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Abstract

We construct a neural network algorithm that generates price predictions for art at auction,

relying on both visual and non-visual object characteristics. We find that higher automated

valuations relative to auction house pre-sale estimates are associated with substantially

higher price-to-estimate ratios and lower buy-in rates, pointing to estimates’ informational

inefficiency. The relative contribution of machine learning is higher for artists with less

dispersed and lower average prices. Furthermore, we show that auctioneers’ prediction

errors are persistent both at the artist and at the auction house level, and hence directly

predictable themselves using information on past errors.
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Auction houses do not just match consignors to bidders. They also act as brokers of information.

In particular, they publicly communicate market value estimates of the lots for sale. Even though

auction theory suggests that “honesty is the best policy” (Milgrom and Weber (1982)), at least

for a monopolistic auctioneer, there are good reasons to think that pre-sale estimates may not be

unbiased. Art and other collectibles’ illiquidity and heterogeneity make the task of valuation far

from obvious (Chambers, Dimson, and Spaenjers (2020)). Moreover, both behavioral frictions

and strategic-competitive considerations can impact auction houses’ proclaimed valuations.

To study whether any individual behavioral or strategic bias systematically skews estimates,

one can correlate auctioneers’ prediction errors with a proxy for the driver of the hypothesized

bias.1 Let us give a simple example. Prior work suggests that intermediaries in real asset markets

are slow to adjust their appraisals, especially downwards. Such behavior can be traced back to

cognitive biases, but may also reflect strategic incentives to avoid signaling market downturns to

collector-investors (Brown and Matysiak (2000), Velthuis (2007), Dimson and Spaenjers (2011)).

We can thus hypothesize that recent price trends—adverse ones in particular—will not always

be reflected in auction house estimates. Using the art sales data presented later in this paper, we

first compute artist-level average annualized returns on resales over the period 2008–2014 (for

items for which we can identify an initial transaction since 2003). We then use this new measure

to sort all auctioned lots by the same set of artists in 2015. Figure 1 shows the distributions

of logged price-to-estimate ratios in 2015 for the quartiles of lots with the worst and best

artist-level investment performance in recent years. It becomes clear that auctioneers’ ex-ante

value assessments are more likely to overshoot (undershoot) ex-post transaction prices for artists

with low (high) recent returns.

Exercises like these can help to identify specific drivers of auctioneers’ prediction errors.

However, the pattern shown in Figure 1 may co-exist with many other—possibly hard to

precisely and separately define and measure—sources of systematic variation in the data.

Furthermore, estimates may have an idiosyncratic error component as well. Any single cut of

the data thus tells us little about the overall informational efficiency of pre-sale estimates. One

way to gauge whether pre-sale estimates can be improved upon as predictors of cross-sectional

1Even though we will explicitly recognize that pre-sale estimates may sometimes be set relatively low or high on
purpose for strategic reasons, we will for simplicity speak about “errors” in prediction or valuation.
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Figure 1. Motivating example. This figure shows two different distributions of P− E, winsorized at −1 and +2,
where P is the log of the hammer price (imputed at 75% of the low estimate in case of a buy-in, where the highest
bid remains below the reserve price) and E is the log of the mean pre-sale estimate. The distributions are based on
art auctions in 2015. We classify all lots in quartiles based on the artist-level average log return on observed resales
over the period 2008–2014 (for initial transactions since 2003). We then compare the distribution for the first quartile
(“Artists with low recent returns”) to the fourth quartile (“Artists with high recent returns”). More information on
our data can be found in Section II.

variation in transaction prices in an economically meaningful way, is to come up with reasonable

counterfactual estimates that auctioneers could have picked given their information set. Yet,

constructing such benchmark valuations is not a straightforward task when relying on standard

statistical tools such as linear regression models, in particular when these are estimated based

on relatively small data sets. This may explain the conflicting conclusions in prior work on

auction house biases (see Ashenfelter and Graddy (2006) for a review of the literature).

Our paper makes progress on this front by creating a novel statistical algorithm that generates

automated valuations of artworks based on a large database of past auction outcomes. To do

so, we build on recent advances in machine learning and computer vision.2 A conceptual

rather than methodological novelty of our paper is that we will use our technology not just

to generate predictions of prices that can be compared to auction house estimates, but also to

directly generate predictions of auctioneers’ valuation errors. Like our benchmark analysis, such a

statistical approach to studying estimates’ informational efficiency does not necessitate any prior

hypothesis or knowledge on what biases auction houses are subject to. Of course, auction house

prediction errors will only be predictable out-of-sample if those biases and the resulting errors

are sufficiently persistent. To our knowledge, the persistence and predictability of auctioneers’

2Pownall and Graddy (2016) and Ma et al. (2019) measure specific visual properties, which they then use as
inputs in a hedonic model, but our paper is the first to directly include images in a statistical model of art pricing.
Our methods are similar to those of Glaeser, Kincaid, and Naik (2018), who study how house prices are affected by
their appearance.
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under- and overvaluation patterns has not been examined before.

Our research starts from data on 1.2 million painting auctions from a proprietary database

of art sales. The data capture the near-totality of global art auction activity over our sample

period 2008–2015. For each lot, the database contains detailed information related to the artist,

the artwork, and the auction. It also includes an image of each item. Nearly every artwork in

our database is associated with a low and a high pre-sale estimate issued by the auction house;

we will work with the mean value in our analysis. If the item sells at auction, we observe its

hammer price; otherwise, we know that it has been “bought in”. The distribution of art prices

has a very long right tail: while the median hammer price in our data set is $3,271, the average

equals $61,225. Our initial database includes hundreds of auction houses, but the top three

(Christie’s, Sotheby’s, and Bonhams) account for 22% of all observations—and 70% of aggregate

dollar volume.

We use the data for the period 2008–2014 to generate price predictions for art objects

auctioned in 2015 using machine learning. We train a neural network, which can be seen as a

method to define very large parametric models in which the parameters are learned from the

observations in an iterative and stochastic manner. Because we want to use the picture of each

artwork, we estimate a type of model—a “convolutional” neural network—that is often used for

image-recognition tasks. Next to the image, our benchmark prediction relies on independent

variables derived from the textual and numerical data in the database (e.g., artist, artwork

materials, auction house). When constructing and estimating the model, we build in a number

of features that help to avoid overfitting, in particular with respect to the artist dummies.

In order to be useful as counterfactual pre-sale valuations, our machine-learning price

predictions need to be sufficiently accurate. We verify this in an out-of-sample test set of

auctions that took place in 2015, where we first filtered out artists and auction houses that

are economically of only minor importance. We find that our automated valuations explain

nearly 75% of the transaction price variation in the test sample. We then let the neural network

make new predictions after dropping different (sets of) variables, and study by how much the

R-squared goes down. We find that artist-related information is much more relevant for price

predictions than artwork properties. The incremental explanatory power of images is relatively

limited, at least once conditioning on artist and artwork characteristics.

3
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As a benchmark for our novel machine-learning valuations, we also use a standard linear

hedonic model to generate price predictions for all test set lots. When relating price outcomes to

the hedonic valuations, we find an R-squared of 67.7%, compared to 74.2% for the predictions

coming out of our neural network. Because of the lack of interaction effects in a standard

hedonic model, machine-learning valuations are much more likely to be accurate than hedonic

valuations for works by high-volume and high-dispersion artists—who also tend to be more

expensive on average.

Not surprisingly, even our most sophisticated automated valuations are a worse “predictor”

of transaction prices than the auctioneers’ pre-sale estimates (R-squared above 90%). Auction

house experts have access to more qualitative information about the artwork (e.g., condition,

provenance) and about the artist’s place in art history than our algorithms. Also, if potential

buyers anchor their valuations on publicly available auction house estimates, then the estimates

may be endogenously correlated with price outcomes. We thus cannot conclude from our

ex-post comparison of predictive power that humans beat machines in the task of art price

prediction; it is in any case not a goal of this paper to set up such a “horse race”.

We then study whether the relative level of our novel machine-generated price predictions

(compared to auction house estimates) predicts relative price outcomes. We show that, after

conditioning on pre-sale estimates, our machine-learning valuations have economically and

statistically significant explanatory power for price-to-estimate ratios. We can also expect an

effect on buy-in rates, as consignors typically set their reserve at a level slightly below the

low estimate provided by the auction house, implying a strong correlation between the two.

Indeed, when our automated valuation is high relative to the auction house estimate, the buy-in

probability is only about 25%, while this probability exceeds 45% when the prediction generated

by the machine-learning algorithm is low relative to the auctioneer’s valuation.

We dig deeper into the drivers of the relative usefulness of machine-based valuations, which

is determined jointly by the accuracy of our automated predictions and that of the auction house

estimates. We find that our machine-learning predictions—but not human experts—become

predictably more accurate for objects by artists with a narrow range of price levels and for

artworks that based on their characteristics can be expected to be easier to value in an automated

fashion. Our neural network price predictions are also more likely to be more accurate than

4
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pre-sale estimates for less expensive artists, artists that are associated with high prediction errors

by auctioneers historically, high-volume artists, and more recent artworks.3

If auctioneers are affected by systematic biases, then it might be possible to predict ex ante

situations in which auctioneers’ valuations are likely to be too optimistic or too pessimistic. We

show that prediction errors are indeed persistent both at the artist and at the auction house level.

We then use our statistical framework to directly predict the prediction errors of auctioneers.

More precisely, we generate an ex-ante prediction of the price-to-estimate ratio for each lot,

using exactly the same inputs as before (including the image), and also the pre-sale estimate.

We find a substantial correlation between predicted and actual deviations of transaction prices

from estimates. Also the buy-in rate decreases sharply in the predicted price-to-estimate ratio.

This predictability exists even if the network does not have access to the auctioneer’s estimate.

Both the identity of the artist and the identity of the auctioneer are important drivers of this

predictability, suggesting that both behavioral biases and strategic considerations may play a

role.

Finally, we highlight that non-fundamental variation in auction house pre-sale estimates

has real economic effects as it drives heterogeneity in art market participants’ investment

outcomes. Because consignors’ reserve prices are strongly correlated to auction house estimates,

buy-in rates are higher if auctioneers are more optimistic. But also bidders may anchor on

auction house estimates. We can therefore expect that artworks associated with more aggressive

estimates—relative to our automated valuations—will have lower returns going forward.4 We

find suggestive evidence in support of this hypothesis using data on artwork resales over the

period 2016–2018 for which the purchase is part of our year-2015 test data set.

While the empirical setting studied in this paper is the art auction market—for which

large amounts of historical data on both prices and human experts’ valuations are available—

investigating the predictability both of prices and of biases in intermediaries’ information

3With these results we contribute to the discussion about the relative strengths and weaknesses of “men” vs.
“machines” in financial-economic decision-making (e.g., Abis (2020), Coleman, Merkley, and Pacelli (2020), Erel et al.
(2021), Fuster et al. (2021)) and that about the implications of machine learning for job occupations (e.g., Autor
(2015), Acemoglu and Restrepo (2018), Agrawal, Gans, and Goldfarb (2018), Brynjolfsson, Mitchell, and Rock (2018),
Grennan and Michaely (2020)).

4Mei and Moses (2005) also study this hypothesis of “credulous” art buyers, and show that works with higher
estimates have higher realized returns and lower future returns. However, as they do not control for the pricing of
artwork characteristics, their results are also consistent with variation in estimates correctly anticipating patterns in
bidders’ willingness-to-pay.
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provision clearly carries relevance for other real asset markets as well. Consider, in particular,

real estate. While automated valuation models are increasingly common in the housing market,

as illustrated by the rise of “iBuyers” (Buchak et al. (2020)), not much is known about their

predictive power for transaction values—and about the heterogeneity therein. Also, it is clear that

behavioral frictions and incentive issues can affect housing appraisals (Salzman and Zwinkels

(2017)), and that real estate market participants may anchor their valuations on those of human

experts.

The remainder of this paper is organized as follows. Section I provides more information on

the empirical setting. Section II presents the data. Section III introduces our machine-learning

algorithm, while IV assesses its predictive power. Section V presents evidence that auction house

estimates are informationally inefficient, and Section VI shows that auctioneers’ prediction

errors are themselves predictable. Section VII discusses some key takeaways and implications of

our findings.

I. Art Auctions and Pre-Sale Estimates

Art auctions are typically organized as “English” (i.e., ascending-bid, open-outcry) auctions.

Each consignor sets a reserve price, which is the lowest price she is willing to accept, in

agreement with the auction house. If the highest bid at the auction meets or exceeds the reserve

price, the object will be sold at this price—the “hammer price”.5 If the highest bid remains

below the reserve price, the item is said to be “bought in”; it does not sell and instead returns to

the consignor.

Prior to most auctions, auction house experts publicly share a “low” and a “high” estimate

for each lot. Artworks’ market values are difficult to determine because every object is unique

and only trades infrequently. Nonetheless, many thousands of objects are sold publicly at

auction every year. Art auction sales databases thus contain a lot of information about collectors’

willingness-to-pay, and auctioneers do consider recent auction prices for similar works.

Auction house estimates are said to be representing auction house experts’ opinion “about

the range in which the lot might sell at auction” (both quotes in this paragraph taken from

5The auction house will charge a “buyer’s premium” on top of the hammer price. Moreover, the consignor has to
pay a “seller’s commission”. We do not consider transaction costs here.
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Sotheby’s website). And, indeed, pre-sale estimates seem to be relatively accurate on average, at

least once taking into account buy-ins (McAndrew et al. (2012)). Yet, at the same time, auction

houses will typically argue that their estimates only serve as “an approximate guide to current

market value and should not be interpreted as a representation or prediction of actual selling

prices”. The latter statement of course points to the fact that auction houses may sometimes

strategically choose to be relatively aggressive or conservative in their estimates. On the one

hand, higher estimates may be useful to lure consignors away from competitors (Gammon

(2019)), or to increase bids by “credulous” investors on certain lots (Mei and Moses (2005)). On

the other hand, lower estimates might steer consignors to lower reserves (thereby increasing sale

rates), or attract bidders to the auction. The upshot is that pre-sale estimates do not necessarily

represent auctioneers’ honest assessment of what they think the hammer price will be.

Next to (conscious) strategic biases, also (unconscious) behavioral biases in expectations

formation may affect auctioneers’ choices of pre-sale estimates. Prior research on illiquid real

asset markets has shown that investors and intermediaries may suffer from biases related to

extrapolation (Glaeser and Nathanson (2017)), reference dependence (Genesove and Mayer

(2001), Andersen et al. (2021)), anchoring (Beggs and Graddy (2009)), and confirmation bias

(Eriksen et al. (2020)), among others.

Different strategic and behavioral biases can of course aggregate and interact in complicated

ways. Auctioneers can moreover make idiosyncratic errors.6 If the cumulative impact of these

factors on the auctioneers’ estimates is sufficiently large, then it may be possible to improve

upon these estimates as predictors of (cross-sectional variation in) transaction prices. Moreover,

if the auctioneers’ biases and the resultant prediction errors are persistent, then it should be

possible to pick up predictability in the distribution of deviations of ex-post transaction prices

from ex-ante auction house estimates. In our empirical analysis, we will study both of these

hypotheses.

6More formally, suppose that it is an auctioneer’s job to come up with an estimate V so that the auction price
P = V + ε, where ε is a zero-mean noise term. Even in the absence of systematic biases, the estimates E may deviate
in an idiosyncratic fashion from V, meaning that E = V + η.
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II. Data

The analysis in this paper relies on proprietary data coming from the Blouin Art Sales Index,

which tracks auction sales at hundreds of auction houses worldwide, including at Christie’s

and Sotheby’s. The database has been used before by Korteweg, Kräussl, and Verwijmeren

(2016). Since the end of 2007, the data source also includes information on buy-ins. We here

use data on paintings offered at auctions over the period 2008–2015.7 In total, our data set

contains information on 1.2 million lots at hundreds of auction houses of works by about 130,000

individual artists.

For each lot, the database contains information related to the artist (artist name, nationality,

birth and death year, style), the artwork (year of creation, size, materials, title, markings such

as signature or date), and the auction (auction house, auction location, auction date, pre-sale

low and high estimates, a buy-in indicator, hammer price if sold). All price data are converted

to U.S. dollars using the spot rate at the time of the sale. Uniquely, we also have access to a

high-quality image of each painting.

About two thirds of these auction lots have been sold, while the remaining one third were

bought-in because the highest bid remained below the consignor’s reserve price. Table I shows

some information on the distribution of hammer prices for the overall data set and for the

top-three most frequent artists, auction houses, and auction locations in our data set. The

average hammer price is $61,225, while the median is $3,271, indicating a long right tail of

very expensive paintings. The two top-selling artists over our sample period, Pablo Picasso

and Andy Warhol, both have a mean hammer price exceeding one million dollars. Prices are

also clearly higher-than-average at Christie’s and Sotheby’s, which are the two auction houses

with the highest number of sales, followed by Bonhams. While Paris is the most frequently-

observed auction location, prices are substantially lower there than in New York and London.

Taken together, the top-three auction houses and auction locations account for 22% and 28% of

observations, and 70% and 73% of aggregate dollar volume, respectively.

Table I also includes some statistics on price-to-estimate ratios, which we compute by

dividing the hammer price by the mean—or “mid”—pre-sale estimate (and subsequently

7We observed that a very small fraction of items classified as paintings are actually three-dimensional artworks.

8

Electronic copy available at: https://ssrn.com/abstract=3347175



Table I
Descriptive statistics for hammer prices and price-to-estimate ratios

This table shows descriptive statistics (mean, first quartile (P25), median (P50), and third quartile (P75)) for hammer
prices in U.S. dollars and price-to-estimate ratios based on the lots that sold successfully. The first row shows
statistics starting from the full data set, which covers auctions worldwide over the years 2008–2015. The next sets
of rows show statistics for the top-three most frequently observed artists, auction houses, and auction locations
separately.

Hammer price ($) Price / estimate

N % sold Mean P25 P50 P75 Mean P25 P50 P75

All 1,187,666 0.65 61,225 1,037 3,271 13,000 1.14 0.71 0.88 1.26

Pablo Picasso 2,380 0.72 1,198,106 4,750 11,166 170,000 1.23 0.79 1.00 1.40
Andy Warhol 2,351 0.76 1,299,384 14,000 105,877 478,632 1.09 0.76 0.91 1.26
Victor Vasarely 1,283 0.67 38,607 3,237 23,401 55,000 1.14 0.80 0.92 1.33

Christie’s 110,764 0.77 217,080 4,467 15,480 60,700 1.24 0.75 0.94 1.40
Sotheby’s 84,116 0.70 304,368 13,000 35,993 120,000 1.28 0.80 1.00 1.43
Bonhams 66,908 0.64 16,712 1,200 3,213 9,833 1.09 0.72 0.85 1.21

Paris 148,572 0.58 24,807 1,004 2,772 9,068 1.33 0.81 0.98 1.43
New York 105,357 0.70 270,879 3,500 14,000 60,000 1.12 0.67 0.87 1.29
London 74,041 0.66 279,438 11,076 31,775 109,528 1.21 0.79 0.93 1.36

winsorizing at 0.10 and 10). We see that the median (mean) price-to-estimate ratio associated

with successful sales is slightly below (above) one. The interquartile range is substantial, going

from prices 29% below the mid estimate to 26% above. Moreover, it is worth noting that for all

buy-ins the highest bid is substantially below the mid estimate, as reserve prices cannot exceed

the low estimate.8

In Figure 2, we show time trends for some key statistics. Panel (a) shows the number of

observations and sale rate (i.e., one minus the percentage of buy-ins) for each year of our sample

period. Panel (b) shows the yearly mean and median hammer price and price-to-estimate ratio.

Later on, we will use the data for the final year of our sample period to test the predictive power

of different valuations. In this sense, it is reassuring that Figure 2 shows no dramatic changes in

terms of sample composition for the year 2015.

8For about four fifths of our observations, the low estimate is itself 10% to 25% below the mid estimate. The size
of the spread between the low and the high estimate does not show much variation once controlling for auction
house and low estimate, and is thus unlikely to contain any relevant information about the auctioneer’s confidence
in her own estimate. For example, in our training data, 175 out of the 177 lots with a low estimate of $100,000 offered
at Christie’s in the U.S. have a high estimate of $150,000.

9
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(a) Number of observations and sale rates (b) Hammer prices and price-to-estimate ratios

Figure 2. Time-series variation in sample size and prices. Panel (a) of this figure shows the yearly number of
observations (against the left axis) and percentage of lots that sold successfully (against the right axis) in our database.
Panel (b) shows the yearly mean and median hammer price (against the left axis), and mean and median ratio of
hammer price to the mean pre-sale estimate (against the right axis) based on lots that sold successfully.

III. Valuing Art Using Machine Learning

A. Overview of Methodological Approach

In this section, we explain how we can generate alternative valuations that auctioneers could

have set given the information that they had access to at the time of deciding on their pre-sale

estimates. We use works auctioned over the years 2008–2014 to develop an algorithm that

predicts the price of any artwork based on its characteristics. In the next section, we will then

test the performance of our algorithm using auction data from the year 2015. We choose our

out-of-sample test set to follow our training sample period to avoid that we use information

from after a sale to predict its outcome.

The machine-learning technique that we employ is neural networks, which can be seen as

very large parametric models. Neural networks consist of different interconnected “layers” of

nodes (or “neurons”), where the first one is called the “input layer” and represents the variables

from which predictions are made, and the final one is called the “output layer” and contains

predictions compiled from the inputs. In between input and output layers, there are other layers

that apply linear mappings and non-linear “activation functions” to the nodes in the previous

layer, which intuitively can be seen as extracting the information that is most helpful for making

predictions. Neural networks’ parameters—also called “weights”—are typically learned from

observations in an iterative and stochastic manner.
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Given that our data set contains not just textual information on artworks’ characteristics but

also their images, we use a specific type of neural networks that is popular in image-recognition

tasks, namely “convolutional neural networks” (CNNs). Such networks have the capacity to

learn very complex functions of images’ pixel values, while taking advantage of the spatial

structure of an image in which nearby pixels are correlated. CNNs have been shown to be

able to “predict” an artwork’s genre, creator, and semantic content, as well as human aesthetic

judgments (Karayev et al. (2014), Tan et al. (2016), Strezoski and Worring (2017)). In theory, our

algorithm can thus pick up any relation between artwork subject and composition (shape, color,

etc.) on the one hand and prices on the other hand.

The following subsections detail the input variables that enter the algorithm, the architecture

of the neural network, and how we estimate the network.

B. Input Variables

Next to the image, we derive the following explanatory variables from the textual information

in the database:

i. Artist. The data that we will use for training our neural network (i.e., auctions over the

period 2008–2014) includes lots by 117,000 different artists.

ii. Artist nationality. Together, these artists represent almost 170 different nationalities.

iii. Artist birth and death year. For more than 90% of all lots, the database includes informa-

tion on the birth year of the artist. In the training data, the median birth year is 1897. If

the artist has already died at the time of the auction, we typically also have information

on the year of death.

iv. Artist style. The database classifies almost 70% of all works in one of the following style

categories: (1) Old Masters; (2) 19th Century European; (3) Impressionist and Modern; (4)

Post-War and Contemporary; (5) American; (6) Latin American; (7) Asian.

v. Artwork creation year. We have precise information on the creation year for about half of

all observations. A large majority of the artworks for which we have this information date

from the twentieth century.
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vi. Artwork width and height. Artwork size is included in the database for nearly all

observations. We winsorize width and height at 10 and 200 centimeters. The median

width in the training data is 55 centimeters, while the median height is 52 centimeters.

vii. Artwork materials. We create 18 indicator variables for the following terms that appear

frequently in the description of the materials and support: (1) oil; (2) watercolor; (3) acrylic;

(4) ink; (5) gouache; (6) bronze; (7) mixed media; (8) pastel; (9) lithograph; (10) poster;

(11) etching; (12) pencil; (13) canvas; (14) board; (15) panel; (16) paper; (17) masonite; and

(18) wood. These categories are not mutually exclusive. In the training data, only 2.8% of

all lots fall outside of any of these categories. For more than 75% of all lots, exactly two

dummies equal one (as would be the case, for example, if the description reads “oil on

canvas”).

viii. Artwork title. We create eight indicator variables for the following groups of terms that

are used frequently in artwork titles: (1) untitled, sans titre, senza titolo, ohne titel, sin

titulo, o.t.; (2) composition, abstract, composizione, komposition; (3) landscape, paysage,

paesaggio, seascape, marine, paisaje; (4) still life, flowers, nature morte, bouquet de fleurs,

nature morta, vase de fleurs; (5) figure, figura, character; (6) nude; (7) portrait, mother and

child; and (8) self-portrait, self portrait. (To come up with this classification, we consider

the 50 most frequent titles in our sample, and manually create groups of related words.)

These categories are not mutually exclusive. In the training data, at least one of these

indicator variables equals one for 21.6% of all works.

ix. Artwork markings. We create three dummy variables that equal one if the artwork is (1)

signed; (2) dated; or (3) inscribed by the artist. These categories are not mutually exclusive.

In the training data, at least one of these indicator variables equals one for 82.0% of all

works.

x. Auction house. The biggest auction houses are clearly Christie’s and Sotheby’s, but the

training data set covers lots at nearly 370 auction houses in total (some of which have

different locations).
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xi. Auction location. The database specifies the location (typically, a city) for each auction.

The training data includes sales in 230 different locations.

xii. Auction month. We create a variable capturing the month of the sale.

xiii. Auction year. The algorithm will also have access to the year of the sale. When generating

out-of-sample estimates of market values for the test set (i.e., 2015), it will do so as if these

observations are from the final year of the training set (i.e., 2014). In principle it can put

more weight on more recent observations.

Appendix Table A.I gives more statistics regarding the different input variables described

above.

C. Network Architecture

The architecture of our neural network is visualized in Figure 3. In the input layer, each

non-visual input variable is represented by a vector of dummies, which is typically referred to

as “one-hot encoding” in machine learning. So we have separate indicator variables for each

artist, for each artist nationality, etc.9 For each input variable category (cf. items i–xiii above),

we then project this initial representation onto a 10-dimensional vector.10 This projection is

done using a combination of a linear operation (a fully-connected layer whose parameters are

learned during training) and a non-linear activation function called a “rectified linear unit”

(ReLU).11 There are different reasons for introducing this 10-dimensional bottleneck. First, it

reduces the number of network parameters. Second, it avoids overfitting related to the high

dimensionality of some of the initial dummy variable representations (e.g., artist, auction house).

The 10-dimensional projection can be seen as encouraging the network to consider in a similar

way many different artists or auction houses. Third, associating 10 dimensions to each type of

input variable, including low-dimensional ones (e.g., the variable category measuring markings,

which only has three different dummies), ensures that our algorithm is not biased to attaching

9The only exception is artwork size, which is simply represented as a two-dimensional vector capturing width
and height. To avoid overfitting, for artist birth year, artist death year, and artwork creation year, we group together
all years before 1800 and also all years after 2003.

10The dummies for artist birth and death year are embedded jointly in a 20-dimensional representation.
11ReLUs are the most commonly used non-linear functions in modern neural networks. ReLUs associate to a real

number its positive part: ReLU(x) = max(0, x). Each ReLU is preceded by a normalization to speed up and improve
training.
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higher importance to variables that are initially associated with more dimensions.
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Figure 3. Graphical representation of our neural network.

We also represent the images with a 10-dimensional vector, which is computed using a

so-called “ResNet”. ResNets are one of the most standard CNN architectures for images (He

et al. (2015)). We here use a network type that is known to have a good performance for image

classification, while being small enough to be trained in a reasonable time.

The vector that appends the intermediate representations of the non-visual input variables

and of the image is then used as input to a “multi-layer perceptron” (MLP) with one “hidden

layer” (with 100 nodes). This MLP is the function that makes the actual price predictions by

applying linear and non-linear operations to the 10-dimensional intermediate representations of

the input variables.

The total number of parameters in our network architecture is of the order of one million.

Most of them correspond to the conversion of the artist dummies into a 10-dimensional rep-

resentation. Approximately 15,000 correspond to the MLP that generates price predictions

starting from the intermediate representations. (Note that the different parts of the network are

trained—and the weights are thus optimized—simultaneously.) Intuitively, our network is thus
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not prone to much overfitting, because—helped by the initial projections of all input variables

into 10-dimensional representations—the number of parameters in the prediction function is

much smaller than the number of observations in the training set.

D. Estimation

The network is estimated using the nearly one million lots over the 2008–2014 period. A

randomly sampled 1% of these observations is used as validation data. The performance

of the network on this small subsample is used during the development phase to decide on

meta-parameters related to the network architecture (e.g., the dimensionality of the intermediate

variable representations, the number of hidden layers and nodes in the MLP) and to the

optimization.

We train the algorithms on hammer prices, but we also include buy-ins at an imputed price

equal to 75% of the auction house’s low estimate, motivated by our knowledge of average reserve-

to-estimate ratios (e.g., McAndrew et al. (2012)). All prices are log-transformed. Moreover, as we

want to focus on economically meaningful variation in art prices—and as we will perform our

tests on data for auction houses and artists with a minimal level of recognition—we winsorize

all prices at $1,000 prior to training.12

The weights of the neural network are optimized to minimize a loss in the training set. More

precisely, given N observations (x1, y1), ..., (xN , yN) in the training set, where xi denote the

values of artwork i on the input variables and yi denotes the logged sale price, we minimize the

following loss function capturing squared prediction errors:

L(w) =
N

∑
i=1

( fw(xi)− yi)
2, (1)

where w are the parameters of our network and fw is the function associated to our network

with parameters w. This loss is minimized using the popular gradient-based optimizer of

Kingma and Ba (2017).

To regularize our training, we put each variable equal to zero with a probability of 0.2.

12Otherwise the algorithm would spend as much effort to try to differentiate between a $100 and a $200 transaction
as between a $1 million and a $2 million sale. Moreover, in the lowest segment of the auction market (entirely outside
of the main auction houses), price differences are arguably largely idiosyncratic and mainly driven by intermediary
rather than artwork characteristics; purchased artworks will have little resale value. We also winsorize a handful of
prices at $50 million.

15

Electronic copy available at: https://ssrn.com/abstract=3347175



This process of randomly zeroing out a subset of the input variables during training is similar

in spirit to dropout procedures that are more typically applied to intermediary nodes in the

network to avoid overfitting (Srivastava et al. (2014)). Our approach trains the network so that it

can make predictions even if some information about the artist or artwork is missing. It also

enables us to study the relative impact of the different variables on predictions, and to see how

removing certain information changes the predictive power of the network.

E. Illustration

One of the caveats of deep-learning networks such as ours is that it can be hard to understand

what exactly the intermediate representations are learning. In our relatively parsimonious

architecture, this is especially true for the 10-dimensional vector of image features that the

network generates from the original pixel values. We therefore visualize in Figure 4 a set of

artworks (shown in the first column) with their “nearest neighbors” (shown in the subsequent

columns) based on the image features. More precisely, we identify for ten images (by ten

different high-volume artists) the nine other images in the training data with the highest (cosine)

similarities. The figure shows that the way in which the network considers different artworks as

being “similar” is relatively complex: it includes elements of both semantic content and style.13

IV. Assessing Machine-Learning Valuations

A. Data Filters

In this section, we verify how well the price predictions generated by our neural network line

up with actual transaction prices out-of-sample. We also compare the predictive power of our

baseline model to a number of alternative estimates and algorithms. We do so using data for

(a subset of all) artworks auctioned in the year 2015, which the network did not “see” while

learning. We impose two data filters. First, we drop a very small fraction (0.5%) of sales where

the hammer price is below 10% of the low estimate or above ten times the high estimate. Some

of these outliers may be cases where either the price or the estimate is incorrectly recorded in

the database, or some (to us) unobservable event happened between estimation and auction of

13Note that using a different output variable than price (e.g., human judgment) would lead to different “nearest
neighbors”, because the parameters for the projection of each image onto a 10-dimensional vector would be different.
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Figure 4. “Nearest neighbors” (based on image features) of selection of artworks. The first column of this matrix
of artwork images shows ten randomly chosen artworks by ten different high-volume artists in our training data.
The nine other images on each row then show the artworks that our network identifies as the first artwork’s “nearest
neighbors” in terms of image features.

the artwork (e.g., a re-attribution).14 Second, in order to ensure that our analysis is focusing

on economically meaningful objects and trading places, we focus on artworks by artists and

auction houses that are associated with an average mid estimate over the training period of at

least $5,000 and $10,000 respectively. This filter reduces the number of observations in our test

set by about two thirds, but in terms of aggregated dollar sales the filtered-out lots represent

less than 5% of the initial sample. The final data set that will be used for the tests in this section

14We also apply this filter when computing any statistics at the artist or auction house level using the training data.
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still contains nearly 60,000 auction sales at 81 different auction houses in 78 locations on five

different continents, and works by more than 12,000 different artists.

B. Machine-Learning Valuations and Prices

Let us denote by P the (log) realized hammer prices for the objects in our test set. If a work is

bought-in, we impute a value of 75% of the low estimate. ML denotes the out-of-sample (log)

price predictions generated by the neural network for each year-2015 auction. In panel (a) of

Figure 5, we compare the distributions of these two variables to each other for all observations

in our test set. The machine-learning predictions exhibit less dispersion in the left tail, which

can be explained by the winsorization applied during the training of the neural network.

(a) Distribution of ML and P (b) Distribution of prediction errors P−ML

(c) Relation between ML and P

Figure 5. Machine-learning valuations and prices in test data. Panel (a) of this figure compares the distribution
of machine-learning predictions ML to that of realized transaction prices P for our test set. Panel (b) shows the
distribution of prediction errors P−ML, winsorized at -4 and +4. Panel (c) shows the results of a linear regression
of P on ML. The line shows the predicted linear fit.

Panel (b) of Figure 5 shows the distribution of prediction errors P−ML (winsorized at -4
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and +4). We see a rather nicely-behaved bell curve with a mean and median just below zero.

The interquartile range goes from −0.70 to 0.36, meaning that half of all prediction errors fall in

this interval that corresponds to deviations of prices from our machine-learning predictions of

−50% to +43%. The mean (median) absolute prediction error |P−ML| equals 0.69 (0.55).

The scatter plot in panel (c) shows how auction prices P line up with our machine-learning

valuations ML. We also show the results of a linear regression model, and the predicted linear

fit in the plot. We see that the regression line is almost exactly 45 degrees: the slope coefficient

is almost perfectly one, while the intercept is very close to zero. The R-squared shows that our

automated valuations explain about three quarters of the (out-of-sample) variation in auction

prices.

C. Assessing Individual Variable Importance

To open up the black box of price formation—or at least price predictability—in the art market, we

show in Table II the predictive power of a number of variations on our benchmark model. These

alternative models generate new predictions for all objects in the test data set after removing

their values on one or more of the input variable categories that were introduced in Section

III. We then recompute the R-squared based on the (updated) machine-learning valuations and

the (unchanged) price outcomes. Our approach is a valid one to study the predictive power

of models with less inputs, because we explicitly trained the algorithm to be able to make

predictions even in the presence of missing information.

As a starting point, the entry in the first row and the first column of Table II repeats the

R-squared for our benchmark model, namely 74.2%. In the rows below, we show how this

R-squared changes if we drop certain sets of non-visual inputs. We first drop the auction-

related information (auction house, auction location, auction month), which pick up the price

predictability created by the endogenous matching of artworks to auctions. By ignoring the

data coming out of this “selection” stage, we show how much predictive power our model

would have in a setting where it is unknown where each object will (or can) be sold. In order to

focus on how such ex-ante predictability is affected by asset-specific features, also the next rows

ignore the information on where a work is auctioned, and further eliminate different sets of

artist-related or artwork-related characteristics.
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Table II
Assessing individual variable importance

This table reports the R-squareds of linear regressions of logged transaction prices (P) in the test data set against
different predictions generated by our neural network. The first column shows the results for models that include
the artwork image (ML), while the second model shows the results for models that do not include the artwork image
(MLtxt). The first row shows results for models that include all predictive variables, while the next rows show results
for models that exclude different sets of variable types. The roman numbers between square brackets refer to the
variable list in Section III.

R2
ML,P R2

MLtxt ,P

Benchmark model 74.2% 71.8%
Without auction-related info [x-xii] 67.5% 64.0%
Without auction-related info [x-xii] + artist identifiers [i] 43.8% 38.7%
Without auction-related info [x-xii] + artist/style info [ii-iv] 64.3% 60.0%
Without auction-related info [x-xii] + artwork year [v] 66.7% 63.0%
Without auction-related info [x-xii] + artist identifiers [i] + artist info [ii-iv] + artwork year [v] 18.6% 13.8%
Without auction-related info [x-xii] + artwork size [vi] 60.1% 54.5%
Without auction-related info [x-xii] + artwork materials [vii] 61.2% 54.6%
Without auction-related info [x-xii] + artwork title [viii] 67.2% 63.5%
Without auction-related info [x-xii] + artwork markings [ix] 67.2% 63.8%
Without auction-related info [x-xii] + artwork characteristics [vi-ix] 48.8% 37.0%

We see that dropping the artist dummies has a substantial effect on the predictive power

of our model, although the R-squared is still only reduced by about one third as long as the

network has information on artist nationality and period. If all information related to the artist

and the creation period is removed, the R-squared drops to 18.6% only. We further see that

artwork size and materials matter much more than (our proxy for) the title and the presence of

a signature or other markings. Removing information on all “physical” artwork characteristics

(size, materials, title, markings) has less of a negative effect on predictive power than simply

removing the artist identifiers, at least in this set of variations where the network can still rely

on the artwork images.

We then repeat all models without images, leading to predictions that we denote by MLtxt.

The resulting R-squareds are shown in the second column of Table II. One can conclude from the

first row that the incremental explanatory power of images is relatively limited. The R-squared

is only 2.4 percentage points lower without images. So either visual characteristics are not very

important in driving prices (once controlling for artist identity, size, materials, and so on), or

economic value is associated with certain distinctive image characteristics but machine-learning

is ineffective in identifying such relations. At least two arguments can be made in favor of

the first interpretation. First, as we illustrated in Figure 4, the algorithm appears capable of

identifying visual similarities between different artworks. Second, we see in the last row of
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Table II that the relative difference in predictive power between models with vs. models without

images becomes much larger once we remove non-visual artwork descriptors. This suggests

that the network is able to pick up meaningful relations between artwork characteristics and

prices based on the images.

D. Comparison with Linear (“Hedonic”) Regression Model

We now generate an alternative type of valuation that can be considered “automated” as

well—and therefore serve as a useful benchmark—but relies on a more traditional and less

sophisticated method. Following Rosen (1974) and real estate scholars, academics studying the

art market have linked prices to artwork characteristics, typically employing linear regression

models (e.g., Anderson (1974), Renneboog and Spaenjers (2013)). We estimate a standard

hedonic model on the training set, and use the regression coefficients to generate out-of-sample

hedonic valuations for all artworks in the test set.15 More specifically, we estimate the following

model using ordinary least squares on the observations in the training set:

yi = α + X
′
i β + T + ε i, (2)

where yi is the log-transformed price associated with auction i, Xi is a vector of hedonic variables,

and T are auction year fixed effects. We can use the following earlier-introduced variables

in our hedonic model: artist fixed effects, artwork height and width (and their squares), and

the artwork material, title, and marking dummies, and auction house, location, and month

dummies.16 Appendix Table B.I shows the hedonic regression coefficients. The results are

generally in line with findings in the existing literature. For example, substantially higher prices

are paid for works that are bigger, signed or dated, self-portraits, and created with oil. We can

then use the estimated coefficients to generate out-of-sample price predictions HR for all lots

without missing values on any of the variables included in the hedonic regression model. In

line with what we did before, we make predictions as if the out-of-sample observations are from

15Given the many categorical input variables, shrinkage methods like lasso and ridge are not very practical in our
empirical context.

16Other artist-level variables would be dropped during estimation because of the artist dummies. We do not
include artwork creation year as a separate variable, because, first, artwork creation year can safely be assumed to be
relevant only in the context of a specific artist’s career, and, second, the model would then not be able to make a
prediction if the creation year is missing.
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the year 2014 by using the coefficient on the fixed effect for that year.

In Figure 6, we show the distribution of hedonic valuations, the distribution of prediction

errors, and the relation between hedonic valuations and transaction prices, mirroring the

different panels of Figure 5, which used our machine-learning valuations. In panel (a), we can

observe that the distribution of hedonic valuations is more concentrated than that of prices—

and also than that of machine-learning valuations. In panel (c), we see that the R-squared is

substantially lower than before: 67.7% compared to 74.2%. The predicted linear fit is also further

away from a 45-degree benchmark.

(a) Distribution of HR and P (b) Distribution of prediction errors P− HR

(c) Relation between HR and P

Figure 6. Hedonic valuations and prices in test data. Panel (a) of this figure compares the distribution of hedonic
valuations HR to that of realized transaction prices P for our test set. Panel (b) shows the distribution of prediction
errors P− HR, winsorized at -4 and +4. Panel (c) shows the results of a linear regression of P on HR. The line shows
the predicted linear fit.

A major conceptual difference between a machine-learning approach and a hedonic model

is that the latter does not exploit interaction effects between different variables. The upshot is

that, once conditioning on some important determinants of variation in price levels, the hedonic
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valuations will show little dispersion. We illustrate this in Figure 7, which shows a number

of histograms for the works by Pablo Picasso in our test set. Panel (a) shows histograms for

hedonic valuations HR, panel (b) for our earlier-generated neural network price predictions

ML, and panel (c) for price outcomes P. Each panel includes two distributions of predictions

or prices for oil paintings (based on whether the artwork is relatively large or small), and two

distribution for non-oil artworks (based on whether the lot was auctioned at one of the two

major auction houses or not).

(a) Histograms for HR (b) Histograms for ML

(c) Histograms for P

Figure 7. Predictions for Pablo Picasso. Panel (a) of this figure shows four distributions of HR for the works by
Pablo Picasso in our test set: oil paintings with a width of at least 50cm (“large”); oil paintings with a width of less
than 50cm (“small”); non-oil artworks sold at Christie’s or Sotheby’s; and non-oil artworks sold elsewhere. Panels (b)
and (c) show the same histograms for ML and P, respectively.

Figure 7 shows that prices are affected by the materials and size of the artwork, and correlate

with the identity of the auction house—and that these patterns are reflected in both HR and ML.

We also see, however, that the dispersion that exists in prices for Picasso works is little reflected

in the hedonic valuations. Each of the four categories of works considered are associated with

a narrow distribution of HR. This is not surprising given the additive and linear structure
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of a standard hedonic model; for example, all small Picasso oil paintings will have relatively

similar hedonic valuations, mainly driven by the (aggregation of the) coefficients on the artist,

materials, and size variables in the model. Our machine-learning valuations ML show much

more variation, even within each subsample. While it is difficult to speculate on what exactly

drives this variation, it is necessarily related to (potentially artist-specific) interactions between

different artwork characteristics—including visual ones—that the neural network has discovered

to be predictive of prices.

Given the above, we might expect that machine-learning is particularly useful—relative to

standard statistical tools—for artists that are associated with a large and varied oeuvre. We

address this hypothesis in Figure 8. We first classify all lots in our test data set in ten deciles

according to the associated artist’s number of auction lots in the training data. We then compute

the average absolute prediction errors based on both ML and HR for each decile, and also

compute what is the fraction of observations for which ML is closer to P than HR. The results

are shown in panel (a). Panel (b) then repeats the exercise but using deciles based on the

artist-level standard deviation of (logged) transaction prices in the training data, as a proxy for

the variation in the output of an artist.

(a) ML vs. HR by artist volume decile (b) ML vs. HR by artist price dispersion decile

Figure 8. Performance of machine-learning algorithm vs. hedonic model. Panel (a) of this figure shows the
fraction of lots for which ML is a more accurate prediction of P than HR (against the left axis), and the mean
absolute prediction errors |P−ML| and |P− HR| (against the right axis) for deciles of lots in the test set sorted by
the number of auctions of works by the artist in the training data. Panel (b) repeats the exercise for deciles of lots in
the test set sorted by the standard deviation of log prices for the artist in the training data.

We see that our machine-learning valuations are indeed more likely to be more accurate

than hedonic valuations for works by high-volume and high-dispersion artists. Such artists also

tend to be more expensive on average, meaning that machine-learning will contribute more
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for the economically more important lots.17 Panel (a) of Figure 8 additionally illustrates that

prediction errors for ML are lower—even in absolute terms—for artists with more transactions

historically. Panel (b) shows that our neural network struggles to accurately price artists with a

high standard deviation of prices, even if it does much better than a hedonic model.

V. Testing the Informational Efficiency of Estimates

A. Pre-Sale Estimates and Prices

In this section, we will analyze how helpful our machine-learning valuations are in the presence

of pre-sale valuations issued by the auction house organizing the sale. We denote by E the

(logged) mean pre-sale estimate. Similar to Figures 5 and 6, Figure 9 shows the distribution of

E and of prediction errors P− E, and also the results of a simple linear regression of P on E.

What is striking in panel (a) is the discontinuities in the distribution of E, which is due to the

fact that auction houses use standard estimate intervals (e.g., 1–2 million, 1.5–2.5 million, etc.).

The distribution of prediction errors P− E (i.e., logged price-to-estimate ratios) in panel (b)

is peaking around −0.5. This reflects the presence of buy-ins, for which we impute prices at

75% of the low estimate. For about 10% of our observations, the prediction error P− E exceeds

0.5, which is equivalent to the hammer price exceeding the pre-sale estimate by at least 65%.

From panel (c) of Figure 9 we can conclude that auction house estimates explain substantially

more of the variation in hammer prices than our machine-learning algorithm. We want to stress,

however, that an ex-post comparison of predictive power between auction house estimates

and our automated valuations should not be construed as a horse race between “man” and

“machine”. On the one hand, as explained above, an estimate cannot at face value be considered

as the auction house’s truthful expectation of what the item will sell for. On the other hand,

two factors will artificially drive up the relative performance of human-generated estimates.

First, auctioneers take into account artwork-level (e.g., condition, provenance) and artist-level

information (e.g., art-historical reputation) that is not observed by our algorithms, even when

17If we sort lots by artist-level average price (measured in the training data), we get a pattern that is qualitatively
similar to that shown in panel (b) of Figure 8. However, in a multivariate regression with a dummy variable
that equals one if ML is more accurate than HR as the dependent variable, and variables measuring the different
artist-level variables as independent variables, the artist-level average price is not statistically significant at any
traditional level, while artist volume and price dispersion are highly significantly positive.
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(a) Distribution of E and P (b) Distribution of prediction errors P− E

(c) Relation between E and P

Figure 9. Pre-sale estimates and prices in test data. Panel (a) of this figure compares the distribution of auction
house pre-sale estimates E to that of realized transaction prices P for our test set. Panel (b) shows the distribution of
prediction errors P− E. Panel (c) shows the results of a linear regression of P on E. The line shows the predicted
linear fit.

it could in principle be quantified and fed to the machine. Second, auction houses’ estimates

will be endogenously correlated with prices if bidders anchor on those estimates to form beliefs

about future resale revenues are affected by auction house estimates. (We will explore the

implications of this possibility at the end of this paper.)

B. Pre-Sale Estimates, Automated Valuations, and Auction Outcomes

As we expected, prices are more highly correlated with pre-sale estimates than with the

predictions generated by our neural network. However, our primary goal is to analyze whether,

conditional on pre-sale estimates, machine-learning can help predicting auction outcomes. If

auctioneers set informationally efficient estimates, this will not be the case. By contrast, if

auction house estimates are affected by behavioral or strategic biases, or simply do not reflect
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all available information, then we should see that the relative level of ML predicts deviations of

transaction prices from pre-sale estimates. In such cases, we can also expect buy-in probabilities

to be affected, as reserve prices are typically tightly linked to pre-sale estimates.

We start our analysis by running a regression of the prediction error P− E against E. We do

so to check whether deviations of prices from pre-sale estimates are on average higher or lower

for more valuable items. The results are shown in column 1 of Table III. We see that realized price

deviations from estimates are on average slightly higher for more expensive paintings, but the

relation is economically insignificant. In column 2, we then add MLorth, which is our machine-

learning valuation ML orthogonalized with respect to E. (This orthogonalization neither affects

the coefficient on the ML variable nor the R-squared, but allows to focus on the additional role

played by our machine-learning valuations.) We see that our automated valuation substantially

increases the R-squared of the regression model. Higher machine-learning valuations are

associated with economically and statistically significantly higher price-to-estimate ratios.

Table III
Informational efficiency of pre-sale estimates

Columns 1 and 2 of this table report estimated ordinary least squares (OLS) coefficients for a linear regression model
that has the auctioneer’s prediction error (i.e., P− E) as the dependent variable. Columns 3–6 report estimated
ordinary least squares and probit coefficients for regression models where the dependent variable is a dummy
variable that equals one if a lot is “bought-in” (i.e., if the highest bid remains below the reserve price). The models
are estimated using the transactions in our test data set. Standard errors, which are two-way clustered at the artist
and auction month level (except in columns 5 and 6 where clustering is only at the artist level), are reported in
parentheses. The asterisks *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5) (6)

P - E Dummy = 1 if buy-in
OLS OLS Probit

MLorth 0.116∗∗∗ −0.086∗∗∗ −0.242∗∗∗

(0.009) (0.007) (0.010)
E 0.005∗ 0.005∗ −0.016∗∗∗ −0.016∗∗∗ −0.044∗∗∗ −0.046∗∗∗

(0.003) (0.003) (0.004) (0.003) (0.005) (0.005)
Constant −0.189∗∗∗ −0.189∗∗∗ 0.501∗∗∗ 0.501∗∗∗ 0.031 0.040

(0.031) (0.024) (0.033) (0.026) (0.048) (0.049)

N 57, 385 57, 385 57, 385 57, 385 57, 385 57, 385
(Pseudo) R2 0.000 0.036 0.003 0.022 0.003 0.018

To illustrate the economic significance of the results in column 2 of Table III, we can show

them visually. We sort all observations in the test data set on MLorth and group them together in

half-deciles. We compute the mean MLorth for each of these twenty groups. The line in Figure

10 then shows the mean prediction error P− E (i.e., the logged price-to-estimate ratio) as a
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function of the mean MLorth for each half-decile. We see that price deviations from pre-sale

estimates are on average much higher for higher relative machine-learning valuations. For the

highest values of MLorth, the average price—including imputed prices for buy-ins—exceeds the

mid estimate. By contrast, for the lowest values of MLorth, we see that E exceeds P by more than

0.2 on average.

Figure 10. Informational efficiency of pre-sale estimates. The line in this figure shows the average auctioneer
prediction error (i.e., P− E) over all lots in our test set (against the left axis) as a function of the orthogonalized
machine-learning valuations MLorth, which are averaged by half-decile. The triangles shows average buy-in rates as
a function of MLorth (against the right axis).

So far, we have considered the relation between our predictions and prices. Yet, our finding

that we can improve on the pre-sale estimate to predict price outcomes suggests that there might

also be some predictability of whether a lot will be bought in. More specifically, if the estimate is

set relatively high for a certain work, then the reserve price—decided jointly upon by auctioneer

and consignor, but never above the auctioneer’s low estimate—is also likely to be relatively high.

We can thus expect to see more buy-ins if our automated valuations are low compared to the

pre-sale estimates. We test this hypothesis in columns 3–6 of Table III, which shows the results

for OLS and probit regressions, estimated over all lots in the test data set, where the dependent

variable is a dummy that equals one if the item was bought in. The negative coefficient on E in

each model tells us that in general buy-ins are somewhat less frequent for more expensive art.

More importantly, we see in columns 4 and 6 that machine-learning artwork valuations help

predicting buy-ins, in line with our expectation.

To evaluate the economic significance of our results, we plot in Figure 10 the realized

out-of-sample buy-in frequency as a function of our MLorth valuations grouped by half-decile

as before. The graph shows that the buy-in probability is more than 45% when ML is low
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relative to the auction house estimate, while this frequency decreases to around 25% when ML

is relatively high. So the discrepancy between our machine-learning valuations and auctioneers’

value assessments has substantial predictive power for the probability of selling.

C. Variation in Added Value of Machine-Learning Valuations

The above analysis shows that a comparison to machine-learning valuations can help in assessing

whether auctioneers’ estimates are likely to under- or overshoot bidders’ willingness-to-pay.

However, it is likely that there exists heterogeneity in the added value of machine-learning. In

this subsection, we examine under which conditions we can expect our automated valuations to

be more helpful.

The relative contribution of automated valuations depends both on the accuracy of our neural

network and on the prediction errors of auctioneers. So a first way to approach the issue at

hand is to focus on heterogeneity in how well our automated valuations can be expected to

predict prices. The results in panel (b) of Figure 8 suggested that ex-ante artist-level price

dispersion may be a good proxy for the complexity of the task faced by (both standard and

more sophisticated) machine-based valuation methods. So in panel (a) of Figure 11, we show for

each decile of lots in the test set—sorted by artist-level price dispersion in the training set—the

mean absolute prediction error of our neural network (i.e., |P−ML|). Furthermore, we also

show the average absolute prediction error of auctioneers (i.e., |P− E|) for each group of lots,

and the proportion of lots for which ML is more accurate than E as a predictor of the price.18

As before, we see that the absolute prediction error of our machine-learning algorithm generally

rises with artist-level price dispersion. Interestingly, however, |P− E| does not rise accordingly,

meaning that the relative accuracy of ML decreases with our proxy for the range of possible

prices associated with an artist.

We construct an alternative proxy for the difficulty of pricing lots in an automated fashion

as follows. We consider our training data, and regress the (in-sample) absolute prediction errors

of our previously-presented hedonic model back on all hedonic variables. This allows us to

identify which artwork characteristics are associated with less accurate hedonic predictions on

18We focus on cross-sectional variation in this measure of relatively accuracy, rather than the level, as the latter is
influenced by our definition of E. Namely, we work here with the mean of the low and the high pre-sale estimate,
while other choices are of course imaginable.
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(a) By decile of artist-level price dispersion (b) By decile of difficulty to value

(c) By decile of artist-level mean |P− E| (d) By decile of artist-level mean P

Figure 11. Drivers of performance of machine-learning algorithm vs. estimates. Panel (a) of this figure shows the
fraction of lots for which ML is a more accurate prediction of P than E (against the left axis), and the mean absolute
prediction errors |P−ML| and |P− E| (against the right axis) for deciles of lots in the test set sorted by the standard
deviation of prices for the artist in the training data. Panel (b), (c), and (d) repeat the exercise for deciles of lots in the
test set sorted by the predicted absolute error of machines, by the average |P− E| for the artist in the training data,
and by the average P for the artist in the training data, respectively.

average. We then apply the regression coefficients to all observations in the test data set, which

gives us an ex-ante proxy for each object of how difficult it will be for an automated model to

come up with an accurate prediction. We then sort all lots in the test data into deciles based

on this measure of the “difficulty for machines”. This approach is in the spirit of Buchak et al.

(2020), who aim to identify which kind of properties are hard vs. easy to value. The results are

shown in panel (b) of Figure 11, and mirror those in panel (a).19 The take-away is that there

exists predictable heterogeneity in the size of the errors made by our neural network, but that

this variation does not correlate with auctioneers’ errors.

So far, we have attempted to differentiate lots based on whether we can expect them to be

19The kink between deciles 1 and 2 can be explained by the fact that the in-sample error of the hedonic model—and
thus the “predicted error”—will be very low for artists with only one or two lots in the training set, but lots by these
artists will be associated with high prediction errors out-of-sample.
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easy or hard to price by an automated algorithm. However, as we explained before, the relative

contribution that we can expect from our machine-learning valuations also depends on how

accurate we can expect auctioneers’ estimates to be—assuming that systematic heterogeneity

along this dimension exists. To examine this, we sort lots in the test set based on the associated

artist’s average |P − E| in the training data. So we are ranking artists by the accuracy of

auctioneers during the years preceding the year 2015. The idea is that auction houses may

find disentangling the different drivers of cross-sectional and temporal variation in prices

persistently more challenging for certain artists than for others. The results are shown in panel

(c) of Figure 11. We see that the mean absolute prediction error of the pre-sale estimates |P− E|

increases in our newly-built proxy for the expected noise in human valuations. However, also

the machine-learning algorithm is associated with somewhat larger prediction errors when

auctioneers’ errors go up, and therefore the probability that ML is more accurate than E as

a predictor of P only increases weakly with artists’ mean |P− E| in the training data. One

interpretation is that artists associated with higher absolute prediction errors of auctioneers are

genuinely more difficult to value on average.

Finally, in panel (d), we sort lots in the test set by artist-level average prices, again measured

in the training data. More information—outside of the auction data considered here—will be

available to auctioneers for more expensive artists. Human prediction errors are indeed slightly

smaller for more expensive artists. By contrast, ML becomes less accurate as the artist’s average

price goes up, which can be related to more valuable artists’ wider dispersion of prices in the

auction market (and potentially also the fact that hard-to-quantify factors like provenance and

exhibition history may be more important for more established artists).

As a more formal analysis, we also run a probit regression in which the dependent variable

is a dummy that equals one if ML is closer to P than E. In column 1 of Table IV, we include as

independent variables the four different variables used to sort lots in Figure 11. The results are

consistent with our earlier results and with expectations: ML is more likely to be more accurate

than E for artists with less dispersed and lower average prices, artworks that can be predicted

ex ante to be easier to value using a statistical function of artwork characteristics, and artists

associated with higher absolute prediction errors by auctioneers historically.

In column 2 of Table IV, we add two additional variables. First, we add a variable measuring
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Table IV
Determinants of added value of machine-learning

This table reports probit coefficients (except for the constant) for regression models where the dependent variable is
a dummy variable that equals one if ML is a more accurate predictor of P than E. The models are estimated using
the transactions in our test data set, but the artist-level and artwork-level independent variables are constructed
using the training data. Standard errors, which are clustered at the artist level, are reported in parentheses. *, **, and
*** denote statistical significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4)

Artist-level price dispersion −0.072∗∗∗ −0.103∗∗∗ −0.072∗∗∗ −0.104∗∗∗

(0.022) (0.028) (0.022) (0.029)
Artwork-level difficulty to value −0.224∗∗∗ −0.275∗∗∗ −0.229∗∗∗ −0.286∗∗∗

(0.034) (0.045) (0.036) (0.048)
Artist-level mean |P− E| 0.236∗∗∗ 0.275∗∗∗ 0.221∗∗∗ 0.265∗∗∗

(0.063) (0.077) (0.068) (0.079)
Artist-level mean P −0.040∗∗∗ −0.044∗∗∗ −0.040∗∗∗ −0.043∗∗∗

(0.007) (0.008) (0.007) (0.009)
Artist-level # lots (logged) 0.038∗∗∗ 0.038∗∗∗

(0.007) (0.007)
Years since artwork creation (logged) −0.021∗∗ −0.021∗∗

(0.008) (0.009)
Auction house F.E.? No No Yes Yes

N 54, 819 34, 754 54, 809 34, 752
Pseudo R2 0.006 0.009 0.013 0.016

for each artist the number of lots in the training data. Ceteris paribus, we expect that automated

valuations are more accurate for more liquid artists, and that is indeed what we find. Second,

we add a variable measuring the number of years since creation of the artwork. We see that

machine-learning predictions tend be relatively more accurate for more recent works.

Finally, in columns 3 and 4 of Table IV, we repeat the models shown in columns 1 and

2, but adding auction house fixed effects. The magnitudes and statistical significance of the

coefficients do not change much. So the drivers of relative machine-learning accuracy that we

have identified seem largely orthogonal to auction house identities. Yet, the R-squareds go up,

which suggests a role for auctioneer effects in the magnitude of prediction errors, an issue that

we will turn to next.

VI. Predicting Auctioneers’ Prediction Errors Directly

In the previous sections, we first generated automated art price predictions (i.e., ML), and

then showed that the relative magnitudes of those machine-learning valuations help predicting

the discrepancies between auction house pre-sale estimates and transaction prices (i.e., P−

32

Electronic copy available at: https://ssrn.com/abstract=3347175



E). However, is it possible to directly predict auction houses’ under- and overvaluations? If

auctioneers are affected by biases that are systematic and persistent, then past prediction errors

will be informative about future prediction errors. Such autocorrelation of prediction errors

can then exist both at the level of auction house experts, and at the level of artworks that the

auctioneers are likely to consider as substitutes.

To verify the plausibility of this hypothesis, we plot two histograms similar to that in Figure

1 with which we opened our paper. We first sort lots (in the test set) based on the mean P− E

(in the training data) of both the artist and the “auctioneer”, with which we here mean a specific

auction house–location combination (e.g., Christie’s London). We then show the histograms

for P− E for the quartiles of lots associated with the lowest and highest average past P− E.

Panel (a) shows the results for the sort at the artist level. Clearly, lots by artists that have been

valued relatively low (high) by auctioneers in recent years continue to get relatively conservative

(aggressive) pre-sale estimates. While the average P− E equals −0.24 for artists associated with

low past price-to-estimate ratios, it is virtually zero for artists with the highest recent levels of

P− E.20 Panel (b) compares “low P− E” to “high P− E” auctioneers. Also here the persistence

of prediction errors is very striking visually; auctioneers that issue relatively low estimates on

average continue to do so.

(a) By past artist-level prediction errors (b) By past auctioneer-level prediction errors

Figure 12. Persistence of prediction errors. Panel (a) of this figure shows two different distributions of P − E,
winsorized at −1 and +2, in the test set. We classify all lots in quartiles based on the artist-level average P− E in the
training set. We then compare the distribution for the first quartile (“Artists with low mean P− E”) to the fourth
quartile (“Artists with high mean P− E”). Panel (b) repeats the exercise after classifying all lots based on the average
P− E for each auction house–location combination.

20This stickiness in estimates may also explain the pattern in Figure 1, where artists that have had high prices
recently—probably outperforming ex-ante expectations—are associated with relatively low pre-sale estimates.
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Encouraged by these findings, we let our neural network predict price-to-estimate ratios

rather than prices. We use a network architecture that is identical to the one presented before,

except that we add a variable measuring the auction house pre-sale estimate. We denote by

MLP−E the resultant benchmark prediction—relying on both the image and all non-visual

characteristics—of P− E. In line with our earlier analysis, we can then study how auctioneers’

prediction errors and buy-in rates correlate with our ex-ante “prediction error prediction”

MLP−E. The results are shown in columns 1, 3, and 5 of Table V. MLP−E correlates strongly

with both P− E and the buy-in probability.

Table V
Informational efficiency of pre-sale estimates (continued)

Columns 1 and 2 of this table report estimated ordinary least squares (OLS) coefficients for a linear regression model
that has the auctioneer’s prediction error (i.e., P− E) as the dependent variable. Columns 3–6 report estimated
ordinary least squares and probit coefficients for regression models where the dependent variable is a dummy
variable that equals one if a lot is “bought in” (i.e., if the highest bid remains below the reserve price). The models
are estimated using the transactions in our test data set. Standard errors, which are two-way clustered at the artist
and auction month level (except in columns 5 and 6 where clustering is only at the artist level), are reported in
parentheses. The asterisks *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5) (6)

P - E Dummy = 1 if buy-in
OLS OLS Probit

MLP−E 0.420∗∗∗ 0.360∗∗∗ −0.285∗∗∗ −0.237∗∗∗ −0.822∗∗∗ −0.688∗∗∗

(0.028) (0.031) (0.030) (0.034) (0.034) (0.034)
MLorth 0.073∗∗∗ −0.059∗∗∗ −0.166∗∗∗

(0.009) (0.009) (0.010)
E 0.002 0.003 −0.014∗∗∗ −0.014∗∗∗ −0.038∗∗∗ −0.039∗∗∗

(0.003) (0.002) (0.004) (0.003) (0.005) (0.005)
Constant −0.148∗∗∗ −0.154∗∗∗ 0.473∗∗∗ 0.478∗∗∗ −0.060 −0.044

(0.026) (0.023) (0.034) (0.031) (0.046) (0.047)

N 57, 382 57, 382 57, 382 57, 382 57, 382 57, 382
(Pseudo) R2 0.068 0.080 0.033 0.041 0.026 0.033

The results are visualized in Figure 13. The line in the figure illustrates the very strong

sensitivity of realized to predicted logged price-to-estimate ratios. The triangles evidence that

our ex-ante predictions of price-versus-estimate discrepancies line up with buy-in probabilities.

On both dimensions, the relation between predictions and auction outcomes is even stronger

than in Figure 10. Using data on past errors, machine-learning can thus help to identify

situations in which human experts are likely to be biased.

To shed more light on what drives the predictability of auctioneers’ prediction errors, we

document the R-squareds of linear regressions of P − E against our benchmark prediction
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Figure 13. Predicting auctioneers’ prediction errors directly. The line in this figure shows the average auctioneer
prediction error (i.e., P− E) over all lots in our test set (against the left axis) as a function of the “prediction error
predictions” MLP−E, which are averaged by half-decile. The triangles shows average buy-in rates as a function of
MLP−E (against the right axis).

and different variations thereon in Table VI. The first row shows that our predictions MLP−E

explain 6.7% of the variation in P− E. The second row of Table VI shows results for predictions

generated without information on the pre-sale estimate. The R-squared only drops to 5.3%—a

relatively minor change given the importance that one might have assumed the pre-sale estimate

to have in predicting the ex-post realized price-to-estimate ratio. Auctioneers’ prediction errors

are thus to an economically significant extent predictable from a truly ex-ante perspective,

i.e, without even knowing the pre-sale estimate of the auctioneer. The third row of Table VI

also drops the information on the identity and location of the auction house. We see that

the R-squared is lowered to 3.4%. Auction house effects are thus an important factor in the

predictability of prediction errors. If we further drop information related to the artist or creation

period, we see that the explanatory power deteriorates even more, as we could have expected.

Table VI
Assessing individual variable importance in predicting auctioneers’ prediction errors

This table reports the R-squareds of linear regressions of auctioneers’ prediction errors (P − E) in the test data
set against different predictions generated by our neural network (MLP−E). The first row shows results for the
benchmark model that includes all predictive variables, while the next rows show results for models that exclude
different sets of variable types. All models include the artwork image.

R2

Benchmark model 6.7%
Without pre-sale estimate 5.3%
Without pre-sale estimate + auction-related info 3.4%
Without pre-sale estimate + auction-related info + artist identifiers 1.7%
Without pre-sale estimate + auction-related info + artist/style info 3.4%
Without pre-sale estimate + auction-related info + artwork year 3.2%
Without pre-sale estimate + auction-related info + artist identifiers + artist info + artwork year 1.2%
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Finally, we can of course combine the prediction of the prediction error (i.e., MLP−E) with

the relative magnitude of the artwork valuation (i.e., MLorth) in one predictive model, which is

what we do in columns 2, 4, and 6 of Table V. We see that MLP−E and MLorth carry independent

predictive power for auctioneers’ prediction errors and buy-in rates.

VII. Discussion and Conclusion

There is a long lineage of research linking prices of infrequently-traded “real” assets—artworks

and other collectibles, but also real estate—to their quality-determining characteristics. In

most of such papers, predictability has not been a goal in itself. Instead, most researchers

are interested in the value of a hedonic characteristic, or use hedonic models to control for

time-series variation in average quality when estimating price trends.21 The practical usefulness

of hedonic models in terms of asset valuation has arguably remained relatively limited, as

market values of artworks or houses are not always well-described by a linear function of their

value-determining characteristics. Hedonic models simply cannot capture the complexity of art

or real estate pricing. Hence, participants in markets for such assets have historically relied on

the eyes and expertise of human valuers.

The advent of machine learning is challenging this role of human expertise. It has already

led to a range of new business models built on automated valuation methods, such as “iBuyers”

(Buchak et al. (2020)). While it has not been our aim to come up with the best possible art

price prediction algorithm—we could have collected additional information on artist fame and

networks, artwork provenance and exhibition history, etc.—our paper sheds more light on

the potential and drivers of price predictability in markets for illiquid real assets. One of the

implications of our findings is that, even if modern machine-learning techniques are unlikely to

completely replace human judgment, they are likely to become important tools for investors

and intermediaries, as they have the ability to explain much of the variation in market values in

a time-efficient and relatively inexpensive manner.

Our work also shows how the asset valuations generated by machine-learning can be used

as a benchmark to evaluate human experts’ valuations. We demonstrate that art auctioneers’

21An exception is Ashenfelter (2008), which explains variation in Bordeaux wine prices using weather data by
estimating a simple linear regression model, and shows that the market for young wines is inefficient.
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pre-sale estimates are informationally inefficient. The added value of machine learning is not

uniform, but depends—in a systematic way—on a number of characteristics of the asset category,

including the level and dispersion of prices, and the availability of past transaction information.

Moreover, tools similar to those used to predict prices can be employed to predict pricing

errors. We find that art auction houses are systematically biased in predictable ways. Whether

the “predictable prediction errors” of auctioneers mainly stem from behavioral or from strategic

biases is not easy to tell. As we explained in the opening paragraphs of this paper, they may

sometimes have similar effects. More fundamentally, however, we lack a good theoretical

understanding of, first, what determines optimal estimates in a setting where auction houses

compete for consignments and where both consignors’ and bidders’ behavior may be affected

by the pre-sale estimate, and, second but related, how deviating from “honesty” could ever

be an equilibrium longer-run strategy for auctioneers. This is definitely an avenue for further

research.

Overall, however, we would argue that the predictability shown in Section VI of this paper is

likely to be related to a combination of different factors. The fact that auction house effects are so

important in explaining prediction errors and buy-in rates suggests that different auction houses

implement different strategies in terms of pre-sale estimates; maybe there exists heterogeneity

in the way in which auctioneers weigh the costs and benefits of higher vs. lower estimates.

Other results in this paper point more to the importance of behavioral frictions, in particular the

artist-level persistence—across all auction houses—in prediction errors.

Whatever are the precise sources of non-fundamental variation in auction house estimates,

these inefficiencies and biases are not just a side show. In settings where buyers and sellers

are affected by human experts’ appraisals, the discrepancy between these appraisals and an

unbiased proxy for market values will correlate with relevant economic outcomes. For example,

when consignors set reserve prices in line with auction houses’ expectations, buy-in rates will be

higher if auctioneers are too optimistic, which is indeed what we have found. But also bidders

may anchor on auction house estimates. While it is difficult to formally show the extent to

which this is happening, one resultant prediction in the context of our analysis would be that

higher relative automated valuations—or, equivalently, less aggressive pre-sale estimates—are

associated with higher post-acquisition returns. We test this hypothesis using a small sample of
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artworks that we could identify that initially traded in 2015 (and are thus part of our test data

set) and retraded over the time period 2016–2018. Column 1 of Table VII regresses annualized

log returns against the initial logged price-to-estimate ratios (i.e., P − E). We see a strong

negative correlation between the relative level of the purchase price and the post-acquisition

return. Column 2 then adds our orthogonalized automated valuation (i.e., MLorth). In line with

our hypothesis, higher automated valuations relative to pre-sale estimates are associated with

(weakly) higher returns.

Table VII
Biased pre-sale estimates and post-acquisition returns

This table reports estimated ordinary least square (OLS) coefficients for regression models where the dependent
variable is the annualized log return on the artwork’s resale (winsorized at the 5th and 95th percentile). The models
are estimated using observed resales over the period 2016–2018 of items that transacted in the year 2015 (and are thus
part of our test data set). Standard errors are reported in parentheses. The asterisks *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.

(1) (2)

MLorth 0.053∗

(0.031)
P− E −0.167∗∗∗ −0.190∗∗∗

(0.056) (0.057)
Constant 0.002 −0.007

(0.024) (0.024)

N 246 246
R2 0.035 0.047

In sum, it is clear that automated valuation methods (and human error predictions) may be

very useful for both buyers and sellers in markets for illiquid real assets. It will be interesting to

see how they will change equilibrium behavior and outcomes in such markets in the future.
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A. Descriptive Statistics of Input Variables

Table A.I
Descriptive statistics for training set

% missing Distinct Mean Median Mean hammer ($) if 1

i. Artist 0.6% 116,694
ii. Artist nationality 3.9% 168
iii. Artist birth year 7.0% 1883 1897

Artist death year 28.5% 1938 1958
iv. Style: Old Masters 31.9% 0.08 87,504

Style: 19th Century European 31.9% 0.25 16,839
Style: Impressionist and Modern 31.9% 0.20 126,806
Style: Post-War and Contemporary 31.9% 0.26 117,635
Style: American 31.9% 0.11 25,261
Style: Latin American 31.9% 0.03 45,869
Style: Asian 31.9% 0.06 129,423

v. Artwork creation year 49.9% 1949 1963
vi. Artwork width (cm) 2.4% 64.8 55.3

Artwork height (cm) 0.4% 62.7 52.0
vii. Materials: oil 0% 0.65 67,661

Materials: watercolor 0% 0.05 7,213
Materials: acrylic 0% 0.06 86,983
Materials: ink 0% 0.06 106,739
Materials: gouache 0% 0.03 28,132
Materials: bronze 0% 0.02 80,307
Materials: mixed media 0% 0.04 14,345
Materials: pastel 0% 0.02 52,330
Materials: lithograph 0% 0.01 5,018
Materials: poster 0% 0.01 5,984
Materials: etching 0% 0.01 6,453
Materials: pencil 0% 0.01 79,062
Materials: canvas 0% 0.52 84,281
Materials: board 0% 0.14 25,595
Materials: panel 0% 0.07 55,429
Materials: paper 0% 0.13 50,000
Materials: masonite 0% 0.01 35,613
Materials: wood 0% 0.03 49,479

viii. Title: untitled 0% 0.07 67,999
Title: composition 0% 0.02 37,955
Title: landscape 0% 0.05 34,492
Title: still life 0% 0.03 54,730
Title: figure 0% 0.02 50,415
Title: nude 0% 0.01 106,149
Title: portrait 0% 0.03 98,464
Title: self-portrait 0% 0.00 407,585

ix. Markings: signed 0% 0.78 57,775
Markings: dated 0% 0.37 86,938
Markings: inscribed 0% 0.10 70,409

x. Auction house 0% 369
xi. Auction location 0% 230
xii. Auction month 0% 12
xiii. Auction year 0% 7
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B. Hedonic Regressions Results

Table B.I
Hedonic regression coefficients

Artist F.E.? Yes
Artwork width (cm) / 100 1.112
Artwork width (cm) / 100 – squared −0.232
Artwork height (cm) / 100 0.931
Artwork height (cm) / 100 – squared −0.197
Materials: oil 0.442
Materials: watercolor 0.082
Materials: acrylic 0.251
Materials: ink −0.228
Materials: gouache 0.187
Materials: bronze 0.558
Materials: mixed media 0.153
Materials: pastel 0.061
Materials: lithograph −1.717
Materials: poster −0.717
Materials: etching −1.350
Materials: pencil −0.349
Materials: canvas 0.177
Materials: board 0.059
Materials: panel 0.177
Materials: paper −0.195
Materials: masonite 0.093
Materials: wood 0.154
Title: untitled −0.180
Title: composition −0.078
Title: landscape −0.107
Title: still life −0.050
Title: figure −0.060
Title: nude −0.079
Title: portrait −0.183
Title: self-portrait 0.395
Markings: signed 0.191
Markings: dated 0.113
Markings: inscribed 0.029
Auction house F.E.? Yes
Auction location F.E.? Yes
Auction month F.E.? Yes
Auction year F.E.? Yes
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