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Abstract. The seasonality of transport and mixing of air into
the lowermost stratosphere (LMS) is studied using distribu-
tions of mean age of air and a mass balance approach, based
on in-situ observations of SF6 and CO2 during the SPURT
(Spurenstofftransport in der Tropopausenregion, trace gas
transport in the tropopause region) aircraft campaigns. Com-
bining the information of the mean age of air and the water
vapour distributions we demonstrate that the tropospheric air
transported into the LMS above the extratropical tropopause
layer (ExTL) originates predominantly from the tropical
tropopause layer (TTL). The concept of our mass balance
is based on simultaneous measurements of the two passive
tracers and the assumption that transport into the LMS can
be described by age spectra which are superposition of two
different modes. Based on this concept we conclude that the
stratospheric influence on LMS composition is strongest in
April with extreme values of the tropospheric fractions (α1)
below 20% and that the strongest tropospheric signatures are
found in October withα1 greater than 80%. Beyond the frac-
tions, our mass balance concept allows us to calculate the
associated transit times for transport of tropospheric air from
the tropics into the LMS. The shortest transit times (<0.3
years) are derived for the summer, continuously increasing
up to 0.8 years by the end of spring. These findings suggest
that strong quasi-horizontal mixing across the weak subtrop-
ical jet from summer to mid of autumn and the considerably
shorter residual transport time-scales within the lower branch
of the Brewer-Dobson circulation in summer than in winter
dominates the tropospheric influence in the LMS until the
beginning of next year’s summer.
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1 Introduction

Nowadays the tropopause region is regarded as a key for un-
derstanding and predicting future photochemically and ra-
diatively induced climate change. Changes in concentra-
tions of radiatively active species in this region potentially
have a strong impact on the radiation balance of the tropo-
sphere (e.g., Lacis et al., 1990; Forster and Shine, 1997). It
is well known that the large-scale stratospheric mean merid-
ional circulation driven by wave dissipation governs the net
upwelling flux from the troposphere to the stratosphere in the
tropics and the net downwelling flux from the stratosphere
to the troposphere in the extratropics (Haynes et al., 1991;
Holton et al., 1995). However, it is not only important to
understand net fluxes across the tropopause but also the ex-
change rates in order to improve the understanding of the tro-
pospheric impact on the chemical composition of the strato-
sphere, e.g. the dehydration of the stratosphere (Fueglistaler
et al., 2004, 2005) or the role of very short lived halogenated
species (VSLS) on ozone destruction (Dvortsov et al., 1999;
Ko et al., 2003; Levine et al., 2007; Law and Sturges, 2007;
Olson et al., 2008; Laube et al., 2008). The net stratosphere-
troposphere exchange (STE) from a climatology point of
view, i.e. the net irreversible mixing across the tropopause, is
the combined effect of two way transport, i.e. troposphere-to-
stratosphere transport (TST) and stratosphere-to-troposphere
transport (STT), eddy diffusion and finally molecular diffu-
sion.

In this study we focus on the lowermost stratosphere
(LMS) which is bounded by the 380 K isentrope and the ex-
tratropical tropopause. The entire LMS contains air of recent
tropospheric origin (e.g. Ray et al., 1999). In-situ measure-
ments of different trace gases such as ozone, carbon monox-
ide and water vapour revealed that a layer immediately above
the extratropical tropopause shows chemical characteristics
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which are intermediate between the extratropical troposphere
and the stratosphere (Fischer et al., 2000; Hoor et al., 2002,
2004; Pan et al., 2004; Krebsbach et al., 2006; Brioude et
al., 2008). This layer has been referred to as the extratropical
tropopause layer (ExTL) (Hoor et al. 2004; Pan et al., 2004).
The ExTL can be regarded as a transition zone between both
reservoirs with transport time scales ranging from hours to
several days and with a vertical extent of typically 20 K or
2 km (Hoor et al., 2004; Pan et al., 2004).

The LMS in the vicinity of the local tropopause is also
distinct in terms of its thermal stratification: on average the
temperature profile exhibits a strong inversion at the local
tropopause with strongly increasing temperature (i.e. high
static stability) within the so-called tropopause inversion
layer (TIL) (Birner, 2006). This TIL roughly corresponds
to the ExTL in terms of location and vertical extent and re-
cent studies have suggested a radiative link between the TIL
and the specific water vapour and ozone distributions within
the ExTL (Randel et al., 2007; Hegglin et al., 2009). Strong
stratification and a sharp local tropopause associated with the
TIL suggest that the air above this layer is vertically strongly
isolated from the extratropical upper troposphere below.

From the chemical composition of the LMS it has been
concluded that a substantial fraction of air above the ExTL
has been mixed in to higher latitudes quasi-horizontally from
the upper tropical troposphere (e.g. Dessler et al., 1995;
Hintsa et al., 1998; Ray et al., 1999; Pan et al., 2000; Hoor
et al., 2004, 2005; Hegglin et al., 2006; Sawa et al., 2008).
Model studies indicate that bidirectional cross-tropopause
transport at potential temperature levels between 340 and
360 K in the vicinity of the subtropical jet is strongly inhib-
ited in winter (Haynes and Shuckburgh, 2000), while sub-
stantial exchange occurs at these altitudes in summer (Chen,
1995; Berthet et al., 2007).

In this paper we use mean age of air derived from SF6
measurements for diagnosing the seasonality of tracer trans-
port into the LMS. The term “tracer transport” will be used
here to refer to the combined processes of transport by the
residual (Brewer-Dobson) circulation in the Transformed Eu-
lerian Mean (TEM) sense (Andrews et al., 1987) and quasi-
horizontal stirring by the eddies.

Furthermore, we present an approach to quantify tracer
transport into the LMS above the ExTL. In this part the
chemical composition is dominated by the relative strength
of quasi-horizontal transport and mixing from the tropics into
the extratropics and downward transport driven by the upper
branch of the Brewer-Dobson circulation (e.g. Hoor et al.,
2005; Sawa et al., 2008). The quasi-horizontal transport into
the LMS can be further divided into two different pathways:
1) across the subtropical tropopause and 2) along the tropical
tropopause with subsequent subsidence in the extratropics.
This second pathway is referred to as the lower branch of
the Brewer-Dobson circulation, which transports air quasi-
horizontally from the tropically controlled transition region

above the tropical tropopause but below the lower edge of
the tropical pipe to the extratropics (Rosenlof et al., 1997).

For this quantification of tracer transport into the LMS we
set up a mass balance using simultaneous measurements of
SF6 and CO2, which are passive tracers with different tropo-
spheric characteristics. CO2 has a pronounced seasonal cycle
in the troposphere superimposed on an average increase rate
of about 1.6 ppmv year−1. In contrast, SF6 shows a secular
increase from very low mixing ratios<0.1 ppt in the early
1960s to more than 6 ppt in global mean nowadays, with-
out seasonal variations. The propagation of these different
signals of both tracers into the stratosphere can be exploited
to calculate the tropospheric fraction of an air parcel and its
mean transit time from the troposphere into the LMS, as will
be shown below. The seasonality and spatial distribution of
mean transit times represent important new information that
has not been derived previously in other mass balance stud-
ies of the LMS (e.g. Ray et al., 1999; Pan et al., 2000). This
additional information about the transit time can also be used
to link the results derived from trace gas measurements with
the results derived from trajectory studies (e.g. Stohl, 2001,
2003; Wernli and Bourqui, 2002; Sprenger and Wernli, 2003;
James et al., 2003a, b; Berthet et al., 2007).

2 Data set

The data set used for this study has been obtained during the
SPURT project, which was part of the German AFO 2000
program. High quality measurements of a number of trac-
ers with different chemical lifetimes were performed in the
UT/LMS region covering a latitudinal range between 30◦ N
and 80◦ N over Europe. Every season was probed twice dur-
ing intensive campaigns over a period of 2 years. For a
detailed analysis of the SPURT data coverage see Hoor et
al. (2004). In total, 36 flights have been performed during
SPURT. A detailed overview of the SPURT results, includ-
ing technical details, is given by Engel et al. (2006a) and
references therein.

The CO2 measurements have been performed with a mod-
ified Li-COR 6262 NDIR-instrument with a time resolution
of 1 Hz and a total uncertainty better than 0.3 ppmv. Un-
fortunately, there are no CO2 data available for the SPURT
campaign S8 in July 2003 (Gurk et al., 2008).

SF6 data are not available for some flights of the SPURT
project due to instrumental problems. For this reason, we
decided to derive SF6 from N2O observations, which were
measured independently by in-situ gas chromatography with
an electron capture detector (ECD) and by tuneable diode
laser spectroscopy. As an example, Fig. 1 shows the observed
linear N2O/SF6 relationship in the UT/LMS during SPURT
campaign S8 performed in July 2003. The N2O-derived SF6
is based on the strict linear relationships between both tracers
which were calculated separately for each deployment, i.e.
within a maximum two days from the day of the respective
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flight (Boenisch et al., 2008). The relationships are strictly
linear, given that the standard deviations from measured SF6
and those from N2O-derived SF6 are equal to the statistical
error given by the precision of both instruments. This ap-
proach has the advantage that the N2O measurements have a
much higher time resolution (5 s) and a slightly better preci-
sion (∼1%) than the SF6 measurements (∼1.5% with a time
resolution of 60–90 s). However, we want to emphasize that
this approach is only valid in the LMS and if the applied
linear relation between SF6 and N2O has been observed in
real-time, because the relation varies with season and time.

Beside SF6 and CO2, we also use the water vapour mea-
surements of SPURT which have a 1 Hz time resolution, an
overall accuracy of 6% and a precision of 0.15 ppmv in the
range from about 500 ppmv to 1.0 ppmv for measurements in
the UTLS region (Krebsbach et al., 2006).

Characterization of SF6 and CO2

The tropospheric sources and sinks of both tracers, SF6 and
CO2, are located exclusively on the Earth’s surface, with
the exception of a small source of CO2 from the oxida-
tion of hydrocarbons in the atmosphere. SF6 has an atmo-
spheric lifetime of about 3200 years (Ravishankara et al.,
1993) with only anthropogenic sources in the troposphere
and a sink in the mesosphere (Hall and Waugh, 1998; Red-
dmann et al., 2001). The NOAA-ESRL global flask network
data shows that the mixing ratio of SF6 in the troposphere
has grown with a nearly constant rate of about 0.2 ppt year−1

since 1996. In the remote and free troposphere, the SF6 dis-
tribution shows no significant variability, but a meridional
gradient due to the larger electrical power production in the
Northern Hemisphere compared to the Southern Hemisphere
(Ko et al., 1993; Maiss and Levin, 1994).

Similar to SF6, CO2 increases almost linearly in the atmo-
sphere with an average growth rate of about 1.6 ppmv year−1

over the last decades, due to anthropogenic emissions, mostly
fossil fuel burning and deforestation. But in contrast to SF6,
a seasonal cycle is superimposed on the long term increase of
tropospheric CO2 mixing ratios. This seasonality is mainly
driven by biogenic activity. The amplitude of the CO2 sea-
sonal cycle in the troposphere is much larger in the Northern
(more than±10 ppmv in high latitudes) than in the Southern
Hemisphere (less than±1 ppmv in high latitudes). The am-
plitude of about±3 ppmv particularly in the tropical lower
troposphere is twice as large as the averaged yearly growth
rate. Thus, the tropospheric seasonal cycle is a dominant
feature which propagates upwards through the tropopause
into the lower stratosphere (LS) and spreads out meridion-
ally, as shown by e.g., Boering et al. (1994, 1996), Strahan et
al. (1998) and Andrews et al. (1999, 2001).

3 Mean age of air

Transport in the atmosphere is the result of the complex ac-
tion of time-dependent and often highly turbulent flow. A
useful diagnostic that summarizes the rate at which fluid ele-
ments are transported from some region to a point via a mul-
tiplicity of pathways and mechanisms is the transit time dis-
tribution (TTD) which is usually called the age spectrum in
the context of stratospheric transport. The general advantage
of this diagnostic is that “age of air” is species-independent
and encompasses both the residual transport and the (quasi-
horizontal) mixing. Transit time distributions have first been
discussed and applied to stratospheric transport analysis by
Kida (1983) and by Hall and Plumb (1994), further referred
to as HP94.

The age spectrum is a diagnostic of the flow, independent
of the distribution of any tracer. It characterizes the “trans-
port history” of the fluid from a region� to a point r. The
age spectrum (G) is the probability density function of�-to-r
transit times. In mathematical terms, G is the Green’s func-
tion for the differential operator governing the transport of
tracer. The age spectrum is typically a rather broad distribu-
tion, reflecting the multiplicity of available pathways to the
fluid from the entrance region or control surface�, normally
the tropical tropopause, to a point r in the stratosphere. HP94
defined the age spectrum as the distribution of times since
the fluid elements constituting a given stratospheric air par-
cel had last contact with the troposphere. The first moment of
the distribution is defined as the mean age0 (HP94). Follow-
ing this definition, the mean age of air at a point in the strato-
sphere is the mean transit time since the air there was last in
the troposphere. The age spectrum concept proved to be a
useful tool for interpreting tracer observations in the strato-
sphere (e.g. Waugh and Hall, 2002, and references within).
Although G itself is not directly observable, its first moment,
0 can be inferred from measurements of appropriate tracers
(e.g., Schmidt and Khedim, 1991; Elkins et al., 1996; Boer-
ing et al., 1996).

3.1 Deriving mean age from long-lived tracers

Long-lived or ideally inert (also called passive) tracers which
have negligible stratospheric sinks or sources and show
monotonically increasing or decreasing mixing ratiosχ(�,t)
with time in the troposphere, are a class of tracers that is
suited to derive stratospheric mean age. Hereχ(�,t) is the
mixing ratio at the ground surface,�, controlling the input
into the stratosphere at a given timet . Note that we have
chosen to use the ground surface instead of the tropopause
as the control level, simply because of the availability of a
network of continuous SF6 and CO2 measurements. In or-
der to constrain the tropical time series, we use the data from
NOAA-ESRL HATS flask sampling program (2007) for SF6
and the data from GLOBALVIEW-CO2 (2007) for CO2.
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Fig. 1. N2O/SF6 correlation observed during the SPURT campaign
S8 in July 2003. The solid line indicates the linear regression to the
data with corresponding correlation coefficient (r) and the dashed
line marks the standard deviation (σ).

Both tracers, SF6 and CO2 which have been measured si-
multaneously during the SPURT project, meet the criteria of
inertness in the stratosphere and monotonic growth in the tro-
posphere in first approximation, but not exactly. In the lower
stratosphere, the impact of the tropospheric CO2 seasonal cy-
cle interferes with the mean age calculation (e.g. Boering et
al., 1996). On the other hand, SF6 has a mesospheric sink, so
that the criterion of inertness is violated in the polar vortices
regions, where mesospheric air is descending back into the
stratosphere (e.g. Strunk et al., 1998; Reddmann et al., 2001;
Ray et al., 2002; Curtius et al., 2005; Engel et al., 2006b).
Despite these facts, particularly in the LMS mean age can be
determined solely from SF6, where CO2 is influenced by the
seasonal cycle.

For these reasons, we use only SF6 to derive the mean age
in the LMS. We use variable fit intervals to the tropospheric
reference data (shorter fits for younger mean ages) and a pa-
rameterization of the age spectrum as a function of the mean
age. This approach is necessary in order to take into account
non-linearity in the atmospheric growth rates. This two step
method that we applied here for stratospheric mean age of
air calculation from SF6 observation is explained in detail by
Engel et al. (2006b).

3.2 Mean age distribution in the LMS

Figure 2 shows mean age0SF6derived from SPURT SF6 ob-
servations in an equivalent latitudeϕe versus potential tem-
peratureθ coordinate system. The advantage of such a co-
ordinate system in representing trace gas distributions in the
LMS is that a substantial amount of scatter in the observa-
tions can be removed (e.g. Hoor et al., 2004; Hegglin et al.,
2004). This is due to the fact that theϕe − θ -coordinate
system accounts for adiabatic air parcel displacements, e.g.

the influence of transient (and largely reversible) north-south
excursions of air parcels associated with dynamical features
like Rossby waves, which significantly contribute to the vari-
ability in geographical space.

A close look at Fig. 2 reveals that negative values for0SF6
are derived mainly below 4 pvu but in summer and autumn
sometimes even up to the level of 6 pvu. During those oc-
casions air from the Northern Hemisphere extratropical tro-
posphere which contains higher mixing ratios of SF6 than
in the tropics influences the composition of the LMS result-
ing in negative mean age values. Strictly, the term mean
age is thus not correct in the LMS where it is affected by
extratropical upper tropospheric air rather than the tropics,
which acts as the control surface for the mean age calcula-
tion. However, we did not remove these data, because they
nicely indicate the area and the extent where extratropical
stratosphere-troposphere exchange predominantly influences
the LMS. The thickness of the layer in potential temperature
coordinates, which exhibits negative mean ages in the LMS,
varies with season spanning a largerθ -range during summer
and autumn than in winter and spring. Its location and sea-
sonality corresponds approximately with the ExTL described
by Hoor et al. (2004) using CO-O3 correlations and the TIL
described by Birner et al. (2006) using highly resolved ra-
diosonde temperature profiles.

In the LMS, the oldest air of up to 3 years was observed
during April (see Fig. 2). During October, the youngest air
with mean ages below 1 year was encountered throughout the
LMS. Obviously, the mean age undergoes a seasonal cycle
in the Northern Hemispheric LMS – increasing mean ages
from October to April and decreasing mean ages from April
to October. This cycle is phase shifted by about 3 month
with respect to the seasonality of the downward mass flux
from the overworld through the 380 K isentrope into the LMS
which shows a maximum in December/January (Appenzeller
et al., 1996). This illustrates that the mean age distribution
in the LMS is not entirely driven by the strength of down-
ward transport, but also depends on the isolation of the LMS
from the troposphere. Thus, the mean age distribution in the
LMS above the ExTL is controlled by the relative strength
of the combination of quasi-horizontal mixing of young air
from the tropics into the extratropics across the subtropical
jet and the residual horizontal transport in the tropically con-
trolled transition region just above the tropical tropopause
(Rosenlof et al., 1997), versus the residual downward trans-
port in the lower stratosphere. Different to the region above,
the formation of the ExTL is dominated by rather localised
TST-processes (e.g. Dessler et al., 1995; Hoor et al., 2002)
whereby irreversible cross-tropopause transport near the po-
lar jet also plays an important role (e.g. Fischer et al., 2000).

Figure 3 shows the water vapour distributions in the LMS
in summer and autumn derived from the SPURT data set
(Krebsbach et al., 2006) depicted in the same coordinate sys-
tem as used for mean age in Fig. 2. Interestingly, the LMS
is much drier during autumn when also the youngest air is
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Fig. 2. Seasonal variation of the mean age distributions0SF6 in the LMS. The data are binned according toϕe (5◦ N) andθ (5 K), in order
to remove short term atmospheric variability. The solid lines indicate the PV-isolines and the dots flag TST-events calculated from 10-day
backward trajectories by applying the time criterion of Wernli and Bourqui (2002).

observed than during summer. This indicates that the LMS
must be flushed with very dry tropospheric air (<5 ppm)
over the course of summer till autumn. The dryness of
this young air implies that these air masses have been trans-
ported and mixed quasi-horizontally from the upper tropical
tropopause layer (TTL) or from the lowest tropical strato-
sphere into the LMS. This is consistent with the shallow
residual circulation during summer and autumn which pro-
vides a quasi-horizontal residual transport pathway between
the tropics and the extratropics. Potential downward trans-
port from higher altitudes, which would also result in low
water vapour, is strongly reduced during summer and autumn
and can be excluded due to the fact that the mean age is on the
order of only 0.5 years during that time. A stronger contri-
bution of (sub-) tropical air due to a decreased barrier against
quasi-horizontal tracer transport at the subtropical jet during
summer is also consistent with other observations (Hoor et
al., 2005; Krebsbach et al., 2006; Sawa et al., 2008) and con-
clusions drawn by Chen (1995) based on model simulations,
by Haynes and Shuckburgh (2000) based on the concept of
effective diffusivity or by Sprenger and Wernli (2003) based
on trajectory calculations.

4 Mass balance

In order to derive more quantitative information on the air
mass origin in the LMS, we developed a method that allows
us to calculate a mass balance for the LMS using simulta-
neous measurements of SF6 and CO2. This mass balance
is based on the assumption that the distributions of SF6 and
CO2 in the extratropical lower stratosphere can be described
by age spectra which are superimpositions of two different
modes as suggested by Andrews et al. (2001). We avoid the
term bimodal because this implies two distinct maxima of the
distribution. The latter is a special case of a superposition of
two modes and it is also not a prerequisite for our mass bal-
ance study.

4.1 Conceptual approach

The concept of our mass balance for the LMS is shown
schematically in Fig. 4. The mixing ratio of passive tracers in
an air parcel located in the LMS can be described by a mix-
ture of two major fractions. The first fraction (α1) represents
air which was transported along relatively fast pathways (ma-
genta arrows in Fig. 4) which are associated with extratrop-
ical STE as well as tracer transport from the TTL into the
extratropics. We include also air masses that have crossed
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Fig. 3. Distribution of water vapour in the LMS during summer and autumn derived from SPURT data set. The data are binned according to
ϕe (5◦ N) andθ (5 K), in order to remove short term atmospheric variability. The solid lines indicate the PV-isolines.

Fig. 4. Schematic representation of the mass balance concept for the lower stratosphere. The arrows symbolise different stratospheric
transport pathways. The boxes indicate a typical tropical (magenta) and extratropical (blue and magenta) lower stratospheric air parcel for
which the assumed age spectra or transit time distributions are shown. A detailed description is given in the text.

the tropical tropopause region spreading to the lower strato-
sphere of higher latitudes between 380 K<θ<450 K which
has been referred to as the “tropical controlled transition re-
gion” (Rosenlof et al., 1997). This latter transport pathway is
associated with the lower branch of the Brewer-Dobson cir-
culation as evident in the strong poleward flow seen in TEM
circulation (Shepherd, 2007, and references within). Boering
et al. (1996) derived a transport timescale of about 2 months

for transport from the tropics to the extratropics in this re-
gion.

The second fraction (α2) in our mass balance approach de-
scribes the amount of air transported along the slower path-
ways (light blue arrows) which is associated with the deeper
branch of the Brewer-Dobson circulation reaching up to the
mesosphere and that mainly drives the downward transport
from the overworld into the LMS. In the following, we name
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for simplification α1 the tropospheric fraction andα2 the
stratospheric fraction, in order to reflect the origin of the air
masses.

In a mathematical way, the concept explained above can
be translated into the following basic equation for the mass
balance by describing the mixing ratio of a passive tracer as
the superposition of two monomodal age spectra, each folded
with the respective tropospheric input function, according to
the concept of HP94:

χ (r, t) = α1

∞∫
0

χ (�1, ε)︸ ︷︷ ︸
χ1,in

· G (01, 11, ε)︸ ︷︷ ︸
G1

dε

︸ ︷︷ ︸
χ1(�1,01,11)

+α2

∞∫
0

χ (�2, ε)︸ ︷︷ ︸
χ2,in

· G (02, 12, ε)︸ ︷︷ ︸
G2

dε

︸ ︷︷ ︸
χ2(�2,02,12)

(1)

Subject to the constraints

α1 + α2 = 1 (2)

∞∫
0

G1dε =

∞∫
0

G2dε = 1 (3)

Here,χ(r, t) is the mixing ratio of a passive tracer at a given
location r and timet in the stratosphere, whereby the en-
try functionsχ1,in andχ2,in specify the time series of the
tracer mixing ratio at the entrance regions�1 and�2 into
the stratosphere during the elapsed timeε=t−t0. The two
modes G1 and G2 of the age spectrum represent the transport
time distributions along the faster (magenta, G1) and slower
(light blue, G2) transport pathways into the LMS shown in
Fig. 4 and the superposition of both describes the entirety
of all transport pathways. The dimensionless parametersα1
andα2 correspond to the fraction of the air transported along
the different pathways into the LMS. The latter is a conse-
quence of the constraints which are associated to mass con-
servation (2) and standardisation (3). For our purpose, the
applied age spectra G for mass balance calculation are de-
fined in a convenient way as an Inverse Gaussian Distribu-
tion (IG) in terms of the mean age0 and the width1, used
in many different fields (e.g. Chhikara and Folks, 1989; Se-
shadri, 1999):

G (t) =

√
03

4π12t3
· exp

(
0 (t − 0)2

412t

)
. (4)

The basic mass balance Eq. (1) given above is of general na-
ture. This means that it describes a property (the “transport
history”) of each stratospheric air parcel. For this reason, the
equations above must be valid for all passive tracers mea-
sured at the same time in the stratosphere. In our case, we

will use simultaneous measurements of the tracers SF6 and
CO2, which are available in the SPURT data set, in order to
constrain the equation and to study transport into the LMS.

For this specific combination of tracers, we restrict the
mass balance study to the stratospherically dominated part
of the LMS above the ExTL or TIL respectively. In this re-
gion, the propagation of the tropospheric CO2 seasonal cy-
cle is still detectable. Boering et al. (1996) and Strahan et
al. (1998) demonstrated that the seasonal cycle affects the ex-
tratropical stratosphere below∼440 K or N2O mixing ratios
greater than∼250 ppb. The latter corresponds to a strato-
spheric mean age of about0=3 years (Engel et al., 2002). If
the mean age is greater than 3 years, the age spectrum is so
broad that the tropospheric CO2 seasonal cycle is smeared
out. Hence, the combination of both tracers does not provide
additional information about the age spectrum of an air par-
cel, as the Eqs. (1) for both tracers become linear dependent
for 0>3 years.

The restriction discussed above is introduced to the mass
balance equation as an additional constraint in the way that
the mean age02 of the mode G2, mapping the slower trans-
port branch overturning the whole stratosphere, is fixed to a
value of 3 years (Fig. 4: black dotted line). This mean age
isoline represents the upper boundary of our mass balance
study for the lower stratosphere. In accordance with the con-
cept of HP94, we apply the parameterisation that the width
of the age spectrum1 is a function of mean age

12

0
= constant= C, (5)

whereby we use the constantC2=0.7 years as suggested by
HP94 and applied by Engel et al. (2002) for the age spectra
representing the deeper branch of the Brewer-Dobson circu-
lation. An air parcel with a mean age of 3 years is certainly
located in the overworld which the air can only reach by
transport across the tropical tropopause (Holton et al., 1995).
For this reason, we use the time series of SF6 and CO2 in the
tropical troposphere between 10◦ S and 10◦ N as the strato-
spheric entry functionχ2,in. As explained above, the ground
surface instead of the tropopause was chosen as control level
�2, simply because of the availability of SF6 and CO2 mea-
surements there. The consequence of this approach is that the
mean age includes the average transit time from the ground
surface to the tropopause.

The mode G1 represents not only the transport pathways
across the tropical tropopause but also transport pathways
across the sub- and extratropical tropopause. In order to
describe these additional pathways into the Northern Hemi-
sphere LMS, the entry functionχ1,in must be different from
χ2,in. Due to the strong meridional gradient of SF6 and CO2
in the troposphere, we restrict the mass balance in the LMS to
the region above the ExTL, where TST across the extratrop-
ical tropopause can be excluded as far as possible (Hoor et
al., 2004). We chose a criterion of mean age0SF6>0.3 years
for this region (see Sect. 3.2). This also marks the lower
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boundary for our mass balance study. Due to this restriction,
the control surface�1 should be the tropical and subtropi-
cal tropopause only and the entry functionsχ1,in for SF6 and
CO2 should be the time series of both tracers at this control
surface. As for the other entry functionχ2,in, there are no
sufficient data sets available for the description ofχ1,in at
the tropopause. Hence same as for�2, the earth surface in-
stead of the tropopause has to serve as control surface�1. In
order to allow for the additional subtropical transport path-
ways of the mode G1 we decided to use the average tropo-
spheric time series of both tracers between 0◦ N and 20◦ N.
Our choice of this threshold is motivated by the work of
Berthet et al. (2007). They demonstrated that nearly all 30-
day backward trajectories started in the LMS above the ExTL
(at the 365 K level) are leaving the boundary layer (z<1 km)
between 0◦ N and 20◦ N.

Using Eq. (2), it is possible to substitute the stratospheric
fractionα2 in the basic mass balance Eq. (1). Hence, we can
formulate the Eq. (6) for the tropospheric fractionα1:

α1 =
χ (r, t) − χ2 (�2, 02, 12)

χ1 (�1, 01, 11) − χ2 (�2, 02, 12)
(6)

Taking into account all constraints for�1, �2, 02 and12 in-
troduced above only two unknown parameters in Eq. (6) are
left that have to be determined. These are the mean age or
mean transit time01 representing the fast transport branch
and the constantC1 defining the ratio of the width of the
mode G1 with respect to01, as shown in Eq. (5). The fol-
lowing system of Eqs. (7) has to be solved numerically to
derive the tropospheric fractionα1 from simultaneous mea-
surements of SF6 and CO2 obtained during the SPURT cam-
paigns

α1,SF6 =
χSF6(r,t)−χ2,SF6

χ1,SF6(01,11)−χ2,SF6

α1,CO2 =
χCO2(r,t)−χ2,CO2

χ1,CO2(01,11)−χ2,CO2

(7)

subject to the constraint

α1,SF6 = α1,CO2. (8)

Equation (8) is the direct consequence of the fact that an age
spectrum is a transit time distribution of all�-to-r pathways
which is characteristic for a specific air parcel in the strato-
sphere but not for a distinct passive tracer. The tropospheric
fractionα1 can be determined from Eqs. (7) and (8) numeri-
cally by variation of both free parameters01 andC1.

4.2 Sensitivity study

In order to estimate the uncertainties and the influence of the
free parameters01 and C1 on the solution of the equation
system (7) and (8) we performed a sensitivity study. For this
analysis we use all SF6 and CO2 distributions in theϕe−θ

coordinate system derived from simultaneous measurements
during SPURT. The difference

1α1 (01, C1) =
∣∣α1,SF6− α1,CO2

∣∣ (9)

of the tropospheric fractions calculated from SF6 and CO2
which should reduce to zero under ideal conditions is a di-
rect measure for the quality of the numerical results. In an
analogue manner to the width calculation of the mode G2,
we use the parameterisation given in Eqs. (5), whereas the
constant C1 is not predefined for the mode G1.

As an example Fig. 5 shows a sensitivity analysis of the
parameter1α1(01,C1) for the campaign S2 in January. For
clarity, the results are shown for the mean CO2 and SF6 val-
ues in each bin and not for all simultaneous measurements
of both tracers. The quantity1α1 has a strong minimum for
C1=0.05 and 0.20 years which disappears for larger values of
C1, i.e. for broader age spectra. For this example, the max-
imum differences for1α1 (and therefore also for1α2) is
about 20% and the average difference for1α1 is about 5%
given the parameterisationC1=0.2 years and01=0.3 years.

Note also, that the ideal solution1α1=0 for the equation
system (6) can not be found for all simultaneously measured
SF6 and CO2 mixing ratios. This is the consequence of the
measurement errors and natural variability, but also of the
idealised assumptions that have to be made for this mass bal-
ance, i.e. the parameterisation of the age spectrum, the con-
trol surface and the time series of SF6 and CO2 there.

However, our mass balance model is able to reproduce the
mixing ratios of both tracers for the right choice of parame-
ters. As shown in Fig. 5, simultaneously measured SF6 and
CO2 mixing ratios in the LMS during the campaign S2 in
January can be explained as a mixture of stratospheric air
with a mean age of02=3 years and of tropospheric air orig-
inating from the tropics and subtropics. The deviations1α1
are similar for the other SPURT campaigns for the specific
best choice of parameters.

Another result of the sensitivity analysis (not shown here)
is that for all campaigns the parameter01 is highly vari-
able in the range of 0.05 to 0.8 years, if accounting for all
SPURT SF6 and CO2 measurements.01 is characteristic for
an air parcel and describes the mean transit time from the tro-
pospheric source region to the point of measurement in the
LMS. A detailed discussion of the variability of01 is given
in the following section. In contrast to01, the parameter C1
varies only slightly in the range of 0.05 to 0.25 years for nu-
merical solution of equation system (7). Furthermore, the
changes of1α1 are not really significant for the variation of
C1 in these ranges and therefore we decided to fix the param-
eterC1 to 0.1 years for all following calculations.

4.3 Results

As shown before, we derive from simultaneous measured
SF6 and CO2 mixing ratios the tropospheric fractionα1 (and
the stratospheric fractionα2=1–α1) of an air parcel located
in the LMS by numerically solving the mass balance Eqs. (7)
and (8). An iterative non-linear least squares algorithm is
used to find the solution by varying the remaining free pa-
rameter01. This means that our method allows us to derive
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Fig. 5. Quality of fit parameter1α1=α1,SF6−α1,CO2 as a function of01 and 11 calculated from the mean values of SF6(ϕe,θ) and
CO2(ϕe,θ) distributions in each 5◦ latitude and 5 K potential temperature bin observed during campaign S2 in January. The bold lines
indicate the average of1α1.

the corresponding mean transit time01 from the control sur-
face to the specific location in the LMS for each tropospheric
fractionα1. This additional information of the mean transit
time represents a strong progress for quantification of trans-
port into the LMS from tracer measurements.

Figure 6 shows the distribution of the tropospheric frac-
tion α1 as a function of equivalent latitudeϕe and poten-
tial temperatureθ from SPURT SF6 and CO2 measurements.
The applied fixed parameter set for the calculation is C1=0.1
years, C2=0.7 years and02=3 years (see Sects. 4.1 and
4.2). In the region where0SF6<0.3 years (see Sect. 3.2),
which is below the lower boundary for our mass balance (see
Sect. 4.1) the fractionα1 is simply set to 100%, denoting
purely tropospheric air. We could not calculate the tropo-
spheric fractions for July because the required CO2 measure-
ments were not available for this campaign due to technical
problems.

Consistent with the findings derived from the mean age of
air distributions (see Fig. 2), the highest stratospheric influ-
ence on the LMS is found in April (S7) and the strongest tro-
pospheric influence in October (S5). Thus, the seasonal char-
acteristics of the tropospheric fractionsα1 mirror the findings
from the mean age distribution indicating more tropospheric
air during summer/autumn corresponding to younger air. It
appears that tropospheric fractionsα1>80% can be found
during all seasons in the LMS even in the region where the

potential vorticity (PV) is greater than 6 pvu. Note that PV,
which is the product of relative vorticity and vertical strati-
fication is adiabatically conserved (Ertel, 1942; Haynes and
McIntyre, 1990; Lait, 1994). A level of PV=2 pvu is often
used to define the dynamical extratropical tropopause (e.g.
Holton et al., 1995). Air masses with tropospheric frac-
tions α1<60% have been observed only during winter and
spring above the theta level of 345 K. Especially in October,
there are hardly any air masses with tropospheric fractions
α1<90% in the LMS.

Figure 7 displays the mean transit time01 from the tropo-
sphere or more precisely from the earth surface (not from the
tropopause) into the LMS derived from our mass balance ap-
proach in the same way as the associated tropospheric frac-
tion α1 in Fig. 6. Just asα1, the mean transit time01 can
only be calculated in the domain 0.3 years<0SF6<3 years
where our mass balance is defined, but unlikeα1, we do not
make any assumption for01 below the area of validity. Obvi-
ously the tropospheric influence in the LMS, mapped by the
parameterα1, is associated with different mean transit times
01. On average, the longest mean transit times01 of about
0.6 years are observed in May (S3) and the shortest of about
0.2 years in August. The latter is consistent with the findings
of Ray et al. (1999) who estimated transit times of roughly
1.5 month for September.
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Fig. 6. Seasonal variation of the tropospheric fractionα1 as a function ofϕe andθ calculated from all simultaneous measurements of SF6
and CO2 during SPURT. The lines indicate the PV-isolines.

In order to get an overall picture of the transport and mix-
ing into the LMS, it is necessary to combine the informa-
tion from the distribution of tropospheric fractionsα1(ϕe, θ)

(Fig. 6) and of the associated mean transit times01(ϕe,θ)

(Fig. 7):

During winter, the influence of stratospheric air in the
LMS with α2>30% (orα1<70%, respectively) occurs only
aboveθ=350 K in mid and high latitudes (35◦ N<ϕe<75◦ N)
even though the downward transport through the 380 K isen-
trope is at maximum in the extratropical stratosphere dur-
ing this time (Appenzeller et al., 1996). The mean tran-
sit times01 for the fast transport branch are very homoge-
neously distributed throughout the whole LMS being about
0.1 years longer in February (0.4 years<01<0.5 years) than
in January (0.3 years<01<0.4 years). This implies that the
observed tropospheric fractionα1 in winter has entered the
LMS predominantly during August and September. Dur-
ing winter the subtropical jet is strongest, inhibiting addi-
tional quasi-horizontal mixing which would add significant
amounts of even younger air and de-homogenize also the dis-
tribution of the mean transit timeα1. In combination with
the strongest downward transport and weak quasi-horizontal
STE in winter only those air masses, which entered the
stratosphere above the subtropical jet possibly across the
tropical tropopause in autumn are advected to the SPURT
locations, where they were observed during winter.

During spring, the strongest impact of air originating from
the overworld can be observed in the LMS above the level
PV>6 pvu. The mean transit times01 increase compared to
winter and reach their intra-annual maximum in May (S3).
The distribution of01(ϕe,θ) is much more inhomogeneous
in April (S7), when the tropospheric influence is minimal,
than in May. Our study suggests that the major part of tro-
pospheric air observed during both spring campaigns was
caused by tracer transport into the LMS during September
to November of the previous year. For the campaign in
April some influence from TST in early winter is detectable,
which is responsible for the observed enhanced variability of
01(ϕe,θ) distribution.

During summer, the LMS is dominated by tropospheric
air. The calculated values for the tropospheric fractionα1
are exclusively in the range of 70% to 100%. This strong
tropospheric influence is directly linked to the shortest mean
transit times01 into the LMS in the course of the year. Even
above the level of PV>8 pvu, transit times01 of less than 0.2
years are derived. On average these are the shortest transit
times we have derived from the entire data set. This agrees
well with the high tropospheric fractionα1 and indicates that
quasi-horizontal mixing is at maximum in summer when the
mixing barrier for isentropic tracer transport into the LMS –
the subtropical jet – is weakest (e.g. Hegglin and Shepherd,
2006).
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Fig. 7. Seasonal variation of the mean transit time01 associated to the tropospheric fractionα1 as a function ofϕe andθ calculated from all
simultaneous measurements of SF6 and CO2 during SPURT. The lines indicate the PV-isolines.

During autumn, the LMS is, similar to August, charac-
terised by a strong influence of tropospheric air. The mean
age calculations showed that the youngest air is found in
October (Fig. 2) and consequently, the intra-annual maxi-
mum values for the tropospheric fraction are found during
October withα1>80% throughout the LMS. In November,
when downward transport, driven by planetary Rossby wave
drag, in the Northern Hemisphere extratropical stratosphere
starts to increase, the tropospheric fractionα1 begins to de-
crease slightly below 80%. This decrease occurs first in
the upper LMS layers (θ>355 K) at higher equivalent lati-
tudes (60◦ N<ϕe<90◦ N). The associated mean transit times
01 are<0.3 years in October and<0.5 years in November
throughout the LMS. Note, that the longer transit times of
01>0.3 years in November are only observed in the region
where stratospheric influence is getting stronger (α2>20%).
These short transit times calculated for both campaigns per-
formed in autumn indicate that the entry of tropospheric air
along the fast transport pathways described by the mode G1
of the underlying age spectra has occurred exclusively in
summer.

5 Conclusion and outlook

This work is focused on the LMS above the so called ExTL
or TIL which is characterised by a strong coupling to the
troposphere with short transport time scales on the order
of a few days (Hoor et al., 2004). In our region of inter-
est, where mixing across the local tropopause only plays
a minor role – we would like to call it the “free lower-
most stratosphere” – the characteristics of transport changes
drastically compared to the ExTL, which is governed by
short-term local processes. In contrast, the transport time
scales in the free LMS are on the order of weeks up to sev-
eral months. This part of the LMS is dominated by quasi-
horizontal mixing across the subtropical tropopause in sum-
mer/autumn and transport from the tropical controlled tran-
sition layer (380 K<θ<450 K) (Rosenlof et al., 1997). In
higher latitudes both interact with downward transport from
the overworld driven by the Brewer-Dobson circulation. The
relatively homogeneous distribution of G1 indicates that the
impact of troposphere-to-stratosphere tracer transport across
the extratropical tropopause seems to play a minor role in
the free LMS and is restricted to processes at the local
tropopause in the ExTL. These findings are consistent with
those of Hoor et al. (2004), based on the propagation of
the tropospheric CO2 seasonal cycle into the LMS and the
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vertical distribution of CO relative to the local tropopause.
In this study, we have derived a method which allows quanti-
fying the time scales and the mass fractions of different trans-
port pathways into the LMS.

Our analysis shows that TST into the northern hemispheric
LMS accounting for the chemical composition above the
ExTL has a pronounced seasonality. The tropospheric frac-
tion α1 has its minimum in April when extreme values of
α1 below 20% can be found in the highest levels of the
LMS. In October, the tropospheric fraction maximises with
values ofα1>90% throughout the LMS. This is consistent
with the findings derived from mean age of air distributions
0SF6(ϕe,θ) calculated from SF6 measurements, which show
the oldest air in April and the youngest in October. During
all seasons, tropospheric fractionsα1>60% can occasion-
ally be found in the LMS even above the level of PV>8 pvu.
Combined with the dryness of the LMS in autumn these re-
sults suggest that quasi-horizontal transport from the TTL
across the subtropical jet and from just above the tropical
tropopause with subsequent subsidence are the dominating
transport pathways into the free LMS.

A short pathway exists, connecting the tropical tropopause
with the free LMS within the stratospheric residual circu-
lation (e.g. Shepherd, 2007). This pathway corresponds to
the lower branch of the Brewer-Dobson circulation which
is mainly driven by transient synoptic scale eddies (as op-
posed to the deep branch driven by planetary waves). Dur-
ing summer the Brewer-Dobson circulation is almost ex-
clusively composed out of the lower branch with close to
zero circulation above about 20 km altitude (which is the ap-
proximate location of the zero wind line). We suggest that
the residual transport time-scales within the lower branch of
the Brewer-Dobson circulation associated with the so-called
tropical controlled transition region (Rosenlof et al., 1997)
are considerably shorter in summer than in winter. Such a
“short-cut” has also been suggested by Hegglin et al. (2006)
deduced from the seasonality of N2O/O3 correlations mea-
sured during SPURT. In combination with the extreme weak-
ening of the deep branch of the circulation this would also
contribute to the picture of the free LMS as composed of
much younger tropospheric air in summer and autumn com-
pared to winter and spring.

The tropospheric fraction results are consistent with Hoor
et al. (2005) who found a similar seasonality in the LMS
above the ExTL. However, their tropospheric fractions are
systematically lower since they use a CO based mass bal-
ance. This approach is sensitive for transport processes
within the photochemical lifetime of CO which is on the or-
der of 3 months. In contrast to the SF6/CO2 based method
applied here, transport and mixing processes exceeding the
photochemical lifetime of CO contribute to the stratospheric
fraction in the study of Hoor et al. (2005). Thus, the CO
based tropospheric fractions have to be regarded as net mass
fractions of air, which have been transported from the tropo-
sphere into the LMS within the lifetime of CO.

The associated mean transit times01 which we report for
the first time in a mass balance study derived from in-situ
tracer measurements have a different seasonality than the tro-
pospheric fractionsα1. On average, the mean transit times
have a minimum of01<0.3 years during August and a maxi-
mum of01>0.5 years during May in the free LMS, whereby
01 increases continuously from August to May. This season-
ality indicates that strong quasi-horizontal mixing across the
weak subtropical jet and the dominance of the lower branch
localised in the “tropical controlled transition region” over
the deeper branch of the Brewer-Dobson circulation from
above 20 km during summer to mid of autumn dominates the
tropospheric influence and therefore also the chemical com-
position of the free LMS up to May. Even though downward
transport across the 380 K isentrope is decreasing from Jan-
uary to May the stratospheric influence in the LMS is getting
stronger due to weaker quasi-horizontal mixing across the
strong subtropical jet during winter. In summary, we con-
clude that the LMS is flushed with tropospheric air during
summer and that this in-mixing can be traced back till the
end of spring the following year.

Our mass balance approach is also a valuable tool for eval-
uating model transport in the extratropical UTLS. It can be
applied to modelled SF6 and CO2 fields to diagnose if the
time scales for tracer transport into the LMS have been sim-
ulated correctly (e.g. Boenisch et al., 2008). If both tracers
have been implemented in a full chemistry model run, the
mass balance approach can also serve to distinguish whether
chemical and/or transport and mixing processes may cause
observed discrepancies to measurements of non-passive trac-
ers. Also, it might be worth to compare our results directly
with age spectra derived from so called “pulse experiments”
used in mean age of air studies or with age spectra derived
from a Lagrangian scheme.

The high resolution SF6 and CO2 measurements obtained
during the SPURT campaigns allow for a comprehensive
view of the LMS region above Europe. Despite the large sea-
sonal and spatial data coverage, SPURT alone can obviously
not provide a climatology and the results presented here only
apply for the region and time of the SPURT observations and
have to be confirmed by further investigations and measure-
ments.
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Engel, A., Möbius, T., Haase, H.-P., B̈onisch, H., Wetter, T.,
Schmidt, U., Levin, I., Reddmann, T., Oelhaf, H., Wetzel, G.,
Grunow, K., Huret, N., and Pirre, M.: Observation of meso-
spheric air inside the arctic stratospheric polar vortex in early
2003, Atmos. Chem. Phys., 6, 267–282, 2006b,
http://www.atmos-chem-phys.net/6/267/2006/.

Ertel, H.: Ein neuer hydrodynamischer Wirbelsatz. Meteor. Z., 59,
277–281, 1942.

Fischer, H., Wienhold, F. G., Hoor, P., Bujok, O., Schiller, C.,
Siegmund, P., Ambaum, M., Scheeren, H. A., and Lelieveld, J.:
Tracer correlations in the northern high latitude lowermost strato-
sphere: Influence of cross-tropopause mass exchange, Geophys.
Res. Lett., 27(1), 97–100, 2000.

Forster, P. M. D. and Shine, K. P.: Radiative forcing and tempera-
ture trends from stratospheric ozone changes, J. Geophys. Res.,
102(D9), 10841–10855, 1997.

Fueglistaler, S., Wernli, H., and Peter, T.: Tropical troposphere-
tostratosphere transport inferred from trajectory calculations, J.
Geophys. Res., 109, D03108, doi:10.1029/2003JD004069, 2004.

Fueglistaler, S., Bonazzola, M., Haynes, P. H., and Peter, T.: Strato-
spheric water vapor predicted from the Lagrangian temperature
history of air entering the stratosphere in the tropics, J. Geophys.
Res., 110, D08107, doi:10.1029/2004JD005516, 2005.

www.atmos-chem-phys.net/9/5905/2009/ Atmos. Chem. Phys., 9, 5905–5919, 2009

http://www.atmos-chem-phys.net/5/3053/2005/
http://www.atmos-chem-phys.net/6/283/2006/
http://www.atmos-chem-phys.net/6/267/2006/


5918 H. B̈onisch et al.: Quantifying transport into the LMS

GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration
Project-Carbon Dioxide., CD-ROM, NOAA-ESRL, Boulder,
Colorado, also available on Internet via anonymous FTP to
ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW, 2007.

Gurk, Ch., Fischer, H., Hoor, P., Lawrence, M. G., Lelieveld, J., and
Wernli, H.: Airborne in-situ measurements of vertical, seasonal
and latitudinal distributions of carbon dioxide over Europe, At-
mos. Chem. Phys., 8, 6395–6403, 2008,
http://www.atmos-chem-phys.net/8/6395/2008/.

Hall, T. M. and Plumb, R. A.: Age as a diagnostic of stratospheric
transport, J. Geophys. Res., 99, 1059–1070, 1994.

Hall, T. M. and Waugh, D. W.: Influence of nonlocal chemistry
on tracer distributions: inferring mean age of air from SF6, J.
Geophys. Res., 103(D11), 13327–13336, 1998.

Haynes, P. H. and McIntyre, M. E.: On the conservation and im-
permeability theorems for potential vorticity, J. Atmos. Sci., 47,
2021–2031, 1990.

Haynes, P. H., Marks, C. J., McIntyre, M. E., Shepherd, T. G., and
Shine, K. P.: On the “downward control” of extratropical diabatic
circulations by eddy-induced mean zonal forces, J. Atmos. Sci.,
48, 651–678, 1991.

Haynes, P. H. and Shuckburgh, E. F.: Effective diffusivity as a diag-
nostic of atmospheric transport: 2. Troposphere and lower strato-
sphere, J. Geophys. Res., 105, 22795–22810, 2000.

Hegglin, M. I., Brunner, D., Wernli, H., Schwierz, C., Martius, O.,
Hoor, P., Fischer, H., Parchatka, U., Spelten, N., Schiller, C.,
Krebsbach, M., Weers, U., Staehelin, J., and Peter, Th.: Tracing
troposphere-to-stratosphere transport above a mid-latitude deep
convective system, Atmos. Chem. Phys., 4, 741–756, 2004,
http://www.atmos-chem-phys.net/4/741/2004/.

Hegglin, M. I., Brunner, D., Peter, T., Hoor, P., Fischer, H., Stae-
helin, J., Krebsbach, M., Schiller, C., Parchatka, U., and Weers,
U.: Measurements of NO, NOy, N2O, and O3 during SPURT:
implications for transport and chemistry in the lowermost strato-
sphere, Atmos. Chem. Phys., 6, 1331–1350, 2006,
http://www.atmos-chem-phys.net/6/1331/2006/.

Hegglin, M. I. and Shepherd, T. G.: O3-N2O correlations from the
Atmospheric Chemistry Experiment: Revisiting a diagnostic of
transport and chemistry in the stratosphere, J. Geophys. Res.,
112, D19301, doi:10.1029/2006JD008281, 2007.

Hegglin, M. I., Boone, C. D., Manney, G. L., and Walker, K. A.: A
global view of the extratropical tropopause transition layer from
Atmospheric Chemistry Experiment Fourier Transform Spec-
trometer O3, H2O, and CO, J. Geophys. Res., 114, D00B11,
doi:10.1029/2008JD009984, 2009.

Hintsa, E. J., Boerling, K. A., Weinstock, E. M., Anderson, J. G.,
Gary, B. L., Pfister, L., Daube, B. C., Wofsy, S. C., Loewen-
stein, M., Podolske, J. R., Margitan, J. J., and Bui, T. P.:
Troposphere-to-stratosphere transport in the lowermost strato-
sphere from measurements of H2O, CO2, N2O, and O3, Geo-
phys. Res. Lett., 25, 2655–2658, 1998.

Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R.,
Rood, R. B., and Pfister, L.: Stratosphere-troposphere exchange,
Rev. Geophys., 33, 403–439, 1995.

Hoor, P., Fischer, H., Lange, L., Lelieveld, J., and Brun-
ner, D.: Seasonal variations of a mixing layer in the low-
ermost stratosphere as identified by the CO-O3 correlation
from in situ measurements, J. Geophys. Res., 107(D5), 4044,
doi:10.1029/2000JD000289, 2002.

Hoor, P., Gurk, C., Brunner, D., Hegglin, M. I., Wernli, H., and
Fischer, H.: Seasonality and extent of extratropical TST derived
from in-situ CO measurements during SPURT, Atmos. Chem.
Phys., 4, 1427–1442, 2004,
http://www.atmos-chem-phys.net/4/1427/2004/.

Hoor, P., Fischer, H., and Lelieveld, J.: Tropical and extratrop-
ical tropospheric air in the lowermost stratosphere over Eu-
rope: A CO-based budget, Geophys. Res., Lett., 32, L07802,
doi:10.1029/2004GL022018, 2005.

James, P., Stohl, A., Forster, C., Eckhardt, S., Seibert, P., and
Frank, A.: A 15-year climatology of stratosphere-troposphere
exchange with a Lagrangian particle dispersion model: 1.
Methodology and validation, J. Geophys. Res., 108(D12), 8519,
doi:10.1029/2002JD002637, 2003a.

James, P., Stohl, A., Forster, C., Eckhardt, S., Seibert, P., and
Frank, A.: A 15-year climatology of stratosphere-troposphere
exchange with a Lagrangian particle dispersion model: 2. Mean
climate and seasonal variability, J. Geophys. Res., 108, 8522,
doi:10.1029/2002JD002639, 2003b.

Kida, H.: General circulation of air parcels and transport character-
istics derived from a hemispheric GCM, Part 2, Very long-term
motions of air parcels in the troposphere and stratosphere, J. Me-
teorol. Soc. Jpn., 61, 510-522, 1983.

Ko, M. K. W., Sze, N. D., Wang, W. C., Shia, G., Goldman, A.,
Murcray, F. J., Murcray, D. G., and Rinsland, C. P.: Atmospheric
Sulfur-Hexafluoride – Sources, Sinks and Greenhouse Warming,
J. Geophys. Res., 98, 10499–10507, 1993.

Ko, M. K. W., Poulet, G., Blake, D. R., et al.: Very short-lived halo-
gen and sulfur substances, Chapter 2, in: Scientific Assessment
of Ozone Depletion: 2002, Global Ozone Research and Monitor-
ing Project – Report No. 47, World Meteorological Organization,
Geneva, 2003.

Krebsbach, M., Schiller, C., Brunner, D., Gnther, G., Hegglin, M.
I., Mottaghy, D., Riese, M., Spelten, N., and Wernli, H.: Sea-
sonal cycles and variability of O3 and H2O in the UT/LMS dur-
ing SPURT, Atmos. Chem. Phys., 6, 109–125, 2006,
http://www.atmos-chem-phys.net/6/109/2006/.

Lacis, A. A., Wuebbles, D. J., and Logan, J. A.: Radiative forc-
ing of climate by changes in the vertical distribution of ozone, J.
Geophys. Res., 95, 9971–9981, 1990.

Lait, L. R.: An alternative form for potential vorticity, J. Atmos.
Sci., 51, 1754–1759, 1994.

Laube, J. C., Engel, A., B̈onisch, H., M̈obius, T., Worton, D. R.,
Sturges, W. T., Grunow, K., and Schmidt, U.: Contribution of
very short-lived organic substances to stratospheric chlorine and
bromine in the tropics a case study, Atmos. Chem. Phys., 8,
7325–7334, 2008,
http://www.atmos-chem-phys.net/8/7325/2008/.

Law, K. S., Sturges, W. T., Blake, D. R., et al.: Halogenated very
short-lived substances, Scientific assessment of ozone depletion:
2006, Global Ozone Research and Monitoring Project, World
Meteorological Organization, Geneva, Switzerland, Report No.
50, Chapter 2, 2007.

Levine, J. G., Braesicke, P., Harris, N. R. P., Savage, N. H.,
and Pyle, J. A.: Pathways and timescales for troposphere-to-
stratosphere transport via the tropical tropopause layer and their
relevance for very short lived substances, J. Geophys. Res., 112,
D04308 doi:10.1029/2005JD006940, 2007.

Maiss, M. and Levin, I.: Global increase of SF6 observed in the

Atmos. Chem. Phys., 9, 5905–5919, 2009 www.atmos-chem-phys.net/9/5905/2009/

ftp.cmdl.noaa.gov
http://www.atmos-chem-phys.net/8/6395/2008/
http://www.atmos-chem-phys.net/4/741/2004/
http://www.atmos-chem-phys.net/6/1331/2006/
http://www.atmos-chem-phys.net/4/1427/2004/
http://www.atmos-chem-phys.net/6/109/2006/
http://www.atmos-chem-phys.net/8/7325/2008/


H. Bönisch et al.: Quantifying transport into the LMS 5919

atmosphere, Geophys. Res. Lett., 21(7), 569–572, 1994.
NOAA-ESRL, Halocarbons & other Atmospheric Trace Species

Group (HATS), available on Internet via anonymous FTP to
ftp.cmdl.noaa.gov, Path: hats/sf6/flasks, 2007.

Olsen, M. A., Douglass, A. R., Newman, P. A., Gille, J. C., Nardi,
B., Yudin, V. A., Kinnison, D. E., and Khosravi, R.: HIRDLS
observations and simulation of a lower stratospheric intrusion of
tropical air to high latitudes, Geophys. Res. Lett., 35, L21813,
doi:10.1029/2008GL035514, 2008.

Pan, L. L., Hintsa, E. J., Stone, E. M., Weinstock, E. M.,
and Randel, W. J.: The seasonal cycle of water vapour
and saturation vapor mixing ratio in the extratropical lower-
most stratosphere, J. Geophys. Res., 105(D21), 26519–26530,
doi:10.1029/2000JD900401, 2000.

Pan, L. L., Randel W. J., Gary, B. L., Mahoney, M. J., and
Hintsa, E. J.: Definitions and sharpness of the extratropical
tropopause: A trace gas perspective, J. Geophys. Res., 109,
D23103, doi:10.1029/2004JD004982, 2004.

Randel, W. J., Wu, F., and Forster, P.: The Extratropical Tropopause
Inversion Layer: Global Observations with GPS Data, and a
Radiative Forcing Mechanism. J. Atmos. Sci., 64, 4489–4496,
2007.

Ravishankara, A. R., Solomon, S., Turniseed, A. A., and Warren,
R. F.: Atmospheric lifetimes of long-lived halogenated species,
Science, 259, 194–199, 1993.

Ray, E. A., Moore, F. L., Elkins, J. W., Dutton, G. S., Fahey, D. W.,
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