 563 11 0.05057 5.8 516 31 109 A14 216 17 3 192 0.3 1.68693 10.8 0.1830 2.5 0.23 1004 108 1101 28 0.06567 10.5 796 85 138 A15 101 10 1 204 0.4 0.26 830 132 974 40 0.05628 15.4 463 71 210 A16 1364 220 </td <td>A10a (A10 core)</td> <td>1012</td> <td>141</td> <td>12</td> <td>1191</td> <td>0.2</td> <td>0.92899</td> <td>8.6</td> <td>0.10529</td> <td>2.6</td> <td>0.31</td> <td>667</td> <td>57</td> <td>645</td> <td>17</td> <td>0.06399</td> <td>8.2</td> <td>741</td> <td>62</td> <td>87</td>	A10a (A10 core)	1012	141	12	1191	0.2	0.92899	8.6	0.10529	2.6	0.31	667	57	645	17	0.06399	8.2	741	62	87
A1215162442254680.30.826164.40.098921.70.4061127608110.060574.06242797A136451171036020.20.725776.10.091342.00.3355434563110.057635.851631109A142161731920.31.6869310.80.186302.50.2310041081101280.0656710.579685138A151011012040.41.2657415.90.163124.20.26830132974400.0562815.446371210A1613642202033100.00.829776.40.099061.50.246133960990.060756.26304097A1748071740280.60.882017.60.102502.30.3164249629150.062417.26885191A1825947457370.50.759568.20.100622.00.2557447618130.054758.040233154A19143322-0.30.5540835.30.171983.00.56993521023300.069064.4927	A10b (A11 rim)	593	105	9	1345	0.5	0.74823	6.1	0.09263	1.9	0.31	567	35	571	11	0.05859	5.8	552	33	104
A1364511710 3602 0.2 0.72577 6.1 0.09134 2.0 0.33 554 34 563 11 0.05763 5.8 516 31 109 A142161731920.3 1.68693 10.8 0.18630 2.5 0.23 1004 108 1101 28 0.06567 10.5 796 85 138 A151011012040.4 1.26574 15.9 0.16312 4.2 0.26 830 132 974 40 0.05628 15.4 463 71 210 A16136422020 3310 0.0 0.82977 6.4 0.09906 1.5 0.24 613 39 609 9 0.06075 6.2 630 40 97 A17480717 4028 0.6 0.82917 7.6 0.10250 2.3 0.31 642 49 629 15 0.06241 7.2 688 51 91 A18259474 5737 0.5 0.75956 8.2 0.10622 2.0 0.25 574 47 618 13 0.05475 8.0 402 33 154 A19143 32 2- 0.3 0.5540 12.4 0.08154 2.1 0.17 449 56 505 11 0.04940 12.2 167 21 303 A20a (A20 core)15	A12	1516	244	22	5468	0.3	0.82616	4.4	0.09892	1.7	0.40	611	27	608	11	0.06057	4.0	624	27	97
A142161731920.31.6869310.80.186302.50.2310041081101280.0656710.579685138A151011012040.41.2657415.90.163124.20.26830132974400.0562815.446371210A1613642202033100.00.829776.40.099061.50.246133960990.060756.26304097A1748071740280.60.882017.60.102502.30.3164249629150.062417.26885191A1825947457370.50.759568.20.100622.00.2557447618130.054758.040233154A19143322-0.30.5554012.40.081542.10.1744956505110.0494012.216721303A20a (A20 core)157713920-0.41.658835.30.171983.00.56993521023300.06964.492743110A20b (A21 rim)219384-0.60.791689.40.098533.00.3259256606180.058278.9<	A13	645	117	10	3602	0.2	0.72577	6.1	0.09134	2.0	0.33	554	34	563	11	0.05763	5.8	516	31	109
A15 101 10 1 204 0.4 1.26574 15.9 0.16312 4.2 0.26 830 132 974 40 0.05628 15.4 463 71 210 A16 1364 220 20 3310 0.0 0.82977 6.4 0.09906 1.5 0.24 613 39 609 9 0.06075 6.2 630 40 97 A17 480 71 7 4028 0.6 0.8201 7.6 0.10250 2.3 0.31 642 49 629 15 0.06241 7.2 688 51 91 A18 259 47 4 5737 0.5 0.75956 8.2 0.1062 2.0 0.25 574 47 618 13 0.05475 8.0 402 33 154 A19 143 32 2 - 0.3 0.55540 12.4 0.08154 2.1 0.17 449 56 505 11 0.04940 12.2 167 21 303	A14	216	17	3	192	0.3	1.68693	10.8	0.18630	2.5	0.23	1004	108	1101	28	0.06567	10.5	796	85	138
A1613642202033100.0 0.82977 6.4 0.09906 1.5 0.24 613 39 609 9 0.06075 6.2 630 4097A174807174028 0.6 0.88201 7.6 0.10250 2.3 0.31 642 49 629 15 0.06241 7.2 688 51 91A18259474 5737 0.5 0.75956 8.2 0.10062 2.0 0.25 574 47 618 13 0.05475 8.0 402 33 154 A19143 32 2- 0.3 0.55540 12.4 0.08154 2.1 0.17 449 56 505 11 0.04940 12.2 167 21 303 A20a (A20 core) 1577 139 20 - 0.4 1.65883 5.3 0.17198 3.0 0.56 993 52 1023 30 0.06996 4.4 927 43 110 A20b (A21 rim) 219 38 4- 0.6 0.79168 9.4 0.09853 3.0 0.32 592 56 606 18 0.05827 8.9 540 49 112 A23 912 188 14 - 0.5 0.62057 5.0 0.08022 1.4 0.29 490 25 497 7 0.05611 4.8 457 23 109 A24 <td>A15</td> <td>101</td> <td>10</td> <td>1</td> <td>204</td> <td>0.4</td> <td>1.26574</td> <td>15.9</td> <td>0.16312</td> <td>4.2</td> <td>0.26</td> <td>830</td> <td>132</td> <td>974</td> <td>40</td> <td>0.05628</td> <td>15.4</td> <td>463</td> <td>71</td> <td>210</td>	A15	101	10	1	204	0.4	1.26574	15.9	0.16312	4.2	0.26	830	132	974	40	0.05628	15.4	463	71	210
A17 480 71 7 4028 0.6 0.88201 7.6 0.10250 2.3 0.31 642 49 629 15 0.06241 7.2 688 51 91 A18 259 47 4 5737 0.5 0.75956 8.2 0.10062 2.0 0.25 574 47 618 13 0.05475 8.0 402 33 154 A19 143 32 2 - 0.3 0.55540 12.4 0.08154 2.1 0.17 449 56 505 11 0.04940 12.2 167 21 303 A20a (A20 core) 1577 139 20 - 0.4 1.65883 5.3 0.17198 3.0 0.56 993 52 1023 30 0.06996 4.4 927 43 110 A20a (A20 core) 1577 139 20 - 0.4 1.65883 5.3 0.17198 3.0 0.32 592 56 6066 18 0.05827 8.9 540 49	A16	1364	220	20	3310	0.0	0.82977	6.4	0.09906	1.5	0.24	613	39	609	9	0.06075	6.2	630	40	97
A18 259 47 4 5737 0.5 0.75956 8.2 0.10062 2.0 0.25 574 47 618 13 0.05475 8.0 402 33 154 A19 143 32 2 - 0.3 0.55540 12.4 0.08154 2.1 0.17 449 56 505 11 0.04940 12.2 167 21 303 A20a (A20 core) 1577 139 20 - 0.4 1.65883 5.3 0.17198 3.0 0.56 993 52 1023 30 0.06996 4.4 927 43 110 A20a (A20 core) 1577 139 20 - 0.4 1.65883 5.3 0.17198 3.0 0.56 993 52 1023 30 0.06996 4.4 927 43 110 A20b (A21 rim) 219 38 4 - 0.5 0.62057 5.0 0.08022 1.4 0.29 490 25 497 7 0.05611 4.8 457 23 </td <td>A17</td> <td>480</td> <td>71</td> <td>7</td> <td>4028</td> <td>0.6</td> <td>0.88201</td> <td>7.6</td> <td>0.10250</td> <td>2.3</td> <td>0.31</td> <td>642</td> <td>49</td> <td>629</td> <td>15</td> <td>0.06241</td> <td>7.2</td> <td>688</td> <td>51</td> <td>91</td>	A17	480	71	7	4028	0.6	0.88201	7.6	0.10250	2.3	0.31	642	49	629	15	0.06241	7.2	688	51	91
A19 143 32 2 - 0.3 0.55540 12.4 0.08154 2.1 0.17 449 56 505 11 0.04940 12.2 167 21 303 A20a (A20 core) 1577 139 20 - 0.4 1.65883 5.3 0.17198 3.0 0.56 993 52 1023 30 0.06996 4.4 927 43 110 A20a (A20 core) 1577 139 20 - 0.4 1.65883 5.3 0.17198 3.0 0.56 993 52 1023 30 0.06996 4.4 927 43 110 A20b (A21 rim) 219 38 4 - 0.6 0.79168 9.4 0.09853 3.0 0.32 592 56 606 18 0.05827 8.9 540 49 112 A23 912 188 14 - 0.5 0.62057 5.0 0.08022 1.4 0.29 490 25 497 7 0.05611 4.8 457 23 <td>A18</td> <td>259</td> <td>47</td> <td>4</td> <td>5737</td> <td>0.5</td> <td>0.75956</td> <td>8.2</td> <td>0.10062</td> <td>2.0</td> <td>0.25</td> <td>574</td> <td>47</td> <td>618</td> <td>13</td> <td>0.05475</td> <td>8.0</td> <td>402</td> <td>33</td> <td>154</td>	A18	259	47	4	5737	0.5	0.75956	8.2	0.10062	2.0	0.25	574	47	618	13	0.05475	8.0	402	33	154
A20a (A20 core) 1577 139 20 - 0.4 1.65883 5.3 0.17198 3.0 0.56 993 52 1023 30 0.06996 4.4 927 43 110 A20b (A21 rim) 219 38 4 - 0.6 0.79168 9.4 0.09853 3.0 0.32 592 56 606 18 0.05827 8.9 540 49 112 A23 912 188 14 - 0.5 0.62057 5.0 0.08022 1.4 0.29 490 25 497 7 0.05611 4.8 457 23 109 A24 8205 148 31 315 0.3 18.28841 6.9 0.56477 6.4 0.94 3005 206 2886 185 0.23486 2.4 3085 88 94 A25 7030 52 27 1108 1.0 19.36125 4.3 0.60571 3.8 0.89 3060 132 3053 117 0.23183 2.0 3065 77	A19	143	32	2	-	0.3	0.55540	12.4	0.08154	2.1	0.17	449	56	505	11	0.04940	12.2	167	21	303
A20b (A21 rim) 219 38 4 - 0.6 0.79168 9.4 0.09853 3.0 0.32 592 56 606 18 0.05827 8.9 540 49 112 A23 912 188 14 - 0.5 0.62057 5.0 0.08022 1.4 0.29 490 25 497 7 0.05611 4.8 457 23 109 A24 8205 148 31 315 0.3 18.28841 6.9 0.56477 6.4 0.94 3005 206 2886 185 0.23486 2.4 3085 88 94 A25 7030 52 27 1108 1.0 19.36125 4.3 0.60571 3.8 0.89 3060 132 3053 117 0.23183 2.0 3065 77 100 A26 249 43 4 - 0.5 0.85686 9.6 0.10661 2.3 0.24 628 60 653 15 0.05829 9.3 541 51	A20a (A20 core)	1577	139	20	-	0.4	1.65883	5.3	0.17198	3.0	0.56	993	52	1023	30	0.06996	4.4	927	43	110
A23 912 188 14 - 0.5 0.62057 5.0 0.08022 1.4 0.29 490 25 497 7 0.05611 4.8 457 23 109 A24 8205 148 31 315 0.3 18.28841 6.9 0.56477 6.4 0.94 3005 206 2886 185 0.23486 2.4 3085 88 94 A25 7030 52 27 1108 1.0 19.36125 4.3 0.60571 3.8 0.89 3060 132 3053 117 0.23183 2.0 3065 77 100 A26 249 43 4 - 0.5 0.85686 9.6 0.10661 2.3 0.24 628 60 653 15 0.05829 9.3 541 51 121	A20b (A21 rim)	219	38	4	-	0.6	0.79168	9.4	0.09853	3.0	0.32	592	56	606	18	0.05827	8.9	540	49	112
A24 8205 148 31 315 0.3 18.28841 6.9 0.56477 6.4 0.94 3005 206 2886 185 0.23486 2.4 3085 88 94 A25 7030 52 27 1108 1.0 19.36125 4.3 0.60571 3.8 0.89 3060 132 3053 117 0.23183 2.0 3065 77 100 A26 249 43 4 - 0.5 0.85686 9.6 0.10661 2.3 0.24 628 60 653 15 0.05829 9.3 541 51 121	A23	912	188	14	-	0.5	0.62057	5.0	0.08022	1.4	0.29	490	25	497	7	0.05611	4.8	457	23	109
A25 7030 52 27 1108 1.0 19.36125 4.3 0.60571 3.8 0.89 3060 132 3053 117 0.23183 2.0 3065 77 100 A26 249 43 4 - 0.5 0.85686 9.6 0.10661 2.3 0.24 628 60 653 15 0.05829 9.3 541 51 121	A24	8205	148	31	315	0.3	18.28841	6.9	0.56477	6.4	0.94	3005	206	2886	185	0.23486	2.4	3085	88	94
A26 249 43 4 - 0.5 0.85686 9.6 0.10661 2.3 0.24 628 60 653 15 0.05829 9.3 541 51 121	A25	7030	52	27	1108	1.0	19.36125	4.3	0.60571	3.8	0.89	3060	132	3053	117	0.23183	2.0	3065	77	100
	A26	249	43	4	_	0.5	0.85686	9.6	0.10661	2.3	0.24	628	60	653	15	0.05829	9.3	541	51	121
A27 234 82 7 1610 04 072256 85 009523 29 034 552 47 586 17 005503 80 414 34 142	A27	234	82	7	1610	0.4	0.72256	8.5	0.09523	2.9	0.34	552	47	586	17	0.05503	8.0	414	34	142
A28 141 28 4 - 0.3 1.28015 11.0 0.14826 4.1 0.37 837 92 891 37 0.06262 10.3 695 72 128	A28	141	28	4	_	0.3	1 28015	11.0	0 14826	41	0.37	837	92	891	37	0.06262	10.3	695	72	128
A29 125 23 3 - 0.5 1.2000 110 011020 111 0157 021 011 010022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 01022 1015 010022 1015 01022 1015	A29	125	23	3	_	0.5	1 38896	10.1	0.14885	4.0	0.39	884	89	895	36	0.06768	93	859	81	104
A30 159 55 5 676 0.5 0.71213 8.3 0.09712 2.4 0.29 546 45 598 15 0.05318 8.0 336 27 178	A 30	159	55	5	676	0.5	0.71213	83	0.09712	2.4	0.29	546	45	598	15	0.05318	8.0	336	27	178
A31 101 40 3 342 10 0.55842 14.4 0.08289 40 0.28 450 65 513 21 0.04886 13.8 141 20 364	A 31	101	40	3	342	1.0	0.55842	14.4	0.08289	4.0	0.29	450	65	513	21	0.04886	13.8	141	20	364
A32 173 A9 5 891 0.2 0.81823 10.8 0.10421 2.5 0.23 607 65 639 16 0.05605 10.5 480 52 131	A 32	173	10	5	801	0.2	0.81823	10.8	0.10/21	2.5	0.23	607	65	639	16	0.05695	10.5	/80	52	131

A33	357	121	11	515	0.4	0.74500	6.3	0.09514	2.6	0.42	565	35	586	15	0.05679	5.7	483	28	121
A34	635	237	20	3867	0.4	0.70817	5.5	0.08871	2.3	0.43	544	30	548	13	0.05790	5.0	526	27	104
A35	247	92	7	-	0.3	0.65834	8.6	0.08695	2.4	0.28	514	44	537	13	0.05492	8.2	409	34	131
A36	337	100	9	-	0.8	0.81260	9.3	0.10129	2.3	0.24	604	56	622	14	0.05819	9.0	537	49	116
A37	216	72	7	1046	0.4	0.78571	7.6	0.09968	2.9	0.38	589	45	613	18	0.05717	7.1	498	36	123
A38	1262	372	36	-	0.5	0.86737	4.4	0.10219	2.1	0.48	634	28	627	13	0.06156	3.9	659	27	95
A39	8500	209	60	258	0.7	10.83552	6.8	0.31828	6.0	0.88	2509	171	1781	107	0.24691	3.3	3165	110	56
A41	340	65	6	414	0.7	1.13561	16.7	0.09775	5.9	0.35	770	129	601	35	0.08426	15.6	1299	204	46
A43	528	66	11	9822	0.6	2.03893	5.4	0.18871	2.1	0.39	1129	61	1114	24	0.07836	5.0	1156	59	96
A44	87	30	3	2799	0.5	0.78718	12.2	0.11669	4.5	0.37	590	72	711	32	0.04893	11.3	144	16	493
A45	293	104	9	467	1.1	0.66072	7.9	0.08603	3.3	0.42	515	41	532	18	0.05570	7.2	441	32	121
A46	536	54	5	186	0.8	0.72123	9.4	0.09891	3.9	0.41	551	52	608	23	0.05288	8.6	324	28	188
A47	816	132	19	-	0.6	1.68824	5.2	0.16337	3.0	0.57	1004	53	975	29	0.07495	4.3	1067	48	91
A48	148	75	5	2719	0.6	0.56589	13.8	0.07652	3.4	0.24	455	63	475	16	0.05364	13.4	356	48	134
A49	778	101	18	-	0.9	2.07178	4.8	0.19660	2.8	0.59	1140	55	1157	33	0.07643	3.9	1106	45	105
A50	264	51	7	-	0.4	1.47318	9.2	0.16476	3.1	0.33	919	85	983	30	0.06485	8.7	769	68	128
A51	467	84	12	-	0.3	1.62286	5.7	0.16526	3.8	0.67	979	56	986	37	0.07122	4.2	964	42	102
A53	941	119	8	1968	0.5	0.61956	4.2	0.07686	1.8	0.42	490	21	477	9	0.05847	3.8	547	21	87
A54	140	16	1	-	0.1	0.72331	8.7	0.09216	2.2	0.26	553	48	568	13	0.05692	8.4	488	41	116
A55	2095	221	18	3280	0.4	0.77941	3.7	0.09609	2.0	0.52	585	22	591	12	0.05883	3.2	561	18	105
A56	1153	54	8	-	0.3	1.71791	4.4	0.16944	2.1	0.47	1015	45	1009	21	0.07353	3.9	1029	41	98
A57	441	18	3	358	0.3	1.89565	5.6	0.18412	2.3	0.41	1080	60	1089	25	0.07467	5.1	1060	55	103
A58	1108	90	8	1006	0.7	0.95531	4.5	0.10760	2.4	0.54	681	30	659	16	0.06439	3.8	754	29	87
A59	2686	148	19	-	0.3	1.65855	4.6	0.17857	2.8	0.61	993	45	1059	30	0.06736	3.6	849	31	125
A60	1942	186	17	-	0.5	0.82978	3.7	0.10361	2.4	0.64	613	23	636	15	0.05808	2.8	533	16	119
A61	801	81	7	-	0.5	0.78833	4.4	0.09897	2.0	0.46	590	26	608	12	0.05777	3.9	521	21	117
A62	263	32	2	294	0.4	0.62464	7.8	0.08224	2.5	0.32	493	39	509	13	0.05509	7.4	416	31	123
A63	467	49	4	-	0.6	0.79789	5.3	0.10040	2.2	0.41	596	31	617	13	0.05764	4.8	516	25	120
A64	302	27	2	404	0.2	0.84502	9.4	0.10132	3.7	0.39	622	58	622	23	0.06049	8.6	621	54	100
A65	2046	135	16	-	0.8	1.19860	4.8	0.13397	1.8	0.38	800	39	810	15	0.06489	4.5	771	35	105
A66	2412	212	18	1057	0.2	0.91860	3.9	0.09916	2.2	0.56	662	26	609	13	0.06719	3.2	844	28	72
A67	2197	193	19	10175	0.8	0.88587	3.3	0.10792	1.8	0.54	644	21	661	12	0.05953	2.8	587	17	113
A68	826	84	7	-	0.4	0.73745	4.6	0.08929	2.1	0.45	561	26	551	11	0.05990	4.1	600	25	92
A69	1902	159	16	-	0.5	0.91540	3.2	0.10895	1.7	0.54	660	21	667	11	0.06094	2.7	637	18	105
A70	356	17	3	-	0.3	1.68854	6.0	0.17806	2.4	0.40	1004	61	1056	26	0.06878	5.5	892	50	118
A71	406	39	4	9910	0.6	0.80821	6.1	0.10336	2.2	0.36	601	37	634	14	0.05671	5.7	480	28	132

A72	1342	130	12	-	0.4	0.77256	4.7	0.09513	2.4	0.52	581	27	586	14	0.05890	4.0	563	23	104
A73	1718	144	14	-	0.6	0.87159	3.7	0.10579	2.1	0.56	636	23	648	13	0.05975	3.0	595	19	109
A74	630	53	5	-	0.6	0.89765	4.8	0.10729	2.1	0.44	650	31	657	14	0.06068	4.3	628	28	105
A75	1255	123	11	-	0.4	0.76640	3.7	0.09316	1.7	0.45	578	21	574	10	0.05966	3.3	591	20	97
A76	1799	149	15	266331	0.4	0.89916	3.4	0.10810	1.9	0.57	651	22	662	13	0.06033	2.8	615	18	108
A77	483	42	3	60	0.6	0.70840	8.9	0.08180	3.2	0.36	544	48	507	16	0.06281	8.3	702	58	72
A78	2088	88	14	2392	0.1	1.84715	4.6	0.17934	3.5	0.76	1062	49	1063	37	0.07470	3.0	1060	33	100
A79	772	69	6	1300	0.6	0.77714	5.8	0.09698	2.8	0.49	584	34	597	17	0.05812	5.1	534	28	112
A80	791	64	6	1909	0.4	0.85473	6.6	0.10520	3.1	0.46	627	41	645	20	0.05893	5.9	564	34	114
A81	1105	104	8	754	0.4	0.73079	5.8	0.09069	2.8	0.49	557	32	560	16	0.05844	5.1	546	28	102
A82	297	28	2	731	0.5	0.72855	8.7	0.09180	3.0	0.34	556	48	566	17	0.05756	8.2	513	42	110
A83	1495	123	11	-	0.4	0.86627	4.7	0.10108	2.7	0.58	634	30	621	17	0.06216	3.8	680	27	91
A84	277	23	2	-	0.4	0.87792	9.4	0.10252	3.1	0.33	640	60	629	19	0.06211	8.9	678	61	93
A85	400	34	3	-	0.5	0.82887	7.6	0.10144	2.8	0.37	613	47	623	18	0.05926	7.1	577	41	108
A86	338	29	2	1096	0.4	0.76433	8.4	0.09620	2.8	0.34	577	48	592	17	0.05762	7.9	515	41	115
A87	139	13	1	-	0.5	0.72186	10.6	0.08592	3.4	0.32	552	58	531	18	0.06094	10.0	637	64	83
A88	3307	338	25	10302	1.6	0.66335	3.9	0.08305	2.6	0.67	517	20	514	13	0.05793	2.9	527	16	98
A89	2380	197	18	-	0.1	0.79628	4.7	0.09830	2.9	0.61	595	28	604	17	0.05875	3.7	558	22	108
A90	1445	7	3	3604	0.8	12.75894	5.3	0.46696	3.9	0.74	2662	140	2470	96	0.19817	3.6	2811	105	88
A92	26839	89	50	1283	0.3	16.57405	3.4	0.51269	3.2	0.93	2911	99	2668	84	0.23446	1.2	3083	51	87
A94	75015	356	121	260	0.2	13.55028	6.0	0.37204	5.5	0.92	2719	163	2039	113	0.26416	2.3	3272	85	62
A95	23293	80	45	6789	0.9	19.10220	2.9	0.60367	2.6	0.90	3047	90	3045	80	0.22950	1.3	3049	52	100
A96	22836	84	44	6059	1.1	19.34603	3.2	0.60148	2.8	0.87	3059	99	3036	85	0.23327	1.6	3075	60	99
A97	11534	40	22	24670	0.6	20.25305	3.4	0.62579	3.0	0.88	3104	106	3133	94	0.23473	1.6	3085	62	102
A98	58144	359	131	921	0.2	14.07782	7.2	0.53532	6.4	0.89	2755	199	2764	177	0.19073	3.3	2748	97	101
A99	8895	34	18	1625	0.7	17.63210	3.2	0.58552	2.8	0.86	2970	96	2971	83	0.21840	1.7	2969	60	100
A100	47905	165	89	3400	0.7	20.44709	3.0	0.62045	2.9	0.95	3113	93	3112	89	0.23901	0.9	3113	45	100
A101	18128	1054	95	657	0.1	1.33878	4.9	0.10995	2.7	0.55	863	42	672	18	0.08831	4.1	1389	59	48
A102	13907	705	60	414	0.2	1.16497	4.7	0.09399	3.0	0.63	784	37	579	17	0.08990	3.7	1423	55	41
A103	82560	209	131	16953	0.2	26.66304	2.9	0.69374	2.8	0.97	3371	97	3397	95	0.27875	0.7	3356	44	101
A104	70304	299	139	731	1.5	20.19632	4.5	0.63744	3.7	0.82	3101	139	3179	117	0.22979	2.6	3051	85	104
A105	37024	166	68	1698	0.9	20.79140	4.9	0.62174	4.7	0.98	3129	152	3117	148	0.24254	1.1	3137	45	99
A106	24604	98	49	672	0.7	19.93109	4.0	0.64744	3.0	0.76	3088	122	3218	97	0.22327	2.6	3004	82	107
A107	73095	250	137	8656	0.6	20.52659	3.1	0.62576	3.0	0.97	3117	98	3133	95	0.23791	0.8	3106	38	101
A108	74472	629	174	1224	0.2	10.49199	3.7	0.39491	3.3	0.89	2479	92	2146	71	0.19269	1.7	2765	53	78
A109	6061	27	13	2572	1.5	15.97314	4.4	0.55068	3.3	0.77	2875	126	2828	95	0.21037	2.8	2908	86	97

A110	76355	302	148	5985	0.3	19.32188	3.9	0.59882	3.8	0.98	3058	119	3025	115	0.23402	0.8	3080	38	98
A111	3596	14	7	-	0.8	17.40761	4.2	0.57987	3.4	0.82	2958	125	2948	102	0.21773	2.4	2964	78	99
A112	6814	35	15	1428	0.7	15.04014	4.8	0.54134	3.6	0.75	2818	136	2789	101	0.20150	3.2	2838	94	98
A113	56981	190	106	7278	0.6	21.45506	3.4	0.64971	3.3	0.97	3159	106	3227	105	0.23950	0.8	3117	39	104
A114	64158	270	112	518	0.4	14.69324	6.5	0.43185	5.4	0.82	2796	183	2314	124	0.24676	3.7	3164	122	73
A115	60582	832	191	1881	0.4	6.26040	6.5	0.30452	5.6	0.86	2013	131	1714	95	0.14910	3.3	2336	81	73
A116	34337	116	64	2672	0.5	24.50616	4.3	0.74595	4.2	0.97	3289	141	3593	150	0.23827	1.0	3108	43	116
A117a (117)	43429	167	83	1603	0.2	19.89998	3.9	0.61435	3.6	0.93	3087	121	3087	113	0.23493	1.4	3086	53	100
A117b (118)	20350	69	38	4241	0.9	20.58847	3.3	0.63089	3.0	0.93	3119	102	3153	95	0.23668	1.2	3098	48	102
A119	13738	49	26	1917	0.9	19.34808	3.5	0.59631	3.2	0.92	3059	107	3015	97	0.23532	1.4	3089	52	98
A120	56397	271	90	230	0.7	17.23188	7.0	0.46540	6.2	0.89	2948	206	2463	153	0.26854	3.2	3298	111	75
A122	43854	136	81	26941	0.9	21.05538	3.2	0.63116	3.1	0.96	3141	102	3154	98	0.24195	0.9	3133	41	101
A123	28054	91	49	516	1.0	20.38614	3.4	0.60466	3.1	0.91	3110	107	3049	95	0.24453	1.5	3150	55	97
A124	1891	134	14	982	0.3	0.93950	4.4	0.10959	3.0	0.68	673	30	670	20	0.06217	3.2	680	23	99
A125	22796	75	43	1640	0.5	20.93531	3.3	0.63463	3.3	0.98	3136	105	3168	104	0.23925	0.6	3115	36	102
A126	17421	65	35	1651	0.3	18.51766	4.2	0.59936	3.9	0.92	3017	127	3027	117	0.22408	1.7	3010	59	101
A127	52469	247	97	1045	0.7	15.45685	5.7	0.47141	5.6	0.98	2844	163	2490	140	0.23781	1.1	3105	46	80
A128	22049	77	43	4790	0.7	19.34160	3.3	0.60578	3.1	0.95	3059	101	3053	95	0.23157	1.1	3063	44	100
A129	11885	69	29	1270	0.8	12.46021	5.0	0.47812	4.1	0.81	2640	131	2519	102	0.18901	2.9	2734	83	92
A130	21541	74	42	5308	0.8	19.54390	3.3	0.61311	3.0	0.92	3069	101	3082	93	0.23119	1.3	3060	50	101
A131	26152	107	52	1425	0.5	15.85320	3.9	0.51990	3.6	0.94	2868	111	2699	98	0.22115	1.3	2989	49	90
A132	11816	40	23	8932	0.4	17.75806	3.6	0.56310	3.3	0.92	2977	106	2879	95	0.22872	1.4	3043	52	95
A133	5062	171	29	-	0.2	1.92833	4.1	0.18604	3.4	0.82	1091	45	1100	37	0.07517	2.3	1073	27	102
A134	64192	478	160	2024	0.2	6.34435	7.3	0.30831	5.4	0.74	2025	148	1732	94	0.14924	4.9	2337	117	74
A135b	43081	140	83	7571	0.5	19.82733	3.4	0.62882	3.3	0.96	3083	105	3145	103	0.22868	1.0	3043	42	103
A136	395	29	3	2861	1.0	0.82952	7.1	0.10638	3.5	0.49	613	43	652	23	0.05656	6.1	474	29	137
A142	139	12	-	0.3	0.7	0.70779	5.2	0.08893	3.24	0.62	543	28	549	18	0.05772	4.1	519	22	106

Tabelle 3 U-Pb Daten

Lesotho	207	U	Pb	206 01 /204 01		207 pt /235 r	$\pm 2\sigma$	206 pt 238 r	$\pm 2\sigma$	1	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$	207 р. /206 р.	$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$	Konkordanz
(902)	(c.p.s.)	(ppm)	(ppm)	Pb/Pb	Th/U	Pb/U	(%)	Pb/U	(%)	rho	Alter	(abs.)	Alter	(abs.)	Pb/Pb	(%)	Alter	(abs.)	(%)
1	3736	133	10	3559	0.3	0.70927	4.3	0.08312	2.7	0.63	544	24	515	14	0.06188	3.4	670	23	102
2	2450	252	8	-	0.4	0.25145	4.5	0.03607	2.9	0.64	228	10	228	1	0.05056	3.5	221	8	103
3	3593	122	10	-	0.3	0.69067	3.7	0.08675	2.9	0.78	533	20	536	15	0.05774	2.3	520	12	103
4	14904	373	36	1244	0.5	0.89679	4.9	0.11336	3.5	0.71	650	32	692	24	0.05738	3.4	506	18	137
5	5704	422	18	4341	0.6	0.38300	4.5	0.05422	3.6	0.80	329	15	340	12	0.05123	2.7	251	7	135
6	15258	184	29	1240	0.1	2.12847	3.6	0.18670	2.9	0.81	1158	41	1103	32	0.08268	2.1	1262	28	87
7	28878	268	56	1694	0.2	2.67737	3.8	0.23471	3.0	0.79	1322	50	1359	41	0.08273	2.3	1263	31	108
8	4202	138	11	2886	0.3	0.71061	3.9	0.08726	3.0	0.78	545	21	539	16	0.05906	2.5	569	15	95
9	5414	183	14	1297	0.4	0.72008	4.5	0.08392	3.2	0.71	551	25	519	17	0.06223	3.1	682	22	76
10	596	19	2	-	0.5	0.82314	6.0	0.10792	3.2	0.54	610	37	661	21	0.05532	5.1	425	22	155
11	12157	330	13	185	0.8	0.29908	5.9	0.03847	3.0	0.51	266	16	243	7	0.05638	5.0	467	24	52
12	12206	83	16	1465	0.2	3.25982	4.6	0.18193	3.5	0.75	1472	67	1078	37	0.12995	3.0	2097	65	51
13	11234	141	15	422	0.2	1.43868	5.8	0.11698	3.6	0.62	905	53	713	26	0.08920	4.6	1408	65	51
14	13639	281	30	52905	0.2	1.00352	4.5	0.12015	3.8	0.85	706	32	731	28	0.06057	2.4	624	16	117
15	43622	330	74	2951	0.2	3.09994	4.7	0.29096	4.0	0.86	1433	67	1646	67	0.07727	2.4	1128	29	146
16	1456	14	1	176	0.3	2.03903	6.1	0.10912	3.9	0.63	1129	69	668	26	0.13553	4.7	2171	105	31
17	5148	141	11	10960	0.2	0.85091	6.4	0.08981	3.5	0.55	625	40	554	20	0.06871	5.3	890	48	62
19	1588	37	3	856	0.3	0.86055	5.6	0.10209	3.8	0.68	630	35	627	24	0.06113	4.1	644	27	97
20	1313	25	2	233	0.5	0.98717	5.8	0.09307	3.8	0.65	697	40	574	22	0.07693	4.4	1119	50	51
21	12167	106	10	149	0.0	2.00723	7.5	0.11071	3.5	0.47	1118	84	677	24	0.13150	6.7	2118	142	32
22	19035	194	34	94607	0.2	2.08399	4.3	0.20091	3.6	0.85	1144	49	1180	43	0.07523	2.3	1075	26	110
23	4901	110	11	-	0.2	0.90237	4.5	0.10661	3.6	0.81	653	29	653	23	0.06139	2.6	653	18	100
24	20533	308	42	7283	0.2	1.46165	4.3	0.16618	3.7	0.85	915	39	991	36	0.06379	2.3	735	18	135
25	3105	79	6	-	0.2	0.71221	3.6	0.08918	2.0	0.56	546	20	551	11	0.05792	3.0	527	16	105
26	5492	162	6	255	0.4	0.59760	3.6	0.04371	2.2	0.60	476	17	276	6	0.09916	2.9	1608	47	17
27	7419	129	10	567	0.2	0.99836	4.5	0.09527	2.0	0.45	703	31	587	12	0.07601	4.0	1095	44	54
28	3427	48	5	928	0.3	1.15614	3.3	0.11849	2.1	0.62	780	26	722	15	0.07077	2.6	951	25	76
29	5074	89	7	555	0.3	1.02214	3.1	0.09383	1.9	0.62	715	22	578	11	0.07901	2.5	1172	30	49
30	2584	59	5	7948	0.3	0.78939	3.5	0.09473	2.0	0.56	591	21	583	11	0.06044	2.9	619	19	94
31	1966	49	4	884	0.3	0.69833	3.5	0.08601	1.9	0.56	538	19	532	10	0.05888	2.9	563	17	95
32	1987	15	1	108	0.3	2.01537	12.1	0.10630	2.4	0.19	1121	136	651	15	0.13751	11.9	2196	262	30
33	9208	225	18	-	0.4	0.76392	2.5	0.09627	1.8	0.70	576	15	593	11	0.05755	1.8	513	10	116

34	4651	80	7	456	0.7	1.25253	7.3	0.09650	2.1	0.29	825	60	594	13	0.09414	7.0	1511	105	39
35	6381	68	10	2082	0.3	1.55097	3.0	0.15388	1.8	0.61	951	29	923	17	0.07310	2.4	1017	25	91
36	5895	39	7	358	0.3	2.64706	3.4	0.20420	1.8	0.52	1314	45	1198	21	0.09401	2.9	1508	45	79
37	5392	126	10	1849	0.3	0.76377	2.5	0.09006	1.1	0.44	576	14	556	6	0.06151	2.2	657	15	85
38	7600	66	10	1008	0.4	1.84803	3.0	0.17275	1.5	0.51	1063	32	1027	16	0.07759	2.6	1136	30	90
39	1405	26	2	795	0.1	0.90833	4.4	0.10031	2.1	0.48	656	29	616	13	0.06568	3.8	796	31	77
40	12301	145	13	467	0.5	0.81012	2.8	0.09884	1.2	0.43	603	17	608	7	0.05945	2.5	583	15	104
41	17880	282	33	11877	0.3	1.20761	2.3	0.14037	1.6	0.71	804	18	847	14	0.06239	1.6	688	12	123
42	2149	51	4	-	0.4	0.72972	4.1	0.08708	1.4	0.35	556	23	538	8	0.06078	3.8	631	24	85
43	6791	64	11	-	0.2	2.03738	2.7	0.19445	1.5	0.57	1128	31	1145	18	0.07599	2.2	1095	25	105
44	26741	29	6	44	0.2	0.90912	6.0	0.09746	2.6	0.43	657	39	600	16	0.06765	5.4	858	47	70
45	12681	286	25	5220	0.2	0.83824	2.2	0.10393	1.3	0.57	618	14	637	8	0.05850	1.8	548	10	116
46	1778	34	3	-	0.4	0.92757	3.7	0.11059	1.5	0.41	666	25	676	10	0.06083	3.4	633	22	107
47	23559	192	25	272	1.6	1.12173	9.3	0.11416	4.1	0.44	764	71	697	29	0.07127	8.4	965	81	72
48	4770	222	9	1178	0.3	0.37221	3.3	0.04573	2.1	0.63	321	11	288	6	0.05904	2.6	568	15	51
49	4261	69	5	673	0.3	0.88882	3.7	0.08357	2.2	0.58	646	24	517	11	0.07714	3.0	1125	35	46
51	15564	247	26	5174	0.1	0.85606	3.1	0.10576	2.3	0.75	628	19	648	15	0.05870	2.0	556	12	117
52	11642	216	20	10021	0.2	0.85627	3.3	0.10408	2.4	0.73	628	21	638	15	0.05967	2.3	592	14	108
53	6331	100	9	2204	0.6	0.92257	4.4	0.10001	2.2	0.49	664	29	614	13	0.06690	3.8	835	32	74
54	9737	205	16	3662	0.2	0.69094	3.1	0.08572	2.3	0.74	533	16	530	12	0.05846	2.1	547	12	97
55	3336	59	5	1004	0.5	0.79159	4.1	0.09191	2.5	0.60	592	24	567	14	0.06247	3.3	690	23	82
57	6205	136	11	1931	0.3	0.65052	3.1	0.08318	2.4	0.76	509	16	515	12	0.05672	2.0	481	10	107
58	2075	111	4	747	0.5	0.29001	3.5	0.04006	2.3	0.66	259	9	253	6	0.05250	2.6	307	8	82
59	11184	85	13	1090	0.4	1.96752	4.2	0.15950	2.8	0.68	1104	46	954	27	0.08947	3.1	1414	45	67
60	9361	60	10	559	0.2	2.15352	4.4	0.17025	2.5	0.57	1166	51	1013	25	0.09174	3.6	1462	54	69
61	3963	71	6	7903	1.2	0.84621	2.7	0.09411	1.6	0.59	623	17	580	9	0.06522	2.2	781	17	74
62	10515	204	17	2098	0.4	0.80682	3.3	0.09090	1.6	0.48	601	20	561	9	0.06438	2.9	754	22	74
63	14752	142	21	11720	0.3	1.67731	2.5	0.16893	2.0	0.79	1000	25	1006	20	0.07201	1.5	986	16	102
64	11956	64	14	8622	0.4	2.79167	2.2	0.22708	1.8	0.81	1353	29	1319	23	0.08916	1.3	1408	19	94
65	2419	60	5	-	0.4	0.64156	3.0	0.08070	1.9	0.61	503	15	500	9	0.05766	2.4	517	12	97
66	7530	76	11	3741	0.2	1.48936	2.7	0.14690	1.8	0.67	926	25	884	16	0.07353	2.0	1029	21	86
67	9204	138	13	1177	0.2	0.83984	2.8	0.09404	2.0	0.73	619	17	579	12	0.06477	1.9	767	15	76
68	6026	167	11	2046	0.2	0.56757	2.5	0.07302	1.6	0.65	456	11	454	7	0.05638	1.9	467	9	97
69	1492	36	3	-988	0.4	0.71271	4.1	0.08981	1.8	0.45	546	23	554	10	0.05756	3.7	513	19	108
70	4074	164	6	1841	0.5	0.37259	3.8	0.04362	1.5	0.40	322	12	275	4	0.06194	3.5	672	24	41
71	6445	124	11	2824	0.6	0.80849	2.6	0.09894	1.5	0.59	602	15	608	9	0.05926	2.1	577	12	105

72	3057	48	4	546	0.3	1.01004	3.8	0.08562	1.6	0.41	709	27	530	8	0.08555	3.5	1328	46	40
73	1820	17	1	154	0.4	1.20818	14.9	0.08826	2.3	0.15	804	120	545	12	0.09929	14.7	1611	237	34
74	9129	83	13	2042	0.4	1.76241	2.3	0.16852	1.8	0.79	1032	24	1004	18	0.07585	1.4	1091	16	92
76	47332	274	66	10832	0.4	2.76325	1.9	0.26536	1.6	0.85	1346	26	1517	25	0.07552	1.0	1082	11	140
77	17645	191	20	364	1.1	1.56180	4.3	0.12705	2.4	0.57	955	41	771	19	0.08915	3.5	1407	50	55
78	25487	167	29	956	0.2	2.26410	2.4	0.19181	1.8	0.73	1201	29	1131	20	0.08561	1.7	1329	22	85
79	29263	231	41	35691	0.4	2.08955	2.5	0.19904	1.9	0.78	1145	28	1170	23	0.07614	1.5	1099	17	106
80	10788	153	16	3536	0.3	1.17890	3.4	0.12025	2.1	0.63	791	27	732	16	0.07110	2.6	960	26	76
81	3680	42	5	634	0.3	1.15594	4.6	0.13224	1.6	0.36	780	36	801	13	0.06340	4.3	722	31	111
82	3199	21	2	169	0.2	1.50065	9.4	0.11997	2.3	0.25	931	88	730	17	0.09072	9.1	1441	131	51
84	36089	259	49	13720	0.2	2.36705	2.3	0.21786	1.6	0.72	1233	28	1271	21	0.07880	1.6	1167	19	109
85	6009	136	12	-	0.5	0.79737	4.5	0.09395	3.4	0.75	595	27	579	20	0.06155	3.0	659	21	88
86	21167	42	13	152	0.4	7.21915	7.7	0.35368	3.5	0.45	2139	165	1952	68	0.14804	6.9	2323	162	84
87	42218	147	39	598	0.3	3.68112	4.3	0.25224	3.6	0.83	1567	68	1450	52	0.10584	2.4	1729	45	84
88	16461	145	24	1439	0.1	2.10996	4.4	0.18252	3.6	0.82	1152	50	1081	39	0.08384	2.5	1289	34	84
89	4667	248	11	-	0.3	0.34687	4.3	0.04787	3.5	0.81	302	13	301	11	0.05255	2.5	310	8	97
90	3791	200	9	10713	0.2	0.31945	4.7	0.04298	3.8	0.80	281	13	271	10	0.05390	2.9	367	11	74
91	3235	63	5	573	0.4	0.94959	4.8	0.09097	3.5	0.72	678	33	561	20	0.07571	3.3	1087	38	52
92	4361	76	5	472	0.2	0.65910	6.6	0.07753	3.9	0.58	514	34	481	19	0.06166	5.4	662	36	73
93	9849	142	17	6590	0.2	1.19420	4.4	0.12162	3.5	0.81	798	35	740	26	0.07121	2.6	964	27	77
96	6159	295	14	6297	0.4	0.41437	4.4	0.05714	3.6	0.83	352	15	358	13	0.05260	2.5	312	8	115

Tabelle 4 U-Pb Daten

Kheis	207	U	Pb	206 204		207 225	$\pm 2\sigma$	206 228	$\pm 2\sigma$		²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	206Pb/238U	$\pm 2\sigma$	207 206	$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$	Konkordanz
(903)	(c.p.s.)	(ppm)	(ppm)	²⁰⁰ Pb/ ²⁰⁴ Pb	Th/U	²⁰⁷ Pb/ ²³³ U	(%)	²⁰⁶ Pb/ ²³⁸ U	(%)	rho	Alter	(abs.)	Alter	(abs.)	²⁰⁷ Pb/ ²⁰⁶ Pb	(%)	Alter	(abs.)	(%)
1	458	22	2	61	0.51	0.69420	4.3	0.09127	1.8	0.43	535	23	563	10	0.05516	3.8	419	16	134
2	612	27	2	77	0.65	0.73428	5.0	0.09187	2.0	0.41	559	28	567	12	0.05797	4.5	529	24	107
3	1142	45	4	137	0.58	0.87214	3.6	0.10595	1.9	0.52	637	23	649	12	0.05970	3.1	593	19	110
4	241	13	1	35	0.03	0.63221	7.9	0.08359	2.5	0.31	497	39	518	13	0.05485	7.5	406	31	127
5	422	19	2	43	0.43	0.77484	4.1	0.09587	1.8	0.43	583	24	590	11	0.05862	3.7	553	21	107
6	3211	158	13	375	0.51	0.69838	2.6	0.08928	1.6	0.60	538	14	551	9	0.05674	2.1	481	10	115
7	3957	172	15	512	0.18	0.80654	2.4	0.09717	1.5	0.65	601	14	598	9	0.06020	1.8	611	12	98
8	2190	38	6	197	0.24	1.85785	5.4	0.17530	4.0	0.74	1066	57	1041	41	0.07686	3.6	1118	41	93
9	1724	83	7	227	0.35	0.70279	3.0	0.08832	1.5	0.50	540	16	546	8	0.05771	2.6	519	14	105
10	6970	134	21	705	0.36	1.64500	2.3	0.15744	1.8	0.79	988	23	943	17	0.07578	1.4	1089	17	87
11	593	25	2	171	0.50	0.80409	4.6	0.10073	2.1	0.45	599	27	619	13	0.05789	4.1	526	22	118
12	4414	180	16	470	0.86	0.81572	2.3	0.09849	1.6	0.69	606	14	606	10	0.06007	1.7	606	11	100
13	4541	173	17	501	0.27	0.91075	2.4	0.10880	1.5	0.61	657	16	666	10	0.06071	1.9	629	13	106
14	1320	38	4	131	0.45	1.08378	4.2	0.11534	2.2	0.53	745	31	704	15	0.06815	3.5	873	31	81
15	16646	77	28	733	0.66	7.18722	2.0	0.38677	1.5	0.72	2135	44	2108	31	0.13477	1.4	2161	33	98
16	6498	237	23	663	0.39	0.90551	2.5	0.10413	1.8	0.72	655	16	639	11	0.06307	1.7	711	13	90
17	3205	164	13	406	0.52	0.65757	2.6	0.08198	1.5	0.58	513	13	508	8	0.05818	2.1	536	12	95
18	1962	88	7	225	0.49	0.70978	2.9	0.08943	1.9	0.64	545	16	552	10	0.05756	2.2	513	12	108
19	1835	54	6	195	0.45	1.15483	3.2	0.13040	1.9	0.60	780	25	790	15	0.06423	2.5	749	19	105
20	2680	96	10	293	0.32	0.93321	2.6	0.10767	1.6	0.63	669	17	659	11	0.06286	2.0	703	15	94
21	49715	146	65	1824	0.45	10.95680	1.9	0.46821	1.4	0.73	2519	49	2476	35	0.16972	1.3	2555	37	97
22	1243	58	5	142	0.37	0.66677	3.2	0.08335	1.5	0.45	519	17	516	8	0.05802	2.9	530	16	97
23	4037	173	15	450	0.75	0.75780	2.9	0.09348	1.4	0.49	573	16	576	8	0.05879	2.5	559	14	103
24	1132	50	4	133	0.40	0.74223	3.2	0.08989	1.7	0.53	564	18	555	9	0.05989	2.7	599	17	93
25	1822	79	7	210	0.60	0.77595	2.7	0.09516	1.8	0.65	583	16	586	10	0.05914	2.1	572	12	102
26	1065	43	4	134	0.54	0.79318	3.2	0.09490	1.4	0.45	593	19	584	8	0.06062	2.9	626	19	93
27	926	48	3	69	0.66	0.72246	9.2	0.08793	3.4	0.38	552	51	543	19	0.05959	8.5	589	50	92
28	1289	47	5	102	0.75	0.97272	4.8	0.10595	3.8	0.78	690	33	649	24	0.06659	3.0	825	26	79
29b	4613	248	19	488	0.47	0.69670	4.0	0.08738	3.4	0.83	537	22	540	18	0.05783	2.3	523	13	103
29	2404	130	10	245	0.31	0.72772	4.9	0.08830	3.5	0.72	555	27	545	19	0.05977	3.4	595	21	92
30	3613	164	14	397	0.32	0.85691	4.3	0.10292	3.7	0.84	628	27	632	23	0.06038	2.3	617	15	102
31	40234	238	76	1944	0.59	6.54855	4.0	0.37508	3.5	0.87	2052	82	2053	72	0.12663	2.0	2052	44	100

32	50002	319	92	1115	0.95	6.57159	4.4	0.35983	3.8	0.87	2056	90	1981	75	0.13246	2.1	2131	50	93
33	3086	122	12	342	1.17	0.90536	4.8	0.10572	4.0	0.83	655	31	648	26	0.06211	2.6	678	19	96
34	1945	87	8	234	0.72	0.88568	4.7	0.10893	3.6	0.77	644	30	667	24	0.05897	3.0	566	18	118
35	425879	358	395	126	0.73	22.99883	5.2	0.63971	3.8	0.74	3227	167	3188	121	0.26075	3.5	3251	118	98
36	16506	671	58	733	0.15	0.90998	5.0	0.09809	4.0	0.80	657	33	603	24	0.06728	3.0	847	27	71
37	20724	578	59	625	0.63	1.57146	8.1	0.13738	7.2	0.90	959	77	830	60	0.08296	3.6	1268	47	65
38	966	33	3	96	0.50	0.98173	5.6	0.11209	3.5	0.62	694	39	685	24	0.06352	4.4	726	32	94
39	1375	52	5	148	0.94	0.91672	4.9	0.10666	3.9	0.79	661	32	653	25	0.06233	3.0	686	22	95
40	1391	55	6	152	0.48	0.83538	4.8	0.10273	3.6	0.74	617	30	630	22	0.05898	3.2	566	19	111
41	2462	114	10	306	0.15	0.74314	4.2	0.09271	3.4	0.80	564	24	572	19	0.05813	2.5	535	14	107
42	966	42	4	112	0.66	0.77239	5.1	0.09631	3.0	0.59	581	29	593	18	0.05816	4.1	536	23	111
43	2684	124	10	287	0.33	0.66792	4.7	0.07940	2.3	0.49	519	24	493	11	0.06101	4.1	640	27	77
44	32014	640	96	1138	0.15	1.78019	3.7	0.15959	2.9	0.77	1038	39	955	28	0.08090	2.4	1219	32	78
45	2008	101	8	286	0.39	0.60450	4.6	0.07522	2.4	0.52	480	22	468	11	0.05829	3.9	541	22	86
46	11824	450	47	1574	0.49	0.83600	3.1	0.10026	2.2	0.70	617	19	616	14	0.06048	2.2	621	15	99
47	5852	120	16	258	0.13	1.84655	5.6	0.14968	2.8	0.50	1062	60	899	25	0.08947	4.9	1414	71	64
48	66282	358	124	1669	0.22	5.46126	3.6	0.31359	2.7	0.75	1895	68	1758	47	0.12631	2.4	2047	53	86
49	1694	65	7	193	0.20	0.77686	5.2	0.08674	3.9	0.74	584	31	536	21	0.06496	3.5	773	28	69
50	3743	164	15	573	0.83	0.71385	3.6	0.08729	2.5	0.69	547	20	539	13	0.05931	2.6	579	16	93
51	23869	796	93	2864	0.09	1.10606	3.4	0.13082	2.6	0.76	756	26	793	21	0.06132	2.2	651	16	122
52	6652	221	26	835	0.27	0.99834	3.2	0.11768	2.2	0.69	703	23	717	16	0.06153	2.3	658	17	109
53	1937	88	8	267	0.37	0.68962	3.6	0.08492	2.4	0.65	533	19	525	12	0.05890	2.8	563	17	93
54	20558	768	85	2814	0.13	0.85290	3.7	0.10667	3.0	0.80	626	23	653	19	0.05799	2.2	530	13	123
55	67199	725	112	612	0.83	2.35350	8.9	0.12078	8.5	0.95	1229	109	735	62	0.14132	2.7	2243	64	33
56	6278	310	26	1140	0.40	0.65818	3.3	0.08289	2.3	0.69	514	17	513	12	0.05759	2.4	514	13	100
57	43777	109	55	2509	0.24	13.23689	3.1	0.50222	2.2	0.71	2697	84	2623	59	0.19116	2.2	2752	67	95
58	5621	220	20	554	0.18	0.81464	4.6	0.09232	2.3	0.49	605	28	569	13	0.06400	4.1	742	31	77
59	700	21	3	118	0.52	0.93855	4.5	0.10519	2.8	0.63	672	30	645	18	0.06471	3.5	765	28	84
60	2724	50	9	424	0.47	1.76320	3.9	0.17195	2.7	0.68	1032	40	1023	27	0.07437	2.9	1051	32	97
61	23693	47	26	1174	0.33	17.02541	3.3	0.57086	2.4	0.72	2936	96	2911	69	0.21631	2.3	2953	73	99
62	263	14	1	35	0.38	0.56547	8.1	0.07558	3.0	0.37	455	37	470	14	0.05426	7.5	382	29	123
63	2268	99	9	450	0.62	0.71009	3.8	0.08702	2.5	0.64	545	21	538	13	0.05918	2.9	574	18	94
64	7141	36	13	673	0.71	6.07697	3.4	0.33890	2.4	0.69	1987	68	1881	44	0.13005	2.5	2099	57	90
65	3682	153	15	639	0.50	0.78044	3.9	0.09355	2.6	0.68	586	23	577	15	0.06050	2.8	622	19	93
66	2228	120	10	412	0.69	0.58520	3.8	0.07629	2.3	0.60	468	18	474	11	0.05563	3.1	438	14	108
67	3317	123	13	575	0.61	0.83777	3.7	0.10105	2.5	0.66	618	23	621	15	0.06013	2.8	608	18	102

68	13279	69	25	961	0.59	6.66732	4.3	0.37980	3.5	0.83	2068	88	2075	73	0.12732	2.4	2061	54	101
69	4653	178	18	801	0.63	0.86126	3.5	0.10265	2.4	0.69	631	22	630	15	0.06085	2.6	634	17	99
70	6133	282	25	1162	0.20	0.69479	3.4	0.08538	2.4	0.72	536	18	528	13	0.05902	2.4	568	15	93
71	133168	564	151	245	0.35	7.39173	10.1	0.30200	5.5	0.55	2160	217	1701	93	0.17752	8.4	2630	223	65
72	5347	120	18	712	0.48	1.39295	3.4	0.14062	2.4	0.70	886	30	848	20	0.07184	2.5	981	26	86
73	64293	493	62	143	0.13	4.08108	4.6	0.11982	4.0	0.86	1651	76	730	29	0.24702	2.4	3166	82	23
74	52902	843	172	3444	0.2	2.87822	2.4	0.24159	2.2	0.90	1376	33	1395	30	0.08640	1.0	1347	15	104
75	3747	211	18	423	0.4	0.79846	2.7	0.09726	2.1	0.75	596	16	598	12	0.05954	1.8	587	11	102
76	1857	95	8	210	0.2	0.83722	3.1	0.09887	2.3	0.74	618	19	608	14	0.06142	2.1	654	14	93
77	4910	205	20	463	0.2	1.13420	5.2	0.12430	4.5	0.87	770	40	755	34	0.06618	2.5	812	21	93
78	6396	399	31	860	0.2	0.69630	2.5	0.08752	2.1	0.83	537	14	541	11	0.05770	1.4	518	8	104
79	595	30	3	77	0.2	0.84558	3.7	0.10676	2.2	0.59	622	23	654	14	0.05744	3.0	509	15	129
80	15895	95	34	921	0.5	6.77353	2.4	0.37283	2.0	0.85	2082	50	2043	42	0.13177	1.3	2122	28	96
81	895	51	4	106	0.8	0.70191	3.6	0.08565	2.3	0.65	540	19	530	12	0.05944	2.7	583	16	91
82	4336	118	15	326	0.2	1.27852	5.1	0.11060	2.5	0.49	836	43	676	17	0.08384	4.4	1289	58	52
83	973	22	4	104	0.5	1.60142	5.1	0.15187	2.7	0.52	971	50	911	24	0.07648	4.4	1108	49	82
85	2978	130	14	461	0.79	0.78195	5.9	0.09331	4.8	0.81	587	35	575	28	0.06078	3.5	631	23	91
86	4124	223	20	544	0.27	4.75102	7.8	0.35135	4.8	0.61	1776	139	1941	93	0.09807	6.2	1588	100	122
87	20742	475	45	301	0.17	1.65934	13.9	0.05971	9.9	0.71	993	138	374	37	0.20156	9.7	2839	279	13
88	8952	111	13	107	4.00	0.87407	5.5	0.10484	4.8	0.87	638	35	643	31	0.06047	2.7	620	18	104
89	4970	231	24	977	0.28	7.94737	5.4	0.42615	4.8	0.89	2225	120	2288	110	0.13526	2.5	2167	59	106
90	22252	118	47	2026	0.44	0.64217	6.8	0.08564	5.0	0.73	504	34	530	26	0.05438	4.7	387	19	137
91	552	36	3	150	0.47	1.79938	5.6	0.18035	4.9	0.87	1045	59	1069	52	0.07236	2.8	996	30	107
92	2962	71	12	534	0.28	0.61480	8.0	0.08396	5.3	0.67	487	39	520	28	0.05311	6.0	333	20	156
93	256	16	1	63	0.74	0.74276	6.1	0.09399	4.9	0.79	564	35	579	28	0.05731	3.7	504	20	115
94	1507	86	8	397	0.54	0.94117	6.6	0.10499	5.8	0.88	673	44	644	37	0.06502	3.1	775	26	83
95	6278	261	28	1287	0.13	1.30729	6.2	0.13298	5.5	0.89	849	52	805	44	0.07130	2.8	966	30	83
96	5682	166	23	1137	0.29	0.77278	9.7	0.09674	5.3	0.55	581	56	595	31	0.05794	8.1	527	43	113
97	288	16	1	68	0.51	1.93174	6.0	0.18723	4.9	0.81	1092	66	1106	54	0.07483	3.5	1064	40	104
98	1243	27	5	241	1.13	1.00057	7.1	0.12174	5.7	0.81	704	50	741	42	0.05961	4.2	589	26	126
99	611	26	3	157	0.38	1.60903	7.4	0.11763	4.9	0.67	974	72	717	35	0.09921	5.5	1609	90	45
100	27073	597	64	312	0.17	0.24489	6.4	0.03613	5.0	0.79	222	14	229	12	0.04988	3.8	155	6	147
101	1403	229	8	433	0.46	0.92893	5.9	0.11306	4.9	0.83	667	40	691	34	0.05959	3.3	589	21	117
102	1231	57	6	298	0.32	1.20191	6.7	0.12336	4.9	0.73	801	53	750	37	0.07066	4.5	948	44	79
103	2623	88	10	379	0.68	1.86835	5.6	0.18189	4.8	0.87	1070	60	1077	52	0.07450	2.8	1055	32	102
104	20357	31	12	563	1.1	7.25925	4.7	0.39871	3.9	0.84	2144	100	2163	84	0.13205	2.5	2125	60	102

105	15055	202	20	1000	0.5	0.83610	4.6	0.09944	3.8	0.82	617	29	611	23	0.06098	2.6	639	18	96
106	48667	725	63	1913	0.1	0.77759	5.3	0.08878	4.2	0.80	584	31	548	23	0.06352	3.2	726	25	76
107	6545	103	9	404	1.3	0.67302	4.7	0.08186	3.9	0.84	523	24	507	20	0.05963	2.6	590	17	86
108	3921	79	5	242	0.2	0.86008	5.3	0.10481	3.9	0.74	630	33	643	25	0.05952	3.6	586	22	110
109	7911	129	11	532	0.4	0.66897	4.8	0.08316	3.9	0.81	520	25	515	20	0.05834	2.8	543	17	95
110	4276	78	5	253	0.5	0.58687	5.2	0.07411	3.9	0.76	469	24	461	18	0.05744	3.4	508	18	91
111	8969	158	12	559	0.6	0.61362	4.8	0.07701	3.9	0.81	486	23	478	18	0.05779	2.8	522	16	92
112	3987	51	5	249	0.3	0.86975	4.9	0.10396	4.0	0.81	635	31	638	25	0.06068	2.9	628	20	102
113	6245	93	8	383	0.5	0.73526	4.8	0.09023	3.8	0.80	560	27	557	21	0.05910	2.9	571	18	98
114	5788	85	8	336	0.6	0.73696	4.8	0.08962	3.9	0.81	561	27	553	22	0.05964	2.8	591	18	94
115	7131	88	9	447	1.3	0.98862	3.4	0.11636	2.8	0.83	698	24	710	20	0.06162	1.9	661	13	107
116	3886	63	5	261	0.3	0.74253	3.4	0.09329	2.9	0.85	564	19	575	17	0.05772	1.8	519	10	111
117	20233	338	28	1338	0.2	0.68916	3.0	0.08505	2.7	0.91	532	16	526	14	0.05877	1.3	559	8	94
118	13480	206	18	856	0.1	0.79224	3.2	0.09658	2.8	0.89	592	19	594	17	0.05949	1.5	585	9	102
119	3983	61	5	259	0.4	0.75437	3.5	0.09084	2.9	0.81	571	20	561	16	0.06023	2.1	612	13	92
120	1636	15	2	92	0.5	1.16755	5.0	0.13034	4.3	0.86	785	39	790	34	0.06497	2.6	773	20	102
121	18577	316	25	1076	0.2	0.66966	3.0	0.08138	2.7	0.91	521	16	504	14	0.05968	1.2	592	8	85
122	15241	247	21	973	0.9	0.71454	3.0	0.08784	2.7	0.90	547	16	543	15	0.05900	1.3	567	8	96
123	7143	101	9	443	0.3	0.78531	3.2	0.09397	2.8	0.87	589	19	579	16	0.06061	1.6	625	10	93
124	25158	306	33	1517	0.2	0.93689	2.9	0.10831	2.7	0.91	671	20	663	18	0.06274	1.2	699	9	95
125	4921	79	7	310	0.5	0.69517	2.7	0.08550	2.0	0.71	536	15	529	10	0.05897	1.9	566	12	93
126	7452	94	10	475	0.5	0.87723	2.9	0.10376	2.0	0.70	639	19	636	13	0.06132	2.1	650	14	98
127	3180	44	4	186	0.6	0.78862	3.2	0.09207	2.3	0.71	590	19	568	13	0.06213	2.3	678	16	84
128	4974	85	7	325	0.4	0.65058	2.9	0.08034	2.1	0.72	509	15	498	10	0.05873	2.0	557	12	89
129	2763	50	4	188	0.6	0.64744	3.4	0.08090	2.6	0.78	507	17	501	13	0.05804	2.1	531	12	94
130	4663	69	5	243	0.4	0.67432	3.6	0.08173	2.5	0.70	523	19	506	13	0.05984	2.5	598	16	85
131	16694	121	18	890	0.5	1.54620	2.8	0.15381	2.2	0.79	949	26	922	20	0.07291	1.7	1011	19	91
132	7434	108	10	484	0.5	0.78583	3.1	0.09502	2.3	0.76	589	18	585	14	0.05998	2.0	603	13	97
133	24530	361	32	1590	0.5	0.75732	2.6	0.09013	2.0	0.79	572	15	556	11	0.06094	1.6	637	11	87
134	7871	118	10	494	0.5	0.77847	2.8	0.09379	2.0	0.71	585	17	578	12	0.06020	2.0	611	13	95
135	3384	25	4	180	0.3	1.54724	3.6	0.15345	2.9	0.79	949	34	920	26	0.07313	2.2	1018	24	90
136	7853	106	10	516	0.9	0.82465	2.9	0.09735	2.5	0.89	611	17	599	15	0.06144	1.3	655	9	91
137	4554	68	6	330	0.6	0.75888	3.0	0.09253	2.6	0.88	573	17	570	15	0.05948	1.4	585	9	98
138	6742	48	7	399	0.5	1.58518	3.0	0.15884	2.8	0.92	964	29	950	26	0.07238	1.2	997	12	95
139	8164	133	11	545	0.2	0.67479	3.0	0.08320	2.6	0.85	524	16	515	13	0.05882	1.6	561	9	92
140	4975	77	7	340	0.4	0.69010	3.1	0.08490	2.7	0.84	533	17	525	14	0.05895	1.7	565	10	93

141	9315	124	12	630	1.3	0.82718	2.9	0.09829	2.6	0.91	612	18	604	16	0.06104	1.2	640	8	94
142	18137	246	23	1285	0.3	0.77968	3.1	0.09375	2.9	0.94	585	18	578	17	0.06032	1.1	615	7	94
143	4429	77	6	328	0.7	0.61517	3.2	0.07526	2.8	0.88	487	15	468	13	0.05929	1.5	578	9	81
144	12135	193	16	824	0.4	0.69837	2.9	0.08518	2.7	0.92	538	16	527	14	0.05946	1.1	584	7	90
145	6231	82	8	424	1.0	0.85314	2.8	0.10086	2.6	0.90	626	18	619	16	0.06135	1.2	651	8	95
146	11613	152	15	831	0.0	0.84805	3.6	0.09931	3.4	0.95	624	22	610	21	0.06193	1.1	672	8	91
147	15117	221	21	1059	0.6	0.79838	3.5	0.09618	3.3	0.95	596	21	592	20	0.06021	1.1	611	7	97
148	19137	332	26	1405	0.3	0.63302	4.7	0.07646	4.5	0.96	498	23	475	21	0.06005	1.2	605	8	78
149	7448	116	10	515	0.5	0.74838	3.7	0.09074	3.4	0.93	567	21	560	19	0.05982	1.4	597	9	94
150	9077	140	12	628	0.8	0.74209	3.8	0.08953	3.4	0.88	564	22	553	19	0.06012	1.8	608	11	91
151	5312	94	7	372	0.4	0.62132	3.7	0.07636	3.4	0.93	491	18	474	16	0.05901	1.3	568	8	84
152	2481	42	4	185	0.4	0.72714	4.1	0.09028	3.6	0.88	555	23	557	20	0.05841	1.9	545	11	102
153	5443	90	7	388	0.2	0.64405	3.7	0.07981	3.4	0.92	505	19	495	17	0.05853	1.4	549	8	90
154	3390	48	5	253	0.7	0.79825	4.3	0.09378	3.6	0.85	596	26	578	21	0.06173	2.3	665	15	87
155	26725	410	36	1938	0.0	0.59161	4.1	0.07111	3.8	0.92	472	19	443	17	0.06034	1.6	616	10	72
156	12608	205	17	936	0.9	0.70340	3.8	0.08695	3.5	0.93	541	20	537	19	0.05867	1.3	555	8	97
157	73055	37	23	1232	0.7	22.97300	3.7	0.63760	3.5	0.95	3226	120	3180	113	0.26132	1.1	3255	41	98
158	3980	79	6	326	0.5	0.63398	4.2	0.07958	3.7	0.88	499	21	494	18	0.05778	2.0	522	11	95
159	1168	15	2	84	0.5	0.92798	5.5	0.11396	4.0	0.72	667	37	696	28	0.05906	3.8	569	22	122
160	2335	37	3	158	0.3	0.76243	4.9	0.08457	3.9	0.80	575	28	523	21	0.06538	2.9	787	23	67
161	9882	170	14	772	0.8	0.68114	3.8	0.08307	3.5	0.92	527	20	514	18	0.05947	1.5	584	9	88
162	2436	33	3	176	0.2	0.80648	4.4	0.09575	4.0	0.91	600	27	589	24	0.06109	1.8	642	12	92
163	1319	21	2	103	0.2	0.79177	4.9	0.09659	4.1	0.82	592	29	594	24	0.05945	2.8	584	17	102
164	8154	142	11	621	0.4	0.63951	3.8	0.08049	3.5	0.92	502	19	499	18	0.05762	1.5	515	8	97
165	2675	46	4	200	0.7	0.66386	4.5	0.08108	3.8	0.84	517	23	503	19	0.05939	2.4	581	15	86
166	10046	143	14	747	0.4	0.77633	3.8	0.09397	3.5	0.92	583	22	579	20	0.05992	1.5	601	10	96
167	110729	217	72	3690	0.2	6.13387	3.7	0.35604	3.5	0.95	1995	74	1963	69	0.12495	1.1	2028	25	97
168	6249	105	9	529	0.4	0.66570	4.0	0.08340	3.6	0.90	518	21	516	18	0.05789	1.7	526	9	98
169	9648	155	13	752	0.5	0.67183	2.3	0.08312	1.7	0.72	522	12	515	9	0.05862	1.6	553	9	93
170	12417	185	16	954	0.3	0.80680	2.3	0.09561	1.7	0.73	601	14	589	10	0.06120	1.5	646	10	91
171	6702	114	9	503	0.2	0.69629	2.8	0.08521	2.4	0.86	537	15	527	13	0.05926	1.4	577	9	91
172	8480	148	12	706	0.9	0.65740	2.2	0.08191	1.8	0.80	513	11	508	9	0.05821	1.3	538	8	94
173	25738	487	36	2009	0.3	0.64372	2.1	0.08101	1.8	0.83	505	11	502	9	0.05763	1.2	516	7	97
174	21447	308	29	1745	0.5	0.79475	2.0	0.09362	1.7	0.84	594	12	577	10	0.06157	1.1	659	8	88
175	5043	69	7	385	0.7	0.87538	2.7	0.10290	2.0	0.71	638	17	631	12	0.06170	1.9	664	13	95
176	3817	52	5	304	1.1	0.83510	2.8	0.09831	1.9	0.68	616	17	604	11	0.06161	2.0	661	14	91

177	1155	6	1	71	0.3	2.05832	8.1	0.19353	7.1	0.88	1135	92	1140	81	0.07714	3.9	1125	44	101
178	5447	99	8	464	1.2	0.66444	2.6	0.08278	1.9	0.72	517	13	513	9	0.05821	1.8	538	10	95
179	21413	314	29	1815	0.6	0.72406	4.2	0.08561	4.0	0.97	553	23	530	21	0.06134	1.1	651	7	81
180	2707	39	4	212	1.4	0.76096	3.8	0.09108	3.5	0.90	575	22	562	19	0.06060	1.7	625	11	90
181	3237	30	4	203	0.2	1.20875	3.9	0.12854	3.4	0.88	805	31	780	27	0.06820	1.9	875	16	89
182	11521	222	17	963	0.4	0.57610	3.6	0.07184	3.4	0.92	462	17	447	15	0.05816	1.4	536	8	83
183	487	6	1	41	0.8	0.91578	8.8	0.11501	7.5	0.84	660	58	702	52	0.05775	4.7	520	25	135
184	3247	61	5	268	0.7	0.58313	4.1	0.07432	3.4	0.85	466	19	462	16	0.05691	2.2	488	11	95
185	28567	55	19	1161	1.2	6.00463	3.4	0.34875	3.2	0.96	1977	67	1929	63	0.12487	1.0	2027	21	95
186	3289	59	5	281	1.4	0.63836	4.0	0.07959	3.4	0.84	501	20	494	17	0.05817	2.1	536	12	92
187	6904	118	10	543	0.5	0.65849	3.6	0.08126	3.4	0.92	514	19	504	17	0.05877	1.4	559	8	90
188	5832	97	8	464	0.6	0.68310	3.6	0.08380	3.3	0.90	529	19	519	17	0.05912	1.6	572	9	91
189	15659	216	21	1203	1.5	0.84053	3.4	0.09899	3.3	0.95	619	21	608	20	0.06158	1.1	660	7	92
190	39364	657	56	3544	0.4	0.70258	3.3	0.08690	3.2	0.97	540	18	537	17	0.05864	0.8	554	5	97
191	20340	241	22	896	0.2	0.78291	3.5	0.09229	3.2	0.93	587	20	569	18	0.06153	1.3	658	9	87
192	42735	77	28	1721	0.7	6.32328	3.3	0.36267	3.2	0.96	2022	68	1995	64	0.12645	0.9	2049	20	97
193	4002	64	6	352	1.0	0.72688	3.7	0.08839	3.3	0.90	555	21	546	18	0.05965	1.6	591	10	92

Tabelle 5 U-Pb Daten

	207	U	Pb	206 204		207 225	$\pm 2\sigma$	206 228	$\pm 2\sigma$		²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$	207 206	$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$	Konkordanz
Augrabie	(c.p.s.)	(ppm)	(ppm)	²⁰⁸ Pb/ ²⁰⁴ Pb	Th/U	²⁰⁷ Pb/ ²³³ U	(%)	²⁰⁰ Pb/ ²³⁸ U	(%)	rho	Alter	(abs.)	Alter	(abs.)	²⁰⁷ Pb/ ²⁰⁸ Pb	(%)	Alter	(abs.)	(%)
(904)																	Alter	±	%
1	9475	130	24	302	0.26	2.36710	4.6	0.21454	3.6	0.78	1233	56	1253	45	0.08002	2.8	1198	37	105
2	7022	92	17	183	0.26	2.29516	4.7	0.20418	3.6	0.76	1211	57	1198	43	0.08153	3.1	1234	40	97
3	2175	28	4	35	0.17	2.99806	6.8	0.16875	4.6	0.68	1407	95	1005	46	0.12886	5.0	2082	106	48
4	16388	241	39	401	0.34	2.23847	5.1	0.19494	3.5	0.68	1193	61	1148	40	0.08328	3.8	1276	50	90
5	17384	917	45	356	0.18	0.43951	5.2	0.04499	3.9	0.75	370	19	284	11	0.07086	3.5	953	35	30
6	7894	105	20	244	0.29	2.48776	4.4	0.22239	3.4	0.77	1268	56	1295	44	0.08113	2.8	1225	37	106
7	11762	155	29	349	0.05	2.35556	4.4	0.21020	3.3	0.74	1229	54	1230	40	0.08128	2.9	1228	39	100
8	24295	417	62	754	0.20	1.91367	4.8	0.17994	3.9	0.81	1086	52	1067	41	0.07713	2.8	1125	34	95
9	11357	397	32	387	0.02	0.89139	4.8	0.09102	3.8	0.79	647	31	562	21	0.07103	2.9	958	30	59
10	19659	270	51	677	0.10	2.31693	4.3	0.21511	3.3	0.78	1217	53	1256	42	0.07812	2.7	1150	34	109
11	9799	147	22	273	0.29	1.87669	4.9	0.16366	3.6	0.73	1073	52	977	35	0.08317	3.3	1273	45	77
12	4757	59	11	125	0.23	2.54815	5.0	0.20285	3.4	0.68	1286	64	1191	40	0.09111	3.7	1449	56	82
13	85725	1949	225	3339	0.25	1.35362	3.4	0.12861	3.0	0.88	869	30	780	23	0.07634	1.6	1104	20	71
14	30092	455	66	293	0.35	2.19476	3.5	0.17858	2.8	0.82	1179	41	1059	30	0.08914	2.0	1407	29	75
15	59464	3045	144	580	0.17	0.39692	4.3	0.04578	3.5	0.82	339	15	289	10	0.06288	2.5	704	18	41
16	8690	113	21	306	0.23	2.42768	3.4	0.21376	2.6	0.76	1251	43	1249	32	0.08237	2.2	1254	29	100
17	41152	656	102	1366	0.24	1.96610	3.2	0.17521	2.7	0.83	1104	36	1041	28	0.08139	1.8	1231	24	85
18	56219	5980	127	538	0.03	0.26847	3.8	0.02138	3.1	0.81	241	9	136	4	0.09106	2.3	1448	34	9
19	20582	345	52	856	0.19	1.55398	4.0	0.14141	3.4	0.87	952	38	853	29	0.07970	2.0	1190	25	72
20	72543	1460	149	450	0.12	1.13789	3.4	0.11143	2.7	0.79	772	26	681	18	0.07406	2.1	1043	23	65
21	54147	3959	137	489	0.02	0.15348	7.5	0.01716	7.1	0.95	145	11	110	8	0.06486	2.4	770	19	14
22	7142	98	17	288	0.29	1.98913	4.0	0.17696	2.9	0.73	1112	44	1050	31	0.08153	2.7	1234	35	85
23	2458	37	6	111	0.27	2.01436	4.4	0.18203	3.2	0.73	1120	50	1078	35	0.08026	3.0	1203	37	90
24	179614	4681	266	235	0.01	0.55890	5.1	0.06424	3.8	0.74	451	23	401	15	0.06310	3.4	712	25	56
25	130545	3568	160	184	0.20	0.42506	5.6	0.05275	2.4	0.43	360	20	331	8	0.05844	5.0	546	28	61
26	51128	1441	142	1690	0.02	1.16564	3.4	0.11000	2.3	0.69	785	26	673	15	0.07685	2.4	1117	30	60
27	72712	2711	206	1234	0.16	0.95088	3.4	0.09222	2.1	0.63	679	23	569	12	0.07478	2.6	1063	30	54
28	109006	1806	293	4258	0.10	1.79809	3.5	0.16623	2.7	0.78	1045	36	991	27	0.07845	2.2	1158	28	86
29	16486	242	44	757	0.25	2.11139	3.6	0.19353	2.5	0.70	1153	42	1140	29	0.07912	2.6	1175	33	97
30	98348	3058	266	2757	0.08	1.63610	3.7	0.16207	2.4	0.63	984	37	968	23	0.07322	2.9	1020	32	95
31	45904	2202	130	1267	0.11	0.53658	3.5	0.05294	2.5	0.72	436	15	333	8	0.07351	2.4	1028	27	32

32	2492	110	9	186	0.48	0.72131	4.0	0.08930	2.4	0.61	551	22	551	13	0.05858	3.2	552	18	100
33	29791	475	79	1385	0.28	1.99749	3.1	0.18487	2.1	0.67	1115	35	1094	23	0.07836	2.3	1156	29	95
34	26789	390	70	1382	0.25	2.14833	3.5	0.19462	2.4	0.70	1165	40	1146	28	0.08006	2.5	1198	32	96
35	70168	1995	189	1916	0.24	0.98591	3.5	0.09168	2.7	0.76	697	25	565	15	0.07799	2.3	1147	29	49
36	-	-	-	-	-	2.06844	3.2	0.18969	2.3	0.70	1138	37	1120	25	0.07908	2.3	1174	30	95
37	-	-	-	-	-	0.69464	3.7	0.06853	2.8	0.75	536	20	427	12	0.07352	2.4	1028	27	42
38	47155	2697	120	721	0.24	0.29552	7.6	0.02917	7.2	0.95	263	20	185	13	0.07348	2.4	1027	27	18
39	55099	459	76	1255	0.21	2.07973	4.0	0.18763	3.1	0.77	1142	46	1109	34	0.08039	2.6	1207	34	92
40	70343	632	99	1423	0.07	1.84961	4.1	0.16998	3.3	0.80	1063	43	1012	33	0.07892	2.4	1170	31	86
41	109791	1920	149	956	0.10	1.00788	4.3	0.09391	3.6	0.83	708	30	579	21	0.07784	2.4	1143	30	51
42	92977	1059	126	1917	0.07	1.12698	5.2	0.10272	4.6	0.88	766	40	630	29	0.07957	2.5	1186	32	53
43	97418	725	134	2226	0.15	2.21451	4.1	0.20389	3.2	0.78	1186	49	1196	39	0.07877	2.6	1166	33	103
44	19441	147	27	453	0.27	2.14077	4.1	0.19691	3.2	0.77	1162	48	1159	37	0.07885	2.6	1168	33	99
45	46744	373	65	1131	0.18	2.09996	4.0	0.19283	3.1	0.79	1149	46	1137	36	0.07898	2.4	1172	31	97
46	136546	1383	192	1906	0.04	1.81635	3.9	0.16782	3.1	0.78	1051	41	1000	31	0.07850	2.5	1159	31	86
47	162105	3610	199	390	0.02	0.55880	8.1	0.05856	6.8	0.85	451	36	367	25	0.06921	4.2	905	40	41
48	45601	230	43	261	0.25	2.35432	4.6	0.20102	3.3	0.70	1229	57	1181	39	0.08494	3.3	1314	46	90
49	145286	1385	206	3095	0.01	1.89195	3.9	0.17909	3.2	0.80	1078	43	1062	34	0.07662	2.4	1111	29	96
50	156442	2008	229	3735	0.02	1.37524	3.9	0.13285	3.2	0.81	878	34	804	25	0.07508	2.3	1071	27	75
51	21779	160	30	512	0.19	2.20598	4.2	0.20415	3.2	0.74	1183	50	1198	38	0.07837	2.8	1156	35	104
52	115673	921	152	1616	0.28	2.08204	4.1	0.18644	3.2	0.78	1143	46	1102	35	0.08099	2.5	1221	34	90
53	101236	687	130	2213	0.15	2.42488	3.0	0.21512	2.4	0.81	1250	38	1256	31	0.08175	1.8	1240	24	101
54	133770	1940	158	731	0.13	0.94770	3.7	0.08989	2.7	0.72	677	25	555	15	0.07647	2.6	1107	30	50
55	143720	3481	150	435	0.03	0.44957	4.5	0.04855	3.5	0.77	377	17	306	11	0.06716	2.9	843	25	36
56	182470	2755	132	157	0.03	0.61615	4.7	0.05804	3.1	0.66	487	23	364	11	0.07700	3.6	1121	41	32
57	84333	4313	74	245	0.04	0.32025	4.1	0.01948	3.3	0.81	282	11	124	4	0.11922	2.4	1945	49	6
58	127916	2450	175	1331	0.06	0.81345	3.8	0.07674	3.2	0.86	604	23	477	15	0.07688	1.9	1118	23	43
59	159481	1141	132	168	0.19	1.26309	4.5	0.11702	3.1	0.67	829	38	713	22	0.07828	3.4	1154	40	62
60	45096	361	60	1199	0.22	2.19369	3.6	0.20231	3.1	0.87	1188	37	1188	37	0.07864	1.78	1163	22.6	102
61	734	12	1	27	0.36	0.94611	6.2	0.11536	3.8	0.61	704	27	704	27	0.05948	4.91	585	29.1	120
62	43894	333	56	1090	0.08	2.27092	3.3	0.19601	2.6	0.79	1154	30	1154	30	0.08403	2.07	1293	28.6	89
63	39200	94	33	704	0.76	6.57326	3.1	0.37856	2.4	0.79	2070	50	2070	50	0.12594	1.90	2042	41.9	101
64	10692	175	17	207	0.22	0.94672	3.4	0.11067	2.4	0.70	677	16	677	16	0.06204	2.47	675	17.5	100
65	85498	175	58	1141	0.94	8.05496	3.2	0.37648	2.6	0.83	2060	54	2060	54	0.15518	1.75	2404	46.1	86
66	2781	59	5	105	0.11	0.77452	3.8	0.09623	2.4	0.63	592	14	592	14	0.05838	2.97	544	16.7	109
67	7994	164	14	279	0.42	0.77971	4.1	0.09729	3.1	0.76	598	18	598	18	0.05813	2.65	535	14.7	112

68	47767	350	63	1373	0.17	2.20789	3.0	0.20175	2.8	0.93	1185	33	1185	33	0.07937	1.14	1181	15.8	100
69	10445	73	14	289	0.22	2.33462	3.1	0.21558	2.9	0.94	1259	36	1259	36	0.07854	1.06	1161	14.8	108
70	6840	152	13	274	0.20	0.72850	3.7	0.09307	2.9	0.77	574	16	574	16	0.05677	2.35	483	11.9	119
71	17460	117	22	450	0.21	2.36444	3.4	0.21186	3.0	0.88	1239	37	1239	37	0.08094	1.63	1220	21.6	102
72	5805	109	10	219	0.29	0.83249	3.6	0.10006	3.0	0.85	615	19	615	19	0.06034	1.91	616	12.5	100
73	11314	92	15	342	0.15	2.40430	3.8	0.22667	2.8	0.73	1317	37	1317	37	0.07693	2.61	1119	30.3	118
74	26138	183	34	708	0.18	2.24067	3.4	0.20357	2.8	0.83	1194	33	1194	33	0.07983	1.87	1193	23.9	100
75	39830	294	52	1120	0.15	2.12454	3.1	0.19471	2.8	0.92	1147	33	1147	33	0.07914	1.18	1176	16.2	98
76	38186	676	65	1509	0.08	0.89162	3.1	0.10592	2.9	0.94	649	19	649	19	0.06105	1.08	641	8.3	101
77	34147	241	45	907	0.24	2.28581	3.3	0.20949	3.0	0.92	1226	37	1226	37	0.07914	1.27	1176	17.1	104
78	7313	148	12	263	0.30	0.76696	3.0	0.09179	2.7	0.90	566	15	566	15	0.06060	1.33	625	9.4	91
79	33455	239	44	907	0.21	2.27439	3.1	0.20854	2.8	0.92	1221	35	1221	35	0.07910	1.25	1175	16.8	104
80	36670	664	63	1410	0.22	0.86286	3.2	0.10294	3.0	0.93	632	19	632	19	0.06079	1.17	632	8.6	100
82	5288	113	9	199	0.24	0.73779	3.5	0.08913	2.8	0.81	550	16	550	16	0.06003	2.07	605	13.2	91
83	21204	355	36	759	0.33	0.91745	3.5	0.10798	3.1	0.89	661	21	661	21	0.06162	1.59	661	11.5	100
84	49684	104	38	857	0.90	7.41648	3.0	0.40348	2.8	0.93	2185	62	2185	62	0.13331	1.14	2142	28.6	102
85	5901	120	10	261	0.30	0.79768	3.6	0.09716	2.9	0.80	598	17	598	17	0.05954	2.17	587	13.4	102
81	17561	121	23	533	0.22	2.27653	3.4	0.20592	3.1	0.90	1207	37	1207	37	0.08018	1.45	1201	19.3	100

Tabelle 6 U-Pb Daten

	207	U	Pb						$\pm 2\sigma$		207Pb/235U	$\pm2\sigma$	206Pb/238U	$\pm 2\sigma$		$\pm 2\sigma$	207Pb/206Pb	$\pm 2\sigma$	Konkordanz
Bosluis se Pan	(c.p.s.)	(ppm)	(ppm)	²⁰⁶ Pb/ ²⁰⁴ Pb	Th/U	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$ (%)	²⁰⁶ Pb/ ²³⁸ U	(%)	rho	Alter	(abs.)	Alter	(abs.)	²⁰⁷ Pb/ ²⁰⁶ Pb	(%)	Alter	(abs.)	(%)
905																			
1a (1rim)	5544	87	15	120	1.1	2.15920	3.3	0.19642	2.5	0.76	1168	38	1156	29	0.07973	2.1	1190	27	97
1b (2core)	16043	158	30	166	0.4	2.19644	3.3	0.20636	2.4	0.72	1180	40	1209	29	0.07720	2.3	1126	27	107
3a (3core)	45808	2438	138	732	0.1	0.65128	3.0	0.06618	2.4	0.80	509	15	413	10	0.07137	1.8	968	18	43
3b (4rim)	78953	2560	98	127	0.1	0.41106	4.6	0.04191	2.7	0.58	350	16	265	7	0.07114	3.7	961	36	28
5	13850	294	35	274	0.4	1.52199	4.9	0.13450	4.2	0.86	939	46	813	34	0.08207	2.5	1247	32	65
6	62925	2290	63	89	0.1	0.32448	6.2	0.03117	3.1	0.50	285	18	198	6	0.07551	5.4	1082	59	18
7	41390	1409	120	968	0.4	0.88233	6.1	0.08221	5.8	0.94	642	39	509	29	0.07784	2.1	1143	25	45
8	30561	537	81	619	0.4	1.97082	3.8	0.17170	2.9	0.76	1106	42	1021	30	0.08325	2.5	1275	33	80
9	35948	663	73	334	1.1	1.37856	4.6	0.12574	3.5	0.75	880	41	764	26	0.07952	3.0	1185	37	64
10	48511	1509	98	264	0.2	0.95959	3.8	0.09360	2.3	0.61	683	26	577	13	0.07436	3.0	1051	33	55
11	29178	1134	46	179	0.0	0.56116	5.3	0.04706	2.5	0.46	452	24	296	7	0.08649	4.7	1349	64	22
12	168341	2880	80	40	0.1	0.59399	7.7	0.03133	2.8	0.36	473	36	199	5	0.13749	7.2	2196	158	9
13	13302	201	36	445	0.5	2.28822	4.0	0.20871	3.1	0.79	1209	48	1222	38	0.07951	2.4	1185	31	103
14	44659	519	100	510	1.2	1.87445	4.8	0.13719	3.8	0.79	1072	52	829	32	0.09910	2.9	1607	50	52
15	39688	521	63	202	0.3	2.28785	5.3	0.13912	3.6	0.69	1209	64	840	31	0.11927	3.8	1945	77	43
16	26721	1608	17	54	0.1	0.09570	10.2	0.00687	5.2	0.51	93	9	44	2	0.10100	8.7	1643	145	3
17	49016	1554	56	129	0.1	0.49878	6.6	0.04424	3.9	0.58	411	27	279	11	0.08177	5.4	1240	68	23
18	21497	350	57	602	0.3	2.35090	4.3	0.20209	3.4	0.80	1228	53	1187	41	0.08437	2.6	1301	36	91
19	13239	183	34	454	0.4	2.39706	4.0	0.20500	3.1	0.79	1242	49	1202	37	0.08480	2.4	1311	35	92
20	15950	259	34	265	0.3	0.89082	7.8	0.05540	6.3	0.81	647	51	348	22	0.11663	4.6	1905	90	18
21	23188	310	62	883	0.5	2.44919	4.1	0.22152	3.1	0.76	1257	52	1290	40	0.08019	2.7	1202	35	107
22a (22)	31791	894	76	408	0.1	1.51211	5.7	0.10519	4.1	0.72	935	53	645	26	0.10426	4.0	1701	70	38
22b (23rim)	18551	736	46	255	0.1	0.95206	6.4	0.06859	3.2	0.51	679	44	428	14	0.10067	5.5	1637	92	26
24	16052	304	41	536	0.8	1.69040	4.6	0.14511	3.7	0.81	1005	46	874	32	0.08448	2.7	1304	38	67
25	25264	820	81	754	0.4	1.28168	5.1	0.11618	3.6	0.71	838	43	709	26	0.08001	3.6	1197	47	59
26	26456	422	79	1156	0.4	2.46281	4.9	0.21529	3.2	0.65	1261	62	1257	40	0.08297	3.7	1268	51	99
27	37209	956	39	85	0.4	1.54223	5.2	0.04607	3.5	0.67	947	49	290	10	0.24278	3.9	3138	131	9
28	8403	139	26	382	0.3	2.48205	6.0	0.21765	2.9	0.49	1267	76	1269	37	0.08271	5.3	1262	70	101
29	46465	329	71	81	0.4	3.11607	8.3	0.22484	5.6	0.67	1437	119	1307	73	0.10051	6.1	1634	104	80

30	5212	103	16	248	0.5	2.03777	5.0	0.18585	3.4	0.68	1128	56	1099	38	0.07952	3.7	1185	47	93
31	12184	223	38	576	0.3	2.21039	5.0	0.20283	3.3	0.66	1184	59	1191	39	0.07904	3.8	1173	48	101
32	5911	108	19	310	0.2	2.11711	5.0	0.20136	3.2	0.63	1154	58	1183	38	0.07626	3.9	1102	47	107
33	7064	108	21	303	0.3	2.44833	5.1	0.21753	3.2	0.62	1257	64	1269	40	0.08163	4.0	1237	53	103
34	6907	117	21	318	0.3	2.30245	5.1	0.20576	3.4	0.67	1213	62	1206	41	0.08116	3.8	1225	50	98
35	31555	797	78	372	0.3	1.76156	5.5	0.12241	3.5	0.63	1031	57	744	26	0.10437	4.2	1703	77	44
36	11557	245	37	533	0.2	1.92814	5.0	0.17901	3.4	0.68	1091	55	1062	36	0.07812	3.7	1150	46	92
37	24653	464	66	529	0.4	1.94939	3.8	0.16054	2.9	0.78	1098	41	960	28	0.08807	2.3	1384	33	69
38	9449	156	27	377	0.3	2.32436	3.1	0.20630	2.1	0.68	1220	38	1209	26	0.08171	2.3	1239	29	98
39	22272	447	66	812	0.2	1.83948	2.7	0.16458	1.6	0.59	1060	29	982	16	0.08106	2.2	1223	28	80
40	14655	237	42	409	0.3	2.26730	3.7	0.21146	2.0	0.55	1202	44	1237	25	0.07776	3.1	1141	36	108
41	22719	429	71	898	0.2	2.25742	2.6	0.20712	1.7	0.65	1199	32	1213	21	0.07905	2.0	1173	25	103
42	5041	73	13	193	0.3	2.38752	3.5	0.20701	1.9	0.54	1239	43	1213	23	0.08365	2.9	1284	38	94
43	10700	178	30	443	0.3	2.25761	3.2	0.19943	2.5	0.79	1199	38	1172	29	0.08210	1.9	1248	25	94
44	26018	556	66	498	0.7	1.55405	3.0	0.12457	2.1	0.68	952	29	757	16	0.09048	2.2	1436	33	53
45	2060	38	6	97	0.2	1.78004	4.0	0.17304	1.7	0.43	1038	41	1029	18	0.07461	3.6	1058	39	97
46	2654	53	9	133	0.8	1.80876	4.1	0.17519	1.8	0.44	1049	43	1041	19	0.07488	3.7	1065	40	98
47a (47core)	33277	591	87	510	0.7	1.82483	3.2	0.14791	2.3	0.70	1054	34	889	20	0.08948	2.3	1414	34	63
47b (48rim)	23656	445	75	1150	0.4	1.90352	2.3	0.18460	1.5	0.67	1082	25	1092	17	0.07479	1.7	1063	19	103
49	16818	510	34	236	0.8	0.88949	5.8	0.08262	2.8	0.49	646	37	512	15	0.07809	5.0	1149	40	45
50	11121	132	20	170	0.7	2.19650	5.4	0.17081	1.7	0.31	1180	64	1017	17	0.09326	5.1	1493	45	68
51	14004	221	33	356	0.3	1.92015	3.9	0.17191	1.6	0.41	1088	42	1023	16	0.08101	3.5	1222	102	84
52	14448	231	34	345	0.2	1.81924	4.2	0.16195	1.7	0.41	1052	44	968	17	0.08147	3.9	1233	130	78
53	32060	418	72	618	0.2	2.06655	2.7	0.19068	1.6	0.59	1138	31	1125	18	0.07860	2.2	1162	66	97
54	13712	202	34	391	0.4	2.06387	2.7	0.18919	1.7	0.64	1137	31	1117	19	0.07912	2.1	1175	34	95
55	33544	735	100	1078	0.2	1.42254	2.5	0.15255	1.7	0.68	898	22	915	16	0.06763	1.8	857	22	107
56	42479	596	83	374	0.6	1.89331	4.4	0.17672	1.8	0.41	1079	47	1049	19	0.07770	4.0	1139	38	92
57	9885	180	23	290	0.3	1.60927	3.0	0.14020	1.9	0.64	974	30	846	16	0.08325	2.3	1275	88	66
58	65329	1289	82	168	0.3	0.72034	4.8	0.07023	2.0	0.41	551	26	438	9	0.07439	4.4	1052	85	42
59	10245	155	26	351	0.5	1.90142	2.7	0.18157	1.6	0.60	1082	29	1076	17	0.07595	2.1	1094	37	98
60	7293	102	18	245	0.5	2.00647	2.8	0.18966	1.6	0.56	1118	31	1120	18	0.07673	2.3	1114	40	100
61	15496	191	38	622	0.2	2.48347	4.1	0.22510	2.8	0.68	1267	52	1309	36	0.08002	3.0	1197	40	109
62	34323	894	80	643	0.3	1.11103	4.6	0.09820	3.1	0.68	759	35	604	19	0.08206	3.4	1247	45	48
63	23293	182	55	509	0.3	4.35758	7.1	0.33443	2.6	0.37	1704	120	1860	49	0.09450	6.6	1518	102	123

64	40726	1417	41	105	0.3	1.10209	5.2	0.03948	2.9	0.55	754	39	250	7	0.20245	4.4	2846	130	9
65	41749	386	67	280	0.8	3.36045	4.2	0.20469	2.8	0.67	1495	62	1200	33	0.11907	3.1	1942	66	62
66-2	17414	271	45	760	0.6	1.97239	3.9	0.19186	2.6	0.66	1106	43	1131	29	0.07456	2.9	1057	34	107
67	3512	129	11	198	0.2	0.76785	4.2	0.09272	2.5	0.61	579	24	572	14	0.06006	3.3	606	22	94
68	4325	65	10	196	0.7	1.88064	4.2	0.18228	2.6	0.62	1074	45	1079	28	0.07483	3.3	1064	38	101
69a (69core)	21251	46	22	425	0.8	13.95417	4.0	0.53979	2.6	0.67	2747	109	2783	73	0.18749	3.0	2720	88	102
69b (70rim)	63529	138	67	1264	0.4	13.96043	3.9	0.54846	2.7	0.68	2747	107	2819	75	0.18461	2.8	2695	85	105
71	20659	324	54	974	0.2	1.92024	4.2	0.18672	2.6	0.63	1088	46	1104	29	0.07459	3.2	1057	37	104
72	30869	417	73	1187	0.5	2.20347	4.1	0.20659	2.5	0.61	1182	48	1211	30	0.07736	3.2	1130	40	107
73	3148	48	8	146	0.7	1.92409	3.6	0.18182	1.6	0.45	1089	39	1077	18	0.07675	3.2	1115	37	97
74	6816	119	19	372	0.8	1.77771	3.1	0.17582	1.8	0.59	1037	32	1044	19	0.07333	2.5	1023	27	102
75	6908	107	17	290	0.8	1.89296	3.3	0.17611	1.8	0.55	1079	36	1046	19	0.07796	2.8	1146	33	91
76	1564	73	5	106	0.1	0.63370	4.7	0.07919	1.8	0.38	498	24	491	9	0.05804	4.4	531	24	92
77	23167	390	65	1238	0.2	1.93928	2.7	0.19090	1.8	0.66	1095	30	1126	20	0.07368	2.0	1033	23	109
78	7002	119	19	402	1.1	1.84352	3.2	0.17904	1.8	0.58	1061	34	1062	19	0.07468	2.6	1060	29	100
79	10283	174	28	516	1.2	1.89505	3.2	0.18181	2.2	0.67	1079	35	1077	23	0.07560	2.4	1084	27	99
80	8288	147	24	463	0.8	1.72452	2.7	0.17357	1.6	0.58	1018	28	1032	16	0.07206	2.2	988	23	104
81	4868	81	13	269	0.7	1.88554	3.1	0.18498	1.6	0.52	1076	33	1094	17	0.07393	2.6	1040	29	105
82	13855	236	38	808	1.1	1.89247	2.9	0.18680	1.8	0.64	1078	31	1104	20	0.07348	2.2	1027	25	107
83	34085	402	85	1045	0.6	2.69675	3.7	0.23849	2.1	0.56	1328	49	1379	28	0.08201	3.1	1246	40	111
84	7999	93	20	414	0.9	2.51758	3.3	0.24527	1.9	0.6	1277	42	1414	27	0.07445	2.7	1054	30	134
85	29524	475	82	1288	0.4	2.10592	1.8	0.19529	1.2	0.7	1151	21	1150	14	0.07821	1.3	1152	22	100
86	17552	311	52	1064	0.4	1.91204	1.6	0.18576	0.9	0.6	1085	17	1098	10	0.07465	1.3	1059	20	104
87	30191	609	90	1413	0.2	1.92096	3.6	0.19582	3.1	0.9	1088	39	1153	36	0.07115	1.7	962	21	120
88	3080	58	9	194	0.6	1.66397	3.2	0.16467	2.5	0.8	995	32	983	25	0.07329	2.1	1022	25	96
89	614	20	2	36	0.6	0.85767	6.4	0.08884	3.1	0.49	629	40	549	17	0.07002	5.6	929	54	59
90	18218	330	54	1028	0.6	1.89077	3.0	0.18442	2.7	0.90	1078	32	1091	29	0.07436	1.3	1051	20	104
91	2405	43	7	135	1.1	1.77199	3.4	0.17753	2.6	0.76	1035	36	1053	28	0.07239	2.2	997	26	106
92	8002	153	24	506	1.5	1.71793	2.8	0.17173	2.4	0.86	1015	29	1022	25	0.07255	1.4	1002	20	102
93	29298	480	85	1698	0.4	2.08128	2.8	0.19957	2.4	0.88	1143	32	1173	29	0.07564	1.3	1085	21	108
94	36820	489	100	2074	0.1	2.52699	3.4	0.23157	2.7	0.80	1280	44	1343	36	0.07914	2.1	1176	29	114
95	21959	278	53	663	0.4	2.42608	3.2	0.21069	2.8	0.88	1250	40	1232	35	0.08351	1.5	1281	26	96
96	9270	132	23	215	0.2	1.94977	6.5	0.18477	3.0	0.47	1098	71	1093	33	0.07653	5.7	1109	65	99
97	1550	70	6	123	1.0	0.78191	3.7	0.09479	1.3	0.34	587	22	584	7	0.07821	1.3	1152	22	51

98	20683	375	64	1353	0.1	1.92336	1.8	0.18904	1.4	0.76	1089	20	1116	15	0.07465	1.3	1059	19	105
99	11876	167	26	315	0.6	2.02724	4.2	0.18461	2.7	0.65	1125	47	1092	30	0.07115	1.7	962	41	114
100	2932	54	9	210	0.4	1.95191	4.1	0.18354	2.9	0.70	1099	45	1086	31	0.07329	2.1	1022	37	106
101	15042	273	46	1120	0.3	1.93763	3.5	0.18870	3.0	0.85	1094	38	1114	33	0.07002	5.6	929	24	120
102	21627	324	64	1480	0.1	2.34331	3.3	0.21900	3.0	0.90	1226	41	1277	38	0.07436	1.3	1051	23	121
103	33704	575	94	1107	0.3	2.22014	3.4	0.19947	2.9	0.86	1187	41	1172	35	0.07239	2.2	997	27	118
104	7626	157	23	473	0.3	1.62110	4.1	0.15804	2.8	0.68	978	40	946	26	0.07255	1.4	1002	35	94
105	3159	55	9	200	0.4	1.97774	3.5	0.18065	2.6	0.75	1108	39	1071	28	0.07564	1.3	1085	32	99
106	36820	514	105	2074	0.1	2.52699	3.4	0.23157	2.7	0.80	1280	44	1343	36	0.07914	2.1	1176	29	114
107	21959	292	55	663	0.4	2.42608	3.2	0.21069	2.8	0.88	1250	40	1232	35	0.08351	1.5	1281	26	96
108	9270	139	24	215	0.2	1.94977	6.5	0.18477	3.0	0.47	1098	71	1093	33	0.07653	5.7	1109	65	99

Tabelle 7 U-Pb Daten

	207	U	Pb				$\pm 2\sigma$		$\pm 2\sigma$		²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	206Pb/238U	$\pm 2\sigma$		$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$	Konkordanz
Border	(c.p.s.)	(ppm)	(ppm)	²⁰⁶ Pb/ ²⁰⁴ Pb	Th/U	²⁰⁷ Pb/ ²³⁵ U	(%)	206Pb/238U	(%)	rho	Alter	(abs.)	Alter	(abs.)	²⁰⁷ Pb/ ²⁰⁶ Pb	(%)	Alter	(abs.)	(%)
SA/Namibia																			
906														-					
1	7953	47	10	155	0.0	2.96451	5.3	0.23656	4.0	0.75	1399	73	1369	54	0.09089	3.5	1444	51	95
2	26438	190	37	740	0.3	2.39038	3.7	0.21722	3.3	0.88	1240	46	1267	42	0.07981	1.8	1192	22	106
3	89073	1489	132	1173	0.1	1.00714	4.0	0.10285	3.3	0.82	707	29	631	21	0.07102	2.3	958	23	66
4	22812	184	32	595	0.3	2.04942	3.9	0.18533	3.4	0.88	1132	44	1096	37	0.08020	1.9	1202	24	91
5	26411	85	26	587	1.0	4.94973	3.9	0.31704	3.4	0.88	1811	71	1775	61	0.11323	1.9	1852	37	96
6	79668	585	112	2570	0.3	2.38706	3.6	0.21576	3.3	0.89	1239	45	1259	41	0.08024	1.6	1203	21	105
7	68521	1465	104	1287	0.1	0.68900	3.9	0.07362	3.5	0.89	532	21	458	16	0.06787	1.8	865	16	53
8	6998	108	12	291	0.3	1.09351	4.1	0.12349	3.3	0.81	750	31	751	25	0.06422	2.4	749	19	100
9	10262	84	14	304	0.3	2.05377	4.5	0.18192	4.0	0.89	1134	51	1077	43	0.08188	2.0	1243	26	87
10	88664	1836	109	534	0.1	0.51273	4.4	0.03959	3.9	0.89	420	19	250	10	0.09392	2.1	1507	32	17
11	64680	542	81	1080	0.2	1.65069	4.3	0.15083	3.7	0.85	990	43	906	33	0.07937	2.3	1181	28	77
12	37170	328	53	1029	0.0	1.89640	3.7	0.17969	3.3	0.90	1080	40	1065	36	0.07654	1.6	1109	19	96
13	131088	1948	192	3020	0.2	0.76082	3.9	0.07226	3.1	0.80	574	22	450	14	0.07636	2.3	1105	28	41
14	3407	28	4	100	0.2	1.93596	4.6	0.17758	3.5	0.76	1094	50	1054	37	0.07907	3.0	1174	37	90
15	23452	215	33	678	0.3	1.70880	3.0	0.16670	1.8	0.61	1012	30	994	18	0.07435	2.4	1051	27	95
16	120346	1470	180	3590	0.2	1.28837	3.7	0.12394	2.8	0.77	841	31	753	21	0.07539	2.3	1079	27	70
17	172223	1471	234	3498	0.2	1.58460	3.1	0.14098	2.2	0.71	964	30	850	19	0.08152	2.2	1234	30	69
18	87910	839	119	1315	0.1	1.83947	3.2	0.16245	2.2	0.69	1060	34	970	21	0.08212	2.3	1248	31	78
19	92333	1468	142	2741	0.1	1.08275	3.4	0.11036	2.5	0.75	745	25	675	17	0.07116	2.2	962	24	70
20	80666	694	107	1206	0.3	2.59680	3.7	0.21031	1.7	0.44	1300	48	1230	20	0.08955	3.3	1416	49	87
21	29467	253	38	569	0.5	2.31143	4.1	0.19135	2.2	0.55	1216	49	1129	25	0.08761	3.4	1374	49	82
22	48804	542	70	1469	0.4	1.55716	2.9	0.14802	1.9	0.64	953	28	890	17	0.07630	2.2	1103	27	81
23	11616	85	16	395	0.3	2.36803	3.5	0.21233	2.1	0.60	1233	43	1241	26	0.08089	2.8	1219	36	102
24	7645	76	11	201	0.6	1.71468	4.7	0.15961	3.6	0.76	1014	48	955	34	0.07792	3.1	1145	37	83

Tabelle 8 U-Pb Daten

	207	U	Pb	206 204		207 225	$\pm 2\sigma$	206 228	$\pm 2\sigma$		²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$	207 206	$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$	Konkordanz
Kleinsee	(c.p.s.)	(ppm)	(ppm)	²⁰⁰ Pb/ ²⁰⁴ Pb	Th/U	²⁰⁷ Pb/ ²³³ U	(%)	²⁰⁶ Pb/ ²³⁸ U	(%)	rho	Alter	(abs.)	Alter	(abs.)	²⁰⁷ Pb/ ²⁰⁸ Pb	(%)	Alter	(abs.)	(%)
908																			
1	47542	733	107	535	0.3	1.71500	3.8	0.16633	2.8	0.73	1014	38	992	27	0.07478	2.6	1063	29	93
2	29778	591	76	398	0.7	1.26885	3.4	0.13797	2.3	0.68	832	28	833	19	0.06670	2.5	828	22	101
3	48847	1592	127	595	0.3	0.69846	3.4	0.07910	2.7	0.79	538	18	491	13	0.06404	2.1	743	17	66
4	1426	27	3	19	0.7	1.46111	6.5	0.15614	5.7	0.87	914	60	935	53	0.06787	3.2	865	29	108
5	5646	106	14	79	0.6	1.40919	3.7	0.15560	2.7	0.73	893	33	932	25	0.06568	2.5	796	21	117
6	231774	298	76	61	0.8	0.97731	9.4	0.10071	4.1	0.44	692	65	619	25	0.07038	8.4	939	80	66
7a (7 core)	4944	96	13	79	0.7	1.30236	3.6	0.14621	2.7	0.73	847	31	880	23	0.06460	2.5	761	20	116
7b (8 rim)	1811	31	5	28	0.9	1.35792	4.8	0.15470	3.1	0.64	871	42	927	29	0.06366	3.7	730	28	127
9	3923	75	10	60	0.8	1.38886	3.7	0.15098	2.6	0.71	884	33	906	24	0.06672	2.6	829	23	109
10	2831	50	7	47	0.7	1.44615	4.2	0.15671	2.6	0.63	908	38	938	25	0.06693	3.2	836	28	112
11	1984	33	5	32	0.7	1.48907	4.0	0.15585	2.8	0.69	926	37	934	26	0.06929	2.9	908	28	103
12a (12core)	10637	217	27	185	0.6	1.22179	3.4	0.13504	2.6	0.77	811	27	817	21	0.06562	2.2	794	19	103
12b (13rim)	1517	27	4	27	1.0	1.65888	4.0	0.17559	2.6	0.65	993	40	1043	27	0.06852	3.1	884	28	118
14	5851	131	17	103	0.7	1.58394	3.0	0.16925	2.5	0.82	964	29	1008	25	0.06788	1.7	865	17	117
15	1405	24	4	27	1.2	1.60423	5.4	0.17525	3.9	0.73	972	52	1041	41	0.06639	3.7	819	31	127
16	27450	757	82	542	0.6	1.27163	3.4	0.14468	2.8	0.83	833	29	871	25	0.06374	1.9	733	16	119
17	4210	93	13	85	0.8	1.47145	3.3	0.16374	2.8	0.84	919	31	978	27	0.06518	1.8	780	16	125
18	1094	18	3	22	1.2	1.57846	5.3	0.18146	3.6	0.67	962	51	1075	38	0.06309	3.9	711	29	151
19	10218	163	26	184	0.3	1.93362	3.2	0.19005	2.9	0.91	1093	34	1122	32	0.07379	1.3	1036	16	108
20	6402	150	19	131	0.5	1.43715	3.5	0.15670	2.4	0.70	905	31	938	23	0.06651	2.5	823	22	114
21	19735	447	58	416	0.8	1.51801	2.9	0.16519	2.7	0.91	938	27	986	26	0.06665	1.2	827	13	119
22	6642	152	19	143	0.8	1.33302	3.3	0.14765	2.6	0.79	860	28	888	23	0.06548	2.0	790	17	112
23	7082	155	20	148	0.8	1.30274	3.5	0.14041	3.1	0.89	847	29	847	26	0.06729	1.6	847	16	100
24	5374	120	15	108	0.6	1.34611	3.2	0.14501	2.7	0.85	866	28	873	24	0.06733	1.7	848	16	103
25a (25 core)	41826	275	49	412	0.7	2.42519	3.8	0.21749	2.7	0.69	1250	48	1269	34	0.08087	1.2	1218	15	104
25b (26 rim)	38928	249	46	412	0.5	2.41228	4.6	0.22120	4.0	0.87	1246	57	1288	51	0.07910	1.1	1175	13	110
27	44804	493	62	540	0.8	1.38154	5.4	0.14948	3.9	0.73	881	48	898	35	0.06703	0.9	839	8	107
28	24029	354	35	326	0.7	0.92367	3.4	0.09890	2.8	0.83	664	23	608	17	0.06774	2.4	861	21	71
29	13426	147	19	180	0.5	1.29849	3.3	0.13788	2.8	0.84	845	28	833	23	0.06830	1.1	878	10	95
30	5157	18	4	27	1.5	4.62094	5.3	0.22551	3.6	0.67	1753	93	1311	47	0.14861	11.2	2330	262	56
31	10568	114	15	123	0.9	1.31177	3.2	0.14025	2.9	0.91	851	27	846	24	0.06784	2.2	864	19	98

32	5862	45	7	70	0.8	1.73701	3.5	0.16913	2.4	0.70	1022	36	1007	24	0.07449	1.5	1055	16	96
33	104648	813	125	912	0.1	1.98512	2.9	0.18170	2.7	0.91	1110	33	1076	29	0.07924	1.7	1178	21	91
34	6070	63	8	83	0.5	1.28279	3.3	0.14074	2.6	0.79	838	28	849	22	0.06611	1.9	810	16	105
35a (35 core)	10672	122	15	151	0.9	1.18366	3.5	0.13067	3.1	0.89	793	27	792	24	0.06570	1.3	797	11	99
35b (36 rim)	3421	34	5	46	0.8	1.32637	3.2	0.14314	2.7	0.85	857	28	862	24	0.06721	2.0	844	17	102
37	203605	716	129	446	0.3	3.37254	4.6	0.20409	4.2	0.92	1498	69	1197	50	0.11985	1.8	1954	36	61
38	43800	101	30	202	1.0	4.9471	3.0	0.32528	2.9	0.96	1810	55	1815	53	0.11030	0.83	1804	16	101
39	12738	111	14	94	0.7	1.30321	3.1	0.14044	2.8	0.91	847	26	847	24	0.06730	1.3	847	11	100
40	20722	188	23	107	0.5	1.22846	2.9	0.13349	2.8	0.95	814	24	808	22	0.06674	0.9	830	8	97
41	13178	121	15	106	0.3	1.17142	4.0	0.12792	3.3	0.81	787	32	776	25	0.06641	2.4	819	20	95
43	9832	86	11	80	0.6	1.31695	3.2	0.14060	2.9	0.93	853	27	848	25	0.06793	1.2	866	11	98
44	9264	81	10	74	0.5	1.38327	3.7	0.14945	3.0	0.80	882	33	898	27	0.06713	2.2	842	19	107
45a (45 core)	15227	135	17	115	0.7	1.32289	3.7	0.14241	3.3	0.89	856	32	858	28	0.06737	1.7	849	15	101
45b (46 rim)	4067	33	5	33	0.8	1.35187	3.7	0.14647	3.2	0.85	868	32	881	28	0.06694	2.0	836	17	105
48	9715	84	11	83	0.6	1.18494	3.2	0.12974	2.9	0.90	794	26	786	23	0.06624	1.4	814	12	97
49	8156	86	11	77	0.5	1.41517	3.0	0.15738	2.0	0.67	895	27	942	19	0.06522	2.2	781	19	121
50	40583	446	56	148	0.5	1.37911	2.8	0.14919	2.0	0.73	880	25	896	18	0.06704	1.9	839	18	107
51	14301	151	19	131	0.8	1.29537	2.5	0.13919	2.0	0.82	844	21	840	17	0.06750	1.4	853	14	98
52	18696	201	26	182	0.6	1.31719	2.1	0.14262	1.8	0.83	853	18	859	15	0.06698	1.2	837	12	103
53	6121	62	8	58	0.7	1.33834	3.6	0.14373	1.9	0.52	863	31	866	16	0.06753	3.0	854	27	101
54	9496	102	13	91	0.8	1.29214	2.3	0.13971	2.0	0.83	842	20	843	17	0.06708	1.3	840	13	100
55	8248	72	9	63	0.8	1.47148	6.8	0.14537	2.6	0.39	919	62	875	23	0.07341	6.3	1025	65	85
56	6339	60	8	56	0.7	1.34370	2.8	0.14342	2.0	0.72	865	24	864	18	0.06795	2.0	867	19	100
57	17855	191	25	176	0.8	1.31621	2.6	0.14193	2.1	0.78	853	22	856	18	0.06726	1.6	846	16	101
58	25057	260	33	232	0.7	1.28925	2.7	0.13758	2.2	0.81	841	23	831	18	0.06797	1.6	868	16	96
60	6937	71	9	71	1.1	1.26468	2.7	0.13653	2.2	0.80	830	22	825	18	0.06718	1.6	843	15	98
61	7253	72	10	76	0.6	1.36492	3.0	0.14816	1.7	0.57	874	27	891	16	0.06682	2.5	832	22	107
62	35718	124	19	88	1.9	2.73354	9.4	0.19262	2.1	0.22	1338	126	1136	24	0.10293	9.2	1678	154	68
63	46653	483	61	485	0.6	1.35947	2.1	0.14766	1.9	0.89	872	18	888	17	0.06677	1.0	831	10	107
64	15984	92	13	89	0.6	1.72501	8.3	0.15387	2.3	0.28	1018	84	923	21	0.08131	7.9	1229	98	75
65	38354	407	51	416	0.9	1.29555	2.2	0.14017	1.9	0.86	844	19	846	16	0.06704	1.1	839	11	101
66a (66 core)	15543	99	18	148	0.4	2.07438	1.9	0.19266	1.6	0.86	1140	22	1136	19	0.07809	1.0	1149	14	99
66b (67 rim)	35838	280	44	347	0.8	1.76917	2.1	0.17523	1.8	0.85	1034	22	1041	19	0.07322	1.1	1020	14	102
69	14735	149	20	156	0.7	1.38110	2.0	0.15035	1.5	0.78	881	17	903	14	0.06662	1.2	826	12	109
70	7407	76	10	81	0.9	1.31119	2.3	0.14436	1.6	0.71	851	19	869	14	0.06587	1.6	802	14	108
73	8004	80	10	78	0.6	1.45921	4.8	0.13838	2.1	0.45	914	44	835	18	0.07648	4.3	1108	48	75

74	11863	127	16	130	0.7	1.26270	2.6	0.13481	2.3	0.90	829	22	815	19	0.06793	1.1	866	11	94
75	78337	854	87	465	0.1	1.13465	5.4	0.10661	4.9	0.90	770	42	653	32	0.07719	2.4	1126	28	58
76	49455	523	67	529	0.6	1.31077	2.2	0.14157	2.1	0.94	850	19	854	18	0.06715	0.7	842	8	101
77	6183	60	8	61	1.0	1.24921	5.4	0.12722	2.8	0.53	823	44	772	22	0.07122	4.5	964	44	80
78	33341	361	45	371	0.7	1.18685	2.4	0.12877	2.2	0.92	794	19	781	17	0.06685	1.0	833	10	94
79	24250	268	33	258	0.7	1.22074	5.2	0.13250	4.8	0.92	810	42	802	38	0.06682	2.0	832	17	96
80	2444	24	3	28	1.0	1.26769	4.0	0.14179	3.2	0.81	831	33	855	28	0.06484	2.4	769	19	111
81a (81 core)	8220	61	10	80	0.3	1.79841	2.7	0.16807	2.2	0.81	1045	29	1001	22	0.07760	1.6	1137	20	88
81b (82 rim)	19811	147	24	188	0.3	1.83375	2.4	0.17530	2.2	0.90	1058	25	1041	23	0.07587	1.0	1092	13	95
83	9701	103	13	82	0.6	1.22609	2.9	0.13229	2.3	0.78	813	24	801	18	0.06722	1.8	845	16	95
84	5197	54	7	59	0.5	1.23266	3.0	0.13464	2.4	0.78	816	25	814	19	0.06640	1.9	819	16	99
85a (85 core)	88923	795	84	477	0.2	1.40849	3.5	0.12387	2.9	0.83	893	32	753	22	0.07648	4.3	1257	27	60
85b (86rim)	90386	579	96	729	0.3	1.98630	2.0	0.19161	1.8	0.89	1111	22	1130	20	0.06793	1.1	1073	13	105
87	136965	463	103	714	0.5	3.24611	2.5	0.22286	2.3	0.92	1468	37	1297	30	0.07719	2.4	1725	22	75
88	23215	212	27	224	0.8	1.33473	2.3	0.14334	2.1	0.91	861	20	864	18	0.06715	0.7	854	11	101
89	5512	51	6	52	0.6	1.32947	2.7	0.14226	2.0	0.73	859	23	857	17	0.07122	4.5	862	17	99
90	10997	97	12	102	0.6	1.34183	2.8	0.14097	2.0	0.71	864	24	850	17	0.06685	1.0	900	19	94
91	13196	70	9	33	0.6	1.27503	4.3	0.13537	3.6	0.84	835	36	818	29	0.06682	2.0	878	22	93
92	14460	136	17	147	0.6	1.27407	2.4	0.13720	1.8	0.74	834	20	829	15	0.06484	2.4	849	16	98
93a (93 core)	15300	138	18	149	0.6	1.38059	2.2	0.14590	1.8	0.81	881	19	878	15	0.07760	1.6	888	14	99
93b (94 rim)	2168	17	3	22	0.9	1.50277	3.7	0.15707	2.6	0.73	932	34	940	25	0.07587	1.0	910	24	103
95	648	4	1	6	1.7	2.13141	6.9	0.21923	5.3	0.77	1159	81	1278	68	0.06722	1.8	943	43	135
96	104000	746	113	954	0.2	1.77127	2.1	0.17486	2.0	0.94	1035	22	1039	21	0.06640	1.9	1027	11	101
97	27853	269	34	257	0.8	1.3052	2.8	0.14193	2.4	0.85	848	24	856	20	0.06670	1.5	828	13	103
98	4307	38	5	39	1.0	1.4144	3.4	0.15186	2.6	0.77	895	30	911	24	0.06755	2.2	855	19	107
100	108065	1449	127	733	0.0	1.1121	5.2	0.11501	4.8	0.92	759	39	702	34	0.07013	2.0	932	19	75
101	20741	144	21	118	1.1	2.0832	6.2	0.17059	4.5	0.72	1143	71	1015	46	0.08857	4.3	1395	60	73
102	2187	18	3	23	0.8	1.6102	3.5	0.17610	2.8	0.80	974	34	1046	29	0.06632	2.1	816	18	128
103	15787	151	19	157	0.6	1.3436	2.5	0.14688	2.2	0.89	865	22	883	20	0.06634	1.1	817	10	108
104	3002	25	4	30	1.1	1.4295	4.3	0.15184	2.7	0.64	901	39	911	25	0.06828	3.3	877	29	104
105	8066	78	10	85	0.7	1.2558	3.2	0.13710	2.6	0.83	826	26	828	22	0.06643	1.8	820	15	101
108	120286	1442	116	535	0.1	1.9865	3.1	0.17001	2.3	0.74	1111	34	1012	23	0.08475	2.1	1310	28	77
109	29254	162	28	223	0.3	2.06587	3.3	0.18894	2.9	0.88	1138	37	1116	32	0.07930	1.5	1180	20	95
110	103514	802	104	700	0.3	1.55520	3.6	0.15348	3.2	0.88	953	34	920	29	0.07349	1.7	1028	19	90
111	381002	1788	134	152	0.1	1.08947	4.8	0.08869	3.6	0.74	748	36	548	20	0.08910	3.2	1406	47	39
112	65431	731	76	483	0.4	0.99660	5.5	0.10588	5.2	0.95	702	38	649	34	0.06827	1.7	877	16	74

113	22476	222	27	238	0.1	1.10113	3.7	0.12077	3.0	0.81	754	28	735	22	0.06613	2.1	810	18	91
114	10505	99	12	107	0.6	1.22557	3.6	0.13253	2.9	0.81	812	29	802	24	0.06707	2.1	840	19	96
115	45201	252	45	407	0.5	2.21882	3.1	0.20250	2.7	0.87	1187	37	1189	33	0.07947	1.5	1184	20	100
116	12820	120	15	141	0.5	1.31785	3.5	0.14360	2.9	0.83	854	30	865	25	0.06656	1.9	824	17	105
117	11293	108	13	121	0.7	1.23096	3.1	0.13264	2.7	0.87	815	25	803	22	0.06731	1.6	847	14	95
118	28870	164	29	247	0.5	2.26337	3.4	0.20271	2.9	0.87	1201	40	1190	35	0.08098	1.6	1221	22	97
119	243930	1099	109	145	0.2	1.19910	4.7	0.10731	4.1	0.86	800	38	657	27	0.08104	2.4	1222	30	54
120	8876	71	9	72	0.6	1.25352	3.8	0.13319	3.1	0.80	825	32	806	25	0.06826	2.3	876	21	92
Tabelle 9 U-Pb Daten

	207	U	Pb			207 225	$\pm 2\sigma$		$\pm 2\sigma$		²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	206Pb/238U	$\pm 2\sigma$	207 207	$\pm2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$	Konkordanz
KV156T	(c.p.s.)	(ppm)	(ppm)	206 Pb/ 204 Pb	Th/U	²⁰⁷ Pb/ ²³⁵ U	(%)	²⁰⁶ Pb/ ²³⁸ U	(%)	rho	Alter	(abs.)	Alter	(abs.)	²⁰⁷ Pb/ ²⁰⁶ Pb	(%)	Alter	(abs.)	(%)
908																			
A1	34577	114	23	249	1.4	4.34803	6.6	0.22398	1.7	0.25	1703	113	1303	22	0.14079	6.43	2237	145	58
A2	37794	358	51	1672	1.3	1.78547	2.6	0.17737	1.4	0.55	1040	27	1053	15	0.07301	2.14	1014	24	104
A3	1121	124	2	78	0.7	0.14853	6.3	0.02234	2.0	0.32	141	9	142	3	0.04821	5.97	110	7	130
A4	19679	170	24	575	0.8	1.84382	3.6	0.17012	2.3	0.66	1061	38	1013	24	0.07861	2.68	1162	33	87
A5	3546	31	5	186	2.3	1.91046	3.9	0.18908	2.3	0.61	1085	42	1116	26	0.07328	3.07	1022	33	109
A6	3517	28	4	139	2.5	1.74541	3.6	0.17557	2.1	0.58	1025	37	1043	22	0.07210	2.93	989	31	105
A7	4535	27	6	224	3.5	2.33255	3.6	0.23339	2.4	0.67	1222	44	1352	32	0.07249	2.69	1000	29	135
A8	5441	41	6	223	1.4	1.90436	3.0	0.18152	1.7	0.57	1083	33	1075	19	0.07609	2.49	1097	29	98
A9	4920	45	7	254	1.7	1.79983	3.5	0.17887	2.0	0.59	1045	37	1061	22	0.07298	2.83	1013	30	105
A11	2251	14	3	83	1.6	2.54253	4.9	0.22153	3.5	0.71	1284	63	1290	45	0.08324	3.42	1275	45	101
A12	3231	23	4	130	3.0	2.35351	3.8	0.23496	2.0	0.53	1229	46	1360	27	0.07265	3.19	1004	33	135
A13	35930	369	43	1094	0.3	1.65836	2.6	0.14878	1.4	0.54	993	26	894	12	0.08084	2.20	1218	29	73
A14	63615	537	83	2503	0.2	2.07962	2.5	0.20382	1.4	0.57	1142	28	1196	17	0.07400	2.03	1042	23	115
A15	5929	70	9	281	0.9	1.46869	2.9	0.16030	1.7	0.59	918	26	958	16	0.06645	2.32	821	21	117
A16	63255	536	81	2129	0.6	2.18731	2.4	0.21193	1.3	0.55	1177	29	1239	17	0.07485	2.04	1065	24	116
A17	9180	87	12	521	1.9	1.74529	2.9	0.17429	1.5	0.52	1025	29	1036	15	0.07263	2.45	1004	27	103
A18	3310	30	4	180	0.9	1.65144	3.0	0.16418	1.9	0.64	990	30	980	19	0.07295	2.33	1013	26	97
A19	118044	124	32	103	0.9	4.99629	9.5	0.23675	1.7	0.18	1819	172	1370	23	0.15306	9.33	2380	223	58
A20	53150	94	14	151	0.8	1.34035	3.1	0.14204	1.6	0.51	863	27	856	13	0.06844	2.66	882	25	97
A21	25352	77	11	152	1.2	1.38083	5.5	0.13873	2.3	0.42	881	49	837	19	0.07219	5.03	991	51	84
A22	22366	163	27	978	0.3	2.28111	2.6	0.20558	1.4	0.55	1206	31	1205	17	0.08047	2.13	1209	28	100
A23	85620	495	98	3074	0.3	2.75914	2.8	0.24547	1.3	0.47	1345	38	1415	19	0.08152	2.51	1234	33	115
A24	4733	15	3	80	1.9	2.46046	4.8	0.20543	2.5	0.52	1260	60	1204	30	0.08687	4.06	1358	57	89
A25	47386	432	63	1207	0.8	2.11407	4.8	0.20028	4.1	0.85	1153	55	1177	48	0.07655	2.47	1110	29	106
A26	52770	355	56	56	0.7	1.98464	6.4	0.15169	4.1	0.63	1110	71	910	37	0.09489	4.95	1526	77	60
A27	12805	115	17	597	2.0	1.47328	6.0	0.14674	5.5	0.92	919	55	883	48	0.07282	2.33	1009	25	87
A28	3989	26	4	150	0.7	2.30225	4.0	0.22741	2.4	0.60	1213	49	1321	32	0.07342	3.22	1026	35	129
A29	17118	141	22	765	0.5	1.81149	3.7	0.16951	2.9	0.79	1050	39	1009	30	0.07751	2.28	1134	28	89
A31	5184	31	5	154	0.8	2.20083	3.8	0.18278	1.9	0.50	1181	45	1082	21	0.08733	3.34	1368	48	79
A31	1765	20	3	119	1.1	1.39932	5.6	0.15159	2.4	0.42	889	49	910	21	0.06695	5.03	836	43	109
A32	31486	281	42	1708	0.9	1.88534	2.9	0.18374	1.7	0.59	1076	31	1087	18	0.07442	2.32	1053	26	103

A33	11867	295	28	792	0.0	0.84489	2.4	0.10109	1.9	0.81	622	15	621	12	0.06062	1.42	626	9	99
A34	52998	621	101	2690	1.0	1.79262	2.3	0.17062	2.0	0.88	1043	24	1016	20	0.07620	1.06	1100	12	92
A35	30177	328	54	693	1.4	1.87150	2.6	0.17698	1.9	0.75	1071	27	1050	20	0.07670	1.68	1113	19	94
A37	114325	3517	99	164	0.1	0.60204	3.6	0.03118	2.0	0.57	479	17	198	4	0.14004	2.94	2228	66	9
A38	9485	17	5	94	2.0	2.93241	6.3	0.26031	4.4	0.69	1390	87	1491	65	0.08170	4.52	1238	56	120
A40	276466	1118	180	131	0.1	5.10434	7.3	0.17795	1.9	0.26	1837	133	1056	20	0.20803	7.01	2890	203	37
A41	4707	66	9	248	1.2	1.43867	3.2	0.14785	2.0	0.62	905	29	889	18	0.07057	2.51	945	24	94
A42	57963	728	113	2765	0.5	1.83290	2.5	0.17722	2.2	0.88	1057	27	1052	23	0.07501	1.18	1069	13	98
A43	50364	625	96	1603	0.4	2.03236	3.0	0.19301	2.6	0.89	1126	33	1138	30	0.07637	1.33	1105	15	103
A44	-	-	-	-	0.2	1.02179	3.8	0.12007	3.1	0.82	715	27	731	23	0.06172	2.21	664	15	110
A45	58806	608	99	1400	0.3	2.29464	2.5	0.20374	2.2	0.86	1211	30	1195	26	0.08168	1.27	1238	16	97
A46	55683	651	100	1357	0.4	1.77274	3.5	0.15978	2.3	0.67	1036	36	956	22	0.08047	2.60	1208	32	79

Tabelle 10 U-Pb Daten

	207	U	Pb	206 204		207 225	$\pm 2\sigma$	206 228	$\pm 2\sigma$		²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$	207 206	$\pm 2\sigma$	207Pb/206Pb	$\pm 2\sigma$	Konkordanz
Christiana	(c.p.s.)	(ppm)	(ppm)	²⁰⁰ Pb/ ²⁰⁴ Pb	Th/U	²⁰⁷ Pb/ ²³⁵ U	(%)	²⁰⁰ Pb/ ²³⁸ U	(%)	rho	Alter	(abs.)	Alter	(abs.)	²⁰⁷ Pb/ ²⁰⁰ Pb	(%)	Alter	(abs.)	(%)
913																			
CR-1a (CR1 core)	786	92	7	55	0.6	0.75036	7.3	0.09473	2.9	0.40	568	41	583	17	0.05745	6.7	452	41	129
CR-1b (CR2rim)	550	103	5	29	0.5	0.43913	7.9	0.05269	3.3	0.42	370	29	331	11	0.06045	7.1	3051	687	11
CR-3	1768	110	9	63	0.4	1.11847	12.5	0.09258	4.0	0.32	762	95	571	23	0.08762	11.8	475	29	120
CR-4	1094	191	10	66	0.5	0.50413	7.6	0.06006	3.1	0.41	414	31	376	12	0.06087	6.9	1020	31	37
CR-5	4138	469	38	360	0.7	0.79698	6.5	0.09783	2.8	0.42	595	39	602	17	0.05908	5.9	702	29	86
CR-6	1476	150	13	139	0.3	0.95418	7.2	0.11144	2.7	0.38	680	49	681	18	0.06210	6.7	643	18	106
CR-7	3574	445	34	391	0.0	0.73530	6.4	0.08991	2.6	0.41	560	36	555	15	0.05931	5.9	670	31	83
CR-8	1766	270	18	170	0.4	0.58271	6.8	0.07537	2.9	0.42	466	32	468	13	0.05607	6.2	684	28	68
CR-9	2530	375	25	255	0.4	0.61190	6.6	0.07682	2.7	0.41	485	32	477	13	0.05777	6.0	1070	53	45
CR-11	1447	95	12	113	0.3	0.85251	7.3	0.10268	3.2	0.44	626	46	630	20	0.06712	6.5	1072	39	59
CR-12	772	85	7	70	0.7	0.58124	7.1	0.07721	2.9	0.41	465	33	479	14	0.06021	6.6	654	21	73
CR-13	831	129	8	104	0.6	0.67003	7.7	0.08774	3.1	0.40	521	40	542	17	0.05460	6.5	904	32	60
CR-15	696	87	6	61	0.3	0.69133	7.1	0.08697	2.9	0.41	534	38	538	15	0.05538	7.0	666	15	81
CR-17	5443	313	43	453	0.2	0.70481	7.3	0.08592	2.9	0.39	542	39	531	15	0.07125	5.8	540	14	98
CR-18	1231	160	12	119	0.3	0.87340	7.8	0.11175	3.0	0.38	637	50	683	20	0.05765	6.5	645	15	106
CR-19	536	76	5	53	0.5	0.87365	7.8	0.11175	3.0	0.38	638	50	683	20	0.05949	6.7	1034	30	66
CR-14	768	78	7	66	1.7	1.56107	6.5	0.15890	2.9	0.45	955	62	951	28	0.05668	7.2	584	14	163
CR-10	779	99	8	84	0.9	1.47810	7.1	0.15971	2.9	0.41	921	66	955	28	0.05670	7.2	546	13	175
CR(II)-1	1908	120	11	110	0.3	0.83674	3.8	0.10029	3.1	0.81	617	24	616	19	0.06051	2.2	1047	25	59
CR(II)-2	4452	299	26	273	0.1	0.76541	3.7	0.09295	3.1	0.85	577	21	573	18	0.05972	2.0	624	11	92
CR(II)-5	3113	84	14	146	0.6	0.84958	4.7	0.10161	3.3	0.70	624	30	624	21	0.07537	2.4	572	13	109
CR(II)-6	4260	132	20	204	0.2	0.63097	3.7	0.08011	3.1	0.83	497	18	497	15	0.07415	2.2	578	11	86
CR(II)-7	1137	69	6	67	0.4	0.81512	3.8	0.09684	3.1	0.81	605	23	596	18	0.06064	3.4	649	13	92
CR(II)-8	3084	254	19	193	0.3	0.68836	4.1	0.08302	3.4	0.83	532	22	514	18	0.05713	2.0	653	14	79
CR(II)-9	2447	153	14	137	0.3	0.77909	4.7	0.09420	3.2	0.68	585	28	580	19	0.06104	2.2	553	10	105
CR(II)-10	2162	143	12	136	0.2	0.79467	3.9	0.09483	3.2	0.82	594	23	584	19	0.06013	2.3	620	13	94
CR(II)-11	1165	77	7	77	0.2	0.84405	4.5	0.10100	3.4	0.75	621	28	620	21	0.05998	3.5	571	15	109
CR(II)-12	2848	186	16	166	0.3	0.72141	3.7	0.08784	3.2	0.88	551	20	543	18	0.06078	2.3	597	21	91
CR(II)-13	1905	116	11	120	0.9	0.67150	3.9	0.08352	3.3	0.83	522	20	517	17	0.06061	3.0	619	10	84
CR(JI)-15	3861	275	22	277	0.2	0.84042	3.6	0.09944	3.1	0.85	619	22	611	19	0.05956	1.7	645	18	95
CR(II)-16	2544	189	15	170	0.4	0.71537	3.7	0.08801	3.2	0.85	548	21	544	17	0.05831	2.2	797	25	68

CR(II)-17	3834	237	22	279	1.2	0.67735	7.1	0.08171	3.4	0.48	525	37	506	17	0.06129	1.9	634	20	80
CR(II)-18	4293	309	25	324	0.1	0.87870	3.7	0.10218	3.4	0.91	640	24	627	21	0.05895	2.0	630	20	100
CR(II)-19	450	35	3	33	0.9	0.81166	4.2	0.09802	3.3	0.79	603	25	603	20	0.06012	6.2	533	13	113
CR(II)-3	4992	295	28	326	0.3	1.87630	3.9	0.18055	3.1	0.79	1073	42	1070	33	0.06237	1.5	1028	46	104
CR(II)-4	1757	110	10	113	0.3	1.68915	3.9	0.16523	3.3	0.84	1004	40	986	33	0.06006	2.6	640	33	154

Tabelle 11 U-Pb Daten

	207	U	Pb	206 204		207 225	$\pm 2\sigma$	206 228	$\pm 2\sigma$		²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	206Pb/238U	$\pm 2\sigma$	207 206	$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$	Konkordanz
OR	(c.p.s.)	(ppm)	(ppm)	²⁰⁶ Pb/ ²⁰⁴ Pb	Th/U	²⁰⁷ Pb/ ²³³ U	(%)	²⁰⁰ Pb/ ²³⁸ U	(%)	rho	Alter	(abs.)	Alter	(abs.)	²⁰⁷ Pb/ ²⁰⁸ Pb	(%)	Alter	(abs.)	(%)
914																			
1	458	89	107	61	0.5	0.69420	4.3	0.09127	1.8	0.43	535	23	563	10	0.05570	5.5	419	16	134
2	612	112	132	77	0.7	0.73428	5.0	0.09187	2.0	0.41	559	28	567	12	0.05853	5.9	529	24	107
3	1142	184	252	137	0.6	0.87214	3.6	0.10595	1.9	0.52	637	23	649	12	0.06028	5.0	593	19	110
4	241	52	57	35	0.0	0.63221	7.9	0.08359	2.5	0.31	497	39	518	13	0.05539	8.5	406	31	127
5	422	78	95	43	0.4	0.77484	4.1	0.09587	1.8	0.43	583	24	590	11	0.05919	5.4	553	21	107
6	3211	649	740	375	0.5	0.69838	2.6	0.08928	1.6	0.60	538	14	551	9	0.05729	4.4	481	10	115
7	3957	708	865	512	0.2	0.80654	2.4	0.09717	1.5	0.65	601	14	598	9	0.06078	4.3	611	12	98
8	2190	156	378	197	0.2	1.85785	5.4	0.17530	4.0	0.74	1066	57	1041	41	0.07761	5.3	1118	41	93
9	1724	342	393	227	0.4	0.70279	3.0	0.08832	1.5	0.50	540	16	546	8	0.05827	4.7	519	14	105
10	6970	549	1212	705	0.4	1.64500	2.3	0.15744	1.8	0.79	988	23	943	17	0.07651	4.1	1089	17	87
11	593	101	141	171	0.5	0.80409	4.6	0.10073	2.1	0.45	599	27	619	13	0.05846	5.6	526	22	118
12	4414	741	963	470	0.9	0.81572	2.3	0.09849	1.6	0.69	606	14	606	10	0.06065	4.2	606	11	100
13	4541	713	988	501	0.3	0.91075	2.4	0.10880	1.5	0.61	657	16	666	10	0.06130	4.3	629	13	106
14	1320	156	232	131	0.5	1.08378	4.2	0.11534	2.2	0.53	745	31	704	15	0.06881	5.2	873	31	81
16	16646	315	1616	733	0.7	0.90551	2.5	0.10413	1.8	0.72	655	16	639	11	0.13608	4.1	711	13	90
17	6498	973	1354	663	0.4	0.65757	2.6	0.08198	1.5	0.58	513	13	508	8	0.06368	4.2	536	12	95
18	3205	675	742	406	0.5	0.70978	2.9	0.08943	1.9	0.64	545	16	552	10	0.05874	4.4	513	12	108
19	1962	363	432	225	0.5	1.15483	3.2	0.13040	1.9	0.60	780	25	790	15	0.05812	4.5	749	19	105
20	1835	221	376	195	0.5	0.93321	2.6	0.10767	1.6	0.63	669	17	659	11	0.06486	4.6	703	15	94
22	2680	396	565	293	0.3	0.66677	3.2	0.08335	1.5	0.45	519	17	516	8	0.06347	4.4	530	16	97
23	49715	598	3821	1824	0.5	0.75780	2.9	0.09348	1.4	0.49	573	16	576	8	0.17137	4.1	559	14	103
24	1243	237	273	142	0.4	0.74223	3.2	0.08989	1.7	0.53	564	18	555	9	0.05858	4.8	599	17	93
15	4037	713	896	450	0.8	7.18722	2.0	0.38677	1.5	0.72	2135	44	2108	31	0.05936	4.6	2161	33	98
21	1132	206	251	133	0.4	10.95680	1.9	0.46821	1.4	0.73	2519	49	2476	35	0.06047	4.7	2555	37	97
25	5777	36	256	1605	0.3	1.73315	3.1	0.17426	1.5	0.49	1021	32	1036	16	0.07214	2.7	990	29	105
26	29715	70	145	3015	0.6	14.34033	3.1	0.55120	2.2	0.70	2772	85	2830	61	0.18869	2.2	2731	66	104
27	761	5	80	163	2.1	0.53030	10.9	0.06202	2.7	0.25	432	47	388	11	0.06201	10.5	675	71	57
28	3470	20	134	560	0.5	2.10518	4.6	0.19295	2.3	0.49	1151	53	1137	26	0.07913	4.1	1175	49	97
29	4345	29	259	1417	0.2	1.21813	3.8	0.13696	2.3	0.60	809	30	827	19	0.06451	3.0	758	24	109
30	2640	15	91	682	0.5	1.90820	2.9	0.18116	1.6	0.53	1084	32	1073	17	0.07639	2.5	1105	30	97
31	1773	11	73	553	0.6	1.67781	4.1	0.16638	1.9	0.46	1000	41	992	18	0.07314	3.6	1018	38	97

32	10129	55	300	2406	0.4	2.33585	2.8	0.20612	1.6	0.58	1223	34	1208	20	0.08219	2.3	1250	31	97
33	4975	14	377	17	0.4	0.29038	12.5	0.03366	2.4	0.19	259	32	213	5	0.06256	12.2	693	85	31
34	1591	11	116	589	0.6	0.93335	3.8	0.10955	2.1	0.55	669	25	670	14	0.06179	3.1	667	22	100
35	3271	22	279	736	0.8	0.76144	3.6	0.08250	1.8	0.52	575	21	511	9	0.06694	3.1	836	27	61
36	1721	10	69	518	0.3	1.88649	4.5	0.18937	2.8	0.62	1076	48	1118	31	0.07225	3.5	993	36	113
37	918	7	81	481	0.5	0.65088	7.2	0.07815	4.4	0.62	509	36	485	21	0.07214	2.7	990	29	49
38	1191	9	107	506	0.8	0.66727	5.7	0.08268	2.6	0.46	519	30	512	13	0.18869	2.2	2731	66	19
39	1496	7	79	223	0.5	0.91208	5.6	0.10724	2.8	0.49	658	37	657	18	0.06201	10.5	675	71	97
40	6802	48	500	2529	0.2	0.89263	3.1	0.10481	2.5	0.81	648	20	643	16	0.07913	4.1	1175	49	55
41	4301	17	461	353	0.9	0.62124	17.2	0.04093	3.3	0.19	491	84	259	9	0.06451	3.0	758	24	34
42	2607	22	650	1466	0.4	0.26080	3.1	0.03734	2.4	0.80	235	7	236	6	0.07639	2.5	1105	30	21
43	658	5	68	336	0.7	0.54080	5.8	0.06919	2.7	0.47	439	25	431	12	0.07314	3.6	1018	38	42
44	7321	38	253	946	0.2	1.90387	3.8	0.16741	2.7	0.71	1082	42	998	27	0.08219	2.3	1250	31	80
45	3142	23	278	1742	0.6	0.74406	3.1	0.09072	2.4	0.77	565	17	560	13	0.06256	12.2	693	85	81
46	594	4	56	266	0.8	0.62991	5.2	0.08121	3.1	0.60	496	26	503	16	0.06179	3.1	667	22	75
47	1077	9	281	499	0.4	0.24893	4.3	0.03558	2.5	0.59	226	10	225	6	0.06694	3.1	836	27	27
48	1880	11	115	587	0.7	1.00860	5.8	0.10163	3.3	0.57	708	41	624	20	0.07225	3.5	993	36	63
49	798	4	43	327	0.8	0.88434	4.3	0.10216	3.3	0.77	643	28	627	21	0.06278	2.7	701	19	89
50	786	5	58	346	0.4	0.61103	4.8	0.07543	3.4	0.71	484	23	469	16	0.05875	3.4	558	19	84
51	1934	10	57	657	0.5	1.57676	4.3	0.15423	3.4	0.78	961	41	925	31	0.07415	2.7	1045	28	88
52	2488	13	126	708	0.5	0.77450	5.5	0.09227	3.6	0.66	582	32	569	21	0.06088	4.2	635	27	90
53	2175	7	27	566	1.1	3.93894	4.4	0.27237	3.3	0.75	1622	72	1553	52	0.10489	2.9	1712	50	91
54	3058	15	96	1126	0.2	1.65249	3.6	0.16132	3.2	0.90	991	36	964	31	0.07429	1.6	1049	17	92
55	4762	24	193	1314	0.2	1.57946	4.3	0.16099	3.8	0.90	962	41	962	37	0.07115	1.9	962	19	100
56	1908	9	103	418	0.7	0.83624	13.0	0.07683	3.5	0.27	617	81	477	17	0.07894	12.6	1171	147	41
57	1480	9	115	596	0.3	0.63792	6.0	0.07455	3.6	0.60	501	30	464	16	0.06206	4.8	676	33	69
58	923	6	178	378	0.8	0.26206	4.9	0.03425	3.5	0.70	236	12	217	8	0.05549	3.5	432	15	50
59	682	4	49	244	0.6	0.71997	7.5	0.08216	3.6	0.48	551	41	509	18	0.06355	6.6	727	48	70
60	1777	9	91	507	0.1	1.36311	4.8	0.13931	4.0	0.82	873	42	841	33	0.07096	2.8	956	27	88
61	1578	3	66	71	0.6	1.24951	27.8	0.05736	3.6	0.13	823	229	360	13	0.15800	27.6	2434	672	15
62	1879	12	346	748	0.8	0.25597	4.1	0.03564	2.7	0.67	231	9	226	6	0.05209	3.0	290	9	78
63	1765	11	136	788	0.4	0.58662	4.3	0.07463	2.5	0.59	469	20	464	12	0.05701	3.4	492	18	94
64	848	5	59	302	0.3	0.67879	5.4	0.08236	2.7	0.49	526	29	510	14	0.05977	4.7	595	29	86
65	834	5	68	355	0.5	0.57046	5.1	0.06964	2.6	0.51	458	23	434	11	0.05941	4.4	582	26	75
66	706	5	116	301	0.8	0.26440	6.3	0.03782	2.9	0.47	238	15	239	7	0.05071	5.5	228	13	105
67	504	3	74	186	0.6	0.29572	11.4	0.03594	3.1	0.27	263	30	228	7	0.05968	11.0	592	65	38

68	1084	5	39	380	0.4	1.46817	4.9	0.15391	3.0	0.63	917	45	923	28	0.06919	3.8	904	36	102
69	5884	27	158	2185	0.4	1.69121	3.7	0.16302	2.8	0.76	1005	38	974	28	0.07524	2.4	1075	28	91
70	2232	12	122	703	0.5	0.87881	4.0	0.09991	2.4	0.62	640	25	614	15	0.06379	3.1	735	24	84
71	2930	16	169	1130	0.4	0.87521	4.0	0.10163	2.6	0.65	638	25	624	16	0.06246	3.0	690	22	90
72	11832	39	419	400	0.3	1.33458	8.6	0.10347	3.6	0.41	861	74	635	23	0.09355	7.8	1499	118	42
73	620	3	101	212	0.7	0.28714	11.6	0.03506	3.0	0.26	256	30	222	7	0.05940	11.2	582	66	38
74	2807	13	95	1150	0.3	1.35746	4.7	0.14284	3.8	0.81	871	41	861	33	0.06892	2.8	896	26	96
75	871	5	52	376	1.1	0.83227	5.5	0.09770	3.4	0.63	615	34	601	21	0.06178	4.3	667	29	90
76	507	3	42	208	0.5	0.59388	6.8	0.07550	3.7	0.55	473	32	469	17	0.05705	5.7	493	29	95
77	652	3	18	216	0.7	1.80294	7.8	0.16817	5.9	0.75	1047	81	1002	59	0.07776	5.1	1141	59	88
78	1320	4	49	25	0.4	0.94867	8.0	0.08811	3.0	0.37	677	54	544	16	0.07809	7.4	1149	85	47
79	5691	20	413	142	0.3	0.75617	15.6	0.10108	15.3	0.98	572	89	621	95	0.05426	3.3	382	13	163
81	1098	3	37	24	0.7	0.76969	6.5	0.08867	3.5	0.54	580	38	548	19	0.06296	5.5	707	39	77
83	29404	88	592	648	0.3	1.37248	4.1	0.15373	3.4	0.83	877	36	922	32	0.06475	2.3	766	19	120
84	11164	36	385	302	0.7	0.80353	3.1	0.09773	2.6	0.82	599	19	601	15	0.05963	1.8	590	12	102
85	1749	5	50	40	0.4	1.02640	5.3	0.10797	3.3	0.62	717	38	661	21	0.06895	4.1	897	38	74
86	4510	14	212	119	0.8	0.56957	5.2	0.06187	2.7	0.52	458	24	387	10	0.06677	4.5	831	38	47
87	5859	15	91	129	0.2	1.81391	3.6	0.17228	3.0	0.82	1050	38	1025	30	0.07636	2.1	1105	24	93
80	1501	4	24	32	0.2	1.95573	4.6	0.19463	3.1	0.67	1100	50	1146	35	0.07288	3.4	1011	35	113
90	261	1	9	11	0.5	0.88705	7.1	0.11789	3.2	0.46	645	46	718	23	0.05457	6.3	395	25	182
91	1065	4	38	48	0.5	0.82119	6.2	0.10721	2.8	0.46	609	38	657	19	0.05555	5.5	435	24	151
93	2594	9	83	117	0.0	0.96463	4.9	0.12117	3.1	0.63	686	34	737	23	0.05774	3.8	520	20	142
94	282	1	7	12	0.8	1.18515	9.5	0.15266	3.5	0.36	794	76	916	32	0.05631	8.9	464	41	197
95	1249	4	43	54	0.3	0.91559	6.2	0.11201	2.9	0.46	660	41	684	20	0.05928	5.5	578	32	119
96	1239	4	21	45	0.6	1.84379	4.6	0.19122	2.9	0.64	1061	48	1128	33	0.06993	3.5	926	33	122
97	1129	4	33	51	0.1	0.88958	6.8	0.11253	3.4	0.51	646	44	687	24	0.05733	5.8	504	30	136
99	3305	11	94	144	0.3	1.03274	4.2	0.12354	2.8	0.66	720	31	751	21	0.06063	3.2	626	20	120

Tabelle 12 U-Pb Daten

Riet River	207	U	Pb	206 01 /204 01	TT1 // I	207 51 (235)	2σ	206 01 /238 1	2σ	1	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$	207 р. /206 р.	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$	Konkordanz
915	(c.p.s.)	(ppm)	(ppm)	Pb/ Pb	In/U	Pb/ 0	(%)	Pb/ 10	(%)	rno	Alter	(abs.)	Alter	(abs.)	Pb/ Pb	(%)	Alter	(abs.)	(%)
RI	21517	25	9	24	0.9	0.56376	10.4	0.07343	5.1	0.49	454	47	457	23	0.05568	9.1	440	40	104
R2	390	24	2	11	0.3	0.68953	7.1	0.08886	3.6	0.51	533	38	549	20	0.05628	6.1	463	28	118
R3	1631	40	6	37	0.2	1.74468	4.6	0.17376	3.5	0.76	1025	47	1033	36	0.07282	3.0	1009	31	102
R4	4202	227	20	113	0.1	0.83932	5.5	0.09741	3.7	0.67	619	34	599	22	0.06249	4.1	691	29	87
R5	2608	136	13	76	0.4	0.85342	4.1	0.10182	3.0	0.75	627	26	625	19	0.06079	2.7	632	18	99
R6	2945	147	14	85	0.3	0.84135	5.8	0.09914	3.5	0.61	620	36	609	22	0.06155	4.6	658	31	93
R7	1139	46	5	31	0.1	1.49761	6.7	0.15430	3.5	0.52	929	63	925	32	0.07039	5.8	940	55	98
R8	1858	44	7	43	0.2	1.83756	6.1	0.17849	3.6	0.59	1059	64	1059	38	0.07467	4.9	1060	52	100
R9	13944	476	56	302	0.2	1.02514	7.2	0.09948	6.2	0.87	716	51	611	38	0.07474	3.6	1061	39	58
R10	1233	35	5	29	0.3	1.37423	11.9	0.12800	5.3	0.44	878	104	776	41	0.07787	10.7	1143	122	68
R11	958	40	4	25	0.4	0.87081	4.7	0.10190	3.7	0.79	636	30	626	23	0.06198	2.9	673	20	93
R12	768	18	2	18	0.3	1.45860	5.3	0.15321	4.0	0.77	913	48	919	37	0.06905	3.4	900	31	102
R13	13296	595	50	348	0.1	0.82679	4.7	0.09730	4.2	0.90	612	29	599	25	0.06163	2.1	661	15	91
R14	2042	99	8	59	0.4	0.73035	4.4	0.09111	3.7	0.83	557	25	562	21	0.05814	2.4	535	13	105
R15	5548	231	21	160	0.2	0.90477	4.8	0.10752	4.3	0.90	654	31	658	28	0.06103	2.1	640	14	103
R16	1408	27	4	32	0.3	1.88056	4.9	0.18336	3.9	0.79	1074	52	1085	42	0.07439	3.0	1052	32	103
R17	3210	146	12	95	0.2	0.78491	4.3	0.09677	3.6	0.84	588	25	595	22	0.05883	2.4	561	14	106
R18	3384	161	13	95	0.1	0.73840	4.5	0.09139	3.8	0.86	561	25	564	22	0.05860	2.3	552	13	102
R19	2705	56	9	63	0.2	1.87190	4.4	0.18334	3.8	0.86	1071	47	1085	41	0.07405	2.2	1043	24	104
R20	16838	662	63	480	0.1	0.94414	4.0	0.11297	3.6	0.91	675	27	690	25	0.06062	1.6	626	11	110
R21	503	65	3	17	0.4	0.31257	5.1	0.04301	2.5	0.49	276	14	271	7	0.05271	4.5	316	14	86
R22	4535	226	20	136	0.1	0.79567	3.2	0.09758	2.3	0.72	594	19	600	14	0.05914	2.2	572	13	105
R23	7113	373	31	221	0.3	0.75578	2.8	0.09246	2.1	0.77	572	16	570	12	0.05929	1.8	578	11	99
R24	7399	342	32	208	0.3	0.88773	2.8	0.10507	2.1	0.74	645	18	644	13	0.06128	1.9	649	13	99
R25	4031	184	18	119	0.3	0.89791	2.9	0.10609	2.1	0.72	651	19	650	14	0.06139	2.0	653	14	100
R26	3812	218	17	115	0.5	0.70440	2.8	0.08715	2.2	0.78	541	15	539	12	0.05862	1.8	553	10	97
R27	5467	252	24	165	0.4	0.86732	2.9	0.10404	2.1	0.73	634	18	638	14	0.06046	2.0	620	13	103
R28	1792	97	8	54	0.3	0.78588	3.4	0.09644	2.2	0.66	589	20	594	13	0.05910	2.5	571	15	104
R29	909	42	4	28	0.6	0.88958	4.8	0.10786	3.3	0.69	646	31	660	22	0.05981	3.5	597	21	111
R30	13880	651	61	416	0.2	0.84991	2.5	0.10201	2.0	0.81	625	15	626	13	0.06043	1.4	619	10	101
R31	1542	79	7	51	0.3	0.91815	5.2	0.10869	4.3	0.84	661	34	665	29	0.06127	2.8	649	19	103
R32	9913	502	44	311	0.1	1.20687	5.8	0.13297	4.8	0.84	804	46	805	39	0.06583	3.1	801	26	100

R32a	9913	502	44	311	0.1	0.31919	7.5	0.04234	5.7	0.77	281	21	267	15	0.05467	4.8	399	19	67
R33	4638	255	22	152	1.1	0.82144	5.4	0.09774	4.4	0.81	609	33	601	26	0.06095	3.1	638	21	94
R34	4638	255	22	152	1.1	0.77513	6.9	0.09388	4.8	0.70	583	40	578	28	0.05988	4.9	599	30	96
R35	57635	118	64	465	0.2	23.93402	4.9	0.67493	4.4	0.91	3266	159	3325	148	0.25719	2.0	3230	71	103
R36	5517	386	27	195	0.4	0.66031	4.9	0.08232	4.2	0.86	515	25	510	21	0.05818	2.5	537	14	95
R37	2838	135	11	74	0.4	1.04305	6.1	0.10276	4.2	0.69	725	45	631	27	0.07362	4.4	1031	47	61
R38	2838	135	11	74	0.4	1.04316	6.1	0.10277	4.2	0.69	725	45	631	27	0.07362	4.4	1031	47	61
R39	5497	370	25	165	0.2	0.77497	6.6	0.08935	4.8	0.74	583	38	552	27	0.06290	4.5	705	32	78
R40	4411	76	6	32	0.6	2.13867	33.2	0.08324	6.1	0.18	1161	386	515	32	0.18634	32.6	2710	885	19

Tabelle 13 U-Pb Daten

	207	U	Pb			202 225	$\pm 2\sigma$		$\pm 2\sigma$		²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$	207 207	$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶	$\pm 2\sigma$	Konkordanz
Taung	(c.p.s.)	(ppm)	(ppm)	²⁰⁶ Pb/ ²⁰⁴ Pb	Th/U	²⁰⁷ Pb/ ²³⁵ U	(%)	²⁰⁶ Pb/ ²³⁸ U	(%)	rho	Alter	(abs.)	Alter	(abs.)	²⁰⁷ Pb/ ²⁰⁶ Pb	(%)	Pb Alter	(abs.)	(%)
916																			
1	125552	89	271	245	0.6	15.93497	3.6	0.41902	2.0	0.54	2873	105	2256	45	0.27582	3.1	3339	111	68
2	27245	25	162	356	1.3	5.03010	4.3	0.16975	2.9	0.68	1824	78	1011	29	0.21492	3.1	2943	100	34
3a (3 core)	140207	122	760	464	0.5	4.71286	4.8	0.15312	3.7	0.77	1770	85	918	34	0.22324	3.1	3004	100	31
3b (4 rim)	69235	45	146	114	0.3	7.72073	5.2	0.23213	4.1	0.78	2199	114	1346	55	0.24123	3.2	3128	108	43
5	63910	56	138	707	0.3	15.96302	3.4	0.54366	1.9	0.55	2875	98	2799	53	0.21295	2.8	2928	91	96
6	38642	31	56	474	0.4	14.03579	7.5	0.42599	6.8	0.91	2752	206	2288	155	0.23897	3.1	3113	105	73
7	51410	46	91	629	0.6	16.17275	3.8	0.54595	2.8	0.72	2887	111	2808	77	0.21485	2.7	2942	87	95
8	2685	7	39	117	0.3	1.99196	4.9	0.19763	2.8	0.56	1113	55	1163	32	0.07310	4.1	1017	43	114
9	243802	229	465	3558	0.2	16.18606	3.2	0.56771	1.9	0.59	2888	93	2898	55	0.20678	2.6	2880	84	101
10	42854	34	53	654	0.5	21.77082	3.4	0.64013	2.1	0.61	3174	109	3190	67	0.24666	2.7	3163	95	101
11	112107	104	617	544	0.2	6.47128	7.4	0.22303	6.9	0.93	2042	152	1298	90	0.21044	2.7	2909	86	45
12	61592	53	341	784	1.0	4.07359	4.3	0.13252	2.9	0.69	1649	71	802	24	0.22294	3.1	3002	101	27
13a (13 core)	58527	57	104	980	0.2	16.97373	3.0	0.58398	1.8	0.59	2933	88	2965	53	0.21080	2.4	2912	78	102
13b (14 rim)	103760	84	540	277	0.1	6.34605	2.9	0.18277	1.7	0.59	2025	59	1082	19	0.25183	2.3	3196	83	34
15	50991	50	88	944	0.3	15.84251	3.3	0.54618	2.2	0.67	2867	94	2809	61	0.21037	2.4	2908	78	97
16	101832	94	224	821	1.0	16.86527	3.1	0.56006	1.9	0.60	2927	91	2867	54	0.21840	2.5	2969	81	97
17	24343	23	38	342	0.6	18.54744	3.5	0.63417	1.8	0.51	3019	105	3166	56	0.21212	3.0	2922	93	108
18	99772	100	212	1760	0.6	14.54169	3.7	0.51515	2.7	0.74	2786	103	2679	73	0.20473	2.5	2864	79	94
19	9856	10	15	15	1.9	18.62594	4.0	0.69362	2.4	0.58	3023	122	3396	80	0.19476	3.3	2783	97	122
20	105279	109	313	1490	0.3	9.73721	2.8	0.36264	1.6	0.55	2410	68	1995	31	0.19474	2.4	2783	73	72
21	74956	72	135	1342	0.2	16.74770	3.0	0.57624	1.8	0.59	2921	86	2933	51	0.21079	2.4	2912	77	101
22	26751	25	42	414	0.6	16.47468	3.6	0.56083	2.3	0.63	2905	106	2870	66	0.21305	2.8	2929	89	98
23	26889	26	52	531	0.5	15.47528	3.3	0.52999	2.0	0.63	2845	93	2741	56	0.21177	2.6	2919	81	94
24	76801	67	119	1138	0.8	18.62870	3.1	0.59042	1.8	0.58	3023	93	2991	53	0.22883	2.5	3044	84	98
25	87328	79	596	467	1.0	4.13431	5.7	0.13390	4.2	0.73	1661	95	810	34	0.22394	3.9	3009	131	27
26	37552	36	70	685	0.4	16.27960	4.3	0.55799	1.8	0.42	2893	124	2858	52	0.21160	3.9	2918	126	98
27	90223	82	200	1057	0.5	12.77863	4.4	0.42790	2.0	0.46	2663	117	2296	47	0.21659	3.9	2956	128	78
28	25538	24	58	413	0.4	14.09349	4.3	0.48258	1.8	0.42	2756	119	2538	46	0.21181	3.9	2919	127	87
29	22874	21	42	375	0.3	16.74419	4.4	0.55953	1.7	0.39	2920	129	2865	49	0.21704	4.1	2959	133	97
30	32813	28	94	55	0.3	11.08460	5.7	0.33671	3.8	0.68	2530	143	1871	72	0.23876	4.2	3112	142	60
31	34803	33	64	626	0.4	16.03269	4.3	0.55278	1.7	0.40	2879	124	2837	49	0.21036	4.0	2908	128	98
32	23461	22	41	460	0.6	16.74709	4.3	0.55491	1.7	0.40	2920	125	2846	48	0.21888	3.9	2973	130	96
33	83895	78	243	1104	0.4	5.81890	8.6	0.19220	7.5	0.88	1949	167	1133	85	0.21957	4.1	2978	135	38
34	97633	78	223	884	0.5	14.35381	5.6	0.42267	3.8	0.68	2773	155	2273	86	0.24630	4.1	3161	143	72
35	20433	19	39	322	0.2	16.58169	4.7	0.54755	2.3	0.48	2911	137	2815	64	0.21963	4.1	2978	135	95
36	121570	78	249	453	0.7	29.47171	4.2	0.71404	1.7	0.39	3469	147	3474	58	0.29935	3.9	3467	150	100
37	112229	102	436	14	1.0	4.26186	7.9	0.15177	7.8	0.99	1686	133	911	71	0.20366	1.2	2856	35	32

38	37734	39	73	755	1.1	17.62249	3.5	0.59422	3.3	0.95	2969	103	3007	98	0.21509	1.1	2944	34	102
39	139132	134	364	510	0.6	9.38428	4.5	0.30034	4.1	0.91	2376	107	1693	69	0.22661	1.9	3028	58	56
40	69026	73	151	1328	0.7	17.21022	2.8	0.59234	2.5	0.89	2947	81	2999	74	0.21072	1.2	2911	37	103
41	21319	23	43	390	0.4	17.32898	2.8	0.60967	2.4	0.88	2953	81	3069	75	0.20615	1.3	2876	38	107
42	57027	60	211	354	1.2	9.77880	4.7	0.33104	4.4	0.94	2414	113	1843	81	0.21424	1.5	2938	46	63
43	27722	27	55	452	1.2	20.09993	3.1	0.65352	2.8	0.90	3096	95	3242	89	0.22307	1.3	3003	40	108
44	76188	79	189	1148	0.3	17.33567	5.3	0.59153	5.1	0.97	2954	156	2996	153	0.21255	1.4	2925	42	102
45	93664	98	646	350	0.7	12.43247	10.5	0.42506	9.6	0.92	2638	276	2283	220	0.21213	4.1	2922	119	78
46	13443	14	28	290	0.3	16.75762	3.0	0.57864	2.6	0.86	2921	87	2943	75	0.21004	1.5	2906	45	101
46	72278	61	262	291	0.8	16.75762	3.0	0.57864	2.6	0.86	2921	87	2943	75	0.21300	1.4	2928	41	101
47	10990	10	18	221	0.7	7.10942	7.0	0.24208	6.8	0.98	2125	148	1398	95	0.24430	1.8	3148	58	44
49	19429	21	40	398	0.3	15.91912	3.0	0.54490	2.2	0.73	2872	85	2804	61	0.21189	2.0	2920	64	96
50	206293	221	654	432	0.5	9.79280	6.5	0.33524	5.3	0.81	2415	156	1864	98	0.21186	3.8	2920	113	64
51	16208	17	31	392	0.7	17.65375	3.6	0.59196	2.7	0.74	2971	108	2997	81	0.21630	2.4	2953	77	101
52	77111	81	144	1744	0.4	17.66210	3.5	0.58673	2.9	0.83	2972	104	2976	86	0.21832	1.9	2968	64	100
53	69904	60	145	265	0.5	19.38985	4.2	0.57011	2.5	0.60	3061	129	2908	73	0.24667	3.4	3164	110	92
54	31237	35	91	581	1.0	14.95097	4.2	0.52637	3.6	0.85	2812	118	2726	98	0.20600	2.2	2874	69	95
55	36435	34	59	702	0.4	21.42856	3.3	0.63247	2.5	0.76	3158	104	3159	79	0.24572	2.1	3157	73	100
56a (56 core)	55586	60	241	750	1.3	7.08957	10.7	0.23851	10.5	0.98	2123	228	1379	145	0.21558	2.0	2948	65	47
56b (57 rim)	73659	79	151	1734	0.2	16.54594	3.0	0.56294	2.2	0.75	2909	86	2879	64	0.21317	2.0	2930	63	98
58	51625	55	227	489	0.4	10.61234	3.4	0.36156	2.8	0.81	2490	86	1990	55	0.21288	2.0	2928	65	68
59	13360	14	28	308	0.2	15.50975	3.0	0.52845	2.1	0.72	2847	84	2735	59	0.21286	2.1	2927	66	93
60	96174	135	655	708	0.6	4.97838	10.5	0.21241	9.8	0.93	1816	191	1242	121	0.16998	4.0	2557	105	49
61	21828	23	44	518	0.8	16.79836	3.1	0.56420	2.3	0.74	2923	91	2884	67	0.21594	2.1	2951	68	98
62	39582	40	76	678	0.3	17.90344	3.2	0.58450	2.5	0.77	2985	95	2967	73	0.22215	2.0	2996	67	99
63	30740	29	72	600	0.3	16.94938	3.6	0.50786	2.7	0.76	2932	104	2647	71	0.24205	2.3	3134	78	84
64	48445	47	86	1064	0.3	19.48232	2.9	0.60789	2.2	0.74	3066	90	3062	67	0.23244	2.0	3069	67	100
65	52217	51	93	715	0.5	18.67425	2.1	0.59325	1.4	0.68	3025	63	3003	43	0.22830	1.5	3040	49	99
66	50621	47	102	147	0.4	14.80781	2.0	0.51583	1.5	0.74	2803	57	2681	40	0.20820	1.4	2892	42	93
67	42389	46	88	897	0.4	16.42176	2.0	0.56631	1.5	0.73	2902	58	2893	42	0.21031	1.4	2908	43	99
68	1821	8	218	177	0.5	0.28141	3.4	0.03988	1.6	0.47	252	9	252	4	0.05118	3.0	249	8	101
69	31944	34	65	764	0.3	17.09422	1.8	0.57422	1.4	0.75	2940	54	2925	41	0.21591	1.2	2950	39	99
70	37481	35	82	399	0.3	16.09710	2.8	0.49868	1.7	0.62	2883	81	2608	45	0.23411	2.2	3080	70	85
71	45341	49	122	1108	0.4	11.89427	2.5	0.40600	1.9	0.78	2596	64	2197	42	0.21248	1.6	2925	48	75
72a (72 core)	37679	35	123	543	1.2	5.48308	4.7	0.16014	4.4	0.94	1898	89	958	42	0.24833	1.6	3174	54	30
72b (73 rim)	41583	39	94	733	0.8	18.23874	3.1	0.54221	2.7	0.87	3002	94	2793	76	0.24397	1.5	3146	51	89
74	58709	53	181	732	0.3	14.43815	2.4	0.42202	1.9	0.80	2779	67	2270	44	0.24813	1.4	3173	49	72
75	46245	50	114	1181	0.5	15.60691	2.0	0.53734	1.6	0.80	2853	58	2772	45	0.21065	1.2	2911	38	95
76	61190	66	132	1195	0.7	16.69540	2.2	0.57264	1.7	0.78	2918	63	2919	50	0.21145	1.4	2917	42	100
77a (77 core)	68077	66	273	972	1.4	9.86053	5.1	0.30406	4.9	0.97	2422	123	1711	84	0.23520	1.3	3088	43	55
77b (78 rim)	22535	21	39	455	0.5	17.85361	2.5	0.53146	1.9	0.79	2982	73	2748	54	0.24364	1.5	3144	49	87
79	38820	37	69	675	0.3	19.79922	2.3	0.61156	1.9	0.81	3082	70	3076	57	0.23481	1.3	3085	44	100
80	22312	24	47	471	0.4	15.83855	2.3	0.54670	1.7	0.74	2867	66	2811	47	0.21012	1.5	2906	47	97

81	42942	46	90	843	0.2	16.70923	1.9	0.57310	1.5	0.79	2918	57	2921	45	0.21146	1.2	2917	38	100
83	61833	67	130	1586	0.2	16.57710	2.1	0.56978	1.7	0.81	2911	61	2907	49	0.21101	1.2	2913	39	100
84a (84 core)	163416	49	85	453	0.5	20.58669	2.6	0.60483	2.2	0.84	3119	80	3049	66	0.24686	1.4	3165	48	96
84b (85 rim)	117414	35	84	316	0.7	13.00531	3.8	0.37946	3.5	0.91	2680	103	2074	72	0.24858	1.6	3176	54	65
86	129226	44	81	424	0.1	17.68514	2.7	0.59174	2.3	0.87	2973	79	2996	69	0.21676	1.3	2957	43	101
87	251611	85	155	839	0.1	17.91127	2.7	0.59586	2.4	0.88	2985	81	3013	72	0.218011	1.3	2966	42	102
89	156760	41	64	315	0.5	19.27851	2.5	0.66634	2.0	0.81	3056	75	3292	66	0.275451	1.4	3337	50	99
90	117050	41	93	411	0.3	13.16693	3.6	0.43608	3.2	0.90	2692	96	2333	75	0.209835	1.4	2904	45	80
92	179807	60	141	510	1.0	16.49838	2.5	0.57998	2.0	0.81	2906	73	2949	60	0.218985	1.6	2973	50	99
93	66623	23	40	230	0.3	12.98502	2.9	0.38877	2.3	0.78	2679	78	2117	48	0.211162	1.4	2914	45	73
94	105871	37	70	375	0.2	1.34497	17.8	0.10652	2.6	0.15	865	154	652	17	0.206312	1.5	2877	45	23
95	107143	33	74	305	0.4	0.86507	2.6	0.10524	2.0	0.78	633	16	645	13	0.242239	1.8	3135	60	21
96	56202	58	115	575	0.5	15.39150	3.7	0.52814	3.1	0.84	2840	105	2734	85	0.21136	2.0	2916	65	94
97	23985	25	47	282	0.1	16.49666	3.4	0.56197	2.4	0.73	2906	97	2875	70	0.21290	2.3	2928	73	98
98	8230	24	155	266	0.4	1.68055	3.8	0.16518	2.8	0.75	1001	38	985	28	0.07379	2.5	1036	28	95
99	5764	17	109	177	0.4	1.67367	3.7	0.16537	2.5	0.68	999	37	987	25	0.07340	2.7	1025	30	96
100	2440	7	41	79	0.4	1.84016	4.3	0.17480	2.8	0.64	1060	45	1039	29	0.07635	3.3	1104	38	94
101	38726	45	75	639	0.2	18.52090	4.1	0.64480	3.9	0.94	3017	125	3208	125	0.20832	1.5	2893	45	111
102a (102 core)	43555	50	88	617	0.3	17.32190	4.3	0.60002	4.1	0.95	2953	128	3030	124	0.20938	1.4	2901	43	104
102 b (103 rim)	39632	46	78	660	0.0	16.93325	4.1	0.58534	3.8	0.94	2931	119	2971	114	0.20981	1.3	2904	42	102
104	1516	6	57	87	0.6	0.95702	5.2	0.11849	4.1	0.78	682	35	722	29	0.05858	3.2	551	18	131
105	7802	25	145	367	0.2	1.85779	4.3	0.17945	3.9	0.91	1066	46	1064	41	0.07508	1.8	1071	20	99
106	693	3	26	50	0.7	1.01478	7.4	0.12283	4.6	0.62	711	53	747	34	0.05992	5.8	601	35	124
107	19088	17	21	160	1.2	25.62718	5.3	0.68283	5.0	0.94	3332	178	3355	169	0.27220	1.8	3319	62	101

Tabelle 14 Hf Isotopie

Probe OR 900	$^{176}{\rm Yb}/^{177}{\rm Hf}$	¹⁷⁶ Lu/ ¹⁷⁷ Hf	178Hf/177Hf	¹⁸⁰ Hf/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	$\pm 2\sigma$ (abs.)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{ini} (t	εHf(t) ±2 σ (%)	Hf_{TDM} Alter	Alter (Ma)	Konkordanz (%)
or17	0.00032	0.00987	1.46728	1.88681	0.282242	0.000052	0.282349	4.8	1.8	1339	1030	61
or19-1	0.01276	0.00044	1.46740	1.88696	0.282627	0.000031	0.282178	0.7	0.6	1635	1120	64
or21	0.02947	0.00110	1.46733	1.88686	0.281372	0.000019	0.282201	5.2	0.7	1519	1280	45
or23-2	0.01210	0.00045	1.46740	1.88694	0.282360	0.000026	0.282184	-0.8	1.0	1657	1040	38
or24-1	0.02013	0.00072	1.46743	1.88711	0.282126	0.000014	0.281510	-7.6	0.7	2642	1800	96
or26-1	0.00753	0.00025	1.46745	1.88712	0.282126	0.000014	0.281658	-16.3	0.8	2618	1180	92
or34	0.01462	0.00050	1.46727	1.88682	0.282248	0.000014	0.282366	7.2	0.6	1269	1110	52
or35	0.00999	0.00025	1.46722	1.88676	0.282783	0.000045	0.282182	-11.2	0.6	1850	580	91
or42	0.00987	0.00032	1.46730	1.88691	0.282199	0.000023	0.282143	-0.7	0.8	1708	1110	99
or43	0.03230	0.00112	1.46735	1.88683	0.282127	0.000019	0.282124	-2.3	0.7	1761	1070	106
or45	0.00987	0.00032	1.46720	1.88666	0.281580	0.000117	0.281507	-24.8	4.2	2965	1040	175
or50	0.00987	0.00032	1.46731	1.88698	0.282211	0.000021	0.282232	2.7	0.7	1529	1120	111
or51	0.03230	0.00112	1.46729	1.88680	0.282111	0.000019	0.282090	1.2	0.7	1737	1280	64
or52	0.00987	0.00032	1.46731	1.88703	0.282073	0.000021	0.282071	-3.5	0.8	1852	1100	116
or54	0.00131	0.00003	1.46731	1.88676	0.282028	0.000016	0.282220	2.0	0.6	1556	1110	73
or55	0.00124	0.00003	1.46725	1.88678	0.282349	0.000052	0.281596	-18.1	0.6	2729	1200	44
or59	0.02898	0.00094	1.46732	1.88677	0.282189	0.000032	0.282126	1.8	1.0	1659	1300	68
or60	0.01296	0.00043	1.46730	1.88680	0.281921	0.000026	0.282187	1.1	0.5	1616	1120	97
or62	0.00246	0.00007	1.46750	1.88714	0.282143	0.000023	0.282173	-2.1	1.0	1696	1000	43
or65	0.03230	0.00112	1.46729	1.88687	0.281824	0.000039	0.281945	-3.7	1.4	2020	1280	112
or66	0.00987	0.00032	1.46713	1.88683	0.281496	0.000042	0.281611	0.4	1.5	2358	1990	101
or71	0.00987	0.00032	1.46621	1.88461	0.282124	0.000019	0.282228	-10.2	23.7	1774	550	86
or100	0.00032	0.00987	1.46729	1.88689	0.282631	0.000031	0.282627	0.9	1.1	1053	415	144
or101	0.00112	0.03230	1.46736	1.88691	0.281368	0.000019	0.281372	-6.5	0.7	2794	2060	103
or110	0.00032	0.00987	1.46730	1.88678	0.282355	0.000026	0.282360	5.2	0.9	1316	1030	102
or111	0.00112	0.03230	1.46736	1.88695	0.282137	0.000014	0.282126	1.2	0.5	1693	1220	117
or113	0.00032	0.00987	1.46736	1.88695	0.282137	0.000014	0.282126	-0.2	0.5	1719	1160	105
or132	0.00112	0.03230	1.46732	1.88694	0.282291	0.000014	0.282248	-10.6	0.5	1476	1170	43
or133	0.00032	0.00987	1.46730	1.88667	0.282780	0.000045	0.282783	8.6	1.6	707	510	82
or135	0.00112	0.03230	1.46728	1.88683	0.282035	0.000016	0.282028	-12.2	0.6	1901	1180	67
or179	0.00112	0.03230	1.46735	1.88701	0.282193	0.000032	0.282189	7.0	1.1	1498	1380	89
or181	0.00032	0.00987	1.46747	1.88717	0.281908	0.000026	0.281921	6.8	0.9	1841	1790	103
or189	0.00112	0.03230	1.46727	1.88679	0.282191	0.000019	0.282171	3.4	0.7	1591	1250	101

Tabelle 15 Hf Isotopie

Probe	¹⁷⁶ Yb/ ¹⁷⁷ Hf	176Lu/177Hf	178Hf/177Hf	¹⁸⁰ Hf/ ¹⁷⁷ Hf	176Hf/177Hf	$\pm 2\sigma$ (abs.)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{ini} (t)	εHf(t)	$\pm 2\sigma$ (%)	Hf _{TDM} Alter	Alter (Ma)	Konkordanz (%)
Parys 901												
2	0.013648	0.000489	1.467324	1.886844	0.282387	0.000022	0.282362	1.8	0.4	1437	738	90
4	0.027352	0.001001	1.467316	1.886886	0.280815	0.000017	0.280709	-4.8	0.4	3639	3025	92
8	0.007850	0.000284	1.467356	1.887019	0.282256	0.000018	0.282234	2.5	0.4	1587	972	108
9	0.008560	0.000344	1.467389	1.886951	0.282514	0.000020	0.282486	2.6	0.4	1263	575	103
11	0.007065	0.000281	1.467299	1.886921	0.281754	0.000017	0.281730	-24.7	0.4	2728	552	104
12	0.007065	0.000281	1.467299	1.886921	0.281754	0.000017	0.281729	-23.2	0.4	2701	624	97
13	0.010382	0.000435	1.467339	1.886878	0.282491	0.000019	0.282472	0.7	0.4	1315	516	109
17	0.002576	0.000087	1.467339	1.886918	0.282342	0.000019	0.282342	0.0	0.4	1497	688	91
20	0.024961	0.000894	1.467308	1.886853	0.282290	0.000028	0.282251	2.1	0.5	1573	927	110
21	0.004503	0.000139	1.467367	1.886969	0.282388	0.000019	0.282367	-2.4	0.4	1508	540	112
23	0.004922	0.000167	1.467360	1.886951	0.282423	0.000017	0.282408	-2.8	0.4	1462	457	109
26	0.001825	0.000054	1.467341	1.886927	0.282375	0.000020	0.282361	-2.6	0.5	1520	541	121
29	0.026232	0.001037	1.467288	1.886892	0.282330	0.000031	0.282322	3.1	0.7	1465	859	104
36	0.014941	0.000540	1.467327	1.886932	0.282372	0.000026	0.282363	-2.6	0.6	1517	537	116
43	0.015045	0.000602	1.467366	1.886803	0.282305	0.000020	0.282261	7.6	0.4	1455	1156	96
49	0.020371	0.000756	1.467315	1.886888	0.282121	0.000024	0.282070	-0.3	0.4	1852	1106	105
56	0.017169	0.000629	1.467347	1.886843	0.282257	0.000020	0.282233	3.7	0.4	1566	1029	98
60	0.009936	0.000324	1.467309	1.886895	0.282264	0.000026	0.282258	-6.4	0.7	1722	533	119
61	0.002540	0.000071	1.467302	1.886980	0.282324	0.000027	0.282352	-3.4	0.5	1546	521	117
63	0.013560	0.000410	1.467306	1.887020	0.282359	0.000031	0.282354	-3.4	0.6	1544	516	120
64	0.013399	0.000444	1.467312	1.886909	0.282548	0.000025	0.282542	5.6	0.6	1134	621	100
65	0.030052	0.000967	1.467341	1.886957	0.282295	0.000034	0.282244	-1.7	0.7	1654	771	105
67	0.001271	0.000030	1.467327	1.886894	0.282350	0.000022	0.282354	-1.8	0.5	1515	587	113
68	0.001348	0.000035	1.467311	1.886950	0.282369	0.000020	0.282368	-1.1	0.5	1483	600	92
69	0.010275	0.000260	1.467347	1.886908	0.282362	0.000023	0.282365	-0.3	0.4	1472	637	105
70	0.015147	0.000511	1.467299	1.886966	0.282312	0.000036	0.282303	3.1	0.7	1488	892	118
72	0.022694	0.000793	1.467393	1.886990	0.282355	0.000025	0.282341	-2.8	0.5	1549	563	104
73	0.019357	0.000686	1.467383	1.886996	0.282411	0.000025	0.282380	-0.8	0.4	1462	595	109
75	0.009672	0.000372	1.467341	1.886924	0.282368	0.000023	0.282358	-1.6	0.5	1506	591	97
76	0.004476	0.000185	1.467349	1.886929	0.282420	0.000022	0.282414	0.9	0.5	1386	615	108
89	0.007766	0.000255	1.467360	1.886919	0.282421	0.000024	0.282391	-1.2	0.5	1455	558	108
95	0.020727	0.000739	1.467311	1.886845	0.280754	0.000032	0.280728	-3.5	0.6	3589	3049	100

97	0.012714	0.000472	1.467340	1.887084	0.280759	0.000035	0.280748	-2.0	0.7	3534	3085	102
98	0.031119	0.001159	1.467343	1.886962	0.280751	0.000034	0.280698	-11.6	0.7	3791	2748	101
99	0.013168	0.000448	1.467334	1.886940	0.280734	0.000035	0.280697	-6.5	0.8	3690	2969	100
100	0.025297	0.000825	1.467351	1.886922	0.280803	0.000034	0.280732	-1.9	0.6	3552	3113	100
103	0.034547	0.001283	1.467310	1.886835	0.280638	0.000026	0.280534	-3.2	0.4	3819	3356	101
106	0.010890	0.000378	1.467354	1.886911	0.280764	0.000027	0.280742	-4.1	0.6	3585	3004	107
107	0.025584	0.000884	1.467341	1.886987	0.280777	0.000025	0.280709	-2.9	0.5	3599	3106	101
109	0.015107	0.000543	1.467295	1.886925	0.280733	0.000027	0.280719	-7.1	0.5	3675	2908	97
110	0.036125	0.001232	1.467346	1.886922	0.280801	0.000025	0.280715	-3.3	0.6	3600	3080	98
111	0.012042	0.000408	1.467418	1.887023	0.280780	0.000030	0.280741	-5.0	0.7	3605	2964	99
112	0.029452	0.001025	1.467353	1.886940	0.280830	0.000029	0.280763	-7.2	0.7	3622	2838	98
113	0.033074	0.001143	1.467330	1.887006	0.280825	0.000022	0.280712	-2.5	0.5	3588	3117	104
116	0.036635	0.001442	1.467303	1.886867	0.280882	0.000027	0.280749	-1.4	0.6	3521	3108	116
117	0.012271	0.000517	1.467351	1.886879	0.280777	0.000017	0.280728	-2.7	0.5	3572	3086	100
122	0.054780	0.002021	1.467299	1.886756	0.280889	0.000027	0.280693	-2.8	0.4	3618	3133	101
123	0.014889	0.000548	1.467331	1.886888	0.280720	0.000018	0.280679	-2.9	0.4	3637	3150	97
124	0.017475	0.000659	1.467395	1.886999	0.282522	0.000019	0.282512	5.8	0.5	1167	680	99
125	0.030503	0.001061	1.467337	1.886886	0.280835	0.000020	0.280709	-2.7	0.4	3596	3115	102
126	0.030503	0.001061	1.467337	1.886886	0.280835	0.000020	0.280711	-5.1	0.4	3643	3010	101
128	0.010467	0.000383	1.467310	1.886952	0.280761	0.000021	0.280736	-2.9	0.5	3567	3063	100
129	0.009154	0.000338	1.467347	1.886949	0.280757	0.000023	0.280730	-10.8	0.5	3735	2734	92
130	0.012007	0.000425	1.467307	1.886952	0.280782	0.000020	0.280736	-3.0	0.5	3570	3060	101
131	0.010473	0.000385	1.467416	1.887064	0.280775	0.000019	0.280732	-4.8	0.4	3612	2989	90
132	0.008191	0.000303	1.467324	1.886983	0.280757	0.000017	0.280719	-4.0	0.4	3611	3043	95
133	0.032301	0.001057	1.467350	1.886970	0.282370	0.000028	0.282296	7.0	0.7	1422	1073	102

Tabelle 16 Hf Isotopie

Kheis	¹⁷⁶ Yb/ ¹⁷⁷ Hf	¹⁷⁶ Lu/ ¹⁷⁷ Hf	178Hf/177Hf	¹⁸⁰ Hf/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	$\pm 2\sigma$ (abs.)	$^{176}\text{Hf}/^{177}\text{Hf}_{ini}$ (t)	εHf(t)	$\pm 2\sigma$ (%)	Hf_{TDM} Alter	Alter (Ma)	Konkordanz (%)
903												
2	0.005403	0.000211	1.467341	1.886995	0.282472	0.000106	0.282463	1.6	0.5	1327	567	107
5	0.009840	0.000344	1.467362	1.886993	0.282396	0.000181	0.282400	-0.2	0.3	1439	590	107
7	0.000321	0.000007	1.467332	1.886949	0.282429	0.000011	0.282421	0.8	0.4	1376	598	98
9	0.001266	0.000044	1.467359	1.886945	0.282431	0.000017	0.282429	-0.1	0.5	1398	546	105
12	0.000384	0.000012	1.467308	1.886884	0.282247	0.000012	0.282242	-5.4	0.4	1725	606	100
13	0.016656	0.000585	1.467327	1.886925	0.282384	0.000017	0.282377	0.7	0.4	1454	666	106
15	0.008121	0.000280	1.467359	1.886863	0.281265	0.000013	0.281265	-5.0	0.4	2958	2161	98
16	0.003748	0.000116	1.467347	1.886889	0.282396	0.000012	0.282394	0.7	0.3	1385	639	90
17	0.010557	0.000393	1.467355	1.886861	0.282442	0.000014	0.282431	-0.9	0.4	1385	508	95
18	0.006100	0.000219	1.467320	1.886914	0.281827	0.000015	0.281824	-21.4	0.3	2563	552	108
19	0.009840	0.000366	1.467351	1.886953	0.282274	0.000016	0.282270	-0.3	0.4	1611	790	105
20	0.001842	0.000055	1.467375	1.886915	0.282385	0.000015	0.282379	0.7	0.4	1417	659	94
21	0.022705	0.000847	1.467328	1.886863	0.280845	0.000015	0.280809	-12.1	0.4	3663	2555	97
22	0.001322	0.000037	1.467331	1.886861	0.282362	0.000015	0.282365	-3.0	0.5	1517	516	97
25	0.011363	0.000413	1.467337	1.886961	0.281327	0.000019	0.281329	-38.5	0.4	3475	572	102
29b	0.004142	0.000127	1.467346	1.886870	0.282412	0.000015	0.282409	-0.9	0.4	1433	540	103
30	0.001161	0.000034	1.467302	1.886836	0.282397	0.000014	0.282381	0.1	0.4	1450	632	102
32	0.008736	0.000321	1.467327	1.886858	0.281237	0.000015	0.281232	-6.8	0.4	3034	2131	93
33	0.027536	0.000941	1.467338	1.886881	0.282348	0.000015	0.282365	-0.1	0.7	1455	648	96
35	0.042523	0.001480	1.467370	1.886917	0.280864	0.000024	0.280779	3.0	0.6	3390	3251	98
38	0.045352	0.001507	1.467332	1.886902	0.282614	0.000030	0.282603	9.2	0.6	969	685	94
39	0.020682	0.000730	1.467316	1.886876	0.282454	0.000022	0.282458	3.3	0.5	1272	653	95
40	0.016555	0.000662	1.467318	1.886890	0.282434	0.000020	0.282423	1.5	0.4	1389	630	111
41	0.003765	0.000122	1.467320	1.886825	0.282443	0.000014	0.282451	1.2	0.4	1348	572	107
42	0.002728	0.000090	1.467312	1.886851	0.282329	0.000014	0.282329	-2.6	0.4	1583	593	111
46	0.006789	0.000236	1.467325	1.886792	0.282338	0.000013	0.282340	-1.7	0.4	1528	616	99
48	0.012062	0.000456	1.467377	1.886905	0.281178	0.000054	0.281167	-11.1	0.4	3198	2047	86
50	0.008616	0.000305	1.467333	1.886865	0.282393	0.000014	0.282390	-1.6	0.4	1449	539	93
52	0.014169	0.000517	1.467321	1.886758	0.282488	0.000016	0.282483	5.6	0.4	1234	717	109
53	0.000856	0.000020	1.467317	1.886846	0.282372	0.000012	0.282376	-2.5	0.4	1482	525	93
56	0.009397	0.000355	1.467317	1.886843	0.281678	0.000012	0.281673	-27.6	0.3	2849	513	100
57	0.003979	0.000147	1.467325	1.886807	0.281033	0.000013	0.281019	-0.1	0.4	3163	2752	95

60	0.011295	0.000459	1.467377	1.886993	0.282300	0.000042	0.282286	5.5	0.5	1452	1023	97
61	0.008708	0.000333	1.467325	1.886846	0.280833	0.000018	0.280819	-2.6	0.5	3459	2953	99
63	0.001200	0.000032	1.467302	1.886824	0.282392	0.000014	0.282392	-1.6	0.4	1446	538	94
64	0.009001	0.000348	1.467307	1.886907	0.281210	0.000019	0.281206	-8.5	0.5	3100	2099	90
65	0.005359	0.000159	1.467322	1.886803	0.282395	0.000015	0.282403	-0.3	0.4	1405	577	93
66	0.020114	0.000715	1.467358	1.886872	0.282484	0.000022	0.282495	0.7	0.5	1300	474	108
67	0.030229	0.001093	1.467359	1.886865	0.282219	0.000022	0.282228	-5.5	0.4	1750	621	102
68-1	0.017672	0.000574	1.467414	1.887017	0.281357	0.000028	0.281355	-4.1	0.6	2827	2061	101
68-2	0.013638	0.000439	1.467308	1.886838	0.281371	0.000018	0.281359	-3.9	0.5	2819	2061	101
69	0.003929	0.000112	1.467312	1.886803	0.282337	0.000016	0.282354	-0.9	0.4	1496	630	99
70	0.002817	0.000093	1.467317	1.886852	0.282449	0.000015	0.282451	0.3	0.4	1334	528	93
74	0.105398	0.003707	1.467399	1.886929	0.281993	0.000044	0.281992	3.4	0.7	1899	1395	104
75	0.014043	0.000516	1.467367	1.886921	0.282401	0.000022	0.282409	0.3	0.5	1408	598	102
76	0.010683	0.000381	1.467294	1.886846	0.282405	0.000017	0.282410	0.6	0.5	1379	608	93
77	0.009345	0.000346	1.467514	1.887267	0.282354	0.000025	0.282365	2.3	0.6	1400	755	93
78	0.009555	0.000364	1.467354	1.886936	0.282303	0.000016	0.282306	-4.6	0.5	1635	541	104
80	0.009400	0.000360	1.467347	1.886835	0.281295	0.000017	0.281294	-4.9	0.5	2919	2122	96
81	0.000300	0.000009	1.467377	1.886862	0.282298	0.000014	0.282297	-5.1	0.4	1626	530	91
85	0.012762	0.000473	1.467379	1.886973	0.282419	0.000020	0.282420	0.2	0.5	1368	575	91
88	0.015353	0.000563	1.467330	1.886895	0.282430	0.000046	0.282425	1.9	0.4	1364	643	104
89	0.011231	0.000455	1.467382	1.886878	0.281425	0.000019	0.281409	0.3	0.4	2674	2167	106
91	0.014216	0.000533	1.467367	1.886892	0.282354	0.000020	0.282341	8.4	0.4	1368	1069	107
93	0.004748	0.000172	1.467361	1.886964	0.282361	0.000016	0.282369	-1.5	0.4	1519	579	115
96	0.006085	0.000213	1.467482	1.887096	0.282393	0.000023	0.282402	0.0	0.7	1446	595	113
97	0.000927	0.000028	1.467324	1.886912	0.281765	0.000016	0.281762	-11.3	0.4	2467	1106	104
103	0.014716	0.000539	1.467315	1.886939	0.282207	0.000017	0.282199	3.6	0.4	1622	1077	102

Tabelle 17 Hf Isotopie

Probe	176Yb/177Hf	176Lu/177Hf	¹⁷⁸ Hf/ ¹⁷⁷ Hf	176Hf/177Hf	$\pm 2\sigma$ (abs.)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{ini} (t)	εHf(t)	$\pm 2\sigma$ (%)	Hf _{TDM} Alter	Alter (Ma)	Konkordanz (%)
OR 914											
914-a1	0.019920	0.000777	1.480457	0.282477	0.000031	0.282467	-1.6	1.1	1363	419	134
914-a2	0.020266	0.000810	1.480231	0.282471	0.000029	0.282461	0.7	0.5	1330	529	107
914-a3	0.035933	0.001640	1.480213	0.282644	0.000035	0.282620	7.7	0.6	993	593	110
914-a4	0.020503	0.000842	1.480327	0.282439	0.000031	0.282426	-3.3	0.5	1447	406	127
914-a5	0.011008	0.000456	1.480264	0.282443	0.000041	0.282432	0.2	0.7	1376	553	107
914-a6	0.009178	0.000391	1.479987	0.282437	0.000037	0.282428	-1.6	0.6	1414	481	115
914-a7	0.011216	0.000466	1.479801	0.282343	0.000040	0.282337	-1.9	0.7	1539	611	98
914-a8	0.012717	0.000548	1.479190	0.282446	0.000029	0.282432	12.8	0.5	1136	1118	93
914-a9	0.046007	0.002059	1.478957	0.282442	0.000030	0.282421	-1.0	0.5	1411	519	105
914-a10	0.010932	0.000510	1.478762	0.282474	0.000033	0.282462	13.2	0.6	1088	1089	87
914-a11	0.022144	0.001212	1.478035	0.281846	0.000038	0.281832	-21.7	0.7	2543	526	118
914-a12	0.017255	0.000769	1.478172	0.282424	0.000025	0.282414	0.7	0.4	1391	606	100
914-a13	0.043192	0.001824	1.477897	0.282215	0.000053	0.282193	-6.6	0.9	1810	629	106
914-a16	0.013645	0.000611	1.477870	0.282163	0.000035	0.282153	-6.2	0.6	1853	711	90
914-a17	0.063034	0.002991	1.477634	0.282539	0.000036	0.282515	2.7	0.6	1223	536	95
914-a18	0.014067	0.000735	1.477943	0.282604	0.000041	0.282595	5.0	0.7	1075	513	108
914-a19	0.012986	0.000658	1.477674	0.282399	0.000032	0.282389	3.0	0.6	1380	749	105
914-a20	0.023392	0.001207	1.477856	0.282623	0.000037	0.282606	9.7	0.7	973	703	94
914-a22	0.021047	0.001012	1.477377	0.282305	0.000047	0.282293	-5.3	0.8	1656	530	97
914-a23	0.007286	0.000276	1.477473	0.282376	0.000034	0.282368	-2.0	0.6	1498	559	103
914-a24	0.012662	0.000613	1.477380	0.282406	0.000044	0.282400	0.0	0.8	1420	599	93
914-a25	0.016823	0.000816	1.477093	0.282311	0.000040	0.282294	5.0	0.7	1463	990	105
914-a27	0.024063	0.001177	1.477034	0.282442	0.000055	0.282427	2.7	1.0	1336	675	57
914-a28	0.019477	0.000942	1.476743	0.282189	0.000041	0.282167	4.7	0.7	1632	1175	97
914-a29	0.004817	0.000195	1.477229	0.282341	0.000045	0.282337	1.4	0.8	1476	758	109
914-a30	0.013232	0.000666	1.476983	0.282239	0.000023	0.282222	5.0	0.4	1555	1105	97
914-a31	0.020705	0.000938	1.476809	0.282154	0.000056	0.282137	0.1	1.0	1757	1018	97
914-a32	0.064867	0.002935	1.476906	0.282330	0.000052	0.282264	9.8	0.9	1409	1250	97
914-a34	0.017225	0.000763	1.478284	0.282366	0.000034	0.282356	0.0	0.6	1478	667	100
914-a36	0.004420	0.000200	1.478148	0.282433	0.000036	0.282428	9.8	0.6	1199	993	113
914-a39	0.008457	0.000374	1.478113	0.282416	0.000023	0.282410	2.1	0.4	1370	675	97
914-a40	0.022594	0.001054	1.478090	0.282404	0.000033	0.282380	12.2	0.6	1213	1175	55

914-a42	0.034622	0.001893	1.478077	0.282531	0.000028	0.282489	14.5	0.5	1029	1105	21
914-a43	0.015828	0.000863	1.478153	0.282546	0.000035	0.282527	13.9	0.6	992	1018	42
914-a44	0.016074	0.000742	1.478190	0.282357	0.000027	0.282339	12.4	0.5	1261	1250	80
914-a45	0.013812	0.000841	1.477661	0.282430	0.000033	0.282421	2.9	0.6	1341	693	81
914-a46	0.008406	0.000368	1.478229	0.282463	0.000036	0.282458	3.6	0.6	1278	667	75
914-a47	0.015886	0.000753	1.477988	0.282473	0.000034	0.282459	7.4	0.6	1205	836	27
914-a51	0.022201	0.001023	1.478007	0.282381	0.000034	0.282359	8.6	0.6	1311	1045	88
914-a53	0.012203	0.000591	1.477759	0.281363	0.000053	0.281341	-12.5	0.9	3006	1712	91
914-a54	0.022710	0.001048	1.477924	0.282379	0.000032	0.282358	8.6	0.6	1312	1049	92
914-a55	0.019569	0.000898	1.478012	0.282169	0.000031	0.282150	-0.7	0.5	1757	962	100
914-a60	0.003849	0.000202	1.478164	0.282390	0.000037	0.282384	7.5	0.7	1301	956	88
914-a62	0.021782	0.001064	1.477887	0.282482	0.000034	0.282471	-4.3	0.6	1406	290	78
914-a68	0.012987	0.000639	1.478082	0.282349	0.000029	0.282337	4.6	0.5	1417	904	102
914-a69	0.027242	0.001305	1.477822	0.282250	0.000030	0.282223	4.4	0.5	1565	1075	91
914-a71	0.016468	0.000799	1.477977	0.282382	0.000033	0.282370	1.0	0.6	1441	690	90
914-a74	0.025333	0.001272	1.478086	0.282318	0.000030	0.282295	3.0	0.5	1500	896	96
914-a75	0.032262	0.001353	1.477931	0.282381	0.000040	0.282359	0.1	0.7	1473	667	90
914-a76	0.010476	0.000528	1.478001	0.282403	0.000039	0.282398	-2.4	0.7	1467	493	95

Tabelle 18 Hf Isotopie

Probe	¹⁷⁶ Yb/ ¹⁷⁷ Hf	176Lu/177Hf	¹⁷⁸ Hf/ ¹⁷⁷ Hf	¹⁸⁰ Hf/ ¹⁷⁷ Hf	176Hf/177Hf	$\pm 2\sigma$ (abs.)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _{ini} (t)	εHf(t)	$\pm 2\sigma$ (%)	Hf_{TDM} Alter	Alter (Ma)	Konkordanz (%)
Taung 916												
1	0.045058	0.001301	1.478267	0.743469	0.280918	0.000039	0.280816	6.4	0.5	3273	3339	68
5	0.023082	0.000714	1.478620	0.743425	0.280950	0.008823	0.280915	0.3	0.7	3282	2928	96
6	0.012461	0.000425	1.478536	0.743763	0.280807	0.000025	0.280774	-0.4	0.4	3468	3113	73
7	0.026351	0.000828	1.478620	0.743841	0.280995	0.000027	0.280936	1.4	0.6	3234	2942	95
8	0.014440	0.000523	1.478855	0.743535	0.282263	0.000749	0.282262	4.5	0.6	1514	1017	114
9	0.007093	0.000198	1.478626	0.743838	0.280974	0.000037	0.280960	0.8	0.4	3218	2880	101
10	0.019803	0.000695	1.478595	0.743793	0.280811	0.000026	0.280756	0.1	0.5	3479	3163	101
11	0.065846	0.001469	1.478484	0.743675	0.281084	0.000048	0.280976	2.0	0.6	3172	2909	45
12	0.058101	0.001724	1.478541	0.743728	0.281019	0.000032	0.280894	1.3	0.5	3288	3002	27
13	0.005357	0.000138	1.478594	0.743769	0.280914	0.000022	0.280903	-0.5	0.5	3314	2912	102
14	0.101537	0.002323	1.478513	0.743726	0.281105	0.000063	0.280940	7.5	0.7	3100	3196	34
15	0.022978	0.000655	1.478720	0.743930	0.281031	0.000025	0.280989	2.5	0.5	3147	2908	97
16	0.022978	0.000655	1.478720	0.743930	0.281031	0.000043	0.280988	3.9	0.5	3119	2969	97
17	0.030464	0.000920	1.478595	0.743784	0.281040	0.000066	0.280975	2.3	0.4	3167	2922	108
18	0.023700	0.000647	1.478462	0.743701	0.281004	0.000029	0.280961	0.4	0.5	3223	2864	94
19	0.022089	0.000673	1.478411	0.743620	0.281034	0.000230	0.280989	-0.5	0.5	3208	2783	122
20	0.015143	0.000453	1.478430	0.743625	0.281039	0.000024	0.281005	0.1	0.4	3175	2783	72
21	0.019626	0.000690	1.478576	0.743754	0.281020	0.000022	0.280969	1.9	0.4	3183	2912	101
22	0.016975	0.000565	1.478516	0.743719	0.280995	0.000024	0.280953	1.7	0.4	3208	2929	98
23	0.019660	0.000550	1.478333	0.743545	0.281009	0.000024	0.280973	2.2	0.4	3173	2919	94
24	0.048535	0.001545	1.478430	0.743623	0.280991	0.000040	0.280880	1.8	0.6	3294	3044	98
25	0.085330	0.001971	1.478463	0.743655	0.280991	0.000076	0.280835	-0.7	0.6	3400	3009	27
26	0.018360	0.000552	1.478505	0.743739	0.281011	0.000023	0.280972	2.1	0.4	3174	2918	98
26-1	0.022079	0.000674	1.478518	0.743655	0.281006	0.000020	0.280958	1.6	0.4	3202	2918	98
27	0.021507	0.000645	1.478428	0.743611	0.280992	0.000019	0.280950	2.2	0.3	3200	2956	78
28	0.024879	0.000728	1.478322	0.743509	0.281030	0.000024	0.280982	2.5	0.5	3156	2919	87
29	0.010351	0.000317	1.478351	0.743596	0.280963	0.000043	0.280939	1.9	0.5	3220	2959	97
30	0.035978	0.001223	1.478315	0.743499	0.280877	0.000032	0.280786	0.0	0.4	3445	3112	60
31	0.012710	0.000317	1.478159	0.743334	0.280972	0.000026	0.280953	1.2	0.5	3217	2908	98
32	0.021774	0.000671	1.478310	0.743495	0.280975	0.000024	0.280925	1.7	0.4	3240	2973	96
33	0.037254	0.001047	1.478259	0.743457	0.280936	0.000044	0.280876	0.1	0.6	3335	2978	38
34	0.071554	0.001942	1.478378	0.743535	0.280896	0.000041	0.280771	0.6	0.6	3451	3161	72

35	0.007079	0.000192	1.478161	0.743363	0.280938	0.000018	0.280924	1.8	0.5	3240	2978	95
36	0.072756	0.002055	1.478350	0.743413	0.280581	0.000067	0.280410	-5.1	0.7	4009	3467	100
37	0.087028	0.001987	1.478219	0.743469	0.281140	0.000118	0.281003	1.8	0.6	3144	2856	32
38	0.027240	0.000782	1.478164	0.743401	0.281055	0.000042	0.280995	3.5	0.5	3117	2944	102
39	0.074190	0.002113	1.478175	0.743383	0.281134	0.000209	0.280982	5.0	0.8	3101	3028	56
40	0.022302	0.000655	1.478138	0.743350	0.280977	0.000026	0.280928	0.4	0.4	3265	2911	103
41	0.041849	0.001228	1.478087	0.743302	0.281069	0.000035	0.280984	1.5	0.5	3172	2876	107
42	0.084740	0.002136	1.478268	0.743109	0.280972	0.002871	0.280842	-2.1	1.0	3421	2938	63
43	0.037877	0.001013	1.478131	0.743424	0.280929	0.000079	0.280856	-0.1	0.5	3362	3003	108
46	0.006578	0.000175	1.479353	0.744601	0.280975	0.000019	0.280963	1.5	0.4	3198	2906	101
47	0.021738	0.000639	1.479391	0.744603	0.281029	0.000023	0.280981	2.6	0.5	3153	2928	101
48	0.025024	0.000744	1.479505	0.744695	0.280809	0.000028	0.280756	-0.2	0.5	3487	3148	44
49	0.013370	0.000314	1.479413	0.744612	0.281002	0.000025	0.280977	2.3	0.5	3164	2920	96
50	0.076081	0.001755	1.479430	0.744555	0.281046	0.000177	0.280923	0.4	0.6	3271	2920	64
51	0.017145	0.000472	1.479490	0.744727	0.280970	0.000021	0.280935	1.6	0.4	3230	2953	101
52	0.041988	0.001113	1.479494	0.744606	0.280948	0.000067	0.280865	-0.5	0.4	3361	2968	100
53	0.040927	0.000965	1.479491	0.744661	0.280975	0.000070	0.280900	5.3	0.5	3195	3164	92
54	0.029947	0.000735	1.479384	0.744621	0.280996	0.001356	0.280942	0.0	0.5	3256	2874	95
55	0.026124	0.000836	1.479478	0.744702	0.280881	0.000023	0.280808	1.8	0.4	3380	3157	100
57	0.056134	0.001551	1.479444	0.744567	0.280991	0.000030	0.280877	-1.0	0.6	3356	2930	98
59	0.007969	0.000211	1.479406	0.744641	0.280997	0.000023	0.280976	2.4	0.5	3163	2927	93
61	0.028965	0.000774	1.479487	0.744648	0.280998	0.000027	0.280939	1.7	0.5	3223	2951	98
63	0.038579	0.001110	1.479366	0.744632	0.280864	0.000032	0.280782	0.4	0.4	3442	3134	84
64	0.037211	0.001178	1.479442	0.744603	0.280966	0.000278	0.280878	2.3	0.5	3287	3069	100
65	0.025673	0.000800	1.479471	0.744688	0.280853	0.000022	0.280788	-1.6	0.4	3477	3040	99
66	0.023527	0.000732	1.479500	0.744687	0.281002	0.000023	0.280952	2.9	0.5	3183	2982	93
67	0.016988	0.000494	1.479525	0.744704	0.280992	0.000023	0.280959	1.4	0.5	3206	2908	99
68	0.023987	0.000865	1.479803	0.744674	0.282538	0.000033	0.282516	-3.6	0.7	1336	249	101
80	0.011615	0.000284	1.479532	0.744704	0.280977	0.000024	0.280956	1.3	0.5	3212	2906	97
81	0.013158	0.000396	1.479603	0.744804	0.280991	0.000018	0.280959	1.6	0.4	3202	2917	100
83	0.023554	0.000759	1.479684	0.744813	0.281013	0.000018	0.280956	1.4	0.4	3209	2913	100

Orange	207-1 206-1		~		_	~ ~ ~				~			~		~						-	-		
River	²⁰⁷ Pb/ ²⁰⁰ Pb	P31	Ca44	T147	Fe57	Sr88	¥89	Nb93	La139	Ce140	Pr141	Nd146	Sm147	Eu151	Gd158	Dy161	Er167	Yb172	Lu175	Hf178	Ta181	Pb208	Th232	U238
(900)	(Ma)																							
Or15	1324	-	2856	20	2794	26.3	4230	72.51	24.21	152.78	23.57	156.81	92.94	18.02	168.48	396.02	368.99	749.00	107.53	16149	12.7	15.3	356.8	1725.4
Or16	1032	-	64	14	859	2.5	2104	15.88	70.76	191.23	23.92	129.62	49.35	6.86	78.81	169.55	200.85	411.33	54.08	12986	6.9	19.1	200.6	514.7
Or17	1904	-	1596	40	1244	20.0	7287	102.35	8.82	64.30	9.95	68.70	63.08	1.49	137.10	563.20	724.59	1790.43	230.07	14605	34.8	29.4	870.8	1445.5
Or19	1506	1603	5603	3676	7394	46.5	81	63.82	179.05	166.55	133.25	848.33	437.70	36.83	605.25	903.68	886.54	1765.35	222.45	13771	26.3	43.9	21.0	2483.0
Or20	1221	978	11193	3864	7086	71.0	11873	104.45	191.83	602.11	147.58	859.11	398.93	25.87	647.14	1372.88	1202.53	2391.73	324.30	21699	47.3	24.3	1081.6	3764.1
Or23	1119	1600	3058	4055	8397	24.6	10689	48.38	61.55	287.71	48.59	301.69	174.67	20.49	311.74	1002.24	1192.21	2451.47	296.56	19128	25.0	45.2	1925.0	1962.3
Or24	1191	315	116	3826	1000	1.1	964	2.28	8.18	120.15	8.96	65.50	28.18	5.81	42.46	65.41	89.47	265.53	43.23	15490	1.4	18.0	169.9	305.7
Or26	939	476	77	3934	519	1.4	2616	18.79	10.61	80.21	11.33	82.31	47.07	4.70	80.16	185.60	269.68	720.12	107.52	18277	5.4	19.0	316.5	245.2
Or27	1011	4	56	2120	3	0.2	271	0.72	0.02	0.34	0.01	0.05	0.57	0.37	4.45	22.50	34.05	78.22	11.17	16458	0.3	0.2	2.0	83.9
Or28	1141	63	56	2281	10	0.4	841	2.31	0.27	10.72	0.19	2.36	4.00	0.48	20.21	77.02	113.77	263.14	36.09	12950	1.1	7.6	76.8	90.3
Or29	1958	82	47	2221	2	0.2	541	2.22	0.02	5.69	0.09	1.56	3.67	0.27	16.51	54.77	69.73	149.14	19.69	12104	0.9	2.3	43.2	97.1
Or30	578	39	47	2181	3	0.4	382	2.49	0.04	5.75	0.04	0.60	1.38	0.10	7.63	32.02	53.13	144.09	20.73	13761	1.4	3.9	90.5	252.9
Or31	1707	272	47	2160	2	0.3	1363	1.79	0.02	3.26	0.16	3.32	7.27	0.33	34.41	126.29	177.40	400.70	52.79	12926	0.7	3.0	57.4	93.7
Or32	989	84	48	2208	3	0.7	3465	8.74	0.09	11.25	0.68	12.06	21.33	1.64	102.67	358.42	475.42	978.11	126.08	10739	3.6	12.3	121.2	110.3
Or33	1959	109	332	2183	13	1.1	1446	6.87	0.27	45.79	0.20	2.56	5.00	1.23	26.17	118.64	215.18	613.72	90.63	13290	2.7	11.0	112.3	101.8
Or34	2017	23	208	3872	13	0.4	886	1.59	0.03	4.85	0.08	1.50	3.55	0.24	19.05	78.16	112.28	260.89	31.89	15188	0.6	2.9	72.6	80.6
Or35	1600	421	35	3919	194	1.1	1837	3.72	10.97	176.94	5.76	34.46	16.90	3.19	45.65	159.47	228.12	535.62	67.55	15039	2.3	18.9	231.1	204.2
Or37	640	-	50	2316	3	0.4	920	2.12	0.13	4.61	0.16	2.59	5.17	0.31	23.24	84.07	116.23	250.47	34.08	13220	0.9	4.6	91.5	210.2
Or38	1028	-	55	2329	3	0.3	552	1.67	0.02	4.60	0.10	1.89	3.38	0.31	15.37	51.78	65.50	140.09	18.98	12396	0.7	2.0	28.0	40.5
Or39	956	-	49	2285	3	0.3	1182	7.80	0.04	9.85	0.09	1.55	4.06	0.19	23.16	98.66	147.35	326.53	44.81	14469	3.2	6.9	77.5	141.3
Or42	1067	-	53	12	468	0.6	1461	3.49	1.93	24.44	1.77	13.79	11.70	1.33	35.24	110.07	157.61	355.36	53.40	12798	2.0	10.1	108.8	210.8
Or43	1041	-	574	11	255	3.0	3233	2.69	4.02	27.30	2.83	18.36	13.58	1.08	46.75	219.88	366.91	888.67	128.52	15153	2.0	10.3	117.2	737.8
Or44	1088	-	779	12	2010	3.9	1773	5.35	11.68	36.57	4.68	26.49	9.33	2.85	30.09	128.24	208.68	502.63	73.64	14463	5.0	14.2	163.8	963.1
Or45	635	-	1267	76	2162	15.0	1513	6.00	23.81	142.02	14.00	86.07	30.19	6.64	42.27	98.44	172.12	502.18	81.68	13802	2.2	45.9	572.4	303.7
Or47	1112	-	3387	15	2086	3.1	1461	8.21	19.57	87.39	12.79	78.38	34.91	3.79	57.59	123.26	152.45	331.99	48.32	13568	5.4	7.7	102.2	496.8
Or49	1363	-	254	2584	2823	5.1	8355	102.94	52.96	108.36	27.46	169.33	128.57	4.63	355.14	881.26	750.83	1327.05	149.57	15242	13.0	81.6	442.7	951.7
Or50	1014	-	479	2387	622	3.8	1524	21.61	180.81	119.22	38.19	158.04	35.00	2.40	50.31	136.88	180.35	452.23	62.81	15409	8.2	26.5	304.8	1325.6
Or51	857	-	3050	14	7199	28.8	5341	14.99	39.05	142.68	20.64	105.52	36.66	9.94	94.43	400.11	672.11	1617.17	245.71	14856	9.0	42.9	937.7	2443.2
Or52	1004	-	109	15	4813	2.9	1977	1.92	7.78	47.35	8.40	47.99	30.10	4.46	66.10	181.19	233.75	526.37	71.35	14572	0.9	11.9	115.7	551.1
Or53	1281	-	12876	23	14078	170.5	3906	22.11	150.96	799.20	117.01	653.07	130.17	80.40	141.56	277.49	466.20	1177.29	181.94	16459	9.9	27.0	458.4	3148.1
Or54	2019	333	29	4186	10	0.5	1807	6.49	0.02	7.37	0.14	2.81	7.04	0.54	40.60	153.03	213.37	439.60	61.60	15739	2.1	3.1	66.2	85.8
Or55	1067	540	33	4144	85	0.6	2193	4.01	0.03	29.13	0.16	2.82	7.66	0.98	46.85	179.72	264.18	577.94	82.48	16743	1.9	12.4	417.9	223.5
Or56	1392	-	550	2135	2714	1.4	1150	3.37	1.45	15.52	1.38	9.84	9.62	0.39	31.26	113.62	154.74	339.92	44.88	12354	1.9	20.1	192.8	614.5

Tabelle 19 Spuren- und Seltenen Erdelemente (ppm)

Or57	1368	-	48	2045	430	1.4	1759	5.65	0.15	21.73	0.29	4.14	8.30	0.31	39.25	157.54	221.27	503.44	68.24	13857	1.9	14.5	180.4	200.6
Or58	1090	-	42	2233	336	0.4	702	2.58	2.14	17.93	0.80	5.02	3.84	0.37	14.88	60.28	88.18	225.12	29.56	12789	1.3	7.3	78.3	139.2
Or59	585	271	29	4108	203	0.9	6047	8.03	0.14	10.37	1.18	23.61	42.61	5.18	186.13	590.75	713.06	1258.41	163.33	10919	2.4	11.6	149.7	63.3
Or60	1014	286	35	4370	2873	1.3	2230	8.60	3.03	71.67	1.72	12.24	9.54	2.21	37.42	153.17	287.82	784.99	125.14	19529	2.9	35.1	385.5	517.2
Or65	1180	-	62	11	5	0.4	872	2.22	0.04	10.63	0.08	1.46	3.26	1.03	13.51	53.62	96.03	242.63	40.11	10294	1.0	11.9	113.5	146.1
Or66	1867	-	176	14	423	1.5	1594	4.42	8.23	71.18	7.63	52.74	27.15	5.07	54.76	124.86	130.62	251.99	38.03	16055	2.4	17.7	131.8	548.1
Or67	1184	-	51	2316	8	0.4	1387	1.64	0.05	3.89	0.16	3.84	7.75	0.73	36.20	125.32	162.22	332.19	45.49	12844	0.6	6.4	71.8	165.3
Or68	1185	-	50	2246	3	0.3	898	4.10	0.06	13.27	0.10	1.75	3.55	0.32	17.91	73.76	112.11	251.52	35.25	12816	1.7	2.3	53.9	83.9
Or71	1177	185	30	4116	7	0.3	920	1.85	0.02	3.99	0.15	2.38	5.17	0.63	25.91	80.40	86.81	149.35	20.33	15024	0.5	4.6	137.5	228.9
Or72	1107	130	29	4195	7	0.4	359	2.99	0.02	1.51	0.03	0.56	0.99	0.10	5.19	23.69	42.38	119.03	19.57	16896	1.0	3.6	88.1	200.3
Or73	1996	-	63	11	8	0.2	1083	2.31	0.03	14.79	0.11	2.04	4.93	0.33	22.25	80.19	115.34	252.30	35.94	12369	0.7	9.0	114.4	86.8
Or74	1124	-	1041	16	1182	7.0	4178	26.54	123.58	371.92	40.04	226.76	86.28	9.28	142.65	325.67	396.42	775.41	106.77	14874	12.3	31.9	467.3	1109.8
Or76	1277	-	484	30	2043	20.0	7453	110.82	112.31	201.66	34.58	154.72	86.60	1.64	179.96	676.24	827.93	1605.24	200.60	13342	8.4	41.3	860.2	932.5
Or82	1882	-	3541	142	2211	79.9	8562	71.49	461.89	1052.42	168.38	1019.44	393.60	26.59	550.63	767.23	594.69	888.35	117.85	13478	5.0	27.1	1125.2	2160.8
Or83	1158	-	1219	268	2050	9.0	4544	68.84	28.23	105.66	19.61	124.57	72.27	3.45	140.77	351.35	453.77	967.78	134.46	13163	30.2	43.2	657.9	1893.9
Or84	1276	-	2468	16	1676	60.8	7473	8.76	56.84	233.34	63.41	398.61	248.99	88.02	420.03	692.71	467.55	735.07	102.63	12859	8.2	51.4	588.5	1280.5
Or101	1251	-	68	11	5	0.2	298	1.18	0.03	10.49	0.07	1.23	2.15	0.38	7.45	21.37	28.25	58.23	9.17	11645	0.4	9.9	60.2	67.9
Or105	1150	129	52	11	18	0.6	986	2.39	0.23	1.88	0.07	0.77	2.04	0.05	13.23	64.98	98.05	226.40	32.57	15637	1.4	6.4	108.4	735.3
Or115	1072	-	160	42	189	1.0	1036	4.03	7.21	51.01	3.77	28.04	14.47	2.88	28.21	69.54	99.68	231.39	34.73	12681	2.4	8.3	96.2	196.4
Or116	1298	6626	1682	17	906	18.6	4470	3.60	27.06	270.81	41.80	344.78	183.10	22.24	238.80	361.40	367.88	820.91	119.64	15068	1.6	8.2	67.0	1018.4
Or125	858	872	1026	10	107	2.8	2494	1.73	1.04	6.44	0.63	4.76	4.73	0.20	24.87	147.27	241.59	657.95	95.45	13948	1.4	5.9	35.7	1156.0
Or152	1108	50	68	12	50	2.0	2804	8.55	5.82	23.55	4.85	38.71	26.73	2.27	68.30	196.96	233.46	457.80	62.60	10487	4.7	9.3	111.8	314.0
Or154	1567	40	56	12	86	1.5	895	21.92	2.91	41.62	0.76	5.66	5.01	1.08	15.27	52.18	81.45	208.20	34.63	9655	6.6	4.8	115.4	127.7
Or156	1686	135	159	28	2658	4.5	1452	6.14	18.37	47.16	6.98	45.23	21.64	2.71	40.68	96.40	114.35	229.01	35.48	12502	3.8	12.4	64.6	361.7
Or159	1199	515	2164	11	460	8.1	2587	1.80	5.39	38.28	6.60	56.35	27.23	2.30	50.61	149.11	265.67	855.15	145.00	19326	1.6	3.2	25.9	1392.2
Or187	745	58	1281	29	914	11.1	1653	5.36	521.51	668.75	97.39	404.88	83.63	7.42	76.98	117.17	141.08	326.57	50.28	9046	1.3	14.6	109.3	124.9

Orange River Mouth (900)	Or16	Or17	Or187	Or19	Or20	Or23	Or24	Or26	Or27	Or28	Or29	Or30	Or31	Or32	Or33	Or34	Or35	Or37	Or38	Or39	Or42
Eu/Eu*	0.3	0.0	0.3	0.2	0.2	0.3	0.5	0.2	0.5	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0.3	0.1	0.1	0.0	0.2
Ce/Ce*	1.1	1.5	0.7	0.2	0.8	1.2	3.0	1.6	7.5	11.1	17.6	31.6	5.7	4.8	45.4	16.6	5.3	6.7	13.2	28.9	2.9
Orange River Mouth (900)	Or43	Or44	Or45	Or47	Or49	Or50	Or51	Or52	Or53	Or54	Or55	Or56	Or57	Or58	Or59	Or60	Or65	Or66	Or67	Or68	Or71
Eu/Eu*	0.1	0.5	0.6	0.3	0.1	0.2	0.5	0.3	1.8	0.1	0.1	0.1	0.0	0.1	0.2	0.3	0.4	0.4	0.1	0.1	0.1
Ce/Ce*	1.9	1.2	1.8	1.3	0.7	0.3	1.2	1.3	1.4	15.4	52.2	2.4	18.8	3.3	2.5	7.5	33.3	2.0	6.7	33.5	7.8
Orange River Mouth (900)	Or72	Or73	Or74	Or76	Or82	Or83	Or84	Or101	Or105	Or115	Or116	Or125	Or15	Or152	Or154	Or156	Or159				
Eu/Eu*	0.1	0.1	0.3	0.0	0.2	0.1	0.8	0.3	0.0	0.4	0.3	0.0	0.4	0.2	0.3	0.3	0.2				
Ce/Ce*	11.0	38.2	1.3	0.8	0.9	1.0	0.8	36.8	3.7	2.3	1.6	1.9	1.4	1.0	6.6	1.0	1.3				

Parys (901)	²⁰⁷ Pb/ ²⁰⁶ Pb	P31	Ca44	Ti47	Fe57	Sr88	Y89	Nb93	La139	Ce140	Pr141	Nd146	Sm147	Eu151	Gd158	Dy161	Er167	Yb172	Lu175	Hf178	Ta181	Pb208	Th232	U238
Probe	Alter	-																						
Nr.	(Ma)																							
A4	3035	504	293	4191	1828	1.9	881	4.07	13.53	126.54	22.02	152.68	94.66	21.59	117.69	156.59	162.92	363.65	56.91	19197	2.1	26.2	97.5	164.8
A12	637	1001	12	4123	78	0.2	784	0.84	0.03	2.91	0.15	3.07	7.87	0.37	38.35	91.51	94.16	163.48	23.52	10817	0.3	4.1	85.1	257.8
A13	529	139	11	4163	8	0.1	267	3.87	0.01	3.82	0.03	0.55	1.02	0.16	5.77	24.95	43.80	116.87	20.15	8594	2.2	2.2	45.1	153.7
A23	470	609	57	4032	4	0.2	418	2.41	0.01	25.93	0.10	1.76	3.76	0.39	16.73	46.10	46.47	77.25	10.78	11098	1.3	6.6	154.3	245.4
A26	554	544	12	4083	3	0.1	228	0.69	0.01	2.30	0.13	2.37	4.64	0.19	16.15	31.41	22.27	28.17	3.62	11027	0.2	2.3	44.4	66.1
A42	1006	1108	42	4190	12	0.7	1985	5.24	0.25	7.10	0.36	5.50	10.87	0.69	59.73	202.88	267.00	479.54	71.87	10959	2.0	9.5	74.4	72.1
A43	1176	582	26	3974	3	0.3	572	1.45	0.02	25.32	0.09	1.79	4.03	1.08	19.55	62.69	93.74	220.09	36.71	12698	0.5	8.8	95.8	129.1
A56	1029	1049	36	4110	3368	0.4	546	2.26	0.21	2.99	0.11	1.35	2.52	0.32	14.51	54.35	75.55	154.45	24.05	10093	0.9	5.5	17.9	57.2
A57	1060	586	56	4076	33	0.2	368	0.79	0.01	1.87	0.05	0.83	1.79	0.17	9.77	35.40	52.87	117.85	19.83	7637	0.3	0.7	6.1	16.6
A61	521	237	94	4600	4	0.2	307	1.30	0.01	3.25	0.21	4.24	8.54	0.17	27.36	54.10	45.34	73.64	9.44	21701	0.7	5.3	106.6	163.9
A63	516	624	44	4211	3	0.2	1232	1.06	0.07	4.94	0.71	11.61	18.02	1.26	64.16	165.17	168.71	294.07	38.77	12586	0.5	3.0	57.8	73.3
A64	621	345	20	4357	3	0.3	714	9.11	0.01	14.21	0.05	0.86	1.78	0.38	11.61	57.92	105.49	287.42	43.37	13948	4.2	0.6	10.0	42.3
A65	771	1015	50	4248	5	0.4	1788	1.74	0.18	4.77	0.20	2.92	6.36	0.11	39.12	166.98	257.79	530.05	77.43	11817	0.9	7.9	119.4	144.3
A67	587	601	55	4342	4	0.2	251	0.42	0.02	3.04	0.34	6.15	10.74	0.27	31.99	41.84	21.01	22.79	2.58	11936	0.1	5.0	93.1	135.3
A68	600	302	59	4387	4	0.2	440	1.10	0.01	12.24	0.08	1.49	3.18	0.50	14.54	52.14	79.36	184.86	28.42	17082	0.5	2.1	45.5	118.6
A69	637	891	39	4132	5	0.3	1299	1.89	0.02	6.58	0.18	3.65	9.50	0.12	46.02	157.88	173.41	258.54	30.39	16633	1.0	9.7	176.4	251.7
A70	892	83	10	4160	3	0.2	442	1.10	0.01	1.83	0.04	0.57	1.28	0.16	7.80	40.97	73.79	184.08	28.37	8228	0.4	0.6	5.5	21.4
A72	563	538	74	4343	4	0.3	824	0.97	0.01	4.72	0.14	2.40	4.74	0.51	23.20	83.29	115.80	243.84	35.74	11599	0.3	2.5	49.8	58.6
A73	595	970	63	4089	171	0.3	1570	2.08	0.12	20.23	0.30	5.54	11.94	1.05	56.30	172.27	202.04	390.88	55.24	11431	0.8	14.4	270.7	254.8
A75	591	169	16	4199	3	0.2	478	2.10	0.05	10.78	0.07	1.11	2.20	0.24	11.16	46.75	78.97	188.00	29.27	13960	1.1	3.5	66.6	145.9
A76	615	127	30	4234	3	0.2	647	0.66	0.01	8.06	0.11	2.04	3.40	1.08	14.82	55.90	101.71	249.24	41.96	10913	0.2	4.1	73.8	190.2
A78	1060	258	33	4304	12	0.3	790	2.21	0.01	4.93	0.07	1.24	2.62	0.33	16.46	71.29	117.57	254.94	40.32	10701	0.9	1.7	16.8	100.0
A79	534	487	33	4278	4	0.2	885	1.51	0.02	5.83	0.32	6.48	13.87	0.39	58.36	124.16	93.99	128.13	16.32	12374	0.5	3.5	69.6	77.6
A80	564	371	16	4292	3	0.3	1096	1.37	0.02	3.28	0.20	3.82	6.97	0.61	33.27	108.06	148.31	296.08	44.65	9764	0.4	2.9	53.2	83.8
A81	546	523	56	4248	20	0.2	676	1.54	0.07	10.83	0.79	13.70	19.64	1.17	58.58	100.29	66.23	83.71	10.13	11051	0.5	7.8	152.3	171.4
A95	3049	256	10	4531	163	0.6	833	3.30	0.24	29.48	0.47	5.67	7.37	1.15	28.02	85.62	120.23	252.24	38.77	11165	1.0	40.8	134.1	130.5
A9/	3085	117	96	4638	2239	0.8	331	3.22	1.02	19.44	1.75	12.27	9.57	2.24	15.16	30.19	48.65	140.00	23.07	12207	2.4	8.2	29.4	126.2
A98	2748	845	3069	4393	9174	37.8	1/26	7.09	/8.80	144.20	56.57	334.93	97.80	21.92	117.69	188.92	230.11	530.39	80.34	11958	3.0	52.1	268.3	/13.5
A99	2969	1606	2352	4464	4/59	20.1	/01	3.02	120.45	97.59	90.84	489.93	126.21	20.75	100.72	103.38	87.65	184.16	28.35	10312	1.0	41.5	160.0	179.0
A100	3113	612	196	5245	2342	1.1	1406	7.96	8.15	126.03	16.89	101.94	44.75	7.26	65.61	143.89	190.50	400.32	60.20	126/9	1.8	42.0	162.3	203.1
A103	3356	300	125	4366	2456	1.5	1144	6.05	/.15	/1.66	10.60	/3.53	36.39	5.56	50.44	96.69	169.87	490.37	84.72	12/49	4.9	33.2	88.5	287.7
A106	3004	1922	21	4349	1688	1.4	909	2.61	0.67	23.36	0.32	3.06	5.08	0.56	27.33	89.39	114.46	214.18	32.71	9549	0.6	52.7	129.1	104.0
A10/	2009	3820	125	4094	3092	1.1	1620	2.00	4.80	44.86	5.98	39.09	12.98	1.40	40.88	149.59	211.29	450.83	05.22	10542	1./	54.0	211.8	229.5
A109	2908	1004	18/	3460	2235	0.5	333	2.08	0.95	21.58	0.34	2.14	2.10	0.78	9.98	38.35	61.24	1002.52	25.01	19824	0.9	15.5	/3.3	101.1
A110	3080	1994	1460	4945	9100	19.2	4209	30.64	41.40	80.98	48.40	315.28	353.69	0/.82	305.34	/45.21	554.65	1002.53	138.69	20557	0.0	05.8	2331.3	451.3
AIII	2964	211	153	4942	1212	0.8	430	3.21	1.39	29.36	0.54	4.09	3.52	0.67	12.48	42.62	67.05	147.52	22.55	15348	0.9	15.3	/3.0	13.1

Tabelle 20 Spuren- und Seltenen Erdelemente (ppm)

A112	2838	1695	1194	4657	7844	11.0	2783	8.77	84.73	162.08	50.53	268.93	125.31	12.46	185.66	329.35	398.44	822.53	124.10	15624	3.7	52.2	402.5	427.8
A113	3117	845	1842	5081	5959	34.7	6311	19.35	148.61	23.19	184.07	1132.19	646.36	53.57	828.95	1084.06	656.06	921.37	118.46	13733	3.9	71.1	706.0	293.5
A118	3086	405	211	5928	9614	3.1	881	9.08	6.33	38.27	5.99	46.57	29.30	4.93	42.54	80.81	131.86	327.72	52.27	13618	2.1	33.2	62.6	128.9
A119	3089	605	178	4585	3195	3.0	1575	3.63	3.83	45.48	3.15	27.41	21.70	5.26	60.07	150.26	190.62	371.80	56.83	8077	0.9	57.7	229.7	125.7
A122	3133	2250	2447	4645	12178	45.4	4670	8.08	49.60	62.25	97.84	741.42	1165.26	218.65	812.94	1082.93	492.75	886.88	132.48	11244	3.8	87.3	1229.7	300.8
A123	3150	639	472	5746	6953	4.6	904	5.63	33.32	162.96	19.86	96.43	31.55	5.95	49.47	91.57	102.57	219.38	33.85	9618	1.1	41.4	176.6	155.3
A124	680	212	80	4716	132	0.2	368	1.65	0.14	1.70	0.13	0.91	1.54	0.37	7.03	29.67	53.67	146.07	26.34	11450	1.3	0.6	8.6	121.1
A125	3117	990	173	4574	4413	1.2	1302	7.45	7.98	70.43	11.34	70.16	29.71	4.66	48.27	125.61	164.62	343.57	51.05	12746	1.9	20.4	83.3	127.3
A126	3010	3151	3078	4608	4890	4.8	584	3.56	14.52	67.22	12.01	67.78	15.56	4.12	21.76	51.00	78.98	195.81	32.00	10652	1.0	7.6	28.6	62.7
A128	3063	892	112	4741	11406	3.1	792	4.93	4.09	30.24	1.99	12.38	8.28	1.84	24.89	76.87	110.86	238.98	35.54	10452	0.9	31.9	114.0	121.6
A129	2734	735	103	4375	1543	0.7	1022	4.06	2.70	39.04	3.50	22.18	9.02	1.59	31.65	99.67	136.37	288.55	43.53	10898	0.9	25.2	114.0	103.1
A130	3060	541	120	4361	1001	0.4	794	2.27	1.88	27.82	0.87	6.59	6.21	1.02	25.37	76.68	101.72	210.86	30.86	11325	0.7	23.4	104.3	74.6
A132	3043	577	173	4288	5604	1.1	505	3.27	1.93	23.53	1.69	13.98	7.53	1.57	14.46	43.48	70.26	173.82	27.63	11014	1.0	8.4	34.0	53.0
A133	1073	823	36	4419	4	0.4	1958	10.06	0.01	22.24	0.10	1.98	5.25	0.22	32.94	173.00	283.86	568.87	75.64	10656	4.4	6.5	85.1	219.4

Parys (901)	A4	A12	A13	A23	A26	A42	A43	A56	A57	A61	A63	A64	A65	A67	A68	A69	A70	A72
Eu/Eu*	0.6	0.1	0.2	0.2	0.1	0.1	0.4	0.2	0.1	0.0	0.1	0.3	0.0	0.0	0.2	0.0	0.2	0.1
Ce/Ce*	1.8	10.5	66.1	237.6	16.9	5.7	158.9	4.7	18.5	15.5	5.2	156.9	6.1	8.0	108.7	28.1	29.3	30.2
Parys (901)	A73	A75	A76	A78	A79	A80	A81	A95	A97	A98	A99	A100	A103	A106	A107	A109	A110	A111
Eu/Eu*	0.1	0.1	0.5	0.2	0.0	0.1	0.1	0.2	0.6	0.6	0.6	0.4	0.4	0.1	0.2	0.5	0.5	0.3
Ce/Ce*	26.2	44.0	65.0	44.6	17.4	13.4	11.3	21.3	3.5	0.5	0.2	2.6	2.0	12.1	2.0	9.2	0.4	8.2
Parys (901)	A112	A113	A118	A119	A122	A123	A124	A125	A126	A128	A129	A130	A132	A133				
Eu/Eu*	0.2	0.2	0.4	0.4	0.7	0.5	0.3	0.4	0.7	0.4	0.3	0.2	0.5	0.1				
Ce/Ce*	0.6	0.0	1.5	3.2	0.2	1.5	3.1	1.8	1.2	2.6	3.1	5.3	3.2	149.4				

Kheis	207 pt /206 pt	D21	C 11	T: 47	F 67	0.00	VOO	NI 02	T 120	G 140	D 141	N 11 4 C	0 147	E 161	C 11 50	D 1(1	F 1(7	3/1 1 7 2	I 176	110170	T 101	DI 200	TI 000	11220
(903)	PD/ PD	P31	Ca44	114/	Fe5/	Sr88	¥ 89	Nb93	La139	Ce140	Pr141	Nd146	Sm14/	Eu151	Galss	Dy161	Erl6/	Y 01/2	Lu1/5	HII/8	12181	Pb208	1n232	0238
Probenr ·	(Ma)																							
K2	529	225	13	1253	3.5	0.2	175.7	1 75	0.01	21.43	0.09	1.60	3.07	1.08	14.00	12 55	59.94	137.07	21.07	8679	0.6	17	42	48
K12	606	220	39	4304	2.9	0.2	42.0	0.45	0.01	1 36	0.03	0.59	1.08	0.16	3 79	6.08	4 04	5.06	0.65	10497	0.0	0.1	1	28
K16	711	220	108	4601	33	0.2	449.3	1.00	0.01	3.01	0.03	2.58	7.14	0.10	31.13	69.61	58.14	84 76	10.25	21810	0.1	7.4	165	421
K17	536	156	84	4747	2.8	0.2	505.5	2.98	0.01	8 44	0.05	0.97	2.36	0.06	13.03	52.30	86.24	203 31	31.88	21029	1.5	4.5	126	213
K18	513	220	79	4343	3.0	0.2	405.1	2.23	0.03	6 33	0.02	2.34	413	0.17	15.05	46.90	56.45	113.04	15.96	14337	0.9	3.9	96	145
K19	749	314	13	4340	3.6	0.2	876.9	2.23	0.00	5.01	0.15	1.02	2.84	0.05	17.73	80.39	128.02	285.40	40.78	12959	1.5	5.2	89	126
K5	553	509	72	4408	33	0.2	758.4	1 46	0.00	6.92	0.08	1 39	2.98	0.05	16.04	68 39	96.14	200.28	28.20	12224	0.6	0.8	17	22
K7	611	477	84	4272	3.3	0.1	410.9	2.95	0.02	2.40	0.32	6.08	17.37	0.19	72.26	93.77	21.03	13.56	1.19	13520	1.3	3.1	72	213
К9	519	267	49	4316	3.2	0.1	192.1	5.02	0.02	10.19	0.11	1.90	2.97	0.92	10.34	22.43	19.36	33.70	4.88	9357	2.0	1.2	30	51
K20	703	369	67	4246	3.6	0.2	355.0	0.81	0.01	6.68	0.15	3.27	7.46	0.51	28.15	51.02	34.31	46.84	5.55	14310	0.3	2.7	55	138
K22	530	274	88	4351	3.4	0.1	269.6	0.86	0.01	2.88	0.12	2.20	4.52	0.26	18.88	36.89	24.24	29.71	3.29	13179	0.3	1.7	42	71
K31	2052	351	113	4305	1013.4	0.3	736.1	2.33	0.31	14.62	0.63	6.59	8.63	1.61	29.85	81.21	94.76	212.47	30.81	12107	1.2	25.3	170	194
K32	2131	4353	2873	4168	3065.1	9.7	2403.9	3.81	28.55	125.90	18.40	126.48	89.74	27.71	219.83	325.36	252.99	447.11	57.65	11364	1.1	77.0	571	440
K33	678	780	11	4239	1431.1	0.6	1828.5	3.53	0.30	19.03	0.20	2.79	5.37	0.25	34.79	162.33	248.08	541.69	76.52	14406	1.8	12.2	194	103
K41	535	194	59	4362	3.4	0.2	549.5	0.76	0.03	7.40	0.32	5.90	9.36	1.84	29.85	63.84	58.69	94.11	12.69	13024	0.4	1.6	39	137
K48	2047	2184	1099	4209	2527.5	3.3	3151.5	3.64	43.38	105.71	49.73	316.75	163.10	45.54	255.90	404.13	319.32	566.75	73.55	12503	3.2	21.3	136	400
K75	587	360	88	4470	3.6	0.2	886.5	2.24	0.01	3.34	0.07	1.20	3.21	0.19	19.58	81.52	119.66	245.88	37.16	11480	1.0	1.7	37	71
K76	654	204	93	4602	2.7	0.2	431.4	1.49	0.01	8.16	0.11	1.64	2.82	0.55	13.21	47.12	68.91	155.79	22.54	13722	0.7	2.0	43	106
K77	812	230	44	4451	3.7	0.3	915.8	3.40	0.02	12.66	0.09	1.73	4.27	0.26	23.33	90.59	136.86	291.55	42.87	12708	1.2	3.9	58	150
K78	518	289	80	4435	3.0	0.2	636.1	2.41	0.01	21.43	0.07	1.35	3.09	0.33	16.33	59.35	86.73	203.16	30.82	14526	1.2	4.5	113	260
K81	583	173	54	4559	3.5	0.1	45.8	0.50	0.04	3.19	0.12	1.45	1.47	0.41	4.25	6.38	4.54	6.83	0.90	12462	0.1	2.1	53	41
K85	631	354	68	4447	3.3	0.2	949.1	1.82	0.01	4.40	0.10	1.90	5.10	0.39	27.94	93.76	122.24	243.45	36.03	11651	0.6	3.6	89	213
K88	620	1838	3838	4786	662.4	3.6	2060.3	2.40	46.26	101.87	19.00	103.21	42.50	6.64	86.36	257.95	335.98	693.17	95.67	18886	1.8	10.9	261	484
K89	2167	425	284	4716	1619.6	1.1	1601.8	2.09	9.35	99.03	9.89	61.86	38.26	10.24	77.76	193.91	233.05	536.67	80.20	13302	1.1	34.5	224	266
K91	996	237	125	4701	2.9	0.3	1030.1	3.79	0.28	12.20	0.15	1.90	3.82	0.15	21.75	96.76	162.39	371.37	55.16	14776	1.7	5.4	74	165
K93	504	194	180	5349	2.6	0.2	625.6	1.29	0.01	5.91	0.13	3.12	8.08	0.48	35.93	94.97	94.31	167.30	22.36	21610	0.6	3.8	108	174
K96	527	244	109	4617	3.4	0.2	670.7	1.66	0.06	10.79	0.29	4.44	6.17	2.07	27.78	78.26	82.85	150.93	20.21	12078	0.7	2.2	38	36
K97	1064	218	83	4659	3.1	0.1	346.9	1.92	0.01	11.59	0.11	2.17	4.25	0.80	16.87	39.42	42.89	79.67	11.52	11469	0.8	7.2	94	54
K103	1055	303	30	4382	5.0	0.3	1144.5	2.25	0.02	3.80	0.12	2.22	5.05	0.30	29.04	115.93	168.22	344.48	50.89	13496	1.1	3.8	48	79

Tabelle 21 Spuren- und Seltenen Erdelemente (ppm)

Kheis (903)	K2	K5	K7	K9	K12	K16	K17	K18	K19	K20	K22	K31	K32	K33	K41	K48
Eu/Eu*	0.4	0.1	0.0	0.5	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.3	0.6	0.0	0.3	0.7
Ce/Ce*	65.9	26.5	2.2	26.1	68.1	8.2	50.4	13.5	31.4	13.0	6.9	5.9	1.3	17.9	6.7	0.5
Kheis (903)	K75	K76	K77	K78	K81	K85	K88	K89	K91	K93	K96	K97	K103			
Eu/Eu*	0.1	0.2	0.1	0.1	0.5	0.1	0.3	0.6	0.0	0.1	0.4	0.3	0.1			
Ce/Ce*	13.4	21.4	41.4	84.9	7.2	13.1	0.8	2.2	14.3	13.5	10.4	30.1	9.3			

Tabelle 22 Spuren- und Seltenen Erdelemente (ppm)

OR 914	²⁰⁷ Pb/ ²⁰⁶ Pb	P31	Ca44	Ti47	Fe57	Sr88	Y89	Nb93	La139	Ce140	Pr141	Nd146	Sm147	Eu151	Gd158	Dy161	Er167	Yb172	Lu175	Hf178	Ta181	Pb208	Th232	U238
Probennr.:	Alter (Ma)																							
A1	419	533	1304	3926	80	8.3	559	6.14	18.10	37.90	3.94	18.93	6.48	0.43	18.76	57.24	74.03	155.15	20.51	9137	1.29	5.5	37.6	49.3
A2	529	488	742	3985	79	3.4	468	10.64	19.88	38.65	4.20	19.82	5.84	0.26	14.92	46.33	62.95	132.94	18.00	9039	1.96	4.9	32.9	62.9
A3	593	939	207	4357	13	0.6	1386	6.47	0.10	40.23	0.15	2.50	4.90	1.32	24.67	108.55	195.79	542.96	78.50	9620	2.27	4.8	285.1	337.5
A4	406	1167	550	4183	990	1.1	1282	2.55	2.27	13.03	1.03	7.84	9.00	0.46	36.58	123.69	168.05	351.08	44.73	9916	0.98	5.5	89.4	80.3
A5	553	1065	299	2659	2186	8.2	1147	87.18	2.41	15.44	1.37	13.87	16.16	2.50	51.23	128.61	136.54	256.74	31.51	8722	7.64	5.9	80.1	76.7
A6	481	605	178	4469	4	0.2	528	3.89	0.02	7.55	0.10	1.60	3.39	0.17	14.70	51.00	69.24	146.27	19.09	10251	1.38	1.8	40.1	61.1
A7	611	859	340	4966	33	0.2	527	1.17	0.06	3.52	0.25	4.32	7.51	0.83	26.40	69.98	65.55	123.02	15.38	14184	0.52	3.7	82.0	126.1
A8	1118	514	254	4681	6	0.2	564	2.15	0.06	4.60	0.12	2.02	3.63	0.28	16.86	59.01	77.72	166.86	22.39	11024	0.86	1.3	30.6	45.8
A9	519	2265	240	4389	5	0.7	2139	6.83	0.00	2.12	0.02	0.52	3.09	0.12	26.36	179.74	325.30	802.48	109.68	15250	2.83	3.2	60.5	357.0
A10	1089	51	243	4460	129	0.3	543	15.60	0.94	17.79	2.44	22.44	16.58	0.96	29.84	71.53	86.21	228.16	29.34	9703	4.12	8.0	145.9	47.8
A11	526	590	220	4562	4	0.3	781	4.39	0.01	16.04	0.13	2.31	4.30	0.29	18.97	74.39	120.60	305.53	44.89	9570	1.32	4.3	99.1	103.4
A12	606	730	541	4586	1775	0.4	738	4.87	5.99	19.95	1.94	11.00	5.96	0.23	21.89	73.18	98.06	201.80	26.48	10299	1.82	2.4	62.7	99.9
A13	629	2796	792	4959	5824	15.8	4696	15.14	7.59	79.15	9.58	76.09	78.87	26.57	220.02	592.51	542.09	959.60	123.73	10877	4.13	19.4	248.2	693.4
A14	873	767	212	5045	48	0.4	1137	4.69	0.09	6.60	0.19	2.90	5.55	0.33	28.36	114.82	170.60	364.83	52.83	12267	1.73	5.3	71.6	115.7
A15	2161	674	177	5045	5	0.3	795	1.49	0.02	12.17	0.10	1.75	3.64	0.54	16.89	70.87	112.74	272.53	38.85	11218	0.65	2.3	47.8	60.3
A16	711	663	416	4770	226	2.9	1054	2.64	7.57	19.50	2.19	14.34	12.37	1.38	40.54	116.89	138.11	256.39	33.77	9795	0.67	4.4	42.6	48.2
A17	536	543	307	4665	75	1.5	1465	4.87	1.32	43.95	1.83	14.97	14.79	4.71	43.75	136.46	197.95	491.96	72.14	11287	1.46	6.2	341.2	341.9
A18	513	409	436	4189	9	0.5	1448	4.32	0.05	27.89	0.12	2.23	5.24	1.53	31.81	149.67	242.56	664.85	97.72	12684	1.98	5.1	286.8	314.8
A19	536	427	388	4751	262	0.8	1600	2.94	1.28	9.76	1.50	13.59	15.73	2.13	55.16	192.59	240.86	543.70	70.30	12813	1.50	10.5	211.1	343.8
A20	749	235	237	4340	240	0.6	982	5.28	0.89	32.41	0.21	1.74	2.39	0.64	14.65	80.84	157.11	481.61	73.60	13247	2.56	4.2	209.2	239.6
A22	530	860	361	4088	36	0.9	1784	1.51	2.85	9.23	1.12	7.19	8.12	0.21	40.89	179.36	265.80	622.78	83.58	11632	0.91	6.1	116.0	295.1
A23	559	716	259	4016	236	0.4	1109	0.46	1.49	8.43	1.60	16.97	22.69	9.72	74.47	156.21	93.08	111.50	11.49	11344	0.08	2.7	77.6	80.9
A24	599	1046	999	3967	6	1.2	1198	1.78	5.02	22.73	1.85	11.26	9.17	0.97	34.86	120.74	165.62	369.33	46.92	9112	0.58	5.2	109.5	99.6
A25	990	448	758	4327	56	4.3	1313	3.78	2.81	17.95	0.95	6.10	5.35	0.52	25.88	128.62	215.11	600.84	83.78	16240	2.77	18.9	250.6	831.6

A26	2731	9089	21322	4427	431	13.6	1465	7.87	281.36	136.78	71.32	318.28	63.66	2.40	80.49	157.84	219.44	535.78	76.47	13126	4.18	39.6	215.6	287.4
A27	675	435	266	4296	750	1.4	1531	2.84	0.73	58.79	0.72	10.78	15.91	3.85	58.80	168.21	212.56	443.83	63.29	10044	1.00	7.0	247.4	88.5
A28	1175	287	172	4357	77	0.8	844	2.07	3.99	12.03	3.15	19.57	14.29	4.10	37.88	107.63	101.13	182.07	25.32	14733	0.79	3.2	44.4	306.6
A29	758	1292	209	3919	4	0.5	2174	1.35	0.26	2.67	0.11	1.86	5.57	0.23	37.13	201.44	281.64	550.91	65.59	11565	0.69	4.8	89.4	206.0
A30	1105	459	216	3949	4	0.3	699	1.15	0.01	7.28	0.06	0.93	2.44	0.30	12.87	57.47	98.59	245.20	33.30	9743	0.49	5.4	66.0	97.0
A31	1018	411	223	4741	14	0.4	1283	7.02	0.06	7.03	0.13	2.26	4.99	0.31	30.55	131.13	198.04	437.42	60.14	13644	2.94	4.9	65.5	98.0
A32	1250	377	222	4603	187	0.9	2654	52.04	0.71	29.63	0.51	4.72	7.00	1.43	42.69	222.00	412.54	828.90	145.02	13594	18.02	10.4	142.4	329.8
A34	667	456	192	4311	4	0.2	549	1.38	0.01	4.23	0.07	1.25	2.49	0.19	12.10	50.48	77.77	191.77	25.83	11238	0.56	1.7	35.5	61.1
A36	993	327	193	4484	8	2.5	625	3.14	0.12	4.85	0.07	0.77	2.01	0.18	12.05	55.26	95.09	242.01	35.64	12760	1.41	2.9	38.4	152.4
A38	550	470	577	4420	72	5.4	642	2.26	0.47	7.52	0.27	3.22	4.64	0.56	20.94	66.31	79.85	149.95	18.79	10795	1.06	4.3	113.8	102.7
A39	663	203	270	5005	884	0.5	743	3.51	0.15	17.49	0.18	2.84	5.94	0.27	26.53	92.01	109.85	241.36	29.80	15199	1.87	6.8	159.5	246.4
A40	666	315	145	5203	55	0.4	1255	4.79	0.09	8.42	0.13	2.05	4.58	0.24	27.21	125.79	193.02	441.08	58.22	14603	2.34	4.8	119.9	274.3
A42	225	376	146	5039	821	0.5	1529	4.37	0.10	30.07	0.17	2.35	4.66	1.58	25.44	124.46	238.27	682.05	105.06	12674	2.17	5.8	335.2	561.3
A43	479	333	168	4907	26	0.4	988	1.77	1.60	16.02	0.44	3.11	3.69	0.87	20.04	88.10	146.48	356.93	52.80	13418	1.06	2.9	94.0	99.7
A44	1257	307	274	4375	233	1.0	599	3.23	18.42	56.40	4.42	18.71	4.79	0.52	11.48	48.14	92.22	292.75	42.66	13945	1.42	9.7	112.4	290.1
A45	585	234	186	4603	168	0.5	576	2.83	0.18	28.88	0.14	1.55	2.13	0.51	10.29	44.77	85.78	266.88	38.74	11319	0.61	9.3	238.0	266.2
A46	463	238	287	4714	4	0.3	497	1.56	0.02	10.07	0.12	2.00	4.52	0.65	17.73	58.39	73.33	185.22	24.24	13661	0.70	4.2	105.5	166.2
A47	229	660	551	4618	421	3.3	2398	5.00	6.60	51.84	9.01	61.76	46.41	13.10	103.04	296.36	332.92	705.03	89.08	13268	3.62	16.1	342.9	573.5
A49	701	648	252	4551	65	0.6	987	1.78	0.52	4.24	0.22	2.35	4.41	0.33	23.28	97.51	146.89	347.29	46.01	11504	0.76	2.2	41.1	48.2
A51	1046	459	230	4392	32	0.7	736	2.12	0.92	24.65	0.17	2.22	4.31	1.59	19.26	72.66	105.30	268.88	37.30	10190	0.89	2.7	34.1	67.6
A52	635	750	133	4784	57	0.5	1813	2.52	0.09	8.99	0.18	3.06	7.10	0.48	38.13	159.92	258.95	509.95	84.49	13710	1.25	6.9	119.6	178.5
A53	1712	427	201	4353	11	0.3	741	3.79	0.07	9.91	0.32	4.64	6.25	0.60	22.33	73.20	104.96	238.24	31.95	10330	1.44	6.1	48.4	41.5
A54	1049	900	69	4063	589	1.3	830	8.89	0.11	7.66	0.18	2.24	4.82	1.46	23.56	96.29	129.97	315.95	41.60	12506	5.04	2.7	30.3	159.8
A55	962	1468	909	4525	11	0.7	924	2.11	2.93	10.46	1.16	7.23	5.09	0.17	21.02	92.61	138.25	323.58	42.91	13959	1.11	8.3	107.0	213.2
A60	956	12088	9287	3930	72	25.1	894	2.84	35.59	50.25	15.31	84.85	24.32	1.57	41.32	99.63	125.99	276.95	37.58	9636	0.96	2.5	17.3	50.6
A62	290	807	524	3720	379	6.4	885	2.73	3.49	13.43	0.77	4.27	4.28	0.62	19.50	80.12	130.34	304.35	43.50	9002	0.88	2.7	70.5	107.3
A63	492	901	176	4276	15	0.2	379	1.37	0.06	7.03	0.07	0.84	2.08	0.46	9.40	33.76	52.09	135.27	19.69	11957	0.57	4.0	98.3	131.1
A64	595	247	263	4679	2681	0.3	477	1.82	0.10	3.32	0.09	1.34	2.89	0.38	14.54	52.94	71.08	166.56	21.85	11888	0.73	1.2	29.3	71.2
A68	904	157	215	4519	4	0.2	318	2.32	0.12	5.34	0.08	0.87	2.17	0.70	8.61	30.47	50.21	150.96	23.67	11295	0.97	1.0	17.8	111.3
A69	1075	1744	91	5108	52	0.7	3829	2.78	0.30	5.56	0.41	4.95	10.58	0.39	73.40	345.07	560.97	1050.52	169.23	14971	1.48	9.9	164.7	278.3
A70	735	728	23	5111	40	0.4	1877	2.40	0.06	9.56	0.28	5.15	9.59	0.50	46.43	173.68	269.70	521.36	81.82	14899	1.26	9.4	232.6	265.4
A71	690	516	180	4191	52	0.4	867	2.55	0.12	15.76	0.20	2.43	4.27	0.46	20.46	80.15	123.12	287.57	37.53	10719	1.42	6.9	170.6	268.6
A74	896	853	254	4306	67	0.8	1828	2.33	2.56	10.54	2.28	13.88	14.36	4.70	54.76	192.73	262.78	603.67	79.00	12983	1.44	5.5	79.0	230.7
A75	667	851	214	4401	4	0.4	2252	2.48	0.10	7.15	0.71	12.20	20.32	1.41	81.29	240.50	297.58	591.39	72.07	10644	1.01	5.1	115.9	70.4
A76	493	344	225	4559	312	0.5	1211	2.74	0.99	17.57	1.13	9.99	12.25	1.58	45.17	129.27	159.44	321.02	38.74	11304	1.02	4.4	165.6	112.4
A77	1141	430	199	4635	244	0.8	1439	2.09	4.83	39.61	1.28	11.99	14.28	5.37	51.85	148.19	189.35	438.21	56.51	10513	0.78	13.8	197.4	181.5

OR 914	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A22	A23	A24	A25	A26
Eu/Eu*	0.1	0.1	0.3	0.1	0.2	0.1	0.2	0.1	0.0	0.1	0.1	0.1	0.6	0.1	0.2	0.2	0.5	0.3	0.2	0.3	0.0	0.7	0.1	0.1	0.1
Ce/Ce*	1.0	1.0	64.4	2.1	2.0	20.1	4.0	9.6	24.2	1.9	36.6	1.4	1.9	8.7	33.2	1.1	5.7	62.1	1.5	17.7	1.3	1.2	1.8	2.6	0.2
OR 914	A27	A28	A29	A30	A31	A32	A34	A36	A38	A39	A40	A42	A43	A44	A45	A46	A47	A49	A51	A52	A53	A54	A55	A60	A62
Eu/Eu*	0.3	0.5	0.0	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.0	0.4	0.2	0.2	0.3	0.2	0.6	0.1	0.4	0.1	0.1	0.3	0.0	0.1	0.2

Ce/Ce*	17.7	0.8	3.8	32.4	13.9	11.3	16.5	12.3	5.0	21.8	15.7	43.4	4.6	1.5	41.2	24.2	1.4	3.0	14.0	12.9	8.7	10.7	1.4	0.5	1.9
OR 914	A63	A64	A68	A69	A70	A71	A74	A75	A76	A77															
Eu/Eu*	0.3	0.1	0.4	0.0	0.1	0.1	0.4	0.1	0.2	0.5															
Ce/Ce*	23.6	7.8	12.6	3.2	9.5	19.1	1.0	2.9	3.5	3.8															

Taung	²⁰⁷ Ph/ ²⁰⁶ Ph	р	Ca	ті	Fe	Sr	v	Nh	Тя	Ce	Pr	Nd	Sm	Fu	Gđ	Th	Dv	Но	Fr	Tm	Vh	Τu	Hf	Та	Th	П
(910)	Alter	1	Ca	11	10	51	1	NU	La		11	nu	5111	Lu	Gu	10	Dy	110	LI	1111	10	Ľu	111	14	111	0
Probennr.:	(Ma)																									
1	3339	4445	4601	284	10435	42.5	13109	16.2	229.7	1044.7	241.7	1679	660	350	1004	195	1617	362	1151	214	1802	226	23221	2.6	466	443
2	2943	1970	1018	2884	20008	8.8	4341	21.6	25.1	177.2	30.4	212	180	70	376	77	635	136	428	85	778	88	18094	1.0	1465	682
3	3004	829	447	36	1823	7.5	1628	2.3	3.9	38.6	8.0	77	74	37	116	26	228	52	199	46	470	66	20727	1.0	95	170
4	2928	1522	1443	58	5464	8.0	2949	1.5	49.7	335.9	69.2	487	162	66	232	41	344	81	277	56	524	68	18492	0.4	132	201
5	3113	625	886	9	5535	2.5	870	0.8	2.4	16.6	2.4	20	15	6	33	8	82	26	119	31	350	53	19551	0.4	50	97
6	2942	792	232	29	1744	3.6	3594	4.8	7.2	73.4	11.4	87	55	21	117	31	359	105	443	112	1211	187	15673	1.2	257	156
7	1017	307	111	7	32	0.5	962	1.6	0.0	9.4	0.0	1	2	1	15	5	77	29	140	37	395	57	21558	0.8	22	39
8	2880	412	203	7	45	0.5	945	1.7	0.1	13.6	0.2	3	7	2	34	9	94	27	108	24	240	33	20907	0.5	206	470
9	3163	470	71	8	1038	0.8	1442	2.2	0.2	14.9	0.4	5	5	2	19	6	93	38	207	57	641	108	18966	0.9	78	100
10	2909	6967	9279	253	15560	135.3	12958	5.1	270.5	776.0	230.6	1467	812	726	1400	235	1669	336	955	164	1332	170	21607	2.2	414	929
11	3002	587	296	63	5665	1.0	1186	0.8	3.8	23.5	4.5	33	27	13	68	15	134	34	136	32	347	54	18530	0.4	104	74
12	2912	1528	1479	61	2522	15.7	5336	2.2	25.5	193.3	44.9	366	254	121	447	91	722	147	428	74	570	65	25980	1.2	71	270
13	3196	8461	7189	446	18282	96.2	33749	6.7	86.5	965.5	230.6	2003	1546	723	2726	572	4675	993	2923	499	3739	431	26150	2.2	199	703
14	2908	779	159	16	61	0.9	2317	4.0	0.5	37.9	0.8	10	17	8	75	21	239	72	284	60	561	74	19217	1.2	78	160
15	2969	16664	7555	145	19808	74.1	17717	2.2	105.9	521.7	142.6	1216	1132	531	2038	354	2602	511	1438	252	2008	227	18728	1.3	5856	332
16	2922	546	137	34	28	1.5	1156	3.1	0.2	80.0	0.3	4	6	2	29	8	100	35	156	37	367	51	16512	1.1	41	22
17	2864	566	209	14	58	0.3	860	0.9	0.1	18.0	0.3	4	8	4	31	8	83	25	98	23	233	32	15939	0.3	50	59
18	2783	503	324	12	2016	4.6	1255	1.8	13.5	156.0	15.3	146	82	23	113	16	132	35	138	32	328	49	17999	0.4	116	163
19	2783	613	854	138	4862	15.4	1646	9.5	80.1	586.2	100.7	692	267	164	280	33	213	44	141	27	245	33	19100	0.9	214	290
20	2912	437	107	14	1430	23.3	1091	2.2	8.2	65.9	9.3	59	15	11	31	8	92	31	139	35	379	59	18282	0.7	147	369
21	2929	402	203	17	4380	0.6	794	2.1	2.6	25.9	2.3	18	14	5	31	8	89	25	94	23	250	38	18745	0.6	51	48
22	2919	498	367	12	129	1.0	806	1.3	3.3	19.0	2.9	20	18	9	44	10	92	24	92	20	207	30	18970	0.5	39	73
23	3044	1452	280	81	3746	2.8	4048	7.3	31.9	182.5	26.8	179	92	29	161	37	366	110	481	118	1187	168	18931	3.1	466	304
24	3009	8538	6651	299	7978	131.7	22603	7.5	124.2	920.9	185.6	1273	1116	482	2381	450	3273	642	1967	397	3449	387	22189	1.7	1903	776
25	2918	680	502	26	332	7.7	2250	1.9	4.5	45.6	7.7	54	41	21	116	27	247	63	228	50	459	58	17566	0.7	267	150
26	2956	635	332	6	81	1.7	1217	2.0	3.2	22.5	2.6	17	13	5	38	10	108	35	152	37	384	54	18342	0.8	138	228
27	2919	567	220	16	27	0.5	1338	1.6	0.0	14.5	0.1	2	5	2	31	10	117	38	157	36	347	48	16206	0.5	57	79
28	2959	520	250	10	28	0.5	941	1.3	0.2	14.7	0.3	4	6	3	25	7	78	26	115	29	313	49	15409	0.4	45	112
29	3112	398	381	8	755	1.3	480	0.7	2.1	10.3	1.8	12	7	3	17	4	40	12	53	14	174	30	20949	0.7	21	56
30	2908	734	66	14	1768	0.2	1040	0.7	0.2	19.9	0.3	5	10	5	43	11	109	29	92	18	157	18	14398	0.2	38	56
31	2973	409	235	15	26	0.4	889	1.6	0.0	31.7	0.1	2	6	2	25	7	76	26	111	27	290	39	17882	0.8	67	68
32	2978	497	363	9	294	2.0	1401	1.4	4.2	31.0	6.9	45	32	16	64	15	150	42	159	38	379	49	15268	0.6	31	98
33	3161	4083	2076	128	3017	19.0	6419	5.1	38.4	317.7	72.8	655	356	123	428	91	760	176	624	134	1264	168	18249	1.6	190	264
34	2978	601	337	21	26	0.3	1470	2.0	0.2	15.3	0.3	5	8	4	41	11	121	33	119	22	181	23	14431	0.6	37	82
35	3467	5648	2888	99	4464	25.9	8609	7.4	86.8	648.7	95.7	618	314	120	548	120	1031	228	766	148	1297	161	13883	2.2	426	276
36	2856	3982	3612	264	5073	85.4	9890	5.9	62.3	677.0	154.1	1063	490	255	718	138	1116	241	779	141	1202	137	11952	1.1	1878	569

Tabelle 23 Spuren- und Seltenen Erdelemente (ppm)

37	2944	447	182	27	26	0.6	1422	1.1	0.2	50.0	1.3	18	22	5	58	13	124	36	147	33	324	46	14761	0.5	202	83
38	3028	5192	1365	41	14415	48.1	10258	72.3	10.4	53.1	14.4	128	231	90	714	135	1045	244	978	224	2272	314	17255	39.9	327	377
39	2911	1176	1236	38	1222	59.0	4403	3.9	9.1	127.8	20.3	148	139	82	305	61	512	114	383	75	686	84	17553	1.3	545	223
40	2876	7140	6374	8	158	11.2	1275	1.4	28.8	81.5	9.0	42	14	3	33	9	98	33	146	36	403	55	14444	0.6	71	59
41	2938	7850	2056	335	38474	39.9	8071	18.6	789.4	530.4	458.5	2027	554	134	665	126	1013	222	712	131	1097	132	13269	4.8	940	303
42	3002	842	699	351	226	2.2	1718	1.4	1.7	29.1	2.3	20	25	9	67	17	168	49	198	44	452	61	14176	0.6	62	108

Taung (916)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Eu/Eu*	1.3	0.8	1.2	1.0	0.8	0.8	0.3	0.5	0.6	2.1	0.9	1.1	1.1	0.6	1.1	0.4	0.2	0.7	1.8	1.5	0.8	1.0
Ce/Ce*	1.1	1.6	1.7	1.4	1.7	2.0	53.0	26.6	13.2	0.8	1.4	1.4	1.7	14.1	1.0	82.2	120.6	2.6	1.6	1.8	2.6	1.5

Taung (916)	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	
Eu/Eu*	0.7	0.9	0.9	0.7	0.6	0.7	0.7	0.7	0.4	1.1	1.0	0.7	0.9	1.3	0.5	0.7	1.2	0.5	0.7	0.7	
Ce/Ce*	1.5	1.5	1.9	1.9	89.8	13.5	1.3	22.5	209.9	1.4	1.5	14.1	1.7	1.7	22.0	1.0	2.3	1.2	0.2	3.6	

Danksagung

Ich möchte an dieser Stelle allen Personen meinen Dank aussprechen, die an dieser Arbeit mitgewirkt haben.

An erster Stelle schenke ich Gerhard Brey einen großen Dank, der äußerst liebevoll und mit viel Einsatz mir eine wunderbare Zeit in diesem außergewöhnlichen geowissenschaftlichen Institut ermöglicht hat.

Ohne die Hilfe von Yann Lahaye, Axel Gerdes und Stefan Weyer wäre ich gar nicht so weit in die Tiefe der Isotopengeochemie und Massenspektrometrie vorgedrungen.

Marina Lazarov und Eugenia Gromov waren mir tatkräftige Unterstützer bei der Probenbeschaffung und deren Bearbeitung. Sie und Axel machten das Bibliothekszimmer zum schönsten Platz im alten Institut.

Heidi Höfer danke ich sehr für die Hilfe und Einführung in die Mikrosonde.

Jan Heliosch danke ich sehr für die fabelhaften Mounts.

Und all den weiteren nicht genannten Mitarbeiterinnen und Mitarbeiter des Instituts sei für die wunderbare Herzlichkeit und die fantastischen Festivitäten und Betriebsausflügen gedankt!

Für die beste Betreuung und Organisation meiner Probennahme in Südafrika sei John Ward, Jeff Harris und dem weiteren Team von de Beers gedankt. Sie haben mir ihr wunderschönes Land ans Herz gelegt.

Mein ganz besonderer liebevollster Dank geht an Katrin...

Erklärung

Ich erkläre hiermit, dass ich mich bisher keiner Doktorprüfung unterzogen habe.

Frankfurt am Main, den 10.12.2008

(Unterschrift)

Eidesstattliche Versicherung

ich erkläre hiermit an Eides Statt, dass ich die vorgelegte Dissertation über

U-Pb Geochronologie, Hf Isotopie und Spurenelementgeochemie detritischer Zirkone aus rezenten Sedimenten des Orange- und Vaal River Flusssystems in Südafrika

selbständig angefertigt und mich anderer Hilfsmittel als der in ihr angegebenen nicht bedient habe, insbesondere, dass aus Schriften Entlehnungen, soweit sie in der Dissertation nicht ausdrücklich als solche mit Angabe der betreffenden Schrift bezeichnet sind, nicht stattgefunden haben.

Frankfurt am Main, den 10.12.2008

(Unterschrift)

Lebenslauf

Persönlich Daten

Name	Kai Olaf Klama									
Adresse	Bahrenfelder Straße 107 D-22765 Hamburg									
Telefon	040-39903270									
Email	kaapklama@web.de									
Geburtsdatum/-ort	03. Oktober 1971, Wattenscheid									
Schulausbildung										
1991	Abitur Käthe Kollwitz Gymnasium Dortmund									
Zivildienst										
1991-1992	Zivildienst in den Städtischen Kliniken Dortmund									
Studium										
1992-2002	Diplom in Geologie, Justus-Liebig-Universität Gießen.									
	Diplomkartierung im Aartal/SW Taunus (Rhenoherzynikum)									
	Betreuer: Professor M. Handy (Freie Universität Berlin),									
	Dipl. Geol. H. J. Anderle (HLUG, Wiesbaden)									
	Diplomarbeit: "U-Pb Datierung von Einzelzirkon und Monaziten von									
	(Montagne Noire, Südfrankreich)"									
	Betreuer: Dr. W. Dörr & Professor W. Franke (Universität Gießen).									
2002-2008	Promotionsarbeit, Institut für Geowissenschaften/ FE Mineralogie,									
	Johann Wolfgang Goethe-Universität Frankfurt am Main									
	Thema: U-Pb Geochronologie, Hf Isotopie und Spurenelement-									
	geochemie detritischer Zirkone aus rezenten Sedimenten des Orange-									
	Betreuer: Prof. Dr. G. Brey (J.W. Goethe-Universität Frankfurt)									
2002-2007	Wissenschaftlicher Mitarbeiter, Institut für Geowissenschaften/ FE									
	Mineralogie, Johann Wolfgang Goethe-Universität Frankfurt am Main									