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Chapter 1

Introduction

A constraint satisfaction problem (CSP) is defined as follows: for a set of variables taking values in a finite

domain, find an assignment of values that satisfies some constraints where a constraint specifies a subset

of admissible values for the variables [93]. There is a wide variety of typical everyday life problems that can

be turned into CSPs, e.g. solving crosswords or making a timetable [10]. In this regard, CSPs have sparked

the interest of many researchers across a broad range of areas. In particular, numerous studies were tackled

in the field of combinatorics, as well as computer science and statistical mechanics [4, 66, 72, 73]. This cross-

disciplinary research interest comes from a comprehensive collection of applications that include, among oth-

ers, operational research, coding theory, computer architecture design, and artificial intelligence [18,47,48,58].

There are several variants of a CSP. Apart from the search variant, which uses algorithms to find a satisfying

assignment or a solution, the decision variant has the objective of confirming the existence of a solution [72].

If the problem presents a solution, a natural follow up question concerns the total number of solutions [94].

This thesis will investigate some aspects of the decision and the counting problem for two specific CSPs: the

widely known k-SAT problem and a problem pertaining to linear equations in F2 (the field of integers modulo

2). Furthermore, a study of the search version was done for the q-state ferromagnetic Potts model on regular

graphs. Moreover, each considered CSP would be random i.e. the supporting structures such as the graph,

the Boolean variables, and the matrix corresponding to the linear equation would be constructed randomly.

The motivation behind considering random CSP is that sometimes, they display behaviours that are hard to

observe in a deterministically generated instance [76].

A straightforward observation is that when the ratio between the number of constraints and the number of

variables, commonly called constraint density ratio, increases, it becomes harder to find a solution. The postu-

late is that when the constraint density passes through a critical threshold, the probability of finding a satisfying

assignment falls sharply from 1 to 0 [78,80]. This critical threshold is also referred to as phase transition in sta-

tistical physics jargon, in analogy to the critical temperature where a physical system changes its state (from

solid to liquid, for example). Unfortunately, rigorously determining the location of phase transitions has been

a significant challenge in random CSPs for the past decade. Many studies lack evidence regarding this issue

and how it can be tackled.

Nonetheless, significant developments have been made to elucidate the various behaviour of random CSPs

over the years. Statistical physicists have contributed considerably to this triumph by creating non-rigorous

techniques to pinpoint the precise location of the phase transitions (see [72] for an overview). Furthermore,

they gave instructive explanations on the combinatorial nature of CSPs and shed light on the connection be-

tween the geometry of the space of solutions and these phase transitions ( [65]). Mathematicians in probabilis-

tic combinatorics have proved several of these conjectures, but some gaps still require attention. The results
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of the present thesis complement some of these gaps.

Replica symmetry is a crucial concept necessary for the understanding of the geometry of the solution

space in a CSP. The concept originated from the study of systems of particles in physics [75]. The heuristic ideas

behind it were then studied by mathematicians [90]. It was found that making them rigorous is a challenging

task. Furthermore, the theory supporting replica symmetry has not been made entirely rigorous and unified so

that it suffices to apply the results (Theorem, Lemma, . . .) to different models. Hence, recent results are mainly

model specific. Moreover, the case where the underlying graph supporting the CSP is dense1 was intensively

studied [75, 83, 84, 90–92]. However, results for the sparse case remain few. Therefore, the overall goal of the

thesis is to show how replica symmetry materialises, the consequences and the limitations in sparse versions

of the three models mentioned earlier, i.e. the random k-SAT problem, random linear systems in F2 and the

q-state ferromagnetic Potts model.

1.1 Summary of the main results of the thesis

Roughly speaking, replica symmetry is a very modest absence of long-range correlations between the variables

of a CSP. Our first result concerns a type of Boolean formula called k-SAT. Informally, given a set of n Boolean

variables (variables taking values true or false), a k-SAT formula is obtained by the conjunction (AND) of m

clauses where a clause is the disjunction (OR) of exactly k variables or their negations (see Chapter 2 for the

formal definition and examples). Here, the clauses correspond to the constraints. For the random k-SAT prob-

lem, we proved that under replica symmetry, a functional named Bethe free entropy via a message-passing

algorithm called Belief Propagation produces a good approximation for a quantity called partition function,

which approximates the actual number of solutions. Moreover, we showed that replica symmetry cannot hold

anymore at a critical threshold, shortly before the satisfiability threshold.

For random linear equations in F2, the study concerns n×n matrices where each entry is 1 with probability

d/n for some d > 0. This choice of the matrix is very natural and suitably connects a variant of the random

k-SAT problem to the random linear equation problem, which will be explained in Section 1.2. Here, the new

result we found is that at a critical threshold d = e, a peculiar phenomenon occurs; for d < e, the fraction of

frozen variables, i.e. the variables forced to take the same value in all solutions, concentrates on one value but

for d > e, this quantity vacillates between two values with equal probability. This behaviour contrasts the usual

0,1 law that we expect in such a structure, specifically in random graphs [14].

Besides, there is another interpretation of the threshold d = e in terms of replica symmetry. To see this,

let the overlap between two solutions be the fraction of variables for which they agree. An equivalent formu-

lation of replica symmetry is that the overlap concentrates on a value α. Note, however, that this value may

be random because, for example, the underlying matrix is random. Therefore, a more critical requirement

will be that α is deterministic; in this case, the system is said to be strongly replica symmetric [8, 9, 23]. As a

consequence of the frozen variable result, we were able to show that the random system of linear equations

considered here is always replica symmetric, but it is strongly replica symmetric only when d < e. In other

words, d = e is a threshold for which strongly replica symmetry ceases to hold.

Replica symmetry alone is not sufficient to infer results on the geometry of the solution space. There-

fore, message passing algorithms, like Belief Propagation, that recursively track the variables’ values or their

marginal distributions have been used alongside replica symmetry. Another result of the present thesis con-

cerns a message-passing algorithm called Warning Propagation . A toolbox for the study of Warning Propaga-

tion in a general type of graphs is provided and used on the underlying graph supporting the random matrix.

1Loosely speaking, a graph is dense if the number of edges is close to the possible number of edges. On the other hand, a graph is sparse
if it has few edges, much smaller than the possible number of edges.
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In particular, the algorithm is used to track frozen variables in the linear system.

Finally, we will investigate a phenomenon called metastability, a consequence of replica symmetry, in

the q-state ferromagnetic Potts model on random regular graphs. Here, the vertices of a random d regular

graph on n vertices are randomly coloured with q colours and the edges are weighted in such a way that the

monochromatic edges receive a reward of eβ for some β > 0. Depending on the parameter β, the system will

prefer a colouring that uniformly colours each vertex or a colouring where one colour dominates.

Metastability means that as the parameter β increases, at certain thresholds, metastable states occurs.

Metastable states are clusters of assignments that trap local search algorithms, such as the Glauber dynamics

(a version of Markov chains), for a long time (exponential in the number of vertices of the graph) before it

reaches a solution, i.e. a preferred colour assignment. The occurrence of these states is linked to the fact that

by introducing a small perturbation in the system, replica symmetry fails to hold for values of β in a specific

interval. Here, we were able to prove the emergence of metastable states for a particular interval of values of β.

As a consequence, we obtained new slow mixing results for the Glauber dynamics, and interestingly, this result

extended to a non-local search algorithm called the Swendsen Wang algorithm.

1.2 Motivation and historical background

The study of random CSPs started in the early 90s. At that time, it was observed that computationally hard

instances of a CSP are fewer than their easy-to-check counterparts, as they correspond to the worst-case situa-

tion. Thus, generating these hard-to-solve instances was a challenge. However, from experimental results [76],

computer scientists tried to argue that hard instances of a CSP can be generated by choosing the correct dis-

tribution. Moreover, studies (see for example [20]) showed that random CSPs could be characterised by the

constraint density ratio and that hard-to-solve cases are near the critical value where the probability of being

satisfied abruptly drops from 1 to 0.

In this regard, the random k-SAT problem is a case in point. The k-SAT problem, for k ≥ 3, plays an impor-

tant role in complexity theory as the canonical NP-complete problem [33]. Goerdt [55], and independently,

Chvátal and Reed [21] showed that the satisfiability threshold for the random 2-SAT is at m/n = 1. Following

this, Friedgut [49] proved the existence of a non-uniform satisfiability threshold depending on n for any k > 0.

Later, Ding, Sly and Sun [44] put forward an uniform result (only depending on k) for large k.

Meanwhile, physicists set forth a host of conjectures about the location of other phase transitions describ-

ing the evolution of the solution space as the constraint density ratio increases [65]. These conjectures are

predicted to hold for other CSPs, such as the famous q-colouring problem. One of these phase transitions is

called the condensation threshold: it is conjectured that before this phase transition, replica symmetry holds

but ceases to hold after. The region between the condensation threshold and the satisfiability threshold is

called the replica symmetry breaking region. One of the aims of the present study is to establish that this

replica symmetry breaking phenomenon occurs for random k-SAT. However, rigorously pinpointing the pre-

cise location of the condensation thresholds remains open. Up to now, the condensation threshold is only

known for a particular case called random regular k-SAT [7].

Moreover, in [29], Coja-Oghlan, Krzakala, Perkins and Zdeborova established the precise location of the

condensation thresholds for a variety of other CSPs. Furthermore, the study of the replica symmetry region

and establishing replica symmetry breaking was done for a range of CSPs, excluding the random k-SAT in [25].

In addition, in [82], Nam, Sly and Sohn put forward a replica symmetry breaking result in a simpler variant of

the k-SAT problem called the random Not-All-Equal (NAE) SAT.

Moving to the random linear equation problem, if we have a fixed number k of non-zero entries in each

row, the problem is equivalent to the k-XORSAT problem. In the k-XORSAT problem, the exclusive OR denoted
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XOR replaces the normal logical OR in each clause. The two problems are equivalent because the operation

modulo 2 between two elements in F2 is identical to the XOR operation between two Boolean variables. For

the k-SAT problem (and incidentally the k-XORSAT ), there is another phase transition, called the freezing

threshold, after which a linear fraction of the variables are forced to take the same value in all solutions. These

contrived variables are commonly called frozen variables.

In particular, for the k-XORSAT problem, the freezing threshold signals that finding satisfying assignments

will become hard, and as we increase m/n further, we are approaching the satisfiability threshold. This ob-

servation comes from the fact that after the freezing threshold, a special subgraph of the graph corresponding

to the k-XORSAT called the 2-core starts to appear with high probability. The 2-core corresponds to the sub-

graph of the graph that remains after recursively deleting vertices of degree less than two, i.e., vertices with one

neighbour, at most.

The 2-core serves here as a witness for unsatisfiability, i.e. once the 2-core appears, it becomes hard to

find a satisfying assignment. The reason is that if a satisfying assignment exists, the variables of the 2-core

are frozen. Hence, as the 2-core grows, the number of satisfying assignments decreases. The satisfiability

threshold will emerge when the constraint density ratio of the variables and clauses in the 2-core becomes

greater than one. Dubois and Mandler put forward this observation in their study of the 3-XORSAT [46] where

they identify the satisfiability threshold to be m/n = 1. Pittel and Sorkin later extended this result to general

k [87]. However, for our model, where each matrix entry is 1 with probability d/n, something special happens.

When d < e, the 2-core is an empty graph with high probability as in the k-XORSAT, but when d > e, the

variables of the 2-core are frozen with a probability of about 1/2.

It becomes clear that it is essential to devise an algorithm that can detect the 2-core of the graph corre-

sponding to the XORSAT problem. This algorithm is called the peeling process and is in a family of message

passing algorithms called Warning Propagation . This peeling process was first studied by Pittel, Wormald

and Spencer in their study of the k-core of the Erdős-Rényi random graph [88], it was later investigated by

Molloy for random hypergraphs, and random Boolean formulas [79]. Loosely speaking, the peeling process

is just an implementation of the recursive process that produces the core, i.e. it iteratively removes variables

of degree less than two until it discovers the core. So, informally, at a variable, Warning Propagation sends a

warning message to its neighbouring variables. For example, a warning message says the variable is frozen to

0, or the vertex has a degree less than 2. Another example is an algorithm called the Unit Clause Propagation

(UCP) which is used to find a satisfying assignment for a 2-SAT formula in polynomial time. Informally, UCP

repeatedly sets variables to a specific truth value and tracks the following change until it reaches a satisfying

assignment or a contradiction. Again, this iterative procedure can be formulated well in the language of Warn-

ing Propagation. An extension of UCP called DPLL2 ( [39], [38]) can be used to find a satisfying assignment for

k-SAT formulas with k ≥ 3. However, its running time will be exponential.

As the name suggests, our last model, the q-state ferromagnetic Potts model, originally came from statisti-

cal physics. Nonetheless, it can be understood as CSP due to its intrinsic connexion to the famous q-colouring

problem in a random graph where the goal is to colour the vertices so that there are no monochromatic edges.

Historically, the q-state ferromagnetic Potts model was developed by a physicist named Potts following a sug-

gestion from his advisor Domb (a historical review can be found in [97]). It received little attention initially, but

it became a topic of great interest in the last few decades. In particular, the case where the underlying graph,

which describes the interaction between particles, is the complete graph (the so-called mean field model) or a

lattice, is now well-understood [35,37,62,68,96]. Metastability and cut-off phenomena 3 have been extensively

studied by physicists and mathematicians for these cases [16,19,67,69,71]. Nevertheless, the case of the diluted

2DPLL is the acronym of Davis-Putman-Loveland-Logemann, who are the inventors of the algorithm.
3The cut-off phenomenon is the transition between fast mixing and slow mixing in a Markov chain
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model where the underlying graphs are d-regular random graphs or the Erdős-Rényi random graph withstood

rigorous analysis and only received attention recently [17, 60]. This thesis improves previously known results

by describing the emergence of the so-called metastable states for the q-state Potts ferromagnetic model on a

d-regular random graph.

1.3 Contribution of the author

This chapter ends by providing a list of papers that are the backbone of the thesis and to which the author of

this thesis contributed. At the same time, an evaluation of the author’s contribution to each paper is addressed.

Moreover, an overview of the results and the proofs are presented later in the thesis. Finally, the full versions

of the four papers are provided in the appendix.

The first result is from the paper Belief Propagation on the random k-SAT model by A. Coja-Oghlan, N.

Müller and J. B. Ravelomanana, which will be published in the Annals of Applied Probability and further, cited

as [30]. In this paper, we showed that if the model is replica symmetric, then Belief Propagation approximates

the partition function quite well for all inverse temperatures β ≥ 1 and any sufficiently large k. Moreover, we

conclude that replica symmetry breaking occurs in the random k-SAT model for clause density ratio near the

condensation threshold. The author of this thesis contributed to the investigation of the first, and second-

moment methods and the proof of the replica symmetry breaking result.

The second result is from the paper The sparse parity matrix by A. Coja-Oghlan, O. Cooley, M. Kang, J. Lee

and J. B. Ravelomanana published in the Proceeding of the 2022 Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), cited as [23]. This paper shows that the fraction of frozen variables concentrates on a

deterministic value for d < e but vacillates between two distinct values with a probability 1/2 approximately

for d > e. Consequently, the overlap between two solutions concentrates on a deterministic value, exhibiting

strong replica symmetry, for d < e but vacillates between two values with equal probability for d > e. The

author of this thesis contributed to the analysis of the fixed points of the Warning Propagation algorithm,

the examination of the relationship between these fixed points and the fraction of frozen variables and their

classifications.

The third result is from the paper Warning Propagation: stability and subcriticality by Oliver Cooley, Joon

Lee, and J. B. Ravelomanana submitted to the Journal of Combinatorial Theory Serie B, cited as [34]. This

paper provides a toolbox for studying Warning Propagation on a general multi-type random graph. We showed

that Warning Propagation converges quickly under relatively mild conditions on the random graph and the

stability of the message limit. Furthermore, the author of this thesis contributed to the extension of the model

from known special cases to a general class of multi-type random graphs and the proof of contiguity results

between the configuration model and the original model.

The last result is from the paper Metastability of the Potts Ferromagnet on Random Regular Graphs by A.

Coja-Oghlan, A. Galanis, L. A. Goldberg, J. B. Ravelomanana, D. Stefankovic and E. Vigoda accepted for the

International Colloquium on Automata, Languages and Programming 2022, cited as [27]. This paper describes

how metastable states unfold for the q state Potts ferromagnetic model on d-regular random graphs and es-

tablish that two solution sets (ferromagnetic and paramagnetic) coexist between the interval delimited by the

Gibbs uniqueness threshold and the Kesten-Stigum Bound (see Section 3.2.3). Moreover, this structural result

has various algorithmic effects. First, the Glauber dynamics has an exponential mixing time above the unique-

ness threshold and second, the Swendsen-Wang algorithm exhibits slow mixing, from the Gibbs uniqueness

threshold to the Kesten-Stigum bound. The author of this thesis contributed to the proof of the emergence

of the two phases and their coexistence, the moment computations on the planted model and the slow mix-

ing/metastability result for the Glauber dynamic.
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The remainder of the thesis is organised as follows. Chapter 2 gives the necessary formal definitions and

concepts. Then, Chapter 3 gives a brief overview of the replica symmetry concept via a toy model. Following

this, we proceed to the study of our specific models from Chapter 4 to 7 (the complete proofs can be found in

the list of papers in the appendix). Further, Chapter 8 provides further research directions. Finally, Chapter 9

contains a german summary of the thesis.
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Chapter 2

Models

2.1 Formal definitions of CSPs

A CSP is specified by a set Vn = {x1, x2, . . . , xn} of variables that can take values in a finite set Ω together with

a certain number of constraints a1, . . . , am for some m ∈ N. Each constraint ai details a subset of allowed

combination of values for the variables [93]. Moreover, a satisfying assignment or a solution is a mapping

σ : Vn →Ω that satisfies every constraint.

For the k-SAT problem, each variable xi is a Boolean variable that can take the values true or false. We will

denote the truth value ‘true’ by +1 and ‘false’ by −1 so that Ω= {−1,1}. Let ∨ denote the logical OR, ∧ the logical

AND and ¬ the logical negation. Furthermore, for ` ∈N, we denote the set {1, . . . ,`} by [`] and the set {0, . . . ,`}

by [`]0.

Each k-SAT instance is a Boolean formula Φ given by: Φ = a1 ∧ a2 ∧ ·· · ∧ am and for each i ∈ [m], ai =
xi 1 ∨xi 2 ∨·· ·∨xi k , where xi j is an occurrence of a variable x` or its negation ¬x`. The quantities ai are called

clauses and they form the constraint, which explains the similarity in the notation. Example 2.1.1 shows a 3-

SAT formula with four clauses and six variables x1, . . . , x6. Moreover, a satisfying assignment is given by σ(x1) =
1,σ(x2) = 1,σ(x3) = 1,σ(x4) =−1,σ(x5) = 1 and σ(x6) =−1.

Example 2.1.1. Φ= (x1 ∧¬x3 ∧¬x5)∨ (x3 ∧¬x5 ∧x4)∨ (x2 ∧¬x4 ∧x6)∨ (¬x2 ∧¬x1 ∧¬x6) .

To further simplify the notation, the negation symbol ¬ is replaced by a variable J , which takes the value

+1 for a positive occurrence of a variable and −1 for a negative. Since the interest is in random CSPs, a random

k-SAT formula is generated as follows1.

The number of clause m is a Poisson random variable with mean dn/k, denoted as Po(dn/k), for some

d > 0. Then, we independently choose a family
(

x i j
)

1≤ j≤k of k variables uniformly without replacement

for each clause ai . Finally, each variable x i j appears in a clause ai with a sign J i j where (J i j )i , j≥1 is a

family of independent {±1}-variables with mean zero.

Thus, a random k-SAT formula can be written as

Φ=
m
∧

i=1
ai =

m
∧

i=1
(J i 1x i 1 ∨·· ·∨ J i k x i k ) ,

and an assignment σ satisfies a clause ai (denoted by σ |= ai ) if max j∈[k] J i jσ(x i j ) = 1 for all i ∈ [m].

1From here on, a bold font signifies that the variable or the quantity is random.
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Next, we turn to the random linear system of equations problem, which is easier to grasp. The set of value

Ω is the set of integer modulo 2 (F2). Furthermore, the matrix A is an n ×n matrix where each entry is 1 with

a probability d/n. In order to build the corresponding CSP, choose a random vector y =
(

y 1, . . . , y 2

)

from the

column space of A and set the system of equation to be Ax = y where x = (x1, . . . , xn) ∈ F
n
2 . Now, there are m = n

constraints ai given by an equation

Ai 1x1 ⊕ Ai 2x2 ⊕·· ·⊕ Ai n xn = y i ,

where ⊕ is the addition modulo two.

Remark 2.1.2. Note that if x? is a solution of the system of equations, then any other solution is of the form

x?⊕ x ′ with x ′ ∈ ker(A), i.e. the set of solutions of the system of equations is a translation of the kernel. Thus,

to study the geometry of the solution space, it suffices to study the homogeneous system of equations where the

vector y is the all-zero vector. Frozen variables can then be identified with the indices i ∈ [n], such that xi = 0 for

all x ∈ ker A.

Lastly, for the q-state ferromagnetic Potts model, the set Ω is the set [q] for some q ∈ N. For each i ∈ [n],

each variable xi corresponds to exactly one vertex vi in the graph and xi = ` if vi takes the colour `. The graph

is taken uniformly at random from the set of all the d-regular graphs on n vertices (for some d ∈ N0
2). Each

constraint ai is, thus, given by an edge. A representation of a CSP as a graph is introduced in the following

section.

2.2 Factor graphs and Boltzmann/Gibbs distribution

2.2.1 Factor graphs

A CSP is nicely represented by a graph called factor graph. A factor graph G is a bipartite graph where the

first class V1 = {v1, . . . , vn} of the vertices represent the variables (referred to as variable nodes) and the second

class V2 = {c1, . . . ,cn} of the vertices represent the constraints (referred to as constraint/check nodes). With a

slight abuse of notation, we will sometimes denote by V (G) the set of variable nodes and C (G) the set of con-

straint nodes corresponding to a factor graph G . Moreover, there is an edge between a variable node vi and

a constraint node ci if and only if variable xi appears in the constraint ai . Furthermore, a weight function is

associated with each constraint node ai of the factor graph; these weights are intrinsically linked to a prob-

ability distribution called Boltzmann/Gibbs distribution described in subsection 2.2.2. Hence, we postpone

the formal definition of the weight to the next subsection and proceed to the description of the factor graphs

in our three specific models. We also note that the definition of a factor graph and an in-depth study can be

found in [72, Chapter 9].

In the random k-SAT problem, V1 represents the Boolean variables, and V2 represents the clauses. So, there

is an edge between a variable node vi and a constraint node ci if and only if variable xi appears in the clause ai .

Furthermore, for a formula Φ, we denote the factor graph as G(Φ). In addition, V (Φ) and C (Φ) will represent

the sets of variables and check nodes, respectively. Figure 2.1 shows a factor graph representation of the 3-SAT

formula given in Example 2.1.1. Moreover, the squares and the circles represent the constraints and variables

nodes, respectively, in all the factor graph representations.

For the random linear equation problem, the vertices in V1 are the variables, and the vertices in V2 are the

equations. Moreover, for a matrix A, the corresponding factor graph is denoted by G(A). Furthermore, the set

2
N0 =N∪ {0}

9



v1 v2 v3 v4 v5 v6

c1 c2 c3 c4 c1 c2 c3 c4 c5 c6

v1 v2 v3 v5 v6v4 v7 v8

Figure 2.1: Left: A factor graph representation of the 3-SAT formula Φ in Example 2.1.1. As a variable may
appear negatively or positively in a clause, the edges are coloured so that a blue edge indicates that a variable
appears positively in the clause and a red edge indicates that a variable appears negatively. Right: A factor
graph representation of a system of equation in F2.

of variable nodes V1 is denoted V (A) and the set of constraint nodes V2 is referred to as C (A). Here, an edge

exists between a variable node vi and a check node ci if and only if variable xi appears in the equation ai .

Figure 2.1 shows an example of a factor graph representation of an instance of a linear system.

For the ferromagnetic Potts model, the set V1 is just the original set of vertices of the d-regular graph, while

V2 is the set of edges. In other words, the constraints are enforced by the edges. It turns out that for the specific

case of the Potts model, it will be much easier to work directly on the d-regular graph rather than the factor

graph. Nonetheless, keeping in mind that the edges are ‘check nodes’ or ‘constraint nodes’ helps to understand

the next crucial concept.

Remark 2.2.1. We use the general notation E = (V ,G) to refer to a graph. Furthermore, for the factor graphs

representing the k-sat model and the random matrix model, the set Vn is identified as V (Φ) and V (A), respec-

tively. Also, we sometimes refer to Vn as V if it is clear from the context (for example, in the Potts model, the set

of variables is just the vertex set of the graph). For a node v of a graph, ∂v denotes the neighbourhood of v and

∂`v denotes the set of vertices at a distance exactly ` from v. Moreover, we use the standard Landau notations

for asymptotic orders where all the asymptotics are taken as the number of variables n → ∞, unless specified

otherwise. Finally, the abbreviation w.h.p. means with high probability or with probability tending to one as

n →∞.

2.2.2 Boltzmann/Gibbs distributions

A factor graph G induces a probability distribution on the set of assignment {σ : Ω→Vn} which we identify

with the set ΩVn . Moreover, each element σ ∈ Ω
Vn is called a configuration. To see the connection between

the factor graphs and probability distributions, we first observe that the difference between a simple bipartite

graph and a factor graph is the additional requirement that a variable node vi is connected to a constraint node

ci if and only if a variable xi is involved in constraint ai . This is emphasised by introducing a weight function

Ψai : Ω∂ai → (0,∞) associated to each constraint ai where we recall that ∂ai is the set of variables connected to

constraint ai . Then, each constraint node ci in the factor graph has a weight Ψai . Now, the Gibbs/Boltzmann

distribution is given by

µ(σ) =
Ψ(σ)

Z (G)
for σ ∈Ω

Vn , (2.2.1)

where Ψ(σ) =
∏m

i=1Ψai (σ∂ai
) and Z (G) =

∑

σ∈ΩVn Ψ(σ). The normalisation factor Z (G) is called partition func-

tion and σ∂ai
is the restriction of σ to the variable nodes involved in ai , i.e σ∂ai

∈Ω
∂ai . This distribution, as

the name implies, originated from physics. Furthermore, the definition of the Boltzmann distribution can be

found in [72] but also in classical statistical mechanics textbooks such as [57, 89]. Technically, in statistical

physics jargon, the distribution in 2.2.1 is referred to as the Boltzmann distribution, and the limit as, n →∞,

is the Gibbs distribution. However, we will mainly be interested in n → ∞; thus, we will use the two terms

10



interchangeably.

To elaborate on the physics perspective, each variable node in the factor graph represents particles, and an

element σ ∈Ω is called spin. Loosely speaking, in the elementary case, a spin represents the magnetisation of

a particle (positive or negative). Moreover, the quantity E (σ) =− log(Ψ(σ)) is called the energy of the system.

So, the Gibbs distribution gives the probability that a system will be in a certain configuration σ ∈ Ω
Vn as a

function of the energy. Now, let us look at how the Gibbs distribution materialises in the three models, starting

with the Potts model.

For the q-state ferromagnetic Potts model, for each constraint a = {u, v} ∈ E 3, Ψa(σ∂a) = exp
(

β · 1 {σu =σv }
)

for some β> 0. Thus, we have

Ψ(σ) =
∏

{u,v}∈E

exp
(

β · 1 {σu =σv }
)

and E (σ) =−β ·
∑

{u,v}∈E

1 {σu =σv } .

The quantity H (σ) :=− 1
βE (σ) =

∑

{u,v}∈E 1 {σu =σv } is called Hamiltonian. Here, the Hamiltonian counts the

number of monochromatic edges in the graph and the weights Ψa give a reward β to the monochromatic

edges. Roughly speaking, µ is the probability of observing a colouring σ of the system. The particularity of the

ferromagnetic Potts model is that more probability masses are given to colouring with a lot of monochromatic

edges.

The constant β is referred to as the inverse temperature. To explain the reason behind this name, let us

look at the 2-state ferromagnetic Potts model on a complete graph [72, Chapter 2] which goes under the name

of Curie-Weiss model. The two spins commonly represented by +1 and −1 represent the magnetisation of

a particle. The goal of the study of the Curie-Weiss model was to model how the magnetisation of an iron

manifests at different temperatures.

The rough idea is that when β is large, or 1/β (the temperature) is low, one of the spins begins to dominate,

and we are in the so-called ferromagnetic phase, i.e. the system will show a negative or a positive magnetisa-

tion. On the other hand, in the high-temperature case (β is small), there is no observed magnetisation, and the

regime is called paramagnetic. In particular, there is a critical (inverse) temperature, βp , where the system sud-

denly switches from paramagnetic to ferromagnetic. We will see in Chapter 3 that this behaviour generalises

on random d-regular graphs for q ≥ 3.

In the case of the random k-SAT problem, for each constraint ai (i ∈ m), Ψai (σ∂ai
) = exp

(

−β · 1 {σÕ ai }
)

for

some β> 0 and so,

Ψ(σ) =
∏

i∈[m]
exp

(

−β · 1 {σÕ ai }
)

and E (σ) =β ·
∑

i∈[m]
1 {σÕ ai } .

The Hamiltonian is now given by H (σ) =
∑

i∈[m] 1 {σÕ ai } and counts the number of unsatisfied assignments.

Moreover, a penalty of −β is given to unsatisfied clauses, and by taking β to infinity, the partition function

Z (G) will approximate the number of satisfying assignments. If β =∞, the Gibbs distribution is the uniform

distribution over the solution space because any unsatisfied clause will get a penalty zero and the partition

function will exactly count the number of solutions. However, it turns out that it is much easier to handle the

case β finite and take the limit after.

Lastly, we turn to the random linear problem. Here, in view of Remark 2.1.2, for each constraint/equation

ai the weight is given by

Ψai (σ∂ai
) = 1

{

ai :=
∑

j∈[n]
Ai jσx j = 0

}

.

3As the constraints are just edges, there is no need for a subscript. Moreover, there are many orderings of the edges and the vertices.
However, all orderings are equivalent because we work up to isomorphism.
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Then,

Ψ(σ) =
∏

i∈n

1

{

∑

j∈[n]
Ai jσx j = 0

}

and E (σ) =
∑

i∈n

1

{

∑

j∈[n]
Ai jσx j = 0

}

.

Hence, the partition function is just the cardinality of the kernel of A i.e.

Z =
∑

σ∈Fn
2

∏

i∈n

1

{

∑

j∈[n]
Ai jσx j = 0

}

= |ker A|

and we set the Hamiltonian to be H (σ) = E (σ). For this case, the definition of Ψai (σ∂ai
) is extended by al-

lowing the value zero when the equation is not satisfied. However, the Gibbs distribution is still well defined

because the zero vector is always in the Kernel and so Z = |ker A| > 0.

Remark 2.2.2. There are two layers of randomness in our model. The first is from the random factor graph, i.e.

the model itself, and the second is from the Gibbs distribution. To avoid confusion, for a random variable O :

Ω
Vn →R, we denote by

〈

O ,µ
〉

the expectation with respect to the Gibbs distribution or, in general, the expectation

with respect to a probability measure µ on Ω
Vn .
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Chapter 3

Overview of replica symmetry

The replica symmetry condition originally came from a method used to study the partition function Z . It turns

out that computing Z is hard because, in many cases, the sum runs over an exponential number of indices [72].

For instance, we have 2n possible summands for the random k-SAT problem. Therefore, it is natural to look

for an approximate value of Z for a large enough n. A reasonable approximation is given by limn→∞
1
n log Z , as

it gives the leading exponential order of the partition function.

Moreover, the quantity of interest is the average E
(

log Z
)

as it will describe the behaviour of typical samples.

In most cases, it has been seen that it is not difficult to compute the moments E
(

Z `
)

of Z for any fixed ` ∈N.

Therefore, a reasonable attempt for computing E
(

log Z
)

is given by

lim
n→∞

1

n
E
(

log Z
)

= lim
n→∞

lim
`→0

1

n`
log

(

E

(

Z `
))

. (3.0.1)

This is the so-called replica trick [36, 74, 75, 95] . To see how and when this trick works, let us consider a

toy model called the random energy model (REM). The REM was introduced by Derrida [40–43,53] and we will

only give a glimpse of the rich theory behind the REM as an introductory model for the replica trick. However,

we refer to [64] for an in-depth investigation and extensions to other problems, such as percolation on the

binary tree. The next section follows [72, Chapter 8].

3.1 Replica trick with the REM

In the three model considered here, we have 2n or qn possible assignments σ, where each assignment has an

energy E (σ). The simplification in the REM model is that instead of a set of possible assignments, it is de-

scribed by a set of 2n energy level E j and each E j are i.i.d Gaussian random variable with mean 0 and variance

n/2. Moreover, for the REM, we have µ( j ) = exp
(

−βE j
)

/Z for all j ∈ [2n] and Z =
∑

j∈[2n ] exp
(

−βE j
)

. Thus, the

`-th moment of Z is given by

Z ` =
2n
∑

i1,i2,...,i`=1
exp

[

β
(

−Ei1 − . . .−Ei`

)]

. (3.1.1)

The quantity Z ` can be considered as a partition function of a new system given by `-tuples {i1, . . . , i`}

with i j ∈ [2n] and energies Ei1,...,i` = Ei1 + . . .+Ei` . This means that the new system is obtained by taking `

independent copies of the original system where each copy is referred to as a replica. In order to compute
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E
(

Z `
)

, it is useful to rewrite (3.1.1) so that we get

Z ` =
2n
∑

i1,...,i`=1

2n
∏

j=1
exp

[

−βE j

∑̀

a=1
1
{

ia = j
}

]

.

Moreover, by the linearity of the expectation and since the E j are i.i.d Gaussian, we obtain

E

(

Z `
)

=
2n
∑

i1,...,i`=1
exp

(

β2n

4

∑̀

a,b=1

1 {ia = ib}

)

. (3.1.2)

Now, let Q be a `×` matrix where each entry is given by Qab = 1 {ia = ib} ∈ {0,1}. Q is commonly referred to as

an overlap matrix where each entry Qab is called overlap. Then, (3.1.2) becomes

E

(

Z `
)

=
∑

Q

Nn(Q)exp

(

β2n

4

∑̀

a,b=1

Qab

)

, (3.1.3)

where the sum runs over the set of symmetric {0,1} matrix Q with ones on the diagonal and Nn(Q) is the

number of configuration {i1, . . . , i`}, such that Q =
{

Qab
}

. By large deviation principles, we can assume that

Nn(Q) = exp(n(s(Q)+o(1))) for some function s that only depends on Q. Hence, (3.1.3) will yield

log
(

E

(

Z `
))

= n(max
Q

G(Q)+o(1)) with G(Q) =
β2

4

∑̀

a,b=1

Qab + s(Q). (3.1.4)

For `> 1, the function G is symmetric under permutation of the replicas, i.e. for any permutation π on the set

[`], we have G(Q) =G(Qπ) where Qπ is obtained from Q by setting Qπ
a,b =Qπ(a)π(b). The latter is due to the fact

that from the beginning the replicas are considered to be identical. The fact that G is symmetric implies that

Qab is equal to the same value q0 ∈ {0,1} for all a 6= b and this is the so-called replica symmetry condition. The

immediate consequence is that the maximum in (3.1.4) is attained at either the all one matrix or the identity

matrix. Specifically, let Q0 be the identity matrix and Q1 be the all one matrix. There exists a threshold β∗ =
√

(4log2)/` [72] such that for β≤β∗, the global maximum is attained at Q0 but for β>β∗, it is attained at Q1.

As an illustration, let us consider the case β≤β∗, we have G(Q0) = `
(

β2

4 + log(2)
)

and heuristically we get

lim
n→∞

1

n
E
(

log Z
)

= lim
n→∞

lim
`→0

1

n`
log

(

E

(

Z `
))

= lim
`→0

1

`
G(Q0) =

β2

4
− log(2). (3.1.5)

However, for ` < 1, two problems arise. First, the number of possible matrices Q is 2`(`−1)/2 and so `(`−
1) < 0 for ` < 1, which means that we have to maximise over a negative number of variables. A fundamental

principle introduced by Giorgio Parisi, called the Parisi Axiom, is to transform the maximisation problem into

a minimisation problem if we have a negative number of variables, i.e. the postulate proposed by Parisi is that

for `< 1, we have

log
(

E

(

Z `
))

= n(min
Q

G(Q)+o(1)). (3.1.6)

The second and crucial problem is that at a threshold β∗∗(`), the symmetry condition does not hold anymore

for G . Specifically, the maximum of G is attained at a matrix Q, such that the entries of Q can be divided into a
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certain number of groups that verify



















Qaa = 1

Qab = q0 if a 6= b and a,b are in different groups,

Qab = q1 if a 6= b and a,b are in the same group

with q0 6= q1. This is the one-step replica symmetry breaking (1-RSB) condition. The replica symmetry breaking

scheme was introduced by Giorgio Parisi [86] in the early 80s and lies at the heart of his work, for which he

received a Nobel prize. Since then, many applications have emerged in different models. Of course, much

more can be said about replica symmetry and replica symmetry breaking in particular, so we refer to [75,84,90]

for further investigations. Now, we will see how replica symmetry materialises in our models.

3.2 Replica symmetry in our models

The pivotal quantity in the replica trick for the REM model is the overlap Qab between two replicas. In our

models, the replicas are replaced by assignments σ,τ ∈Ω
Vn and for s, t ∈Ω, the overlap is defined by

Qστ(s, t ) =
1

n

n
∑

i=1
1 {σi = s,τi = t } .1 (3.2.1)

We say that the CSP is replica symmetric if, for any σ,τ ∈Ω
V (G) and s, t ∈Ω,

lim
n→∞

E
(∣

∣Qσ,τ(s, t )−q(G)
∣

∣

)

= 0, (3.2.2)

where q might still be a random value because of the randomness of the underlying factor graph G for example.

In words, replica symmetry means that the overlap concentrates on a (random)-value. Moreover, the condition

is said to be strong if q(G) is a deterministic value. In this regards, the REM model exhibits strong replica

symmetry for β up to the threshold β∗∗ and the value of q is either 0 or 1. The random linear problem is also

strongly replica symmetric if d < e but it is just replica symmetric for d > e. In reality, the following slightly

stronger condition holds for the random k-SAT model and the random matrix problem. For any variable x1

and x2 and a sample σ from the Boltzmann distribution, we have

lim
n→∞

E
(∣

∣µ
({

σx1 =σx2 = 1
})

−µ
({

σx1 = 1
})

µ
({

σx2 = 1
})∣

∣

)

= 0.2 (3.2.3)

In words, the spins of two particle x1 and x2 are independent and have the same distribution µ in the limit of

large n, this is the absence of long range correlations mentioned in the introduction. Furthermore, by directly

computing the expectation, (3.2.3) implies (3.2.2). It is also possible to show that (3.2.2) implies (3.2.3) using

techniques from [22] and [28]. Hence, as it has been done in [65], we also use (3.2.3) as another definition of

replica symmetry. We also note that in (3.2.2) and (3.2.3), the expectation is taken over the underlying random

structure, i.e. the graph.

So, in general, if the replica symmetry condition (3.2.3) holds for random factor graphs [31], then it is ex-

pected that

lim
n→∞

1

n
E
(

log Z
)

= sup
π∈P 2(Ω)

B(π), (3.2.4)

1If |Ω| = 2 as in the k-SAT model or our matrix model, the overlap reduces to Qστ = 1
n

∑n
i=1 1

{

σi = τi
}

.
21 can be interpreted as the Boolean value true or the integer 1 modulo two in F2.
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where P (Ω) is the set of probability distribution on Ω, P
2(Ω) is the set of probability distribution on P (Ω)

and B : P
2(Ω) → R. The functional B(π) is called Bethe free entropy in physics jargon and (3.2.4) is called

the replica ansatz. Observe that (3.2.4) amounts to a generalisation of (3.1.4) where G is now B, each π cor-

responds to a zero-one matrix Q and each entry of the matrix Q corresponds to a probability distribution on

Ω.

3.2.1 Replica symmetry in the k-SAT model

For the random k-SAT model, if (3.2.3) holds then Equation (3.2.4) is true up to a threshold d∗ = k2k log2−10k2.

Furthermore, let d∗∗ = 2k k log2−k(3+εk ) log2/2 for some sequence εk , such that limk→∞ εk = 0 and let dSAT
3

be the satisfiability threshold for the k-SAT model. Then, for d ∈ [d∗∗,dSAT], the replica symmetry condition

(3.2.3) can not hold anymore i.e.

limsup
n→∞

E
(∣

∣µ
({

σx1 =σx2 = 1
})

−µ
({

σx1 = 1
})

µ
({

σx2 = 1
})∣

∣

)

> 0, (3.2.5)

and (3.2.4) is also violated.

In terms of the overlaps, the replica symmetry breaking scheme in the random k-SAT model can be un-

derstood in the following way. We build a graph G? on the set of configurations Ω
Vn by connecting two

assignments σ and τ if they differ exactly at one variable xi for some i ∈ [n]. The connected components

of G? are called clusters. Then, the set of solutions is formed by a sub-exponential number of clusters for

d ∈ [d∗∗,dSAT] [65]. By analogy, each cluster of solutions corresponds to the groups in the REM model. Thus,

for d ∈ [d∗∗,dSAT] and two samples σ and τ taken from the Gibbs distribution, we have the following

• Qσ,τ concentrates on a value q0 if σ and τ are in the same cluster,

• Qσ,τ concentrates on a value q1 6= q0 if σ and τ are in different clusters

and we have the original statement of 1-RSB. We observe that there is a gap between d∗ and d∗∗. Reducing this

gap amounts to pinpointing the location of the condensation threshold in the random k-SAT model, which is

still an open problem, as mentioned before. Moreover, the concept of 1-RSB can be extended to a two-step

replica symmetry breaking scheme if it is possible to divide each cluster into sub-clusters in such a way that

• Qσ,τ concentrates on a value q0 if σ and τ are in the same sub-cluster,

• Qσ,τ concentrates on a value q1 6= q0 if σ and τ are in the same cluster but in different sub-cluster,

• Qσ,τ concentrates on a value q2 6= q1 and q2 6= q0 if σ and τ are in different clusters.

Of course, the concept can be extended to a `-step replica symmetry breaking scheme by considering `-fold

sub-clusters. It is even possible to have an infinite level of clustering, and in this case, it is called full replica

symmetry breaking (FRSB). A famous model called Sherrington-Kirkpartick (SK) model and its generalisation

called the p-spin glass model has been proved to exhibit FRSB for β greater than a critical threshold βFRSB [5].

We will look at how the formula (3.2.4) can be obtained and how the 1-RSB scheme unfolds on the random

k-SAT problem in the next chapter.

3The precise value of the satisfaibility threshold dSAT was found by Ding, Sly and Sun [44] and is approximately given by

dSAT(k) = 2k k log2−
1+ log2

2
k +o(1).
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3.2.2 Replica symmetry in the random matrix problem

Let us now turn to the random matrix problem, because we work in F2, we have Z = |ker A| = 2nul(A) where

nul(A) = dimker A. Hence, we have log Z = nul(A) (up to a multiplicative factor of log2 as the log is the natural

logarithm). Next, [26, Theorem 1.1] directly implies that

lim
n→∞

1

n
log Z = lim

n→∞
1

n
nul(A) = max

α∈[0,1]
Υd (α) in probability, (3.2.6)

where Υd (α) = exp
(

−d exp(−d(1−α))
)

+ (1+d(1−α))exp(−d(1−α))− 1. A moment of thought reveals that

(3.2.6) is a much easier optimisation problem than (3.2.4). Each probability distribution on F2 is uniquely de-

termined by the value p =P (σ= 1) and so the set P (F2) is the set [0,1]. So, a priori, the optimisation should be

over the set of probability distributions P ([0,1]) on [0,1]. However, a simple linear algebra fact will drastically

reduce the optimisation problem. This is explained in Chapter 5 but also in [26, Section 2.3.3]. Another par-

ticularity is that instead of having limn→∞
1
n E

(

log Z
)

, we directly have limn→∞
1
n log Z and a “in probability”

statement. The reason for this is that a bound on the limit limn→∞
1
n E

(

log Z
)

= limn→∞
1
n E (nulA) implies a

bound on 1
n log(Z ) = 1

n nul(A) w.h.p. (see [26, Proposition 2.5]).

Moreover, a bit of calculus [23, Proposition 2.3] shows that Υd has a unique global maximum for d < e and

exactly two distinct maxima α∗ <α∗ at the same height, i.e. Υd (α∗) =Υd (α∗) when d > e. It transpires that one

of the maximiser(s), α∗ and α∗ corresponds to the fraction of frozen variables, making the replica symmetric

result a direct consequence of this, as we will see in Chapter 5.

3.2.3 Replica symmetry in the Potts model

Lastly, for the q-state ferromagnetic Potts model, we have the following result.

Theorem 3.2.1. For all integers d , q ≥ 3 and real β> 0, we have

lim
n→∞

1

n
log Z = max

π∈Fd ,β

Bd ,β (π) in probability (3.2.7)

for some subspace Fd ,β ⊆P
(

[q]
)

and where

Bd ,β (π) = log

[

∑

c∈[q]

(

1+ (eβ−1)π(c)
)d

]

−
d

2
log

[

1+ (eβ−1)
∑

c∈[q]
π(c)2

]

for π ∈Fd ,β.

Theorem 3.2.1 is Theorem 2.5 in [27]. The idea for the proof, as well as the precise definition of Fβ,d , will

be given in Chapter 7. Beside, as the set [q] is finite, the set of probability measures P
(

[q]
)

is in one-to-one

correspondence with the q −1-simplex ∆q defined by

∆q =
{

(α1,α2, . . . ,αq ) ∈R
q |

q
∑

i=1
αi = 1 and αi ≥ 0 for i = 1, . . . , q

}

.

We call each element α ∈∆q a phase (following [52]) and a probability distribution π ∈P ([q]) corresponds

to a phase α ∈ ∆q . With a slight abuse of notation, we sometimes write Bd (α) instead of Bd (π). Moreover,

there are exactly q +1 phases that can maximises Bd [52]. The one corresponding to the uniform distribution

i.e. α0 =
(

1/q, . . . ,1/q
)

called the paramagnetic phase and q other distributions where one colour dominates in

the following sense: each of the q distributions corresponds to a phase αi called ferromagnetic phase defined

by

αi =
(

(1−a)/(q −1), . . . , a, . . . , (1−a)/(q −1)
)
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with 1/q < a ≤ 1 and a appears at the i -th position in αi . Note that Bd (αi ) =Bd (α j ) for any i , j ∈ [q], thus we

can restrict the study to say α1.

Several threshold values of β influence the shape of Bd . The first threshold is the so-called Gibbs unique-

ness threshold βu which is characterised by the fact that for β < βu , the function Bd has a unique (global)

maximum at the paramagnetic phase α0 and for β>βu , the ferromagnetic phase α1 starts to appear as a local

maximum. Roughly speaking, having only one maximum of Bd means that for a large enough n, the Gibbs

distribution is given by a unique measure which is the uniform distribution, hence, the name for the threshold.

The value of βu was obtained in [59] as the unique value of β for which, the following polynomial has a double

root in (0,1):

(q −1)xd + (2−eβ−q)xd−1 +eβx −1.

The paramagnetic phase remains the global maximum up to a threshold βp where the ferromagnetic phase α1

takes over. The value βp corresponds to the critical temperature βc on the Curie-Weiss model (Potts model for

the complete graph with two colours described in Chapter 2) where the two possible magnetisations (positive

and negative) can happen with the same probability. The value βp is given by [52]

βp = log
q −2

(q −1)1−2/d −1
.

Furthermore, the paramagnetic phase remains a local maximum up to a threshold βh = log
(

1+q/(d −2)
)

called the Kesten-Stigum4 bound after which it becomes a minimum [59]. Figure 3.1 gives an illustration of

the role played by the two maximisers as β increases, a similar picture for the case of the Curie-Weiss model

with q ≥ 3 can be found in [68].

Finally, the replica ansatz (3.2.4) remains valid for β ∈ [βu ,βh]. However, it is possible to have a trivial

replica symmetry breaking scheme by introducing an external field that boosts one of the q symmetric colours

or the paramagnetic phase. More precisely, the symmetry is broken by confining the Gibbs distribution to

a conditional distribution on a subspace where one of the q colours, or the paramagnetic phase dominates.

This replica symmetry breaking scheme will, in turn, produce the so-called metastable sets which will be inves-

tigated in Chapter 7.

β

α0

α1

0 βu βp βh ∞

Figure 3.1: The evolution of the paramagnetic and ferromagnetic maximisers α0 and α1 as β increases for
q ≥ 3. Red dashed lines mean that the maximiser corresponds to a local maximum and solid red lines mean
that the maximiser corresponds to a global maximum.

4The name refers to H. Kesten and B. P. Stigum who first discovered threshold of this type in another model [63].
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Chapter 4

Belief Propagation and the Bethe free

entropy

Belief Propagation (also referred to as BP from here on) is an iterative message passing algorithm that asso-

ciates two directed messages µx j →ai ,t and µai→x j ,t to each edge
{

x j , ai
}

of a factor graph. One type of message

is going from a variable to a check µx j →ai ,t and the other one going from a check to a variable µai→x j ,t . More-

over, the messages are indexed by a time t > 0 and for each t : µx j →ai ,t and µai→x j ,t are probability distributions

on Ω. A common choice for an initialisation is the uniform distribution over Ω i.e. µx j →ai ,0(s) = µai→x j ,0(s) =
1/ |Ω| for all j ∈ [n], i ∈ [m] and s ∈Ω. Another choice is to draw the message as i.i.d from a distribution P on

P (Ω). Furthermore, the messages are updated at each time step t > 0 according to the following rules

µai→x j ,t+1(s) ∝
∑

σ∈Ω∂ai

1

{

σx j = s
}

Ψai (σ)
∏

y∈∂ai \
{

x j
}

µy→ai ,t (σy ), (4.0.1)

µx j →ai ,t+1(s) ∝
∏

b∈∂x j \{ai }

µb→x j ,t+1(s), (4.0.2)

where s ∈Ω. We recall that ∂x j , ∂ai are the set of neighbours of x j and ai respectively. In addition, we note that

∝ hides the normalisation factor needed to turn the messages into probability distributions on Ω. A pictorial

illustration of the update rules is given in Figure 4.1. Moreover, all the messages are updated in parallel. Also,

it is understood that if ∂x j \{ai } =; then µx j →ai ,t+1 is the uniform distribution on Ω. Similarly, if ∂ai \
{

x j
}

=;
then µai→x j ,t+1(s) ∝Ψai (s).

The obvious question is under which condition(s) the messages (µx j →ai ,t ,µai→x j ,t )i∈[n], j∈[m] converge to a

limit (µ∗
i j )i∈[n], j∈[m] := (µ∗

x j →ai
,µ∗

ai→x j
)i∈[n], j∈[m]? It comes to light that BP converges on tree factor graphs [72,

Theorem 14.1] irrespective of the initial condition. In particular, if the limit exists then it becomes a fixed point

of (4.0.1) and (4.0.2). This is not true in general. For instance, even if the limit exists in factor graphs containing

cycles, it might not be unique as different initialisations might lead to different limits.

A second question is the meaning of the limit(s) if they/it exist(s)? Again, for tree factor graphs [72, Theorem

14.1], the marginals µ
(

σxi = ·
)

(i ∈ [n]) are computed exactly using the BP fixed point (µ∗
i j )i∈[n], j∈[m]. The latter

is also not true in general. As mentioned before, one problem is caused by the (possible) existence of several

limits depending on the initialisation for cyclic factor graphs. However, it is expected that if the factor graph

does not contain too many short cycles (cycles of bounded length), BP launched at the correct initialisation

will give a good approximation of the marginal distributions. Furthermore, using a decomposition property of
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x j

ai

y

µy→ai ,t

µai→x j ,t+1

ai

x j

b

µb→x j ,t+1

µx j →ai ,t+1

Figure 4.1: The check-to-variable (left) and variable-to-check (right) messages for BP. The check-to-variable
message µai→x j ,t+1 is a function of the incoming variable-to-check messages µy→ai ,t for y 6= x j . Analogously,
the variable-to-check message µx j →ai ,t+1 is a function of the incoming check-to-variable messages µb→x j ,t+1

for b 6= ai .

the Gibbs distribution [72, Chapter 14], the Bethe free Entropy is related to BP through the following quantity

Bt =Ba,t +Ba,x −Be,t (4.0.3)

where

• Ba,t =
∑n

i=1 log
[
∑

s∈Ω
∏

a∈∂xi
µa→xi ,t (s)

]

,

• Bx,t =
∑m

i=1 log
[

∑

σ∈Ω∂a j Ψa(σ)
∏

x∈∂a j
µx→a j ,t (σx )

]

and

• Be,t =
∑m

i=1

∑

x∈∂ai
log

[

∑

s∈Ωµx→a j ,t (s)µa j →x,t (s)
]

.

Roughly speaking, Ba,t corresponds to the contribution of the check nodes to the partition function, Bx,t to

the contribution of the variable nodes and Be,t to the contribution of the edges. As one might expect, the hope

is that

lim
n→∞

1

n
E
(

log Z
)

= lim
t→∞

lim
n→∞

1

n
Bt . (4.0.4)

In this case, B will be defined using the formula for limt→∞ limn→∞
1
n Bt but with arbitrary probability dis-

tributions µ1,µ2 ∈ P (Ω) as arguments instead of messages. As anticipated, this is again true in tree factor

graphs [72, Theorem 14.3] but it is not for cyclic factor graphs. Moreover, the limits (µ∗
i j )i∈[n], j∈[m] which are

fixed points of the Belief Propagation equations (4.0.2) and (4.0.1) (if they exist) are expected to correspond to

the stationary points of B.

The quantities described in this section, such as the BP messages, and the Bethe Free entropy, are very

model-specific; for instance, they depend on the factor graph or the set Ω; on top of this, there is the problem

of convergence. Hence, making the heuristic arguments described here rigorous might become a very com-

plicated task. Nevertheless, in [30], we were able to prove that (4.0.4) is valid for the random k-SAT model for

d < d∗ under replica symmetry, the summary of the different methods used to reach this conclusion is given

in the next section. Furthermore, the definitions and results (theorems, propositions, . . .) in the remainder of

this chapter are taken from [30] unless otherwise stated.

4.1 Bethe free computation on the random-k SAT model

Recall that for the k-SAT model, Ω= {±1} where 1 means true and−1 means false. We also remind thatΨai (σ) =
exp

(

−β1 {σÕ ai }
)

for i ∈ [m] and the number of clause m is distributed as Po(dn/k). In order to differentiate

the Boltzmann distribution of the k-SAT model from the other models we use the notation µΦ,β instead of just

20



µ. Similarly, for the partition function Z we use Z (Φ,β) and for the BP messages, we add a subscript Φ i.e the

messages are given by µΦ,ai→x j ,t ,µΦ,x j →ai ,t for all i , j and t . In addition, BP is initialised with the uniform

distribution i.e. µΦ,ai→x j ,0(±1) = µΦ,x j →ai ,0(±1) = 1/2 for all i ∈ [m] and j ∈ [n]. Lastly, the factor graph G

corresponding to the k-SAT is referred to as G(Φ). In this section, we will give an overview of the proof of the

following theorem, which is the main theorem of [30].

Theorem 4.1.1. For the random k-SAT model, there exists a constant k0 ≥ 3 such that for any k ≥ k0, β≥ 1 and

any d ≤ d∗ = d∗(k) = k2k log2−10k2 the following is true: if the replica symmetry condition (3.2.3) is satisfied

then

lim
t→∞

limsup
n→∞

1

n
E
∣

∣Bt − log Z (Φ,β)
∣

∣= 0.

The proof of Theorem 4.1.1 comes in three steps:

1. A subtle second-moment computation shows that the marginal distributions of most variables x are

close to 1/2 w.h.p.

2. Guided by the fact that BP gives an exact solution on trees, the second step is to show that BP launched on

a Galton-Watson tree that mimics the local structure of the k-SAT factor graph renders the correct result.

More precisely, contraction arguments shows that if BP is launched from messages with distribution

close to the uniform distribution (µΦ,x j →ai ,0(±1) = µΦ,ai→x j ,0(±1) = 1/2) then it converges quickly to a

fixed point.

3. Finally, combine 1 and 2 with invariant properties of the formula Φ to complete the proof.

4.1.1 Second moment method

The first natural attempt to study the k-SAT problem is to use the second-moment method on the random

variable corresponding to the number of satisfying assignments. Unfortunately, this approach fails for the k-

SAT problem for every value of d as described by Achlioptas and Moore in their seminal paper [1]. In our case,

we can try to use the second-moment method to study the partition function Z (Φ,β). Using the linearity of

expectation, independence of the clauses and the fact that any assignment σ ∈ {±1}Vn satisfies a clause with

probability 1−2−k we get that

1

n
logE

(

Z (Φ,β)|m
)

= log2+
m

n
log

(

1−2−k (1−e−β)
)

. (4.1.1)

So, using Markov’s inequality we have that 1
n log Z (Φ,β) ≤ log2+ d

k log(1−(1−e−β)2−k )+o(1). It turns out that it

is useful to write the second moment in term of the overlap α(σ,τ) :=Qσ,τ ∈ [0,1]. A few lines of computations

using linearity of expectation, independence of clauses and inclusion/exclusion principle also shows that,

assuming m = dn/k +o(n),

1

n
logE[Z (Φ,β)2 | m] = max

α∈(0,1)
f (α)+o(1), w.h.p., where (4.1.2)

f (α) := log2−α logα− (1−α) log(1−α)+
d

k
log

(

1−21−k (1−e−β)+2−kαk (1−e−β)2
)

.
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A moment of thought reveals that (4.1.1) implies 2
n logE

(

Z (Φ,β)|m
)

= f (1/2). However, the entropy function

H (α) :=−α logα− (1−α) log(1−α) is maximized at α= 1/2. In addition, the following function:

log
(

1−21−k (1−e−β)+2−kαk (1−e−β)2
)

is a strictly increasing function of α. Thus, maxα∈[0,1] f (α) > f (1/2). Therefore, the second-moment method

also fails here because the second moment exceeds the first moment by an exponential factor for any d ,β> 0.

However, some estimates can be retrieved if we apply the second moment to a truncated partition function

defined in the following way.

For a variable x, let d+
x and d−

x be the number of clauses in which x appears positively and negatively

respectively. We denote by D the σ-algebra generated by (d x )x∈Vn
and note that the number of clause m is

measurable with respect to D. In addition, we say that an assignment σ ∈ {±1}Vn is balanced if

∑

x∈Vn

σx (d+
x −d−

x ) =







0 if km is even,

1 otherwise.
(4.1.3)

Equation (4.1.3) shows that when we scan through the km literals occurring in Φ, about half of the literals

are set to 1, the other half is set to −1 up to an additive error of one. The trick is then to apply the second-

moment method to a partition function that only considers balanced assignments because the main rea-

son for the deviation of E
[

Z (Φ,β)2
]

from E
[

Z (Φ,β)
]2

is that very unbalanced and atypical assignments σ

contribute a lot to Z (Φ,β). We note that the specific construction of the balanced assignments is adopted

from the work of Achlioptas and Peres on the random k-SAT model for β = ∞ [2]. However, considering

only balanced assignments is not quite enough as we need to have precise control on the possible large de-

viations of d+
x and d−

x from their means. Thus, we introduce the following more stronger requirements: if
∣

∣

∑

x∈Vn
σx1{d+

x = d+,d−
x = d−}

∣

∣ ≤
p

n holds then σ is referred to as a strongly balanced assignment. A strongly

balanced assignment will set half of the variables for any choice of d+ and d− to 1 up to an error of
p

n. Let

BAL denote the set of strongly balanced assignments. The truncated partition function is given by

Zbal(Φ,β) = exp(−βum)
∑

σ∈BAL
1

{

m
∑

i=1
1 {σ 6|= ai } = dume

}

,

where u = u(k,β) = 1−2p

2p(eβ−1)
∈ (0,1) and p ∈ (0,1) is the unique solution of

1−2p − (1−e−β)(1−p)k = 0. (4.1.4)

Whence, Zbal(Φ,β) is the partition function Z (Φ,β) restricted to strongly balanced assignments that set exactly

dume clauses unsatisfied. Furthermore, the second moment method works for Zbal(Φ,β) [30, Propositon 5.1-

5.2], i.e.
1

2n
logE

[

Zbal(Φ,β)2
∣

∣

∣D
]

=
1

n
logE

[

Zbal(Φ,β)
∣

∣

∣D
]

+o(1) w.h.p. (4.1.5)

It is also worth pointing out that most assignments are in BAL, in other words, w.h.p. |BAL| = 2n+o(n) [30,

Lemma 5.4] which hints that Zbal(Φ,β) is the correct quantity to look at. To explain the origin of p, we ob-

serve that given D and a strongly balanced assignment σ, the only randomness left in the formula Φ is how

negative and positive occurrences of variables suits the clauses. Specifically, since the relevant quantity in

Zbal(Φ,β) is the number of unsatisfied clauses, remembering the identity of the variables is no longer neces-

sary, only their truth values matter. In order to model this, we shift to an auxiliary probability space where

each negative and positive occurrences xi j of a variable (say x) are “tokens” labelled either +1 or −1. More
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precisely, the k tokens present in a clause ai are represented by χi ,1, . . . ,χi ,k where
(

χi , j

)

i , j≥1
is a family of

{±1}-random variables such that P
(

χi , j = 1
)

= p for some p ∈ [0,1] and for all i , j ∈ N. This enables a precise

first and second-moment computation for Zbal(Φ,β), which turns out to be fruitful. Moreover, the choice of p

in (4.1.4) and thus the choice of u maximises E
[

Zbal(Φ,β)
]

. Furthermore, using (4.1.5), we obtain the following

lower bound on Z (Φ,β) [30, Proposition 2.1]

liminf
n→∞

1

n
E[log Z (Φ,β)] ≥

1

n
logE

[

Zbal(Φ,β)
∣

∣

∣D
]

+o(1)

=
(

1−
(k −1)d

k

)

log2−
d

2
log p −

d

2
log(1−p)+

d

k
log p.

The last estimate directly implies that

Z (Φ,β)2 ≥ exp

(

2n

[(

1−
(k −1)d

k

)

log2−
d

2
log(p(1−p))+

d

k
log p +o(1)

])

w.h.p. (4.1.6)

A comparison of the right-hand side of (4.1.6) to f shows that the contributions of the overlaps α that differ

significantly from 1/2 are extremely small. More precisely, for two independent samples σ and τ drawn from

the Gibbs distribution, the following holds.

Lemma 4.1.2. For k > k0, we have E
[

µΦ,β({|α(σ,σ′)−1/2| > k92−k/2})
]

= o(1).

Lemma 4.1.2 is a key property that will trigger the success of Belief propagation on the random k-SAT

model, which we present in the next section.

4.1.2 Belief Propagation on the random k-SAT model

One prominent feature of the factor graph G associated with the k-SAT model is that it contains a very few

numbers of short cycles or, more precisely, that there are about o(logn) cycles in G w.h.p. This is reminiscent

to the Erdős-Rényi random graph G(n,d/n) with a fixed d > 0 [14, 45, 61]. Thus, the depth t-neighborhood of

a variable node x locally converges to a possibly infinite Galton-Watson tree T generated as follows (a pictorial

description is given by Figure 4.2):

A single root variable node x0 is produced at the beginning of the process. Subsequently, each variable

node (starting from the root x0) generate a Po(d) number of clauses and each constraint node spawns

exactly k −1 variable nodes.

Po(d)

k −1k −1

Figure 4.2: The structure of the Galton-Watson tree T.

Moreover, we denote by V (T) and C (T) the set of variable and check nodes of T respectively. In order to get a

formula Φ from T, we select for each pair (a, x) ∈C (T)×V (T) a sign J ax ∈ {±1} uniformly and independently. In

addition, the local convergence of G to the random tree T is interpreted in the following sense: for any variable

node xi ( i ∈ [n]) and for a fixed t > 0, the depth-t neighborhood of xi and the depth-t neighborhood of x0 can

be couple in such a way that they coincide w.h.p. Thus, to study BP on G it suffices to study BP on T.
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To adapt BP to the random tree T, we first initialize the messages µT,π,a→x,0 and µT,π,x→a,0 independently

for any edge e = {a, x} ∈ E (T) according to some probability distribution π on [0,1]. More precisely, for any

edge e = {a, x} ∈ E (T), µT,π,a→x,0(1) and µT,π,a→x,t+1(1) are drawn independently from π. Then, we define

µT ,β,π,x→a,0(−1) = 1−µT ,β,π,x→a,0(1) and µT ,β,π,a→x,0(−1) = 1−µT ,β,π,a→x,0(1). The BP equations (4.0.1) and

(4.0.2) easily extend to the tree T such that for any adjacent a and x we have

µT,π,a→x,t+1(s) ∝
∑

σ∈Ω∂a

1 {σx = s}exp
(

−β1 {σÕ a}
)

∏

y∈∂a\{x}

µT,π,y→a,t (σy ), (4.1.7)

µT,πx→a,t+1(s) ∝
∏

b∈∂x j \{ai }

µT,π,b→x,t+1(s). (4.1.8)

A crucial property of the tree T is that the marginal distribution of the root x0 is estimated after t +1 rounds of

BP by

µT ,β,π,x0,t+1(s) ∝
∏

b∈∂x0

µT ,β,π,b→x0,t+1(s) (s =±1). (4.1.9)

As such, the quantities we want to learn from BP are the marginal probabilities µΦ,β
({

σxi = 1
})

that a specific

variable xi take the value 1, for a sample σ from the Gibbs distribution µΦ,β. To explore this, we will represent

the distribution of the BP marginal µT ,β,π,x0,t at the root in terms of an operator R on the space P ([0,1]).

To define this operator let γ+,γ− be Po(d/2) variables and given ν ∈P ([0,1]) let η= (η+
i j ,η−

i j )i , j≥1 be ran-

dom variables with distribution ν. All these random variables are mutually independent. Then R(ν) ∈P ([0,1])

is the law of the random variable

R(γ+,γ−,η) =

∏γ+

i=1

(

1−
(

1−e−β
)
∏k−1

j=1 η
+
i j

)

∏γ+

i=1

(

1−
(

1−e−β
)
∏k−1

j=1 η
+
i j

)

+
∏γ−

i=1

(

1−
(

1−e−β
)
∏k−1

j=1 η
−
i j

) ∈ (0,1) (4.1.10)

and we write R
t ( · ) for the t-fold iteration of R.

To understand the semantic behind 4.1.10, observe that as the total number of clauses is distributed as

Po(dn/k), a variable will appear positively in a Po(d/2) number of clauses and similarly it will appear negatively

in a Po(d/2) number of clauses. Furthermore, the numerator in 4.1.10 can be understood as the marginal

distribution of clause ai being satisfied in the formula Φ− y where we remove the variable y in clause ai (this

will be addressed again in Section 4.2). In addition, the ηi j represents the probability that a variable x j does

not satisfy a clause ai . Therefore, the clause ai is satisfied in Φ− y with probability 1−
∏k−1

i=1 ηi j and is not

satisfied with probability
∏k−1

i=1 ηi j in which case it receives a penalty of e−β. The construction of R and the

fact that R will contract in a suitably defined metric borrow ideas from [44] where they studied a different

distributional fixed point equation for the k-SAT problem.

We will inspect the operator R on a subspace of P ([0,1]). More precisely, denote by P
? the space of prob-

ability distributions ν ∈ P ([0,1]) such that ν([0, x]) = ν([1− x,1]) for all x ∈ [0,1]. As γ+ and γ− are identically

distributed, (4.1.10) guarantees that R is a function from P
? to P

?. In addition, for any probability distribu-

tion π ∈P ([0,1]) we get a new probability distribution π? ∈P
? in the following fashion. Choose X from π and

independently choose a {±1}-variable J with E [J ] = 0. After, we obtainπ? as the distribution of (1+J (2X −1))/2.

The following observation links R to the Belief Propagation message passing scheme on T [30, Lemma 6.1].

Lemma 4.1.3. For any π ∈P ([0,1]) and any t ≥ 1 the random variable µT,β,π,x0,t (1) has distribution R
t (π?).

Next, we showed that according to the Wasserstein-metric 1, for d ≤ dSAT, the operator R contracts [30,

1For a Polish space E let P (E) be the space of all probability measures on E. In addition, for a subspace E ⊆ R we introduce the
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Proposition 6.3 and Proposition 6.4] when it is launched from an initial distribution π which has a very slim

tail. Specifically, a distribution π has a slim tail if

π

([

0,
1

2
−2−k/10

]

∪
[

1

2
+2−k/10,1

])

≤ 2−k/10. (4.1.11)

Furthermore, π has a very slim tails if (4.1.11) holds with the r.h.s. replaced by 2−k/9. So, BP will give a good

approximation to the marginal distributions µΦ,β if it is linked to a distribution π with a very slim tail. This is

indeed the case. To be more precise, let δz be the probability distribution on R defined by δz (z) = 1 for z ∈ R

and define the empirical distribution of the marginals by πΦ,β = 1
n

∑n
i=1δµΦ,β({σxi

=1}) ∈P (0,1). Combining the

replica symmetry assumption (3.2.5) and Lemma 4.1.2 which asserts that the overlap α concentrates around

1/2, we get the following.

Lemma 4.1.4. Suppose that β≥ 1, k ≥ k0 and d < d∗ and that (3.2.5) is satisfied. Then πΦ,β has very slim tails

w.h.p.

Furthermore, the following proposition shows that in the limit of large t , when we launch BP on the tree T

with any distribution with slim tails it produces the same BP marginal as π0 where π0 = δ1/2 i.e the distribution

where the messages are initialised with the uniform distribution.

Proposition 4.1.5. Assume that d ≤ dSAT(k) and β ≥ 1. Then uniformly for all π with slim tails and k ≥ k0 we

have

lim
t→∞

E
∣

∣µT,β,π,x0,t (1)−µT,β,π0,x0,t (1)
∣

∣= 0.

Furthermore, the sequence (µT,β,π0,x0,t (1))t≥1 converges weakly to a probability measure π?

d ,β with slim tails.

The remaining thing to do is to transfer the result on the tree T to the actual factor graph G(Φ).

4.2 The Bethe free entropy and the standard-messages

It is already known that the partition function is well approximated with respect to certain “standard-messages”

or “pseudo-messages” [31]. The pseudo-messages are constructed as follows. The message µΦ,β,x j →ai
is the

Gibbs marginal of xi in the formula Φ− ai obtained by removing clause ai . In other words, µΦ,β,x j →ai
is de-

fined by µΦ,β,x j →ai
(±1) = µΦ−ai ,β({σx j = ±1}). Analogously, the reverse message µΦ,β,ai→x j

is obtained as the

marginal of x j in the formula Φ where we delete all clauses in which the variable xi appears apart from ai i.e

µΦ,β,ai→x j
(s) =µΦ−(∂x j \{ai }),β({σx j = s}) for s ∈ {±1} .

Note that the standard messages do not have a timestamp t anymore. Furthermore, the next result, which

pertains to general factor graphs, yields that the standard messages give an approximation for the partition

function if the replica symmetric assumption (3.2.5) holds.

Lr -Wasserstein space Wr (E) as the space of all probability distributions µ ∈ P (E) with
∫

E |x|r dµ(x) <∞. We endow this space with the
Wasserstein metric Wr (thereby turning Wr (E) into a complete metric space) defined as

Wr (µ,ν) = inf

{

(∫

E×E
|x − y |r dγ(x, y)

)1/r
: γ ∈P (E×E) is a coupling of µ,ν

}

.
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Lemma 4.2.1 ( [31, Corollary 1.2]). Let

B(Φ,β) =
n
∑

i=1
log

[

∑

σ∈{±1}

∏

a∈∂xi

µΦ,β,a→xi
(σ)

]

+
m
∑

i=1
log

[

∑

σ∈{±1}∂ai

exp(−β1 {σ 6|= ai })
∏

x∈∂ai

µΦ,β,x→ai
(σx )

]

−
n
∑

i=1

∑

a∈∂xi

log

[

∑

σ=±1
µΦ,β,xi→a(σ)µΦ,β,a→xi

(σ)

]

. (4.2.1)

If (3.2.5) holds and limn→∞B(Φ,β)/n = b ∈R in probability, then limn→∞
1
n log Z (Φ,β) = b in probability.

The Bethe free formula proposed in Lemma 4.2.1 comes in terms of the standard messages but not in terms

of the BP messages. So, Theorem 4.1.1 will follow if we can prove that the standard messages are close to the

BP messages for large enough t . In fact, the standard messages form an approximate fixed point of the BP

equations (4.0.1) and (4.0.2) [31, Theorem 1.1]. Nonetheless, it is possible that the fixed point corresponding

to the standard messages is different from the fixed point obtained by launching BP from a distribution with

slim tails. This will not be the case, as the following proposition shows it.

Proposition 4.2.2. If (3.2.5) is satisfied, d < d∗,β≥ 1 and k ≥ k0, then

lim
t→∞

limsup
n→∞

1

n
E

[

n
∑

i=1

∑

a∈∂xi

∣

∣µΦ,β,xi→a(1)−µΦ,β,xi→a,t (1)
∣

∣+
∣

∣µΦ,β,a→xi
(1)−µΦ,β,a→xi ,t (1)

∣

∣

]

= 0.

The proof of Proposition (4.2.2) can be found in [30, Section 7] and roughly goes as follows. Note that it

suffices to prove the statement for the variable to clause messages. The statement for the clause to variable

messages follows from the BP equation (4.0.2). First, observe that dTV(Φ,Φ− a) = o(1) so we can work on Φ

instead. Then, the depth t neighbourhood of a variable x is coupled with the depth t neighbourhood of the

root of T. Lastly, replica symmetry will imply that the spins of the neighbourhood at depth t of x are almost

independent and have marginal distributions with slim tails. Thus, we can use BP and Proposition 4.1.5 to get

an approximation for the standard messages.

4.3 1-RSB in the random k-SAT

The 1-RSB result for the random k-SAT model states that for d ∈ [d∗∗,dSAT] the replica condition (3.2.5) can

not hold and also that BP can not give a good approximation to the partition function anymore. This result is

stated as follows.

Theorem 4.3.1. There exist sequences εk → 0, d∗∗ = 2k k log2− k(3+ εk ) log2/2 and β0(k) > 0 such that the

following is true. Assume that β>β0(k) and d∗∗ ≤ d ≤ dSAT. Then

limsup
n→∞

E
∣

∣µΦ,β({σx1 =σx2 = 1})−µΦ,β({σx1 = 1})µΦ,β({σx2 = 1})
∣

∣> 0 and (4.3.1)

liminf
n→∞

1

n
E
[

Bt − log Z (Φ,β)
]

> 0 uniformly for all t > 0. (4.3.2)

The 1-RSB scheme in the random k-SAT model is obtained by investigating the replica ansatz (3.2.4) for

d∗∗ ≤ d ≤ dSAT. Heuristically, as explained in Chapter 3, the replica ansatz is saying that

lim
n→∞

1

n
E
(

log Z (Φ,β)
)

= sup
π∈P 2(Ω)

B(π).

With a slight abuse of notation, we redefine B in Lemma 4.2.1 as a functional over P ([0,1]). We recall that for

the k-SAT model Ω= {±1} thus P (Ω) = [0,1] and so P
2 (Ω) =P ([0,1]).
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Hence, letπbe a probability measure on [0,1]. Let (ρπ,i , j )i , j≥1 be an array of independent random variables

with distribution π. The ρπ,i , j ’s represent the probabilities µΦ,β,ai→x j
(1) for i ∈ [n] and j ∈ [m]. Furthermore,

let (J i , j )i , j≥1 be an array of {±1}-variables with mean zero, mutually independent and independent of theρπ,i , j .

The J i , j ’s represent the sign in which a variable xi appear in a clause a j . The complete probability distribution

µΦ,β,ai→x j
(±1) is then represented by

µπ,i , j =
1+ J i , j (2ρπ,i , j −1)

2
=







ρπ,i , j if J i , j = 1

1−ρπ,i , j if J i , j =−1
. (4.3.3)

In addition, let γ+ and γ− be two independent Po(d/2) random variables which represent the fact that asymp-

totically a variable x will appear positively and negatively in a clause following a Po(d/2) distribution. Then,

the functional B is extended as below.

B(π) = E

[

log

(

γ+
∏

i=1
1− (1−e−β)

k−1
∏

j=1
µπ,i , j +

γ−
∏

i=1
1− (1−e−β)

k−1
∏

j=1
µπ,i+γ−, j

)

−
d(k −1)

k
log

(

1− (1−e−β)
k
∏

j=1
µπ,1, j

)]

. (4.3.4)

Now, we recall the fixed point π?

d ,β of Belief Propagation on the tree T launched from a distribution with slim

tails. The proof of the 1-RSB result for the random k-SAT comes in two folds. First, we derive an unconditional

upper bound for 1
n E

(

log Z (Φ,β)
)

with respect to B.

Proposition 4.3.2. Assume that d ∈ [d∗∗,dSAT] and that β>β0(k) for a large enough β0(k). Then

lim
n→∞

1

n
E
[

log Z (Φ,β)
]

<B(π?

d ,β).

Second, we derive a lower bound depending on the replica symmetry assumption.

Proposition 4.3.3. Assume that d ∈ [d∗∗,dSAT] and that β ≥ β0(k) for a large enough β0(k). If (3.2.5) holds,

then

lim
n→∞

1

n
E
[

log Z (Φ,β)
]

≥B(π?

d ,β).

Proposition 4.3.2 and 4.3.3 can not hold at the same time and as Proposition 4.3.2 is always valid then the

replica symmetry assumption can not hold. We will now give a brief overview of the proof for the two bounds

beginning with the lower bound.

The starting point is the following lemma which asserts a lower bound in terms of B and the empirical

distribution of the marginals πΦ,β.

Lemma 4.3.4. Assume that (3.2.5) is satisfied. Then liminfn→∞
1
n E[log Z (Φ,β)] ≥ liminfn→∞E[B(πΦ,β)].

The proof of Lemma 4.3.4 is an adaptation of the proofs from [31] and is reminiscent of the Aizenman-

Sims-Starr scheme [3]. The main principle of the Aizenman-Sims-Starr scheme is to track the expected change

in log Z (Φ,β) upon moving from a system of n −1 variables to a system of n variables. Concretely, let Φn be a

random formula on n variables x1, . . . , xn . The Aizenman-Sims-Starr scheme is based on proving that

liminf
n→∞

E

[

log
Z (Φn ,β)

Z (Φn−1,β)

]

≥ liminf
n→∞

E[B(πΦ,β)], (4.3.5)

via coupling arguments, and the result in Lemma 4.3.4 will follow by a telescoping sum over n.
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The next step is to get a handle on the empirical distribution of the marginals πΦ,β. In order to do that, we

extend the second-moment result in Lemma 4.1.2 a bit further. Specifically, let a=
〈

α(σ,τ),µΦ,β
〉

where σ and

τ are independent samples taken from the Gibbs distribution. In other words, a is the average overlap with

respect to the Gibbs distribution. Then, we have [30, Lemma 8.2]

a ∈ (1/2−k1002−k/2,1/2+k1002−k/2)∪ (1−k22−k ,1) w.h.p.

This means that the average overlap is either concentrated around 1/2 or around 1 for large enough k. Fur-

thermore, by the replica symmetric assumption (3.2.5) we have [30, Lemma 8.3]

lim
n→∞

E
〈∣

∣α(σ,σ′)−a
∣

∣,µΦ,β
〉

= 0,

i.e. the overlap concentrates around its expectation. Hence, the overlap is either concentrated around 1/2 or

concentrated around 1. So, the expected behaviour of two random samples σ and τ taken from the Gibbs

measure µΦ,β is as follows.

1. If the overlap concentrates around 1/2, σ and τ agree in about half of their coordinates for large enough

k. This will imply that µΦ,β({σxi = 1}) ' 1/2 for all i ∈ [n] and so πΦ,β 'π0 = δ1/2.

2. If the overlap concentrates around 1 then σ and τ largely agree. This will yield that the marginal distribu-

tions are strongly polarised i.e. either µΦ,β({σxi = 1}) ∈ (0,2−0.99k ) or µΦ,β({σxi = 1}) ∈ (1−2−0.99k ,1); this

two events would happen with approximately equal probability. Thus, we expect that πΦ,β ' 1
2δ0 +δ1.

In view of statement 2, it is tempting to give a very rough estimate on µΦ,β({σxi = 1}) for a≥ 1−24−k by saying

either µΦ,β({σxi = 1}) ∈ (0,2−0.99k ) or µΦ,β({σxi = 1}) ∈ (1−2−0.99k ,1). It reveals that such a rough estimate is

not precise enough as a single e−β may influence the generalized formula for B greatly. Surprisingly, using a

delicate expansion argument [30, Section 8.1.2], a good enough estimate of B is obtained for α concentrated

around 1. More precisely, let A be the event that

1

n

n
∑

i=1
1{µΦ,β({σxi = 1}) ∈ (0,exp(−β))∪ (1−exp(−β),1)} ≥ 1−2−0.98k . (4.3.6)

If the replica symmetry assumption (3.2.5) holds, we have [30, Lemma 8.4]

P[{a≥ 1−k22−k } \A] = o(1). (4.3.7)

Equation (4.3.7) shows that if the overlap is not concentrated around 1/2, then it is actually highly polarised.

This property of the overlap, in turn, implies that on A we have the following lower bound [30, Lemma 8.5]

B(πΦ,β) ≥ 2−k (c − log2/2+o(1)) w.h.p. (4.3.8)

For the case a ∈ (1/2−k1002−k/2,1/2+k1002−k/2), the empirical distribution of marginals πΦ,β will have a very

slim tail. Thus, by Proposition 4.1.5, πΦ,β is very close to π?

d ,β. Furthermore, a bit of computation shows that

the Bethe free functional at π?

d ,β is given by [30, Lemma 8.6]

B(π?

d ,β) = 2−k (

c − log2/2
)

+o(2−k ). (4.3.9)

Combining Lemma 4.3.4, Equation (4.3.8) and (4.3.9) gives the desired lower bound.

Finally, the upper bound in Proposition 4.3.2 is a direct consequence of [85, Theorem 1] as a special exam-
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ple [85, Example 2]. In addition [85] ensures that limn→∞
1
n E

[

log Z (Φ,β)
]

exists, the result states as follows.

Theorem 4.3.5 ( [85]). For any y > 0,β> 0, any probability distribution π on [0,1] and any n ≥ 1 we have

y

n
E[log Z (Φ,β)] ≤ E

[

logE

[(

γ+
∏

i=1
1− (1−e−β)

k−1
∏

j=1
µπ,i , j +

γ−
∏

i=1
1− (1−e−β)

k−1
∏

j=1
µπ,i+γ+, j

)y

|γ+,γ−
]]

−
d(k −1)

k
logE

[(

1− (1−e−β)
k
∏

j=1
µπ,1, j

)y]

. (4.3.10)

Proposition 4.3.2 is obtained by upper-bounding the r.h.s of (4.3.10) using π= 1
2δ0 +δ1 and y = 1. Finally,

for k large enough the bound on the r.h.s is 2−k
(

c − log2/2−Ω (1)
)

<B(π?).

Now, we will give the heuristic idea for the proof of 4.3.5. The main idea in [85] is to use a technique called

interpolation method. The interpolation method introduces a small perturbation t ∈ [0,1] into the partition

function. More precisely, we define

ϕ(t ) =
1

n
E
(

log Zt (Φ,β)
)

=
1

n
E

(

log
∑

σ∈{±1}n

m
∏

i=1
Ψai ,t (σ)

)

for t ∈ [0,1]. For simplicity, we refer to [85] for the explicit formula corresponding to Ψai ,t (σ). It turns out that

ϕ(0) is an easy to compute formula and ϕ(1) = 1
n E

(

log Z (Φ,β)
)

. Roughly speaking, the interpolation method

gives an upper bound on log Z (Φ,β) by considering Zt (Φ,β) as a differentiable function of t and uniformly

bounding the expected change ϕ′(t ) = 1
n

∂
∂t E

(

log Zε

(

Φ,β
))

as we increase t from 0 to 1. The upper bound is

then obtained by the fact that ϕ(1) = 1
n E

(

log Z (Φ,β)
)

=ϕ(0)+
∫1

0 ϕ′(t )dt .
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Chapter 5

Freezing in the random linear problem

In this chapter, we turn to the random matrix problem. The definitions and results (theorems, propositions,

. . .) are taken from [23] unless otherwise stated. Furthermore, recall the factor graph G(A) corresponding to

the matrix A. Let us start by investigating the replica ansatz (3.2.4). Again, [26, Theorem 1.1] directly implies

that

lim
n→∞

1

n
log Z = lim

n→∞
1

n
nul(A) = max

α∈[0,1]
Υd (α), (5.0.1)

whereΥd (α) = exp
(

−d exp(−d(1−α))
)

+(1+d(1−α))exp(−d(1−α))−1. As explained in Section 3.2.2, according

to the replica ansatz the maximisation problem should be over P ([0,1]) but it is reduced to a maximisation

over [0,1]. The reason is the following fact about random matrices which is valid for any matrix A over F2.

Fact 5.0.1 ( [6, Lemma 2.3]). Let A be an m ×n-matrix over F2 and choose ξ = (ξ1, . . . ,ξn) ∈ ker A uniformly at

random. Then for any i , j ∈ [n] we have P[ξi = 0] ∈ {1/2,1} and P[ξi = ξ j ] ∈ {1/2,1}.

The standard messages and BP can be defined on the factor graph G(A). Then, Fact 5.0.1 will imply that

µA,ai→x j is either the uniform distribution over F2 or µA,ai→x j (0) = 1 for an equation ai and a variable x j where

µA,ai→x j is the standard message from ai to x j in the factor graph G(A). Henceforth, computing 1
n log Z (A)

boils down to computing the Bethe free entropy B(πα) where

πα =αδ0 + (1−α)δ1/2 for α ∈ [0,1].

Furthermore, a direct computation [6] yields B(πα) =Υd (α).

5.1 Freezing result and replica symmetry

A natural follow up problem after getting (5.0.1) is the study of the geometry of the solution space or the

geometry of ker A as in the random k-SAT problem. It would be interesting to understand what types of

vectors are present in the kernel. A big step toward this is determining the fraction of variables that are

fixed to zero in all vectors of the kernel, i.e. the so-called frozen variables. More precisely, define F (A) =
{i ∈ [n]|∀x ∈ ker A, xi = 0} and let f (A) = F (A)/n, i.e. f (A) is the fraction of frozen variables in the random

linear system of equations corresponding to A. In addition, let α∗ and α∗ be the smallest and the largest fixed

point of the following function

φd : [0,1] → [0,1], α 7→ 1−exp
(

−d exp(−d(1−α))
)

. (5.1.1)
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Theorem 5.1.1. (i) For d ≤ e the function φd has a unique fixed point and

lim
n→∞

f (A) =α∗ =α∗ in probability.

(ii) For d > e we have α∗ <α∗ and for all ε> 0,

lim
n→∞

P
[

| f (A)−α∗| < ε
]

= lim
n→∞

P
[

| f (A)−α∗| < ε
]

=
1

2
.

This result on the fraction of frozen variables directly implies that for d ≤ e, the random matrix problem is

strongly replica symmetric and for d > e it is just replica symmetric. Specifically, let R(x , y) = 1
n

∑n
i=1 1

{

x i = y i

}

where x and y are random vectors taken uniformly from ker A. In words, R(x , y) is the overlap between the

random vectors x and y as defined in Chapter 3. Furthermore, let

R̄(A) = E[R(x , y) | A] =
1

|ker A|2
∑

x,x′∈ker A

R(x, x ′).

The result about replica symmetry states as follows.

Theorem 5.1.2. 1. If d < e then limn→∞ R(x , y) = (1+α∗)/2 in probability.

2. For all d > e, we have limn→∞E
∣

∣R(x , y)− R̄(A)
∣

∣= 0 while

lim
n→∞

P

[∣

∣

∣

∣

R̄(A)−
1+α∗

2

∣

∣

∣

∣

< ε

]

= lim
n→∞

P

[∣

∣

∣

∣

R̄(A)−
1+α∗

2

∣

∣

∣

∣

< ε

]

=
1

2
for any ε> 0.

The building block that relates Theorem 5.1.2 and 5.1.1 is the following proposition which yields the asymp-

totic independence of the first ` coordinate x1, . . . , x` of a vectors x drawn from the uniform distribution over

the kernel.

Proposition 5.1.3. For every `≥ 1 there exists γ> 0 such that for all d > 0 and all σ ∈ F
`
2 we have

lim
n→∞

E

[

nγ

∣

∣

∣

∣

∣

P [x1 =σ1, . . . , x` =σ` | A]−
∏̀

i=1
P [x i =σi | A]

∣

∣

∣

∣

∣

]

= 0.

Proposition 5.1.3 is in turn a corollary to a random perturbation of the matrix A developed in [6] akin to the

Aizenman-Sims-Starr scheme described in Section 3.2.2 for a random formula Φ. Indeed, the main idea for

the proof of (5.0.1) in [6] is to investigate the expected change of the nullity when we move from a system with

n variables to a system with n+1 variables. Furthermore, as the Gibbs distribution is the uniform distribution

over the Kernel for the random matrix A, Proposition 5.1.3 shows by taking ` = 2 that replica symmetry as

stated in (3.2.3) holds for the random matrix problem for all d > 0, i.e. there exists γ> 0 such that for all σ ∈ F
2
2

we have

lim
n→∞

E
[

nγ |P [x1 =σ1, x2 =σ2 | A]−P [x1 =σ1 | A] P [x2 =σ2 | A]|
]

= 0. (5.1.2)

Note also that using [6, Lemma 1.8], (5.1.2) yields the results in Proposition 5.1.3. In other words, the basic

replica symmetry condition implies asymptotic independence of the joint distribution of` spins in the random

matrix problem. A direct computation of the average overlap R̄(A) together with (5.1.2) proves that for all d > 0,

limn→∞E
∣

∣R(x , y)− (1+ f (A))/2
∣

∣= 0 and thus Theorem (5.1.2) is obtained from Theorem (5.1.1).
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5.2 Heuristic ideas for the proof of the freezing result

A good starting point for the proof of Theorem 5.1.1 would be the nullity formula (5.0.1). Heuristically, the

maximum of Υd should correspond to the fraction of frozen variables. However, it comes to light that Υd

has two possible maxima α∗ and α∗ for d ≥ e. More precisely, [23, Proposition 2.3] proves that α∗ and α∗

coincide when d ≤ e, i.e Υd has a unique maximum but for d > e, Υd has exactly two distinct maxima α∗ <
α∗ with Υd (α∗) = Υd (α∗). Thus, the techniques from [6] fall short in determining exactly which of α∗ and

α∗ correspond to the fraction of frozen variables when d ≥ e. Nevertheless, the function Υd is linked to the

function φd because the stationary points of Υd are in one-to-one correspondence with the fixed points of φd .

In particular, [23, Proposition 2.2] shows that the local maxima corresponds to stable fixed points (a stable fixed

point α of φd verifies that φ′
d (α) < 1). In addition, the function φd has a particular role that will be described

next.

As in the random k-SAT problem, the local structure of the factor graph G (A) is asymptotically that of a

Po(d) tree; this is not a surprise because the factor graph G (A) is just the bipartite version of the Erdős-Rényi

random graph [14]. Let x be a uniformly random variable node of G(A) and suppose x is frozen. Then, we can

assume that the depth two neighbourhood of x is a tree. Further, suppose that the grandchildren of x , i.e. the

variable nodes at a distance of two, are uniformly random. Hence, the grandchildren should each be frozen

with probability f (A)+o(1) and behave almost independently.

Algebraically, the variable x is forced to take the value zero if and only if it is present in an equation where

all other variables are forced to zero. Therefore, the variable x itself is frozen if and only if it is parent to some

check all of whose children are frozen. Furthermore, by the Po(d) tree structure, a check node a connected to

x has all of its children variable nodes frozen with probability γ :=P
(

Po(d(1− f (A))) = 0
)

= exp−(d(1− f (A))).

Hence, x is frozen with probability

1−P
(

Po
(

dγ
)

= 0
)

= 1−exp
(

−exp(−d(1− f (A)))
)

=φd ( f (A)).

Since x is assumed to be frozen from the beginning, we obtain that φd ( f (A)) = f (A), i.e the fraction of frozen

variable appears as a fixed point of φd . Unfortunately, [23, Proposition 2.3] shows that φd has three possible

fixed points for d > e: two stable fixed pointsα∗ andα∗ and one unstable fixed pointα0 . Based on the heuristic

ideas presented in this section, the proof of Theorem 5.1.1 will come in three steps:

FIX f (A) concentrates on the fixed points of φd , either one of the two stable ones α∗,α∗ or the third unstable

fixed point α0.

STAB The unstable fixed point is an unlikely outcome.

EQ The two stable fixed points are equally likely.

5.3 Getting Fix with Warning Propagation

Warning Propagation (also referred to as WP from here on) is a general class of message passing algorithms

which will be described in full generality in Chapter 6. In this section, we will detail a particular case of WP,

which is used to get FIX. As in Belief Propagation, WP associates two directed messages (wv→a , wa→v ) to each

edge {a, v} ∈ E(G(A)). With a slight abuse of notation, we identify F (A) with the corresponding set {vi : i ∈
F (A)} of variable nodes. The messages take values in a finite alphabet Σ = {f,u,s}. The semantic behind the

names of the elements of Σ is the following: a f-message from a check or a variable will mean that they are

likely to be frozen, u means that they are likely to be unfrozen and s means that the status of the variable or
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the check is uncertain neither frozen nor unfrozen. Here, a frozen check represents an equation in which all

of the variables are frozen. We refer to the s-variables or s-check as slush variables (in analogy with a partially

melted snow or ice). Now, let W (A) be the set of all vectors w = (wv→a , wa→v )v∈V (A),a∈C (A):a∈∂v with entries

wv→a , wa→v ∈ Σ. We define the operator WPA : W (A) → W (A), w 7→ ŵ , encoding one round of the message

updates, by letting

ŵa→v =



















f if wy→a = f for all y ∈ ∂a \ {v},

u if wy→a = u for some y ∈ ∂a \ {v},

s otherwise,

ŵv→a =



















u if ŵb→v = u for all b ∈ ∂v \ {a},

f if ŵb→v = f for some b ∈ ∂v \ {a},

s otherwise.

(5.3.1)

The update rules for the check to variable messages in the left of (5.3.1) are illustrated in figure 5.1 and note

that the rules for the variable to check messages are in some sense ‘duals’ of the rules for the check to variable

messages. Furthermore, let w(A, t ) = WPt
A

(s, . . . ,s) be the messages produced after t iteration of WP with each

v

a

f f f

f

v

a

s u f

u

v

a

s f f

s

Figure 5.1: A local snapshot of the Warning Propagation rules. The check and variable nodes are represented
by squares and circles respectively.

message at each edge initialised as slush i.e w(A,0) is just the all-s message vector. The reason for this choice

of initialisation is that it is not completely obvious from the beginning which variables should be frozen or

unfrozen. Moreover, let w(A) = limt→∞ w(A, t ) be the pointwise limit of w(A, t ) which is a fixed point of the

operator WPA . The limit w(A) always exists as, according to (5.3.1), a message will only be updated from s to

f or s to u.

A moment of thought reveals that in the first iteration, the f-messages only comes from check nodes a

of degree one because the ‘for all’ condition on the left of (5.3.1) is satisfied as the set ∂a \ {v} is empty. In

other words, if ai is adjacent to exactly one v j then wai→v j (A,1) = f. This means that the i -th equation ai

contains only one single variable x j . Then, the value of the variable x j will be forced to zero in all vector

x = (x1, . . . , xn) ∈ ker A. Further changes will occur as v j will send the message f to all its other neighbours

ah 6= ai warning that the corresponding variable x j is now forced to zero. Now suppose that a check ai is

adjacent to vh and at a certain step t , wv`→ai (A, t ) = f for all v` ∈ ∂ai \ {vh}. Hence, the `-th coordinate x` of

every x = (x1, . . . , xn) ∈ ker A equals zero for all neighbours v` 6= vh of ai . The only way to satisfy equation ai is

then to set xh = 0. Hence, letting

Vf(A) = {v ∈V (A) : ∃a ∈ ∂v : wa→v (A) = f} , we get Vf(A) ⊆F (A). (5.3.2)

Naturally, the mechanism of the u-messages is analogous. In the first iteration, a variable node v j with degree

one begins to send out u-messages as the ‘for all’ condition on the right of (5.3.1) is satisfied. This means that

as the variable x j is only present in one equation it is likely that it is free to take any value. Afterwards, any

check node ai with an adjacent variable v j of degree one will send a message wai→vk (A,2) = u to all its other

neighbours vk 6= v j . Also, if a variable node v j adjacent to a check ai receives u-messages from all its other
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neighbours ah 6= ai , then v j sends a u-message to ai . So, it is tempting to say that the set

Vu(A) = {v ∈V (A) : ∀a ∈ ∂v : wa→v (A) = u}

contains all of the unfrozen variables. However, the presence of short cycles may lead WPA to label frozen

variables as u. Fortunately, this does not happen so frequently. More precisely, [23, Proposition 2.4] asserts

that for any d > 0

|F (A)∩Vu(A)| = o(n) w.h.p. (5.3.3)

Furthermore, the next bound on Vf and Vu is obtained by tracing WPA carefully [23, Proposition 2.5].

Proposition 5.3.1. For any d > 0 we have |Vf(A)|/n ≥α∗+o(1) and |Vu(A)|/n ≥ 1−α∗+o(1) w.h.p.

Proposition 5.3.1 together with (5.3.2) and (5.3.3) directly yields that f (A) is confined to be in the interval

[α∗ + o(1),α∗ + o(1)]. As α∗ = α∗ for d < e, this in turn implies Theorem 5.1.1 (i). However, this will not be

enough for part (ii) of Theorem 5.1.1 because α∗ >α∗ for d > e. To solve this problem, we need a more detailed

inspection of the variables in the slush. In fact, the inconclusive s-messages produce a minor As of A described

as follows. For a given matrix A define

Vs(A) = {v ∈V (A) : (∀a ∈ ∂v : wa→v (A) 6= f) , |{a ∈ ∂v : wa→v (A) = s}| ≥ 2} , (5.3.4)

Cs(A) = {a ∈C (A) : (∀v ∈ ∂a : wv→a(A) 6= u) , |{v ∈ ∂a : wv→a(A) = s}| ≥ 2} . (5.3.5)

In words, there are no variable nodes in Vs(A) which receive f-messages, but each receives at least two s-

messages. Similarly, none of the check nodes in Cs(A) receive u-messages but get at least two s-messages. Let

Gs(A) be the subgraph of G(A) induced on Vs(A)∪Cs(A). Moreover, let As be the minor of A consisting of the

rows and columns whose corresponding variable or check nodes that belong to Vs(A) and Cs(A), respectively.

We note that Gs(A) can be obtained by another construction similar to the construction of the 2-core of a

random graph. Indeed, Gs(A) results from G(A) by iteratively applying the following peeling process: as long

as there exists a variable or check node of degree strictly less than two, remove that node together with its

neighbour (if any). Hence, the next step is to get a handle on the respective size of Vs(A) and Cs(A) as well as

the degree distributions of the vertices in G(A). More precisely, define

λ=λ(d) = d(α∗−α∗), ν= ν(d) = exp(−dα∗)−exp(−dα∗)(1+d(α∗−α∗)). (5.3.6)

Proposition 5.3.2. For any d > e we have ν> 0 and

lim
n→∞

|Vs (A) |/n = lim
n→∞

|Cs (A) |/n = ν in probability. (5.3.7)

Moreover, for any integer `≥ 2 we have, in probability,

lim
n→∞

1

n

∑

x∈Vs(A)
1 {|∂x ∩Cs(A)| = `} = lim

n→∞
1

n

∑

a∈Cs(A)
1 {|∂a ∩Vs(A)| = `} =P [Po≥2(λ) = `] . (5.3.8)

Proposition 5.3.1 confines f (A) to the interval [α∗+o(1),α∗+o(1)] while Proposition 5.3.2 gives a detailed

description of the slush portion of the graph. These two results are obtained by investigating WP on a Galton-

Watson tree that mimics the local structure of G(A), which will be described in the next subsection. Unfortu-

nately, Proposition 5.3.1 and Proposition 5.3.2 are not enough to get FIX. To handle this problem, we will use

WP in conjunction with another version of the standard messages defined for BP. The construction and the

result about standard messages will be presented in section 5.3.2.
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5.3.1 Message distribution and the local structure

Recall that as the factor graph G(A) is just the bipartite Erdős-Rényi random graph, the local structure of the

graph is that of a Po(d) tree. Furthermore, the messages are deterministically set to s at the beginning, but

due to the randomness of the graph G(A), they become random variables taking value in Σ as we launch WP.

In order to describe their distributions, we let a message distribution be a vector q =
(

q (v), q (c)
)

with q (v) =
(

q (v)
f

, q (v)
s , q (v)

u

)

and q (c) =
(

q (c)
f

, q (c)
s , q (c)

u

)

∈ [0,1]3 such that
∑

s∈{f,s,u} q (v)
s =

∑

s∈{f,s,u} q (c)
s = 1. The semantic

behind the notation is that q (v) and q (c) are the respective probability distribution of an incoming message at

a check/variable node. For instance, q (c)
f

is the probability that an incoming message at a check node is f.

Given a message distribution q , we let Po(d q) be a distribution of half-edges at a vertex v with incoming

messages. By half-edges, we mean edges with only one endpoint. More precisely, at a variable node, Po
(

d q (v)
)

outputs half-edges whose in-message is f and analogously (and independently) produces half-edges whose

in-message is s or u. The generation of half-edges with incoming messages at a check node is similar. Let us

define the message distribution

q∗ :=
(

q (v)
∗ , q (c)

∗
)

with q (v)
∗ =

(

q (v)
∗,f, q (v)

∗,s, q (v)
∗,u

)

:=
(

1−α∗,α∗−α∗,α∗
)

,

q (c)
∗ =

(

q (c)
∗,f, q (c)

∗,s, q (c)
∗,u

)

:=
(

α∗,α∗−α∗,1−α∗)

.

which will be our conjectured limiting distribution of a randomly chosen message after the completion of WP.

Next, we describe branching processes T ,T̂ , which will produce rooted trees labelled with messages along

edges towards the root.

1. The first process T starts with a variable node v0 as a root. After, v0 begets Po(d) children. Then, each

edge from the children to the root is independently labelled with an f-message with probability 1−α∗,

an s-message with probability α∗ −α∗ and an u-message with probability α∗. The process continues

such that each check node begets variable nodes and each variable node spawns check nodes following a

Po(d) distribution and such that the messages sent from the children to the parent adhere to the Warning

Propagation rules described in (5.3.1).

2. Similarly, the second process T̂ starts with a check node a0 as a root. The root begets Po(d) children

which are now variable nodes, each of those variable nodes independently send f,u and s messages

with probability α∗, α∗−α∗ and 1−α∗ respectively. The nodes and their adjacent edges have offspring

distribution and labels under (i), apart from the root.

To illustrate the process after generating the root and its children in (i), inspecting the Warning Propagation

rules in (5.3.1) reveals that a check node a that sends a f-message to its parent has Po(α∗d) children that send

an f-message to itself. Furthermore, a check node a that sends a s-messages to its parent has Po(α∗d) children

that send an f-message and Po≥1(d(α∗−α∗)) children that each send an s-message. A complete description

of all possible offspring distributions is given in [23, Defintion 4.1].

Roughly speaking, the goal is to show that the distribution of the messages at the end of WP is given by

q∗ in the sense that the depth t neighbourhood of a random vertex looks like the branching process T or T̂

truncated at depth t . Of course the messages at the beginning of the WP process does not mirror this, the initial

message which is an all s-message is described by the message distribution q 0 = (q (c)
0 , q (v)

0 ) = ((0,1,0), (0,1,0)).

However, because the underlying graph is random, the initial distribution will change following an update

function on message distributions which mimics the update rules of WP. The formal definition goes as follows.

Definition 5.3.3. Given a message distribution q =
((

q (v)
f

, q (v)
s , q (v)

u

)

,
(

q (c)
f

, q (c)
s , q (c)

u

))

, let us define the message
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distribution ϕ(q) by setting

ϕ(q)(v)
f

:=P
(

Po
(

d
(

q (c)
u +q (c)

s

))

= 0
)

, ϕ(q)(c)
f

:=P

(

Po
(

d q (v)
f

)

≥ 1
)

,

ϕ(q)(v)
s :=P

(

Po
(

d q (c)
u

)

= 0
)

·P
(

Po
(

d q (c)
s

)

≥ 1
)

, ϕ(q)(c)
s :=P

(

Po
(

d q (v)
f

)

= 0
)

·P
(

Po
(

d q (v)
s

)

≥ 1
)

,

ϕ(q)(v)
u :=P

(

Po
(

d q (c)
u

)

≥ 1
)

, ϕ(q)(c)
u :=P

(

Po
(

d
(

q (v)
f

+q (v)
s

))

= 0
)

.

We further recursively define ϕ◦t (q) := ϕ
(

ϕ◦(t−1)(q)
)

for t ≥ 2, and define ϕ∗(q) := limt→∞ϕ◦t (q) if this limit

exists.

Observe that in an idealised scenario, the rules for ϕ(q)(v) in definition 5.3.3 are translations of the WP rules

for check to variable messages in (5.3.1) to probability distributions. This is similar for the rules for ϕ(q)(c) on

the right, which correspond to the rules for the variable to check messages in (5.3.1). So, we expect the limit

ϕ∗(q 0) to model the final distribution. Crucially, we want the limit to be stable. To be more precise, define the

total variation distance between message distributions q 1, q 2 by

dT V
(

q 1, q 2

)

:= dT V

(

q (v)
1 , q (v)

2

)

+dT V

(

q (c)
1 , q (c)

2

)

.

Moreover, the study of the stability of ϕ here reduces to a one-dimensional analysis involving φ. The following

lemma asserts that q∗ is the stable limit of q0 in the language of the generalized version of WP described in [34]

or in Chapter 6.

Lemma 5.3.4. We have ϕ∗ (

q 0

)

= q∗. Furthermore, there exist ε,δ> 0 such that for any message distribution q

which satisfies dT V
(

q , q∗
)

≤ ε, we have dT V
(

ϕ
(

q
)

, q∗
)

≤ (1−δ)dT V
(

q , q∗
)

.

Lemma 5.3.4 together with [34, Theorem 1.3] or Theorem 6.3.3 directly yield the following.

Lemma 5.3.5. For any d ,δ> 0 there exists t0 ∈N such that w.h.p. w(A) and w(A, t0) are identical except on a set

of at most δn edges.

To make the approximation for the local structure precise, let us define St to be the set of messaged trees

rooted at a variable node and with depth at most t , similarly let Ŝt be the set of messaged trees rooted at a

check node with depth at most t . For any T ∈St and matrix A, let us define

ξT (A) :=
1

n

∑

v∈V (A)
1

{

δt
G(A)v ∼= T

}

to be the empirical fraction of variable nodes whose rooted depth t neighbourhood in G(A) with edges towards

the root annotated by the WP messages (wa→y (A), wy→a(A))a,y is isomorphic to T . For T̂ ∈ ŜT , the parameter

ξT̂ (A) is defined similarly. By investigating the depth t neighborhood of a vertex and using Lemma 5.3.5 we

obtain that [23, Lemma 4.2] for any constant t and any trees T ∈St and T̂ ∈ Ŝt we have

lim
n→∞

|ξT (A)−P [T ∼= T ] | = 0 and lim
n→∞

|ξT̂ (A)−P
[

T̂ ∼= T
]

|| = 0 in probability. (5.3.9)

We are now in a position to prove the degree distribution result of Proposition 5.3.1. Specifically, we first

need to compute the asymptotic fraction of vertices in Vf(A) and Vu(A). By (5.3.9), to determine the asymptotic

fraction of vertices in Vf(A) it suffices to find out the probability that in T the root receives at least one f-

messages. A trite computation shows that this occurs with probability P

[

Po(d(q (v)
∗,f)) ≥ 1

]

= 1− exp(−d(1−
α∗)) =α∗. A similar argument yields the proof for Vu(A).
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For the second part of Proposition 5.3.2, to compute the asymptotic fraction of vertices in Vs(A), again

by (5.3.9), it suffices to pin down the probability that in T the root receives at least two s-messages and no

f-messages. After a few lines of calculation, it reveals that this event happened with a probability

P
[

Po(d(α∗−α∗)) ≥ 2
]

·P [Po(dα∗) = 0] = exp(−dα∗)−exp(−dα∗)(1+d(α∗−α∗)),

as claimed.

The statement for Cs(A) can be proved in a similar way, or follows from the statement for Vs(A) by symme-

try. The statement on degree distributions comes directly from the approximation using T or T̂ : conditioned

on a node v lying in Vs or Cs; the node v must certainly receive at least two s-messages from its neighbours.

Furthermore, a neighbour of v is in Cs or Vs respectively if and only if it sends an s-message to this vertex.

The distribution of neighbours sending s is Po(λ) without the conditioning (where recall that λ= d(α∗−α∗)),

therefore with the conditioning it is Po≥2(λ), as required.

5.3.2 The standard messages for WP

The knowledge obtained using WP up to now are information about the degree distributions and bounds on

the proportion of frozen/unfrozen variables. Semantically, we identified the frozen variables with the variables

that received only f-messages at the end of the WP algorithm. The standard messages instead gives a direct

link between the messages and the algebraic concept of frozen variable. More precisely, the standard messages

are defined for any m ×n matrix A as follows. For any adjacent constraint/variable pair (a, v) of G(A) we let

mv→a(A) =







f if v is frozen in G(A)−a,

u otherwise,
ma→v (A) =







f if v is frozen in G(A)− (∂v \ {a}),

u otherwise.
(5.3.10)

So, mv→a(A) = f if and only if v or the corresponding variable xv is frozen in the matrix A obtained by deleting

row a. In the same manner, ma→v (A) = f if and only if v is frozen in the matrix obtained by removing the

rows corresponding to all b ∈ ∂v except a. As might have been noticed, this construction is similar to the

construction of the standard messages for BP in the random k-SAT model, but the messages are elements of

Σ instead of marginal distributions. Now we consider a reduce version of the Warning Propagation operator

WPA which updates the messages from (5.3.10) to messages m̂v→a(A) as follows:

m̂v→a(A) =







f if mb→v (A) = f for some b ∈ ∂v \ {a},

u otherwise,
(5.3.11)

m̂a→v (A) =







f if my→a(A) = f for all y ∈ ∂a \ {v},

u otherwise.
(5.3.12)

Now, looking at the description of the standard messages (5.3.10), it is natural to ask how the graph G(A)

changes under a random perturbation. To elaborate on this, let T be the two types Galton-Watson tree where

type one is variable node and type two is check node, obtained by the following procedure. The process starts

with a root variable node v0 which spawns a Po(d) number of type two children. Subsequently, a check node

generates a Po(d) number of variable nodes, and a variable node generates a Po(d) number of check nodes.

Similarly, let T̂ be the Galton-Watson tree with the same offspring distribution whose root is a check node a0.

The trees T and T̂ will be rediscovered in chapter 6 and an illustration is given in Figure 6.1. Note also that

T and T̂ are versions of T and T̂ without messages. In addition, for t ∈ N, let T t and T̂ t be the branching
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processes T and T truncated at depth t . The following process renders a perturbed graph G ′(A) from G(A).

1. Generate o(
p

n) many T 2 trees and T̂ 1 trees independently.

2. For each node v in the final layer of these trees (which is a variable node), embed v onto a variable node

of G(A) chosen uniformly at random and independently.

3. Embed the remaining nodes of the trees randomly onto nodes which were previously isolated such that

variable nodes are embedded onto variable nodes and checks onto checks.

Further, let A′ be its adjacency matrix. Thus G ′(A) =G(A′) is the Tanner graph of A′. Note that the failure prob-

ability in step 2 is about exp(−Ω(n)) as we have asymptotically a linear number of isolated check and variable

nodes. The critical property is that G(A) and G(A′) are essentially undistinguishable i.e dTV(G(A),G(A′)) = o(1)

[23, Fact 5.3]. In addition, the root y of a tree T 2 looks like any other vertices in G(A). Furthermore, the new

WP messages defined in (5.3.11) in terms of the standard messages form an approximate fixed point of the

WPA operator [23, Lemma 5.4] and hence up to a small error, the variable and checks in T 2 have the correct

degree distributions as per the previous investigation of WPA . Moreover, Proposition 5.1.3 or replica symmetry

provides asymptotic independence of the spins of the variables nodes embedded onto the leaf of the tree T 2. It

then suffices to study WPA on the tree of depth two T 2 where the leaf are independently frozen with probabil-

ity f (A) to get the correct fraction of frozen variable, the latter in turn leads to FIX. Observe that when carried

out in detail, the arguments of this subsection rigorously prove the heuristic idea explained at the beginning

of the section that suggests φd ( f (A)) = f (A).

5.4 The unstable fixed point is unlikely

In this section, we show item STAB, i.e. that the unstable fixed point is unlikely. We will harness some of the

concepts built in Section 5.3. The first step is to show that a random vector x sets about half of the unfrozen

variables to one. More precisely, we call an element x ∈ ker A δ-balanced if

∣

∣

∣

∣

∣

∑

v∉F (A)
dA(v) (1 {xv = 1}−1/2)

∣

∣

∣

∣

∣

< δn,

with dA(v) denoting the degree of v (a similar notation is used for check nodes). The nullity formula (5.0.1)

and Proposition 5.1.3 will imply the following.

Lemma 5.4.1. W.h.p. the random matrix A has 2Υd (α∗)n+o(n) many o(1)-balanced solutions.

The next step is to count the number of Warning Propagation fixed points that leave about α0n variables

node unfrozen. We will use the so-called configuration model to build a graph that sets αn variable unfrozen.

We call such modelsα-covers. We will again rediscover the configuration model in Chapter 6. The construction

of the α-covers goes roughly as follows. The precise definition is found in [23, Definition 6.2].

1. For each i ∈ [n] and each variable node vi , generate pairs {vi }× [dA(vi )] where each (vi , j ) represents

an half-edge at the variable node vi . Similarly, for i ∈ [n] and each check node ai , generate pairs {ai }×
[dA(ai )] where each (ai , j ) represents an half-edge at the check node ai .

2. Label all but o(n) half edges (vi , j ) with pairs of messages
(

m2(vi , j ),m1(vi , j )
)

according to the simple

WPA operator for the standard messages at a variable (5.3.11) (this step is COV2 in [23, Definition 6.2]).
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As an illustration, for all but o(n) pairs (i , j ) with i ∈ [n] and j ∈ [dA(vi )] we have

m2
(

vi , j
)

=







f if m1 (vi ,h) = f for some h ∈ [dA(vi )] \
{

j
}

,

u otherwise.

3. Similarly label all but o(n) half edges (ai , j ) with pairs of messages
(

m2(ai , j ),m1(ai , j )
)

according to the

simple WPA operator for the standard messages at a check (5.3.12) (COV3 in [23, Definition 6.2]).

4. For each i ∈ [n], mark the variable vi and the check ai with the respective labels m(vi ) and m(ai ) in

{f,?,u} according to the following rules (COV4 in [23, Definition 6.2])

m(vi ) =



















f if m1(vi , j ) = f for at least two j ∈ [dA(vi )],

? if m1(vi , j ) = f for precisely one j ∈ [dA(vi )],

u otherwise,

(5.4.1)

m(ai ) =



















f if m1(ai , j ) = f for all j ∈ [dA(ai )],

? if m1(ai , j ) = f for all but precisely one j ∈ [dA(ai )],

u otherwise,

(5.4.2)

5. Condition on the statistics matching i.e having the same number of m2(vi , j ) as m1(ai , j ) and vice-versa

for each i ∈ [n] (COV1 in [23, Definition 6.2]) and ensure that the number of unfrozen (u) /frozen (?,f)

variables is given by the fraction (α,1−α) [23, (6.4)-(6.5)].

The new value ? represents frozen variables or checks, but their freezing status is hanging by a thread: ?-

valued variables have exactly one adjacent check that freezes itself. On the other hand, for ?-valued checks, if

you change the value for a single m1(ai , j ) = f, then the check becomes unfrozen. In some sense, the ?-valued

nodes are connected to the s-variables in the original graph.

After matching the half-edges and conditioning on having a simple graph, the output of the previous con-

struction is a graph with the desired number of unfrozen variables. Let Z(α) be the number of α-covers. A

subtle moment computation [23, Proposition 6.3] shows that for d > e, the number of α0-covers is w.h.p.

Z(α0)

(dn)!
∏n

i=1 dA(vi )!dA(ai )!
= exp(o(n)). (5.4.3)

It is not sufficient to just estimate the number of covers. We also need the number of actual solutions to the

random linear system defined by the covers. More precisely, we extend the concept of covers to include as-

signment σ : {v1, . . . , vn} → F2. Specifically, an α-extension consists of an α-cover together with an assignment

σ : {v1, . . . , vn} → F2 such that the following conditions are satisfied.

EXT1 We have
∑n

i=1(1+dA(vi ))1 {σ(vi ) = 1, m(vi ) 6= u} = o(n).

EXT2 We have
∑n

i=1 dA(vi )1 {σ(vi ) = 1, m(vi ) = u} = o(n)+ 1
2

∑n
i=1 dA(vi )1 {m(vi ) = u} .

EXT3 We have
∑n

i=1 1
{
∑

j∈[dA (ai )]σ(π(ai , j )) 6= 0
}

= o(n).

The first condition EXT1 postulates that, when weighted according to their degrees, all but o(n) variables are

simultaneously frozen under m and set to zero under σ. EXT2 posits that about half the variables that should

be unfrozen according to m are set to one if we again weight variables by their degrees. Finally, EXT3 ensures
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that all but o(n) constraints are satisfied. A first moment computation will also show that for d > e w.h.p. the

number of α0-extensions is given by [23, Proposition 6.9]

X(α0)

(dn)!
∏n

i=1 dA(vi )!dA(ai )!
= exp(nΥd (α0)+o(n)). (5.4.4)

Combining (5.4.3) and (5.4.4) reveals that if f (A) ∼ α0 then the number of o(1)-balanced solution is 2Υd (α0) +
o(n) as Υd (α0) <Υd (α∗), this contradicts Lemma 5.4.1.

5.5 Invariance property of the slush and moment expansion

The goal of this section is to give an overview of the proof of EQ i.e. for d > e, the two stable fixed points α∗ and

α∗ are equally likely. The first observation is that the slush portion G(As ) of the factor graph G(A) is invariant

under the transposition of the matrix A.

Lemma 5.5.1. For any matrix A we have Vs

(

A>)

=Cs (A) and Cs

(

A>)

=Vs (A).

In short, the proof of Lemma 5.5.1 uses the fact that the factor graphs corresponding to A and A> are

identical except that variable node becomes check nodes and check nodes becomes variable nodes. Then,

using Lemma 5.5.1 we obtain that for any function ω0(n) we have

P

[

|Vs(A)|− |Cs(A)| ≥ω0

]

=P

[

∣

∣Cs

(

A>)∣

∣−
∣

∣Vs

(

A>)∣

∣≥ω0

]

=P
[

|Cs(A)|− |Vs(A)| ≥ω0
]

, (5.5.1)

where we used the fact that A, A> have identical distributions to obtain the second equality. Critically, a func-

tion ω0(n) always exist. More precisely, letting ns := |Vs(A)| and ms := |Cs(A)|, we have the following lemma.

Lemma 5.5.2. There exists some ω0
n→∞−−−−→∞ such that w.h.p. |ns−ms| ≥ω0.

Lemma 5.5.2 implies that P
[

|Vs(A)| − |Cs(A)| ≥ ω0

]

+P
[

|Cs(A)| − |Vs(A)| ≥ ω0
]

= 1+o(1), this and (5.5.1)

implies the following result which states that the event |Vs(A)|− |Cs(A)| ≥ω0 occurs with probability 1/2.

Proposition 5.5.3. For any d0 > e there exists a function ω=ω(n) À 1 such that for all d > d0 we have

lim
n→∞

P [|Vs (A) |− |Cs (A) | ≥ω] = lim
n→∞

P [|Cs (A) |− |Vs (A) | ≥ω] =
1

2
.

The proof of Lemma 5.5.2 relies on the degree distribution of the slush portion of the graph given in 5.3.2

and is similar to the standard approach for proving a local limit theorem: we show that the difference ns−ms

is almost equally likely to hit values ω such that |ω| >ω0 and so it is unlikely that ns−ms ∈ [−ω0,ω0]. The last

ingredient that we need is the following proposition.

Proposition 5.5.4. For any d > e, ε> 0, ω=ω(n) À 1 we have

limsup
n→∞

P
[

| f (A)−α∗| < ε, |Vs(A)|− |Cs(A)| ≥ω
]

= 0, limsup
n→∞

P
[

| f (A)−α∗| < ε, |Cs(A)|− |Vs(A)| ≥ω
]

= 0.

In words, Proposition 5.5.4 states that it is unlikely that |Vs(A)| − |Cs(A)| is large i.e. the system is under-

constrained and at the same time f (A) ∼α∗ which will yield that the slush is almost entirely frozen. Similarly

it is unlikely that |Cs(A)|− |Vs(A)| is large i.e. the system is over-constrained and at the same time f (A) ∼ α∗

which will yield that the slush is almost entirely unfrozen. The proof of Proposition 5.5.4 hinges on a delicate

moment expansion which shows that G(A) is unlikely to contain a moderately large, relatively densely con-

nected subgraph called flippers. Finally the second statement of Theorem 5.1.1 or item EQ is obtained from

Proposition 5.5.3 and 5.5.4.
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Chapter 6

Warning Propagation

This chapter describes Warning Propagation to a full extent on a general class of random graph G. The results

and the definition in this section are taken from [34] unless otherwise stated.

6.1 The update rule for Warning Propagation

Warning Propagation is a message passing algorithm in the same family as Belief Propagation. So, WP asso-

ciates two directed messages (µu→v ,µv→u) to each edge {u, v} ∈ E(G). The difference between WP and BP is

that in WP the messages are not probability distribution but taken from a finite alphabet Σ. Further, let M (G)

be the set of all vectors
(

µv→w
)

(v,w)∈V (G)2:{v,w}∈E(G) ∈ Σ
2|E(G)|. As in BP, the messages get updated in parallel

according to some fixed rules. More precisely, for d ∈N let
((

Σ

d

))

be the set of all d-ary multisets with elements

from Σ and let

ϕ :
⋃

d≥0

((

Σ

d

))

→Σ (6.1.1)

be an update rule that, from any multiset of input messages, produces an output message. Then we define the

Warning Propagation operator on G by

WPG : M (G) →M (G) , µ=
(

µv→w
)

v w 7→
(

ϕ
({{

µu→v : uv ∈ E (G) ,u 6= w
}}))

v w ,

where {{a1, . . . , ak }} denotes the multiset whose elements (with multiplicity) are a1, . . . , ak . In other words, the

message from a vertex v to a vertex w is updated according to the update rule applied to the multiset of mes-

sages that v receives from all of its neighbourhoods apart from w . Similarly to BP, there are some assumptions

on the graph that we need to have for WP to work properly. For example, the presence of many short cycles

may block the success of WP. These assumptions will be described in the next section.

6.2 Criteria on the graphs

As a factor graph is a bipartite graph, it is natural to define WP on such graphs. In general, we consider graphs

with ` parts for ` ∈ N, and we denote by V1, . . . ,V` the set of vertices in each part. For instance, V1 is the set

of variable nodes, and V2 is the set of constraint nodes in the factor graph. Also, the graph is not necessarily

`-partite, i.e. we allow some edges to exist within each part. Furthermore, we refer to a vertex in part Vi as

a vertex of type i and denote by ni the size of Vi . The ni are generated from a probability distribution Ni
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for i ∈ [`] and we let N = (N1, . . . ,N`) ∈ P
(

N
`
0

)

. In general, the ni are deterministic, for example, for the

random graph G(A). However, if we build the factor graph corresponding to the Potts model on the Erdős-

Rényi random graph G(n,d/n), for instance, then we would have a random number of constraint nodes as

each constraint node corresponds to an edge.

As a matter of course, we should expect a different update rule ϕi for each vertex of type i . However, we

stick to the more compact notation (6.1.1) using one single update function to avoid notational complexities.

Nonetheless, it is possible in some instances that a vertex of type i receives only a specific type of message or

the update rule is different for two vertices with different types i and j . To tackle the previous problem, the

messages in the alphabet Σ will encode the types of the source and target vertices, and thus many messages

will be automatically excluded because they encode the wrong target or/and source types. Note, however, that

all the results in this section still hold even if we use the more complicated notation with ` update rules. In

addition, as we will have `-type graphs, it would be helpful to have a notation for the degree of a vertex of type

i according to the types of the other vertices adjacent to it.

Definition 6.2.1. For a `-type graph G, the type-degree of a vertex v ∈ V (G), which we denote by d (v), is the

sequence (i ,d1, . . . ,d`) ∈ [`]×N
`
0 where i is the type of v and where d j is the number of neighbours of v of type j .

Moreover, the type-degree sequence D (G) of G is the sequence (d (v))v∈V (G) of the type-degrees of all the vertices

of G.

Next, we need to get a handle on the local structure of the graph. We start with the asymptotic degree

distribution.

Definition 6.2.2. For each i ∈ [`], let Zi ∈P
(

N
`
0

)

. For j ∈ [`], denote by Zi j the marginal distributions of Zi on

the j -th entry. We say that
(

i , j
)

∈ [`]2 is an admissible pair if P
(

Zi j ≥ 1
)

6= 0, and denote by K =K (Z1, . . . ,Z`)

the set of admissible pairs.

The Zi represent the asymptotic degree distribution of a vertex v of type i . For the factor graph G(A), we

have Z1 and Z2 ∈ P
(

N
2
0

)

with Z12 = Z21 = Po(d) and Z11 = Z22 = 0 as factor graphs are bipartite . Similarly,

for the factor graph G(Φ) associated with a k-SAT formula Φ, we would have Z12 = Po(d) and Z11 = Z22 = 0

but Z21 = k. Note also that the Zi can be entirely deterministic for example in the case of a d-regular graph

we will have only one class and Z1 = d . Furthermore, the admissible pairs are the pairs of parts Vi and V j for

which we expect some edges to exists. It is easy to see that if (i , j ) is admissible then ( j , i ) is also admissible.

It turns out that the Zi are not enough to describe the local structure because in order to inspect a message

from a vertex v of type i to a vertex w of type j , we need to control the distribution of the neighbourhoods of

v apart from w given that we have an edge between v and w . This motivates the following definition.

Definition 6.2.3. For each
(

i , j
)

∈K , define Y j ,i =Y j ,i (Zi ) ∈P
(

N
`
0

)

to be the probability distribution such that

for (a1, . . . , a`) ∈N
`
0 we have

P
(

Y j ,i = (a1, . . . , a`)
)

:=
P

(

Zi =
(

a1, . . . , a j−1, a j +1, a j+1, . . . , a`

))

P
(

Zi j ≥ 1
) .

Another way to see the relationship between Y j ,i and Zi is the following. Define Ei j to be the event Zi j ≥ 1.

Then, for any (a1, . . . , a`) ∈N
`
0 such that a j ≥ 1 we have

P
(

Y j ,i =
(

a1, . . . , a j−1, a j −1, a j+1, . . . , a`

))

=P
(

Zi = (a1, . . . , a`)
∣

∣Ei j
)

.

A clear instance where Zi and Yi , j are different is the d-regular graph for d ≥ 2 because in order to maintain

regularity, we will have Yi ,i = Y1,1 = d −1. Another example concerns the graph G(Φ) corresponding to a k-

SAT formula Φ, specifically, a constraint node will deterministically have Y2,1 = k−1. Fortunately, as a Poisson
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random variable conditioned on being greater than one is still a Poisson random variable with the same mean,

we have Y1,2 = Po(d) for G(Φ) and Y1,2 =Y2,1 = Po(d) for G(A). Again as factor graphs are bipartite graphs we

have Y1,1 =Y2,2 = 0 for both G(A) and G(Φ).

Now, we give a description of a Galton-Watson process that will detail the local structure of the graph

asymptotically. We will often speak about generating vertices with types according to a distribution D on N
`
0 ,

which designates the action of producing a vector (z1, . . . , z`) according to D, and for each i ∈ [`] generating

zi vertices of type i . Typically, D will be Zi or Y j ,i for some i , j ∈ [`]. Depending on the context, we may also

speak about generating neighbours, children, half-edges etc. with types, in which case the definition is similar.

Definition 6.2.4. For each i ∈ [`], let Ti := Ti (Z1, . . . ,Z`) denote a `-type Galton-Waltson process defined as

follows:

1. The process starts with a single vertex u of type i .

2. Generate children of u with types according to Zi .

3. Subsequently, starting from the children of u, further vertices are produced recursively according to the

following rule: for every vertex w of type h with a parent w ′ of type `′, generate children of w with types

according to Y`′,h independently.

Moreover, for r ∈N0 we denote by T
r

i the branching process Ti truncated at depth r .

As a picture is worth a thousand words, Figure 6.1 gives an illustration of the branching process T1 up to

depth 2 for G(A), G(Φ) and d-regular graphs. Note that the tree T1 for G(Φ) and G(A) are exactly the infinite

trees T and T described in the sections 4.1.2 and 5.3.2.

Po(d)

Po(d)

(a) T
2

1 for G(A)

Po(d)

k −1k −1

(b) T
2

1 for G(Φ)

d

d −1d −1

(c) T
2

1 for d-regular graphs.

Figure 6.1: A realisation of the Galton Watson process T
2

1 .

The last ingredient that we need before stating the assumption on the graph G is a way to compare the

depth t neighbourhood of a vertex v of type i with the depth t neighbourhood of the root of Ti or more

precisely the tree T
t

i . For a `-type graph G , a vertex u ∈ V (G) and t ∈ N0, let BG (u, t ) be the subgraph of G

induced by the neighbourhood of u up to depth t , rooted at the node u. We say that two rooted `-type graphs

G and G ′ are isomorphic, which we denote by G ∼= G ′ if there exists a graph isomorphism between G and G ′

which preserves the roots and the types of the vertices. Let G? be the set of isomorphism classes of rooted

`-type graphs. We define the next empirical neighbourhood distribution for a given `-type graph G .

Definition 6.2.5. Let G be a `-type graph with parts V1 (G) , . . . ,V` (G), let i ∈ [`] and t ∈ N0. Then for a graph

H ∈G?, we define

UG
i ,t (H) :=

1

|Vi (G)|
∑

u∈Vi (G)
1 {BG (u, t ) ∼= H } .

In words, UG
i ,t is the fraction of vertices of type i which have a depth-t neighborhood isomorphic to H .

Finally, with ∆(G) denoting the maximum degree of a graph G , using the notation a ¿ b as a shorthand for
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a = o (b), and similarly a À b for b = o (a). Apart from a technical assumption requiring that the degree of

a vertex decay exponentially [34, Equation 2.2], there are four main assumptions that we will require for the

graph G which states as follows.

Assumption 6.2.6. There exists a function 1 ¿ ∆0 = ∆0 (n) ¿ n1/10 such that the random graph G satisfies the

following properties:

A1 For all i ∈ [`] we have E (ni ) =Θ (n) and Var(ni ) = o
(

n8/5
)

.

A2 For any two simple `-type graphs G and H satisfying D (G) = D (H), we have

P (G=G) = (1+o (1))P (G= H).

A3 W.h.p. ∆ (G) ≤∆0;

A4 For any i ∈ [`] and t ∈N0 we have dTV
(

Ut
i (G) ,T t

i (Z )
)

= o(1) w.h.p. 1

The first assumption A1 requires that the ` parts of the graph have approximately the same size. Assump-

tion A2 posits that given two graphs with the same type degree sequence, they are equally likely to be chosen

as a realisation of G. Furthermore, Assumption A3 prescribes that there are few high degree vertices. Finally,

Assumption A4 says that the local structure of G is asymptotically described by the branching process Ti .

6.3 Distributional fixed points

Once we have a graph G that satisfies the required assumptions, the goal is to study the rate of convergence of

WP on the graph. So, WP is launched from a set of initial messages ν0 ∈M (G) and we denote by WP∗
G

(

ν(0)
)

:=
limt→∞ WPt

G

(

ν(0)
)

the pointwise limit if it exists. In many application, WP possesses monotonicity properties

that guarantee WP∗
G

(

ν(0)
)

exists. Further, if the limit WP∗
G

(

ν(0)
)

exists, it is clearly a fixed point of the operator

WPG .

As in BP, the messages along each edge {u, v} ∈ E(G) are initialised independently according to some prob-

ability distribution. As the types of the vertices adjacent to an edge affect the messages, each directed message

from a vertex u of type i to a vertex v of type j is initialised independently according to a probability distribu-

tion qi j on Σ. This family
(

qi j
)

i , j∈[`] of probability distributions is appropriately expressed in matrix form. To

avoid conflict on the subscripts, for a matrix M , we denote by M
[

i , j
]

the entry at position
(

i , j
)

in the matrix

and by M [i ] the i -th row
(

M
[

i , j
])

j∈[`]. Now, given a finite set S, a probability distribution matrix on S is a `×`

matrix Q in which, each entry Q
[

i , j
]

of Q is a probability distribution on S. The initial probability distribution

matrix, denoted by Q0, is on Σ and each entry is given by Q0[i , j ] := qi j .

Of course, while we run WP, the probability of having a message σ ∈Σ from a vertex u of type i to a vertex v

of type j may change. In other words, each probability distribution Q
[

i , j
]

may change at each iteration. This

also means that each message becomes a random variable over Σ, so we are led to define the following random

multiset of elements of Σ.

Definition 6.3.1. Given D ∈P
(

N
`
0

)

and a vector q =
(

q1, . . . , q`

)

∈ (P (Σ))` of probability distributions on Σ, let

us define a multiset M
(

D, q
)

of elements of Σ as follows.

• Generate a vector (a1, . . . , a`) according to D.

• For each j ∈ [k] independently, select a j elements of Σ according to q j . Call the resulting multiset M j .

• Define M
(

D, q
)

:=
⊎`

j=1 M j .2

1In [34], we require a more technical assumption stating that dTV

(

Ut
i (G) ,T t

i (Z )
)

¿ 1/∆2
0 which just means that the rate of convergence

should be fast enough.
2The symbol

⊎

denotes the multiset union of two multisets A,B , e.g. if A = {{a, a,b}} and B = {{a,b,c,c}} then A
⊎

B = {{a, a, a,b,b,c,c}}.
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Intuitively, D will depict a distribution of neighbours with types, either Zi or Y j ,i for some i , j ∈ [`]. On the

other hand, q will represent the distributions of messages from the vertices of different types, usually drawn

from the appropriate entry of a probability distribution matrix. Thus, M
(

D, q
)

details a random multiset of

incoming messages at a vertex with the proper distribution.

Now, the changes are intrinsically linked to the update rule ϕ in the sense that ϕ is acting on the ran-

dom multiset of messages M
(

D, q
)

. More precisely, given a probability distribution matrix Q on Σ with rows

Q [1] , . . . ,Q [`], let φϕ (Q) denote the probability distribution matrix R on Σ where each entry R
[

i , j
]

is the

probability distribution on Σ given by

R
[

i , j
]

:=ϕ
(

M
(

Y j ,i ,Q [i ]
))

.

Further, let φt
ϕ (Q) =φϕ

(

φt−1
ϕ (Q)

)

denote the t th iterated function of φϕ evaluated at Q. Then, the function φt
ϕ

will render the distribution of the WP message at each edge after t steps. A natural question that arises is what

occurs when we iterate φt
ϕ starting from an initial probability distribution matrix Q0 for large enough t . Does

a limit exist? In order to quantify this, the standard total variation distance for probability distributions is ex-

tended to probability distribution matrices. More precisely, the total variation distance of two `×` probability

distribution matrices Q and R on the same set S is defined as

dTV (Q,R) :=
∑

i , j∈[`]

dTV
(

Q
[

i , j
]

,R
[

i , j
])

.

It is easy to see that dTV is indeed a metric on the space of `×` probability distribution matrices on Σ, and

whenever we speak about limits in the space of probability distribution matrix, those limits are with respect to

this new distance. We can now define the key notion of a stable WP limit, which is fundamental to the main

result.

Definition 6.3.2. Let P be a probability distribution matrix on Σ and ϕ :
⋃

d≥0

((

Σ

d

))

→Σ be a WP update rule.

1. We say that P is a fixed point if φϕ (P ) = P.

2. A fixed point P is stable if φϕ is a contraction on a neighbourhood of P with respect to the total variation

distance dTV.

3. We say that P is the stable WP limit of a probability distribution matrix Q0 on Σ if P is a stable fixed point,

and furthermore the limit φ∗
ϕ (Q0) := limt→∞φt

ϕ (Q0) exists and equals P.

We can now state this chapter’s main result, which reads as follows.

Theorem 6.3.3. LetG be a random graph model satisfying Assumption 6.2.6 and let P,Q0 be probability distribu-

tion matrices onΣ such that P is the stable WP limit of Q0. Then for anyδ> 0 there exists t0 = t0
(

δ, (Zi )i∈[`],ϕ,Q0
)

such that the following is true.

Suppose that µ(0) ∈M (G) is an initialisation according to Q0. Then w.h.p. for all t ≥ t0 we have

∑

v,w :{v,w}∈E(G)
1
{

WPt
v→w

(

µ(0)) 6= WPt0
v→w

(

µ(0))}< δn.

In words, the WP messages at time t > t0 are the same as the WP messages at time t0 except perhaps on a set

of size less than δn. This means that WP converges quickly. Specifically, the converging time t0 is independent

of n and is only connected to the random graph G via the asymptotic local structure Ti described by the Zi .
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6.4 Application of Warning Propagation to the random matrix problem

In this section, we explain how the criteria on the graphs and the distributional fixed points materialise in the

random matrix problem. Recall that the messages take value in Σ = {f,u,s} and a message distribution is a

vector q =
(

q (v), q (c)
)

with q (v) =
(

q (v)
f

, q (v)
s , q (v)

u

)

and q (c) =
(

q (c)
f

, q (c)
s , q (c)

u

)

∈ [0,1]3 such that
∑

s∈{f,s,u} q (v)
s =

∑

s∈{f,s,u} q (c)
s = 1. First, the initial probability distribution matrix Q0 and the limit P are given by

Q0 =
(

(0,0,0) (0,1,0)

(0,1,0) (0,0,0)

)

P =
(

(0,0,0) q (v)
∗

q (c)
∗ (0,0,0)

)

where q (v)
∗ = (1−α∗,α∗−α∗,α∗) and q (c)

∗ = (α∗,α∗−α∗,1−α∗) with α∗ and α∗ being the two maxima of Υd .

The stability of the limit P is provided by Lemma 5.3.4.

For the assumption on the graph, Assumption A1 is evident as |V1| = |V (A)| = n and |V2| = |C (A)| = n.

Assumption A2 holds because given two graphs H and G with the same degree sequence D(H) = D(G), we

have |E(H)| = |E(G)| and so

P [G(A) = H ] =
(

d

n

)E(H) (

1−
d

n

)

(n
2

)

−E(H)

=
(

d

n

)E(G) (

1−
d

n

)

(n
2

)

−E(G)

=P [G(A) =G] .

Assumption A3 is obtained by taking ∆0 = logn, which is just the well-known fact that the maximum degree in

an Erdős-Rényi random graph is asymptotically logn [14, 61]. Finally, Assumption A4 is again obtained from

the common knowledge that asymptotically, the local structure of the bipartite Erdős-Rényi random graph is

that of a Po(d) tree [14, 61].

6.5 Ideas for the proof of the main theorem

One main aspect of the proof of Theorem 6.3.3 is that instead of analysing WP directly on the Graph G, we

move to an alternative model Ĝ commonly called configuration model. To elaborate on this, we will need to

keep track of not only the graph but also the message histories at any vertex v for any time t ∈N. More precisely,

let µu→v (t ) denote the message from a vertex u to a vertex v after t iterations of WP, and refer to this as the t-

message from u to v . Alternatively, we refer to the t-in-message at v or the t-out-message at u. Moreover, for two

adjacent vertices u, v , define the t-history from u to v to be the vector µu→v (≤ t ) :=
(

µu→v (0) , . . . ,µu→v (t )
)

∈
Σ

t+1. We will also refer to µu→v (≤ t ) as the t-in-story at v , and as the t-out-story at u. The t-story at v consists

of the pair
(

µu→v (≤ t ),µv→u(≤ t )
)

, i.e. the t-in-story followed by the t-out-story.

First, let Gt be the labelled graph obtained from G by the following steps: generate the random graph G and

initialise each message µu→v (0) for each directed edge (u, v) independently at random according to Q0[i , j ]

where i and j are the types of u and v respectively. Then, run Warning Propagation for t rounds according to

the update rule ϕ and label each directed edge (u, v) with the t-story up to time t . So, the graph Gt is just the

original model G labelled with the t-story. We also define G∗ := limt→∞Gt , if this limit exists.

The construction of the alternative model is a bit more involved. As expected, the alternative model is a

labelled graph Ĝt for t ∈N. The following concept is needed for the construction. Again, we call a half-edge at a

vertex u an edge without a second end point v , the type of the half-edge is denoted (i , j ) where i and j are the

respective types of v and u (if it existed). Furthermore, recall the probability vector N = (N1, . . . ,N`) ∈P
(

N
`
0

)

where Ni is the distribution of the part sizes ni and let Ĝt be the random graph produced as follows.

1. Generate n1, . . . ,n` according to the probability distribution vector N , and for each i ∈ [`] generate a

vertex set Vi with |Vi | = ni .
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2. For each i ∈ [`] and for each vertex v in Vi independently,

(a) Generate half edges with types
(

i , j
)

for each j ∈ [`] according to Zi ;

(b) Give each half-edge of type
(

i , j
)

a t-in-story according to φ(≤t )
ϕ (Q0)[i , j ] independently;

(c) Give each half-edge of type
(

i , j
)

a 0-out-message according to Q0
[

i , j
]

independently of each other

and of the in-stories.

3. Generate s-out-messages for each time 1 ≤ s ≤ t according to the rules of Warning Propagation based on

the (s −1)-in-messages.

4. Consider the set of matchings of the half-edges which are maximum subject to the following conditions:

consistency: a half-edge with in-story µ1 ∈Σ
t0+1 and out-story µ2 ∈Σ

t0+1 is matched to a half-edge with

in-story µ2 and out-story µ1; and simplicity: the resulting graph (ignoring unmatched half-edges) is

simple. Then, select a matching uniformly at random from this set and delete the remaining unmatched

half-edges.

The previous construction can be found in [34, Definition 3.4]. Furthermore, the notation φ(≤t )
ϕ (Q0)[i , j ] in step

2 b) refers to the joint distribution of the t-in-stories up to time t . It turns out that the marginal distribution of

φ(≤t )
ϕ (Q0)[i , j ] is just the (i , j )-th entry of the t-fold operator φ(t )

ϕ (Q0), i.e. φ(t )
ϕ (Q0)[i , j ] [34, Claim 4.1]. Note also

that the deletion process in Step 4 is harmless because we will be left with a very few number of unmatched

half edges [34, Proposition 5.5].

The proof of Theorem 6.3.3 now comes in two steps. We first prove that Ĝt and Gt have similar distributions

for any constant t ∈ N [34, Lemma 3.7]. Then, we use this estimation to show that, for large enough t0 ∈ N,

the messaged graphs Gt0 and G∗ look the same where we denote by G the Σ-messaged3 graph obtained by

removing all messages from each history except for the message at time t in a Σ
t+1-messaged graph G . The

second step means that hardly any additional changes are made after t0 steps of Warning Propagation. Indeed,

we have to choose t0 to be sufficiently large that φt0
ϕ (Q0) is quite close to the stable WP limit P of Q0. It will

follow that the distribution of a message along a randomly chosen directed edge in Ĝt0 (and therefore also in

Gt0 ) of type
(

i , j
)

is approximately P
[

i , j
]

[34, Corollary 7.2]. The stability of P will, in turn, imply that the

branching process of changes appearing after the time t0 is subcritical and is likely to die out [34, Proposition

6.3].

3A Σ-messaged graph is a graph where each edge is labelled with messages from Σ.
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Chapter 7

Metastability

In this chapter, we turn to the study of the Potts model on d-regular graphs. Suppose that d ,n ≥ 3 are integers

such that dn is even and let Gd be the random d-regular graph on the vertex set [n]. We denote by µGd the

Boltzmann distribution and ZGd the partition function. Furthermore, we write σGd ,β for a sample drawn from

µGd . Also, the definition and the results in this section are from [27] unless otherwise specified. Before we

move to the main topic of this chapter which is metastability, we first elaborate on the replica ansatz for the

Potts model introduced in 3.2.3 which states that for all integers d , q ≥ 3 and real β> 0, we have

lim
n→∞

1

n
log ZGd = max

µ∈Fd ,β

BGd ,β
(

µ
)

in probability (7.0.1)

for some subspace Fd ,β ⊆P
(

[q]
)

and where

BGd ,β
(

µ
)

= log

[

∑

c∈[q]

(

1+ (eβ−1)µ(c)
)d

]

−
d

2
log

[

1+ (eβ−1)
∑

c∈[q]
µ(c)2

]

for µ ∈Fd ,β.

7.1 Belief Propagation and Bethe free entropy in the Potts Model

For the Potts model, we will work directly on the random graph Gd instead of the corresponding factor graph as

Gd is much easier to handle. Also, the Belief Propagation messages are defined directly in terms of the standard

messages. To elaborate, BP associates with each edge e = {u, v} ∈ E(Gd ) two directed messages µGd ,u→v and

µGd ,v→u which are probability distributions on the set [q] of colours. The message µGd ,u→v (c) is defined as the

marginal distribution of v having colour c in a configuration chosen from the Potts model on the graph Gd −u

obtained by deleting u. The definition of µGd ,v→u(c) is similar.

Again, if we assume that the spins of far apart vertices are asymptotically independent, we obtain a set of

BP equations that read as follows

µGd ,v→u(c) =
∏

w∈∂v\{u} 1+ (eβ−1)µGd ,β,w→v (c)
∑

χ∈[q]
∏

w∈∂v\{u} 1+ (eβ−1)µGd ,β,w→v (χ)
({u, v} ∈ E(G), c ∈ [q]). (7.1.1)

Again, the intuition behind (7.1.1) is that after the vertex v is deleted, the other neighbours w 6= v of u are

usually far apart as the graph Gd contains only a small number of short cycles. Thus, the spins of the vertices

w ∈ ∂u \ {v} should be asymptotically independent in G− v . So, with probability 1−µGd ,β,w→v (c), vertex v

will receive a colour c ′ 6= c from w and with probability µGd ,β,w→v (c), v receives colour c in which case it gets

a reward of eβ. Next, for a family of probability distribution
(

µGd ,β,v→u
)

{u,v}∈E(Gd ), the Bethe free functional
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corresponding to the BP equations in (7.1.1) reads

BGd ,β
(

(µGd ,u→v )uv∈E(G)
)

=
1

n

∑

v∈Vn

log
[

∑

c∈[q]

∏

w∈∂v

1+ (eβ−1)µGd ,w→v (c)
]

−
1

n

∑

v w∈E(G)
log

[

1+ (eβ−1)
∑

c∈[q]
µGd ,v→w (c)µGd ,w→v (c)

]

.
(7.1.2)

Observe that, unlike in Chapter 4, we have only one contribution from the vertices (the first summand) in

(7.1.2) as we do not use the factor graph representation. The second summand is as in Chapter 4 the contri-

bution of the edges. Moreover, in order to prove (7.0.1), we need to show that the global maximum of BGd ,β is

asymptotically equal to 1
n log ZGd . It turns out that BGd ,β has only one global maximum, but the value of this

maximum and the maximiser changes as β varies. According to the heuristic description of the phase space

given in Section 3.2.3, there are two maxima: one global and one local. To construct those maxima, we make

use of the fact that they correspond to the fixed points of (7.1.1). A natural way of constructing solutions for

(7.1.1) is to choose identical messages µGd ,u→v for all edge {u, v} ∈ E(Gd ). To be more precise, any solution

(µ(c))c∈[q] to the system

µ(c) =
(1+ (eβ−1)µ(c))d−1

∑

χ∈[q](1+ (eβ−1)µ(χ))d−1
(c ∈ [q]) (7.1.3)

yields a solution to (7.1.1). The Bethe functional (7.1.2) then simplifies to

BGd ,β(µ(c))c∈[q] = log

[

∑

c∈[q]

(

1+ (eβ−1)µ(c)
)d

]

−
d

2
log

[

1+ (eβ−1)
∑

c∈[q]
µ(c)2

]

. (7.1.4)

Now, the set Fd ,β is defined as the set of all solutions (µ(c))c∈[q] to (7.1.3). The first obvious solution of (7.1.3)

is the uniform distribution over [q], denoted by µp, which is linked to the paramagnetic phase α0 described

in Section 3.2.3. The other solution relates to the ferromagnetic phase α1 in Section 3.2.3. More precisely, the

second solution denoted µf verifies that µf(1) > µf(i ) = 1−µf(1)
q−1 for i = 2, . . . , q . Again, there are q symmetric

possibility for µf but they all assume the same value of BGd ,β so it suffices to study one of them. In addition,

[27, Lemma 2.2] and [27, Proposition 2.3] shows that µp and µf are the only fixed points that will produce a

maximum of BGd ,β.

Furthermore, recall the three different critical temperatures βu ,βp and βh defined in 3.2.3. For β< βu , µp

is the unique solution of (7.1.3) then at β = βu the second solution µf emerges signaling the emergence of a

metastable state. After, at the threshold βp , the ferromagnetic solution µf takes over from the paramagnetic

solution µp as the global maximiser. Finally, the paramagnetic solution µp remains a local maximum up to βp

and becomes a minimum after. Before presenting the proof of the replica ansatz (7.0.1), we will first introduce

the metastability concept.

7.2 Metastable sets and slow mixing

The dynamical evolution of the solution space described at the end of the previous section will lead to the

study of metastability. First, the two fixed points µp and µf of Belief Propagation are linked to the marginal dis-

tributions of the colour of a vertex v . Specifically, we define for a probability µ on [q] the following distribution

νµ(c) =
(1+ (eβ−1)µ(c))d

∑

χ∈[q](1+ (eβ−1)µ(χ))d
(c ∈ [q]). (7.2.1)
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For shortness, we let νf = νµf and νp = νµp . Obviously, νp is like µp the uniform distribution. Moreover, observe

that the main difference between (7.2.1) and (7.1.1) is the exponent, which became d in (7.2.1). The intended

interpretation is that in (7.2.1) we move from messages where we exclude one endpoint of an edge from the

graph to marginal distributions, which take into account all neighbours of a vertex. Thus, for sufficiently small

ε> 0, we are led to define the following two subsets of configurations

Sf(ε) =
{

σ ∈ [q]n :
∑

c∈[q]

∣

∣

∣

∣

∣σ−1(c)
∣

∣−nνf(c)
∣

∣

∣< εn
}

, Sp(ε) =
{

σ ∈ [q]n :
∑

c∈[q]

∣

∣

∣

∣

∣σ−1(c)
∣

∣−nνp(c)
∣

∣

∣< εn
}

.

In words, a configuration σ ∈ Sp(ε) roughly assigns colours to the vertices of the graph with the same probabil-

ity but in Sf(ε) the specific colour 1 dominates the other q −1 colours.

Now, we have all the ingredients needed to express the result on metastability concerning Glauber dynam-

ics. For a graph G = (V ,E), Glauber dynamics is a Markov chain with the set of configuration [q]V as the state

space and it runs as follows:

• Starting from an initial configuration σ0, Glauber chooses at each time step t ≥ 0 a vertex v uniformly at

random and changes the colour of v according to the conditional Gibbs distribution of the colours of its

other neighbours in order to obtain a new configuration σt .

It is well known that the Gibbs distribution is the stationary distribution of the Glauber dynamics [70]. Fur-

thermore, recall that the mixing time tmix of a Markov chain is defined as the maximum over all possible initial

configuration σ0 of the minimum number of steps t needed to get within total variation distance 1/4 from the

stationary distribution, i.e. tmix = maxσ0 min
{

t : dTV
(

σt ,µGd ,β
)

≤ 1/4
}

.

Finally, a set S ⊆ [q]V is said to be a metastable state for the Glauber dynamics if there exists δ> 0 such that

P

[

min{t : σt 6∈ S} ≤ eδ|V | |σ0 ∼µGd ,β (·|S)
]

≤ e−δ|V |,

i.e. Glauber needs an exponential amount of time to break out of S. The main metastability result reads as

follows.

Theorem 7.2.1. Let d , q ≥ 3 be integers and β> 0 be real. Then, for all sufficiently small ε> 0, the following hold

w.h.p. over the choice of Gd .

1. If β<βh , then Sp(ε) is a metastable state for Glauber dynamics on G.

2. If β>βu , then Sf(ε) is a metastable state for Glauber dynamics on G.

Further, for β>βu , the mixing time of Glauber is eΩ(n).

Metastability in the Potts Model does not concern only Glauber dynamics; it extends to a non-local algo-

rithm called Swendsen Wang (SW) chain. For a graph G = (V ,E) and a configuration σ ∈ [q]V , one iteration of

SW starting from σ consists of two steps defined by the following.

• Percolation step: Let M = M(σ) be the random edge-set obtained by adding (independently) each monochro-

matic edge under σ with probability p = 1−e−β.

• Recolouring step: Obtain the new σ′ ∈ [q]V by assigning each component1 of the graph (V , M) a uni-

formly random colour from [q]; for v ∈V , we set σ′
v to be the colour assigned to v ’s component.

1Note, isolated vertices count as connected components.
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The metastable states for SW are defined similarly as for Glauber dynamics. The next theorem extends the

metastability behaviour of Glauber to the non-local SW dynamics. However, since the recolouring step might

change the dominant colour, the metastability statement for the ferromagnetic state needs to take into account

Sf(ε) with its q −1 mirror images.

Theorem 7.2.2. Let d , q ≥ 3 be integers and β> 0 be real. Then, for all sufficiently small ε> 0, the following hold

w.h.p. over the choice of Gd .

1. If β<βh , then Sp(ε) is a metastable state for SW dynamics on G.

2. If β>βu , then Sf(ε) together with its q −1 permutations is a metastable state for SW dynamics on G.

Further, for β ∈ (βu ,βh), the mixing time of SW is eΩ(n).

In the next sections, we will give an overview of the proof idea used to get (7.0.1), Theorem 7.2.1 and 7.2.2.

We start with the replica ansatz (7.0.1).

7.3 First two moments and messages

Again, throughout the reminder of the chapter, we will mainly work with the configuration model. For the

random regular graph Gd , the configuration model is a random d-regular multi-graph Gd generated as follows.

For each of the vertices in [n], we generate d clones. The graph Gd is then obtained by choosing a random

perfect matching on [n]× [d ] and contracting the vertices {i }× [d ] into a single vertex i , for all i ∈ [n]. It is

well known that G is contiguous with Gd [61] i.e. events holding w.h.p. in Gd are also holding w.h.p. in G. The

following notation will be useful latter. For a configuration σ ∈ [q]V (G) define a probability distribution νσ on

[q] by letting νσ(s) = |σ−1(s)|/n for (s ∈ [q]). In words, νσ is the empirical distribution of the colours under σ.

Similarly, let ρG ,σ ∈P ([q]× [q]) be the edge statistics of a given graph/colouring pair, i.e.,

ρG ,σ(s, t ) =
1

2|E(G)|
∑

u,v∈V (G)
1{uv ∈ E(G), σu = s, σv = t }.

Now, the basic strategy for the proof of (7.0.1) is to use the second moment method on Z (Gd ). For the first

moment, let ν = (ν(σ))σ∈[q] be a probability distribution on the q colours. Moreover, let R(ν) be the set of

all symmetric matrices (ρ(σ,τ))σ,τ∈[q] with non-negative entries such that
∑

τ∈[q]ρ(σ,τ) = ν(σ) for all σ ∈ [q].

Standard arguments [24] reveal that the first moment satisfies

lim
n→∞

1

n
logE[Z (Gd )] = max

ν∈P ([q]),ρ∈R(ν)
Fd ,β(ν,ρ), where

Fd ,β(ν,ρ) = (d −1)
∑

σ∈[q]
ν(σ) logν(σ)−d

∑

1≤σ≤τ≤q
ρ(σ,τ) logρ(σ,τ)+

dβ

2

∑

σ∈[q]
ρ(σ,σ).

(7.3.1)

Hence, the first moment is dominated by the maximum or maxima of Fd ,β. To understand the origin of Fd ,β,

observe that Fd ,β accounts for the contribution to E [Z (Gd )] coming from the set Q consisting of pairs (G ,σ)

with ν as empirical distribution of the colours and ρ as edge statistics i.e. the sum
∑

(G ,σ)∈Q P [Gd =G]eβH (σ)

equals enFd ,β(ν,ρ)+o(n).

The crucial property is that the fixed points of BP in (7.1.3) are in one-to-one correspondence with the

maximum of Fd ,β. To be precise, a fixed point µ of (7.1.3) is stable if the Jacobian of (7.1.3) at µ has a spectral

radius strictly less than one. Let F
+
d ,β be the set of all stable fixed points µ ∈Fd ,β. Moreover, let F

1
d ,β be the set

of all µ ∈F
+
d ,β such that µ(1) = maxσ∈[q]µ(σ). In addition, let us call a local maximum (ν,ρ) of Fd ,β stable if the

Hessian of Fd ,β is negative definite at (ν,ρ). The next result states the correspondence.
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Lemma 7.3.1 ( [52, Theorem 8]). Suppose that d ≥ 3,β> 0. The map µ ∈P ([q]) 7→ (νµ,ρµ) defined by

νµ(σ) =
(1+ (eβ−1)µ(σ))d

∑

τ∈[q](1+ (eβ−1)µ(τ))d
, ρµ(σ,τ) =

eβ1{σ=τ}µ(σ)µ(τ)

1+ (eβ−1)
∑

s∈[q]µ(s)2
(7.3.2)

is a bijection from F
+
d ,β to the set of stable local maxima of Fd ,β. Moreover, for any fixed point µ we have

BGd ,β(µ) = Fd ,β(νµ,ρµ).

For shortness, let (νp,ρp) = (νµp ,ρµp ) and (νf,ρf) = (νµf ,ρµf ). Furthermore, [52, Theorem 4] asserts that

F
1
d ,β has at most two stable fixed points: the paramagnetic fixed point µp with the maximiser (νp,ρp) and the

ferromagnetic fixed point µf with maximiser (νf,ρf). For β < βp , the paramagnetic fixed point corresponds

to the global maximiser of Fd ,β while the ferromagnetic fixed point appears when β> βu and remains a local

maximiser of Fd ,β up to β= βp . For β≥ βp , the roles played by the paramagnetic and the ferromagnetic fixed

point exchange.

For the second moment, again using techniques from [24], we obtain the following approximation. For

a probability distribution ν ∈ P ([q]) and a symmetric matrix ρ ∈ R(ν) let R
⊗(ρ) be the set of all tensors r =

(r (σ,σ′,τ,τ′))σ,σ′,τ,τ′∈[q] such that

r (σ,σ′,τ,τ′) = r (τ,τ′,σ,σ′) and
∑

σ′,τ′
r (σ,σ′,τ,τ′) =

∑

σ′,τ′
r (σ′,σ,τ′,τ) = ρ(σ,τ) for all σ,τ. (7.3.3)

Then, with H(·) denoting the entropy function, we have

lim
n→∞

1

n
logE[(Zβ(Gd ))2] = max

ν,ρ∈R(ν),r∈R⊗(ρ)
F⊗

d ,β(ρ,r ), where

F⊗
d ,β(ρ,r ) = (d −1)H(ρ)+

d

2
H(r )+

dβ

2

∑

σ,σ′,τ,τ′∈[q]

(

1{σ= τ}+ 1{σ′ = τ′}
)

r (σ,σ′,τ,τ′). (7.3.4)

The optimisation problem in 7.3.4 turns out to be a very challenging task mainly because of the constraint

(7.3.3). However, by translating the problem to operator theory, [52] showed that the second-moment com-

putation reduces to a study of matrix norms. Furthermore, [52, Theorem 7] asserts that the second-moment

method works. More precisely, for all d , q ≥ 3 and β> 0, we have

max
ν,ρ∈R(ν),r∈R⊗(ρ)

F⊗
d ,β(ρ,r ) = 2max

ν,ρ
Fd ,β(ν,ρ) and thus E[Zβ(Gd )2] =O(E[Zβ(Gd )]2). (7.3.5)

Finally, the replica ansatz 7.0.1 is obtained by a reformulation of [52, Theorem 7] with the help of Lemma

7.3.1, [52, Theorem 4] and (7.3.5).

7.4 Non-reconstruction and planting

This section gives an overview of the different steps needed to get to the metastability results. For this purpose,

we need to get a handle on the relative mass of the metastable sets Sp and Sf with respect to the Boltzmann

distribution, i.e. compute µGd ,β(Sp) and µGd ,β(Sf). A direct second-moment computation is not helpful here

as the paramagnetic and ferromagnetic phases νp and νf correspond to local maxima of Fd ,β when the sets

Sp and Sf are metastable. To apprehend this, we introduce two reweighted versions of the random graph Gd

called the planted models. Specifically, for ε > 0, recall the subsets Sp = Sp(ε),Sf = Sf(ε) of the configuration

space [q]V . Letting Zf(G) =
∑

σ∈Sf
eβHG (σ) and Zp(G) =

∑

σ∈Sp eβHG (σ) we define random graph models Ĝ f,Ĝp
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by

P
[

Ĝ f =G
]

=
Zf(G)P [Gd =G]

E[Zf(G)]
, P

[

Ĝp =G
]

=
Zp(G)P [Gd =G]

E[Zp(Gd )]
. (7.4.1)

Thus, Ĝ f and Ĝp are d-regular random graphs on n vertices such that the probability that a particular graph

G comes up is weighted according to Zf(G) and Zp(G), respectively. Of course the definition of Boltzmann

distribution: µĜp,β and µĜp,β extend to Ĝp and Ĝ f as well.

The ingredient we need next is a concept called non-reconstruction. The non-reconstruction property is

first defined on the infinite d-regular tree Td with root o. Given a probability distribution µ ∈ {µp,µf}, we

define a broadcasting process σ =σd ,β,µ on Td as follows. Initially we choose the color σo of the root o from

the distribution νµ. Afterwards, moving to all further vertices below the root, the colour of a vertex v with

parent u already coloured is chosen from the distribution

P [σv =σ |σu] =
µ(σ)eβ1{σ=σu }

∑

τ∈[q]µ(τ)eβ1{τ=σu }
.

Naturally, the colours of different vertices on the same level are mutually independent but not jointly because

of the potential correlation with the root o. Now, recall that ∂`o is the set of all vertices at a distance precisely

` from o. We say that the broadcasting process has the strong non-reconstruction property if

∑

τ∈[q]
E

[

∣

∣P
[

σo = τ |σ∂`o

]

−P [σo = τ]
∣

∣

]

= exp(−Ω(`)),

where the expectation is taken with respect to the random configuration σ∂`o which has probability distribu-

tion given by the broadcasting process. Roughly speaking, non-reconstruction says that the knowledge about

the spin of the root σo estimated from the spins of the nodes at depth ` decays as ` is getting large, and the

term strong refers to the exponential decay.

Proposition 7.4.1 ( [52, Theorem 50]). Let d , q ≥ 3 be integers and β> 0 be real.

1. For β<βh , the broadcasting process σd ,β,µp has the strong non-reconstruction property.

2. For β>βu , the broadcasting process σd ,β,µf
has the strong non-reconstruction property.

Next, let σĜp,p and σĜ f,f
represent sample taken from µĜp,β( · | Sp) and µĜ f,β

( · | Sf) respectively. The basic

idea now is to transfer the non-reconstruction property of µp and µf given in Proposition 7.4.1 on the tree Td

to the actual random graph Gd . Indeed, the local structure of Gd is asymptotically given by the tree Td . So,

for a sample σĜp,p taken from µĜp,β( · | Sp) , for example, the colourings σĜp,p,∂`v of the depth ` neighborhood

of a vertex v and the colouring of the depth ` neighborhood of the root o in Td can be coupled so that they

coincide w.h.p. Subsequently, from the broadcasting result in Proposition7.4.1, we obtain that [27, proof of

Proposition 2.7]

∑

c∈[q]
E

∣

∣

∣νp(c)−µĜp,β(σv = c |σ∂`v =σĜp,p,∂`v

∣

∣

∣< `−3, (7.4.2)

for any vertex v with `= dloglogne. In words, each vertex v in Gd possesses the non-reconstruction property

and the colour distribution is given by νp. To be precise, we extend the notion of non-reconstruction to the

Gibbs distribution µGd ,β by saying that a subset S ⊆ [q]V exhibits non-reconstruction if for a sample σ taken
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from µGd ,β, we have

lim
`→∞

limsup
n→∞

∑

c∈[q]

∑

τ∈S

E
[

µGd ,β(τ | S)×
∣

∣µGd ,β(σv = c |σ∂`v = τ∂`v )−µGd ,β(σv = c | S)
∣

∣

]

= 0.

So, [27, Theorem 1.3] shows that Sp (also Sf) exhibits the non-reconstruction property. Moreover, an inductive

coupling argument ( [27, Lemma 3.6]) shows

dTV(σĜp,p,∂`v ,τ∂`o) =O
(

d`
(

dTV(νσ̂p ,νf)+dTV(ρĜp,σ̂p ,ρp)+n−0.99
))

. (7.4.3)

With the same reasoning, the results (7.4.2) and (7.4.3) also hold for the ferromagnetic model Ĝ f.

The second key ingredient that we need is the overlap of two typical configurations in the Boltzmann distri-

bution (under Sf and Sp). As in Chapter 3, for a graph G = (V ,E), the overlap of two configurations σ,σ′ ∈ [q]V

is defined as the probability distribution ν(σ,σ′) ∈P ([q]2) with

νc,c ′ (σ,σ′) =
1

n

∑

v∈V (G)
1
{

σv = c, σ′
v = c ′

}

(c,c ′ ∈ [q]).

Following (7.4.2) and (7.4.3) using non-reconstruction, the next lemma studies the overlap for two configura-

tions in the conditional distribution µĜp,β( · | Sp), a similar result applies to the ferromagnetic state Sf ( [27,

Lemma 3.8]).

Lemma 7.4.2. Let d , q ≥ 3 be integers and β<βh be real. Let σĜp,p,σ′
Ĝp,p

be independent samples from µĜp,β( · |

Sp). Then E

[

dTV
(

ν(σĜp,p,σ′
Ĝp,p

),νp ⊗νp
)

]

= o(1).

Crucially Lemma 7.4.2 and [27, Lemma 3.8] (for the ferromagnetic state Sf) allows us to apply the second-

moment method to truncated versions of the paramagnetic and ferromagnetic partition functions Zp and Zf

where we expressly ignore graphs that violate the overlap bound from Lemma 7.4.2. Thus, we introduce the

event Ep = {G : E
[

dTV(ν(σG ,p,σ′
G ,p),νp ⊗νp)

]

= o(1)} and the analogous event Ef for the ferromagnetic state Sf.

Consider now the random variables Yp(G) = Zp(G)·1
{

G ∈ Ep
}

and Yf(G) = Zf(G)·1
{

G ∈ Ep
}

. From Lemma 7.4.2,

we will obtain that

E[Yp]

E[Zp]
=P

[

Ĝp ∈ Ep
]

∼ 1 and
E[Yf]

E[Zf]
=P

[

Ĝ f ∈ Ef
]

∼ 1 (7.4.4)

thus E[Yp] ∼ E[Zp] and E[Yf] ∼ E[Zf]. Critically, estimating the second moments of these two random variables

is easy since, by construction, we steer clear of an explicit maximisation of the function F⊗
d ,β from (7.3.4).

Indeed, because we do not consider graphs G with overlaps far from the product measures νp ⊗νp and νf ⊗νf,

we just need to evaluate the function F⊗
d ,β at νp ⊗νp and νf ⊗νf. Therefore, we obtain the following.

Proposition 7.4.3. Let d ≥ 3.

1. If β<βh , then E[Yp(G)] ∼ E[Zp(G)] and E[Yp(G)2] ≤ exp(o(n))E[Zp(G)]2.

2. If β>βu , then E[Yf(G)] ∼ E[Zf(G)] and E[Yf(G)2] ≤ exp(o(n))E[Zf(G)]2.

The following corollary which is a consequence of Proposition 7.4.3 gives the estimates of the relative size

of the ferromagnetic and the paramagnetic states.

Corollary 7.4.4. Let d , q ≥ 3 be arbitrary integers.

1. For β>βu , for all sufficiently small ε> 0, we have w.h.p. 1
n log Zf(G) =Bd ,β(µf)+o(1).
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2. For β<βh , for all sufficiently small ε> 0, we have w.h.p. 1
n log Zp(G) =Bd ,β(µp)+o(1).

In order to obtain the metastability results, we need to be more systematic in tracking the dependence of Zf

and Zp on ε. Specifically, we use the precise notation Z ε
f (G) and Z ε

p(G) to denote Zf(G) and Zp(G) respectively.

From Corollary 7.4.4, we obtain the following lemma, which shows the fact that νp and νf are local maxima of

Fd ,β.

Lemma 7.4.5. Let q,d ≥ 3 be integers and β> 0 be real. Then, for all sufficiently small constants ε′ > ε> 0, there

exists constant ζ> 0 such that w.h.p. over G ∼G , it holds that

1. If β<βh , then Z ε
p(G) ≥ e−n3/4

E[Z ε
p(G)] and Z ε′

p (G) ≤ (1+e−ζn)Z ε
p(G).

2. If β>βu , then Z ε
f (G) ≥ e−n3/4

E[Z ε
f (G)] and Z ε′

f (G) ≤ (1+e−ζn)Z ε
f (G).

Finally, the metastability and mixing results will follow by way of a conductance argument. To be precise,

let G = (V ,E) be a graph, and P be the transition matrix for the Glauber dynamics/SW algorithm. For a set

S ⊆ [q]V define the bottleneck ratio of S to be

Γ (S) =
∑

σ∈S,τ 6∈S µG ,β(σ)P (σ,τ)

µG ,β(S)
. (7.4.5)

The following lemma provides a routine conductance bound ( [70, Theorem 7.3]).

Lemma 7.4.6. Let G = (V ,E) be a graph. For any S ⊆ [q]V such that µG (S) > 0 and any t ≥ 0 we have

∥

∥µG ,S P t −µG ,S
∥

∥

T V ≤ tΓ(S).

The main gist for the proof of metastability for both Glauber dynamics and SW is then to bound Γ(S) using

Lemma 7.4.5 to get an exponential bound on the escape time and the mixing time. For instance, for Glauber

dynamics, we will get

Γ
(

Sf(ε)
)

≤
µ
(

Sf(ε
′)\Sf(ε)

)

µ
(

Sf(ε)
) = Z ε′

f (G)−Z ε
f (G)

Z ε
f (G) ≤ e−ζn

for sufficiently small ε′ > ε and ζ> 0.
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Chapter 8

Conclusion and further research

directions

Overall, this thesis investigated the replica symmetry condition in three specific models: the random k-SAT

model, a random linear problem in F2 and the Potts model on d regular graphs. For the k-SAT problem, we

were able to show that replica symmetry holds up to a threshold d∗. However, after a critical threshold d∗∗,

we discovered that replica symmetry could not hold anymore, which enabled us to establish the existence of a

replica symmetry breaking region.

For the random linear problem, a peculiar phenomenon occurs. We observed that a more robust version

of replica symmetry (strong replica symmetry) holds up to a threshold d = e and ceases to hold after. This phe-

nomenon is linked to the fact that before the threshold d = e, the fraction of frozen variables is concentrated

around a deterministic value but vacillates between two values for d > e.

Lastly, for the Potts model, we saw that the metastability phenomenon occurs in an interval of values for β

delimited by βu and βh . Specifically, two metastable states coexist, the paramagnetic Sp and the ferromagnetic

Sf. This can be understood as a trivial replica symmetric breaking scheme by confining the Gibbs distribution

to Sp or Sf. A consequence of this metastability phenomenon is slow mixing results for Glauber dynamics and

SW.

Finally, we look at the scope of further research, starting with the random k-SAT problem. The first task

would be to pinpoint the location of the condensation threshold. One approach is to rephrase the k-SAT

problem in terms of a statistical inference problem and obtain a formula for the mutual information. It was

observed in [29] that the mutual information is critically linked to the condensation phase transition. This

approach was carried out successfully in [29], rendering the location of the condensation phase transition for

the Potts antiferromagnetic1 model on the Erdős-Rényi random graphs, the random graph colouring problem

and a model called the Stochastic Block Model. It would be interesting to see if this approach extends to our

random k-SAT problem.

A second task for the random k-SAT problem is exact counting or sampling satisfying assignments. As we

have 2n possible assignments, computing Z (Φ,∞), i.e. the exact number of solutions, is a challenging task.

In fact, this problem is in the complexity class #P [94], the dual of the class NP for counting and sampling. In

this regard, Montanari and Shah [81] developed a counting algorithm that works for values of d up to logk

using Belief Propagation. Recently, based on a breakthrough by Moitra [77], Galanis, Golberg, Guo, and Yang

[50] proposed a fully polynomial approximation scheme for Z (Φ,∞) for a large enough k and d ≤ 2k/301, for

1In the antiferromagnetic model, monochromatic edges receive a penalty of e−β instead.
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the first time. Moitra’s idea applies to formulas with bounded variable degrees while steering clear of the

replica symmetry assumption (3.2.5), while Galanis et al. extend this result by cleverly controlling high degree

variables. It might be useful to know if these techniques translate to finite β and if another proof of (3.2.5) can

be obtained from [77] and [50].

Next, the random matrix problem resembles a class of CSPs called uniquely extendable CSPs. These uniquely

extendable CSPs have the property that, once all the values of the variables appearing in a constraint are fixed

except for one, there is one remaining value for the last variable to satisfy the constraint. It is known that these

problems are in the class NP [32]. So, it would be interesting to see if the method applied here, mainly using

WP, can also be extended to the study of critical thresholds in uniquely extendable CSPs.

Another problem related to the random linear problem is the matching problem for bipartite random

graphs, where a matching of a graph is a set of non-adjacent edges. The appearance of the two global maxima

of the function Υd for d > e was observed in [15] for the matching problem on the Erdős-Rényi random graph

G(n,d/n). The function Υd (α) is F (1−α) in the appendix of [15] and corresponds to the normalised match-

ing number of a graph G , the matching number being the size of the maximum matching. Hence, we would

like to know if the critical behaviour observed in Theorem 5.1.1 and Theorem 5.1.2 extends to the normalised

matching number.

Finally, for the Potts model, our metastability results, together with results from Blanca and Gheissari [11],

ultimately determine the mixing time for Glauber dynamics on random d-regular graphs for all values of β>
βu . The exception is at the critical value βu where the mixing time is believed to be fast2. In the case of the

complete graph, i.e. the Curie Weiss model with q ≥ 3, there are analogous phase transitions (βu ,βp ,βh) and

the mixing time for Glauber and SW are completely determined for all β, even at the critical temperatures

[11–13, 37, 51, 54, 56]. The best-known result for the mixing times of the SW algorithm is provided by Theorem

7.2.2 which is confined to the interval (βu ,βh). A natural follow up question is to determine whether the fast

mixing property for β=βu and β>βh observed for the Curie Weiss model also extends to the SW algorithm on

random regular graphs. Furthermore, showing the fast mixing for Glauber dynamics for the uniqueness phase

β<βu still remains a central open question that needs to be answered.

2polynomial mixing time
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Chapter 9

Deutsche Zusammenfassung

9.1 Die Einleitung

Ein Erfüllbarkeitsproblem oder Constraint Satisfaction Problem (CSP) ist wie folgt definiert: Finde für eine

Menge von Variablen mit Werten in einem endlichen Wertebereich eine Zuordnung von Werten, die bestimmte

Beschränkungen erfüllt. Eine solche Beschränkung ist eine Teilmenge zulässiger Werte für die entsprechen-

den Variablen [93]. Es gibt eine Vielzahl von typischen Alltagsproblemen, die in CSPs umgewandelt werden

können, z.B. das Lösen von Kreuzworträtseln oder das Erstellen eines Fahrplans [10]. In dieser Hinsicht weck-

ten CSPs das Interesse vieler Forscher aus den verschiedensten Bereichen. Insbesondere wurden zahlreiche

Analysen im Bereich der Kombinatorik, sowie der Informatik und der statistischen Mechanik in Angriff genom-

men [4, 66, 72, 73]. Dieses interdisziplinäre Forschungsinteresse ergibt sich aus einer umfassenden Sammlung

von Anwendungen, die unter anderem Operational Research, Kodierungstheorie, Computerarchitekturdesign

und künstliche Intelligenz umfassen [18, 47, 48, 58].

Es gibt mehrere Varianten dieser CSPs. Bei der Suchvariante werden Algorithmen verwendet, eine be-

friedigende Lösung zu finden. Die Entscheidungsvariante hat hingegen das Ziel, die Existenz einer Lösung

zu bestätigen [72]. Wenn das Problem eine Lösung aufweist, ist natürlich die Frage nach der Gesamtzahl der

Lösungen ebenso interessant [94]. In dieser Arbeit werden einige Aspekte des Entscheidungs- und des Zähl-

problems für zwei spezifische CSPs untersucht: das weithin bekannte k-SAT-Problem und das Lösen linearer

Gleichungen in F2 (dem Feld der ganzen Zahlen modulo 2). Außerdem untersuchen wir die Suchvariante für

das ferromagnetische Potts-Modell mit q-Zuständen auf regulären Graphen. Darüber hinaus ist jedes betra-

chtete CSP zufällig, d.h. die zugrundeliegenden Strukturen (wie der Graph, die booleschen Variablen und

die der linearen Gleichung entsprechende Matrix) werden zufällig konstruiert. Die Motivation hinter der Be-

trachtung von zufälligen CSPs ist, dass sie manchmal Verhaltensweisen zeigen, die in einer deterministisch

erzeugten Instanz schwer zu beobachten sind [76].

Eine direkte Beobachtung ist, dass es schwieriger wird, eine Lösung zu finden, wenn das Verhältnis zwis-

chen der Anzahl der zu erfüllenden Bedingungen (Constraints) und der Anzahl der Variablen, allgemein als

constraint density ratio bezeichnet, steigt. Das Postulat besagt, dass die Wahrscheinlichkeit, eine erfüllende

Zuordnung zu finden, stark von 1 auf 0 abfällt, wenn die Constraint-Dichte eine kritische Schwelle überschre-

itet. Diese kritische Schwelle wird im Jargon der statistischen Physik auch als Phasenübergang bezeichnet, in

Analogie zur kritischen Temperatur, bei der ein physikalisches System seinen Zustand ändert (z. B. von fest zu

flüssig). Die genaue Bestimmung dieser Phasenübergängen bei zufälligen CSPs war in den letzten zehn Jahren

eine große Herausforderung. Leider fehlen in vielen dieser Analysen detaillierte Beweise.

Replika Symmetrie ist ein entscheidendes Konzept, das für das Verständnis der Geometrie des Lösungsraums
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in einem CSP notwendig ist. Das Konzept stammt aus der Untersuchung von Teilchensystemen in der Physik

[75]. Die dahinter stehenden heuristischen Ideen wurden dann von Mathematikern [90] untersucht. Es stellte

sich heraus, dass es eine schwierige Aufgabe ist, sie rigoros zu beweisen. Darüber hinaus wurde die Theorie

der Replika-Symmetrie nicht vollständig rigoros bewiesen und vereinheitlicht, so dass es nicht ausreicht, die

Ergebnisse (Theoreme, Lemma, etc.) auf verschiedene Modelle anzuwenden. Daher sind die jüngsten Ergeb-

nisse hauptsächlich modellspezifisch. Darüber hinaus wurde der Fall, in welchem dem CSP ein dichter Graph

zugrunde liegt1, intensiv untersucht [75, 83, 84, 90–92]. Allerdings sind die Ergebnisse für den dünnen Fall

nach wie vor spärlich. Daher ist das übergeordnete Ziel dieser Arbeit zu zeigen, wie die Replika-Symmetrie

zustande kommt. Wir untersuchen die Konsequenzen und die Einschränkungen in den dünnen Versionen

der drei oben erwähnten Modelle, d.h. das zufällige k-SAT-Problem, zufällige lineare Systeme in F2 und das

ferromagnetische q-Zustands-Potts-Modell auf regulären Graphen.

9.2 Die Modelle

9.2.1 Formale Festlegung

Ein CSP wird durch eine Menge Vn = {x1, x2, . . . , xn} von Variablen spezifiziert, die Werte in einer endlichen

Menge Ω annehmen können, zusammen mit einer bestimmten Anzahl von Bedingungen a1, . . . , am für einige

m ∈N. Jede Nebenbedingung ai beschreibt eine Teilmenge von erlaubten Werte-Kombinationen für die Vari-

ablen. Außerdem ist eine erfüllende Belegung oder Lösung eine Abbildung σ : Vn →Ω, die jede Nebenbedin-

gung erfüllt.

Für das k-SAT-Problem ist jede Variable xi eine boolesche Variable, die den Wert wahr oder falsch an-

nehmen kann. Wir bezeichnen den Wahrheitswert ‘wahr’ mit +1 und ‘falsch’ mit −1, sodass Ω = {−1,1}. ∨
bezeichne das logische ODER, ∧ das logische UND und ¬ die logische Negation. Außerdem bezeichnen wir

mit ` ∈ N die Menge {1, . . . ,`} mit [`] und die Menge {0, . . . ,`} mit [`]0. Jede k-SAT-Instanz ist eine boolesche

Formel Φ, gegeben durch: Φ = a1 ∧ a2 ∧ ·· ·∧ am und für jedes i ∈ [m], ai = xi 1 ∨ xi 2 ∨ ·· ·∨ xi k , wobei xi j ein

Vorkommen einer Variable x` oder ihrer Negation ¬x` ist. Die Mengen ai werden als Klauseln bezeichnet und

bilden die zu erfüllenden Bedingungen.

Um die Notation weiter zu vereinfachen, wird das Negationssymbol ¬ durch eine Variable J ersetzt, die

den Wert +1 für ein positives Auftreten von Variablen und −1 für ein negatives annimmt. Da unser Interesse

in zufälligen CSPs liegt, wird eine zufällige k-SAT-Formel wie folgt erzeugt:

Die Anzahl der Klauseln m ist eine Poisson-Zufallsvariable mit Mittelwert dn/k, bezeichnet als Po(dn/k), für

einige d > 0. Dann wählen wir unabhängig eine Familie
(

x i j
)

1≤ j≤k von k Variablen gleichmäßig ohne Zurück-

legen für jede Klausel ai . Schließlich erscheint jede Variable x i j in einer Klausel ai mit einem Vorzeichen J i j ,

wobei (J i j )i , j≥1 eine Familie von unabhängige ±1-Variablen mit Mittelwert Null ist.

Als Nächstes wenden wir uns dem Problem der zufälligen linearen Gleichungssystems zu. Dieses ist et-

was leichter zu verstehen. Die Wertemenge Ω ist die Menge der ganzen Zahlen modulo 2 (F2). Außerdem ist

die Matrix A eine n ×n-Matrix, bei der jeder Eintrag 1 mit der Wahrscheinlichkeit d/n gesetzt wird. Um das

entsprechende CSP zu bilden, wählt man einen zufälligen Vektor y =
(

y 1, . . . , y 2

)

aus dem Spaltenraum von A

und stellt das Gleichungssystem Ax = y auf, wobei x = (x1, . . . , xn) ∈ F
n
2 . Nun gibt es m = n Nebenbedingungen

ai , die durch eine Gleichung Ai 1x1 ⊕ Ai 2x2 ⊕ ·· · ⊕ Ai n xn = y i gegeben sind. Hier bezeichnet ⊕ die Addition

modulo zwei.

Schließlich ist für das ferromagnetische Potts-Modell mit q Zuständen die Menge Ω die Menge [q] für ein

1Vereinfacht ausgedrückt ist ein Graph dicht, wenn die Anzahl der Kanten nahe an der maximal möglichen Anzahl der Kanten liegt.
Andererseits ist ein Graph dünn, wenn er nur wenige Kanten hat
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beliebiges q ∈N. Für jedes i ∈ [n] entspricht jede Variable xi genau einem Knoten vi im Graphen und xi = `,

wenn vi die Farbe ` annimmt. Der Graph wird uniform zufällig aus der Menge aller d-regulären Graphen auf

n Knoten gezogen (für einige d ∈N0) ausgewählt. Jede Nebenbedingung ai ist also durch eine Kante gegeben.

9.2.2 Faktorgraphen und Gibbs-Verteilung

Ein CSP lässt sich gut durch einen Graphen darstellen, der Faktorgraph genannt wird. Ein Faktorgraph G ist ein

bipartiter Graph, bei dem die erste Klasse V1 = {v1, . . . , vn} der Knoten die Variablen (als Variablenknoten beze-

ichnet) und die zweite Klasse V2 = {c1, . . . ,cn} der Knoten die Constraints (als Constraint/Check-Knoten beze-

ichnet) darstellt. Außerdem existiert es eine Kante zwischen einem Variablenknoten vi und einem Constraint-

Knoten ci nur dann, wenn die Variable xi in Constraint ai vorkommt.

Im zufälligen k-SAT-Problem stellt V1 die booleschen Variablen und V2 die Klauseln dar. Es gibt also eine

Kante zwischen einem Variablenknoten vi und einem Prüf-Knoten ci nur dann, wenn die Variable xi in der

Klausel ai vorkommt. Für das zufällige lineare Gleichungsproblem sind die Knoten in V1 die Variablen und die

Knoten in V2 sind die Gleichung. Auch hier existiert eine Kante zwischen einem Variablenknoten vi und einem

Prüf-Knoten ci nur dann, wenn die Variable xi in der Gleichung ai vorkommt. Für das ferromagnetische Potts-

Modell ist die Menge V1 einfach die ursprüngliche Menge der Knoten des d-regulären Graphen, und die Menge

V2 ist die Menge der Kanten. Mit anderen Worten, die Randbedingungen werden durch die Kanten erzeugt.

Ein Faktorgraph G induziert eine Wahrscheinlichkeitsverteilung auf der Menge der Abbildungen {σ : Ω→Vn},

die wir mit der Menge Ω
Vn identifizieren. Außerdem wird jedes Element σ ∈Ω

Vn eine Konfiguration genannt

und jedes Element von Ω wird als Spins bezeichnet. Diese Wahrscheinlichkeitsverteilung erhält man durch

Einführung einer Gewichtsfunktion Ψai : Ω∂ai → (0,∞), die jeder Nebenbedingung ai zugeordnet ist, wobei

wir uns daran erinnern, dass ∂ai die Menge der mit der Nebenbedingung ai verbundenen Variablen ist. Dann

hat jeder Prüf-Knoten ci im Faktor-Graphen ein GewichtΨai . Nun ist die Gibbs/Boltzmann-Verteilung gegeben

durch

µ(σ) =
Ψ(σ)

Z (G)
for σ ∈Ω

Vn , (9.2.1)

wobei Ψ(σ) =
∏m

i=1Ψai (σ∂ai
) und Z (G) =

∑

σ∈ΩVn Ψ(σ). Der Normalisierungsfaktor Z (G) wird als Partitions-

funktion bezeichnet und σ∂ai
ist die Beschränkung von σ auf die an ai beteiligten Variablenknoten, d.h.

σ∂ai
∈Ω

∂ai .

Für das ferromagnetische Potts-Modell in q Zustand gilt für jede Nebenbedingung a = uv ∈ E , Ψa(σ∂a) =
exp

(

β · 1 {σu =σv }
)

für einige β> 0. Wir haben also

Ψ(σ) =
∏

{u,v}∈E

exp
(

β · 1 {σu =σv }
)

and E (σ) =−β ·
∑

{u,v}∈E

1 {σu =σv } .

Die Menge H (σ) :=− 1
βE (σ) =

∑

{u,v}∈E 1 {σu =σv } wird Hamiltonian genannt. Hier zählt der Hamiltonian die

Anzahl der monochromatischen Kanten im Graphen. Die Gewichte Ψa geben den monochromatischen Kan-

ten eine Belohnung β. Die Besonderheit des ferromagnetischen Potts-Modells besteht darin, dass Färbungen

mit vielen monochromatischen Kanten mehr Wahrscheinlichkeitsmasse erhalten.

Im Fall des zufälligen k-SAT-Problems gilt für jede Nebenbedingung ai (i ∈ m), Ψai (σ∂ai
) = exp

(

−β · 1 {σÕ ai }
)

für ein β> 0 und damit

Ψ(σ) =
∏

i∈[m]
exp

(

−β · 1 {σÕ ai }
)

and E (σ) =β ·
∑

i∈[m]
1 {σÕ ai } .

Der Hamiltonian ist nun gegeben durch H (σ) =
∑

i∈[m] 1 {σÕ ai } und zählt die Anzahl der unerfüllten Bele-

gungen. Außerdem wird eine Strafe von−β auf unerfüllte Klauseln angewandt, und wenn manβ auf unendlich
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setzt, nähert sich die Partitionsfunktion Z (G) der Anzahl der erfüllenden Belegungen an. Wenn β =∞ ist, ist

die Gibbs-Verteilung die Gleichverteilung über dem Lösungsraum, da jede unbefriedigte Klausel die Strafe

Null erhält und die Partitionsfunktion genau die Anzahl der Lösungen zählt. Es stellt sich jedoch heraus, dass

es viel einfacher ist, den Fall für endliches β zu behandeln und danach den Grenzwert zu nehmen.

Schließlich wenden wir uns den zufälligen linearen Gleichungssystemen zu. Für jede Nebenbedingung/-

Gleichung ai ist das Gewicht gegeben durch

Ψai (σ∂ai
) = 1

{

ai :=
∑

j∈[n]
Ai jσx j = 0

}

.

Dann,

Ψ(σ) =
∏

i∈n

1

{

∑

j∈[n]
Ai jσx j = 0

}

und E (σ) =
∑

i∈n

1

{

∑

j∈[n]
Ai jσx j = 0

}

.

Die Partitionsfunktion ist also nur die Kardinalität des Kerns von A, d.h.

Z =
∑

σ∈Fn
2

∏

i∈n

{

∑

j∈[n]
Ai jσx j = 0

}

= |ker A|

und wir setzen den Hamiltonian auf H (σ) = E (σ). Für diesen Fall wird die Definition von Ψai (σ∂ai
) erweitert,

indem der Wert Null zugelassen wird, wenn die Gleichung nicht erfüllt ist. Die Gibbs-Verteilung ist jedoch

immer noch wohl definiert, da der Nullvektor immer im Kern liegt und somit Z = |ker A| > 0.

9.3 Ergebnisse und Zusammenfassung der Beweise

Die Ergebnisse dieser Arbeit stammen aus den folgenden vier Arbeiten: [30], [23], [34], [27]. Wie bereits er-

wähnt, besteht das übergeordnete Ziel darin, herauszufinden, wie sich das Konzept der Replika Symmetrie in

den drei Modellen manifestiert und welche Konsequenzen und Grenzen sich daraus ergeben. Wir beginnen

mit einer formalen Definition der Replika Symmetrie. Genauer gesagt, für σ,τ ∈Ω
Vn und für s, t ∈Ω definieren

wir eine Menge namens overlap durch

Qστ(s, t ) =
1

n

n
∑

i=1
1 {σi = s,τi = t } . (9.3.1)

Wir sagen, dass das CSP Replika symmetrisch ist, wenn für jedes σ,τ ∈Ω
V (G) und s, t ∈Ω

lim
n→∞

E
(∣

∣Qσ,τ(s, t )−q(G)
∣

∣

)

= 0. (9.3.2)

wobei q aufgrund des zugrundeliegenden zufälligen Faktorgraphens G z. B. immer noch ein Zufallswert sein

kann. Mit anderen Worten: Replika Symmetrie bedeutet, dass sich die Überlappung auf einen (zufälligen) Wert

konzentriert. Außerdem heißt die Bedingung der Replika Symmetrie stark, wenn q(G) ein deterministischer

Wert ist. Darüber hinaus gilt für das zufällige k-SAT-Modell und das zufällige Matrixproblem die folgende,

etwas stärkere, Bedingung. Für jede Variable x1 und x2 und eine Stichprobe σ aus der Boltzmann-Verteilung

gilt

lim
n→∞

E
(∣

∣µ
({

σx1 =σx2 = 1
})

−µ
({

σx1 = 1
})

µ
({

σx2 = 1
})∣

∣

)

= 0. (9.3.3)

Mit anderen Worten, die Spins von zwei Teilchen x1 und x2 sind unabhängig und haben im Grenzwert für

großes n die gleiche Verteilung µ. Außerdem impliziert (9.3.3) nun (9.3.2) durch direkte Berechnung des Er-

wartungswertes. Es ist auch möglich zu zeigen, dass (9.3.2) dann (9.3.3) impliziert, indem man Techniken
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von [22] und [28] verwendet. Daher verwenden wir, wie in [65], auch (9.3.3) als eine weitere Definition von Rep-

lika Symmetrie. Wir beachten auch, dass in (9.3.2) und (9.3.3) der Erwartungswert über die zugrunde liegende

Zufallsstruktur, d.h. den Graphen, genommen wird. Wenn also die Bedingung der Replika Symmetrie (9.3.3)

für zufällige Faktorgraphen [31] gilt, wird im Allgemeinen erwartet, dass

lim
n→∞

1

n
E
(

log Z
)

= sup
π∈P 2(Ω)

B(π). (9.3.4)

Hier bezeichnet P (Ω) die Menge der Wahrscheinlichkeitverteilung aufΩ, P 2(Ω) die Menge der Wahrscheinlichkeits-

verteilung auf P (Ω) und B : P
2(Ω) → R ist. Das Funktional B(π) wird im Physikjargon als Bethe-free En-

tropy und (9.3.4) als Replica Ansatz bezeichnet. Wir werden uns nun jedem unserer drei spezifischen Modelle

zuwenden.

9.3.1 Zufällige k-SAT

Für das zufällige k-SAT-Problem besagt unser erstes Ergebnis, dass unter Replika-Symmetrie, die Bethe free

entropy über einen Message-Passing-Algorithmus namens Belief Propagation eine gute Näherung für die Par-

titionsfunktion liefert.

Belief Propagation (BP) ist ein iterativer Nachrichtenübertragungsalgorithmus, der jeder Kante
{

x j , ai
}

eines Faktorgraphen zwei gerichtete Nachrichtenµx j →ai ,t undµai→x j ,t zuordnet. Außerdem sind die Nachrichten

durch eine Zeit t > 0 indiziert und für jedes t sind µx j →ai ,t und µai→x j ,t Wahrscheinlichkeitsverteilungen auf

Ω. Dabei wird jede Nachricht gemäß der Gleichverteilung über Ω initialisiert, d.h. µx j →ai ,0(s) = µai→x j ,0(s) =
1/ |Ω| für alle j ∈ [n], i ∈ [m] und s ∈Ω. Außerdem werden die Nachrichten in jedem Zeitschritt t > 0 nach den

folgenden Regeln aktualisiert:

µai→x j ,t+1(s) ∝
∑

σ∈Ω∂ai

1

{

σx j = s
}

Ψai (σ)
∏

y∈∂ai \
{

x j
}

µy→ai ,t (σy ), (9.3.5)

µx j →ai ,t+1(s) ∝
∏

b∈∂x j \{ai }

µb→x j ,t+1(s). (9.3.6)

Hier bezeichnet s ∈ Ω und ∂x j , ∂ai die Menge der Nachbarn von x j bzw. ai sind. Darüber hinaus ist zu

beachten, dass ∝ den Normalisierungsfaktor verbirgt, der benötigt wird, um die Nachrichten in Wahrschein-

lichkeitsverteilungen aufΩ umzuwandeln. Seien nun d∗ := k2k log2−10k2 und dSAT die Erfüllbarkeitsschwelle

für das k-SAT-Modell, so ergibt sich folgendes Theorem (vergleiche [30, Theorem 1.1]):

Theorem 9.3.1. Für das zufällige k-SAT-Modell gibt es eine Konstante k0 ≥ 3, so dass für jedes k ≥ k0, β≥ 1 und

jedes d ≤ d∗ = d∗(k) = k2k log2−10k2 Folgendes gilt: Wenn die Symmetriebedingung (9.3.3) erfüllt ist, dann

lim
t→∞

limsup
n→∞

1

n
E
∣

∣Bt − log Z
∣

∣= 0

wobei Bt =Ba,t +Ba,x −Be,t mit

• Ba,t =
∑n

i=1 log
[
∑

s∈Ω
∏

a∈∂xi
µa→xi ,t (s)

]

, Bx,t =
∑m

i=1 log
[

∑

σ∈Ω∂a j Ψa(σ)
∏

x∈∂a j
µx→a j ,t (σx )

]

und

• Be,t =
∑m

i=1

∑

x∈∂ai
log

[

∑

s∈Ωµx→a j ,t (s)µa j →x,t (s)
]

.

Eine weitere Analyse des Satzes 9.3.1 ergab, dass ab einem bestimmten Schwellenwert d∗∗ die Replikat-

symmetrie nicht mehr gelten kann. Dies wird im nächsten Satz angegeben (vergleiche [30, Theorem 1.2]).
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Theorem 9.3.2. Es existieren Folgen εk → 0, d∗∗ = 2k k log2−k(3+εk ) log2/2 und β0(k) > 0, sodass das Folgende

gilt: Angenommen β>β0(k) und d∗∗ ≤ d ≤ dSAT. Dann

limsup
n→∞

E
∣

∣µΦ,β({σx1 =σx2 = 1})−µΦ,β({σx1 = 1})µΦ,β({σx2 = 1})
∣

∣> 0 and (9.3.7)

liminf
n→∞

1

n
E
[

Bt − log Z (Φ,β)
]

> 0 uniformly for all t > 0. (9.3.8)

Beweisidee von Theorem 9.3.1 und 9.3.2. Der Beweis von Theorem 9.3.1 besteht im Wesentlichen aus drei Schrit-

ten. Zunächst zeigt eine subtile Berechnung des zweiten Moments, dass die Randverteilungen der meis-

ten Variablen x mit hoher Wahrscheinlichkeit nahe bei 1/2 liegen. Dann haben wir gezeigt, dass BP auf

einem Galton-Watson-Baum, der die lokale Struktur des k-SAT-Faktorgraphen nachahmt, das richtige Ergeb-

nis liefert. Genauer gesagt zeigen Kontraktionsargumente, dass BP bei einem Start nahe der Gleichverteilung

(µΦ,x j →ai ,0(±1) = µΦ,ai→x j ,0(±1) = 1/2) schnell zu einem Fixpunkt konvergiert. Schließlich kombinieren wir

die beiden vorherigen Ergebnisse mit invarianten Eigenschaften der Formel Φ, um den Beweis zu vervoll-

ständigen. Für den Satz 9.3.2 haben wir zunächst festgestellt, dass 9.3.1 erweitert werden kann, um eine Formel

BΦ für die Bethe-Free Entropie bis zum Schwellenwert dSAT zu erhalten. Der Beweis erfolgt nun in zwei Schrit-

ten. Zuerst berechnen wir eine untere Schranke für BΦ. Diese ist auf (9.3.3) bedingt. Danach berechnen wir

eine unbedingte obere Schranke für BΦ, die kleiner ist als die bedingte untere Schranke. Wir erhalten einen

Widerspruch, also kann (9.3.3) nicht gelten.

9.3.2 Lineares Gleichungen und Warning Propagation

Für das Problem der zufälligen linearen Gleichungen haben wir zunächst beobachtet, dass bei einer kritischen

Schwelle d = e ein merkwürdiges Phänomen auftritt: Für d < e konzentriert sich der Anteil der eingefrorenen

Variablen, d.h. Variablen, die in allen Lösungen den selben Wert annehmen müssen, auf einen Wert. Für

d > e schwankt diese Menge mit gleicher Wahrscheinlichkeit zwischen zwei Werten. Dieses Verhalten steht im

Gegensatz zu dem üblichen 0,1-Gesetz, das wir in einer solchen Struktur erwarten, insbesondere in Zufalls-

graphen [14]. Wir definieren F (A) = {i ∈ [n]|∀x ∈ ker A, xi = 0} und definieren f (A) = F (A)/n, d.h. f (A) als

den Anteil der eingefrorenen Variablen in der linearen Zufallsgleichung, die A entspricht. Außerdem seien α∗

und α∗ der kleinste und der größte Fixpunkt der folgenden Funktion: φd (α) = 1−exp
(

−d exp(−d(1−α))
)

für

α ∈ [0,1]. Dann haben wir folgendes Theorem (vergleiche [23, Theorem 1.1]).

Theorem 9.3.3. (i) Für d ≤ e hat die Funktion φd einen eindeutigen Fixpunkt und

lim
n→∞

f (A) =α∗ =α∗ in der Wahrscheinlichkeit.

(ii) Für d > e haben wir α∗ <α∗ und für alle ε> 0„

lim
n→∞

P
[

| f (A)−α∗| < ε
]

= lim
n→∞

P
[

| f (A)−α∗| < ε
]

=
1

2
.

Wie hängt Theorem 9.3.3 mit der Replika Symmetrie zusammen? Eine Folge des Satzes 9.3.3 wird sein, dass

das hier betrachtete zufällige System linearer Gleichungen immer Replika-Symmetrisch ist. Es wird sich her-

ausstellen, dass es nur stark Replika-Symmetrisch ist, wenn d < e. Mit anderen Worten: d = e ist ein Schwellen-

wert, für den die starke Replika-Symmetrie nicht mehr gilt. Genauer gesagt, sei R(x , y) = 1
n

∑n
i=1 1

{

x i = y i

}

wobei x und y zufällige Vektoren sind, die gleichmäßig aus ker A entnommen werden. Mit anderen Worten:
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R(x , y) ist die Überlappung zwischen den Zufallsvektoreb x und y , wie zuvor definiert. Ferner sei

R̄(A) = E[R(x , y) | A] =
1

|ker A|2
∑

x,x′∈ker A

R(x, x ′)

die durchschnittliche Überlappung. Das Ergebnis zur Replika-Symmetrie lautet wie folgt (vgl. [23, Theorem

1.2]).

Theorem 9.3.4. 1. Wenn d < e, dann ist limn→∞ R(x , y) = (1+α∗)/2 mit Wahrscheinlichkeit.

2. Für alle d > e haben wir limn→∞E
∣

∣R(x , y)− R̄(A)
∣

∣= 0, während

lim
n→∞

P

[∣

∣

∣

∣

R̄(A)−
1+α∗

2

∣

∣

∣

∣

< ε

]

= lim
n→∞

P

[∣

∣

∣

∣

R̄(A)−
1+α∗

2

∣

∣

∣

∣

< ε

]

=
1

2
für beliebige ε> 0.

Ein Hauptinstrument, das wir zur Erlangung des Satzes 9.3.3 verwendet haben, ist ein Nachrichtenüber-

mittlungsalgorithmus namens Warning Propagation. Warning Propagation (WP) ist ein Nachrichtenübermit-

tlungsalgorithmus aus der gleichen Familie wie Belief Propagation. WP assoziiert zwei gerichtete Nachrichten

(µu→v ,µv→u) zu jeder Kante {u, v} ∈ E(G). Der Unterschied zwischen WP und BP besteht darin, dass bei WP

die Nachrichten keine Wahrscheinlichkeitsverteilung sind, sondern aus einem endlichen Alphabet Σ stam-

men. Ferner sei M (G) die Menge aller Vektoren
(

µv→w
)

(v,w)∈V (G)2:{v,w}∈E(G) ∈ Σ
2|E(G)|. Wie in BP werden die

Nachrichten parallel nach einigen festen Regeln aktualisiert. Genauer gesagt, sei für d ∈N

((

Σ

d

))

die Menge aller

d-ären Multisets mit Elementen aus Σ und sei ϕ :
⋃

d≥0

((

Σ

d

))

→ Σ eine Update-Regel, die bei einem beliebigen

Multiset von Eingangsnachrichten eine Ausgangsnachricht berechnet. Dann definieren wir den Operator der

Warnfortpflanzung auf G durch

WPG : M (G) →M (G) , µ=
(

µv→w
)

v w 7→
(

ϕ
({{

µu→v : uv ∈ E (G) ,u 6= w
}}))

v w ,

wobei {{a1, . . . , ak }} die Multimenge bezeichnet, deren Elemente (mit Multiplizität) a1, . . . , ak sind. Mit anderen

Worten, die Nachricht von einem Knoten v zu einem Knoten w wird gemäß der Aktualisierungsregel aktual-

isiert, die auf die Gesamtmenge der Nachrichten angewendet wird, die v von allen seinen Nachbarn außer w

erhält. Außerdem bezeichnen wir mit WPt die t-fache Iteration von WP. Im Allgemeinen sind wir an Graphen

G mit ` ∈ N Arten von Knotenpunkten interessiert. Zum Beispiel haben wir zwei Teile/Typen in zweistufi-

gen oder faktoriellen Graphen. Die Nachrichten werden gemäß einer Wahrscheinlichkeitsverteilung an jeder

Kante aktualisiert.

Da wir jedoch verschiedene Arten von Knoten haben und einige Nachrichten nur zwischen bestimmten

Arten erlaubt sind, haben wir eine Familie von Wahrscheinlichkeitsverteilungen Q =
(

Qi , j
)

i , j∈[`], die wir als

`×`-Matrix darstellen, die als Wahrscheinlichkeitsverteilungsmatrix bezeichnet wird. Wenn wir die Aktual-

isierungsregel z.B. t mal anwenden, wird die Wahrscheinlichkeitsverteilungsmatrix Q ebenfalls t mal aktual-

isiert. Wir erhalten eine neue Wahrscheinlichkeitsverteilungsmatrix Q t . Im Folgenden werden wir vorausset-

zen, dass P = limt→∞Q t existiert und gemäß einer Metrik stabil ist, die eine Erweiterung des totalen Varia-

tionsabstands zwischen Wahrscheinlichkeitsverteilungen ist. Dann haben wir unter milden Annahmen [34,

Annahme 2.10] über den Graphen den folgenden Satz (vgl. [34, Satz 1.3]):

Theorem 9.3.5. Für jedes δ > 0 gibt es t0 = t0
(

δ,ϕ,Q0
)

, so dass das Folgende wahr ist. Angenommen, µ(0) ∈
M (G) ist eine Initialisierung gemäß einer Warscheinlichkeitsvertelungsmatrix Q0. Dann gilt mit hoher Wahrschein-
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lichkeit für alle t ≥ t0

∑

v,w :{v,w}∈E(G)
1
{

WPt
v→w

(

µ(0)) 6= WPt0
v→w

(

µ(0))}< δn.

Mit anderen Worten: Wenn der Grenzwert P stabil ist und die für den Graphen geforderten Kriterien erfüllt,

konvergiert WP schnell in dem Sinne, dass nach einer Zeit t0, die nicht von n abhängt, nur noch sehr wenige

Aktualisierungen vorgenommen werden.

Beweisidee des Satzes 9.3.3 und des Satzes 9.3.4 . Für Theorem 9.3.3 verwenden wir WP, um eingefrorene Vari-

ablen zu verfolgen. Genauer gesagt, führen wir Warning Propagation auf dem Faktorgraphen aus, der der

Matrix A mit dem folgenden Alphabet Σ= {f,u,s} entspricht. Die Semantik hinter der Notation der Elemente

in Σ lautet wie folgt: f bedeutet, dass die Variable, die diese Nachricht empfängt, wahrscheinlich eingefroren

ist, u bedeutet, dass die Variable, die diese Nachricht empfängt, wahrscheinlich nicht eingefroren ist, und s

bedeutet, dass der Status der Variablen ungewiss ist. Ausgehend von allen s-Nachrichten wird WP mit Hilfe

des Theorems 9.3.5 vorhersagen, dass der Anteil der eingefrorenen Variablen f (A) gegen einen der Fixpunkte

von φd konvergiert, da φd der Wahrscheinlichkeitsmatrix P für diesen speziellen Fall von WP entspricht. Für

d ≤ e hat φ genau einen Fixpunkt, aber für d > e hat φd drei Fixpunkte: zwei Stabile α∗,α∗ und einen insta-

bilen α0. Eine subtile First-Moment-Berechnung zeigt, dass der instabile Fixpunkt α0 unwahrscheinlich ist.

Schließlich zeigen symmetrische Eigenschaften der Untergraphen des Faktorgraphen, der nur Variablen mit

der Bezeichnung s oder unsichere Variablen enthält, dass die beiden stabilen Fixpunkte α∗,α∗ für d > e gleich

wahrscheinlich sind. Wie bereits erwähnt, erhält man den Beweis des Satzes 9.3.4, indem man die Symme-

triebedingung der Replikas für das Matrixproblem zusammen mit dem Satz 9.3.3 untersucht.

Beweisidee des Satzes 9.3.5. Um die Konvergenz von WP auf G zu untersuchen, gehen wir zu einem alterna-

tiven Modell Ĝ über, das wir das Konfigurationsmodell nennen. Um Ĝ aus G zu bilden, erzeugen wir zunächst

n Klone der Knoten von G und fügen jedem der Klone Halbkanten entsprechend dem Grad der realen Knoten

zu. Dann beschriften wir jede Halbkante mit WP-Nachrichten, die WP an der realen Kante erzeugen würde.

Zum Schluss wählen wir ein perfektes Matching der Halbkanten. Es stellt sich heraus, dass G mit Ĝ zusammen-

hängt, d.h. Ereignisse mit hoher Wahrscheinlichkeit in Ĝ sind auch Ereignisse mit hoher Wahrscheinlichkeit

in G, so dass es ausreicht, WP in Ĝ zu untersuchen. Die rekursiven Änderungen in den Nachrichten in Ĝ wer-

den dann durch einen Verzweigungsprozess T verfolgt. Die Stabilität des Grenzwertes P impliziert, dass der

Verzweigungsprozess T unterkritisch ist und schnell absterben wird. Daher treten nach einer Zeit t0 nur noch

sehr wenige Änderungen der Nachrichten in Ĝ und damit auch in G auf.

9.3.3 Metastabilität und das Potts-Modell

Das Ergebnis für das Potts-Modell betrifft zunächst den Replica-Ansatz 9.3.4. Um genau zu sein, nehmen wir

an, dass d ,n ≥ 3 ganze Zahlen sind, so dass dn gerade ist und sei Gd der zufällige d-reguläre Graph auf der

Knotenmenge [n]. Wir bezeichnen mit µGd die Boltzmann-Verteilung und ZGd die Partitionsfunktion. Außer-

dem schreiben wir σGd ,β für eine aus µGd gezogene Stichprobe. Das folgende Theorem bestätigt, dass der

Replica-Ansatz für das Potts-Modell gilt (vgl. [27, Theorem 2.5]).

Theorem 9.3.6. Für alle ganzen Zahlen d , q ≥ 3 und reelles β> 0 gilt

lim
n→∞

1

n
log Z = max

µ∈Fd ,β

Bd ,β
(

µ
)

in Wahrscheinlichkeit (9.3.9)
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für einen Unterraum Fd ,β ⊆P
(

[q]
)

und wobei

Bd ,β
(

µ
)

= log

[

∑

c∈[q]

(

1+ (eβ−1)µ(c)
)d

]

−
d

2
log

[

1+ (eβ−1)
∑

c∈[q]
µ(c)2

]

fÃ¼r µ ∈Fd ,β.

Ein genauer Blick auf das Optimierungsproblem, das durch den Replika-Ansatz 9.3.9 gegeben ist, offen-

bart die Existenz von drei Schwellenwerten für β: βu ,βp ,βh , die das Metastabilitätsverhalten des Systems

bestimmen. Insbesondere gibt es für β<βu nur einen Maximierer für Bd ,β. Dies ist die Gleichverteilung über

[q], d.h. µp(c) = 1/q für alle c ∈ [q], die als paramagnetische Phase oder Zustand bezeichnet wird. Außer-

dem wird βu aufgrund seiner Beschaffenheit als Uniqueness Threshold bezeichnet. Für β ∈ [βu ,βp ] treten

dann q weitere lokale Maxima µ(i )
f auf. Diese neuen lokalen Maxima sind durch die Eigenschaft gekennze-

ichnet, dass eine Farbe die Verteilung dominiert, d.h. µ(i )
f (i ) > µf( j ) = 1−µf(1)

q−1 für j ∈ [q] \ {i }. Außerdem gilt

Bd ,β

(

µ(i )
f

)

= Bd ,β

(

µ
( j )
f

)

. Dadurch reicht es aus, eine der q-Verteilungen zu betrachten, z.B. die so genannte

ferromagnetische Phase µf := µ(1)
f . Nun, für β > βp , übernimmt der ferromagnetische Zustand die Rolle des

Gobalmaximierers. Der paramagnetische Zustand bleibt ein lokales Maximum bis β = βh , bei dem er zum

Minimum wird.

Wie hängen die Schwellenwerteβu ,βp ,βh mit der Metastabilität zusammen und was genau ist das Konzept

der Metastabilität? Das Konzept der Metastabilität bezieht sich auf Suchalgorithmen, die Konfigurationen

σ ∈ [q]Vn finden, die Bd ,β maximieren. Ein erster Suchalgorithmus heißt bei uns Glauberdynamik. Für einen

Graphen G = (V ,E) ist die Glauber-Dynamik eine Markov-Kette mit der Menge der Konfigurationen [q]V als

Zustandsraum. Ausgehend von einer Anfangskonfiguration σ0 wählt Glauber in jedem Zeitschritt t ≥ 0 einen

Knoten v uniform zufällig aus und ändert die Farbe von v gemäß der bedingten Gibbs-Verteilung der Farben

seiner Nachbarn, um eine neue Konfiguration σt zu erhalten. Metastabilität bedeutet nun, dass die Glauber-

Dynamik für eine lange Zeit in einer Menge S ⊆ [q]V gefangen ist, bevor sie eine Zielkonfiguration (ein Maxi-

mum von Bd ,β) erreicht. Genauer gesagt, wird eine Menge S ⊆ [q]V als metastabiler Zustand für die Glauber-

Dynamik bezeichnet, wenn es δ> 0 gibt, so dass

P

[

min{t : σt 6∈ S} ≤ eδ|V | |σ0 ∼µGd ,β (·|S)
]

≤ e−δ|V |.

Für hinreichend kleine ε> 0 können wir also die folgenden zwei Untermengen von Konfigurationen definieren

Sf(ε) =
{

σ ∈ [q]n :
∑

c∈[q]

∣

∣

∣

∣

∣σ−1(c)
∣

∣−nνf(c)
∣

∣

∣< εn
}

, Sp(ε) =
{

σ ∈ [q]n :
∑

c∈[q]

∣

∣

∣

∣

∣σ−1(c)
∣

∣−nνp(c)
∣

∣

∣< εn
}

,

wobei für eine Verteilung µ auf [q] gilt

νµ(c) =
(1+ (eβ−1)µ(c))d

∑

χ∈[q](1+ (eβ−1)µ(χ))d
(c ∈ [q]), (9.3.10)

Der Kürze halber lassen wir νf = νµf und νp = νµp gelten. Mit anderen Worten, eine Konfiguration σ ∈ Sp(ε)

ordnet den Knoten des Graphen mit der gleichen Wahrscheinlichkeit Farben zu, aber in Sf(ε) dominiert die

spezifische Farbe 1 die anderen q −1 Farben. Außerdem sei daran erinnert, dass die Mixing Time tmix einer

Markov-Kette durch folgende Gleichung definiert ist: tmix = maxσ0 min
{

t : dTV
(

σt ,µGd ,β
)

≤ 1/4
}

. Das Metasta-

bilitätsergebnis für die Glauber-Dynamik lautet wie folgt [27, Theorem 1.2].

Theorem 9.3.7. Seien d , q ≥ 3 ganze Zahlen und β > 0 real. Dann gilt für alle hinreichend kleinen ε > 0 das

Folgende w.h.p. Über die Wahl von Gd .

1. Wenn β<βh , dann ist Sp(ε) ein metastabiler Zustand für Glauber-Dynamik auf G.
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2. Wenn β>βu , dann ist Sf(ε) ein metastabiler Zustand für Glauber-Dynamik auf G.

Außerdem ist für β>βu die Mixing Time von Glauber eΩ(n).

Die Metastabilität im Potts-Modell betrifft nicht nur die Glauber-Dynamik, sondern erstreckt sich auch auf

einen nicht-lokalen Algorithmus namens Swendsen Wang (SW)-Kette. Für einen Graphen G = (V ,E) und eine

Konfiguration σ ∈ [q]V besteht eine Iteration von SW ausgehend von σ aus zwei Schritten.

• Perkolationsstufe: Sei M = M(σ) die zufällige Kantenmenge, die man erhält, indem man (unabhängig)

jede monochromatische Kante unter σ mit der Wahrscheinlichkeit p = 1−e−β hinzufügt.

• Schritt der Umfärbung: Man erhält das neue Konfiguration σ′ ∈ [q]V , indem man jeder Komponente des

Graphen (V , M) eine uniform zufällige Farbe aus [q] zuweist; für v ∈ V setzen wir σ′
v auf die Farbe, die

der Komponente von v zugewiesen ist.

Die metastabilen Zustände für SW sind ähnlich definiert wie für die Glauber-Dynamik. Das nächste Theo-

rem [27, Theorem 1.3] erweitert das Metastabilitätsverhalten von Glauber auf die nichtlokale SW-Dynamik.

Da jedoch der Umfärbeschritt die dominante Farbe ändern kann, muss die Metastabilitätsaussage für den

ferromagnetischen Zustand Sf(ε) dessen q −1 Spiegelbilder berücksichtigen.

Theorem 9.3.8. Seien d , q ≥ 3 ganze Zahlen und β > 0 real. Dann gilt für alle hinreichend kleinen ε > 0 das

Folgende mit hoher Wahrscheinlichkeit über die Wahl von Gd .

1. Wenn β<βh , dann ist Sp(ε) ein metastabiler Zustand für SW-Dynamik auf G.

2. Wenn β > βu , dann ist Sf(ε) zusammen mit seinen q − 1 Permutationen ein metastabiler Zustand für

SW-Dynamik auf G.

Außerdem ist für β ∈ (βu ,βh) die Mischzeit von SW eΩ(n).

Beweiskonzept des Satzes 9.3.6. Wie bei der Analyse von Warning Propagation ist es einfacher, mit dem Konfig-

urationsmodell für den zufälligen d-regulären Graphen Gd zu arbeiten. Also sei Gd das Konfigurationsmodell,

das Gd entspricht. Insbesondere wird, in Anlehnung an die Ideen von [52], die Methode des zweiten Moments,

auf die Partitionsfunktion entsprechend Gd angewandt. Das liefert eine Approximation von limn→∞
1
n log Z .

Diese Approximation wird dann mit Hilfe der Belief Propagation in die Bethe freie Entropie Bd ,β umgeschrieben.

Beweisidee von Theorem 9.3.7 und 9.3.8. Um Theorem 9.3.7 und 9.3.8 zu beweisen, müssen wir die relative

Masse der metastabilen Mengen Sp und Sf in Bezug auf die Boltzmann-Verteilung in den Griff bekommen, d.h.

µGd ,β(Sp) und µGd ,β(Sf) berechnen. Eine direkte Berechnung des zweiten Moments ist hier nicht hilfreich, da

die paramagnetischen und ferromagnetischen Phasen νp und νf den lokalen Maxima von Fd ,β entsprechen,

wenn die Mengen Sp und Sf metastabil sind. Um dies zu berücksichtigen, führen wir zwei neu gewichtete

Versionen Ĝ f und Ĝp des Zufallsgraphen Gd ein, die wir als gepflanzte Modelle bezeichnen. Grob gesagt

entsprechen die beiden gepflanzten Modelle zwei gewichteten Versionen des Graphen Gd , bei denen die

Wahrscheinlichkeitsmasse eines bestimmten Graphen proportional zum paramagnetischen oder ferromag-

netischen Teil der Partitionsfunktion ist. Ziel ist es also, die Partitionsfunktion von Ĝ f und Ĝp zu approx-

imieren. Ein weiteres Schlüsselkonzept ist ein Begriff namens Nicht-Rekonstruktion. Die Eigenschaft der

Nicht-Rekonstruktion wird zunächst für den unendlichen d-regulÃ¤ren Baum Td mit der Wurzel o definiert.

Grob gesagt, besagt die Nicht-Rekonstruktion, dass die Information über den Spin der Wurzel σo , die aus den

Spins der Knoten in der Tiefe ` geschätzt wird, mit zunehmender Größe von ` abnimmt. Der Begriff der Nicht-

Rekonstruktion wird dann auf den Graphen Ĝp und Ĝ f übertragen, was die Berechnung der Partitionsfunktion

67



Zp und Zf von Ĝp und Ĝ f über zwei verkürzte Versionen Yp bzw. Yf ermöglicht. Sobald die relative Größe

der Mengen Sp und Sf bekannt ist, ergeben sich die Metastabilitätsergebnisse und die Mischungsergebnisse

aus Standard Argumenten über den Zusammenhang zwischen Markovketten und bestimmten Grapheigen-

schaften (z.B der Conductance).
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BELIEF PROPAGATION ON THE RANDOM k-SAT MODEL

AMIN COJA-OGHLAN, NOËLA MÜLLER, JEAN B. RAVELOMANANA

ABSTRACT. Corroborating a prediction from statistical physics, we prove that the Belief Propagation message passing

algorithm approximates the partition function of the random k-SAT model well for all clause/variable densities and all

inverse temperatures for which a modest absence of long-range correlations condition is satisfied. This condition is

known as “replica symmetry” in physics language. From this result we deduce that a replica symmetry breaking phase

transition occurs in the random k-SAT model at low temperature for clause/variable densities below but close to the

satisfiability threshold. MSc: 68Q87, 60C05

1. INTRODUCTION

1.1. Background and motivation. According to a prominent physics prediction the Belief Propagation message
passing algorithm renders a good approximation to the partition function of locally tree-like graphical models that
do not exhibit long-range correlations [33]. Turning this somewhat vague intuition into a mathematical theorem
has been a major open problem at the junction of computer science and probability theory, specifically spin glass
theory, for quite some time [34]. The random k-SAT model is one of the specific examples to which both commu-
nities have directed a large amount of effort [2, 4, 19, 24, 30, 35, 38, 40, 43, 47].

Corroborating the physics conjecture, we prove that an extremely modest absence of long-range correlations
condition known as “replica symmetry” precipitates the success of Belief Propagation for the random k-SAT model.
The replica symmetry condition is generally deemed to be necessary, too [33]. Apart from significantly advancing
the mathematical understanding of Belief Propagation, this result allows for an intriguing application. Namely, by
way of characterising the fixed point of the Belief Propagation message passing process precisely, we deduce that
replica symmetry fails to hold for clause-to-variable densities near the satisfiability threshold. Thus, we prove that
the random k-SAT model undergoes a replica symmetry breaking phase transition for clause-to-variable ratios
close to but below the satisfiability threshold.

To appraise ourselves of the random k-SAT model, let Vn = {x1, . . . , xn } be a set of n Boolean variables. We
represent their possible values ‘true’ and ‘false’ by ±1. Also let k ≥ 3 be an integer, let d > 0 be a real and let m be
a Poisson variable with mean dn/k. The random k-SAT formula comprises m clauses a1, . . . , am . For each clause
ai we independently choose a family (x i j )1≤ j≤k ∈ V k

n of k variables uniformly without replacement. Additionally,
let (J i j )i , j≥1 be a family of independent ±1-variables with mean zero. Combinatorially ai represents the Boolean
clause comprising the k variables x i1, . . . , x ik with signs J i1, . . . , J ik . Thus, x i j appears as a positive literal in ai if

J i j = 1, and ai features the negative literal ¬x i j otherwise. Hence, a Boolean assignment σ ∈ {±1}Vn satisfies clause
ai (“σ |= ai ”) if max j=1,...,k J i j σx i j

= 1. Finally, Φ=Φk (n,m) is the conjunction of all the m clauses, i.e.,

Φ=
m
∧

i=1

ai =
m
∧

i=1
(J i1x i1 ∨·· ·∨ J ik x ik ) .

Further, given an inverse temperature parameter β> 0, the Boltzmann distribution of the model reads

µΦ,β(σ) =
1

Z (Φ,β)

m
∏

i=1

exp(−β1{σ 6|= ai }) (σ ∈ {±1}Vn ), where Z (Φ,β) =
∑

τ∈{±1}Vn

exp

(

−β
m
∑

i=1

1{τ 6|= ai }

)

. (1.1)

Thus, the Boltzmann weight of an assignment σ contains an exp(−β) penalty factor for every violated clause. In
effect, as β increases, the distribution assigns greater weight to ‘more satisfying’ assignments. As always, the parti-
tion function Z (Φ,β) accounts for the total weight.

The random k-SAT model undergoes a satisfiability phase transition at a certain critical value of d called the sat-

isfiability threshold. To elaborate, observe that d gauges the average number of clauses in which a given Boolean
variable appears. Clearly, as variables appear in more and more clauses it becomes harder to satisfy all these
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clauses simultaneously. Indeed, for large enough k ≥ 3 there exists a threshold dSAT(k) such that Φ admits an as-
signment that satisfies all clauses asymptotically almost surely if d < dSAT(k), while for d > dSAT(k) no satisfying
assignment exists a.a.s. The value of dSAT(k) is known precisely but the formula is quite complicated [24]; asymp-
totically in the limit of large k we have

dSAT(k) = 2k k log 2−
1+ log 2

2
k +o(1). (1.2)

The regime d < dSAT(k) is of fundamental interest in computer science to assess the power and the limitations of
algorithms for finding, counting and sampling solutions to the k-SAT problem, the cornerstone of computational
complexity theory [4]. Therefore, we will investigate the Boltzmann distribution for d < dSAT(k) for varying values
of β. As we increase β we effectively scan the energy landscape that an algorithm has to traverse on its quest for
satisfying assignments. In particular, we investigate the performance of the Belief Propagation message passing
algorithm. With what regimes of d ,β can the algorithm cope? Is Belief Propagation fit to approximate the partition
function Z (Φ,β)? Does there exist a critical value of β where long-range correlations emerge?

1.2. Belief Propagation. Belief Propagation associates two ‘messages’ µΦ,β,ai→x i j ,t (±1),µΦ,β,x i j →ai ,t (±1) ∈ (0,1)
with each interacting clause/variable pair (ai , x i j ). The messages are indexed by time t ≥ 0 and always normalised
such that

µΦ,β,ai→x i j ,t (1)+µΦ,β,ai →x i j ,t (−1) = µΦ,β,x i j→ai ,t (1)+µΦ,β,x i j→ai ,t (−1) = 1. (1.3)

The first message µΦ,β,ai→x i j ,t (±1) is directed from the clause to the variable. The other one travels in the reverse
direction. The messages are updated iteratively. Initially, all messages are set to 1/2, i.e.,

µΦ,β,ai →x i j ,0(±1) =µΦ,β,x i j→ai ,0(±1) = 1/2 for all 1 ≤ i ≤ m,1 ≤ j ≤ k. (1.4)

Furthermore, for integers t ≥ 0 and s =±1 we inductively define

µΦ,β,ai →x i j ,t+1(s) ∝
∑

σ∈{±1}k

1{σ j = s}exp(−β1{σ 6|= ai })
∏

1≤h≤k
h 6= j

µΦ,β,x i h→ai ,t (σh ), (1.5)

µΦ,β,x i j→ai ,t+1(s) ∝
∏

1≤h≤m
h 6=i

∏

1≤ℓ≤k
xhℓ=x i j

µΦ,β,ah→xhℓ ,t+1(s). (1.6)

Here the ∝-symbol hides the normalisation required to bring about (1.3). Finally, the estimate of the partition
function after t iterations reads

Bt =
n
∑

i=1

log

[

∑

s=±1

∏

1≤h≤m,1≤ j≤k
xh j =xi

µΦ,β,ah→xi ,t (s)

]

+
m
∑

i=1

log

[

∑

σ∈{±1}k

e−β1{σ6|=ai }
k
∏

j=1

µΦ,β,x i j→ai ,t (σ j )

]

−
m
∑

i=1

k
∑

j=1

log

[

∑

s=±1
µΦ,β,ai →x i j ,t (s)µΦ,β,x i j→ai ,t (s)

]

. (1.7)

This expression is called the Bethe free energy in physics jargon. An excellent in-depth discussion of Belief Propa-
gation, including a derivation of (1.5)–(1.7), can be found in [34, Chapter 14].

The key feature of all the above formulas is that they are governed by the local structure of the k-SAT formula.
For instance, (1.5) involves only the messages sent out by the variables which appear in clause ai . Similarly, (1.6)
comes in terms of the messages sent out by the clauses in which variable x i j appears. Therefore, we can reasonably
hope that Belief Propagation represents local dependencies accurately, but hardly that the messages can faithfully
capture long-range correlations. In fact, one of the most important predictions about the random k-SAT model
holds that a very weak ‘absence of long-range correlations’ condition suffices for the success of Belief Propaga-
tion [33]. Specifically, let σ=σΦ,β denote a sample from the Boltzmann distribution µΦ,β. Then following [33] we
say that the random k-SAT model with parameters d ,β is replica symmetric if

lim
n→∞

E

∣

∣µΦ,β({σx1 =σx2 = 1})−µΦ,β({σx1 = 1})µΦ,β({σx2 = 1})
∣

∣= 0. (1.8)

In words, the events {σx1 = 1}, {σx2 = 1} that the first and the second variable of the formula Φ are set to ‘true’ are
asymptotically independent for large n. Since the typical distance of x1, x2 is of order Ω(logn), (1.8) rules out long-
range correlations, albeit in a very weak sense. In particular, (1.8) is far more modest a condition than classical
spatial mixing properties such as Gibbs uniqueness or non-reconstruction [26, 33].
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The following theorem vindicates the prediction that (1.8) is a sufficient condition for the success of Belief Prop-
agation for all β≥ 1 and for all d up to within a whisker of the satisfiability threshold dSAT(k).

Theorem 1.1. There exists a constant k0 ≥ 3 such that for any β≥ 1 and any

d ≤ d∗ = d∗(k) = k2k log2−10k2 (1.9)

the following is true: if (1.8) is satisfied then

lim
t→∞

limsup
n→∞

1

n
E

∣

∣Bt − log Z (Φ,β)
∣

∣= 0.

Theorem 1.1 is a conditional result: for all d ≤ d∗ and all β ≥ 1 for large enough t the Bethe free energy for-
mula (1.7) estimates the logarithm of the partition function up to an additive error of o(n) provided that (1.8)
holds. At this point (1.8) is known to be satisfied only for values of d much smaller than d∗; the best current bound
yields d ≤ log k [38]. However, (1.8) is expected to hold for all β > 0 and all d ≤ d∗ (and in fact for slightly larger
d) [33]. Yet conceptually the point that Theorem 1.1 makes is that the modest condition (1.8) is the only require-
ment for the success of Belief Propagation. In other words, Belief Propagation launched from the trivial initial
condition (1.4) does faithfully capture the short-range effects of the random k-SAT model. A further strength of
Theorem 1.1 is that the result covers all reasonable values of β. Indeed, the assumption β ≥ 1 is harmless as the
most interesting regime should be that of large β, where the satisfiability condition really bites, known as the ‘low
temperature’ regime in physics terminology.

1.3. Replica symmetry breaking. The proof of Theorem 1.1 has an unconditional consequence. Namely, we can
turn the tables and prove that (1.8) fails to be satisfied for d close to the satisfiability threshold dSAT(k).

Theorem 1.2. There exist sequences εk → 0 and β0(k) > 0 such that the following is true. Assume that β>β0(k) and

2k k log2−k(3+εk ) log2/2 ≤ d ≤ dSAT. (1.10)

Then

limsup
n→∞

E

∣

∣µΦ,β({σx1 =σx2 = 1})−µΦ,β({σx1 = 1})µΦ,β({σx2 = 1})
∣

∣> 0 and (1.11)

liminf
n→∞

1

n
E
[

Bt − log Z (Φ,β)
]

> 0 uniformly for all t > 0. (1.12)

The asymptotic value 2k k log2−3k log 2/2 from (1.10) was predicted via physics methods as the threshold for
replica symmetry to break [33]. Thus, Theorem 1.2 confirms this conjecture. Indeed, (1.11) shows that very strong
long-range correlations start to emerge in the ‘low temperature’ (viz. large β) regime. Together with known results
on the structure of asymptotic Gibbs measures, (1.11) shows that the Boltzmann distribution decomposes into
several ‘pure states’ in a certain precise sense; see [8, 21] for a detailed discussion. Additionally, (1.12) implies that
beyond (1.10) Belief Propagation ceases to yield a good approximation to the partition function.

Theorem 1.2 also sheds new light on the satisfiability threshold. Namely, Theorem 1.2 establishes for the first
time that replica symmetry breaking occurs in the random k-SAT problem strictly prior to the k-SAT threshold from
(1.2), which exceeds the bound from (1.10) by an additive log(2)−1/2 ≈ 0.19. Hence, Theorem 1.2 demonstrates
that the random k-SAT model really is conceptually richer than models like random k-XORSAT or random 2-SAT,
whose satisfiability thresholds were found much earlier[18, 23, 25, 31, 45].

We proceed to outline the proof strategy behind Theorems 1.1 and 1.2. Subsequently we discuss how the con-
tributions of this paper compare to prior work.

2. OVERVIEW

The proof of Theorem 1.1 has three basic ingredients. First we need a rough estimate of Z (Φ,β), which we derive
via a subtle second moment calculation. From this estimate we will deduce that ‘most’ variable marginals under
the Boltzmann distribution µΦ,β are close to 1/2 a.a.s. Second, we investigate the Belief Propagation message
passing scheme on a random Galton-Watson tree that mimics the local geometry of the random k-SAT formula Φ.
Specifically, we will use contraction arguments to show that if Belief Propagation launches from messages that are
mostly close to 1/2, the message passing scheme will rapidly approach a fixed point. Third, we will combine these
two facts with probabilistic invariance properties of the random formula Φ to complete the proof of Theorem 1.1.
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The proof of Theorem 1.2 is an afterthought to the proof of the first theorem. Indeed, the proof of Theorem 1.1
renders an implicit formula for the value that Z (Φ,β) must take if (1.8) is satisfied. To obtain Theorem 1.2 we
calculate this value explicitly for large β. To refute (1.8) we then compare this result with the upper bound that the
interpolation method from mathematical physics yields.

2.1. The second moment bound. A natural first stab at estimating Z (Φ,β) is to calculate its first two moments.
The first moment is easy. Indeed, because any specific assignment σ ∈ {±1}Vn satisfies a random clause with prob-
ability 1−2−k and because the clauses are independent, the linearity of expectation gives

logE[Z (Φ,β) | m] = n log2+m log
(

1−2−k (1−e−β)
)

. (2.1)

Hence, Markov’s inequality immediately implies that log Z (Φ,β) ≤ n log 2+ dn
k

log(1− (1−e−β)2−k )+o(n).
Moving on to the second moment and using the linearity of expectation and independence once more, we find

E[Z (Φ,β)2 | m]=
∑

σ,τ∈{±1}Vn

E

[

e−β
∑m

i=1 1{σ6|=ai }+1{τ6|=ai } | m
]

=
∑

σ,τ∈{±1}Vn

E

[

e−β(1{σ6|=a1}+1{τ6|=a1})
]m

. (2.2)

To evaluate the r.h.s. we define the overlap of two assignments σ,τ ∈ {±1}Vn as

α(σ,τ) =
1

n

n
∑

i=1

1+σxi
τxi

2
=

1

n

n
∑

i=1

1
{

σxi
= τxi

}

. (2.3)

A straightforward application of inclusion/exclusion then reveals that

E

[

e−β(1{σ6|=a1}+1{τ6|=a1})
]

= 1−21−k (1−e−β)+2−kα(σ,τ)k (1−e−β)2 +O(1/n). (2.4)

Hence, it seems like a good idea to reorder the sum (2.2) according to the overlap. We thus sum on α ∈ [0,1] such
that αn is an integer. Since there are 2n

( n
αn

)

pairs σ,τ with overlap α, (2.4) yields

E[Z (Φ,β)2 | m]= exp(O(m/n)) ·2n
∑

α

(

n

αn

)

[

1−21−k (1−e−β)+2−kα(σ,τ)k (1−e−β)2
]m

. (2.5)

Taking logarithms in (2.5), assuming m = dn/k +o(n) and replacing the sum by a max, we obtain

1

n
logE[Z (Φ,β)2 | m]= max

α∈(0,1)
f (α)+o(1), a.a.s., where (2.6)

f (α) = fd ,k ,β(α) = log2−α logα− (1−α) log(1−α)+
d

k
log

(

1−21−k (1−e−β)+2−kαk (1−e−β)2
)

.

Thus, the maximiser α in (2.6) represents the overlap value that renders the dominant contribution to the second
moment. Since the entropy function −α logα− (1−α) log(1−α) attains its maximum at α = 1/2 while the sec-
ond term log

(

1−21−k (1−e−β)+2−kαk (1−e−β)2
)

is strictly increasing in α, the dominant overlap value inevitably
exceeds 1/2. In effect, since f (1/2) equals twice the r.h.s. of (2.1) and maxα f (α) > f (1/2), the second moment
E[Z (Φ,β)2] exceeds the square E[Z (Φ,β)]2 of the first moment by an exponential factor for all d ,β > 0. While it is
still possible to salvage some estimate of log Z (Φ,β) from (2.1)–(2.6), its quality deteriorates rapidly as β increases.
In the extreme case β =∞ of ‘hard’ constraints this issue was already highlighted in the seminal work [2] where
Achlioptas and Moore pioneered the second moment method for random k-SAT.

To remedy this problem we take a leaf out of earlier work on ‘hard’ random k-SAT [5, 19]. Instead of applying the
second moment method directly to Z (Φ,β), we consider a suitably truncated random variable. Its second moment
is asymptotically bounded by the square of the first moment and we obtain the following explicit lower bound.

Proposition 2.1. Let β≥ 1, k ≥ k0 and d < d∗ and let p ∈ (0,1) be the unique root of

1−2p − (1−e−β)(1−p)k = 0; then (2.7)

liminf
n→∞

1

n
E[log Z (Φ,β)]≥

(

1−
(k −1)d

k

)

log2−
d

2
log p −

d

2
log(1−p)+

d

k
log p. (2.8)
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We apply Proposition 2.1 to estimate the Boltzmann marginals. More precisely, recalling that σ signifies a sam-
ple from µΦ,β, we care to learn the marginal probabilities µΦ,β({σxi

= 1}) that specific variables xi take the value
‘true’. Hence, with δz denoting the probability measure on R that places mass one on the number z, let

πΦ,β =
1

n

n
∑

i=1

δµΦ,β({σxi
=1}) ∈P (0,1)

be the empirical distribution of these marginals. We say that a probability measure π on [0,1] has slim tails if

π

([

0,
1

2
−2−k/10

]

∪
[

1

2
+2−k/10,1

])

≤ 2−k/10. (2.9)

Additionally, π has very slim tails if (2.9) holds with the r.h.s. replaced by 2−k/9.

Corollary 2.2. Suppose that β≥ 1, k ≥ k0 and d < d∗ and that (1.8) is satisfied. Then πΦ,β has very slim tails a.a.s.

The proofs of Proposition 2.1 and Corollary 2.2 can be found in Section 5.

2.2. Belief Propagation on trees. As a next step we analyse Belief Propagation on a Galton-Watson tree that mim-
ics the local structure of the random formula Φ. To elaborate, we can represent Φ by a bipartite graph G(Φ) known
as the factor graph. One class of vertices comprises the variables x1, . . . , xn . The second class of vertices consists
of the clauses a1, . . . , am . A clause ai and a variable x j are connected by an edge if x j appears in ai . For a variable
x j we denote by ∂x j the set of adjacent clauses. Moreover, to keep track of the order as variables appear in clauses
we write ∂h ai for the h-th variable in clause ai and ∂ai for the set of all variables that occur in ai . Finally, for an
adjacent clause/variable pair (a, x) we let J ax = sign(a, x) ∈ {±1} signify the sign with which x appears in a.

The graph G(Φ) induces a metric on the set of variables and clauses. Moreover, it is well known that G(Φ)
contains only a small number of, say, o(logn) cycles of bounded length. Hence, for any specific variable xi and
for any fixed radius t > 0 the depth-t neighbourhood of xi in G(Φ) is a tree a.a.s. The distribution of this tree
can be characterised precisely by a two-type Galton-Watson process. The two types are variables and clauses, of
course. The process starts from a single root variable x0. Moreover, the offspring of a variable is a Po(d) number
of clauses. Furthermore, a clause begets k −1 variables. Let T signify the resulting (quite possibly infinite) tree.
Also let V (T ),C (T ) be the sets of variables and clauses of T , respectively. As in the case of the random formula Φ

we use the ∂-symbol to denote adjacencies. Finally, to turn T into a k-SAT formula, we choose for each adjacent
clause/variable pair (a, x) ∈C (T )×V (T ) a sign J ax ∈ {±1} uniformly and independently.

It is well known that the graph G(Φ) converges locally to the random tree T in the sense that for any specific
variable node xi , 1≤ i ≤ n, and for any fixed radius t the depth-t neighbourhood of xi and the depth-t neighbour-
hood of the root x0 of T can be coupled such that both coincide a.a.s. Therefore, in order to investigate the first t

rounds of Belief Propagation Φ as per (1.4)–(1.6), we just need to study Belief Propagation on T .
Hence, we proceed to define Belief Propagation messages on T . Generalising (1.4), we allow for an arbitrary

probability distribution π on [0,1] from which we draw the initial messages. Thus, for any adjacent a, x we draw
µT ,β,π,x→a,0(1),µT ,β,π,a→x,0(1) independently from π and set

µT ,β,π,x→a,0(−1) = 1−µT ,β,π,x→a,0(1), µT ,β,π,a→x,0(−1) = 1−µT ,β,π,a→x,0(1).

Further, for t ≥ 0, s =±1 and adjacent a, x we inductively define

µT ,β,π,a→x,t+1(s)∝
∑

σ∈{±1}∂a

1{σx = s}e−β1{σ6|=a}
∏

y∈∂a\{x}

µT ,β,π,y→a,t (σy ), (2.10)

µT ,β,π,x→a,t+1(s)∝
∏

b∈∂x\{a}

µT ,β,π,b→x,t+1(s). (2.11)

Finally, the Belief Propagation estimate of the marginal of x0 after t +1 rounds reads

µT ,β,π,x0 ,t+1(s) ∝
∏

b∈∂x0

µT ,β,π,b→x0 ,t+1(s) (s =±1). (2.12)

Let π0 = δ1/2 be the probability distribution on (0,1) that places all mass on 1/2. The following proposition shows
that in the limit of large t , any distribution with slim tails yields the same Belief Propagation marginal as π0.

Proposition 2.3. Assume that d ≤ dSAT(k) and β≥ 1. Then uniformly for all π with slim tails we have

lim
t→∞

E

∣

∣µT ,β,π,x0 ,t (1)−µT ,β,π0 ,x0 ,t (1)
∣

∣= 0.
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Furthermore, the sequence (µT ,β,π0 ,x0 ,t (1))t≥1 converges weakly to a probability measure π⋆

d ,β with slim tails.

The proof of Proposition 2.3 can be found in Section 6.

2.3. The Bethe free energy. It is known that under the replica symmetry assumption (1.8) the partition function
Z (Φ,β) can be approximated well in terms of certain ‘pseudo-messages’. To be precise, consider a clause ai and a
variable x i j that appears in it. Then we define the pseudo-message µΦ,β,x i j →ai

as the Boltzmann marginal of x i j

in the formula Φ− ai obtained by deleting clause ai . Thus, µΦ,β,x i j→ai
(±1) = µΦ−ai ,β({σx i j

= ±1}). Similarly, we
define the reverse message µΦ,β,ai →x i j

as the marginal of x i j in the formula obtained from Φ by deleting all clauses
in which the variable x i j appears apart from ai . In symbols,

µΦ,β,ai →x i j
(s) =µΦ−(∂x i j \{ai }),β({σx i j

= s}) (s =±1).

A result about general random factor graph models from [20] implies that the pseudo-messages yield the following
approximation to the partition function if (1.8) is satisfied.

Lemma 2.4 ([20, Corollary 1.2]). Let

B(Φ,β) =
n
∑

i=1

log

[

∑

σ=±1

∏

a∈∂xi

µΦ,β,a→xi
(σ)

]

+
m
∑

i=1

log

[

∑

σ∈{±1}∂ai

exp(−β1{σ 6|= ai })
∏

x∈∂ai

µΦ,β,x→ai
(σx )

]

−
n
∑

i=1

∑

a∈∂xi

log

[

∑

σ=±1
µΦ,β,xi →a(σ)µΦ,β,a→xi

(σ)

]

. (2.13)

If (1.8) holds and limn→∞B(Φ,β)/n = b ∈R in probability, then limn→∞
1
n log Z (Φ,β) = b in probability.

Apart from the formula (2.13) it is known that the pseudo-messages form an approximate fixed point of the Be-
lief Propagation recurrence (1.5)–(1.6) if (1.8) is satisfied [20, Theorem 1.1]. In light of the contraction property of
the Belief Propagation iteration that Proposition 2.3 provides it is therefore tempting to think that the messages ob-
tained after a large enough number t of iterations of (1.4)–(1.6) should be about the same as the pseudo-messages.
Yet this conclusion is anything but immediate. First, Proposition 2.3 establishes contraction only under the as-
sumption that Belief Propagation launches from a set of independent initial messages. Second, the proposition
requires that the distribution of these initial messages has slim tails. Thus, for all we know the Belief Propagation
equations on Φ could have many fixed points that do not fall into the basin of attraction of the all– 1

2 initialisation
(1.4). Nonetheless, combining a subtle coupling argument with the tail bound for πΦ,β from Corollary 2.2 we can
link the pseudo-message with the Belief Propagation fixed point that we approach from the naive initialisation
(1.4). We can thus relate the pseudo-messages and the real ones as follows.

Proposition 2.5. If (1.8) is satisfied, then

lim
t→∞

limsup
n→∞

1

n
E

[

n
∑

i=1

∑

a∈∂xi

∣

∣µΦ,β,xi →a (1)−µΦ,β,xi →a,t (1)
∣

∣+
∣

∣µΦ,β,a→xi
(1)−µΦ,β,a→xi ,t (1)

∣

∣

]

= 0.

Equipped with Lemma 2.4 and Proposition 2.5 we have only very little work left to complete the proof of The-
orem 1.1. Indeed, Lemma 2.4 shows how B(Φ,β) approximates log Z (Φ,β). Moreover, the only difference be-
tween B(Φ,β) and the expression Bt (Φ,β) that appears in Theorem 1.1 is that the latter comes in terms of the
Belief Propagation messages µΦ,β,x→a,t ,µΦ,β,a→x,t rather than the actual standard messages µΦ,β,x→a ,µΦ,β,a→x .
But Proposition 2.5 shows that the Belief Propagation messages approximate the standard messages well. Hence,
we are left to show that the approximation is good enough and that the Bethe free energy is sufficiently continuous.
We will carry these steps out in Section 7, thereby completing the proof of Theorem 1.1.

2.4. Replica symmetry breaking. The proof of Theorem 1.2 consists of two parts: an unconditional upper bound
on E[log Z (Φ,β)] and a lower bound that is conditional on the assumption (1.8) of replica symmetry. To state these
bounds we define a functional Bd ,β on the space of probability measures on the unit interval. This functional can
be viewed as the n →∞ limit of the Bethe free energy functional from (1.7).

Hence, let π be a probability measure on [0,1]. Let (ρπ,i , j )i , j≥1 be an array of independent random variables
with distribution π. Furthermore, let (J i , j )i , j≥1 be an array of Rademacher variables with mean zero, mutually
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independent and independent of the ρπ,i , j . Additionally, let

µπ,i , j =
1+ J i , j (2ρπ,i , j −1)

2
=

{

ρπ,i , j if J i , j = 1

1−ρπ,i , j if J i , j =−1
. (2.14)

Further, let γ+,γ− be two Po(d/2) variables, mutually independent and independent of everything else. We define

Bd ,β(π)= E

[

log

(

γ+
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µπ,i , j +
γ−
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µπ,i+γ−, j

)

−
d(k −1)

k
log

(

1− (1−e−β)
k
∏

j=1

µπ,1, j

)]

.

(2.15)

Using the so-called 1-step replica symmetry breaking interpolation method from mathematical physics, we obtain
the following upper bound. Recall π⋆

d ,β from Proposition 2.3.

Proposition 2.6. Assume that d satisfies (1.10) and that β>β0(k) for a large enough β0(k). Then

lim
n→∞

1

n
E
[

log Z (Φ,β)
]

<Bd ,β(π⋆

d ,β).

We remark that the limit on the l.h.s. is known to exist [41].
On the other hand, a careful study facilitated by the ideas from the proof of Proposition 2.1 and by Propo-

sition 2.3 shows that under the assumption (1.8) even in the regime d∗(k) < d < dSAT(k) the only conceivable
scenario is that the actual pseudo-messages nearly coincide with the messages that result from the fixed point
iteration (1.4)–(1.6). Combining this fact with Lemma 2.4, we obtain the following lower bound.

Proposition 2.7. Assume that d satisfies (1.10) and that β≥β0(k) for a large enough β0(k). If (1.8) holds, then

lim
n→∞

1

n
E
[

log Z (Φ,β)
]

≥Bd ,β(π⋆

d ,β).

Naturally, Propositions 2.6 and 2.7 imply that (1.8) cannot be satisfied under the assumptions of Theorem 1.2.
The detailed proofs of the propositions as well as of Theorem 1.2 can be found in Section 8.

3. DISCUSSION

Early experimental work [12] inspired the hunt for the satisfiability threshold, a pursuit conducted by many au-
thors over many years (e.g. [4, 5, 6, 10, 11, 19, 27, 29, 28]) and which culminated in the aforementioned work of
Ding, Sly and Sun [24]. Prior to the seminal work of Achlioptas and Moore [2], lower bounds on the k-SAT thresh-
old were based on the analysis of simple satisfiability algorithms [6, 10, 11, 29]. However, all known algorithms fail
to find satisfying assignments efficiently for densities well below the satisfiability threshold. The best algorithmic
result today reaches up to d ∼ 2k logk [13], undershooting dSAT(k) by almost a factor of k. Even satisfiability al-
gorithms that employ message passing techniques such as Belief Propagation Guided Decimation fail to beat this
bound [14, 32]. Furthermore, the current algorithmic threshold of 2k log k marks the onset of combinatorial effects
that conceivably stymie various algorithmic techniques [1].

Matters get worse when it comes to algorithms for counting or sampling satisfying assignments. From a worst-
case viewpoint this task is the epitome of the complexity class #P, the counterpart of the notorious complexity class
NP in the realm of counting and sampling [48]. Hence, we expect that counting or sampling satisfying assignments
is conceptually far more challenging than ‘merely’ finding one. In the context of random k-SAT a first important
contribution is due to Montanari and Shah [38], who showed that Belief Propagation does the trick up to d ∼
logk. Their analysis is based on Gibbs uniqueness, an extremely strong spatial mixing property that fails to hold
for (much) larger d . In particular, Gibbs uniqueness implies condition (1.8). Moreover, in the case k = 2 Gibbs
uniqueness holds up to the satisfiability threshold [17].

Recently Galanis, Goldberg, Guo and Yang [30] proposed a fully polynomial-time approximation scheme for
computing Z (Φ,∞) for large enough k and d ≤ 2k/301. While avoiding an explicit connection to the replica sym-
metry assumption (1.8), they seize upon the technique of Moitra [36] for approximately counting satisfying assign-
ments of formulas with bounded variable degrees. It would be interesting to see if this approach extends to finite
β and if a proof of (1.8) can be salvaged from the techniques from [30, 36].

A key feature of the k-SAT problem that goes a long way to explaining the technical difficulty of the model is
that the marginals of the Boltzmann distribution vary from one variable to another. This manifests itself in the fact
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that the limiting distribution π⋆

d ,β from Proposition 2.3 is non-trivial [37]. The distribution is generally a mixture

of a discrete and a continuous probability measure. As a result, we do not expect that there is a simple analytic
expression for the limiting value of the Bethe free energy in Theorem 1.1. On a technical level one of the main
contributions of this article is that we manage to deal with the inherent asymmetry of the problem. By comparison,
the replica symmetric regime of symmetric problems where the relevant Belief Propagation fixed point is trivial
(e.g., the uniform distribution) is well understood. In this case the counterpart of Theorem 1.1 is essentially trivial
and the existence and location of the replica symmetry breaking phase have been established precisely [8, 15, 22].
But of course quite a few prominent problems do not possess symmetry. For instance, apart from the k-SAT model
the hard-core model on random graphs springs to mind.

Beyond probabilistic combinatorics and computer science, the random k-SAT model has been studied as a di-
luted spin glass model. Using a combination of the interpolation method and spatial mixing arguments, Panchenko
and Talagrand [40, 43, 47] studied the model in the case of very low d and/or β, known as the “high-temperature”
version of the model. Additionally, Panchenko [41] obtained a variational formula for limn→∞ n−1

E[log Z (Φ,β)].
However, this formula does not easily reveal the connection with Belief Propagation, nor the existence or location
of the replica symmetry breaking phase transition. Generally speaking, the analysis of diluted models with sparse
interactions appears to lead to less explicit solutions than in the case of models with full interactions such as the
Sherrington-Kirkpatrick model [39].

In a few models that bear similarity with random k-SAT it has been possible to move beyond the replica symmet-
ric phase. For example, the 1-step replica symmetry breaking phase has been investigated in detail in the random
regular k-NAESAT model, where even the existence of a Gardener (or full replica symmetry breaking) transition
has been established rigorously [9, 46]. The work of Sly, Sun and Zhang [46] on the 1-step RSB formula for the free
energy combines the interpolation method with the second moment method. Moreover, the proof design from [9]
is somewhat reminiscent of the strategy that we pursue here to establish Theorem 1.2, but the details are very dif-
ferent. More specifically, conceptually [9] deals with a more complex question, namely 1-step versus 2-step replica
symmetry breaking, whereas here we are concerned with replica symmetry versus 1-step replica symmetry break-
ing. That said, the model that we study here is more intricate than the regular k-NAESAT model, which enjoys
relatively strong symmetry properties.

What the present strategy and that pursued in [9] have in common is that we use contraction techniques to pin
down the conceivable solutions to the simpler recurrence (replica symmetry in our case and 1-step RSB in [9]). In
addition, both the present work and [9] use the interpolation method to obtain a contradiction. Yet a difference is
that here the reference point of the analysis is the replica symmetry condition (1.8), whereas the starting point in [9]
is the 1RSB formula for the ground state energy. In particular, the proof of Theorem 1.2 requires a lower bound as
well as an upper bound on the partition function. Moreover, in order to refute the replica symmetric scenario we
need to investigate two different conceivable solutions to replica symmetric ansatz, respectively two fixed points
of Belief Propagation. The first of these corresponds to the scenario that typical pairs of satisfying assignments
are essentially orthogonal; this case we tackle via the contraction method. The second scenario is that typical
Boltzmann samples have a very high overlap. This case requires delicate combinatorial expansion arguments.

Finally, Panchenko [42] studied the random k-SAT model in the limit of large d . The main result is that n−1

E[log Z (Φ,β)] approaches the solution to a certain fully connected k-spin model in the limit of large d ; that is,
a model of Sherrington-Kirkpatrick type that lives on a complete hypergraph. These models are currently better
understood than models on sparse random graphs and, in particular, there are formulas for the approximate value
of the partition function that match the so-called full replica symmetry breaking predictions from physics [39].
However, the regime of d where Panchenko’s results bite is well beyond the k-SAT threshold and, indeed, a full
replica symmetry breaking regime is not expected to occur in the satisfiable phase of the random k-SAT model [35].

4. PRELIMINARIES AND NOTATION

A k-SAT formula Φ with a set V (Φ) of variables and a set C (Φ) of clauses can be represented by a bipartite graph
G(Φ) known as the factor graph. In this graph there is an edge between x ∈ V (Φ) and a ∈ C (Φ) iff x occurs in a.
For a vertex v of the graph we let ∂v denote the set of neighbours. Furthermore, for an integer ℓ ≥ 1 we let ∂ℓv

be the set of vertices at distance precisely ℓ from v . Where necessary we annotate Φ to clarify the reference to the
8



formula. In addition, for a formula Φ and an assignment σ ∈ {±1}V (Φ) we let

HΦ(σ) =
∑

a∈C (Φ)

1{σ 6|= a}

be the number of clauses that σ violates; the function HΦ is known as the Hamiltonian in physics jargon.
We always write Vn = {x1, . . . , xn } for the variable set of the random formula Φ. For each of the corresponding

2n literals xi ,¬xi we denote by d±
i

the degree of that literal, i.e., the number of clauses where the literal appears.

For the entire literal degree sequence we introduce the symbol d = (d±
i

)i∈[n]. Additionally, let D be the σ-algebra
generated by d ; observe that the total number m of clauses is D-measurable.

We will use the following important theorem about the random k-SAT model.

Theorem 4.1 ([24]). There exist a number k0 > 3 and a sequence dSAT(k) = k2k log2−k(1+ log 2)/2+o(1) such that

for all k ≥ k0 a.a.s. Φ has a satisfying assignment if d < dSAT(k) and fails to possess one if d > dSAT(k).

Theorem 4.1 implies that Z (Φ,β) ≥ Z (Φ,∞) ≥ 1 for all β> 0 and all d < dSAT(k) a.a.s.
Throughout the paper we will be dealing a fair bit with probability distributions on discrete cubes. For finite

sets Ω,V 6= ; we let P (ΩV ) be the set of all probability measures on Ω
V . For a set U ⊂ V and µ ∈ P (ΩV ) we let

µU ∈P (ΩU ) be the joint distribution of the coordinates u ∈U under µ. If U = {u1, . . . ,uℓ} is given explicitly, we use
the shorthand µU =µu1,...,uℓ

. Moreover, a distribution µ ∈P (ΩV ) is (ε,ℓ)-extremal if

∑

U⊂V :|U |=ℓ
dTV(µU ,

⊗

u∈U

µu) < ε

(

|V |
ℓ

)

.

Thus, for most ℓ-sets U ⊂V the joint distribution µU is close in total variation to the product distribution with the
same marginals µu , u ∈U . If ℓ= 2 we just call µ ε-extremal. Hence, because Φ is invariant under permuatations of
the variables, the condition (1.8) posits that the Boltzmann distribution µΦ,β is o(1)-extremal a.a.s. We will apply
the following result repeatedly.

Lemma 4.2 ([7]). For any Ω 6= ;,ε > 0,ℓ≥ 3 there exists δ> 0 such that for all sets V with |V | > 1/δ any δ-extremal

µ ∈P (ΩV ) is (ε,ℓ)-extremal.

Let µ,ν ∈P (ΩV ) and c > 0. We say that µ is c-contiguous w.r.t. ν if µ(E ) ≤ cν(E ) for any E ⊂Ω
V .

Lemma 4.3 ([21]). For any Ω 6= ;,c > 0,ε> 0 there exists δ> 0 such that for all sets V with |V | > 1/δ, any δ-extremal

µ ∈P (ΩV ) and any ν ∈P (ΩV ) that is c-contiguous w.r.t. µ the following statements are true.

(i) ν is ε-extremal.

(ii)
∑

v∈V dTV(µv ,νv ) < ε|V |.

For a probability measure µ on a discrete space Ω and function X :Ω→R we introduce the bracket notation
〈

X ,µ
〉

=
∑

ω∈Ω
X (ω)µ(ω).

Thus,
〈

X ,µ
〉

is the mean of X w.r.t. µ. More generally, if Y : Ωℓ →R for some ℓ≥ 1, then

〈

Y ,µ
〉

=
∑

ω1,...,ωℓ∈Ω
Y (ω1, . . . ,ωℓ)

ℓ
∏

i=1

µ(ωi )

is the expectation of Y w.r.t. µ⊗ℓ.
Apart from discrete distributions we will also be working with spaces of continuous probability measures. For

a Polish space E let P (E) be the space of all probability measures on E. In addition, for a subspace E ⊂ R we
introduce the Lr -Wasserstein space Wr (E) as the space of all probability distributions µ ∈P (E) with

∫

E |x|r dµ(x) <
∞. We endow this space with the Wasserstein metric Wr , thereby turning Wr (E) into a complete metric space. We
recall that the Wasserstein metric is defined as

Wr (µ,ν) = inf

{

(∫

E×E
|x − y |r dγ(x, y)

)1/r

: γ∈P (E×E) is a coupling of µ,ν

}

.

Throughout the paper we use the O-notation to refer to asymptotics as either n, k or β get large. By default
O-symbols refer to the limit as n →∞. However, where the expression inside the O( ·)-symbol depends on k or β
but not on n, it is understood that we mean to take the respective parameter to infinity instead of n. Where there
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is a risk of ambiguity we make the reference explicit by adding a subscript. Thus, Ok (1) stands for an expression
that remains bounded in the limit of large k. Naturally, the same conventions also apply to o( ·), Ω( ·), Θ( ·). In
addition, we use symbols such as Õ( ·) to suppress logarithmic factors. For example, Õ(n) can be written out as
O(n logO(1) n) while Õ(2k ) stands for a term of order kO(1)2k . Moreover, in the entire paper we tacitly assume that
k,n exceed large enough absolute constants k0,n0, respectively.

We also need a few basic large deviations inequalities. Recall that the Kullback-Leibler divergence of two prob-
ability measures µ,ν ∈P (Ω) is defined as

DKL
(

µ‖ν
)

=
∑

ω∈Ω
µ(ω) log

µ(ω)

ν(ω)
∈ [0,∞],

with the conventions 0log 0= 0log 0
0 = 0.

Lemma 4.4 (“Chernoff bound”). Suppose that X has a binomial distribution Bin(n, p). Then

P
[

X ≥ qn
]

≤ exp
(

−nDKL
(

Be(q)‖Be(p)
))

if q > p,

P
[

X ≤ qn
]

≤ exp
(

−nDKL
(

Be(q)‖Be(p)
))

if q < p.

Lemma 4.5 (“Bennett’s inequality”). Suppose that X is a Po(λ) variable. Then

P (X ≥ λ+ x) ≤ exp
(

x − (λ+ x) log
(

1+
x

λ

))

≤ exp

(

−
x2

2λ+2x/3

)

for any x ≥ 0, (4.1)

P (X ≤ λ− x) ≤ exp
(

−x − (λ− x) log
(

1−
x

λ

))

≤ exp

(

−
x2

2λ

)

for any 0≤ x <λ. (4.2)

Finally, we remind ourselves of the well-known fact that Belief Propagation “is exact on trees”. To be precise,
let T be a k-SAT formula whose factor graph G(T ) is a tree. Then we can introduce Belief Propagation on T via
(2.10)–(2.12). The following statement provides that for large enough t these recurrences render the Boltzmann
marginals of T .

Theorem 4.6 ([34, Theorem 14.4]). Assume T is a k-SAT instance whose factor graph G(T ) is a tree and that t exceeds

the diameter of G(T ). Then for all variables x of T and any β> 0 we have µT,β({σx = 1}) =µT,β,x,t (1).

5. MOMENT CALCULATIONS

In this section we prove Proposition 2.1 and Corollary 2.2. Unless specified otherwise we tacitly assume that d ≤ d∗.
Moreover, recalling the definition (2.7) of p = p(k,β), we introduce

u = u(k,β) =
1−2p

2p(eβ−1)
∈ (0,1). (5.1)

5.1. Overview. As we saw in Section 2.1, we cannot hope to prove Proposition 2.1 by simply calculating the second
moment of the partition function Z (Φ,β). This is because the expression (2.6) for the second moment attains its
maximum at a value of α strictly greater than 1/2. To solve this problem we will replace Z (Φ,β) by a modified
random variable for which the overlap value α= 1/2 dominates by design. The precise construction of this random
variable borrows an idea from the work of Achlioptas and Peres [5] on k-SAT with hard constraints (i.e., β =∞).
Namely, we call an assignment σ ∈ {±1}Vn balanced if

∑

x∈Vn

σx (d+
x −d−

x ) =
{

0 if km is even,

1 otherwise.
(5.2)

Hence, if we inspect the truth values of the km literals as they appear in the m clauses, we observe as many ‘true’
as ‘false’ literals, up to an additive error of one. Further, we call a balanced assignment σ strongly balanced if

∣

∣

∣

∣

∣

∑

x∈Vn

σx1{d+
x = d+,d−

x = d−}

∣

∣

∣

∣

∣

≤
p

n for all integers d+,d− ≥ 0. (5.3)

Thus, under a strongly balanced assignment about half the variables with each possible degree constellation
(d+,d−) are set to ‘true’, up to an error of O(

p
n). Let BAL denote the set of all strongly balanced assignments.
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Now our modified version of the partition function reads

Zbal(Φ,β) = exp(−βum)
∑

σ∈BAL

1

{

m
∑

i=1

1{σ 6|= ai } = ⌈um⌉
}

.

Thus, we confine ourselves to strongly balanced assignments that leave precisely ⌈um⌉ clauses unsatisfied. Nat-
urally, it will emerge in due course that the choice (5.1) of u maximises the mean of Zbal(Φ,β). The following two
propositions, which we prove in Sections 5.2 and 5.3, render the first and the second moment of Zbal(Φ,β).

Proposition 5.1. A.a.s. we have

1

n
logE

[

Zbal(Φ,β)
∣

∣

∣D
]

=
(

1−
(k −1)d

k

)

log 2−
d

2
log(p(1−p))+

d

k
log p +o(1).

Proposition 5.2. A.a.s. we have

1

2n
logE

[

Zbal(Φ,β)2
∣

∣

∣D
]

=
(

1−
(k −1)d

k

)

log2−
d

2
log(p(1−p))+

d

k
log p +o(1).

The proofs of Propositions 5.1–5.2 are generalisations of the moment calculations from [22], where assignments
that satisfy all clauses were counted. A significant complication here is that a certain number of clauses are left un-
satisfied. This introduces a further dimension to the second moment analysis, namely the number of clauses that
are left unsatisfied under both assignments, leaving us with a technically far more challenging task. Proposition 2.1
is an easy consequence of Propositions 5.1 and 5.2 and the Paley-Zygmund and Azuma–Hoeffding inequalities.

Proof of Proposition 2.1. The Paley-Zygmund inequality implies that

P
[

Zbal(Φ,β) ≥ E[Zbal(Φ,β) |D]/4 |D
]

≥
E[Zbal(Φ,β) |D]2

4E[Zbal(Φ,β)2 |D]
.

Hence, Proposition 5.2 shows that a.a.s.

P
[

Zbal(Φ,β) ≥ E[Zbal(Φ,β) |D]/4 |D
]

≥ exp(o(n)). (5.4)

Further, combining (5.4) with Proposition 5.1 and using the trivial inequality Z (Φ,β) ≥ Zbal(Φ,β), we obtain

P

[

n−1 log Z (Φ,β) ≥
(

1−
(k −1)d

k

)

log2−
d

2
log(p(1−p))+

d

k
log p +o(1)

]

≥ exp(o(n)). (5.5)

Moreover, because adding or removing a single clause can alter the value of the partition function by no more than
a factor of exp(±β), the Azuma–Hoeffding inequality shows that for any t > 0,

P
[∣

∣log Z (Φ,β)−E[log Z (Φ,β)|m]
∣

∣≥ t |m
]

≤ 2exp(−t 2/(2β2m)). (5.6)

Thus, combining (5.5) and (5.6), we conclude that

liminf
n→∞

n−1
E[log Z (Φ,β)] ≥

(

1−
(k −1)d

k

)

log2−
d

2
log(p(1−p))+

d

k
log p +o(1),

as desired. �

Let us move on to the proof of Corollary 2.2 concerning the tails of the distribution of Boltzmann marginals.
Combining Proposition 2.1 with the Azuma–Hoeffding inequality as in (5.6), we conclude that

Z (Φ,β) ≥ exp

(

n

[(

1−
(k −1)d

k

)

log2−
d

2
log(p(1−p))+

d

k
log p +o(1)

])

a.a.s. (5.7)

Of course, this bound directly yields a lower bound on the corresponding sum over pairs of assignments, namely

Z (Φ,β)2 =
∑

σ,τ
e−β

∑m
i=1 1{σ6|=ai }+1{τ6|=ai } ≥ exp

(

2n

[(

1−
(k −1)d

k

)

log2−
d

2
log(p(1−p))+

d

k
log p +o(1)

])

a.a.s.

(5.8)

Let us compare this bound with the expansion (2.5) of the second moment. The contribution to (2.5) of a specific
overlap value α is bounded by exp(n( f (α)+o(1))). Comparing these estimates carefully, we will discover that the
total contribution of all overlap values α that differ significantly from 1/2 is tiny by comparison to (5.8). As a
consequence, a.a.s. the overlap of two independent random samples σ,σ′ drawn from the Boltzmann distribution
must be close to 1/2. The following corollary provides a precise statement of this observation.

11



Corollary 5.3. We have E
[

µΦ,β({|α(σ,σ′)−1/2| > k92−k/2})
]

= o(1).

Finally, Corollary 2.2 is an easy consequence of Corollary 5.3 and general facts about Boltzmann distributions.
The details can be found in Section 5.4.

5.2. Proof of Proposition 5.1. As a first step we estimate the number of balanced assignments.

Lemma 5.4. A.a.s. we have |BAL| = 2n+o(n).

Proof. The Chernoff bound shows that d+
x ,d−

x ≤ logn a.a.s. for all x ∈Vn . Moreover, Chebyshev’s inequality easily
shows that for a uniformly random ζ∈ {±1}Vn , for any d+,d− ≤ log n we have

P

[∣

∣

∣

∣

∣

∑

x∈Vn

ζx1{d+
x = d+,d−

x = d−}

∣

∣

∣

∣

∣

≤
p

n |D
]

=Ω(1). (5.9)

Consequently, ζ satisfies (5.3) with probability exp(O(log2 n)). Further, the central limit theorem shows that a.a.s.

P

[∣

∣

∣

∣

∣

∑

x∈Vn

(

1− 1
{

d+
x = 1,d−

x = 0
})

ζx (d+
x −d−

x )

∣

∣

∣

∣

∣

≤
p

n/2 | ζ satisfies (5.3),D

]

=Ω(1). (5.10)

Finally, there are Θ(n) variables x ∈ Vn such that d+
x = 1, d−

x = 0 a.a.s. and hence Stirling’s formula shows that for
any integer h with |h| ≤

p
n/2 we have

P

[

∑

x∈Vn

1
{

d+
x = 1,d−

x = 0
}

ζx = h | ζ satisfies (5.3),D

]

=Ω(n−1/2). (5.11)

Since
∑

x∈Vn

(

1− 1
{

d+
x = 1,d−

x = 0
})

ζx (d+
x −d−

x ) and
∑

x∈Vn
1
{

d+
x = 1,d−

x = 0
}

ζx are conditionally independent given
D, (5.9)–(5.11) imply that a.a.s. P [ζ∈ BAL |D]= exp(o(n)), whence the assertion is immediate. �

Let us now fix any strictly balanced assignment σ. Given D and σ, the only randomness left is the way in which
the positive and negative occurrences of the individual variables are matched to the clauses. To be precise, since
we only need to know the number of clauses that will be left unsatisfied, we do not care about the identity of the
underlying variable of a literal in a given clause, but only about its truth value. Therefore, we can think of the
positive and negative variable occurrences as tokens that are labelled either ‘true’ or ‘false’. Hence, a variable x

gives rise to d+
x ‘true’ and d−

x ‘false’ tokens if σx = 1, and to d+
x ‘false’ and d−

x ‘true’ tokens if σx =−1. In effect, we
just need to study the number of clauses that receive k ‘false’ tokens if we put the km tokens down randomly upon
the m clauses. In fact, since σ is strictly balanced, we know that the precise number of ‘true’ tokens equals

∑

x∈Vn

d+
x 1{σx = 1}+d−

x 1{σx =−1} = ⌈km/2⌉. (5.12)

Of course, the remaining ⌊km/2⌋ tokens must be ‘false’.
To study this token shuffling experiment we introduce an auxiliary probability space. Let (χi , j )i , j≥1 be a family

of Rademacher variables such that P[χi , j = 1] = p for all i , j . The idea is that χi ,1 , . . . ,χi ,k represent the k tokens
that clause i receives. Of course, in order to faithfully represent the token experiment we need to ensure that (5.12)
is satisfied, i.e., that the total number of +1-tokens comes to ⌈km/2⌉. Thus, we need to condition on the event

B =
{

m
∑

i=1

k
∑

j=1

1{χi , j = 1} = ⌈km/2⌉
}

.

We need to compute the conditional probability that given B the total number of clauses that only receive −1-
tokens equals ⌈um⌉. Hence, introducing

Sm =
{

m
∑

i=1

1

{

max
j∈[k]

χi , j =−1

}

= ⌈um⌉
}

, we obtain E[Zbal(Φ,β) |D]= exp
(

−βum
)

|BAL| ·
P [S ∩B|m]

P [B|m]
. (5.13)

Since Lemma 5.4 already shows that |BAL| = 2n+o(n), the remaining challenge is to calculate P [Sm |Bm]. To this
end we calculate P [Bm ], P [Sm ] and P [Bm |Sm ] and use Bayes’ formula.

Lemma 5.5. We have P [Bm] =
( km
⌈km/2⌉

)

p⌈km/2⌉(1−p)km−⌈km/2⌉.

Proof. This is because the random variables χi , j are mutually independent. �
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Lemma 5.6. A.a.s. we have P [S |D]=
( m

um

)

(1−p)k⌈um⌉(1− (1−p)k )m−⌈um⌉.

Proof. Because the χi , j are independent, for any given index i ∈ [m] we have P[max j∈[k]χi , j = −1] = (1− p)k ,

independently of all others. Thus, the number i ∈ [m] with max j∈[k]χi , j =−1 has distribution Bin(m, (1−p)k). �

Lemma 5.7. A.a.s. we have P [B |S ,D].

Proof. Due to (2.7) and the choice of u a.a.s. we have

E

[

m
∑

i=1

k
∑

j=1

1

{

χi , j = 1
}

|S ,D

]

=
(m −⌈um⌉)kp

1− (1−p)k
= dn

(

1−
(1−p)k

2p exp(β)

)

·
p

1− (1−p)k
+O(

p
n) =

km

2
+O(

p
n).

Therefore, the assertion follows from the local limit theorem for sums of independent random variables. �

Proof of Proposition 5.1. Combining Lemmas 5.4, 5.5, 5.6 and 5.7, we conclude that a.a.s.

logE[Zbal(Φ,β) |D] = (n−km) log2−
km

2
log(p(1−p))

+kum log(1−p)+ (1−u)m log(1− (1−p)k )−βum + log

(

m

um

)

+o(n)

= n

[

(1−d) log 2−
d

2
log p +

d

2

(

(1−p)k

2p exp(β)
−1

)

log(1−p)

+
d

k

(

1−
(1−p)k

2p exp(β)

)

log(1− (1−p)k )−
βdu

k
−

d

k

(

u log(u)+ (1−u) log(1−u)
)

+o(1)

]

.

Simplifying the above using the definition of u and (2.7) yields the desired expression. �

5.3. Proof of Proposition 5.2. The weighted overlap of two truth assignments σ,τ ∈ {±1}Vn is defined as

ω(σ,τ) =
1

km

∑

x∈Vn

1{σx = τx = 1}d+
x + 1{σx = τx =−1}d−

x .

Thus, the weighted overlap equals the fraction of literal occurrences that evaluate to ‘true’ under both σ,τ. Let
O =O(d ) = {ω(σ,τ) : σ,τ ∈ {±1}Vn } be the set of all conceivable weighted overlaps. Introducing

E(ω) =
∑

σ,τ∈BAL

1{ω(σ,τ) =ω} exp(−2βum)P

[

m
∑

i=1

1{σ 6|= ai } =
m
∑

i=1

1{τ 6|= ai } = ⌈um⌉ |D
]

, (5.14)

we can then write the second moment as E[Zbal(Φ,β)2 |D] =
∑

ω∈O E (ω).
We will use two separate arguments to estimate E (ω) for different regimes of ω. The first regime that we consider

is ω close to 1/4. This will turn out to be the dominant case.

Proposition 5.8. A.a.s. max{E (ω) : ω ∈O , |ω−1/4| ≤ k1002−k/2} ≤ exp(o(n))E[Zbal(Φ,β) |D]2.

The proof of Proposition 5.8 can be found in Section 5.3.1. Moving on to weighted overlaps far from 1/4, we will
derive the following bound on E(ω) in terms of the function f (α) from (2.6).

Proposition 5.9. A.a.s. max{E (ω) : ω ∈O , |ω−1/4| > k1002−k/2} ≤ exp
(

n max{ f (α) :α ∈ [1/2+k902−k/2,1]}
)

.

We prove Proposition 5.9 in Section 5.3.2. Finally, in Section 5.3.3 we will bound f (α) as follows.

Proposition 5.10. We have max{ f (α) : α∈ [1/2+k902−k/2,1]} < 2(1− (k −1)d/k ) log2−d log(p(1−p))+2d log(p)/k.

Proposition 5.2 is an easy consequence of Propositions 5.9–5.10.

Proof of Proposition 5.2. Combining Propositions 5.1, 5.9 and 5.10, we conclude that a.a.s.

max
{

E (ω) : ω ∈O , |ω−1/4| > k1002−k/2
}

≤ exp(−Ω(n))E[Zbal(Φ,β) |D]2. (5.15)

Since |O | = O(n) a.a.s., Proposition 5.8, (5.14) and (5.15) imply that E[Zbal(Φ,β)2 |D] ≤ exp(o(n))E[Zbal(Φ,β) |D]2

a.a.s., as desired. �
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5.3.1. Proof of Proposition 5.8. As in the proof of Proposition 5.1 we begin by estimating the number of pairs of
balanced assignments with a given weighted overlap. Subsequently we will switch to an auxiliary probability space
to calculate the probability that both such assignments happen to violate precisely ⌈um⌉ clauses. Hence, draw
τ,τ′ ∈ BAL uniformly and independently.

Lemma 5.11. A.a.s. we have P
[∣

∣ω(τ,τ′)−1/4
∣

∣> ε |D
]

≤ 2exp
(

− ε2m2

4d 2n
+o(n)

)

for all ε> 0.

Proof. Let ζ,ζ′ ∈ {±1}Vn be drawn uniformly and independently. Then Lemma 5.4 implies that a.a.s.

P
[∣

∣ω(τ,τ′)−1/4
∣

∣> ε |D
]

≤ exp(o(n))P
[∣

∣ω(ζ,ζ′)−1/4
∣

∣> ε |D
]

. (5.16)

Furthermore, since the pairs (ζx ,ζ′x ) ∈ {±1}2 are mutually independent and changing (ζx ,ζ′x ) can alter ω(ζ,ζ′) by
at most d x /(km), the Azuma–Hoeffding inequality yields

P
[∣

∣ω(ζ,ζ′)−1/4
∣

∣> ε |D
]

≤ 2exp

(

−
ε2(km)2

2
∑

x∈Vn
d 2

x

)

. (5.17)

Finally, since
∑

x∈Vn
d 2

x ≤ 2d2n a.a.s., (5.17) and (5.16) imply the assertion. �

Like in Section 5.2 we now fix any two assignments τ,τ′ with a given weighted overlap ω such that

|ω−1/4| ≤ k1002−k/2. (5.18)

Given τ,τ′,D, the experiment of actually constructing the random formula Φ boils down to matching the km lit-
eral slots in the m clauses with the positive/negative occurrences of the variables x1, . . . , xn . But once again we do
not actually care to know the identities of the literals in the various clauses, but only their truth value combina-
tions under τ,τ′. Hence, instead of actually matching literals to clauses, we might as well think of merely tossing
tokens that indicate the truth value combinations (1,1),(1,−1),(−1,1),(−1,−1) of the literals onto the clauses. To
be precise, because τ,τ′ are balanced, the fractions of tokens of each of the four types work out to be

ω11 =ω, ω1−1 =ω−11 =
1

2
−ω11 +

1{km is odd}

km
, ω−1−1 = 1−ω11 −2ω1−1. (5.19)

Hence, we just need to work out the probability that if we randomly put down kmω11,kmω1−1,kmω−11,kmω−1−1

tokens of these four types onto the m clauses, precisely ⌈um⌉ clauses will receive k tokens of type either (−1,1) or
(−1,−1) and, symmetrically, precisely ⌈um⌉ clauses will receive tokens of type (1,−1) or (−1,−1) only.

As in the first moment calculation, in order to calculate this probability it is convenient to move to an auxiliary
probability space. Specifically, let (p11, p1−1, p−11, p−1−1) ∈ (0,1)4 be a probability distribution on {±1}2, i.e., p11 +
p1−1 + p−11 + p−1−1 = 1, such that p1−1 = p−11; we will choose expedient values of p11, . . . , p−1−1 in due course.
Moreover, let (χi j ,χ′

i j
)i , j≥1 be a sequence of i.i.d. random pairs (χi j ,χ′

i j
) ∈ {±1}2 such that

P

[

χi j = s, χ′
i j = t

]

= pst (s, t =±1). (5.20)

Further, let

B
⊗ =

{

m
∑

i=1

k
∑

j=1

χi j =
m
∑

i=1

k
∑

j=1

χ′
i j = 1{km is odd}

}

, R
⊗(ω)=

{

m
∑

i=1

k
∑

j=1

1

{

χi j =χ′
i j = 1

}

=ωkm

}

∩B
⊗
m .

Then the sequence (χi j ,χ′
i j

)i∈[m], j∈[k] given R
⊗(ω) is distributed precisely as a random sequence of {±1}2 tokens

comprising precisely kmω11, . . . ,kmω−1−1 tokens of each type. Hence, letting

S
⊗ =

{

m
∑

i=1

1

{

max
j∈[k]

χi j =−1

}

=
m
∑

i=1

1

{

max
j∈[k]

χ′
i j =−1

}

= ⌈um⌉
}

,

we obtain

E[E (ω) |D]= |BAL|2P
[

ω(τ,τ′) =ω |D
]

·P
[

S
⊗

m |R⊗
m(ω)

]

exp
(

−2βum
)

. (5.21)

Since Lemmas 5.4 and 5.11 already yield the first two factors on the r.h.s., we are left to compute P
[

S
⊗

m |R⊗
m (ω)

]

.
As in the first moment calculations we will calculate this conditional probability via Bayes’ formula. Hence, we

begin by computing the unconditional probabilities of R
⊗
m (ω) and S

⊗
m .

Lemma 5.12. We have P
[

R
⊗
m (ω) |D

]

= exp(o(n))
( km
ωkm,(1/2−ω)km,(1/2−ω)km,ωkm

)

(p11p−1−1)ωkm(p1−1p−11)(1/2−ω)km.
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Proof. This is an immediate consequence of the fact that the random pairs (χi j ,χ′
i j

)i , j are mutually independent

and that the individual pairs (χi j ,χ′
i j

) are drawn from the distribution (5.20). �

To calculate the probability of S
⊗

m we need to introduce one extra parameter. Namely, for s ∈ [0,u] we let

S
⊗

m (s) =S
⊗

m ∩
{

m
∑

i=1

1

{

max
j∈[k]

χi j = max
j∈[k]

χ′
i j =−1

}

= ⌈sm⌉
}

.

Thus, s specifies the fraction of clauses that receive (−1,−1) tokens only. Of course, we have the bound

P
[

S
⊗

m

]

≤ m max
s∈[0,u]

P
[

S
⊗

m (s)
]

. (5.22)

Lemma 5.13. For any s ∈ [0,u] we have

P
[

S
⊗

m (s) |D
]

= exp(o(n))

(

m

sm, (u− s)m, (u− s)m, (1−2u+ s)m

)

·pksm
−1−1

(

(p−1−1 +p1−1)k −pk
−1−1

)2(u−s)m (

1− (p1−1 +p−1−1)k − (p−11 +p−1−1)k +pk
−1−1

)(1−2u+s)m
.

Proof. The vectors (χi1 ,χ′
i1 , . . . ,χik ,χ′

ik
)i∈[m] are mutually independent. Moreover, (5.20) provides that

P
[

χi1 =χ′
i1 = ·· · =χik =χ′

ik =−1
]

= pk
−1−1, (5.23)

P

[

χi1 = ·· · =χik =−1∧∃ j ∈ [k] : χ′
i j = 1

]

= (p−11 +p−1−1)k −pk
−1−1, (5.24)

P

[

χ′
i1 = ·· · =χ′

ik =−1∧∃ j ∈ [k] : χi j = 1
]

= (p−11 +p−1−1)k −pk
−1−1, (5.25)

P

[

∃ j , l ∈ [k] : χi j =χ′
i l = 1

]

= 1− (p1−1 +p−1−1)k − (p−11 +p−1−1)k +pk
−1−1. (5.26)

Since S
⊗

m (s) asks that (5.23) occur for ⌈sm⌉ indices i ∈ [m], that (5.24) and (5.26) occur for ⌈um⌉−⌈sm⌉ indices and
that, naturally, (5.26) occur for the remaining m −2⌈um⌉+⌈sm⌉ indices, we obtain the assertion. �

As in the first moment calculation we are going to apply Bayes’ rule

P
[

S
⊗

m |R⊗
m(ω)

]

=
P

[

S
⊗

m (ω)
]

P
[

R
⊗
m (ω)

] ·P
[

R
⊗
m (ω) |S ⊗

m

]

(5.27)

to calculate the probability on the l.h.s. But while we easily obtained succinct expressions for the unconditional
probabilities P

[

S
⊗

m (ω)
]

and P
[

R
⊗
m(ω)

]

for any choice of p11, . . . , p−1−1, calculating P
[

R
⊗
m (ω) |S ⊗

m

]

for general
choices of these parameters appears to be tricky. Yet it turns out that for a diligent choice of the p±1±1 we will
obtain P

[

R
⊗
m(ω) |S ⊗

m

]

= exp(o(n)). To work out the these p±1±1, we need to calculate the conditional expectation
of the number of pairs (χi j ,χ′

i j
) for which specific (±1,±1)-values materialise given S

⊗
m . Thus, for v, w =±1 let

X vw =
1

km

m
∑

i=1

k
∑

j=1

1

{

χi j = v,χ′
i j = w

}

. (5.28)

For brevity we introduce p1 = p11 +p1−1 = p11 +p−11 and p−1 = p−11 +p−1−1 = p1−1 +p−1−1.

Lemma 5.14. A.a.s. for any s ∈ [0,u] we have

E[X 11 |D,S ⊗
m (s)]=

(1−2u+ s)p11

1−2pk
−1 +pk

−1−1

+O(1/n), (5.29)

E[X 1−1 |D,S ⊗
m (s)]=

(u− s)p1−1pk−1
−1

pk
−1 −pk

−1−1

+
(1−2u+ s)p1−1(1−pk−1

−1 )

1−2pk
−1 +pk

−1−1

+O(1/n). (5.30)

Proof. By linearity of expectation we just need to contemplate the {±1}2-sequence (χ11,χ′
11), . . . , (χ1k ,χ′

1k
) that rep-

resents the first clause. Given S
⊗

m (s) the event max j∈[k]χ1 j = max j∈[k]χ
′
1 j

= 1 has probability 1−2u+ s+O(1/m) =
1−2u+s+O(1/n). Furthermore, the conditional probability thatχ11 =χ′

11 = 1 given max j∈[k]χ1 j = max j∈[k]χ
′
1 j

= 1

equals p11/(1−2pk
−1 +pk

−1−1) because the pairs (χ1 j ,χ′
1 j

) j are mutually independent, whence we obtain(5.29).

Similar steps yield (5.30). For with probability u−s+O(1/m) we have max j∈[k]χ1 j =−max j∈[k]χ
′
1 j

= 1 and given

this event the probability that (χ11,χ′
11) = (1,−1) equals p1−1pk−1

−1 /(pk
−1−pk

−1−1); hence the first summand in (5.30).
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Further, as in the previous paragraph, the event max j∈[k]χ1 j = max j∈[k]χ
′
1 j

= 1 has probability 1−2u+ s +O(1/m)

and then the conditional probability of (χ11,χ′
11) = (1,−1) works out to be p1−1(1−pk−1

−1 )/(1−2pk
−1 +pk

−1−1). �

Lemma 5.15. For any r ∈ [1/4−2−k/3,1/4+2−k/3], s ∈ [0,u] the system of equations

(1−2u+ s)p11

1−2pk
−1 +pk

−1−1

= r,
(u− s)p1−1pk−1

−1

pk
−1 −pk

−1−1

+
(1−2u+ s)p1−1(1−pk−1

−1 )

1−2pk
−1 +pk

−1−1

= 1/2, (5.31)

p1−1 = p−11, p11 +p1−1 +p−11 +p−1−1 = 1 (5.32)

possesses a unique solution p±1±1 ∈ [ 1
4 −2−k/3−1, 1

4 +2−k/3−1].

Proof. The proof is based on the inverse function theorem. Implementing the last two constraints (5.32), we sub-
stitute p−11 = p1−1 and p−1−1 = 1−2p1−1 −p11. Hence, the remaining free variables are s, p11, p1−1 and we need to
work out the Jacobi matrix of the map

g :R3 →R
3, (p11, p1−1, s) 7→ (g1, g2, g3) where

g1 =
(1−2u+ s)p11

1−2pk
−1 +pk

−1−1

, g2 =
(u− s)p1−1pk−1

−1

pk
−1 −pk

−1−1

+
(1−2u+ s)p1−1(1−pk−1

−1 )

1−2pk
−1 +pk

−1−1

, g3 = s.

The partial derivatives of g1 come to

∂

∂p11

(1−2u+ s)p11

1−2pk
−1 +pk

−1−1

=
1−2u+ s

1−2pk
−1 +pk

−1−1

−
k(1−2u+ s)p11(2pk−1

−1 −pk−1
−1−1)

(

1−2pk
−1 +pk

−1−1

)2
, (5.33)

∂

∂p1−1

(1−2u+ s)p11

1−2pk
−1 +pk

−1−1

=−
2(1−2u+ s)k(pk−1

−1 −pk−1
−1−1)

(

1−2pk
−1 +pk

−1−1

)2
, (5.34)

∂

∂s

(1−2u+ s)p11

1−2pk
−1 +pk

−1−1

=
p11

1−2pk
−1 +pk

−1−1

. (5.35)

Moreover, the first summand of g2 has derivatives

∂

∂p11

(u− s)p1−1pk−1
−1

pk
−1 −pk

−1−1

=−
(k −1)(u− s)p1−1pk−2

−1

pk
−1 −pk

−1−1

+
k(u− s)p1−1pk−1

−1 (pk−1
−1 −pk−1

−1−1)

(pk
−1 −pk

−1−1)2
, (5.36)

∂

∂p1−1

(u− s)p1−1pk−1
−1

pk
−1 −pk

−1−1

=
(u− s)(pk−1

−1 − (k −1)p1−1pk−2
−1 )

pk
−1 −pk

−1−1

+
k(u− s)p1−1pk−1

−1 (pk−1
−1 −2pk−1

−1−1)

(pk
−1 −pk

−1−1)2
, (5.37)

∂

∂s

(u− s)p1−1pk−1
−1

pk
−1 −pk

−1−1

=−
p1−1pk−1

−1

pk
−1 −pk

−1−1

. (5.38)

Finally, for the second summand we obtain

∂

∂p11

(1−2u+ s)p1−1(1−pk−1
−1 )

1−2pk
−1 +pk

−1−1

=
(1−2u+ s)(k −1)p1−1pk−2

−1

1−2pk
−1 +pk

−1−1

−
(1−2u+ s)kp1−1(1−pk−1

−1 )(2pk−1
−1 −pk−1

−1−1)
(

1−2pk
−1 +pk

−1−1

)2
,

(5.39)

∂

∂p1−1

(1−2u+ s)p1−1(1−pk−1
−1 )

1−2pk
−1 +pk

−1−1

=
(1−2u+ s)

(

1−pk−1
−1 +2(k −1)p1−1pk−2

−1

)

1−2pk
−1 +pk

−1−1

−
2(1−2u+ s)kp1−1(1−pk−1

−1 ))(pk−1
−1 −pk−1

−1−1)
(

1−2pk
−1 +pk

−1−1

)2
, (5.40)

∂

∂s

(1−2u+ s)p1−1(1−pk−1
−1 )

1−2pk
−1 +pk

−1−1

=
p1−1(1−pk−1

−1 )

1−2pk
−1 +pk

−1−1

. (5.41)

16



Hence, for p11 = 1
4 +O(k−4), p1−1 = 1

4 +O(k−4) we obtain

Dg =





1+Õ(2−k ) Õ(2−k ) p11 +Õ(2−k )

Õ(2−k ) 1+Õ(2−k ) p1−1 +Õ(2−k )
0 0 1



 (5.42)

Consequently, (5.50) and the inverse function theorem yield

Dg−1 =





1+Õ(2−k ) Õ(2−k ) −p11 +Õ(2−k )
Õ(2−k ) 1+Õ(2−k ) −p1−1 +Õ(2−k )

0 0 1



 , (5.43)

whence the assertion follows. �

Let p= p(r, s) = (p11,p1−1,p−11,p−1−1) denote the solution to (5.31)–(5.32) provided by Lemma 5.15. By construc-
tion, p−11 = p1−1 and p−1−1 = 1−2p1−1 −p11. Let us make a note of the first and second derivatives of p11,p1−1.

Corollary 5.16. For all 0≤ s ≤ u and ω= 1
2 +O(2−k/3) we have

∂p11

∂ω
= 1+Õ(2−k ),

∂p1−1

∂ω
=−1+Õ(2−k ),

∂p11

∂s
=−p11 +Õ(2−k ),

∂p1−1

∂s
=−p1−1 +Õ(2−k ), (5.44)

∂2p11

∂ω2
,
∂2p11

∂ω∂s
,
∂2p1−1

∂ω2
,
∂2p1−1

∂ω∂s
= Õ(2−k ),

∂2p11

∂s2
,
∂2p1−1

∂s2
= Õ(1). (5.45)

Proof. The assertions regarding the first derivative are immediate from the Jacobi matrix (5.43) of g . Furthermore,
to obtain the bounds on the second derivatives we need to estimate the derivatives of the entries of Dg−1 with
respect to ω, s. Let

a=
∂g1

∂p11
= 1+Õ(2−k ), b=

∂g1

∂p1−1
= Õ(2−k ), c=

∂g1

∂s
=−p11 +Õ(2−k ),

d=
∂g2

∂p11
= Õ(2−k ), e=

∂g2

∂p1−1
= 1+Õ(2−k ), f=

∂g2

∂s
=−p1−1 +Õ(2−k )

denote the entries in the first two rows of Dg . Revisiting the explicit expressions (5.33)–(5.41) for these partial
derivatives, we verify that the second partial derivatives satisfy

∂a

∂p11
,

∂a

∂p1−1
,
∂b

∂p11
,

∂b

∂p1−1
,

∂c

∂p11
,

∂c

∂p1−1
,
∂d

∂p11
,

∂d

∂p1−1
,

∂e

∂p11
,

∂e

∂p1−1
,

∂f

∂p11
,

∂f

∂p1−1
= Õ(2−k ),

∂a

∂s
,
∂d

∂s
,
∂e

∂s
= Õ(1),

∂b

∂s
= Õ(2−k ),

∂c

∂s
,
∂f

∂s
= 0.

Consequently, using (5.44) and the chain rule, we obtain

∂

∂ω

[( e

ae−bd

)

∣

∣

p11=p11,p1−1=p1−1

]

=
∂e

∂p11
|p11=p11,p1−1=p1−1

∂p11
∂ω + ∂e

∂p1−1
|p11=p11 ,p1−1=p1−1

∂p1−1
∂ω

ae−bd

+
e
(

∂(ae−bd)
∂p11

|p11=p11,p1−1=p1−1
∂p11
∂ω + ∂(ae−bd)

∂p1−1
|p11=p11,p1−1=p1−1

∂p1−1
∂ω

)

(ae−bd)2

= Õ(2−k ). (5.46)

Similarly,

∂

∂ω

[(

b

ae−bd

)

∣

∣

p11=p11,p1−1=p1−1

]

,
∂

∂ω

[(

d

ae−bd

)

∣

∣

p11=p11 ,p1−1=p1−1

]

,
∂

∂ω

[( a

ae−bd

)

∣

∣

p11=p11,p1−1=p1−1

]

= Õ(2−k ),

(5.47)

∂

∂ω

[(

bf− ce

ae−bd

)

∣

∣

p11=p11 ,p1−1=p1−1

]

,
∂

∂ω

[(

af− cd

ae−bd

)

∣

∣

p11=p11 ,p1−1=p1−1

]

= Õ(2−k ),

(5.48)

∂

∂s

[(

bf− ce

ae−bd

)

∣

∣

p11=p11 ,p1−1=p1−1

]

,
∂

∂s

[(

af− cd

ae−bd

)

∣

∣

p11=p11 ,p1−1=p1−1

]

= Õ(1), (5.49)
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Finally, we reminder ourselves of the following elementary formula: for any s,t,u,v,w,x such that sw− tv 6= 0,





s t u

v w x

0 0 1





−1

=





w
sw−tv − t

sw−tv
tx−uw
sw−tv

− v
sw−tv

s
sw−tv − sx−uv

sw−tv
0 0 1



 . (5.50)

Combining (5.46)–(5.49) with the formula (5.50) for the Jacobian of g−1, we obtain (5.45). �

We next verify that with the choice p±1±1 = p±1±1 we may neglect the conditional probabilityP [Rm (ω) |D,S (s)].

Lemma 5.17. A.a.s. at the point p±1±1 = p±1±1 we have P
[

R
⊗
m(ω) |D,S ⊗

m (s)
]

= exp(o(n)).

Proof. Given S
⊗

m (s) the random variables X ±1±1 from (5.28) can be written as sums of m independent random
variables. Indeed, because the pairs (χi j ,χ′

i j
) are identically distributed, instead of conditioning on S

⊗
m (s) we may

condition on the event S
⊗

0,m (s) that

• χi j =χ′
i j
=−1 for i = 1, . . . ,⌈sm⌉, j ∈ [k],

• max j∈[k]χi j = 1 and max j∈[k]χ
′
i j
=−1 for i = ⌈sm⌉+1, . . . ,⌈um⌉,

• max j∈[k]χi j =−1 and max j∈[k]χ
′
i j
= 1 for i = ⌈um⌉+1, . . . ,2⌈um⌉−⌈sm⌉,

• max j∈[k]χi j = max j∈[k]χ
′
i j
= 1 for i = 2⌈um⌉−⌈sm⌉, . . . ,m.

Evidently, given S
⊗

0,m (s) the random variables X vw (i )= 1
km

∑k
j=1 1{χi j = v,χ′

i j
= w} with v, w =±1 are independent

for all i ∈ [m]. Moreover, X vw =
∑m

i=1 X vw (i ) and due to (5.29)–(5.30) the choice p±1±1 = p±1±1 ensures that

E[X vw |S ⊗
0,m (s)]=ωvw +O(1/n). (5.51)

Hence, assuming that m ∼ dn/k is about as large as its expectation, we can apply the local limit theorem for sums
of independent random variables to the conditional random variables X vw given S0,m to conclude that

P
[

R
⊗
m (ω) |D,S ⊗

m (s)
]

=P
[

∀v, w ∈ {±1} : X vw =ωvw |D,S ⊗
m (s)

]

=Ω(n−3/2) = exp(o(n)),

thereby completing the proof. �

Combining Lemmas 5.12, 5.13 and 5.17, we finally obtain a handy bound on P [E (ω) |D]. Indeed, keeping in
mind our convention that p−11 = p1−1 and p−1−1 = 1−p11 −2p1−1, we introduce

F(ω, s, p11, p1−1) =−DKL

(

s,u− s,u− s,1−2u+ s‖pk
−1−1, pk

−1 −pk
−1−1, pk

−1 −pk
−1−1,1−2pk

−1 +pk
−1−1

)

+kDKL
(

ω,1/2−ω,1/2−ω,ω‖p11, p1−1, p1−1, p−1−1
)

. (5.52)

Moreover, with p= p(ω, s) the solution to (5.31)–(5.32) from Lemma 5.15, we let

F (ω, s) =F(ω, s,p11,p1−1). (5.53)

Corollary 5.18. A.a.s. we have m−1 logP
[

S
⊗

m |R⊗
m(ω),D

]

≤ maxs∈[0,u] F (ω, s)+o(1).

Thus, the next item on the agenda is to find the stationary points of F (ω, s) for ω close to 1/2. We begin by
exhibiting an explicit stationary point.

Lemma 5.19. We have DF (1/4,u2) = 0 and d
k

F (1/4,u2) =− 2(k−1)d
k

log 2−d log(p(1−p))+ 2d
k

log p + 2d
k
βu.

Proof. With p the solution to (2.7), we verify directly that at the point ω= 1/4, s = u2 the solution to (5.31) reads

p11 = p2, p1−1 = p−11 = p(1−p), p−1−1 = (1−p)2. (5.54)

Hence, we obtain the formula for F (1/4,u2) by simply plugging (5.54) into (5.53). Moreover, using the formulas
∂
∂y y log

y
z = 1+ log

y
z , ∂

∂z y log
y
z =− y

z we compute

∂F

∂ω
= k

[

2log 2+ log
ω

p11
+ log

ω

1−p11 −2p1−1
−2log

1−2ω

p1−1

]

. (5.55)
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Substituting (5.54) into (5.55), we find

∂F

∂ω
=

∣

∣

∣

ω=1/4,p11=p2 ,p1−1=p(1−p)
= 0, and similarly (5.56)

∂F

∂s
=− log

s

(1−2p1−1 −p11)k
+2log

u− s

(1−p1−1 −p11)k − (1−2p1−1 −p11)k

− log
1−2u+ s

1−2(1−p11 −p1−1)k + (1−2p1−1 −p11)k
. (5.57)

As substituting s = u2, p11 = p2 and p1−1 = p(1−p) into the last expression yields zero, we conclude that

∂F

∂s

∣

∣

∣

s=u2,p11=p2 ,p1−1=p(1−p)
= 0. (5.58)

Moreover,

∂F

∂p11
=−

ks

1−p11 −2p1−1
−

2(u− s)k
(

(1−2p1−1 −p11)k−1− (1−p11 −p1−1)k−1
)

(1−2p1−1 −p11)k − (1−p11 −p1−1)k

−
(1−2u+ s)k

(

(1−2p1−1 −p11)k−1−2(1−p11 −p1−1)k−1
)

1−2(1−p11 −p1−1)k + (1−2p1−1 −p11)k
−

(1−2p11 −2p1−1)kω

p11(1−2p1−1 −p11)
. (5.59)

Hence,

∂F

∂p11

∣

∣

∣ ω=1/4,s=u2

p11=p2

p1−1=p(1−p)

=−
u2k

(1−p)2
−

2u(1−u)k
(

1− (1−p)k−1
)

(1−p)(1− (1−p)k )
+

k(1−u)2(1−p)k−1
(

2− (1−p)k−1
)

(1− (1−p)k )2
−

k(1−2p)

4p2(1−p)2
.

Further, recalling that u = (1−2p)/(2p(exp(β)−1)) and that p is the solution to (2.7) and hence eβ = (1−p)k

2p−1+(1−p)k ,

we obtain

∂F

∂p11

∣

∣

∣ ω=1/4,s=u2

p11=p2

p1−1=p(1−p)

= 0. (5.60)

In addition,

∂F

∂p1−1
=−

2ks

1−2p1−1 −p11
−

2k(u− s)
(

2(1−2p1−1 −p11)k−1 − (1−p11 −p1−1)k−1
)

(1−2p1−1 −p11)k − (1−p11 −p1−1)k

−
2k(1−2u+ s)

(

(1−2p1−1 −p11)k−1 − (1−p11 −p1−1)k−1
)

1−2(1−p11 −p1−1)k + (1−2p1−1 −p11)k
+k

(

2ω

1−2p1−1 −p11
−

1−2ω

p1−1

)

. (5.61)

Hence, using u = (1−2p)/(2p(exp(β)−1)) and (2.7), we obtain

∂F

∂p1−1

∣

∣

∣ ω=1/4,s=u2

p11=p2

p1−1=p(1−p)

= 0. (5.62)

Combining (5.56), (5.58), (5.60) and (5.62) with the chain rule, we conclude that DF (1/4,u2)= 0. �

We are now going to compare maxs∈[0,u] F (ω, s) for ω close to 1/4 with F (1/4,u2). To this end we need to get a
handle on the value of the maximiser s of F (ω, s) for a given ω. Hence, we investigate the second partial derivatives
of the function F from (5.52). Let

g (ω, p11, p1−1) = DKL
(

ω,1/2−ω,1/2−ω,ω‖p11, p1−1, p1−1, p−1−1
)

,

h(s, p11, p1−1) =−DKL

(

s,u− s,u− s,1−2u+ s‖pk
−1−1, pk

−1 −pk
−1−1, pk

−1 −pk
−1−1,1−2pk

−1 +pk
−1−1

)

denote the two constituent terms of (5.52).
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Lemma 5.20. For ω= 1
4 +Õ(2−k/2) and 0 ≤ s ≤ u we have

∂2g

∂ω2

∣

∣

∣ p11=p11
p1−1=p1−1

+
∂2g

∂p2
11

∣

∣

∣ p11=p11
p1−1=p1−1

(

∂p11

∂ω

)2

+
∂2g

∂p2
1−1

∣

∣

∣ p11=p11
p1−1=p1−1

(

∂p1−1

∂ω

)2

+2
∂2g

∂ω∂p11

∣

∣

∣ p11=p11
p1−1=p1−1

∂p11

∂ω

+2
∂2g

∂ω∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

∂p1−1

∂ω
+2

∂2g

∂p11∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

∂p11

∂ω

∂p1−1

∂ω
= Õ(4−k ).

Proof. Direct calculations reveal

∂2g

∂ω2
=

2

ω(1−2ω)
,

∂2g

∂ω∂p11
=−

1−2p1−1 −2p11

p11(1−2p1−1 −p11)
,

∂2g

∂ω∂p1−1
=

2(1−p1−1 −p11)

p1−1(1−2p1−1 −p11)
, (5.63)

∂2g

∂p2
11

=
ω(1−2p11 −2p1−1 +2p2

11 +4p11p1−1)

p2
11(1−2p1−1 −p11)2

, (5.64)

∂2g

∂p2
1−1

=
4(1−ω)p2

1−1 −4(1−2ω)(1−p11)p1−1 + (1−2ω)(p11 −1)2

p2
1−1(1−2p1−1 −p11)2

,
∂2g

∂p11∂p1−1
=

2ω

(1−2p1−1 −p11)2
. (5.65)

Moreover, since Corollary 5.44 shows that
∂p11
∂ω = 1+Õ(2−k ),

∂p1−1
∂ω =−1+Õ(2−k ), we obtain

p11 =ω+Õ(2−k ), p1−1 =
1

2
−ω+Õ(2−k ). (5.66)

Substituting (5.66) into (5.63)–(5.65) yields the assertion. �

Lemma 5.21. For 0 ≤ s ≤ u and ω= 1
4 +Õ(2−k/2) we have ∂2

∂s2 F (ω, s) =−Ω(1/s).

Proof. Combining (5.64) and (5.65) with Corollary 5.16, we find

∂2g

∂p2
11

∣

∣

∣ p11=p11
p1−1=p1−1

(

∂p11

∂s

)2

+
∂2g

∂p2
1−1

∣

∣

∣ p11=p11
p1−1=p1−1

(

∂p1−1

∂s

)2

+2
∂2g

∂p11∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

∂p11

∂s

∂p1−1

∂s
= Õ(1). (5.67)

Moreover, we compute

∂2h

∂s2
=−

1

s
−

2

u− s
−

1

1−2u+ s
,

∂2h

∂p11∂s
,

∂2h

∂p1−1∂s
,
∂2h

∂p2
11

,
∂2h

∂p2
1−1

,
∂2h

∂p11∂p1−1
= Õ(1). (5.68)

Since s ≤ u = Õ(2−k ), the first term in (5.68) is of order −Ω(1/s) =−Ω̃(2k ). Therefore, (5.68) and Corollary 5.16 show

∂2h

∂s2
+

∂2h

∂p2
11

∣

∣

∣ p11=p11
p1−1=p1−1

(

∂p11

∂s

)2

+
∂2h

∂p2
1−1

∣

∣

∣ p11=p11
p1−1=p1−1

(

∂p1−1

∂s

)2

+2
∂2h

∂s∂p11

∣

∣

∣ p11=p11
p1−1=p1−1

∂p11

∂s

+2
∂2h

∂s∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

∂p1−1

∂s
+2

∂2h

∂p11∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

∂p11

∂s

∂p1−1

∂s
=−Ω̃(1/s). (5.69)

Combining (5.67) and (5.69), we see that

∂2F

∂s2
+

∂2F

∂p2
11

∣

∣

∣ p11=p11
p1−1=p1−1

(

∂p11

∂s

)2

+
∂2F

∂p2
1−1

∣

∣

∣ p11=p11
p1−1=p1−1

(

∂p1−1

∂s

)2

+2
∂2F

∂ω∂p11

∣

∣

∣ p11=p11
p1−1=p1−1

∂p11

∂s

+2
∂2F

∂s∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

∂p1−1

∂s
+2

∂2F

∂p11∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

∂p11

∂s

∂p1−1

∂s
=−Ω̃(1/s). (5.70)

Furthermore, the expressions (5.59) and (5.61) for the partial derivatives of F and Corollary 5.16 yield

∂F

∂p11

∣

∣

∣ p11=p11
p1−1=p1−1

∂2p11

∂s2
,

∂F

∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

∂2p1−1

∂s2
= Õ(2−k ). (5.71)

Hence, combining (5.70) and (5.71) with Faà di Bruno’s rule, we conclude that ∂2

∂s2 F (ω, s) =−Ω(1/s). �

Corollary 5.22. For any ω= 1
4 +Õ(2−k/2) the function s ∈ [0,u] 7→ F (ω, s) attains its unique maximum at s = Õ(4−k ).
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Proof. We consider the first derivative ∂
∂s

F (ω, s) for ω = 1
4 + Õ(2−k/2). The partial derivatives of F, which we com-

puted in (5.55), (5.57), (5.59) and (5.61), satisfy

∂F

∂s

∣

∣

∣ p11=p11
p1−1=p1−1

=− log
s

4−k +Õ(8−k )
+2log

u− s

2−k +Õ(4−k )
− log

1−2u+ s

1+Õ(2−k )
,

∂F

∂p11

∣

∣

∣ p11=p11
p1−1=p1−1

,
∂F

∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

= Õ(2−k ). (5.72)

Hence, Corollary 5.16 and the chain rule yield

∂F (ω, s)

∂s
= log

(u− s)2

s(1−2u+ s)
+Õ(2−k ). (5.73)

Since u = Õ(2−k ), (5.73) shows that the equation ∂F (ω,s)
∂s = 0 is satisfied only for s = Õ(4−k ). Thus, the assertion

follows from Lemma 5.21. �

Having estimated the maximiser s of F (ω, s), we now bound the Hessian D2F (ω, s) of F (ω, s).

Lemma 5.23. We have D2F (ω, s) ¹ Õ(4−k )id for all ω= 1
4 +Õ(2−k/2) and s = Õ(4−k ).

The proof requires two intermediate steps.

Claim 5.24. For ω= 1
4 +Õ(2−k/2) and s ≤ u we have

∂F

∂p11

∣

∣

∣ p11=p11
p1−1=p1−1

∂2p11

∂ω2
,
∂F

∂p11

∣

∣

∣ p11=p11
p1−1=p1−1

∂2p11

∂ω∂s
,

∂F

∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

∂2p1−1

∂ω2
,

∂F

∂p1−1

∣

∣

∣ p11=p11
p1−1=p1−1

∂2p1−1

∂ω∂s
= Õ(4−k ).

Proof. The claim follows from (5.72) and (5.45). �

Claim 5.25. For s = Õ(4−k ) and ω= 1
4 +Õ(2−k/2) we have ∂2

∂ω∂s F (ω, s) = Õ(1).

Proof. The second derivative of g with respect to s and ω is bounded because of Corollary 5.16 and as

∂2g

∂s∂w
=−

1

p11

∂p11

∂s
+

2

p1−1

∂p1−1

∂s
+

1

1−2p−1−1 −p11

∂p11

∂s
+

2

1−2p−1−1 −p11

∂p1−1

∂s
. (5.74)

So is the contribution of the first derivative. Thus, we just need to investigate the second derivative of h. The

contribution of ∂2h
∂p2

11
, ∂2h
∂p2

1−1

∂2h
∂p11∂p1−1

is bounded by (5.68) and ∂2h
∂ω∂s = 0. Therefore, the assertion follows from Faà di

Bruno’s rule. �

Proof of Lemma 5.23. Because the Kullback-Leibler divergence is convex and because ∂2F
∂s2 < 0 by Lemma 5.21,

Lemma 5.20 and Claims 5.24–5.25 imply that

D2F (ω, s) ¹H=
(

x y

y z

)

, where x= Õ(4−k ),y= Õ(1),z= Θ̃(4k ).

The eigenvalues of H work out to be 1
2 (x+ z±

√

(x− z)2 +4y2). Therefore, the smaller eigenvalue of D2F (ω, s) has

size −Ω̃(4k ), while the large one is upper bounded by Õ(4−k ). Consequently, D2F ¹ Õ(4−k )id. �

Proof of Proposition 5.8. Corollary 5.18 shows that m−1 logP [E (ω) |D]≤ maxs∈[0,u] F (ω, s)+o(1) a.a.s. Hence, with
s∗(ω) = Õ(4−k ) the unique maximiser of s 7→ F (ω, s), we obtain

m−1 logP
[

S
⊗

m |R⊗
m (ω),D

]

≤ F (ω, s∗(ω))+o(1) ≤ F (1/4,u2)+ (F (ω, s∗(ω))−F (1/4,u2)) a.a.s. (5.75)

Furthermore, Lemma 5.23 and Taylor’s formula imply that

F (ω, s∗(ω))−F (1/4,u2) ≤ Õ(4−k ) · (ω−1/4)2. (5.76)

Therefore, combining (5.21) and (5.75)–(5.76) with Lemma 5.11, we conclude that a.a.s.

E[E (ω) |D]

E[E (1/4) |D]
≤ exp

[

−(ω−1/4)2
(

m2

d2n
+mÕ(4−k )

)

+o(n)

]

= exp
[

−(ω−1/4)2
(

Ω(k−2n)+Õ(2−k )
)

+o(n)
]

≤ exp(o(n)). (5.77)

Finally, the assertion follows from Lemma 5.4, Lemma 5.19 and (5.77). �
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5.3.2. Proof of Proposition 5.9. We need to connect the weighted with the unweighted overlap. To this end we ap-
proximate for a given weighted overlap the dominant contributing unweighted overlap. Let P (ℓ) =P [Po(d/2) = ℓ].

Lemma 5.26. A.a.s. we have

∑

ℓ,ℓ′≥0

(ℓ+ℓ′+1)

∣

∣

∣

∣

∣

P (ℓ)P (ℓ′)−
1

n

∑

x∈Vn

1
{

d+
x = ℓ,d−

x = ℓ′
}

∣

∣

∣

∣

∣

≤
p

n log4 n, max{d+
x ,d−

x : x ∈Vn} ≤ logn. (5.78)

Proof. This follows from routine concentration bounds. Indeed, for ℓ,ℓ′ ≤ log n a straightforward application of
Chebyshev’s inequality shows that |

∑

x∈Vn
1
{

d+
x = ℓ,d−

x = ℓ′
}

− nP (ℓ)P (ℓ′)| ≤
p

n logn a.a.s. Moreover, Bennett’s
inequality shows that d+

x ,d−
x ≤ logn for all x ∈Vn a.a.s. �

If the condition (5.78) is satisfied, then we can express the most likely overlapα that gives rise to a given weighted
overlap ω in terms of a neat optimisation problem:

M(ω) =max −2
∑

d+ ,d−≥0

P (d+)P (d−)
(

α11(d+,d−) logα11(d+,d−)+ (1/2−α11(d+,d−)) log(1/2−α11(d+,d−))
)

s.t.
∑

d+,d−≥0

P (d+)P (d−)(d++d−)α11(d+,d−) = dω, ∀d+,d− ≥ 0 : 0≤α11(d+,d−) ≤ 1/2.

Here the variable α11(d+,d−) represents the fraction of variables with degrees d+,d− that get both set to ‘true’.
Let N (d+,d−) the number of variables x with d+

x = d+,d−
x = d−. Because we only count assignments that satisfy

the strongly balanced condition (5.3), there remain N (d+,d−)(1/2−α11(d+,d−)) variables of degree (d+,d−) set
to (1,−1), another N (d+,d−)(1/2−α11(d+,d−)) set to (−1,1), while the remaining N (d+,d−)(α11(d+,d−)) ones are
set to (−1,−1). Hence, assuming (5.78) the total number of such assignments comes to

(

N (d+,d−)

α11N (d+,d−), (1/2−α11)N (d+,d−), (1/2−α−11)(d+,d−)N (d+,d−),α11(d+,d−)N (d+,d−)

)

= exp
(

−2nP (d+)P (d−)
(

α11 logα11 + (1/2−α11) log(1/2−α11)
)

+o(n)
)

(5.79)

In other words, M(ω) asks to choose α11(d+,d−) so as to maximise the total number of possible assignments with
weighted overlap ω. The following lemma shows that for ω far from 1/4, the optimal solution to M(ω) renders an
unweighted overlap 2

∑

d+ ,d− α11(d+,d−) far from 1/2.

Lemma 5.27. For |ω−1/4| > k1002−k/2 the optimal solution to M(ω) satisfies
∣

∣
1
4 −

∑

d+,d− P (d+)P (d−)α11(d+,d−)
∣

∣≥
k952−k/2.

Proof. We set up the Lagrangian

L=−2
∑

d+ ,d−≥0

P (d+)P (d−)
(

α11(d+,d−) logα11(d+,d−)+ (1/2−α11(d+,d−)) log(1/2−α11(d+,d−))
)

−λ

[

∑

d+,d−≥0

P (d+)P (d−)(d++d−)α11(d+,d−)−dω

]

The derivatives

∂L

∂α11(d+,d−)
=−2P (d+)P (d−)

[

log
2α11(d+,d−)

1−2α11(d+,d−)
+λ(d++d−)

]

,

∂L

∂λ
= dω−

∑

d+ ,d−≥0

P (d+)P (d−)(d++d−)α11(d+,d−).

vanish iff

∑

d+,d−≥0

P (d+)P (d−)(d++d−)α11(d+,d−) = dω, α11(d+,d−) =
1− tanh(λ(d++d−)/2)

4
. (5.80)

Substituting the expression for α11(d+,d−) into the left equation, we obtain

ω=
1

4
−

1

4ded

∑

d+,d−≥0

d++d−

d+!d−!

(

d

2

)d++d−

tanh
λ(d++d−)

2
. (5.81)
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Since the r.h.s. is strictly increasing in λ, this equation has a unique solution for any α ∈ [0,1/2]. In fact, for the
derivative of the r.h.s. we obtain

∂

∂λ

∑

d+,d−≥0

(

d

2

)d++d−
d++d−

d+!d−!
tanh

λ(d++d−)

2
=

∑

d+,d−≥0

(

d

2

)d++d− (

d++d−)2

2(d+!d−!)

(

1− tanh2 λ(d++d−)

2

)

.

In particular, for ω= 0 the choice λ= 0 solves (5.81). Moreover, the derivatives of ω obtained through (5.81) can be
estimated as

∂ω

∂λ
=−

1

8d

∑

d+ ,d−≥0

P (d+)P (d−)(d++d−)2
(

1− tanh2 λ(d++d−)

2

)

=−
d +1

8
+

1

32d
λ2

E[(d++d−)4]+O(d6λ3) =−
d +1

8
+
λ2

32
(d3 +6d2 +7d +1)+O(d5λ3),

∂2ω

∂λ2
=

λ

16
(d3 +6d2 +7d +1)+O(d5λ2) =Θ(λd3).

Because ω= Õ(2−k/2) the inverse function theorem yields ∂λ
∂w

= 8
d+1 =Θ( 1

d
). Thus, ∂2ω

∂λ2 =Θ(d2−k ). Substituting the

approximation for λ that we get from ∂λ
∂w

= 8
d+1 back into (5.80) and summing on d+,d− completes the proof. �

Proof of Proposition 5.9. This is now an immediate consequence of Lemma 5.26, Lemma 5.27 and the elementary
bound (2.5). �

5.3.3. Proof of Proposition 5.10. Toward the proof of the proposition we first derive an explicit approximation of
the term on the r.h.s. We begin by estimating p from (2.7).

Lemma 5.28. We have p = 1
2 −

(

1−e−β
)

2−k−1 +
(

1−e−β
)2

k2−2k−2 +O(k22−3k ).

Proof. The choice (2.7) ensures that

eβ =
(1−p)k

2p −1+ (1−p)k
= 1−

2p −1

2p −1+ (1−p)k
= 1−

2
(

p − 1
2

)

2
(

p − 1
2

)

+
(

1
2 −

(

p − 1
2

))k
.

Hence, p ∈
(

1
2 −2−k

(

1−e−β
)

, 1
2

)

and thus q = p−1/2 ∈
(

−2−k
(

1−e−β
)

,0
)

is the solution to
(

2q +
(

1
2 −q

)k
)

(eβ−1)+

2q = 0. Using the binomial expansion
( 1

2 −q
)k = 2−k −k2−k−1q +O(k22−k q2) we obtain

eβ−1=−
2q

2q +2−k −k2−k−1q +O(k22−k q2)

Hence,

q =
(

eβ−1
)

2−k

k2−k−1
(

eβ−1
)

−2eβ+O(k22−2k )
=−

(

eβ−1
)

2−k

2eβ
+k2−2k−2

(

eβ−1

eβ

)2

+O(k22−3k ),

which implies the assertion. �

Corollary 5.29. We have
(

1−
(k −1)d

k

)

log2−
d

2
log(p(1−p))+

d

k
log p

= log2−
d

k

(

1−e−β
)

2−k +
d(2k −1)

2k
2−2k

(

1−e−β
)2
+O(dk22−3k ).

Proof. Using the approximation for p from Lemma 5.28, we obtain

−
d

2
log(p(1−p))= d log 2−

d

2
log

(

1−
(

1−e−β
)

2−k +
(

1−e−β
)2

k2−2k−1 +O(k22−3k )

)

−
d

2
log

(

1+
(

1−e−β
)

2−k −
(

1−e−β
)2

k2−2k−1 +O(k22−3k )

)
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Moreover,

log

(

1∓
(

1−e−β
)

2−k ±
(

1−e−β
)2

k2−2k−1 +O(k22−3k )

)

=∓
(

1−e−β
)

2−k ±
(

1−e−β
)2

k2−2k−1 −2−2k−1
(

1−e−β
)2

+O(k22−3k ).

Hence,

−
d

2
log(p(1−p))= d log 2+d2−2k−1

(

1−e−β
)2
+O(d k22−3k ). (5.82)

Further, using (2.7), we obtain 2p = 1− (1−e−β)(1−p)k and thus

log(2p) =−
(

1−e−β
)

2−k + (k −1)2−2k−1
(

1−e−β
)2

+O(k22−3k ). (5.83)

Combining (5.82) and (5.83) completes the proof. �

Having estimated the expression on the r.h.s. of Proposition 5.10, we proceed to investigate the function f (α).
Its derivatives read

f ′(α) = log
1−α

α
+

dαk−1(1−e−β)2

2k (1−21−k (1−e−β)+αk 2−k (1−e−β)2)
, (5.84)

f ′′(α) =−
1

α
−

1

1−α
+

(k −1)dαk−2(1−e−β)2

2k (1−21−k (1−e−β)+2−kαk (1−e−β)2)
−

kdα2(k−1)(1−e−β)4

22k (1−21−k (1−e−β)+2−kαk (1−e−β)2)2
. (5.85)

Claim 5.30. We have f (α) ≤ f (1−α) for all α< 1/2. Moreover, f is concave on the interval [1/2,1/2+o(k−3)], where

it attains a local maximum at α∗ = 1
2 +O(d4−k ) with

f (α∗) = 2log 2−
2d(1−e−β)

2k

(

1+2−k−1(1−e−β)
)

+O(k84−k ). (5.86)

Proof. The first assertion follows immediately from the symmetry of the entropy function and the fact that α 7→
1−21−k (1−exp(−β))+2−kαk (1−exp(−β))2 is increasing. We also read off of (5.84) that f ′(1/2) = O(d4−k ), while
(5.85) shows that f ′′(α) = −4+o(1) if α = 1/2+o(k−3). Hence, f attains a local maximum at α∗ = 1/2+O(d4−k ).
Finally, Taylor’s formula shows that f (α∗) = f (1/2)+O(k4d216−k ), whence we obtain (5.86). �

Claim 5.31. The function f (α) is monotonically decreasing on (1/2+k−4,1−2log(k)/k).

Proof. For α∈ [1/2+k−4,0.99] we see that log((1−α)/α) =−Ω(k8) while

dαk−1(1−e−β)2

2k (1−21−k (1−e−β)+αk 2−k (1−e−β)2)
= exp(−Ω(k)). (5.87)

Hence, (5.84) shows that f is decreasing on this interval. Similarly, for α ∈ (0.99,1−2log(k)/k) we obtain log((1−
α)/α) =−Ω(1), while the l.h.s. of (5.87) is of order o(1). Hence, f ′(α) < 0. �

We are going to prove that for d ≤ d∗ the maximum of f (α) is approximately equal to f (1/2) by comparing the
function value f (1/2) with the function values f (α) for α > 1/2. Since the function α 7→ 1− 21−k (1− exp(−β))+
2−kαk (1− exp(−β))2 is monotonically increasing, we may assume that d = d∗. Actually, in order to facilitate the
proof of Theorem 1.2, in some of the estimates below we will allow for d to take values up to dSAT(k).

Claim 5.32. Assume that d∗ ≤ d ≤ dSAT(k) . Then the function f (α) has only one stationary point in the Interval

[1−2log(k)/k,1−k−3/2], which is a local minimum.

Proof. Substituting α= 1−ε into (5.84) we can write

f ′(α) = logε− log(1−ε)+
d(1−e−β)2 exp(ε−kε+O(kε2))

2k (1+O(2−k ))
. (5.88)

Therefore, for d∗ ≤ d ≤ dSAT(k) the only solution to f ′(α) = 0 is such that ε= (log(k)+O(loglogk))/k. Furthermore,
for the root of f ′(α) we read off (5.85) that f ′′(α) =Ω(k log k) > 0. �

Claim 5.33. Assume that d∗ ≤ d ≤ dSAT(k). Then the function f (α) has only one stationary point in the interval

[1−k−3/2,1], namely a local maximum at α∗ = 1−2−k(1−e−β)2+o(1).
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Proof. Contemplating (5.88), we see that for α= 1−ε with ε < k−3/2 the last summand has the form (1+o(1))(1−
e−β)2k log 2. Hence, the only root of f ′(α) in this interval occurs at ε = ε∗ = 2−k(1−e−β)2+o(1). A glimpse at (5.85)
reveals that f ′′(1−ε∗) < 0. Hence, α∗ = 1−ε∗ is a local maximum. �

Claim 5.34. Assume that d ≤ d∗. Then the global maximum of f (α) is attained at α∗ from Claim 5.30.

Proof. In light of Claims 5.31–5.33 we just need to compare f (α∗) and f (α∗) for d = d∗. Let us estimate them:

f (α∗) ≤ log 2+ε∗(1− logε∗)+
d∗

k
log(1−21−k (1−e−β)+2−k (1−ε∗)k (1−e−β)2)

≤ e−2β log2+10k2−k (1−e−2β)+o(k2−k ), (5.89)

f (α∗) = 2log 2+
2d

k
log

(

1− (1−e−β)2−k
)

= 2e−β log 2+20k2−k (1−e−β)+o(k2−k ). (5.90)

Combining (5.89) and (5.90), we see that f (α∗) > f (α∗) for β≥ 1. �

Proof of Proposition 5.10. Combining Claims 5.31–5.34, we are left to merely compare f (α∗) and the r.h.s. expres-
sion from Proposition 5.10. Comparing the approximation of the latter supplied by Corollary 5.29 with (5.86) com-
pletes the proof. �

5.4. Proof of Corollary 5.3. As an immediate consequence of Proposition 2.1, (5.15) and Markov’s inequality we
obtain that a.a.s. the random formula Φ satisfies

∑

σ,τ∈{±1}n

1

{

|σ ·τ| > k1002−k/2n
} m

∏

i=1

exp
(

−β(1{σ 6|= ai }+ 1{τ 6|= ai })
)

= o(Z (Φ,β)2).

Dividing by Z (Φ,β)2, we obtain

µΦ,β

({

|σ ·σ′| > nk1002−k/2
})

= o(1), (5.91)

whence Corollary 5.3 is immediate.
To prove Corollary 2.2 we combine (5.91) with the following general lemma.

Claim 5.35. Suppose that ν ∈P ({±1}n) satisfies ν
({

|σ ·σ′| ≥ εn
})

< 1/2 and

n
∑

i , j=1

|ν({σi =σ j = 1})−ν({σi = 1})ν({σ j = 1})| = o(n2). (5.92)

Then
∑n

i=1 (ν({σi = 1})−1/2)2 < εn.

Proof. The assumption (5.92) implies together with [21, Lemma 2.11] that the product measure ν⊗ν has the same
property, i.e., that for two independent samples σ,σ′ from ν and for any s, s′, t , t ′ ∈ {±1} we have

n
∑

i , j=1

|ν⊗ν({σi = s,σ j = s′,σ′
i = t ,σ′

j = t ′})−ν⊗ν({σi = s,σ′
i = t }) ·ν⊗ν({σ j = s′,σ′

j = t ′})| = o(n2). (5.93)

Now, for i ∈ [n] let pi = ν({σi = 1}). Then

〈

σi ·σ′
i ,ν

〉

= p2
i + (1−pi )2 −2pi (1−pi )= (1−2pi )2 = 4

(

pi −
1

2

)2

.

Hence,
〈
∑n

i=1 σi ·σ′
i
,ν

〉

= 4
∑n

i=1

(

pi − 1
2

)2
. Therefore, (5.93) and Chebychev’s inequality show

ν

({

n
∑

i=1

σi ·σ′
i ≥

n
∑

i=1

(

pi −
1

2

)2
})

≥ 1/2.

Consequently, the assumption ν
({

|σ ·σ′| ≥ εn
})

< 1/2 implies that
∑n

i=1

(

pi − 1
2

)2 ≤ εn, as desired. �

Proof of Corollary 2.2. The corollary is an immediate consequence of (5.91) and Claim 5.35. �

6. PROOF OF PROPOSITION 2.3

Throughout this section we assume that d ≤ dSAT(k).
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6.1. Outline. The proof of Proposition 2.3 relies on a contraction argument. Specifically, we will be able to describe
the distribution of the BP marginal µT ,β,π,x0 ,t (1) at the root of the random tree T , which we aim to compute, in
terms of an operator R on the space P ([0,1]) of probability measures on the unit interval. To define this operator
let γ+,γ− be Po(d/2) variables and given µ ∈ P ([0,1]) let η = (η+

i j
,η−

i j
)i , j≥1 be random variables with distribution

µ. All these random variables are mutually independent. Then R(µ) ∈P ([0,1]) is the law of the random variable

R(γ+,γ−,η) =

∏γ+

i=1

(

1−
(

1−e−β
)
∏k−1

j=1 η
+
i j

)

∏γ+

i=1

(

1−
(

1−e−β
)
∏k−1

j=1 η
+
i j

)

+
∏γ−

i=1

(

1−
(

1−e−β
)
∏k−1

j=1 η
−
i j

) ∈ (0,1). (6.1)

We write R
t ( ·) for the t-fold iteration of R.

We are going to investigate the operator R on a subspace of P ([0,1]). Specifically, let P
⋆ be the space of all

probability measures µ ∈ P ([0,1]) such that µ([0, x]) = µ([1− x,1]) for all x ∈ [0,1]. Because γ+ and γ− are iden-
tically distributed, (6.1) ensures that R maps the subspace P

⋆ into itself. Further, for any probability measure
π ∈ P ([0,1]) we obtain a probability measure π⋆ ∈ P

⋆ as follows. Draw X from π and independently draw a
Rademacher variable J with E [J ] = 0. Then π⋆ is the distribution of (1+ J(2X −1))/2. The following observation
links R to the Belief Propagation message passing scheme on T .

Lemma 6.1. For any π ∈P ([0,1]) and any t ≥ 1 the random variable µT ,β,π,x0 ,t (1) has distribution R
t (π⋆).

Proof. We first consider the case t = 1. The construction of T ensures that the root x0 has Po(d/2) children a with
J ax0 = 1 and an independent number of Po(d/2) children a with J ax0 =−1. Hence, these numbers can be coupled
with γ+,γ−. Now consider a child a of x0 with J ax0 = 1. Then a has children y1, . . . , yk−1 and the signs J ayi

are
independent Rademacher variables. Hence, if X 1, . . . , X k−1 are independent samples from π, then the message
that a passes to x0 reads

µT ,β,π,a→x0 ,1(s) ∝ 1
{

J ax0 = s
}

+ 1
{

J ax0 =−s
}

(

1− (1−e−β)
k−1
∏

i=1

(

1
{

J ayi
= 1

}

(1−X i )+ 1
{

J ayi
=−1

}

X i

)

)

(s =±1).

Because the J ayi
and the X i are independent, the distribution of µT ,β,π,a→x0 ,1(s) can alternatively be described as

follows: let X ⋆

1 , . . . , X ⋆

k−1 be independent samples from π⋆; then µT ,β,π,a→x0 ,1(s) is distributed as

1
{

J ax0 = s
}

+ 1
{

J ax0 =−s
}(

1− (1−e−β)
∏k−1

i=1 X ⋆

i

)

2− (1−e−β)
∏k−1

i=1 X ⋆

i

.

Consequently, µT ,β,π,x0 ,t (1) has distribution R(π⋆) =R
t (π⋆) for t = 1. Finally, a straightforward induction extends

this statement to all t ≥ 1. �

To prove Proposition 2.3 we first study the operator R on a subspace P
† ⊂ P

⋆ of probability measures that
satisfy a certain tail bound. Specifically, we define P

† as the space of all measures µ ∈P
⋆ such that

µ

([

es

1+es
,1

])

≤ exp
(

−s2k/4
)

for all s ≥ 2−k/4. (6.2)

For future reference we observe that the function

ϕ :R→ (0,1), z 7→
ez

1+ez
is a bijection with inverse ϕ−1 : (0,1) →R, y 7→ log

y

1− y
. (6.3)

The operator R maps the subspace P
† into itself.

Proposition 6.2. For every µ ∈P
† we have R(µ) ∈P

†.

The proof of Proposition 6.2 can be found in Section 6.2. Next we show that R is a contraction on P
†. Specifically,

in Section 6.3 we will prove the following.

Proposition 6.3. For d ≤ dSAT(k) the operator R is a contraction on P
† with respect to the Wr -metric, where r is the

smallest even integer greater than 2k/10.
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Finally, in Section 6.4 we will prove that a sufficient number of iterations of R will map any distribution π with slim
tails to a distribution that ‘almost ’ belongs to the subspace P

†. To formalise this, for a random variable η ∈ [0,1]
and a number ε> 0 let η̃ε be a random variable whose distribution is characterised by

P
[

η̃ε ∈ A
]

=P
[

η ∈ A∩ [ε,1−ε]
]

+ 1

{

1

2
∈ A

}

P
[

η 6∈ [ε,1−ε]
]

for any measurable A ⊂ [0,1]. (6.4)

In words, η̃ε is obtained by truncating η at ε and 1−ε and shifting the lost probability mass to 1
2 .

Proposition 6.4. For any ε> 0 there exists ℓ0 = ℓ0(ε) > 0 such that for all ℓ> ℓ0 and all probability measures π with

slim tails the following two statements hold.

(i) Let ξ be a random variable with distribution R
ℓ(π). Then P [ξ 6∈ [ε,1−ε]] ≤ ε.

(ii) The distribution of ξ̃ε belongs to P
†.

We prove Proposition 6.4 in Section 6.4. These statements now easily imply Proposition 2.3.

Proof of Proposition 2.3. Let ε > 0, pick large enough ℓ = ℓ(ε) ≪ L = L(ε,ℓ) and let π,π′ be two distributions with
slim tails. Consider the variables U at distance precisely 2ℓ from the root of T . For each y ∈ U let by be the
parent clause. Suppose we initialise the variable–to–parent messages for the variables at distance 2(ℓ+L) from the
root with independent messages drawn from π. Let ξy be the ensuing message that y will send to its parent by

and let ξ̃y be the corresponding truncated message as per Proposition 6.4. Define ξ′y , ξ̃
′
y analogously for the initial

distributionπ′. Then Proposition 6.4 shows that the events U = {∀y ∈U : ξy = ξ̃y } and U
′ = {∀y ∈U : ξ′y = ξ̃

′
y } occur

with probability 1−ε, provided that L ≫ ℓ. Furthermore, Proposition 6.3 shows that given U ∩U
′ the subsequent

ℓ iterations of Belief Propagation up to the root are contracting. Hence, we obtain a coupling of the distributions
π,π′ such that after ℓ+L iterations of Belief Propagation the L1-distance of the messages is bounded by (1−δ)ℓ for
some fixed δ= δ(k,d ,β) > 0. Therefore, the assertion follows from the completeness of the space P

†. �

The proofs of Propositions 6.2 and 6.3 are adaptations of the proofs of [24, Lemmas 4.2 and 4.4] where a related
but slightly more intricate distributional recursion is analysed. Moreover, the proof of Proposition 6.4 combines
ideas and observations from the proof of Proposition 6.2 such as the random walk analysis on typical events and
the stochastic domination argument with a novel bootstrapping idea to track the tightening and proliferation of
certain tail bounds as R is iteratively applied. This allows to extend the conclusion of Proposition 6.3 to the relevant
initial distributions. Let us delve into the details.

6.2. Proof of Proposition 6.2. Throughout this section we assume that µ ∈ P
†. The proof of Proposition 6.2 fol-

lows along the steps of [24, Lemma 4.2], where Ding, Sly and Sun analyse a more complex distributional recursion
related to the Survey Propagation algorithm. More precisely, they show that the application of their operator pre-
serves a tail bound similar to (6.2). Here we follow the steps of their proof closely to derive the corresponding
statement for the conceptually simpler Belief Propagation operator. That said, here and there some extra care is
required because we work with an arbitrary temperature parameter 0 <β<∞ while in [24] it suffices to study zero
temperature.

6.2.1. Overview. We aim to show that µ̂=R(µ) belongs to P
† as well. Letting

Π
+ =

γ+
∏

i=1

(

1−
(

1−e−β
)k−1

∏

j=1

η+
i j

)

, Π
− =

γ−
∏

i=1

(

1−
(

1−e−β
)k−1

∏

j=1

η−
i j

)

,

we see from the definition of R that

µ̂

([

es

1+es
,1

])

=P
(

logΠ+− logΠ− ≥ s
)

. (6.5)

Both− logΠ+ and− logΠ− are sums of a random number of non-negative i.i.d. random variables, and − logΠ+ and
− logΠ− are identically distributed. Hence, estimating the probability (6.5) is a bit like estimating the probability
that a weighted symmetric random walk strays far from the origin. To bound this probability we first bound the
large deviations of the individual summands. More specifically, for i ≥ 1, set

X ±
i =− log

(

1−
(

1−e−β
)k−1

∏

j=1

η±
i j

)

≥ 0, so that − logΠ+ =
γ+
∑

i=1

X +
i , − logΠ− =

γ−
∑

i=1

X −
i .
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Let X
d=X +

1 denote a generic summand. In Section 6.2.2 we are going to prove the following.

Lemma 6.5. (i) For all t ≥ 1 we have P (X ≥ t) ≤ exp
(

− t
2 (k −1)2k/4

)

.

(ii) For all ε ∈ [2−k/9,1] we have P
(

X ≥ (1−e−β)2−(1−ε)(k−1)
)

≤ 2k−1 exp
(

−(k −1)
(

ε
3

)2
2k/4

)

.

(iii) For all ε ∈ [2−k/9,1] we have P
[

X ≤ (1−e−β)2−(1+ε)(k−1)
]

≤ k exp
(

−2k/4ε
)

.

Lemma 6.5 implies the following estimate of E[X ].

Corollary 6.6. We have E[X ]=
(

1−e−β
)

2−(k−1) +O
(

k2−10k/9
)

.

Proof. Applying Lemma 6.5 with ε= 2−k/9, we obtain

E[X ]= E

[

X 1

{

X ∈
[

0,
(

1−e−β
)

2−(1+ε)(k−1)
]}]

+E

[

X 1

{

X ∈
((

1−e−β
)

2−(1+ε)(k−1),
(

1−e−β
)

2−(1−ε)(k−1)
)}]

+E

[

X 1

{

X ∈
[(

1−e−β
)

2−(1−ε)(k−1),1
)}]

+E[X 1{X ≥ 1}] =
(

1−e−β
)

2−(k−1) +O
(

k2−(k−1)−k/9
)

,

as claimed. �

In order to estimate the difference between logΠ+ and logΠ− we are going to replace X by the truncated ran-
dom variable

X̄ = X 1

{

X ≤
(

1−e−β
)

2−(9/10)(k−1)
}

. (6.6)

Lemma 6.5 implies the following bound on the difference between X and X̄ .

Corollary 6.7. We have E[X − X̄ ] ≤ exp
(

−Ω
(

k2k/4
))

.

Proof. Applying Lemma 6.5 (i) and (ii) with ε= 1/10, we obtain

E[X − X̄ ] ≤P

(

X ≥
(

1−e−β
)

2−(9/10)(k−1)
)

+E[X 1{X ≥ 1}] ≤ 2k exp

(

−
k −1

900
2k/4

)

+2exp
(

−(k −1)2k/4−1
)

,

as claimed. �

With these preparations in place we prove the desired tail bound in two steps. First we consider the case s ∈
[2−k/4,1]. To be precise, in Section 6.2.3 we are going to prove the following.

Lemma 6.8. For s ∈ [2−k/4,1] we have µ̂
([

es

1+es ,1
])

≤ exp
(

−s2k/4
)

.

Finally, in Section 6.2.4 we are going to deal with s > 1.

Lemma 6.9. For s > 1 we have µ̂
([

es

1+es ,1
])

≤ exp
(

−s2k/4
)

.

Proof of Proposition 6.2. The assertion follows immediately from Lemmas 6.8 and 6.9. �

6.2.2. Proof of Lemma 6.5. We prove the three statements separately. With respect to (i) we notice that X ≤ β

deterministically. Hence, the assertion trivially holds for t ≥ β. Now consider t ∈ [1,β). Because the random
variables η+

1 j
are bounded by one and independent, we obtain

P [X ≥ t ]=P

[

k−1
∏

j=1

η+
1 j ≥

1−e−t

1−e−β

]

≤P

(

∀ j ∈ [k −1] : η+
1 j ≥

1−e−t

1−e−β

)

=µ

([

1−e−t

1−e−β
,1

])k−1

. (6.7)

Further, since 1−e−t

1−e−β
< 1 for t <β, ϕ−1

(

1−e−t

1−e−β

)

≥ t/2 and because µ ∈P
†, (6.7) yields P [X ≥ t ] ≤ exp

(

− t
2 (k −1)2k/4

)

,

as claimed.
We proceed to (ii). Since 1−exp

(

−y z
)

≥ y(1−exp(−z)) for any y ∈ (0,1], z ≥ 0, we obtain

P

(

X ≥ (1−e−β)2(ε−1)(k−1)
)

=P

(

k−1
∏

j=1

η+
1 j ≥

1−exp
(

−
(

1−e−β
)

2(ε−1)(k−1)
)

1−e−β

)

≤P

(

k−1
∏

j=1

η+
1 j ≥ 1−exp

(

−2(ε−1)(k−1)
)

)

.

(6.8)

Further, since η+
1 j

≤ 1 for all j , for any a ∈ [0,1] and b ∈ (0,k −2] we have

P

(

k−1
∏

j=1

η+
1 j ≥ a

)

≤P

(∣

∣

∣

{

j ∈ [k −1] : η+
1 j ≥ a

1
k−1−b

}∣

∣

∣≥ b
)

. (6.9)
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Moreover, for large k we have

1−exp
(

−2(ε−1)(k−1)
)

≥ 2−(k−1)(1−ε/3)2
. (6.10)

Combining (6.8), (6.9) and (6.10), we obtain

P

(

X ≥
(

1−e−β
)

2(ε−1)(k−1)
)

≤P

(

k−1
∏

j=1

η+
1 j ≥ 2−(k−1)(1−ε/3)2

)

≤P
(∣

∣

∣

{

j ∈ [k −1] : η+
1 j ≥ 2ε/3−1

}∣

∣

∣≥ (k −1)ε/3
)

≤
∑

(k−1)ε/3≤ j≤k−1

(

k −1

j

)

µ
(

[2ε/3−1,1]
) j ≤ 2k−1µ

(

[2ε/3−1,1]
)(k−1)ε/3

. (6.11)

Since ϕ−1(2ε/3−1) ≥ 2ε
3 log2 ≥ 2−k/4 for all ε ∈ [2−k/9,1], the assumption µ ∈P

† and (6.11) imply

P

(

X ≥
(

1−e−β
)

2(ε−1)(k−1)
)

≤ 2k−1exp
(

−(k −1)
ε

3
2k/4ϕ−1 (

2ε/3−1)
)

. (6.12)

Finally, since ϕ−1
(

2ε/3−1
)

≥ 2ε
3 log2 for ε∈ [0,1], the second assertion follows from (6.12).

Coming to the statement (iii), we use the inequality 1−e−x ≤ x to obtain

P

(

X ≤
(

1−e−β
)

2−(ε+1)(k−1)
)

≤P

(

1−e−X ≤
(

1−e−β
)

2−(ε+1)(k−1)
)

≤P

(

∃ j ∈ [k −1] : η+
1 j ≤ 2−(ε+1)

)

≤ (k −1)µ
(

[0,2−(ε+1)]
)

. (6.13)

Since ϕ−1(1−2−(ε+1)) = log
(

2ε+1 −1
)

≥ ε≥ 2−k/4, the fact that µ ∈P
† implies that

(k −1)µ
(

[0,2−(ε+1)]
)

≤ k exp
(

−2k/4ε
)

. (6.14)

The assertion follows from (6.13) and (6.14).

6.2.3. Proof of Lemma 6.8. We need to bound the tails of − logΠ+, which is the sum of a Poisson number of i.i.d.
copies of X . Having derived tail bounds for the individual summands X and an approximation of E[X ] already, we
are going to deal with large deviations of the number of summands next. Bennett’s inequality Lemma 4.5 directly
implies that if d =O

(

k2k
)

, then

P

(

∣

∣γ+−d/2
∣

∣≥ k225k/8
)

≤ exp
(

−Ω
(

k32k/4
))

. (6.15)

In analogy to (6.6), for i ≥ 1, set

X̄
+
i = X +

i 1

{

X +
i ≤

(

1−e−β
)

2−(9/10)(k−1)
}

. (6.16)

On the event

E =
{

∣

∣γ+−d/2
∣

∣≤ k225k/8
}

∩
{

max
{

X +
1 , . . . , X +

γ+

}

≤
(

1−e−β
)

2−(9/10)(k−1)
}

Corollaries 6.6 and 6.7 yield
∣

∣

∣

∣

∣

γ+
∑

i=1

(

X +
i −E[X +

i ]
)

−
d/2
∑

i=1

(

X̄
+
i −E[X̄

+
i ]

)

∣

∣

∣

∣

∣

≤
d

2
E[X − X̄ ]+

∣

∣

∣

∣

γ+−
d

2

∣

∣

∣

∣

·
∣

∣

∣E[X ]+max
{

X +
1 , . . . , X +

γ+

}∣

∣

∣

≤
d

2
exp

(

−Ω
(

k2k/4
))

+k225k/8
(

2−(k−1) +O
(

k2−10k/9
)

+2−(9/10)(k−1)
)

≤ k−52−1−k/4. (6.17)

Therefore, using Lemma 6.5, Corollary 6.6, (6.15) and (6.17), we obtain for any t > 0,

P

(∣

∣

∣

∣

− logΠ+−
d

2
E[X ]

∣

∣

∣

∣

≥ t

)

=P

(∣

∣

∣

∣

∣

γ+
∑

i=1

(

X +
i −E[X +

i ]
)

+E[X ]

(

γ+−
d

2

)

∣

∣

∣

∣

∣

≥ t

)

≤1−P (E )+P

(

E ∩
{∣

∣

∣

∣

∣

γ+
∑

i=1

(

X +
i −E[X +

i ]
)

−
d/2
∑

i=1

(

X̄
+
i −E[X̄

+
i ]

)

+
d/2
∑

i=1

(

X̄
+
i −E[X̄

+
i ]

)

+E[X ]

(

γ+−
d

2

)

∣

∣

∣

∣

∣

≥ t

})

≤exp
(

−Ω
(

k2k/4
))

+P

(∣

∣

∣

∣

∣

d/2
∑

i=1

(

X̄ i −E[X̄ i ]
)

∣

∣

∣

∣

∣

≥ t −k−52−k/4

)

. (6.18)
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The last probability involving a sum with a deterministic number of bounded summands can be bounded by the
Azuma-Hoeffding inequality, which yields for t =Ω

(

2−k/4
)

P

(∣

∣

∣

∣

∣

d/2
∑

i=1

(

X̄ i −E[X̄ i ]
)

∣

∣

∣

∣

∣

≥ t −k−52−k/4

)

≤ 2exp

(

−
(

t −k−52−k/4
)2

d
(

1−e−β
)2

2−(18/10)(k−1)

)

= exp
(

−Ω
(

t 2k−124k/5
))

.

Combining this estimate with (6.18), for t =Ω
(

2−k/4
)

we obtain

P

(∣

∣

∣

∣

− logΠ+−
d

2
E[X ]

∣

∣

∣

∣

≥ t

)

≤ exp
(

−Ω
(

k2k/4
))

+exp
(

−Ω
(

t 2k−124k/5
))

≤ exp
(

−Ω
(

k2k/4
))

+exp
(

−Ω
(

tk2k/4
))

.

(6.19)

Because Π
−,Π+ are identically distributed, (6.19) implies that

P

(∣

∣

∣

∣

logΠ−+
d

2
E[X ]

∣

∣

∣

∣

≥ t

)

≤ exp
(

−Ω
(

k2k/4
))

+exp
(

−Ω
(

tk2k/4
))

(6.20)

as well. Finally, for 2−k/4 ≤ t ≤ 1 the second terms in (6.19)–(6.20) dominate Therefore, for s ∈ [2−k/4,1], we obtain

µ̂

([

es

1+es
,1

])

=P

((

− logΠ−−
d

2
E[X ]

)

−
(

− logΠ+−
d

2
E[X ]

)

≥ s

)

≤ exp
(

−Ω
(

sk2k/4
))

≤ exp
(

−s2k/4
)

,

as claimed.

6.2.4. Proof of Lemma 6.9. For s ≥ 1 let Es =
{∣

∣γ+−d/2
∣

∣≤ s29k/10k−5/4
}

. Using Bennett’s inequality Lemma 4.5, we
obtain for s ≥ 1

1−P (Es ) ≤ exp
(

−Ω
(

s24k/5k−7/2
))

. (6.21)

Combining (6.21) and (6.16) with the Azuma-Hoeffding inequality, we obtain for s ≥ 1

P

(∣

∣

∣

∣

∣

γ+
∑

i=1

X̄
+
i −

d

2
E[X̄ ]

∣

∣

∣

∣

∣

≥
s

k

)

≤P

(∣

∣

∣

∣

∣

d/2
∑

i=1

(

X̄
+
i −E[X̄ ]

)

∣

∣

∣

∣

∣

≥
s

2k

)

+P

(

∣

∣γ+−d/2
∣

∣

(

1−e−β
)

2−(9/10)(k−1) ≥
s

2k

)

≤ 1−P (Es )+2exp

(

−
s2

4
(

1−e−β
)2

k2d2−(9/5)(k−1)

)

≤ exp
(

−s22k/3
)

. (6.22)

We are left to bound the difference between − logΠ+ and the sum of truncated random variables. We write

γ+
∑

i=1

X +
i −

γ+
∑

i=1

X̄
+
i ≤

γ+
∑

i=1

1

{

X +
i ≥

(

1−e−β
)

2−(9/10)(k−1)
}

+
γ+
∑

i=1

1
{

X +
i > 1

}

X +
i . (6.23)

We now compare the right hand side with a more accessible distribution. Lemma 6.5 shows that for c := 1/1000,
for all a ≥ 1,

P

(

X +
i ≥

(

1−e−β
)

2−(9/10)(k−1)
)

≤ exp
(

−ck2k/4
)

, P
(

X +
i ≥ a

)

≤ exp
(

−2ack2k/4
)

. (6.24)

Set ϑ= ck2k/4. Then (6.24) shows that for z ≥ 0,

P

(

1

{

X +
i >

(

1−e−β
)

2−(9/10)(k−1)
}

(

1+ 1
{

X +
i > 1

}

X +
i

)

> z
)

≤











P
(

X +
i
>

(

1−e−β
)

2−(9/10)(k−1)
)

≤ e−ϑ, if z < 1,

P
(

X +
i
≥ 1

)

≤ e−2ϑ, if 1≤ z < 2,

P
(

X +
i
≥ z −1

)

≤ e−2(z−1)ϑ ≤ e−zϑ, if z ≥ 2.

Hence, we can estimate X +
i

as follows. Let
(

I+
i

)

i≥1
be a sequence of Be

(

e−ϑ
)

random variables, let (Z+
i

)i≥1 be a

sequence of exponential random variables with mean 1/ϑ and let γ̄+ be a Po(d/2) random variable, all mutually
independent. Then for all i ≥ 1, z ≥ 0 we have

P

(

1

{

X +
i >

(

1−e−β
)

2−(9/10)(k−1)
}

(

1+ 1
{

X +
i > 1

}

X +
i

)

> z
)

≤P
(

I+i (1+Z +
i ) > z

)

=
{

e−ϑ, z < 1,

e−zϑ, z ≥ 1.
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Thus, 1
{

X +
i
>

(

1−e−β
)

2−(9/10)(k−1)
}

(1+ 1
{

X +
i
> 1

}

X +
i

) is stochastically dominated by I+
i

(1+ Z +
i

). Therefore, we
also obtain stochastic dominance for the sums of these random variables, i.e.,

γ+
∑

i=1

1

(

X +
i >

(

1−e−β
)

2−(9/10)(k−1)
)

(1+ 1
(

X +
i > 1

)

X +
i ) ¹Σ

+
1 +Σ

+
2 where Σ

+
1 =

γ̄+
∑

i=1

I+i , Σ
+
2 =

γ̄+
∑

i=1

I+i Z +
i . (6.25)

Clearly, Σ+
1 has distribution Po

(

de−ϑ/2
)

. Bennett’s inequality (4.1) therefore yields for s ≥ 1,

P

(

Σ
+
1 −

d

2
e−ϑ ≥ s/

p
k

)

≤ exp

(

−
s

p
k

(

log

(

eϑ

d
p

k

)

−1

))

≤ exp

(

−
s

2
p

k

(

ϑ− log
(

d
p

k
))

)

≤ exp
(

−sk1/32k/4
)

. (6.26)

Let us now turn our attention to Σ
+
2 .

Claim 6.10. For all s > d/(2ϑeϑ) we have P
(

Σ
+
2 ≥ s

)

≤ exp

(

−ϑs
(

1−
√

d
2sϑeϑ

)2
)

.

Proof. Given Σ
+
1 , Σ+

2 is a sum of Σ+
1 independent exponential random variables with parameter ϑ and therefore

Γ
(

Σ
+
1 ,ϑ

)

-distributed (whereΣ
+
1 and ϑ denote the form and scale parameters, respectively). Therefore, for 0≤ t <ϑ,

E
[

exp
(

tΣ+
2

)]

= E
[

E
[

exp
(

tΓ
(

Σ
+
1 ,ϑ

))

|Σ+
1

]]

= E

[

(1− t/ϑ)−Σ
+
1

]

= exp

(

d t

2eϑ(ϑ− t)

)

.

Consequently, for s > 0 and 0 < t <ϑ,

P
(

Σ
+
2 ≥ s

)

≤
E
[

exp
(

tΣ+
2

)]

exp(st)
= exp

(

d t

2eϑ(ϑ− t)
− st

)

.

With the choice t∗ =ϑ−
√

(dϑe−ϑ)/(2s), which lies between 0 and ϑ for s > d
2 ϑ

−1e−ϑ, we find

P
(

Σ
+
2 ≥ s

)

≤ E
[

exp
(

t∗Σ+
2 − t∗s

)]

= exp



−ϑs

(

1−

√

d

2sϑeϑ

)2

 ,

as desired. �

Proof of Lemma 6.9. Claim 6.10 implies that for all s ≥ 1,

P

(

Σ
+
2 ≥ s/

p
k
)

≤ exp
(

−sk1/32k/4
)

. (6.27)

Since the same estimates hold for − logΠ−, (6.22), (6.26) and (6.27) show that for s ≥ 1,

µ̂

([

es

1+es
,1

])

≤ 2P

(∣

∣

∣

∣

logΠ++
d

2
E[X̄ ]

∣

∣

∣

∣

≥
s

2

)

≤ 2

(

P

(

∣

∣Σ
+
1 +Σ

+
2

∣

∣≥
s

4

)

+P

(∣

∣

∣

∣

∣

γ+
∑

i=1

X̄
+
i −

d

2
E[X̄ ]

∣

∣

∣

∣

∣

≥
s

4

))

≤ exp
(

−sk1/42k/4
)

,

as claimed. �

6.3. Proof of Proposition 6.3. The proof is an adaptation of the proof of [24, Lemma 4.4], where the authors
showed a corresponding statement for the Survey Propagation distributional recursion, which is more compli-
cated than the present Belief Propagation recurrence. Thus, we follow the path beaten in [24], simplifying the
argument where possible. Throughout this section r denotes the smallest even integer greater than 2k/10. We set
out to prove that on P

† the operator R is a Wr -contraction. Hence, we consider two probability distributions
ρ,ρ′ ∈ P

†. Let (η+
i j

,χ+
i j

)i , j≥1, (η−
i j

,χ−
i j

)i , j be independent identically distributed pairs of numbers in [0,1] such

that the first components η±
i j

all have distribution ρ and the second components χ±
i j

have distribution ρ′ and

E[|η±
i j
−χ±

i j
|r ]1/r =Wr

(

ρ,ρ′). Let η= (η+
i j

,η−
i j

)i , j , χ= (χ+
i j

,χ−
i j

)i , j and, recalling (6.1), define

η̂= R(γ+,γ−,η), χ̂= R(γ+,γ−,χ).

To prove Proposition 6.3 we are going to couple η̂, χ̂ such that

E
[∣

∣η̂− χ̂
∣

∣

r ]

≤ 2−kr /11
E
[∣

∣η+
11 −χ+

11

∣

∣

r ]

=Wr (ρ,ρ′)r . (6.28)
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To construct the coupling let γ
d=Po(d). Moreover, let (J i )i≥1 be the uniform i.i.d. signs; γ and the J i are mutually

independent and independent of everything else. Then setting γ+ =
∑γ

i=1 1{J i = 1},, γ− =
∑γ

i=1 1{J i = −1} ensures
that γ+, γ− are independent and Po(d/2) variables. Further, let

P± =
γ±
∏

i=1

(

1−
(

1−e−β
)k−1

∏

j=1

η±
i j

)

, η̂=
P+

P++P− , Q± =
γ±
∏

i=1

(

1−
(

1−e−β
)k−1

∏

j=1

χ±
i j

)

, χ̂=
Q+

Q++Q− .

Then

η̂− χ̂=
P+

P++P− −
Q+

Q++Q− =ϕ

(

log
P+

P−

)

−ϕ

(

log
Q+

Q−

)

. (6.29)

Finally, to estimate the last expression we introduce

∆i = log

(

1−
(

1−e−β
)k−1

∏

j=1

χ+
i j

)

− log

(

1−
(

1−e−β
)k−1

∏

j=1

η+
i j

)

.

Since 0≤ϕ′(x) ≤ 1 for all x, (6.29) and the mean value theorem imply

E
[∣

∣η̂− χ̂
∣

∣

r ]≤ E

[∣

∣

∣

∣

log
P+

P− − log
Q+

Q−

∣

∣

∣

∣

r ]

= E

[∣

∣

∣

∣

∣

γ
∑

i=1

J i∆i

∣

∣

∣

∣

∣

r ]

. (6.30)

Several steps are required to bound the r.h.s. of (6.30).

Lemma 6.11. We have E
[

∣

∣

∑γ

i=1 J i∆i

∣

∣

r
]

≤ (r −1)!! E
[

γr /2
]

E
[

∆
r
1

]

.

Proof. Since r is even we have

E

[∣

∣

∣

∣

∣

γ
∑

i=1

J i∆i

∣

∣

∣

∣

∣

r ]

= E

[

γ
∑

i1 ,...,ir =1

r
∏

ℓ=1

J iℓ∆iℓ

]

= e−d
∞
∑

γ=0

dγ

γ!

γ
∑

i1 ,...,ir =1

E

[

r
∏

ℓ=1

J iℓ

]

E

[

r
∏

ℓ=1

∆iℓ

]

. (6.31)

Let us now fix γ≥ 0 and i1, . . . , ir ∈ [γ]. Moreover, for h ∈ [γ] let Nh = Nh(i1, . . . , ir ) be the number of indices ℓ such
that iℓ = h. Then

E (i1, . . . , ir ) = E

[

r
∏

ℓ=1

J iℓ

]

E

[

r
∏

ℓ=1

∆iℓ

]

= E

[

γ
∏

h=1

J
Nh

h

]

E

[

γ
∏

h=1

∆
Nh

h

]

=
γ

∏

h=1

E

[

J
Nh

h

]

E

[

∆
Nh

h

]

. (6.32)

In particular, E (i1, . . . , ir ) = 0 unless all Nh are even. Furthermore, if all Nh are even, then Jensen’s inequality yields

E (i1, . . . , ir ) =
γ
∏

h=1

E

[

∆
Nh

h

]

≤ E
[

∆
r
1

]

. (6.33)

Finally, let f(γ,r ) =
∣

∣

{

(i1, . . . , ir ) ∈ [γ]r : Nh mod 2 = 0 for all h ∈ [γ]
}∣

∣ be the number of index sequences in which each
index appears an even number of times. Combining (6.31)–(6.33), we conclude that

E

[∣

∣

∣

∣

∣

γ
∑

i=1

J i∆i

∣

∣

∣

∣

∣

r ]

≤ e−d
E
[

∆
r
1

]

∞
∑

γ=0

dγf(γ,r )

γ!
. (6.34)

We now claim that for all γ,

f(γ,r )≤ (r −1)!! γr /2. (6.35)

To see this consider a family (i1, . . . , ir ) such that all Nh are even and think of 1, . . . ,r as the vertices of a complete
graph. Since all Nh are even we can find a perfect matching of 1, . . . ,r such that any two indices u, v that are
matched satisfy iu = iv . Moreover, if we label the matching edge uv with the value iu = iv ∈ [γ], then (i1, . . . , ir ) can
be recovered from the labelled matching. Because the total number of perfect matchings equals (r −1)!! and there
are γr /2 possible labellings, we obtain (6.35). Finally, combining (6.34) and (6.35), we obtain

E

[∣

∣

∣

∣

∣

γ
∑

i=1

J i∆i

∣

∣

∣

∣

∣

r ]

≤
∞
∑

γ=0

dγγr /2(r −1)!!

γ!exp(d)
E
[

∆
r
1

]

= (r −1)!! E
[

γr /2]
E
[

∆
r
1

]

,

as claimed. �

Hence, we are left to bound E
[

γr /2
]

and E
[

∆
r
1

]

.
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Lemma 6.12. We have E
[

γr /2
]

≤
(

r (d+1)
2

)r /2
.

Proof. Let
{N

K

}

denote the Stirling number of the second kind. Because the factorial moments of the Poisson vari-

able γ satisfy E[
∏h

j=1γ− j +1] = dh , we obtain

E
[

γr /2]=
r /2
∑

h=0

{

r /2

h

}

E

[

h
∏

j=1

γ− j +1

]

=
r /2
∑

h=0

{

r /2

h

}

dh ≤
r /2
∑

h=0

(

r /2

h

)

hr /2−h dh ≤
(

r (d +1)

2

)r /2

,

as desired. �

To bound E
[

∆
r
1

]

set U j =
∏j−1

h=1χ
+
1h

∏k−1
h= j+1η

+
1h

for j ∈ [k −1]. Writing a telescoping sum and applying the mean

value theorem, we obtain

|∆1|
d=

∣

∣

∣

∣

∣

log

(

1−
(

1−e−β
)k−1

∏

j=1

η+
1 j

)

− log

(

1−
(

1−e−β
)k−1

∏

j=1

χ+
1 j

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k−1
∑

j=1

log
1−

(

1−e−β
)

U jη
+
1 j

1−
(

1−e−β
)

U jχ
+
1 j

∣

∣

∣

∣

∣

≤
k−1
∑

j=1

∣

∣

∣

∣

∣

log

(

1−
(

1−e−β
)

U jη
+
1 j

1−
(

1−e−β
)

U jχ
+
1 j

)∣

∣

∣

∣

∣

≤
(

1−e−β
)k−1

∑

j=1

U j

1−U j

∣

∣

∣η+
1 j −χ+

1 j

∣

∣

∣ . (6.36)

Since
∣

∣

∣

∑k−1
j=1 z j

∣

∣

∣

r
≤ kr−1 ∑k−1

j=1 zr
j

for all z1, . . . , zr ≥ 0 by Hölder’s inequality, (6.36) implies that

E
[

|∆1|r
]

≤
(

1−e−β
)r
E

[∣

∣

∣

∣

∣

k−1
∑

j=1

U j

1−U j

∣

∣

∣η+
1 j −χ+

1 j

∣

∣

∣

∣

∣

∣

∣

∣

r ]

≤ kr−1
(

1−e−β
)r k−1

∑

j=1

E

[∣

∣

∣

∣

U j

1−U j

∣

∣

∣

∣

r ]

E

[∣

∣

∣η+
1 j −χ+

1 j

∣

∣

∣

r ]

≤ kr
E

[∣

∣

∣η+
1 j −χ+

1 j

∣

∣

∣

r ]

max
j=1,...,k−1

E

[∣

∣

∣

∣

U j

1−U j

∣

∣

∣

∣

r ]

≤ kr
E

[∣

∣

∣η+
1 j −χ+

1 j

∣

∣

∣

r ]

max
j=1,...,k−1

E

[

U 2r
j

]1/2
E
[

(1−U j )−2r
]1/2

[by Cauchy-Schwarz]. (6.37)

Hence, we need to bound E

[

(

1−U j

)−2r
]

and E

[

U 2r
j

]

. To this end we need the following estimate.

Lemma 6.13. For any µ ∈P
† and s ∈ [2−k/4,1], we have µ([1/2+ s,1]) ≤ exp

(

−s2k/4
)

.

Proof. We notice that es /(1+es ) ≤ 1/2+ s. Therefore, (6.2) implies that µ([1/2+ s,1]) ≤µ
([

es

1+es ,1
])

≤ exp
(

−s2k/4
)

,

as claimed. �

Corollary 6.14. We have E
[

(

1−U j

)−2r
]

≤ 5r and E

[

U 2r
j

]

≤ 2−9(k−2)r /5 for all j ∈ [k −1].

Proof. Suppose that z ≥ 2 satisfies log(z −1) ≥ 2−k/4. Then (6.2) ensures that

P

[

(

1−U j

)−1 ≥ z
]

=P

[

j−1
∏

h=1

χ+
1h

k−1
∏

h= j+1

η+
1h ≥ 1−

1

z

]

≤P
[

ϕ(log(z −1)) ≤χ+
11

] j−1
P

[

ϕ(log(z −1)) ≤η+
11

]k−1− j

≤ exp
(

−(k −2) log(z −1)2k/4
)

≤ (z −1)−2k/4
. (6.38)

Hence, letting ξ= 2+2−k/5, we obtain

E

[

(

1−U j

)−2r
]

= E

[

(

1−U j

)−2r
1

{

(

1−U j

)−1 < ξ
}]

+E

[

(

1−U j

)−2r
1

{

(

1−U j

)−1 ≥ ξ
}]

≤ 22r+1 +2r

∫∞

ξ
z2r−1

P

[

(

1−U j

)−1 ≥ z
]

dz
(6.38)
≤ 22r+1 +2r

∫∞

ξ

z2r−1dz

(z −1)2k/4

≤ 22r+1 +2r

∫∞

1

(z +1)2r−1

z2k/4
dz ≤ 22r+1 +2r

∫∞

1

(2z)2r−1

z2k/4
dz

= 22r+1 + r 4r

∫∞

1

dz

z2k/4−(2r−1)
= 22r+1 +

r 4r

2k/4 −2r
≤ 5r . (6.39)
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Next, in order to bound E

[

U 2r
j

]

, we use the fact that all η+
i j

are bounded above by 1 and Lemma 6.13 to compute

E
[

(η+
11)2r

]

= E

[

(η+
11)2r

1

{

(η+
11)2r ≤

(

1+2−k/30
)2r

22r

}]

+E

[

(η+
11)2r

1

{

(η+
11)2r >

(

1+2−k/30
)2r

22r

}]

≤
(

1+2−k/30
)2r

22r
+P

[

η+
11 >

1+2−k/30

2

]

≤
exp

(

2r 2−k/30
)

22r
+exp

(

−2−k/30−12k/4
)

≤ 2−9r /5. (6.40)

Since due to Proposition 6.2 the same bound holds for E
[

(χ+
11)2r

]

, we obtain E

[

U 2r
j

]

≤ 2−9(k−2)r /5. �

Corollary 6.15. We have E
[

∆
r
1

]

≤ (5k2)r /22−9(k−2)r /10
E

[∣

∣

∣η+
1 j

−χ+
1 j

∣

∣

∣

r ]

.

Proof. This is an immediate consequence of (6.37) and Corollary 6.14. �

Proof of Proposition 6.3. Combining (6.30), Lemmas 6.11, 6.12 and Corollary 6.15 and recalling that d ≤ k22k , we
obtain

E
[∣

∣η̂− χ̂
∣

∣

r ]

≤ (r −1)!!

(

r (d +1)

2

)r /2

kr 5r /22−9r (k−2)/10
E

[∣

∣

∣η+
1 j −χ+

1 j

∣

∣

∣

r ]

≤
r !

(r /2)!

(

r (d +1)

2

)r /2

2−0.89kr
E

[∣

∣

∣η+
1 j −χ+

1 j

∣

∣

∣

r ]

≤ r r /22−0.4kr ≤ 2−0.2kr
E

[∣

∣

∣η+
1 j −χ+

1 j

∣

∣

∣

r ]

,

which implies (6.28). Hence, R is a Wr -contraction. �

6.4. Proof of Proposition 6.4. Throughout this section, additionally to d ≤ dk−SAT, we assume that π is a probabil-
ity distribution with slim tails. Let η be a random variable with distribution π; then η satisfies

P

[

∣

∣η−1/2
∣

∣≥ 2−k/10
]

≤ 2−k/10. (6.41)

6.4.1. Overview. Our aim is to study the distribution R
ℓ(π). Because of the inherent symmetry of the operator

R, we may assume that π ∈ P
⋆. In the following, let ξ(ℓ) be a random variable with distribution R

ℓ(π). To prove
the proposition, we need to bound the tails of ξ(ℓ). We proceed in two steps. First, in Section 6.4.2 we derive the
following estimate.

Lemma 6.16. There exists an integer L = L(k) such that for all ℓ ≥ L and all s ∈ [2−k/4,1] the random variable ξ(ℓ)

satisfies

P

[∣

∣

∣

∣

∣

log
ξ(ℓ)

1−ξ(ℓ)

∣

∣

∣

∣

∣

≥ s

]

≤ exp
(

−s2k/4
)

. (6.42)

Moreover, in Section 6.4.3 we will prove the following. Let us introduce the shorthand ξ= ξ(1) for a random variable
with distribution R(π).

Lemma 6.17. Assume that for a number s ≥ 1/2 we have

P

[∣

∣

∣

∣

log
η

1−η

∣

∣

∣

∣

≥ t

]

≤ exp
(

−t2k/4
)

for all t ∈ [2−k/4, s].

Then

P

[∣

∣

∣

∣

log
ξ

1−ξ

∣

∣

∣

∣

≥ 2s

]

≤ exp
(

−2s ·2k/4
)

.

Proof of Proposition 6.4. Given ε> 0 choose ℓ0 = ℓ0(ε) > 0 large enough and assume that ℓ≥ ℓ0(ε). As in (6.4), set

ξ̃
(ℓ)
ε = ξ(ℓ)

1

{

ξ(ℓ) ∈ [ε,1−ε]
}

+
1

2
1

{

ξ(ℓ) ∉ [ε,1−ε]
}

.

Then Lemmas 6.16 and 6.17 imply that ξ̃
(ℓ)
ε satisfies (6.2). Hence, L (ξ̃

(ℓ)
ε ) ∈ P

†; this establishes part (ii) of the
proposition. Furthermore, Lemma 6.17 also implies that

P

[

ξ(ℓ) ∉ [ε,1−ε]
]

< ε

for large enough ℓ, which is part (i). �
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6.4.2. Proof of Lemma 6.16. The following lemma summarises the key step towards the proof of Lemma 6.16.

Lemma 6.18. Let ℓ≥ 1 be an integer such that 2−k/10−2(l−1) ≥ 2−k/4 and assume that

P

[

∣

∣η−1/2
∣

∣≥ 2−k/10−2(ℓ−1)
]

≤ max

{

2
− k

10

(

k
50

)ℓ−1

,exp
(

−2k/4
)

}

. (6.43)

Then P
[

|ξ−1/2| ≥ 2−k/10−2ℓ
]

≤ max

{

2
− k

10

(

k
50

)ℓ

,exp
(

−2k/4
)

}

.

The proof of Lemma 6.18 proceeds in three steps. We continue to let (η±
i , j

)i , j≥1 be an array of independent

random variables distributed as η. Also let γ+,γ− be independent Poisson variables with mean d/2, independent
of (η±

i , j
)i , j≥1, so that

log
ξ

1−ξ

d=
γ+
∑

i=1

log

(

1−
(

1−e−β
)k−1

∏

j=1

η+
i , j

)

−
γ−
∑

i=1

log

(

1−
(

1−e−β
)k−1

∏

j=1

η−
i , j

)

. (6.44)

For i ≥ 1 let

A
±

i ,ℓ =
{

k−1
∑

j=1

1

{∣

∣

∣

∣

η±
i , j −

1

2

∣

∣

∣

∣

≥ 2−k/10−2ℓ+2
}

≤
k −1

10

}

be the event that a ‘clause’ i receives no more than (k −1)/10 ‘atypical messages’. Moreover, let

Aℓ =
∞
⋃

m1=0

∞
⋃

m2=0

(

{

γ+ = m1,γ− = m2
}

∩
m1
⋂

i=1

A
+

i ,ℓ∩
m2
⋂

i=1

A
−

i ,ℓ

)

be the event that there is no clause with too many atypical messages. Our first goal is to bound the probability that
Aℓ fails to occur given that for each message the probability of being atypical is small.

Lemma 6.19. Assume that for some k
10 log 2≤ z ≤ 2k/4 we have

P

[

∣

∣η−1/2
∣

∣≥ 2−k/10−2ℓ+2
]

≤ exp(−z) . (6.45)

Then P [Aℓ]≥ 1−exp (−zk/50)/3.

Proof. We first estimate P[A ±
i ,ℓ

]. Since the η±
i ,1 , . . . ,η±

i ,(k−1)
are independent, the assumption (6.45) implies together

with the Chernoff bound that

1−P

[

A
±
i ,ℓ

]

≤P

(

Bin
(

k −1,exp(−z)
)

>
k −1

10

)

≤ exp
(

−(k −1)DKL
(

1/10‖exp(−z)
))

≤ exp

(

−
k −1

20
z

)

.

Hence, by (4.1) and subadditivity,

1−P [Aℓ] ≤P

[

γ++γ− > 2k2k
]

+P

[{

γ++γ− ≤ 2k2k
}

\Aℓ

]

≤ exp

(

−
3

8
k2k

)

+2k2k exp

(

−
k −1

20
z

)

≤ exp

(

−
3

8
k2k

)

+exp(−zk/40). (6.46)

As z ≤ 2k/4 < 3k2k /8, (6.46) implies the claim. �

We now analyse the sum (6.44) on the event Aℓ. Let ck =
( 1

2 +2−k/10−2ℓ+2
)9(k−1)/10

.

Claim 6.20. For s ≥ 2−k/4 we have P
[

1Aℓ ·
∣

∣

∣log ξ
1−ξ

∣

∣

∣≥ s
]

≤ exp
(

−s2k/2 −1
)

.

Proof. On Aℓ we have
∏k−1

j=1 η
+
i , j

≤ ck for all i ≤γ+ and
∏k−1

j=1 η
−
i , j

≤ ck for all i ≤γ−. Letting

Y ±
i = log

(

1−
(

1−e−β
)k−1

∏

j=1

η±
i , j

)

1

{

k−1
∏

j=1

η±
i , j ≤ ck

}
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we thus obtain

P

[

1Aℓ ·
∣

∣

∣

∣

log
ξ

1−ξ

∣

∣

∣

∣

≥ s

]

=P

[

Aℓ∩
{∣

∣

∣

∣

∣

γ+
∑

i=1

Y +
i −

γ−
∑

i=1

Y −
i

∣

∣

∣

∣

∣

≥ s

}]

≤P

[∣

∣

∣

∣

∣

γ+
∑

i=1

(

Y +
i −E

[

Y +
i

])

−
γ−
∑

i=1

(

Y −
i −E

[

Y −
i

])

+E
[

Y +
1

]

(

γ+−
d

2

)

−E
[

Y −
1

]

(

γ−−
d

2

)

∣

∣

∣

∣

∣

≥ s

]

≤ 2P

[∣

∣

∣

∣

∣

γ+
∑

i=1

Y +
i −E

[

Y +
i

]

∣

∣

∣

∣

∣

≥
s

4

]

+2P

[∣

∣

∣

∣

E
[

Y +
1

]

(

γ+−
d

2

)∣

∣

∣

∣

≥
s

4

]

. (6.47)

To estimate the last summand we first bound
∣

∣E
[

Y +
1

]∣

∣: using − log(1− x) ≤ x +O(x2), we obtain

∣

∣E
[

Y +
1

]∣

∣≤− log
(

1−
(

1−e−β
)

ck

)

≤
5

4
ck

for k sufficiently large. Therefore, Bennett’s inequality Lemma 4.5 shows that for s ≥ 2−k/4,

P

[∣

∣

∣

∣

E
[

Y +
1

]

(

γ+−
d

2

)∣

∣

∣

∣

≥
s

4

]

≤P

[∣

∣

∣

∣

γ+−
d

2

∣

∣

∣

∣

≥
s

5ck

]

≤P

[∣

∣

∣

∣

γ+−
d

2

∣

∣

∣

∣

≥
s

10
29(k−1)/10

]

≤ exp
(

−s2k/2 −2
)

. (6.48)

For the second last summand in (6.47), we condition on γ+ and apply the Azuma-Hoeffding inequality. The
definition of the random variable Y +

i
ensures that

∣

∣Y +
i
−E

[

Y +
i

]∣

∣≤− log
(

1−
(

1−e−β
)

ck

)

≤ ck +O
(

c2
k

)

. Hence, as in

the computation towards (6.46) for s ≥ 2−k/4 we obtain

P

[∣

∣

∣

∣

∣

γ+
∑

i=1

Y +
i −E

[

Y +
i

]

∣

∣

∣

∣

∣

≥
s

4

]

≤P

[

γ+ > k2k
]

+P

[

{

γ+ ≤ k2k
}

∩
{∣

∣

∣

∣

∣

γ+
∑

i=1

(

Y +
i −E

[

Y +
i

])

∣

∣

∣

∣

∣

≥
s

4

}]

≤ exp

(

−
3

8
k2k

)

+2exp

(

−
s2

100k2k c2
k

)

≤ exp
(

−s2k/2 −3
)

. (6.49)

Combining (6.47), (6.48) and (6.49) completes the proof. �

The last ingredient that we need for the proof of Lemma 6.18 is the following.

Claim 6.21. For each s ∈ [0,4] we have P
(∣

∣ξ− 1
2

∣

∣≥ s
4

)

≤P

(∣

∣

∣log ξ
1−ξ

∣

∣

∣≥ s
)

.

Proof. For all s ≥ 0 we have es

1+es ≤ 1
2 +

s
4 . Therefore,

P

(

ξ−
1

2
≥

s

4

)

≤P

(

ξ−
1

2
≥

es

1+es
−

1

2

)

=P

(

log

(

ξ

1−ξ

)

≥ s

)

.

The symmetry of ξ, i.e., that due to the definition (6.1) of R the random variables ξ and 1−ξ are identically dis-
tributed, therefore implies the claim. �

Proof of Lemma 6.18. Assume that (6.43) is satisfied for some ℓ≥ 1. Then also the assumption of Lemma 6.19 with

z = min

{

k

10

(

k

50

)ℓ−1

log2,2k/4

}

is satisfied, and we will use this estimate to bootstrap (6.43). Indeed, Lemma 6.19 and Claims 6.20 and 6.21 yield

P

(∣

∣

∣

∣

ξ−
1

2

∣

∣

∣

∣

≥ 2−k/10−2ℓ
)

≤P

(∣

∣

∣

∣

log
ξ

1−ξ

∣

∣

∣

∣

≥ 2−k/10−2ℓ+2
)

≤ max

{

2
− k

10

(

k
50

)ℓ

,exp
(

−2k/4
)

}

,

as claimed. �

Proof of Lemma 6.16. The proof is by induction on ℓ. Since we assume that η satisfies (6.41), (6.43) holds for ℓ =
1. Therefore, we may repeatedly apply Lemma 6.18 until for the first time 2−

k
10 −2ℓ < 2−k/4,which happens after

⌈3k/40⌉−1 steps. At this point, also

max

{

2
− k

10

(

k
50

)ℓ

,exp
(

−2k/4
)

}

= exp
(

−2k/4
)

. (6.50)
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Therefore, (6.50) implies that P
(∣

∣

∣ξ(ℓ) − 1
2

∣

∣

∣≥ s
)

≤ exp
(

−s2k/4
)

for all s ∈ [2−k/4,1] , whence (6.42) holds for all ℓ ≥
⌈3k/40⌉+1. �

6.4.3. Proof of Lemma 6.17. We combine some of the elements of the proofs of Lemmas 6.2 and 6.16. We continue
to denote by (η±

i , j
)i , j≥1 an array of independent copies of η. Moreover, γ+,γ− are Poisson variables with mean d/2,

independent of (η±
i , j

)i , j≥1. Further, for s ≥ 2−k/4 and i = 1, . . . ,γ± let

A
±

i ,s =
{

k−1
∑

j=1

1

{∣

∣

∣

∣

∣

log
η±

i , j

1−η±
i , j

∣

∣

∣

∣

∣

≥ s

}

≤
k −1

10

}

, As =
∞
⋃

m1=0

∞
⋃

m2=0

(

{

γ+ = m1,γ− = m2
}

∩
m1
⋂

i=1

A
+

i ,s ∩
m2
⋂

i=1

A
−
i ,s

)

.

For the event As we prove an analogue of Lemma 6.19.

Lemma 6.22. Assume that for some s ≥ 1
2 we have

P

[∣

∣

∣

∣

log
η

1−η

∣

∣

∣

∣

≥ s

]

≤ exp
(

−s2k/4
)

.

Then P (As) ≥ 1− 1
3 exp

(

−s21+k/4
)

.

Proof. Because the η±
i , j

are mutually independent, the Chernoff bound yields

P

[

A
±

i ,s

]

≥ 1−exp

(

−
s(k −1)

20
2k/4

)

. (6.51)

Further, for s > 1/2 Lemma 4.5 and (6.51) yield

1−P (As) ≤P

[

γ++γ− > 4sk2k
]

+P

[{

γ++γ− ≤ 4sk2k
}

\As

]

≤ exp

(

−
(

log(4s)−
4s −1

4s

)

4sk2k

)

+4sk2k exp

(

−
k −1

20
s2k/4

)

≤
1

3
exp

(

−2s2k/4
)

,

as desired. �

Consider the non-negative random variables

X ±
i =− log

(

1−
(

1−e−β
)k−1

∏

j=1

η±
i j

)

≥ 0, Y ±
i = X ±

i 1

{

X ±
i ≤

(

1−e−β
)

2−9(k−1)/10
}

.

Then

P

(

1As log
ξ

1−ξ
≥ 2s

)

≤P

(

As ∩
{

γ−
∑

i=1

X −
i −

γ+
∑

i=1

X +
i ≥ 2s

})

≤P

(

As ∩
{

γ−
∑

i=1

(

X −
i −Y −

i

)

−
γ+
∑

i=1

(

X +
i −Y +

i

)

+
γ−
∑

i=1

(

Y −
i −E

[

Y −
i

])

−
γ+
∑

i=1

(

Y +
i −E

[

Y +
i

])

+E
[

Y −
1

](

γ−−γ+)

≥ 2s

})

≤P

(

As ∩
{

γ−
∑

i=1

(

X −
i −Y −

i

)

≥
s

3

})

+2 ·P
(∣

∣

∣

∣

∣

γ−
∑

i=1

(

Y −
i −E

[

Y −
i

])

∣

∣

∣

∣

∣

≥
s

3

)

+2 ·P
(

E
[

Y −
1

]

∣

∣

∣

∣

γ−−
d

2

∣

∣

∣

∣

≥
s

3

)

. (6.52)

We proceed to bound the three terms on the r.h.s. of (6.52) separately, starting with the one in the middle.

Lemma 6.23. We have P
[∣

∣

∣

∑γ−

i=1 Y −
i
−E

[

Y −
i

]

∣

∣

∣≥ s
3

]

≤ 1
9 exp

(

−2s2k/4
)

.

Proof. Lemma 4.5 and Azuma’s inequality yield

P

(∣

∣

∣

∣

∣

γ−
∑

i=1

Y −
i −E

[

Y −
i

]

∣

∣

∣

∣

∣

≥
s

3

)

≤P

(

γ− > 2sk2k
)

+P

(

{

γ− ≤ 2sk2k
}

∩
{∣

∣

∣

∣

∣

γ−
∑

i=1

Y −
i −E

[

Y −
i

]

∣

∣

∣

∣

∣

≥
s

3

})

≤ exp

(

−
(

log (4s)−
4s −1

4s

)

2sk2k

)

+2exp

(

−
s2

36sk2k 2−9(k−1)/5

)

≤
1

9
exp

(

−2s2k/4
)

,

as claimed. �

The rightmost term from (6.52) is next.
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Lemma 6.24. We have P
[

E
[

Y −
1

]

∣

∣

∣γ−− d
2

∣

∣

∣≥ s
3

]

≤ 1
9 exp

(

−2s2k/4
)

.

Proof. The definition of Y ±
1 ensures that E

[

Y −
1

]

≤ 2−9(k−1)/10. Therefore, Lemma 4.5 yields

P

(

E
[

Y −
1

]

∣

∣

∣

∣

γ−−
d

2

∣

∣

∣

∣

≥
s

3

)

≤P

(∣

∣

∣

∣

γ−−
d

2

∣

∣

∣

∣

≥
s

3
29(k−1)/10

)

≤
1

9
exp

(

−2s2k/4
)

,

as claimed. �

Finally, the following lemma deals with the first term from (6.52).

Lemma 6.25. We have P
[

As ∩
{

∑γ−

i=1

(

X −
i
−Y −

i

)

≥ s
3

}]

≤ 1
9 exp

(

−2s2k/4
)

.

The proof of Lemma 6.25 requires several steps.

Claim 6.26. Assume that s ≥ 1/2 and that for all t ∈ [2−k/4, s] we have

P

(

log
η

1−η
≥ t

)

≤ exp
(

−t2k/4
)

.

Then P
(

X −
1 ≥ t

)

≤ exp
(

− t
2 (k −1)2k/4

)

for all t ∈ [1,2s].

Proof. For t ∈ [1,2s] we obtain

P
[

X +
1 ≥ t

]

≤P

[

∀ j ∈ [k −1] : η−
1 j ≥

1−e−t

1−e−β

]

=P

[

log
η

1−η
≥ log

1−e−t

e−t −e−β

]k−1

≤P

[

log
η

1−η
≥

t

2

]k−1

≤ exp

(

−
t

2
(k −1)2k/4

)

,

as desired. �

Thus, we have a tail bound for X −
1 up to 2s. To bound the probability that X −

1 grows even larger, we are going to
condition on the event As . Indeed, on As for all i = 1, . . . ,γ− we have

X −
i =− log

(

1−
(

1−e−β
)k−1

∏

j=1

η−
i j

)

≤− log

(

1−
(

1−e−β
)

(

es

1+es

)9(k−1)/10
)

. (6.53)

The following two claims show that the X −
i

are bounded by 2s deterministically on As .

Claim 6.27. For all s ≤ log k we have − log

(

1−
(

1−e−β
)

(

es

1+es

)9(k−1)/10
)

≤ 1.

Proof. This is equivalent to showing that

1−
(

1−e−β
)

(

es

1+es

)9(k−1)/10

≥
1

e
.

The left hand side is strictly decreasing in s and thus is is sufficient to show the claim for s = logk, in which case

1−
(

1−e−β
)

(

elog k

1+elog k

)9(k−1)/10

= 1−
(

1−e−β
)

(

1−
1

k +1

)9(k−1)/10

≥ 1−
(

1−e−β
)

exp

(

−
9(k −1)

10(k +1)

)

≥
1

2
,

as desired. �

Claim 6.28. For s > logk we have − log

(

1−
(

1−e−β
)

(

es

1+es

)9(k−1)/10
)

≤ s.

Proof. We have
(

1−
1

1+es

)9(k−1)/10

≤ 1−
(

9

10

)2

(k −1)e−s +
1

2

(

9(k −1)

10

)2

e−2s .

Therefore,

− log

(

1−
(

1−e−β
)

(

es

1+es

)9(k−1)/10
)

≤− log

(

1−
(

es

1+es

)9(k−1)/10
)

≤− log

((

9

10

)2

(k −1)e−s −
1

2

(

9(k −1)

10

)2

e−2s

)

=−2log

(

9

10

)

− log(k −1)+ s − log

(

1−
k −1

2
e−s

)

≤ s,
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as claimed. �

Proof of Lemma 6.25. On the event As we have

γ−
∑

i=1

X −
i −Y −

i ≤
γ−
∑

i=1

1

{

X −
i ≥

(

1−e−β
)

2−9(k−1)/10
}

+
γ−
∑

i=1

X −
i 1

{

X −
i ∈ [1, s]

}

1

{

X i ≥
(

1−e−β
)

2−9(k−1)/10
}

.

We now reprove Lemma 6.5, part (ii), with ε= 1/10 to get an upper bound on P
[

X −
i
≥

(

1−e−β
)

2−9(k−1)/10
]

. First of
all, as in (6.8), rearranging and elimination of β gives

P

[

X −
1 ≥ (1−e−β)2−(9/10)(k−1)

]

≤P

[

k−1
∏

j=1

η+
1 j ≥ 1−exp

(

−2−(9/10)(k−1)
)

]

. (6.54)

Further, since η1 j ≤ 1 for all j , for any a ∈ [0,1] and b ∈ (0,k −2] we have

P

[

k−1
∏

j=1

η+
1 j ≥ a

]

≤P

[∣

∣

∣

{

j ∈ [k −1] :η+
1 j ≥ a

1
k−1−b

}∣

∣

∣≥ b
]

. (6.55)

Moreover, for large k we have

1−exp
(

−2−(9/10)(k−1)
)

≥ 2−(k−1)(29/30)2
, (6.56)

which was proved in Section 6.2.2. Combining (6.54), (6.55) and (6.56), we obtain

P

(

X −
1 ≥

(

1−e−β
)

2−(9/10)(k−1)
)

≤P

(

k−1
∏

j=1

η+
1 j ≥ 2−(k−1)(29/30)2

)

≤P
(∣

∣

∣

{

j ∈ [k −1] :η+
1 j ≥ 2−29/30

}∣

∣

∣≥ (k −1)/30
)

≤
∑

(k−1)ε/30≤ j≤k−1

(

k −1

j

)

P
[

η+
11 ≥ 2−29/30] j ≤ 2k−1

P
[

η+
11 ≥ 2−29/30](k−1)/30

.

Since 1/2 ≥ϕ−1(2−29/30) ≥ 2−k/4, the assumption of Lemma 6.17 implies that

P

(

X ≥
(

1−e−β
)

2−(9/10)(k−1)
)

≤ 2k−1exp

(

−
(k −1)

30
2k/4ϕ−1 (

2−29/30)
)

.

Finally, since ϕ−1
(

2−29/30
)

≥ 2
30 log2 and for k ≥ 100 and c := 1/1000

P

[

X −
1 ≥

(

1−e−β
)

2−9(k−1)/10
]

≤ exp
(

−ck2k/4
)

. (6.57)

Moreover, for all a ∈ [1, s], Lemma 6.26 implies that also

P
(

X −
1 ≥ a

)

≤ exp
(

−2cak2k/4
)

. (6.58)

Set ϑ= ck2k/4. Then (6.57), the definition of the random variable and (6.58) show that for z ≥ 0,

P

(

1

{

X −
i >

(

1−e−β
)

2−(9/10)(k−1)
}

(

1+ 1
{

X −
i ∈ [1, s]

}

X −
i

)

> z
)

≤











P
(

X −
i
>

(

1−e−β
)

2−(9/10)(k−1)
)

≤ e−ϑ, if z < 1,

e−2ϑ, if 1 ≤ z < 2,

P
(

1
{

X −
i
∈ [1, s]

}

X −
i
≥ z −1

)

≤ e−zϑ, if z ≥ 2.

Hence, we can estimate these random variables as follows. Let
(

I−
i

)

i≥1
be a sequence of Be

(

e−ϑ
)

random variables,
let (Z −

i
)i≥1 be a sequence of exponential random variables with mean 1/ϑ and let γ̄− be a Po(d/2) random variable,

all mutually independent. Then for all i ≥ 1, z ≥ 0 we have

P

(

1

{

X −
i >

(

1−e−β
)

2−(9/10)(k−1)
}

(

1+ 1
{

X −
i ∈ [1, s]

}

X −
i

)

> z
)

≤P
(

I−i (1+Z −
i ) > z

)

=
{

e−ϑ, z < 1,

e−zϑ, z ≥ 1.

Thus, 1
{

X −
i
>

(

1−e−β
)

2−(9/10)(k−1)
}

(1+ 1
{

X −
i
> 1

}

X −
i

) is stochastically dominated by I−
i

(1+ Z −
i

). Therefore, we
also obtain stochastic dominance for the sums of these random variables, i.e.,

γ−
∑

i=1

1

(

X −
i >

(

1−e−β
)

2−(9/10)(k−1)
)

(1+ 1
(

X −
i > 1

)

X −
i ) ¹Σ

−
1 +Σ

−
2 where Σ

−
1 =

γ̄−
∑

i=1

I−i , Σ
−
2 =

γ̄−
∑

i=1

I−i Z −
i . (6.59)

39



Hence, as in the proof of Lemma 6.2, we can stochastically dominate the difference
∑γ−

i=1

(

X −
i
−Y −

i

)

by a sum of a
Poisson random variable and a random variable that is Gamma distributed, conditionally on the Poisson variable.
Thus, we obtain

P

[

As ∩
{

γ−
∑

i=1

(

X −
i −Y −

i

)

≥ s/3

}]

≤P
[

Σ
−
1 +Σ

−
2 ≥ s/3

]

≤P
[

Σ
−
1 ≥ s/6

]

+P
[

Σ
−
2 ≥ s/6

]

,

where Σ
−
1 has distribution Po( d

2 exp
(

−ck2k/4
)

) and Σ
−
2 has distribution Γ(Σ1,1/(2ck2k/4)). Bennett’s inequality

yields

P
[

Σ
−
1 ≥ s/6

]

≤ exp

(

s

6
−

d

2
exp

(

−ck2k/4
)

+
s

6
log

(

d

2
exp

(

−ck2k/4
)

)

−
s

6
log

( s

6

)

)

≤
1

18
exp

(

−2s2k/4
)

Moreover, we again set ϑ := ck2k/4. Then d/(ϑexp(ϑ)) → 0 as k →∞, and Claim 6.10 yields that for k sufficiently
large,

P
(

Σ
−
2 ≥ s/6

)

≤ exp

(

−ck2k/4 s

6

(

1−2

√

d

12sϑexp(ϑ)
+

d

12sϑexp(ϑ)

))

≤
1

18
exp

(

−2s2k/4
)

,

which completes the proof. �

Proof of Lemma 6.17. Combining (6.52) with the estimates from Lemma 6.22, 6.23, 6.24 and 6.25 yields

P

[∣

∣

∣

∣

log
ξ

1−ξ

∣

∣

∣

∣

≥ 2s

]

≤ 1−P [As ]+P

[

1As log
ξ

1−ξ
≥ 2s

]

≤ exp
(

−2s ·2k/4
)

,

as claimed. �

7. PROOF OF PROPOSITION 2.5

Throughout this section we assume that (1.8) is satisfied. We start by estimating the difference of the actual variable-
to-clause messages and the pseudo-messages.

Lemma 7.1. For any ε> 0 there is t0 such that for t > t0 and for large enough n we have

E

n
∑

i=1

∑

a∈∂xi

∣

∣µΦ,β,xi →a(1)−µΦ,β,xi →a,t (1)
∣

∣< ε.

Proof. Observe that the double sum amounts to choosing a random clause a of Φ and then a random variable x

that appears in a. In other words, it suffices to prove that

E

∣

∣µΦ,β,x→a (1)−µΦ,β,x→a,t (1)
∣

∣= ot (1). (7.1)

Furthermore, because the total number m of clauses of the random formula Φ is a Poisson variable with standard
deviation Θ(

p
n), the random formulas Φ and Φ−a (obtained by removing a from Φ) have total variation distance

o(1). Hence, recalling (1.5)–(1.6), we see that in order to establish (7.1) it is enough to show that

E

∣

∣µΦ,β({σx1 = 1})−µΦ,β,x1 ,t (1)
∣

∣= ot (1), where µΦ,β,x1 ,t (s)=
∏

a∈∂x1
µΦ,β,a→x1 ,t (s)

∏

a∈∂x1
µΦ,β,a→x1 ,t (1)+

∏

a∈∂x1
µΦ,β,a→x1 ,t (−1)

. (7.2)

Indeed, picking a large enough t > 0 and assuming that n is sufficiently large, we may also condition on the event
T that the depth-2t neighbourhood of x1 in the factor graph G(Φ) is acylic and that the total number of variables
and clauses in this neighbourhood is bounded by (kd)2t .

To prove (7.2) let Φ− denote the random formula obtained by deleting all clauses b1, . . . ,bℓ at distance exactly
2t −1 from x1 in Φ. Further, obtain Φ

+ from Φ
− by inserting new clauses b′

1, . . . ,b′
ℓ

instead such that

• each b′
i

is connected with the same variable yi at distance 2t − 2 from x1 as bi with the same sign, i.e.,
sign(yi ,bi ) = sign(yi ,b′

i
).

• the other variables y i j , j ∈ [k −1], that occur in the clauses b′
i

and their signs are chosen uniformly and
independently of the bi .
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Then Φ
+ and Φ are identically distributed. Therefore, to prove (7.2) we just need to show that

E
[∣

∣µΦ
+,β({σx1 = 1})−µΦ

+,β,x1 ,t (1)
∣

∣ |T
]

= ot (1). (7.3)

Because the formula Φ
− is obtained from Φ by merely deleting a bounded number of at most (kd)2t clauses, by

their definition (1.1) the Boltzmann distributions µΦ,β and µΦ
−,β are mutually 1/δ-contiguous for some δ= δ(t) >

0. The assumption (1.8) and Lemma 4.3 therefore imply that a.a.s.

n
∑

i=1

∣

∣µΦ,β({σxi
= 1})−µΦ

−,β({σxi
= 1})

∣

∣= o(n), (7.4)

n
∑

i , j=1

∣

∣

∣µΦ
− ,β({σxi

=σx j
= 1})−µΦ

−,β({σxi
= 1})µΦ

−,β({σx j
= 1})

∣

∣

∣= o(n2). (7.5)

In particular, (7.4) ensures together with Corollary 2.2 that the empirical distribution πΦ
− ,β of the Boltzmann

marginals of Φ− has slim tails a.a.s. Furthermore, Lemma 4.2 implies that a.a.s. over the choice of Φ− and of the
random attachment points y i j of the clauses b′

i
in Φ

+ for a sample σ− from µΦ
−,β we have

∣

∣

∣

∣

∣

µΦ
−,β

({

∀i ∈ [ℓ], j ∈ [k −1] :σ−
y i j

=σi j

})

−
ℓ

∏

i=1

k−1
∏

j=1

µΦ
−,β

({

σ−
y i j

=σi j

})

∣

∣

∣

∣

∣

= o(1) for all σ= (σi j ) ∈ {±1}(k−1)ℓ. (7.6)

In other words, the joint distribution of the σ−
y i j

factorises.

Finally, now that we have pinned down the distribution of the boundary condition (σ−
y i j

)i , j , we can easily get a

handle on the marginal of x1. Namely, let Φ′ denote the formula comprising all clauses and variables at distance
at most 2t from x1 in Φ

+. Then (7.6) shows that for a sample σ+ from µΦ
+,β a.a.s.

µΦ
+,β({σ+

x1
= s}) ∝ o(1)+

∑

σ∈{±1}V (Φ′)
1
{

σx1 = s
}

µΦ
′,β(σ)

k−1
∏

j=1

µΦ
−,β

({

σ−
y i j

=σy i j

})

(s =±1). (7.7)

SinceΦ
′ is acyclic a.a.s. and Belief Propagation is exact on acyclic factor graphs by Theorem 4.6, (7.7) shows that the

Boltzmann marginal µΦ
+,β,x1

(1) can be computed by running t iterations of Belief Propagation, with the boundary
messages initialised by the marginals µΦ

−,β,y i j
. Moreover, because the marginals µΦ

−,β,y i j
are actually indepen-

dent samples from the slim-tailed distribution πΦ
−,β and since the tree Φ

′ is asymptotically distributed as the
Galton-Watson tree T , Proposition 2.3 implies the desired bound (7.2). �

Lemma 7.2. For any ε> 0 there is t0 such that for t > t0 and for large enough n we have

E

n
∑

i=1

∑

a∈∂xi

∣

∣µΦ,β,a→xi
(1)−µΦ,β,a→xi ,t (1)

∣

∣< εn.

Proof. While we could repeat a similar argument as in the proof of Lemma 7.2, there is a shorter route that uses
the Belief Propagation recurrence. Specifically, [20, Theorem 1.1] implies together with the assumption (1.8) that
a.a.s. for all but o(n) adjacent clause/variable pairs a, x we have

µΦ,β,a→x (s) ∝ o(1)+
∑

σ∈{±1}∂a

1{σx = s} exp(−β1{σ 6|= a})
∏

y∈∂a\{x}

µΦ,β,y→a (σy ). (7.8)

Since Lemma 7.1 shows that for large enough t a.a.s. we have µΦ,β,y→a (1) =µΦ,β,y→a,t−1(1)+ot (1) for all y ∈ ∂a and
since (7.8) matches (1.5), we conclude that µΦ,β,a→x (1) =µΦ,β,a→x,t (1)+ot (1) a.a.s. �

Proof of Proposition 2.5. The proposition is an immediate consequence of Lemmas 7.1 and 7.2. �

Finally, for later use we make a note of the following consequence of the arguments presented in this section.
We recall the distribution π⋆

d ,β from Proposition 2.3.

Corollary 7.3. Assume that (1.8) holds, that d ≤ dSAT(k) and that the event E that πΦ,β has very slim tails satisfies

limsupn→∞P [E]> 0. Then along any subsequence where P [E]> 0 we have E[W1(πΦ,β,π⋆

d ,β) |E] = o(1).

Proof. The same argument as in the proof of Lemma 7.1 shows that πΦ,β can be coupled within total variation
distance o(1) to coincide with the distribution of a random variable-to-clause message µΦ,x→a (1). Furthermore,
Lemma 7.1 implies that this message is well approximated by µΦ,x→a,t (1) for a sufficiently large t a.a.s. Moreover,
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due to local weak convergence of the factor graph, the depth-2t neighbourhood of x converges weakly in probabil-
ity to the top 2t layers of T . Therefore, the reattachment argument from the proof of Lemma 7.1 implies together
with the contraction result from Proposition 2.3 that µΦ,x→a,t (1) converges weakly to π⋆

d ,β on E. �

8. REPLICA SYMMETRY BREAKING

In this section we prove Theorem 1.2 by way of establishing Propositions 2.7 and 2.6; the former is required to
derive the latter. Throughout this section we assume that d ,β satisfy the assumptions of Theorem 1.2 for suitable
sequences εk ,β0(k). Let c > 0 be such that d/k = 2k log2−c.

8.1. Proof of Proposition 2.7. The proposition asserts a lower bound on E[log Z (Φ,β)] under the assumption that
the replica symmetry condition (1.8) is satisfied. The starting point for the proof is the following statement, which
is implicit in [41]. For the convenience of the reader a self-contained proof is contained in the appendix.

Lemma 8.1. Assume that (1.8) is satisfied. Then liminfn→∞
1
n
E[log Z (Φ,β)] ≥ liminfn→∞E[Bd ,β(πΦ,β)].

As Lemma 8.1 provides a lower bound on E[log Z (Φ,β)] in terms of the Bethe free energy of the empirical distri-
bution πΦ,β, the logical next step for us is to get a handle on πΦ,β. To this end we are going to harness some of the
intermediate results from the second moment calculation from Section 5, particularly Proposition 5.10. Of course
the techniques deployed in that section are relatively crude. Instead of dealing with as fine-grained an object as
the empirical marginal distribution, the moment calculation has the overlap as its protagonist. More precisely, let

a= a(Φ,β) =
〈

α(σ,σ′),µΦ,β

〉

denote the average overlap of two independent random samples σ,σ′ from the Boltzmann distribution µΦ,β. In
Section 8.1.1 we will derive the following consequence of Proposition 5.10.

Lemma 8.2. We have a ∈ (1/2−k1002−k/2,1/2+k1002−k/2)∪ (1−k22−k ,1) a.a.s.

Furthermore, a simple consequence of (1.8) is that the overlap concentrates about its expectation.

Lemma 8.3 ([16, Corollary 1.14]). If (1.8) holds, then limn→∞E
〈∣

∣α(σ,σ′)−a
∣

∣,µΦ,β
〉

= 0.

Combining Lemmas 8.2 and 8.3, we see that there are two possibilities: either the typical inner product of
two Boltzmann samples is close to zero, i.e., typical Boltzmann samples are essentially orthogonal. Or the inner
product is close to one, in which case σ,σ′ largely agree. It is easy to see that in the latter case many of the Boltz-
mann marginals µΦ,β({σxi

= 1}) are strongly polarised, i.e, µΦ,β({σxi
= 1}) is fairly close to either zero or one. To

be more precise, it is very easy to derive from Lemma 8.3 that if a ≥ 1−24−k , say, then all but 2−0.99k n marginals
µΦ,β({σxi

= 1}) either belong to the interval (0,2−0.99k ) or to the interval (1−2−0.99k ,1).
But unfortunately this estimate is far too rough to be useful. Indeed, recalling Lemma 8.1, we need to estimate

the empirical marginal distribution πΦ,β precisely enough to actually estimate Bd ,β(πΦ,β). Due to the e−β terms

that occur in Bd ,β, the mere knowledge that most marginals belong to (0,2−0.99k )∪ (1−2−0.99k ,1) does not suffice

to calculate the Bethe free energy as even a single unlucky e−β term might have a huge impact on the expression
(2.15). Yet remarkably, thanks to a delicate expansion argument in Section 8.1.2 we will be able to bootstrap on the
rough estimate and derive a much tighter estimate of the Boltzmann marginals. Let A be the event that

1

n

n
∑

i=1

1{µΦ,β({σxi
= 1}) ∈ (0,exp(−β))∪ (1−exp(−β),1)} ≥ 1−2−0.98k . (8.1)

Lemma 8.4. If (1.8) holds then P[{a≥ 1−k22−k } \A] = o(1).

Thus, combining Lemmas 8.2 and 8.4, we learn that unless a is close to 1/2, most Boltzmann marginals are
actually extremely polarised. This polarisation is strong enough for us to derive the following explicit lower bound
on the Bethe free energy, whose proof can be found in Section 8.1.5.

Lemma 8.5. On the event A we have Bd ,β(πΦ,β) ≥ 2−k (c − log2/2+o(1)).

Hence, we are left to deal with the scenario that a is close to 1/2, i.e., a ∈ (1/2− k1002−k/2,1/2+ k1002−k/2) as
in Lemma 8.2. In this case it is not difficult to verify that the empirical marginal distribution πΦ,β has very slim
tails. Consequently, Corollary 7.3 shows that πΦ,β is close to the distribution π⋆

d ,β from Proposition 2.3. Further, in

Section 8.1.6 we will be able to derive the following estimate of the latter distribution’s Bethe free energy.
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Lemma 8.6. We have B(π⋆

d ,β) = 2−k
(

c − log2/2
)

+o(2−k ).

With these ingredients we can now deduce Proposition 2.7.

Proof of Proposition 2.7. Assume that (1.8) holds a.a.s. Let E be the event that πΦ,β has very slim tails. Then
Claim 5.35 and Lemma 8.2 imply that P [E∪A]= 1−o(1). There are three cases to consider.

Case 1: P [E]= o(1): then the assertion follows from Lemma 8.5 in combination with Lemma 8.1.
Case 2: P [A]= o(1): the assertion follows from Corollary 7.3, Lemma 8.6 and Lemma 8.1.
Case 3: neither P [A]= o(1) nor P [E] = o(1): in this case we combine Corollary 7.3, Lemma 8.6, Lemma 8.5

and Lemma 8.1.

Thus, in any case we obtain the desired lower bound on E[log Z (Φ,β)]. �

8.1.1. Proof of Lemma 8.2. We use the techniques and results from Section 5.3.3 to estimate E
[

µΦ,β({α(σ,σ′) 6∈A })
]

with A = (1/2−k1002−k/2,1/2+k1002−k/2)∪ (1−k22−k ,1). Recalling the function f (α) from (2.6), we see that

1

n
logE

[

Z (Φ,β)2µΦ,β({α(σ,σ′) 6∈A })
]

≤ max
α∈A

f (α)+o(1). (8.2)

Hence, because Theorem 4.1 implies that Z (Φ,β) ≥ 1 a.a.s., it suffices to show that f (α) < 0 for all α ∉ A . Indeed,
Claims 5.30–5.33 reduce our task to proving that f (1/2 + k1002−k/2) < 0 and f (1 − 24−k ) < 0. Applying Taylor’s
formula, we obtain f (1/2+k1002−k/2) ≤ f (1/2)−k2002−k < 0 and

f (1−24−k ) ≤ log 2+k32−k log(2)−k22−k log(k)+
d

k
log

(

1− (1−e−β)21−k + (1−e−β)22−k (1−k22−k )k
)

≤−k22−k log(k)+
(

d

k
−2k log2

)

(1−e−β)2−k +O(2−k ) < 0.

Thus, the assertion follows from (8.2).

8.1.2. Proof of Lemma 8.4. We seize upon the expansion properties of the hypergraph underlying the random
formula Φ. To set up the necessary terminology let Φ be any k-CNF formula on the variable set Vn = {x1, . . . , xn }
and let σ ∈ {±1}Vn be a truth assignment. We say that a variable xi supports a clause a of Φ under σ if xi ∈ ∂a,
sign(xi , a) = σxi

and sign(x, a) 6= σx for all x ∈ ∂a \ {xi }. Hence, xi contributes the single true literal of a. Let
suppΦ,σ(xi ) be the set of all clauses that xi supports. Further, call a set S ⊂Vn of variables stable in (Φ,σ) if

ST1: every x ∈ S supports at least 10−5k clauses that contain variables from S only, and
ST2: no x ∈ S appears in more than 10−6k clauses a that fail to contain a variable y ∈ S with sign(y, a) =σy .

Since the union of two stable sets is stable, we denote by S(Φ,σ) the largest stable set of (Φ,σ). The following
lemma, whose proof we defer to Section 8.1.3, asserts that an assignmentσ drawn from the Boltzmann distribution
of the random formula Φ induces a very large stable set a.a.s.

Lemma 8.7. We have E
[

µΦ,β

(

{|S(Φ,σ)| ≥ 2−0.99k n}
)]

∼ 1.

In light of Lemma 8.7 we call a formula Φ normal if
〈

1{|S(Φ,σ)| ≥ 2−0.99k n},µΦ,β
〉

∼ 1, i.e., if its typical Boltzmann
samples induce stable sets as large as promised by Lemma 8.7. Furthermore, we call Φ separable if

µΦ,β

({

1−k32−k ≤α(σ,σ′)∧
∑

y∈S(Φ,σ)

1{σy 6=σ′
y } > ne−10β

})

= o(1).

Hence, it is unlikely that σ,σ′ have a high overlap but differ on a lot of variables from S(Φ,σ). In Section 8.1.4 we
are going to prove that Φ is separable a.a.s.

Lemma 8.8. The random formula Φ is separable a.a.s.

Lemma 8.4 is now an easy consequence of Lemmas 8.7 and 8.8.

Proof of Lemma 8.4. Thanks to Lemmas 8.7 and 8.8 we may assume that Φ is normal and separable. We also as-
sume that the event

{

a≥ 1−k22−k
}

occurs and that the replica symmetry condition (1.8) holds, i.e.,

1

n2

n
∑

i , j=1

dTV(µΦ,β,xi ,x j
,µΦ,β,xi

⊗µΦ,β,x j
) = o(1). (8.3)
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Draw a random σ from µΦ,β and let V = V (σ) be the set of all variables x ∈ S(Φ,σ) such that µΦ,β,x (1) ∈ (0,e−β)∪
(1−e−β,1). We claim that |V | ≥ (1−e−β)|S(Φ,σ)| a.a.s. over the choice of σ, which would clearly imply the lemma.

To verify this claim assume that |V | < (1−e−β)|S(Φ,σ)| and draw a second, independent sample σ′ from µΦ,β.
Let X be the number of variables x ∈ V such that σx 6=σ′

x . Then the asymptotic pairwise independence property
(8.3) implies together with Chebyshev’s inequality that a.a.s. over the choice of σ,σ′ we have

X ≥ |V |−
∑

x∈V

(µΦ,β,x (1)2 +µΦ,β,x (−1)2)+o(n) =
∑

x∈V

µΦ,β,x (1)µΦ,β,x (−1)+o(n) ≥ exp(−2β)n/2+o(n),

in contradiction to separability. �

8.1.3. Proof of Lemma 8.7. We prove the lemma by way of a distribution on random k-CNF formulas known as the
planted model. Recall that m = Po(dn/k) is a Poisson variable and consider the following experiment.

PL1: draw a truth assignment σ∗ ∈ {±1}Vn uniformly at random
PL2: then draw a k-CNF Φ

∗ =Φ
∗(σ∗) with m ∼ Po(dn/k) clauses from the distribution

P[Φ∗ =Φ | m,σ∗] =
P [Φ=Φ | m]exp(−βHΦ(σ∗))

(1− (1−e−β)2−k )m
.

The planted model (Φ∗,σ∗) is a tried and tested device for studying the Boltzmann distribution of random for-
mulas [1]. Indeed, while it is difficult to tackle the Boltzmann distribution directly, the planted model is amenable
to the toolbox of probabilistic combinatorics thanks to its constructive definition PL1–PL2. The following state-
ment ties the two models together.

Lemma 8.9. Let E be a set of formula/assignment pairs. Then

E
[〈

1{(Φ,σ) ∈ E },µΦ,β

〉

| m
]

≤ E[Z (Φ,β) | m]P
[

(Φ∗,σ∗) ∈ E | m
]

+o(1).

Proof. Let E
′ = E ∩ {Z (Φ,β)≥ 1}. Then Theorem 4.1 implies that

E
[〈

1{(Φ,σ) ∈ E },µΦ,β
〉

| m
]

= E
[〈

1
{

(Φ,σ) ∈ E
′},µΦ,β

〉

| m
]

+o(1). (8.4)

Furthermore, the definition PL1–PL2 of the planted model ensures that

E
[〈

1
{

(Φ,σ) ∈ E
′},µΦ,β

〉

| m
]

=
∑

(Φ,σ)∈E ′
P [Φ=Φ | m]µΦ,β(σ)

=
∑

(Φ,σ)∈E ′
P [Φ=Φ | m]e−βHΦ(σ)/Z (Φ,β)≤

∑

(Φ,σ)∈E

P [Φ=Φ | m] e−βHΦ(σ)

≤ 2n (1− (1−e−β)2−k )m
∑

(Φ,σ)∈E

P
[

(Φ∗,σ∗) = (Φ,σ)|m
]

= E[Z (Φ,β) | m]P
[

(Φ∗,σ∗) ∈ E | m
]

. (8.5)

The assertion follows from (8.4) and (8.5). �

To facilitate the use of the planted model we make a note of the following easy upper bound.

Lemma 8.10. We have 2(1− (1−e−β)2−k )d/k ≤ exp(2−k−1).

Proof. Using the bound d/k ≥ 2k log 2−3log(2)/2 we obtain in the limit of large β,

limsup
β→∞

log2+
d

k
log(1− (1−e−β)2−k ) ≤ log2−

d

k

[

2−k +2−2k−1
]

≤
log2

2k+1
,

as desired. �

As a final preparation we reformulate the second part PL2 of the experiment above as follows.

PL2a: for each of the m clauses a1, . . . , am of Φ∗ draw the k-tuple of variables that occur in the clause uni-
formly and independently.

PL2b: subsequently, once more independently for each i ∈ [m], draw the signs with which the variables ap-
pear in clause ai such that P[σ∗ 6|= ai | m,σ∗] = e−β/(2k −1+e−β).

The distributions produced by PL2 and PL2a–PL2b coincide because the clauses of Φ are mutually independent.
We proceed to exhibit a large stable set. The following lemma shows that in (Φ∗,σ∗) most variables support

a good number of clauses. To be precise, for a variable x let sx be the number of clauses a of Φ∗ to which x

contributes the only literal that is satisfied under σ∗.
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Lemma 8.11. We have P
[
∑

x∈Vn
1{sx < 10−4k} > 2−0.997k n

]

< exp(−n/2k ).

Proof. Because the total number of clauses of Φ∗ is Poisson, the random variables (sx )x∈Vn are mutually inde-

pendent Poissons. Moreover, PL2b shows that E[sx ] ∼ d/(2k −1+ e−β) = k log(2)+O(2−k) for every x. Therefore,
Bennett’s inequality from Lemma 4.5 yields

P
[

sx < 10−4k
]

≤ 2−0.998k . (8.6)

Furthermore, due to the independence of the sx the sum
∑

x∈Vn
1{sx < 10−4k} is a binomial variable. Since (8.6)

shows that its mean is bounded by n2−0.998k , the assertion follows from the Chernoff bound. �

For a variable x let ux be the number of clauses of Φ∗ in which x occurs and that σ∗ fails to satisfy.

Lemma 8.12. We have P
[
∑

x∈Vn
1{ux > 0} > 2−0.997k n

]

< exp(−n/2k ).

Proof. Let m0 be the total number of clauses of Φ∗ that σ∗ fails to satisfy. If
∑

x∈Vn
1{ux > 0} > 2−0.997k n, then

m0 ≥ 2−0.997k n/k. But PL2b ensures that m0 ∼ Po(dne−β/(k(2k −1+e−β))). Therefore, by Bennett’s inequality,

P

[

∑

x∈Vn

1{ux > 0} > 2−0.997k n

]

≤P

[

Po(dne−β/(k(2k −1+e−β))) > 2−0.997k n/k
]

≤ exp(−n/2k ),

providing that β is sufficiently large, as claimed. �

The following lemma shows that the planted model possesses a large stable set with very high probability.

Lemma 8.13. On the event m ∼ dn/k we have P
[

|S(Φ∗,σ∗)| < 2−0.99k n | m
]

≤ 4exp(−n/2k ).

Proof. Due to symmetry we may condition on the event σ∗
x = 1 for all variables x. Starting from the set S0 of all

variables x such that sx ≥ 10−4k and ux = 0, we attempt to construct a large stable set. To this end, we iteratively
obtain Si+1 from Si by removing an arbitrary variable y ∈ Si that violates one of the conditions ST1–ST2. Hence,
either y supports fewer than 10−5k clauses comprising variables from Si only, or y appears negatively in more
than 10−6k clauses that contain at least one positive literal but whose positive literals stem from Vn \ Si only. Of
course, once no such variable y is left the process stops. Let T be the stopping time of the process. By Lemmas 8.11
and 8.12 we may assume that |S0| ≤ 2−0.995k n. Moreover, by construction the final set ST is stable and has size at
least |S0|−T . Therefore, we just need to bound the probability of the event {T > 2−0.991k n}.

Hence, let t = ⌊2−0.991k n⌋, set θ = t/n and let R = Vn \ St . Then R contains the set S0 \ St of variables that our
process removes by time t as well as the variables Vn \ S0 that were excluded from the beginning. Since |S0| ≤
2−0.995k n and t ≤ 2−0.991k n we have

|R| ≤ 2t . (8.7)

Further, let X be the number of clauses that are supported by a variable from R and contain a second variable from
R. Also let C be the set of clauses that contain at least one variable from R positively and at least one variable
from R negatively but none from St = Vn \ R positively. Moreover, let Y be the number of R-C -edges in G(Φ). By
construction, if T > t then either X > 10−7kt or Y > 10−7kt . Thus, letting E = {m ∼ dn/k, |S0| ≤ 2−0.995k n}, we have

P

[

T > 2−0.991k n | E
]

≤P
[

X > 10−7ktn | E
]

+P
[

Y > 10−7kt | E
]

. (8.8)

In light of (8.7), to bound the first probability P
[

X > 10−7ktn | E
]

we estimate the probability that there exists

a set R ⊂ Vn of size |R| = 2t such that the number XR of clauses supported by a variable from R that contain a
second variable from R exceeds ℓ= 10−7kt . Also let X =X{x1 ,...,x2t }. Since P[E ] ∼ 1, we obtain the upper bound

P
[

X > 10−7ktn | E
]

≤ 2P [∃R : XR > ℓ | m ∼ dn/k] ≤ 2

(

n

2t

)

P [X > ℓ | m ∼ dn/k] . (8.9)

Furthermore, the last probability is easy to estimate. Indeed, due to PL2b the probability that a single clause is
supported by a variable from R and features a second variable from R negatively is bounded by

p =
4k(k −1)θ2

2k −1+e−β
.
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Consequently, since the m clauses are drawn independently, X is stochastically dominated by a binomial variable
Bin(m, p). Combining (8.9) with the Chernoff bound, we therefore obtain

P
[

X > 10−7ktn | E
]

≤ 2
(en

2t

)2t
P

[

Bin(2dn/k, p) > ℓ
]

≤ exp(−n/2k ). (8.10)

Moving on to Y , we consider an arbitrary set R as above, define CR as above as the set of clauses that contain
at least two variables from R but in which no variable from Vn \ R occurs positively and let YR be the number of
R-CR-edges in G(Φ). Observe that YR/k ≤CR ≤YR/2. Thanks to symmetry it suffices to consider Y =Y{x1,...,x2t }

and we obtain

P
[

Y > 10−7tn | E
]

≤ 2P [∃R : YR > ℓ | m ∼ dn/k] ≤ 2

(

n

2t

)

P [Y > ℓ | m ∼ dn/k] . (8.11)

We bound the last probability by

P [Y > ℓ | m ∼ dn/k] ≤
∑

ℓ/k≤M≤ℓ/2

(

2dn/k

M

)(

kM

ℓ

)

2−kM (2θ)ℓ ≤ 2

(

2dn/k

ℓ/2

)(

kℓ/2

ℓ

)

2−kℓ/2(2θ)ℓ ≤ (1010kθ)ℓ/2. (8.12)

Finally, the assertion follows from (8.8), (8.10) and (8.12). �

Proof of Lemma 8.7. The assertion is an immediate consequence of Lemma 8.9, Lemma 8.10 and Lemma 8.13. �

8.1.4. Proof of Lemma 8.8. We treat two regimes of distances
∑

x∈S(Φ,σ) 1{σx 6= σ′
x } separately. Let us begin with

very small distances.

Lemma 8.14. A.a.s. the random formula Φ has the following property. For any set V ⊂Vn of size |V | ≤ 10−9k−12−k n

the number clauses in which at least two variables from V occur is bounded above by 10−7k|V | .

Proof. Fix any such set V and let v = |V |/n and λ= 10−7k. Clearly, we may condition on the event that m ∼ dn/k ≤
2k n. Because the clauses are drawn independently, given m the number X V of clauses that contain two variables
from V is stochastically dominated by a Bin(m,k2v2) variable. Therefore,

P [X V > λvn | m]≤
(

m

λvn

)

(k2v2)λvn ≤
(

e2k k2v

λ

)λvn

. (8.13)

Thanks to the assumption on v , combining (8.13) with a union bound on sets V completes the proof. �

Corollary 8.15. A.a.s. we have µΦ,β

({

10−9k−12−k n >
∑

x∈S(Φ,σ) 1{σx 6=σ′
x } > ne−10β

})

= o(1).

Proof. We may condition on Φ possessing the property quoted in Lemma 8.14. For a pair of assignments σ,σ′ let
σ′′ be the assignment σ′′

x =σx for all x ∈ S(Φ,σ) and σ′′
x =σ′

x for all x 6∈ S(Φ,σ). Also let V be the set of all variables
x ∈ S(Φ,σ) such that σx 6=σ′

x . We claim that

HΦ(σ′′) ≤HΦ(σ′)−10−7k|V |. (8.14)

Indeed, by ST1 every x ∈ S(Φ,σ) supports at least 10−5k clauses. If σ′
x 6=σx , then σ′ can only satisfy those clauses

supported by x that contain a second variable from V . But Lemma 8.14 shows that there are no more than 10−7k|V |
such clauses. Furthermore, ST2 ensures that there are no more than 10−6k|V | clauses that σ′ satisfies and that σ′′

fails to satisfy. Thus, we obtain (8.14). Finally, (8.14) implies

∑

e−10βn<t<10−9k−12−k n

µΦ,β

({

∑

x∈S(Φ,σ)

1{σx 6=σ′
x } = t

})

≤
∑

e−10βn<t

(

n

t

)

exp(−10−7βkt) = o(1),

as desired. �

We proceed to assignment pairs that differ on an intermediate number of variables from the stable set.

Lemma 8.16. The pair (Φ∗,σ∗) has the following property with probability at least 1−exp(−n/2k ). Let σ be any as-

signment such that t =
∑

x∈S(Φ∗,σ∗) 1{σx 6=σ∗
x } ∈ (10−9k−12−k n,k−4n). Furthermore, let σ′

x =σ∗
x for all x ∈ S(Φ∗,σ∗)

and set σ′
x =σx for all x 6∈ S(Φ∗,σ∗). Then HΦ

∗(σ) ≥HΦ
∗ (σ′)+10−6kt .

46



Proof. Let λ= 10−7k. We pursue a similar strategy as in the previous lemma, but this time we confine ourselves to
the clauses supported by variables from S(Φ∗,σ∗). Indeed, by ST1 every variable x ∈ S(Φ∗,σ∗) supports at least
10−5k clauses. Hence, if σx 6=σ∗

x , then for σ to satisfy such a clause, it must contain another variable y such that
σy 6=σ∗

y negatively.

Consequently, to prove the assertion it suffices to show that Φ
∗ has the following property a.a.s. Let Φ

⋆ be
the sub-formula obtained by retaining only those clauses that contain a single true literal under σ∗. Then the
probability that there exists a set V of variables of size 10−9k−12−k ≤ |V |/n ≤ k−4 such that the number X V of
clauses of Φ⋆ that contain one variables from V negatively and one positively exceeds λ|V | is upper bounded by
exp(−n/2k ).

Thus, fix a set V as above and let v = |V |/n. The number of clauses of Φ⋆ that contain one variable from V

positively and one negatively is stochastically dominated by Po(pdn/k) with p = k2v2/(2k −1+ e−β). Therefore,
Bennett’s inequality shows that

P [X V >λvn]≤ exp(10−8kv log(d p/(kλv))). (8.15)

Combining (8.15) with a union bound on sets V completes the proof. �

Corollary 8.17. A.a.s. we have µΦ,β
({

k−4n >
∑

x∈S(Φ,σ) 1{σx 6=σ′
x } ≥ nk−1/22−k n

})

= o(1).

Proof. Invoking Lemmas 8.9 and 8.10, we extend the statement of Lemma 8.16 from the planted model (Φ∗,σ∗) to
the random pair (Φ,σ). Then we follow the steps of the proof of Corollary 8.15. �

Proof of Lemma 8.8. The assertion follows from Corollaries 8.15 and 8.17. �

8.1.5. Proof of Lemma 8.5. Let µ be a random variable with distribution πΦ,β and let J = ±1 be an independent
random variable with E[J ] = 0. Moreover, let π′

Φ,β be the distribution of (1+ J (2µ−1))/2. Further, let (µi , j )i , j be

a family of independent samples from π′
Φ,β and let γ± be two independent Po(d/2) variables. We are going to

estimate the two contributions to the Bethe free energy separately. The following claim deals with the second part.

Claim 8.18. We have −d(k−1)
k

E log 1− (1−e−β)
∏k

j=1µ1, j ≥
d(k−1+ok (1))

k2k β+oβ(1).

Proof. Let A be the event that µ1, j ≥ 1−e−β for all j ∈ [k] and let Ā be the complement of A .Then (8.1) implies
together with the fact that µi , j and 1−µi , j are identically distributed that

P [A ]≥ 2−k +O(2−1.9k ). (8.16)

Further, we have

1− (1−e−β)
k
∏

j=1

µ1, j ≤ 1− (1−e−β)k+1 ≤ (k +1)e−β on A , 1− (1−e−β)
k
∏

j=1

µ1, j ≤ 1 on Ā . (8.17)

Combining (8.16) and (8.17), we obtain the assertion. �

Let

Π
+ =

γ+
∏

i=1

(

1− (1−e−β)
k−1
∏

j=1

µi , j

)

, Π
− =

γ−
∏

i=1

(

1− (1−e−β)
k−1
∏

j=1

µi+γ+, j

)

.

Claim 8.19. We have E log
[

Π
++Π

−]

≥β
(

−d2−k +Ω(
p

k)
)

+oβ(β).

Proof. As in the previous proof we are going to separate the clause terms
∏k−1

j=1 µi , j with all µi , j close to one from

the rest. Specifically, let g+
1 be the number of indices i ≤γ+ such that µi , j ≥ 1−e−β for all j ∈ [k −1]. Moreover, let

g+
0 be the number i ≤γ+ such that µi , j ≤ e−β for some j ∈ [k −1] and let g+

∗ =γ+− g+
1 − g+

0 . Also define g−
0 , g−

1 , g−
∗

analogously for the second summand and let g∗ = g+
∗ + g−

∗ , g 0 = g+
0 + g−

0 . Then we obtain the lower bounds

Π
± ≥ exp(−β(g±

1 + g±
∗ )− g±

0 ).

Hence,

log(Π++Π
−) ≥ log(Π+∨Π

−) ≥−β
(

g+
1 ∧ g−

1 + g ∗
)

− g 0. (8.18)
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Recalling (8.1) and using Poisson thinning, we can view g±1
1 , g∗ and g 0 as independent Poissons with means

λ+
1 =λ−

1 ≤
d

2k +2−1.9k
, λ∗ ≤ d2−1.9k , λ0 ≤ d . (8.19)

Additionally, invoking the normal approximation to the Poisson distribution, we obtain

E
[

g+
1 ∧ g−

1

]

≤λ+
1 −Ω

(

√

λ1
+

)

= 2−k d −Ω(
p

k). (8.20)

Finally, combining (8.18)–(8.20) we obtain the assertion. �

Proof of Lemma 8.5. The lemma is an immediate consequence of Claims 8.18 and 8.19. �

8.1.6. Proof of Lemma 8.6. Let (µi , j )i , j≥1 be a sequence of independent samples from π⋆

d ,β and let γ± be two inde-

pendent Poisson variables with mean d/2. Then

B(π⋆

d ,β) = E

[

log
γ+
∏

i=1

(

1− (1−e−β)
k−1
∏

j=1

µi , j

)

+
γ−
∏

i=1

(

1− (1−e−β)
k−1
∏

j=1

µγ++i , j

)]

−
d(k −1)

k
E

[

log1− (1−e−β)
k
∏

j=1

µ1, j

]

.

Hence, for large enough β we obtain

B(π⋆

d ,β) = E

[

log
γ+
∏

i=1

(

1−
k−1
∏

j=1

µi , j

)

+
γ−
∏

i=1

(

1−
k−1
∏

j=1

µγ++i , j

)]

−
d(k −1)

k
E

[

log1−
k
∏

j=1

µ1, j

]

+o(2−k ). (8.21)

We expand the two terms on the r.h.s. separately Due to the independence of the µ1, j and (6.2) we obtain

d(k −1)

k
E

[

log1−
k
∏

j=1

µ1, j

]

=−
d(k −1)

k

[

E

(

k
∏

j=1

µ1, j

)

+
1

2
E

(

k
∏

j=1

µ2
1, j

)

+O

(

E

(

k
∏

j=1

µ3
1, j

))]

=−
d(k −1)

k

[

E[µ1,1]k +
1

2
E
(

µ2
1,1

)k +O
(

E
(

µ3
1,1

)k
)

]

.

Hence, because the construction of π⋆

d ,β ensures that µ1,1 and 1−µ1,1 are identically distributed and thus E[µ1,1]=
1/2 and because π⋆

d ,β satisfies (6.2), we obtain

d(k −1)

k
E

[

log 1−
k
∏

j=1

µ1, j

]

=−
d(k −1)

k

[

2−k +2−2k−1 +o(4−k )
]

. (8.22)

Moving on to the other term, we set Π+ =
∏γ+

i=1 1−
∏k−1

j=1 µi , j and Π
− =

∏γ−

i=1 1−
∏k−1

j=1 µγ++i , j . Then

E

[

log
γ+
∏

i=1

(

1−
k−1
∏

j=1

µi , j

)

+
γ−
∏

i=1

(

1−
k−1
∏

j=1

µγ++i , j

)]

= E
[

logΠ++Π
−]

= E
[

logΠ+]

+E

[

log2+
Π
−

Π+ −1

]

= log(2)+
d

2
E log

(

1−
k−1
∏

j=1

µ1,i

)

+E

[

log

(

1+
1

2

(

Π
−

Π+ −1

))]

. (8.23)

Further,

d

2
E log

(

1−
k−1
∏

j=1

µ1,i

)

=−
d

2

[

−21−k −21−2k +o(4−k )
]

=−d2−k −d2−2k +o(2−k ). (8.24)

Moreover, using the inequality log(1+ x)− x + x2/2 ≤ |x|3, we obtain

E

[

log

(

1+
1

2

(

Π
−

Π+ −1

))]

≤
1

2

(

Π
−

Π+ −1

)

−
1

8

(

Π
−

Π+ −1

)2

+O

((

Π
−

Π+ −1

)3)

.
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Now,

Π
−

Π+ = exp

(

log
Π
−

Π+

)

= exp

(

γ+
∑

i=1

log

(

1−
k−1
∏

j=1

µi , j

)

−
γ−
∑

i=1

log

(

1−
k−1
∏

j=1

µi+γ+, j

))

= 1+
γ+
∑

i=1

log

(

1−
k−1
∏

j=1

µi , j

)

−
γ−
∑

i=1

log

(

1−
k−1
∏

j=1

µi+γ+ , j

)

+
1

2

(

γ+
∑

i=1

log

(

1−
k−1
∏

j=1

µi , j

)

−
γ−
∑

i=1

log

(

1−
k−1
∏

j=1

µi+γ+ , j

))2

+O





∑

h≥3

1

h!

(

γ++γ−
∑

i=1

log

(

1−
k−1
∏

j=1

µi , j

))h


 .

Hence, using that the γ± and the µ1,i , j ,µ2,i , j are identically distributed, we obtain

E

[

log

(

1+
1

2

(

Π
−

Π+ −1

))]

=
1

8
E





(

γ+
∑

i=1

log

(

1−
k−1
∏

j=1

µi , j

)

−
γ−
∑

i=1

log

(

1−
k−1
∏

j=1

µi+γ+ , j

))2


 (8.25)

+O





∑

h≥3

1

h!
E





(

γ++γ−
∑

i=1

log

(

1−
k−1
∏

j=1

µi , j

))h






 .

Further, using the tail bound (6.2) for π⋆

d ,β we obtain

E





(

γ+
∑

i=1

log

(

1−
k−1
∏

j=1

µi , j

)

−
γ−
∑

i=1

log

(

1−
k−1
∏

j=1

µi+γ+, j

))2


= E

[

(

γ+−γ−)2
]

22−2k +o(2−k ) = d22−2k +o(2−k ). (8.26)

Similarly, the tail bound (6.2) and Bennett’s inequality imply that

∑

h≥3

1

h!
E





(

γ++γ−
∑

i=1

log

(

1−
k−1
∏

j=1

µi , j

))h


= o(2−k ). (8.27)

Combining (8.25)–(8.27) we get

E

[

log

(

1+
1

2

(

Π
−

Π+ −1

))]

= 2−1−2k d +o(2−k ). (8.28)

Finally, combining (8.21), (8.22), (8.23), (8.24) and (8.28), we obtain the assertion.

8.2. Proof of Proposition 2.6. The proof hinges on the so-called “1-step replica symmetry breaking interpolation
method” from mathematical physics. Specifically, we seize upon the following result. Recall that γ± signify inde-
pendent Po(d/2) variables and that (µπ,i , j )i , j is a sequence of independent samples from a distribution π.

Theorem 8.20 ([43]). For any y > 0,β> 0, any probability distribution π on [0,1] and any n ≥ 1 we have

y

n
E[log Z (Φ,β)] ≤ E

[

logE

[(

γ+
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µπ,i , j +
γ−
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µπ,i+γ+, j

)y

|γ+,γ−
]]

−
d(k −1)

k
logE

[(

1− (1−e−β)
k
∏

j=1

µπ,1, j

)y]

.

We apply Theorem 8.20 with the specific choice π= 1
2 (δ1 +δ0). For the last expression we obtain

−
d(k −1)

k
logE

[(

1− (1−e−β)
k
∏

j=1

µπ,1, j

)y ]

=−
d(k −1)

k
log

(

1−2−k
)

+o(2−k ) =−
d(k −1)

k

(

−2−k −2−2k−1
)

+o(2−k )

= 2−k d +2−2k−1d − log(2)+c2−k −2−k−1 log(2)+o(2−k ). (8.29)

Further, to estimate the first term let (µπ,i , j ,h )i , j ,h be additional independent samples from π and

Π+ =
γ+
∏

i=1

(

1−
k−1
∏

j=1

µπ,i , j ,1

)

, Π− =
γ−
∏

i=1

(

1−
k−1
∏

j=1

µπ,i , j ,2

)

.
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Then for large β we have

E

[

logE

[(

γ+
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µπ,i , j ,1 +
γ−
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µπ,i , j ,2

)y

|γ±
]]

= E
[

logE
[(

Π
++Π

−)y ]

|γ±]

+o(2−k ).

(8.30)

Furthermore, Π± are {0,1}-valued random variables and E[Π± |γ±] = (1−21−k )γ
±

. Therefore,

E
[

logE
[(

Π
++Π

−)y ]

|γ+,γ−]

= E

[

log

(

∑

s=±1
(1−21−k )γ

s
(

1− (1−21−k )γ
−s

)

+2y (1−21−k )γ
++γ−

)]

= E

[

γ+ log
(

1−21−k
)]

+E

[

log
(

1− (1−21−k )γ
−
+

(

1− (1−21−k )γ
+)

(1−21−k )γ
−−γ+

+2y (1−21−k )γ
−)]

=
d

2
log

(

1−21−k
)

+E

[

log
(

1− (1−21−k )γ
−
+

(

1− (1−21−k )γ
+)

(1−21−k )γ
−−γ+

+2y (1−21−k )γ
−)]

. (8.31)

Applying Bennett’s inequality, we obtain

E

[

log
(

1− (1−21−k )γ
−
+

(

1− (1−21−k )γ
+)

(1−21−k )γ
−−γ+

+2y (1−21−k )γ
−)]

= E

[

log
(

1−2−k + (1−2−k )(1−21−k )γ
−−γ+

+2y−k
)]

+o(2−k )

= log(2)+E

[

log
(

1−2−k +2y−1−k + (1−21−k )γ
−−γ+)]

+o(2−k )

= log(2)−2−k +2y−1−k +E

[

log

(

1+
1

2

(

(1−21−k )γ
−−γ+

−1
)

)]

+o(2−k ). (8.32)

Further, once more by Bennett’s inequality,

E

[

log

(

1+
1

2

(

(1−21−k )γ
−−γ+

−1
)

)]

=
1

2
E

(

(1−21−k )γ
−−γ+

−1
)

−
1

4
E

[

(

(1−21−k )γ
−−γ+

−1
)2

]

+o(2−k ). (8.33)

Since γ+,γ− are Po(d/2) variables, we obtain

E

(

(1−21−k )γ
−−γ+

−1
)

= E

[

exp
(

(

γ−−γ+)

log
(

1−21−k
))

−1
]

= E

[

(γ+−γ−) log
(

1−21−k
)

+
1

2
(γ+−γ−)2 log2

(

1−21−k
)

]

= E
[

(γ+−γ−)2]21−2k = d21−2k . (8.34)

Similarly,

E

[

(

(1−21−k )γ
−−γ+

−1
)2

]

= E
[

(γ+−γ−)2]21−2k = d21−2k . (8.35)

Plugging (8.34) and (8.35) into (8.33), we obtain

E

[

log

(

1+
1

2

(

(1−21−k )γ
−−γ+

−1
)

)]

= d2−1−2k . (8.36)

Finally, combining (8.29), (8.30), (8.31), (8.32) and (8.36), we get

E

[

logE

[(

γ+
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µi , j ,1 +
γ−
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µi , j ,2

)y

|γ+,γ−
]]

−
d(k −1)

k y
logE

[(

1− (1−e−β)
k
∏

j=1

µ j

)y ]

≤
c −1+2y−1 − log(2)/2

2k y
+o(2−k ). (8.37)

To complete the proof, we observe that the function y 7→
(

c −1+2y−1 − log(2)/2
)

/y attains its minimum at y < 1
if c < 3log 2/2. Since the function value for y = 1 comes to c − log(2)/2, (8.37) shows together with Theorem 8.20
that for any c < 3log 2/2 we have n−1

E
[

log Z (Φ,β)
]

≤ 2−k
(

c − log(2)/2−Ω(1)
)

. Hence, the assertion follows from
Proposition 2.7.
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APPENDIX A. PROOF OF LEMMA 8.1

We include a full proof of Lemma 8.1 for the sake of completeness. The argument is an adaptation of the proofs
from [20]. Recall that G(Φ) is the factor graph obtained from a CNF-formula Φ and set Ω= {±1}.
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Lemma A.1 ([20], Lemma 3.1). For any integer L > 0 and any α> 0 there exist ε= ε(α,L), n0 = n0(ε,L) such that the

following is true. Suppose G(Φ) is the factor graph corresponding to any formula Φ with n > n0 variables. Moreover,

assume that µΦ,β is ε-extremal. Let G⋆(Φ) be obtained from G(Φ) by adding L constraints nodes b1, . . . ,bL arbitrarily

and denote by Φ⋆ the formula corresponding to G⋆(Φ). Then, µΦ⋆,β is α-extremal and
∑

x∈V (G(Φ))

dTV
(

µΦ,β,x ,µΦ⋆,β,x

)

<αn. (A.1)

In the following, let Φn denote a random formula with n variables x1, . . . , xn . Now, we will proceed to the proof
of Lemma 8.1. Following Aizenman-Sims-Starr [3], we are going to show that

liminf
n→∞

E

[

log
Z (Φn ,β)

Z (Φn−1,β)

]

≥ liminf
n→∞

E[Bd ,β(πΦ,β)]. (A.2)

The assertion then follows by summing on n. To prove (A.2), we will couple the random variables Z (Φn ,β) and
Z (Φn+1,β) by way of a third formula Φ̂. Specifically, let Φ̂ be the random formula with variables x1, . . . , xn obtained
by including m = Po(d̂n/k) independent random clauses, where

d̂ = d
n+k −1

n
.

Further, set q= n/(n +k −1) and let Φ′ be a random formula obtained from Φ̂ by deleting each clause with prob-
ability 1−q independently. Let A be the set of clauses removed from Φ̂ to obtain Φ

′. In addition, obtain Φ
′′ from

Φ̂ by selecting a variable x uniformly at random and removing all constraints a ∈ ∂Ĝ x along with x itself. Then
Φ

′ is distributed as Φn and Φ
′′ is distributed as Φn−1. Thus, Z (Φn ,β) is distributed as Z (Φ′,β) and Z (Φn−1,β) is

distributed as Z (Φ′′,β).

Fact A.2. The two random formulas Φ̂,Φn have total variance distance o(1).

Proof. Given that m̂ = m both formulas are identically distributed. Moreover, the random variable m is Poisson
distributed with mean dn/k, which has total variation distance o(1) from the distribution of m̂. �

For a clause b of Φ̂, we define

S(b)= log

[

∑

σ∈Ω∂b

e−β1{σÕb}
∏

y∈∂b

µ
Φ̂,β,y→b

(

σy

)

]

.

Lemma A.3. A.a.s. we have log
(

Z (Φ̂,β)/Z (Φ′,β)
)

= o(1)+
∑

a∈A S(a).

Proof. Given ε > 0 let L = L(ε) > 0 be a large enough number, let γ = γ(ε,L) > δ = δ(γ) > 0 be small enough and
assume that n is sufficiently large. Let X = |A|, X is distributed as Po((1− q)d̂n/k) = Po(d(k − 1)/k). Then, the
construction of Φ′ ensures that

P[X > L] < ε. (A.3)

Instead of thinking of Φ′ as being obtained from Φ̂ by removing X random clauses, we can think of Φ̂ as being
obtained from Φ

′ by adding X random clauses a1, . . . , aX . More precisely, let Φ′
0 =Φ

′ and Φ
′
i
=Φ

′
i−1∧ai for i ∈ [X ].

Then given X the triple (Φ′,Φ̂, A) has the same distribution as (Φ′,Φ′
X , {a1, . . . , aX }). Moreover, because qd̂n/k =

dn/k, Φ′ has the same distribution as Φn . Therefore, our assumption (1.8) implies that Φ′ is o(1)-extremal a.a.s.
Hence, Lemma A.1 implies that Φ′

i−1 remains o(1)-extremal a.a.s for any 1 ≤ i ≤ min {X ,L}. Consequently, Lemma
4.2 implies that Φ′

i−1 is (o(1),k)-extremal a.a.s. Since ∂ai is chosen uniformly and independently of a1, . . . , ai−1 ,
Markov’s inequality shows that for every 1≤ i ≤ min {X ,L},

P

[

∑

τ∈Ωk

∣

∣

∣

∣

∣

∑

σ∈Ωn

1
{

∀y ∈ ∂ai :σy = τy

}

µΦ
′
i−1

,β(σ)−
∏

y∈∂ai

µΦ
′
i−1

,β,y (τy )

∣

∣

∣

∣

∣

≥ δ

]

< ε,

for n large enough. Further, since the clauses (ai )i∈[X ] are chosen independently and because µ
Φ̂,y→ai

(τy ) is the

marginal in the formula Φ̂−ai , (A.1) and (A.3) imply that

P

[

∀i ∈ [X ] :
∑

τ∈Ωk

∣

∣

∣

∣

∣

∏

y∈∂ai

µ
Φ̂,β,y→ai

(τy )−
∏

y∈∂ai

µΦ
′
i−1

,β,y (τy )

∣

∣

∣

∣

∣

≥ δ

]

< 2ε.
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Hence, with probability at least 1−3ε the bound

∑

τ∈Ωk

∣

∣

∣

∣

∣

∑

σ∈Ωn

1
{

∀y ∈ ∂ai :σy = τy

}

µΦ
′
i−1

,β(σ)−
∏

y∈∂ai

µ
Φ̂,β,y→ai

(τy )

∣

∣

∣

∣

∣

< 2δ (A.4)

holds for all i ∈ [X ] simultaneously. Further, the definition (1.1) of the partition function shows that for any i ∈ [X ],

Z (Φ′
i
,β)

Z (Φ′
i−1 ,β)

=
∑

σ∈Ω∂ai

e−β1{σÕai }
∑

τ∈Ωn

1
{

∀y ∈ ∂ai : τy =σy

}

µΦ
′
i−1

,β(τ).

Thus, if (A.4)holds and if δ is chosen sufficiently small then
∣

∣

∣

∣

∣

Z (Φ′
i
,β)

Z (Φ′
i−1,β)

−
∑

σ∈Ω∂ai

e−β1{σÕai }
∏

y∈∂ai

µ
Φ̂,β,y→ai

(σy )

∣

∣

∣

∣

∣

< γ.

Finally, the assertion follows by taking logarithms and summing over i = 1, . . . , X . �

Lemma A.4. Let U =
⋃

a∈∂
Φ̂x

∂a. Then a.a.s we have

log
Z (Φ̂,β)

Z (Φ′′,β)
= o(1)+ log

∑

τ∈ΩU

∏

a∈∂
Φ̂

x

e−β1{τÕa}
∏

y∈∂a\x

µ
Φ̂,β,y→a (τy ).

Proof. Given ε> 0 let L = L(ε) > 0 be large enough, let γ= γ(ε,L) > δ= δ(γ)> 0 be small enough and assume that n

is sufficiently large. Letting Y =
∣

∣∂
Φ̂

x
∣

∣, we can pick L large enough so that

P [Y > L] < ε. (A.5)

As in the previous proof, we think of Φ̂ as being obtained from Φ
′′ by adding a new variable x and Y independent

clauses a1, . . . , aY such that x ∈ ∂ai for all i . Then assumption (1.8), Lemma A.1 and Lemma 4.2 imply that

P

[

∑

τ∈ΩU\{x}

∣

∣

∣

∣

∣

∑

σ∈Ωn

1
{

∀y ∈U \ {x} : σy = τy

}

µΦ
′′,β(σ)−

Y
∏

i=1

∏

y∈∂ai \{x}

µ
Φ̂,β,y→ai

(τy )

∣

∣

∣

∣

∣

≥ δ
∣

∣

∣Y ≤ L

]

= o(1). (A.6)

In addition, (1.1) yields

Z (Φ̂,β)

Z (Φ′′,β)
=

∑

τ∈ΩU

Y
∏

i=1

e−β1{τÕai }
∑

σ∈Ωn

1
{

∀y ∈U \ {x} : σy = τy

}

µΦ
′′,β(σ).

Hence, (A.5) and (A.6) show that with probability at least 1−2ε,
∣

∣

∣

∣

∣

Z (Φ̂,β)

Z (Φ′′,β)
−

∑

τ∈ΩU

Y
∏

i=1

e−β1{τÕai }
∏

y∈∂ai \{x}

µ
Φ̂,β,y→ai

(τy )

∣

∣

∣

∣

∣

< γ.

The assertion follows by taking logarithm . �

Claim A.5. If a1, . . . , aY are the clauses containing x and U =∪Y
i=1∂Φ̂ai then

∑

τ∈ΩU

Y
∏

i=1

e−β1{τÕai }
∏

y∈∂ai \{x}

µ
Φ̂,β,y→ai

(τy ) =
∑

τ(x)=±1

Y
∏

i=1

∑

τ∈Ω∂ai \{x}

e−β1{τÕai }
∏

y∈∂ai \{x}

µ
Φ̂,β,y→ai

(τy ).

Proof. With probability 1−o(1) for all 1 ≤ i < j ≤ Y we have ∂ai ∩∂a j \ {x} =;. �

Proof of Lemma 8.1. Recall that πΦ,β = 1
n

∑n
i=1 δµΦ,β({σxi

=1}). Moreover, let (ρπ,i , j )i , j≥1 be an array of independent
random variables with distribution πΦ,β and define (µi , j )i , j≥1 as in (2.14). Additionally, let (µ̂i , j )i , j be a family of
independent random variables defined accordingly for π

Φ̂,β. Then Lemma A.1 shows that W2(π
Φ̂,β,πΦ,β) = o(1).

Therefore, using Lemmas A.1 and A.3 and Wald’s identity, we can write

E log
Z (Φ̂,β)

Z (Φ′,β)
=

d(k −1)

k
E log

[

1− (1−e−β)
k
∏

i=1

µ̂1,i

]

+o(1) =
d(k −1)

k
E log

[

1− (1−e−β)
k
∏

i=1

µ1,i

]

+o(1). (A.7)
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Similarly, Lemmas A.1 and A.4 and Claim A.5 yield

E log
Z (Φ̂,β)

Z (Φ′′,β)
= E

[

γ+
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µ̂i , j +
γ−
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µ̂i+γ+, j

]

+o(1)

= E

[

γ+
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µi , j +
γ−
∏

i=1

1− (1−e−β)
k−1
∏

j=1

µi+γ+, j

]

+o(1) (A.8)

Finally, combining (A.7) and (A.8) completes the proof. �
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THE SPARSE PARITY MATRIX

AMIN COJA-OGHLAN, OLIVER COOLEY, MIHYUN KANG, JOON LEE, JEAN BERNOULLI RAVELOMANANA

ABSTRACT. Let A be an n×n-matrix over F2 whose every entry equals 1 with probability d/n independently for a fixed d >
0. Draw a vector y randomly from the column space of A. It is a simple observation that the entries of a random solution

x to Ax = y are asymptotically pairwise independent, i.e.,
∑

i< j E|P[x i = s, x j = t | A]−P[x i = s | A]P[x j = t | A]| = o(n2)

for s, t ∈ F2. But what can we say about the overlap of two random solutions x , x ′, defined as n−1 ∑n
i=1

1{x i = x ′
i
}? We

prove that for d < e the overlap concentrates on a single deterministic value α∗(d). By contrast, for d > e the overlap

concentrates on a single value once we condition on the matrix A, while over the probability space of A its conditional

expectation vacillates between two different values α∗(d) < α∗(d), either of which occurs with probability 1/2+ o(1).

This anti-concentration result provides an instructive contribution to both the theory of random constraint satisfaction

problems and of inference problems on random structures. MSC: 05C80, 60B20, 94B05

1. INTRODUCTION

1.1. Motivation and background. Sharp thresholds are the hallmark of probabilistic combinatorics. The classic,

of course, is the giant component threshold, below which the random graph decomposes into many tiny compo-

nents but above which a unique giant emerges [25]. Its (normalised) size concentrates on a deterministic value.

Similarly, once the edge probability crosses a certain threshold the random graph contains a Hamilton cycle w.h.p.,

which fails to be present below that threshold [31]. Monotone properties quite generally exhibit sharp thresh-

olds [26]. Only inside the critical windows of phase transitions are we accustomed to deviations from this zero/one

behaviour [7].

In this paper we investigate the simplest conceivable model of a sparse random matrix. There is one single

parameter, the density d > 0 of non-zero entries. Specifically, we obtain the n ×n-matrix A = A(n, p) over F2 by

setting every entry to one with probability p = (d/n)∧1 independently. Remarkably, this innocuous random matrix

exhibits a critical behaviour, deviant from the usual zero–one law, for all d outside a small interval. The result has

ramifications for random constraint satisfaction and statistical inference.

To begin with constraint satisfaction (we will turn to inference in Section 1.3), consider a random vector y from

the column space of A. The random linear system Ax = y constitutes a random constraint satisfaction problem

par excellence. Its space of solutions is a natural object of study. In fact, the problem is reminiscent of the intensely

studied random k-XORSAT problem, where we ask for solutions to a Boolean formula whose clauses are XORs of k

random literals [2, 10, 24, 22, 28, 34, 41]. Random k-XORSAT is equivalent to a random linear system over F2 whose

every row contains precisely k ones.

The most prominent feature of random k-XORSAT is its sharp satisfiability threshold. Specifically, for any k ≥
3 there exists a critical value of the number of clauses up to which the random k-XORSAT formula possesses a

solution, while for higher number of clauses no solution exists w.h.p. [22, 24, 41]. The satisfiability threshold is

strictly smaller than the obvious point where the corresponding F2-matrix cannot have full row rank anymore

because there are more rows than columns. Instead, the satisfiability threshold coincides with the threshold where

due to long-range effects a linear number of variables freeze, i.e., are forced to take the same value in all solutions.

Clearly, once an extensive number variables freeze, additional random constraints are apt to cause conflicts.

The precise freezing threshold can be characterised in terms of the 2-core of the random hypergraph underlying

the k-XORSAT formula. We recall that the 2-core is what remains after recursively deleting variables of degree at

most one along with the constraint that binds them (if any). If the 2-core is non-empty, then its constraints are

more tightly interlocked than those of the original problem, which, depending on the precise numbers, may cause

freezing. Indeed, the precise number of frozen variables can be calculated by way of a message passing process

called Warning Propagation [28, 33]. The number of frozen variables concentrates on a deterministic value that
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FIGURE 1. Left: the two fixed points α∗ = α∗(d) and α∗ = α∗(d) of φd . Right: the function φd

for d = 2.5 (blue) possesses a unique fixed point, while for d = 3 (red) there are two stable fixed

points and an unstable one in between.

comes out in terms of a fixed point problem. Although the k-XORSAT problem is conceptually far simpler than,

say, the k-SAT problem, freezing plays a pivotal role in basically all other random constraint satisfaction problems

as well [1, 23, 32, 33, 36, 38].

Surprisingly, our linear system Ax = y behaves totally differently as two competing combinatorial forces of

exactly equal strength engage in a tug of war. As a result, for densities d > e the fraction of frozen variables fails

to concentrate on a single value. Instead, that number and, in effect, the geometry of the solution space vacillate

between two very different scenarios that both materialise with asymptotically equal probability. In other words,

the model perennially remains in a critical state for all d > e. Let us proceed to formulate the result precisely, and

to understand how it comes about.

1.2. Frozen variables. One of the two forces resembles the emergence of the 2-core in random k-XORSAT. Indeed,

we could run the process of peeling variables appearing in at most one equation of the linear system Ax = y as

well. The size of the 2-core and the total number of coordinates that would freeze if the entire 2-core were to freeze

can be calculated. Specifically, let

φd : [0,1] → [0,1], α 7→ 1−exp
(

−d exp(−d(1−α))
)

(1.1)

and let α∗ = α∗(d) be its largest fixed point. According to the “2-core heuristic”, the number of frozen coordi-

nates xi comes to about α∗n. A proof that w.h.p. precisely this many variables freeze (or actually a more general

statement) has been posed as an exercise [33]. But as we shall see momentarily, this conclusion is erroneous.

For on the other hand we could trace the number of variables that freeze because of unary equations. Indeed,

because the number of ones in a row of A has distribution Po(d), about de−d n equations contain just one variable.

Naturally, each such variable freezes. Substituting these frozen values into the other equations likely produces

more equations of degree one, etc. Interestingly enough, the number of frozen variables that this “unary equations

heuristic” predicts equals α∗n, with α∗ the least fixed point of φd . While for d < e there is a unique fixed point and

thus α∗ = α∗, for d > e the two fixed points α∗,α∗ are distinct. Indeed, apart from α∗,α∗, which are stable fixed

points, there occurs a third unstable fixed point α∗ <α0 <α∗; see Figure 1.

Which one of these heuristics provides the right answer? To find out we could try to assess the total number of

solutions that the linear system Ax = y should possess according to either prediction. Indeed, [15, Theorem 1.1]

yields an asymptotic formula for the number of solutions to a sparse random linear system in terms of a parameter

α that, at least heuristically, should equal the fraction of frozen variables. For the random matrix A the formula

shows that, in probability,

lim
n→∞

nul A

n
= max

α∈[0,1]
Φd (α), where Φd (α) = exp

(

−d exp(−d(1−α))
)

+ (1+d(1−α))exp(−d(1−α))−1 (1.2)

and where nul A denotes the nullity, i.e. the dimension of the kernel, of A. Hence, the correct answer should be

the value α ∈ {α∗,α∗} that maximises Φd . But it turns out that Φd (α∗) =Φd (α∗) for all d > 0. Accordingly, the main

theorem shows that both predictions α∗ and α∗ are correct, or more precisely each of them is correct about half of

the time. Formally, let

f (A) = |{i ∈ [n] : ∀x ∈ ker A : xi = 0}|/n

2



be the fraction of frozen variables.

Theorem 1.1. (i) For d ≤ e the function φd has a unique fixed point and

lim
n→∞

f (A) =α∗ =α∗ in probability.

(ii) For d > e we have α∗ <α∗ and for all ε> 0,

lim
n→∞

P
[

| f (A)−α∗| < ε
]

= lim
n→∞

P
[

| f (A)−α∗| < ε
]

=
1

2
.

Hence, the fraction of frozen variables fails to exhibit a zero–one behaviour for d > e. Instead, it shows a critical

behaviour as one would normally associate only with the critical window of a phase transition.

1.3. The overlap. Apart from considering the linear system Ax = y as a random constraint satisfaction problem,

the random linear system can also be viewed as an inference problem. Indeed, we can think of the vector y , which

is chosen randomly from the column space of A, as actually resulting from multiplying A with a uniformly random

vector x̂ ∈ F
n
2 . Then y = Ax̂ turns into a noisy observation of the ‘ground truth’ x̂ . Thus, it is natural to ask how well

we can learn x̂ given A and y .

These two viewpoints are actually equivalent because the posterior of x̂ given (A, y) is nothing but the uniform

distribution on the set of solutions to the linear system Ax = y . Hence,

P
[

x̂ = x | A, y
]

=
1
{

Ax = y
}

|ker A|
(x ∈ F

n
2 ). (1.3)

Therefore, the optimal inference algorithm just draws a random solution x from among all solutions to the linear

system. The number of bits that this algorithm recovers correctly reads

R(x , x̂) =
1

n

n
∑

i=1

1 {x i = x̂ i } .

Adopting mathematical physics jargon, we call R(x , x̂) the overlap of x , x̂ . Its average given A, y boils down to

R̄(A) = E[R(x , x̂) | A, y] =
1

|ker A|2
∑

x,x′∈ker A

R(x, x ′),

which is independent of y .

Conceived wisdom in the statistical physics-inspired study of inference problems holds that the overlap con-

centrates on a single value given the ‘disorder’, in our case (A, y) (see [43]). This property is called replica symmetry.

We will verify that replica symmetry holds for the random linear system w.h.p. Additionally, in all the random infer-

ence problems that have been studied over the past 20 years the overlap concentrates on a single value that does

not depend on the disorder, except perhaps at a few critical values of the model parameters where phase transi-

tions occur [6]. This enhanced property is called strong replica symmetry. A natural question is whether strong

replica symmetry holds universally. It does not. As the next theorem shows, the random linear system with d > e

provides a counterexample: it is replica symmetric, but not strongly so.

Theorem 1.2. (i) If d < e then limn→∞ R(x , x̂) = (1+α∗)/2 in probability.

(ii) For all d > e we have limn→∞E

∣

∣R(x , x̂)− R̄(A)
∣

∣= 0 while

lim
n→∞

P

[∣

∣

∣

∣

R̄(A)−
1+α∗

2

∣

∣

∣

∣

< ε

]

= lim
n→∞

P

[∣

∣

∣

∣

R̄(A)−
1+α∗

2

∣

∣

∣

∣

< ε

]

=
1

2
for any ε> 0.

The first part of the theorem posits that for d < e the overlap concentrates on the single value(1+α∗)/2. In

light of Theorem 1.1 this means that the optimal inference algorithm, while, unsurprisingly, capable of correctly

recovering the frozen coordinates, is at a loss when it comes to the unfrozen ones. Indeed, we can get only about

half the unfrozen coordinates right, no better than a random guess.

The second part of the theorem is more interesting. While the random variable R(x , x̂) concentrates on the

conditional expectation R̄(A) given A, y , the conditional expectation R̄(A) itself fails to concentrate on its mean

E[R̄(A)]. Instead it vacillates between two different values (1+α∗)/2 and (1+α∗)/2, each of which occurs with

asymptotically equal probability. In fact, this failure to concentrate does not just occur at a few isolated points, but

throughout the entire regime d > e. This behaviour mirrors the anti-concentration of the number of frozen vari-

ables from Theorem 1.1. Moreover, as in the case d < e the optimal inference algorithm does, of course, correctly

recover the frozen variables, but cannot outperform a random guess on the unfrozen ones.
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We proceed to outline the key ideas behind the proofs of Theorems 1.1 and 1.2. Unsurprisingly, to prove the

critical behaviour that these theorems assert we will need to conduct a rather subtle, accurate analysis of the ran-

dom linear system and its space of solutions, far more so than one would normally have to undertake when aiming

at a zero-one result. On the positive side the proofs reveal novel combinatorial insights that may have an impact

on other random constraint satisfaction or inference problems as well. Let us thus survey the proof strategy.

1.4. Techniques. The main result of the paper is that for d > e the proportion f (A) of frozen variables is asymp-

totically equal to either of the two stable fixed points α∗,α∗ of the function φd with probability 1/2+ o(1) (see

Figure 1). Proving this statement takes three strikes.

FIX: f (A) concentrates on the fixed points of φd , either one of the two stable ones α∗,α∗ or the third unstable

fixed point α0.

STAB: The unstable fixed point is an unlikely outcome.

EQ: The two stable fixed points are equally likely.

1.4.1. Heuristics. Why are these three statements plausibly true? Let us begin with FIX. The random matrix A

naturally induces a bipartite graph called the Tanner graph G(A). Its vertex classes are variable nodes v1, . . . , vn

representing the columns of A and check nodes a1, . . . , an representing the rows. There is an edge between ai

and v j iff Ai j = 1. The Tanner graph is distributed as a random bipartite graph with edge probability d/n. As a

consequence, its local structure is roughly that of a Po(d) Galton-Watson tree.

Exploring the Tanner graph from a given variable node vi , we may view vi as the root of such a tree. The grand-

children of vi , i.e. the variable nodes at distance two, are essentially uniformly random. Therefore, the grandchil-

dren should each be frozen with probability f (A)+ o(1) and behave very nearly independently. Further, for the

obvious algebraic reason the root vi itself is frozen iff it is parent to some check all of whose children are frozen. A

few lines of calculations based on the Poisson tree structure then show that vi ought to be frozen with probability

φd ( f (A)). But at the same time, since vi was itself chosen randomly, it is frozen with probability f (A). Hence, we

are led to expect that f (A) = φd ( f (A)). In other words, FIX expresses that the local structure of G(A) is given by a

Poisson tree, and that freezing manifests itself locally.

Apart from the two stable fixed points α∗,α∗, Figure 1 indicates that φd possesses an unstable fixed point α0

somewhere in between. How can we rule out that f (A) will take this value? The nullity formula (1.2) suggests that

f (A) should be a maximiser of the function Φd (α). But its maximisers are precisely the stable fixed points α∗,α∗,

while the unstable fixed point is where the function takes its local minimum. That is why STAB appears plausible.

However, we will see that this simplistic line of reasoning cannot be turned into a proof easily.

Finally, coming to EQ, we need to argue that for d > e both stable fixed points are equally likely. To this end we

employ the Warning Propagation (WP) message passing scheme, where messages are sent along the edges of the

Tanner graph in either direction. The message from v j to ai is updated at each time step according to the messages

that v j receives from its other neighbours, and similarly for the reverse message. WP does faithfully describe the

local dynamics that cause freezing, but there remains a loose end: we must initialise messages somehow.

Two obvious initialisations suggest themselves. First, if we initialise assuming everything to be unfrozen, then

because of FIX and the local geometry approximating a Galton-Watson branching tree, WP reduces to repeated

application of the φd function starting from 0. Since limt→∞φ◦t
d

(0) = α∗, WP then predicts f (A) = α∗. Sec-

ond, if we initialise assuming everything to be frozen, WP mimics iterating φd from 1 and thus predicts f (A) =
limt→∞φ◦t

d
(1) =α∗.

So which initialisation is correct? Neither, unfortunately. We thus need a more nuanced version of WP, in which

we describe messages and ultimately variables as “frozen”, “unfrozen” and “slush”, the last meaning uncertain.

Initialising WP with either all messages frozen or all messages unfrozen still leads to the same results as before.

But initialising with all messages being “slush”, WP predicts that approximately α∗n variables are frozen, (1−α∗)n

variables are unfrozen, and (α∗−α∗)n variables remain slush. Thus, there are actually three distinct categories.

How does this help? Since f (A) is concentrated around the stable fixed points α∗,α∗, we know that actually

the slush portion must be either (almost) entirely frozen or unfrozen; it is impossible that, say, half the slush vari-

ables freeze. To figure out whether the slush freezes, consider the minor As of A induced on the corresponding

variables and constraints. If this minor has fewer rows than columns, then the corresponding linear system is

under-constrained. In effect, it is inconceivable that the slush freezes completely. On the other hand, if As has

more rows than columns, then by analogy to the random k-XORSAT problem we expect that the slush freezes.
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Now, crucially, both the random matrix model A and the WP message passing process are invariant under trans-

position of the matrix. Hence, As should be over-constrained just as often as it is under-constrained. We are thus

led to believe that the slush freezes with probability about half, which explains the peculiar behaviour stated in the

theorems. Once again, this simple reasoning, while plausible, cannot easily be converted into an actual proof.

1.4.2. Formalising the heuristics. Hence, how can we corroborate these heuristics rigorously? Concerning FIX,

consider the following game of “thimblerig”. The opponent generates two random graphs independently: one is

simply the Tanner graph G1 ∼ G(A) of A, the other is an independent copy G2 ∼ G(A) of the Tanner graph, but

with some random alterations. Specifically, the trickster generates a Po(d) branching tree of height two, embeds

the root and its children onto isolated variable and check nodes respectively, and embeds the remaining leaves

onto variables chosen uniformly at random. The opponent then presents you with the two graphs and asks you

to determine which is which. It turns out that the changes are so well-disguised that you can do no better than

a random guess. To compound your misery, having told you which is the perturbed graph, your opponent asks

you to guess which variable is the root of the added tree. Again, the changes are so well-disguised that you can do

no better than a random guess. Not content with winning twice, your opponent wishes to assert their complete

dominance and performs the same trick again, this time adding not just one tree but a slowly growing number (of

order o(
p

n)). For the third time, you can only resort to a random guess.

The point of this game is to demonstrate that the root variables of the trees added behave identically to ran-

domly chosen variables of the original graph. In particular, the proportion of variables which are frozen is dis-

tributed as f (A). But we can also calculate this proportion in a different way: by considering whether the attach-

ment variables are frozen and tracking the effects down to the roots. This tells us that the proportion of frozen

roots is φd ( f (A)+o(1)), provided that the newly added constraints do not dramatically shift the overall number of

frozen variables due to long-range effects. To rule this out we use a delicate argument drawing on ideas from the

study of random factor graph models and involving replica symmetry and the cut metric for discrete probability

distributions from [5, 14, 17, 18, 19].

Perhaps surprisingly, it takes quite an effort to verify the claim STAB that f (A) is not likely to be near the unsta-

ble fixed point. The proof employs a combinatorial construction that we call covers. A cover is basically a desig-

nation of the variable nodes, checks and edges of the Tanner graph that encodes which variables are frozen, and

because of which constraints they freeze. We will then pursue a novel “hammer and anvil” strategy to rule out

the unstable fixed point. On the one hand, we will show that if f (A) is near α0, then the Tanner graph G(A) must

contain covers that each induce a cluster of solutions with about α0 frozen variables. On the other hand, we will

use a moment computation to show that w.h.p. the Tanner graph G(A) only contains a sub-exponential number

exp(o(n)) of covers. Furthermore, another moment computation shows that w.h.p. each of them only extends to

about 2Φd (α0)n solutions to the linear system Ax = y . As a consequence, if f (A) is near α0, then the random lin-

ear system Ax = y would have far fewer solutions than provided by (1.2). Since the nullity of the random matrix is

tightly concentrated, we conclude that the event f (A) ∼α0 is unlikely. The novelty of this argument, and the source

of its technical intricacy, is the two-step cover–solution consideration: first we verify that the set of solutions ac-

tually decomposes into clusters encoded by “covers”. Then we calculate the number of covers (corresponding to

solution clusters), and finally we estimate the number of solutions inside each cluster. This two-level approach is

necessary as a direct first moment calculation of the expected number of solutions with a given Hamming weight

seems doomed to fail, at least for d near the critical value e.

Coming to EQ, as indicated in the previous subsection, the “slush” portion of the matrix enjoys a symmetry

property, in that it is also the slush portion of the transposed matrix. We will prove that, depending on the precise

aspect ratio of the slush minor, the slush variables either do or do not freeze. But there is one subtlety: we need to

to show that the number of rows and the number of columns are not exactly equal w.h.p. Indeed it is not hard to

show that the both numbers have standard deviation Θ(
p

n). Hence, if they were independent they would differ by

Θ(
p

n) w.h.p.. But this independence is quite clearly not satisfied. Thus, we need to argue that at least they have

non-trivial covariance.

To show this, we perform a similar trick to the game of thimblerig: we show that the matrix can be randomly

perturbed to decrease the number of slush columns, while preserving the number of slush rows. Furthermore, this

can be achieved without an opponent being able to identify that a change has been made. Performing this trick

carefully shows that it is unlikely that the slush portion of the matrix is approximately square. Symmetry then tells
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us that with probability asymptotically 1/2 it has significantly more rows than columns, and also with probability

asymptotically 1/2 it has significantly more columns than rows.

It remains to prove that these two cases are likely to lead to all slush variables being frozen, or all being unfrozen

respectively. Unfortunately, a simple symmetry argument does not quite suffice. Instead we first prove that it is

unlikely that there are significantly, say ω À 1, more slush variables than slush checks, but that almost all slush

variables are frozen. The number of slush variables that remain unfrozen must certainly be at least ω due to ele-

mentary consideration of the nullity. We are thus left to exclude that the number is between ω and εn, which we

establish by way of an expansion argument.

We finally need to show that it is unlikely that there are significantly more slush checks (say ms) than slush

variables (ns), but that these slush variables remain mostly unfrozen. Crucially, thanks to replica symmetry and

the cut metric we can indeed show that a “typical” kernel vector will set approximately half of the slush variables to

1 and half to 0. Of course there are approximately 2ns such vectors. On the other hand, imagine that a check with

k slush variable neighbours chooses these neighbours uniformly at random (this can be made formally correct by

conditioning on the degree distribution and using the configuration model). Then the probability that this check

is satisfied by a vector of Hamming weight approximately ns/2 is approximately 1/2 (since e.g. based on the values

of the first k − 1 neighbours, the last must be chosen from the correct class). Therefore the expected number of

kernel vectors should be approximately 2ns−ms = o(1).

The problem with this basic calculation is that error terms occur which turn out to be too significant to ignore.

These error terms ultimately come from check nodes of degree two in the slush minor. To deal with them, we

employ a delicate percolation argument in which we contract check nodes of degree exactly two, since they just

equalise their two adjacent variable nodes. Importantly, we can show that this process neither affects the number

of kernel vectors nor the balance ms−ns. We can thus complete the moment calculation and show that the slush

cannot have an excess of rows and still be entirely unfrozen.

1.5. Discussion. How do the techniques that we develop in this paper compare to previously known ones, and

how can our techniques be extended to other problems?

The general Warning Propagation message passing scheme captures the local effects of constraint satisfaction

problems; for example, in the context of satisfiability WP boils down to Unit Clause Propagation [33]. WP also yields

the k-XORSAT threshold [28] as well as the freezing threshold in random graph colouring [36]. In addition, WP can

also be used to study structural graph properties such as the k-core [12, 40]. In all these examples, the “correct”

initialisation from which to launch WP is obvious, and the proof that random variable of interest converges to the

fixed point is based on a direct and straightforward combinatorial analysis. Indeed, the standard strategy is then

a two-stage one: first, show that WP quickly converges to something close to the conjectured limit; and second,

show that after this initial convergence, not much else will change [11].

However, this usual technique is not enough for our purposes, essentially because of the 2-point rather than

1-point concentration of f (A). Naively one might imagine that WP will converge to one of the two fixed points,

each with probability 1/2. But intriguingly, the dichotomy of the random variable f (A) induces a dichotomy for

WP in each instance of A – WP hedges its bets, identifying the two possible answers, but is unable to tell which is

actually correct. As such, we are left with the “uncertain” portion of the matrix (or its Tanner graph).

To deal with this complication we enhance the WP message passing scheme to expressly identify the portion

of the Tanner graph that may go either way. Along the way, we develop a versatile indirect method for proving

convergence to some fixed point to replace the usual direct combinatorial argument. This technique is based

on the thimblerig game that more or less justifies the WP heuristic in general. While the argument appears to

be reasonably universal, it fails to identify precisely which fixed point is the correct one. As mentioned above,

we follow WP up with a novel type of moment calculation based on covers to rule out the unstable fixed point.

One could envisage a generalisation of this technique to other planted constraint satisfaction problems or, more

generally, spin glass models. The place of the nullity formula (1.2) would then have to be filled by a formula for the

leading exponential order of the partition function.

The thimblerig argument is enabled by the important observation that unfrozen variables, for the most part,

behave more or less independently of each other and that the random variable f (A) is fairly “robust” with respect

to small numbers of local changes (see Proposition 2.9). We establish this robustness by way of a pinning argument,

in which unary checks are added that freeze certain previously unfrozen variables, and we analyse the effect that
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this has on the kernel. The thimblerig argument is an extension of arguments used in the study of random factor

graph models [18, 19, 39], where the pinning operation also plays a crucial role [16, 17].

Because the slush minor of the matrix displays a peculiar critical phenomenon, such as one would normally

associate only with critical regimes around a phase transition, new techniques are required to study it. In particu-

lar, while it seems intuitively natural that the uncertain proportion is unfrozen if ns−ms ≥ω is large and positive,

but frozen if it is large and negative, proving this formally requires some significant new ideas. In particular, to

prove the first statement we introduce flippers, induced subgraphs of the uncertain portion which could confound

expectations by being frozen. These flippers must satisfy various properties, and the proof consists of showing

that large flippers (or more precisely, large unions of flippers) are unlikely due to expansion properties. This sort

of expansion argument appears by no means restricted to the present problem. A related combinatorial structure

appeared in the proof of limit theorems for cores of random graphs [13].

Proving the second statement involves a delicate moment calculation. The modification involved in contracting

the checks of degree 2, which are the reason that the naive version of the argument fails, is similar to the operation

to construct the kernel of a graph from its 2-core. This moment calculation is the single place where we make

critical use of the fact that we are studying a problem whose variables range over a finite domain, viz. the field F2.

What are potential generalisations? The random linear system Ax = y is one case of a class of constraint satis-

faction problems known as uniquely extendable problems [20]. Such problems are characterised by the property

that if all but one of the variables appearing in a constraint are fixed, there is precisely one choice for the value

of the remaining variable such that the constraint is satisfied. Some of these problems are intractable, such as,

for example, algebraic constraints with variables ranging over finite groups. It would be most interesting to see if

and how the methods developed in this paper could be extended to uniquely extendable problems. Furthermore,

since we study a critical phenomenon, namely the two-point concentration of the proportion of frozen variables,

our ideas may help to understand the behaviour at the critical point of phase transitions of random constraint

satisfaction problems. This type of question remains an essentially blank spot on the map.

1.6. Further related work. Perhaps surprisingly, apart from the article [15] that establishes a nullity formula for

general sparse random matrices and in particular (1.2), there have been no prior studies of the random matrix

A(n, p). However, random m ×n-matrix over finite fields Fq where every row contains an equal number k ≥ 2 of

non-zero entries have been studied extensively. In the case k = q = 2 this model is directly related to the giant

component phase transition [29, 30], because each row constrains two random entries to be equal. Moreover,

we already saw that for k ≥ 3 and q = 2 the model is equivalent to random k-XORSAT. Dubois and Mandler [24]

computed the critical aspect ratio m/n up to which such a matrix has full row rank for k = 3. The result was

subsequently extended to k > 3 [22, 41]. Indeed, the threshold value of m up to which the random matrix has full

rank can be interpreted in terms of the Warning Propagation message passing scheme [10]. Beyond its intrinsic

interest as a basic model of a random constraint satisfaction problem [33], the random k-XORSAT model has found

applications in hashing and data compression [22, 42].

The asymptotic rank of random matrices with a fixed number k of non-zero entries per row over finite fields has

been computed independently via two different arguments by Ayre, Coja-Oghlan, Gao and Müller [3] and Cooper,

Frieze and Pegden [21]. Additionally, Miller and Cohen [35] studied the rank of random matrices in which both the

number of non-zero entries in each row and the number of non-zero entries in each column are fixed. However,

they left out the critical case in which these two numbers are identical, which was solved recently by Huang [27].

Additionally, Bordenave, Lelarge and Salez [8] studied the rank over R of the adjacency matrix of sparse random

graphs. Of course, a crucial difference between the random matrix model that we study here and the adjacency

matrix of a random graph is that the latter is symmetric.

A problem that appears to be inherently related to the binomial random matrix problem studied here is the

matching problem on random bipartite graphs [9]. It would be interesting to see if in some form the criticality

observed in Theorems 1.1 and 1.2 extends to the matching problem or, equivalently, the independent set problem

on random bipartite graphs. The critical value d = e appears to be related to the uniqueness of the Gibbs measure

of the latter problem [4]. In the context of the matching problem, our function Φd (α) appears (as F (1−α)) in [9],

in particular in the appendix where a figure shows the emergence of the two global maxima above the threshold

d = e. (In fact the discussion there is about the one-type graph G(n,d/n) rather than the bipartite G(n,n,d/n),

which is the distribution of G(A), but since the two graphs have the same local weak limit the more general results

of [9] show that the matching problem displays similar behaviour.) In some sense it is not surprising that the same
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function should arise in these two problems: the Warning propagation process to determine which variables are

certainly frozen in essence mimics a one-sided version of the first stage of the Karp-Sipser algorithm in which

leaves and their neighbours are removed. This removal results in a remaining “core”, similar to our “slush”, of

minimum degree at least 2. This is where we encounter our first fixed point of φd (or maximum of Φd ). For the

matching problem, this first roadblock is easy to overcome: the core turns out to have an almost perfect matching

w.h.p., which implies that it is always the same fixed point which gives the correct answer. By contrast, our situation

is more delicate because the slush need not freeze.

2. ORGANISATION

In this section, we state the intermediate results that lead up to the main theorems. We also detail where in the

following sections the proofs of these intermediate results can be found.

2.1. The functions φd and Φd . The formula (1.2) yields the approximate number of solutions to the linear system

Ax = y . We already discussed the combinatorial intuition behind the maximiser α in (1.2): we will prove that the

function Φd attains its global maxima at the conceivable values of f (A). However, the proof of (1.2) in [15] falls

short of already implying this fact as that proof strategy relies on a purely variational argument. For a start, we

verify that the function φd actually has a unique fixed point for d ≤ e and two distinct stable fixed points for d > e,

and that these fixed points coincide with the local maxima of Φd .

Lemma 2.1. For all d > 0,d 6= e the local maxima of Φd and the stable fixed points of φd coincide. For d = e the local

maximum of Φe coincides with the lone fixed point, simultaneously the inflection point of φe.

The proof of Lemma 2.1, based on a bit of calculus, can be found in Section 3.2. Additionally, for d ≤ e we define

α0 =α∗, while for d > e we let α0 be the minimiser of Φd on the interval [α∗,α∗]. The following lemma, which we

prove in Section 3.4, shows that the t-fold iteration φ◦t
d

(x) converges to one of the stable fixed points, except if we

start right at x =α0.

Lemma 2.2. For any d > 0 we have

lim
t→∞

φ◦t
d (x) =α∗ for any x < [0,α0), lim

t→∞
φ◦t

d (x) =α∗ for any x ∈ (α0,1].

The fixed point characterisation of the maximisers of Φd enables us to show that the global maxima of Φd occur

precisely at α∗ =α∗(d),α∗ =α∗(d), the smallest and the largest fixed points of φd .

Proposition 2.3. (i) If d ≤ e then φd has a unique fixed point, which is the unique global maximiser of Φd .

(ii) If d > e then the function φd has precisely two stable fixed points, namely 0 <α∗ <α∗ < 1, and

Φd (α∗) =Φd (α∗) >Φd (α) for all α ∈ [0,1] \ {α∗,α∗}.

In addition, φd has its unique unstable fixed point at α0, which satisfies the equation

1−α0 = exp(−d(1−α0)). (2.1)

Although both the functions φd ,Φd are explicit, the proof of Proposition 2.3, which can be found in Section 3.3,

turns out to be mildly involved.

2.2. Warning Propagation. One of our principal tools is an enhanced version of the Warning Propagation message

passing algorithm that identifies variables as frozen, unfrozen or slush. Specifically, we will see that WP identifies

about α∗n coordinates as positively frozen and another (1−α∗)n as likely unfrozen w.h.p. Because Proposition 2.3

shows that α∗ = α∗ for d < e, this already nearly suffices to establish the first part of Theorem 1.1. By contrast, in

the case d > e, where α∗ <α∗, we need to conduct a more detailed investigation of the (α∗−α∗+o(1))n coordinates

that WP declares as slush.

To introduce WP, for a given m ×n matrix A over F2 we represent the matrix by its bipartite Tanner graph G(A).

One of its vertex classes V (A) =V (G(A)) = {v1, . . . , vn} represents the columns of A; we refer to the vi as the variable

nodes. The second vertex class C (A) = C (G(A)) = {a1, . . . , am} represents the rows of A; we refer to them as check

nodes. There is an edge present between ai and v j iff Ai j = 1. Let E(A) denote the edge set of G(A). Moreover, let

∂u signify the set of neighbours of vertex u ∈V (A)∪C (A). Further, let F (A) be the set of frozen coordinates i ∈ [n],

i.e., coordinates such that xi = 0 for all x ∈ ker A. By abuse of notation we identify F (A) with the corresponding set
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FIGURE 2. A local snapshot of the Warning Propagation rules. The check and variable nodes are

represented by squares and circles respectively.

{vi : i ∈ F (A)} of variable nodes. Also let f (A) = |F (A)|/n be the fraction of frozen coordinates. Conversely, for a

given Tanner graph G we denote by A(G) the adjacency matrix induced by G .

Our enhanced WP algorithm associates a pair of {f,s,u}-valued messages with every edge of G(A). Hence, let

W (A) be the set of all vectors

w = (wv→a , wa→v )v∈V (A),a∈C (A):a∈∂v with entries wv→a , wa→v ∈ {f,s,u}.

We define the operator WPA : W (A) →W (A), w 7→ ŵ , encoding one round of the message updates, by letting

ŵa→v =











f if wy→a = f for all y ∈ ∂a \ {v},

u if wy→a = u for some y ∈ ∂a \ {v},

s otherwise,

ŵv→a =











u if ŵb→v = u for all b ∈ ∂v \ {a},

f if ŵb→v = f for some b ∈ ∂v \ {a},

s otherwise

(2.2)

as illustrated in Figure 2. Further, let w(A, t ) = WPt
A

(s, . . . ,s) comprise the messages that result after t iterations of

WPA launched from the all-s message vector w(A,0). Additionally, let w(A) = limt→∞ w(A, t ) be the fixed point to

which WPA converges; the (pointwise) limit always exists because WPA only updates an s-message to a u-message

or to an f-message, while u-messages and f-messages will never change again.

What is the combinatorial idea behind WP? The intended semantics of the messages is that f stands for ‘frozen’,

u for ‘unfrozen’ and s for ‘slush’. Since we launch from all-smessages, (2.2) shows that in the first round f-messages

only emanate from check nodes of degree one, where the ‘for all’-condition on the left of (2.2) is empty and there-

fore trivially satisfied. Hence, if a check node ai is adjacent to v j ∈V (A) only, then wai→v j
(A,1) = f. This message

reflects that the i -th row of A, having only one single non-zero entry, fixes the j -th entry of every vector of ker A

to zero. Further, turning to the updates of the variable-to-check messages, if wai→v j
(A,1) = f, then v j signals its

being forced to zero by passing to all its other neighbours ah 6= ai the message wv j →ah
(A,1) = f. Now suppose that

check ai is adjacent to vh and wvk→ai
(A,1) = f for all vk ∈ ∂ai \ {vh}. Thus, the k-th coordinate of every vector in

ker A equals zero for all neighbours vk 6= vh of ai . Then the only way to satisfy the i -th row of A is by setting the

h-th coordinate to zero as well. Accordingly, (2.2) provides that wai→vh
(A,2) = f, and so on. Hence, defining

Vf(A) = {v ∈V (A) : ∃a ∈ ∂v : wa→v (A) = f} , we see that Vf(A) ⊆F (A). (2.3)

The mechanics of the u-messages is similar. In the first round any variable node v j of degree one, for which the

‘for all’ condition on the right of (2.2) is trivially satisfied, starts to send out u-messages. Subsequently, any check

node ai with an adjacent variable v j of degree one will send a message wai→vk
(A,2) = u to all its other neighbours
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vk 6= v j . Further, if a variable node v j adjacent to a check ai receives u-messages from all its other neighbours

ah 6= ai , then v j sends a u-message to ai . Consequently, WP deems the variables

Vu(A) = {v ∈V (A) : ∀a ∈ ∂v : wa→v (A) = u} (2.4)

unfrozen. But while (2.3) shows that WP’s designation of the variables in the set Vf(A) as frozen is deterministically

correct, matters are more subtle when it comes to the set Vu(A). For example, short cycles might lead WP to include

a variable in the set Vu(A) that is actually frozen. Yet the following lemma shows that on the random matrix A such

misclassifications are rare.

Proposition 2.4. For any d > 0 we have |F (A)∩Vu(A)| = o(n) w.h.p.

Further, tracing WP on the random graph G(A), we will establish the following bounds.

Proposition 2.5. For any d > 0 we have |Vf(A)|/n ≥α∗+o(1) and |Vu(A)|/n ≥ 1−α∗+o(1)w.h.p.

The proofs of Proposition 2.4 and Proposition 2.5 can be found in Section 4.

Propositions 2.4 and 2.5 confine the number of frozen coordinates to the interval [α∗n+o(n),α∗n+o(n)]. In par-

ticular, the first part of Theorem 1.1, covering the regime d < e, is an immediate consequence of Propositions 2.3,

2.4 and 2.5.

The case d > e is not quite so simple since α∗ <α∗ for d > e by Proposition 2.3. Hence, Proposition 2.5 merely

confines f (A) to the interval [α∗ + o(1),α∗ + o(1)]. As we saw in Section 1.4, a vital step is to prove that f (A) is

actually close to one of the boundary points α∗,α∗ w.h.p. To prove this statement we need to take a closer look at

the minor induced by the variables that are neither identified as frozen nor unfrozen, i.e., the variables in the slush.

2.3. The slush. To this end we need to take a closer look at the inconclusive s-messages. Indeed, the s-messages

naturally induce a minor As of A. Generally, for a given matrix A let

Vs(A) = {v ∈V (A) : (∀a ∈ ∂v : wa→v (A) 6= f) , |{a ∈ ∂v : wa→v (A) = s}| ≥ 2} , (2.5)

Cs(A) = {a ∈C (A) : (∀v ∈ ∂a : wv→a(A) 6= u) , |{v ∈ ∂a : wv→a(A) = s}| ≥ 2} . (2.6)

Hence, none of the variable nodes in Vs(A) receive any f-messages, but each receives at least two s-messages.

Analogously, the check nodes in Cs(A) do not receive u-messages but get at least two s-messages. Let Gs(A) be

the subgraph of G(A) induced on Vs(A)∪Cs(A). Moreover, let As be the minor of A comprising the rows and

columns whose corresponding variable or check nodes belong to Vs(A) and Cs(A), respectively. We observe that

Gs(A) admits an alternative construction that resembles the construction of the 2-core of a random hypergraph.

Indeed, Gs(A) results from G(A) by repeating the following peeling operation:

while there is a variable or check node of degree at most one, remove that node along with its

neighbour (if any).
(2.7)

To determine the size and the degree distribution of Gs(A) we employ a general result about WP-like message

passing algorithms from [11], which we will use in Section 4.2 to prove the following result.

Proposition 2.6. Define

λ=λ(d) = d(α∗−α∗), ν= ν(d) = exp(−dα∗)−exp(−dα∗)(1+d(α∗−α∗)). (2.8)

For any d > e we have ν> 0 and

lim
n→∞

|Vs (A) |/n = lim
n→∞

|Cs (A) |/n = ν in probability. (2.9)

Moreover, for any integer `≥ 2 we have, in probability,

lim
n→∞

1

n

∑

x∈Vs(A)

1 {|∂x ∩Cs(A)| = `} = lim
n→∞

1

n

∑

a∈Cs(A)

1 {|∂a ∩Vs(A)| = `} =P [Po≥2(λ) = `] . (2.10)

Based on what we have learned about Warning Propagation, we are now in a position to establish items FIX and

STAB from the outline from Section 1.4.

Proposition 2.7. For all d ∈ (e,∞) we have lim
n→∞

E
[∣

∣ f (A)−α∗
∣

∣∧
∣

∣ f (A)−α0

∣

∣∧
∣

∣ f (A)−α∗∣

∣

]

= 0.

Proposition 2.8. For any d ∈ (e,∞) there exists ε> 0 such that lim
n→∞

P
[∣

∣ f (A)−α0

∣

∣< ε
]

= 0.

The proofs of Propositions 2.7–2.8 can be found in Sections 5 and 6.
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2.4. The aspect ratio. We are left to deliver on item EQ from the proof outline. Thus, we need to show that f (A)

takes either value α∗, α∗ with about equal probability if d > e. The description (2.7) of Gs(A) in terms of the peeling

process underscores that |Vs(A)| and |Cs(A)| are identically distributed. Yet in order to prove the second part of

Theorem 1.1 we need to know that w.h.p. the slush matrix is not close to square. In Section 7 we prove the following.

Proposition 2.9. For any d0 > e there exists a function ω=ω(n) À 1 such that for all d > d0 we have

lim
n→∞

P [|Vs (A) |− |Cs (A) | ≥ω] = lim
n→∞

P [|Cs (A) |− |Vs (A) | ≥ω] =
1

2
.

2.5. Moments and expansion. Finally, to complete step EQ in Section 8 we prove that f (A) is about equal to the

higher possible value α∗ if As has more rows than columns, and equal to the lower value α∗ otherwise.

Proposition 2.10. For any d > e, ε> 0, ω=ω(n) À 1 we have

limsup
n→∞

P
[

| f (A)−α∗| < ε, |Vs(A)|− |Cs(A)| ≥ω
]

= 0, limsup
n→∞

P
[

| f (A)−α∗| < ε, |Cs(A)|− |Vs(A)| ≥ω
]

= 0.

We now have all the ingredients in place to complete the proof of the main theorem.

Proof of Theorem 1.1. (i) Suppose d < e. Combining Propositions 2.4 and 2.5 with (2.3) and (2.4), we conclude that

α∗−o(1) ≤ f (A) ≤α∗+o(1) w.h.p. Since Proposition 2.3 yields α∗ =α∗, the assertion follows.

(ii) Fix d > e and ε> 0 and let E∗ =
{

| f (A)−α∗| < ε
}

, E
∗ =

{

| f (A)−α∗| < ε
}

. Then Propositions 2.7 and 2.8 imply

that P [E∗∪E
∗] = 1−o(1). Moreover, Propositions 2.9 and 2.10 show that P [E∗] ≤ 1/2+o(1) and P [E ∗] ≤ 1/2+o(1).

Hence, we conclude that P [E∗] ,P [E ∗] = 1/2+o(1), as claimed. �

2.6. The overlap. Theorem 1.2 concerning the overlap follows relatively easily from Theorem 1.1. The single ad-

ditional ingredient that we need is the following statement that provides asymptotic independence of the first few

coordinates x1, . . . , x` of a vector x drawn from the posterior distribution (1.3).

Proposition 2.11. For every `≥ 1 there exists γ> 0 such that for all d > 0 and all σ ∈ F
`
2 we have

lim
n→∞

E

[

nγ

∣

∣

∣

∣

∣

P [x1 =σ1, . . . , x` =σ` | A]−
∏̀

i=1

P [x i =σi | A]

∣

∣

∣

∣

∣

]

= 0.

Proposition 2.11, whose proof we defer to Appendix A, is a corollary to a random perturbation of the matrix A

developed in [3]. As an easy consequence of Proposition 2.11 we obtain the following expression for the overlap.

The proof can also be found in Appendix A.

Corollary 2.12. For all d > 0 we have limn→∞E

∣

∣R(x , x ′)− (1+ f (A))/2
∣

∣= 0.

Proof of Theorem 1.2. The assertion is an immediate consequence of Theorem 1.1 and Corollary 2.12. �

2.7. Preliminaries and notation. Throughout the paper, we use the standard Landau notations for asymptotic

orders and all asymptotics are taken as n →∞. Where asymptotics with respect to another additional parameter

are needed, we indicate this fact by using an index. For example, g (ε,n) = oε(1) means that

limsup
ε→0

limsup
n→∞

|g (ε,n)| = 0.

We ignore floors and ceilings whenever they do not significantly affect the argument.

Any m ×n F2-matrix A is perfectly represented by its Tanner graph G(A), as defined in Section 2.2. We sim-

ply identify A with its Tanner graph G(A). For instance, we take the liberty of writing f (G(A)) instead of f (A).

Conversely, a bipartite graph G with designated sets of check nodes C (G) and variable nodes V (G) induces a

|C (G)| × |V (G)| matrix A(G). Once again we tacitly identify G with this matrix. Recall that for a Tanner graph G

and a node z ∈C (G)∪V (G) we let ∂z = ∂G z signify the set of neighbours. We further define ∂t z = ∂t
G

z to be the set

of nodes at distance exactly t from z.

For a matrix A we generally denote by F (A) = F (G(A)) the set of frozen variables. In addition, we let F̂ (A) be

the set of frozen checks, where a check node a ∈C (A) is called frozen if ∂a ⊆F (A). Let f̂ (A) = |F̂ (A)|/|C (A)| be the

fraction of frozen checks.

For a matrix A with Tanner graph G and a node z of G let dA(z) = dG (z) denote the degree of z. Furthermore, let

dA = (dA(z))z∈C (A)∪V (A) signify the degree sequence of G(A). In addition, let dA,s = (dA,s(z))z∈C (A)∪V (A) encompass
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the degrees of the subgraph Gs(A). Note that this sequence includes degrees of vertices which are not actually in

Gs(A), whose degree in Gs(A) we define to be 0.

Returning to the random matrix A, let Gs be a random multigraph drawn from the pairing model with degree

distribution dA,s.

Lemma 2.13. The probability that Gs is a simple graph is bounded away from 0. Furthermore, conditioned on being

simple the graph Gs has exactly the same distribution as Gs(A).

The proof of this lemma is a standard exercise, which we include in Appendix B for completeness. We further

need a routine estimate of the degree distribution of the random bipartite graph G(A), whose proof can be found

in Appendix C.

Lemma 2.14. Let d > 0. W.h.p. the random graph G(A) satisfies

max
v∈V (A)∪C (A)

|∂v | ≤ logn,
1

n

∑

x∈V (A)

(

|∂x|
`

)

≤ (2d)` for any integer `≥ 1. (2.11)

Throughout the paper all logarithms are to the base e.

The entropy of a probability distribution µ on a finite set Ω 6= ; is denoted by

H(µ) =−
∑

ω∈Ω
µ(ω) logµ(ω).

As a further important tool we need the cut metric for probability measures on F
n
2 . Following [14], we define the

cut distance of two probability measures µ,ν on F
n
2 as

∆2(µ,ν) =
1

n
min
σ∼µ
τ∼ν

max
U⊆Fn

2 ×F
n
2

I⊆[n]

∣

∣

∣

∣

∣

∑

i∈I

P [(σ,τ) ∈U ,σi = 1]−P [(σ,τ) ∈U ,τi = 1]

∣

∣

∣

∣

∣

. (2.12)

In words, we first minimise over couplings (σ,τ) of the probability measures µ,ν. Then, given such a coupling an

adversary points out the largest remaining discrepancy. Specifically, the adversary puts their finger on the event U

and the set of coordinates I where the frequency of 1-entries in σ,τ differ as much as possible.

The cut metric is indeed a (very weak) metric. We need to point out a few of its basic properties. For a probability

measure µ on F
n
2 let σ(µ) denote a sample from µ. Moreover, let µ̄ be the product measure with the same marginals,

i.e.,

µ̄(σ) =
n
∏

i=1

µ
({

σ
(µ)

i
=σi

})

(σ ∈ F
n
2 ).

It is easy to see that upper bounds on the cut distance of µ,ν carry over to µ̄, ν̄, i.e.,

∆2(µ̄, ν̄) ≤∆2(µ,ν). (2.13)

Moreover, upper bounds on the cut distance carry over to upper bounds on the marginal distributions, i.e.,

1

n

n
∑

i=1

∣

∣

∣µ
({

σ
(µ)

i
= 1

})

−ν
({

σ(ν)
i

= 1
})∣

∣

∣≤∆2(µ,ν). (2.14)

The distribution µ is ε-extremal if ∆2(µ, µ̄) < ε. Furthermore, µ is ε-symmetric if
∑

1≤i< j≤n

∣

∣

∣µ
({

σ
(µ)

i
=σ

(µ)

j
= 1

})

−µ
({

σ
(µ)

i
= 1

})

µ
({

σ
(µ)

j
= 1

})∣

∣

∣< εn2.

Hence, for most pairs i , j the entries σi ,σ j are about independent. More generally, µ is (ε,`)-symmetric if

∑

τ∈F`2

∑

1≤i1<···<i`≤n

∣

∣

∣

∣

∣

µ
({

∀ j ≤ ` : σ
(µ)

i j
= τ j

})

−
∏̀

j=1

µ
({

σ
(µ)

i j
= τ j

})

∣

∣

∣

∣

∣

< εn`.

The following statement summarises a few results about the cut metric from [5, 14].

Proposition 2.15. For any `,ε> 0 there exist δ> 0 and n0 > 0 such that for all n > n0 and all probability measures

µ on F
n
2 the following statements hold.

(i) If µ is δ-extremal, then µ is (ε,`)-symmetric.

(ii) If µ is δ-symmetric, then µ is ε-extremal.
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Furthermore, extremality of measures carries over to conditional measures so long as we do not condition on

events that are too unlikely. More generally, we call two probability measures µ,ν on F
n
2 mutually c-contiguous if

c−1µ(σ) ≤ ν(σ) ≤ cµ(σ) for all σ ∈ F
n
2 .

Proposition 2.16 ([19]). For any ε > 0 there exist δ > 0 and n0 > 0 such that for all n > n0, any δ-extremal proba-

bility measure µ on F
n
2 and any probability measure ν on F

n
2 such that µ,ν are mutually (1/ε)-contiguous, we have

∆2(µ,ν) < ε.

Moreover, we need an elementary observation about the kernel of F2-matrices.

Fact 2.17 ([3, Lemma 2.3]). Let A be an m×n-matrix over F2 and choose ξ= (ξ1, . . . ,ξn) ∈ ker A uniformly at random.

Then for any i , j ∈ [n] we have P[ξi = 0] ∈ {1/2,1} and P[ξi = ξ j ] ∈ {1/2,1}.

Finally, in Appendix D we will prove the following auxiliary statement about weighted sums.

Lemma 2.18. For any c0,c1 > 0 there exists c2 > 0 such that for all n > 0 the following is true. Suppose that w : [n] →
(0,∞) is any function such that

1

n

n
∑

i=1

wi 1 {wi > t } ≤ c0 exp(−c1t ) for any t ≥ 1.

Moreover, assume that P = (P1, . . . ,P`) is any partition of [n] into pairwise disjoint sets such that

1

n

∑̀

j=1

|P j | 1
{

|P j | > t
}

≤ c0 exp(−c1t ) for any t ≥ 1.

Then 1
n

∑`
j=1

(

∑

i∈P j
wi

)2
≤ c2.

3. FIXED POINTS AND LOCAL MAXIMA

In this section we prove Lemma 2.1 and Proposition 2.3. We begin with a bit of trite calculus.

3.1. Getting started. We introduce Dd (α) = exp(−d(1−α)) so that

φd (α) = 1−exp(−d exp(−d(1−α))) = 1−Dd (1−Dd (α)), Φd (α) = Dd (1−Dd (α))+ (1+d(1−α))Dd (α)−1. (3.1)

We need two derivatives of Φd (α) and φd (α):

Φ
′
d (α) = d 2Dd (α)

(

φd (α)−α
)

, φ′
d (α) = d 2Dd (1−Dd (α))Dd (α), (3.2)

Φ
′′
d (α) = d 3Dd (α)

(

φd (α)−α
)

+d 2Dd (α)
(

φ′
d (α)−1

)

, φ′′
d (α) = d 3Dd (1−Dd (α))Dd (α) (1−dDd (α)) . (3.3)

Since Dd (α) is strictly increasing for all d > 0, so is φd (α) due to (3.1). Thus,

φ′
d (α) > 0 for all α ∈ [0,1]. (3.4)

Moreover, (3.3) shows that the sign of φ′′
d

only depends on the last term, denoted by

ψd ,sign(α) = 1−dDd (α). (3.5)

We denote the unique zero of ψd ,sign(α) by ᾱ= 1− logd
d

. The following claim comes down to an exercise in calculus.

Claim 3.1. (i) ᾱ is a fixed point of φd iff d = e.

(ii) φ′′
d

(0) > 0.

(iii) φ′′
d

(α) has one zero at ᾱ in the interval [0,1] if d ≥ 1, none otherwise.

(iv) φ′
e(ᾱ) = 1 and Φ

′′
e (ᾱ) = 0.

(v) ᾱ is the only fixed point of φe(α).

(vi) The fixed points of φd coincide with the stationary points of Φd .

(vii) Φ
′
d

(0) > 0 >Φ
′
d

(1).

(viii) For any d > 0 the function φd has at least one stable fixed point.

(ix) For any d > 0 the function φd has at most three fixed points, no more than two of which are stable.

(x) For d < e, we have φ′
d

(α) < 1 for all α ∈ [0,1].

(xi) For d < e, the function Φd attains a unique local maximiser αd ∈ (0,1).

(xii) For d > e, if α ∈ (0,1) is a fixed point of φd then so is α̂= 1−exp(−d(1−α)) ∈ (0,1).

13



Proof. (i) Observe that φd (ᾱ) = 1−1/e, which is a fixed point iff ᾱ= 1− logd
d

= 1− 1
e , i.e. iff d = e.

(ii) Recall that the sign of φ′′
d

(α) is determined by the sign of ψd ,sign(α), and we have ψd ,sign(0) = 1−d exp(−d) > 0

for all d > 0.

(iii) Since ψ′
d ,sign

(α) =−d 2 exp(−d(1−α)) < 0, we see that ψd ,sign is a decreasing function that has its unique zero

at ᾱ. Furthermore, ᾱ≤ 1 iff d ≥ 1.

(iv) By (i), when d = e and α = ᾱ, Equation (3.3) reduces to Φ
′′
e (ᾱ) = e2De(ᾱ)

(

φ′
e(ᾱ)−1

)

. Since also De (ᾱ) = 1/e,

by (3.2) we have φ′
e(ᾱ) = 1, and therefore also Φ

′′
e (ᾱ) = 0.

(v) Due to (i) ᾱ is a fixed point, and φ′
e(ᾱ) = 1 by (iv). Since φe(α) is convex for α < ᾱ and concave for α > ᾱ by

(3.3), we deduce that φe(α) >α for α< ᾱ and φe(α) <α for α> ᾱ, so ᾱ is the unique fixed point of φe(α).

(vi) Since d 2Dd (α) > 0, (3.2) implies that Φ′
d

(α) = 0 iff φd (α) =α.

(vii) This follows from (3.2) since φd (0) > 0 and φd (1) < 1.

(viii) Since φd (0) > 0 and φd (1) < 1, and since φd is a continuous function, there must be at least one fixed point

in (0,1). Setting α1 := sup{α : φd (α) > α}, we have that α1 is a fixed point by continuity. Furthermore, α1 is

stable since there are points α<α1 arbitrarily close to α1 for which φd (α) >α, but also for any α>α1 we have

φd (α) ≤α, and therefore φ′
d

(α1) ≤ 1. 1

(ix) This is a consequence of (iii): between any two fixed points there must be a point with φ′(α) = 1, and between

any two such points there must be a point with φ′′(α) = 0; furthermore, between any two stable fixed points,

there must be an unstable fixed point.

(x) If d < 1, (ii) and (iii) imply that φ′′(α) > 0 on [0,1]. Therefore φ′
d

(α) ≤ φ′
d

(1) = d 2e−d < 1. For 1 ≤ d < e,

Property (iii) proves that for all α ∈ [0,1] we have φ′
d

(α) <φ′
d

(ᾱ) = d/e < 1.

(xi) By (vi), we may consider stable fixed points ofφd rather than maximisers ofΦd . The difference h(α) :=φd (α)−
α is a decreasing function since h′(α) = φ′

d
(α)−1 < 0 by (x). Since h(0) > 0 and h(1) < 0, h(α) has only one

zero for d < e. This shows that the stable fixed point from (viii) is the unique fixed point.

(xii) Using α=φd (α) = 1−exp(−d exp(−d(1−α))), we obtain

exp(−d(1− α̂)) = exp(−d exp(−d(1−α))) = 1−α=− log(1− α̂)/d .

Rearranging this inequality shows that α̂=φd (α̂). �

3.2. Proof of Lemma 2.1. At a fixed point α of φd , (3.3) simplifies to

Φ
′′
d (α) = d 2Dd (α)

(

φ′
d (α)−1

)

. (3.6)

This shows Φ′′
d

(α) < 0 iff φ′
d

(α) < 1. Hence, for d > 0,d 6= e, (3.4) and Claim 3.1 (vi) imply that the stable fixed points

of φd are precisely the local maximisers of Φd . Claim 3.1 (v) proves the second assertion in the case d = e.

3.3. Proof of Proposition 2.3. We make further observations on the existence and stability of fixed points of φd .

Lemma 3.2. If d > e then Φd attains its unique local minimum α0 ∈ [α∗,α∗] at the root of 1−α−exp(−d(1−α)).

Proof. The concave function α ∈ [0,1] 7→ 1−exp(−d(1−α)) has a unique fixed point β=β(d) ∈ (0,1), which satisfies

φd (β) = 1−exp(−d exp(−d(1−β)) =β, φ′
d (β) = d 2 exp(−d(1−β))exp(−d exp(−d(1−β))) = d 2(1−β)2.

Hence, Claim 3.1 (vi) and (3.6) yield

Φ
′
d (β) = 0, Φ

′′
d (β) = d 2 exp(−d(1−β))

(

d 2(1−β)2 −1
)

. (3.7)

In order to determine the sign of the last expression we differentiate with respect to d , keeping in mind that β =
β(d) is a function of d . Rearranging the fixed point equation β= 1−exp(−d(1−β)), we obtain d =−(1−β)−1 log(1−
β). The inverse function theorem therefore yields

∂β

∂d
=

(1−β)2

1− log(1−β)
.

Combining the chain rule with the fixed point equation β= 1−exp(−d(1−β)), we thus obtain

∂

∂d
d 2(1−β)2 = 2d(1−β)2 −2d 2(1−β)

∂β

∂d
= 2d(1−β)2

(

1−
d(1−β)

1− log(1−β)

)

=
2d(1−β)2

1+d(1−β)
> 0. (3.8)

1Note that at this point we could also have observed that Φd attains its maximum in the interior of (0,1) and then applied Lemma 2.1 to

prove the existence of a stable fixed point. This would be permissible since the proof of Lemma 2.1 only uses earlier points from this Claim and

not (viii) or any later points, therefore the argument is not a circular one.
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As in Claim 3.1, at d = e we obtain β= ᾱ= 1−1/e and thus d 2(1−β)2 = 1. Therefore, (3.8) implies that d 2(1−β)2 > 1

for all d > e, and thus (3.7) shows that Φd attains its local minimum α0 precisely at the point β. Finally, by Claim 3.1

(vi) and (ix) there is precisely one local minimum in the interval [α∗,α∗]. �

Corollary 3.3. For d > e the function Φd attains its local maxima at the fixed points 0 <α∗ <α∗ < 1 of φd . Moreover,

Φd (α∗) =Φd (α∗).

Proof. Since by Claim 3.1 (vii) we have Φ
′
d

(0) > 0 >Φ
′
d

(1), the existence of the local minimiser α0 ∈ (0,1) provided

by Lemma 3.2 implies that Φd has at least two local maximisers 0 <α1 <α0 <α2 < 1. Lemma 2.1 and Claim 3.1 (vi)

show that α0,α1,α2 are fixed points of φd . Hence, Claim 3.1 (ix) implies that α1 =α∗ is the smallest fixed point of

φd and that α2 = α∗ > α∗ is the largest fixed point. Additionally, Lemma 2.1 and Claim 3.1 (ix) imply that α∗,α∗

are the only local maximisers of Φd .

It remains to prove that Φd (α∗) =Φd (α∗). Claim 3.1 (xii) implies that

α̂∗ = 1−exp(−d(1−α∗)) and α̂∗ = 1−exp(−d(1−α∗))

are fixed points of φd . Because α0 6=α∗,α∗ is the unique root of 1−α−exp(−d(1−α)), we conclude that α̂∗ =α∗

and α̂∗ =α∗. Hence,

1−α∗ = exp(−d(1−α∗)), 1−α∗ = exp(−d(1−α∗)). (3.9)

Consequently,

(1−α∗)exp(−d(1−α∗)) = (1−α∗)exp(−d(1−α∗)) and (3.10)

1−α∗+exp(−d(1−α∗)) = 1−α∗+exp(−d(1−α∗)) (3.11)

Finally, combining (3.10)–(3.11) with the fixed point equations φd (α∗) =α∗, φd (α∗) =α∗, we obtain

Φd (α∗)−Φd (α∗) = exp(−d exp(−d(1−α∗)))+exp(−d(1−α∗))−
[

exp(−d exp(−d(1−α∗)))+exp(−d(1−α∗))
]

+d
[

(1−α∗)exp(−d(1−α∗))− (1−α∗)exp(−d(1−α∗))
]

= 1−α∗+exp(−d(1−α∗))−
(

1−α∗+exp(−d(1−α∗))
)

= 0,

thereby completing the proof. �

Proof of Proposition 2.3. The first part follows immediately from Lemma 2.1 and Claim 3.1 (xi). The second asser-

tion follows from Lemma 2.1, Lemma 3.2 and Corollary 3.3. �

3.4. Proof of Lemma 2.2. By a straightforward computation, we get that φd (0) > 0 and φd (1) < 1 for all d > 0.

Moreover, φd (α) is a continuously differentiable function. For d < e, by Claim 3.1 (vi) and (xi) (or Proposition 2.3 (i))

there is one fixed point α∗ = α0 = α∗. This implies φd (α) > α for α ∈ [0,α∗) and φd (α) < α for α ∈ (α∗,1] . By

Equation (3.4), φd (α) is strictly increasing so φd (φd (α)) > φd (α) for α ∈ [0,α∗) and φd (φd (α)) < φd (α) for α ∈
(α∗,1]. By induction, for all t > 0, φ◦t

d
(α) >φ◦t−1

d
(α) for α ∈ [0,α∗) and φ◦t

d
(α) <φ◦t−1

d
(α) for α ∈ (α∗,1]. In addition,

the fact that α∗ is a fixed point of φ implies that α∗ = φd (α∗) > φ◦t
d

(α) for α ∈ [0,α∗) and α∗ = φd (α∗) < φ◦t
d

(α)

for α ∈ (α∗,1]. Hence, for α ∈ [0,α∗), the sequence
(

φt
d

(α)
)

t≥0
is monotonically increasing and bounded above by

φd (α∗) = α∗, and therefore limt→∞φ◦t
d

(α) exists. Furthermore, since φd is continuous, this limit must be a fixed

point of φd . Since α∗ is the smallest fixed point, we must have limt→∞φ◦t
d

(α) = α∗, as required. Similarly, for

α ∈ (α∗,1], the sequence
(

φt
d

(α)
)

t≥0
is monotonically decreasing and bounded below thus limt→∞φ◦t

d
(α) =α∗.

For d > e, by Proposition 2.3 (ii), there are three fixed points, α∗ <α0 <α∗ where α∗,α∗ are stable fixed points

and α0 is unstable. For the intervals [0,α∗), (α∗,1], the proof is exactly the same as in the case d < e. Similarly,

(α∗,α0) comes down to the case of a monotonically decreasing sequence converging to α∗ while (α0,α∗) comes

down to the case of a monotonically increasing sequence converging to α∗.

4. TRACING WARNING PROPAGATION

In this section we will analyse the local structure of G(A) together with WP messages, and show that locally the

graph has a rather simple structure. For this argument we will make use of the results of [11].2 The study of WP

messages will enable us to prove Propositions 2.4, 2.5 and 2.6.

2The article [11] deals with the standard binomial random graph G(n,d/n), whereas in our situation we have the bipartite graph G(n,n,d/n)

– however, the proofs in that paper generalise in an obvious way to this setting.
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4.1. Message distributions and the local structure. To investigate the link between the local graph structure and

the WP messages we need a few definitions. Let us first define a message distribution to be a vector

q =
(

q (v), q (c)
)

with q (v) =
(

q (v)
f

, q (v)
s , q (v)

u

)

, q (c) =
(

q (c)
f

, q (c)
s , q (c)

u

)

∈ [0,1]3 s.t.
∑

s∈{f,s,u}

q (v)
s =

∑

s∈{f,s,u}

q (c)
s = 1.

Intuitively, q (v), q (c) model the probability distribution of an incoming message at a check/variable node, so for

example q (v)
f

is the probability that an incoming message at a variable node is f.

Given a message distribution q , we define Po(d q) to be a distribution of half-edges with incoming messages.

Specifically, at a variable node, this generates Po
(

d q (v)
f

)

half-edges whose in-message is f and similarly (and in-

dependently) generates half-edges whose in-message is s or u. At a check node, the generation of half-edges with

incoming messages is analogous. Let us define the message distribution

q∗ :=
(

q (v)
∗ , q (c)

∗
)

with q (v)
∗ =

(

q (v)
∗,f

, q (v)
∗,s, q (v)

∗,u

)

:=
(

1−α∗,α∗−α∗,α∗
)

,

q (c)
∗ =

(

q (c)
∗,f

, q (c)
∗,s, q (c)

∗,u

)

:=
(

α∗,α∗−α∗,1−α∗)

.

which is our conjectured limiting distribution of a randomly chosen message after the completion of WP, which

motivates the following definitions.

Definition 4.1. We define branching processes T ,T̂ which will generate rooted trees decorated with messages along

edges towards the root.

(i) The root of the first process T is a variable node v0. The root spawns Po(d) children, which are check nodes.

The edges from the children to the root independently carry an f-message with probability 1−α∗, an s-message

with probability α∗−α∗, and a u-message with probability α∗. The process then proceeds such that each check

node spawns variable nodes and each variable node spawns check nodes as its offspring such that the messages

sent from the children to their parents abide by the rules from Figure 2. To be precise, a check node a that sends

its parent message z ∈ {f,s,u} has offspring

z = f: Po(α∗d) children that send an f-message.

z = s: Po(α∗d) children that send an f-message and Po≥1(d(α∗−α∗)) children that each send an s-message.

z = u: Po(α∗d) children that send an f-message, Po(d(α∗−α∗)) children that send an s-message and Po≥1(d(α∗−
α∗)) children that send a u-message.

Analogously, a variable node v that sends its parent message z ∈ {f,s,u} has offspring

z = f: Po≥1((1−α∗)d) children that send an f-message, Po(d(α∗−α∗)) children that send an s-message, and

Po(dα∗) children that send a u-message.

z = s: Po(α∗d) children that each send a u-message and Po≥1(d(α∗−α∗)) children that send an s-message.

z = u: Po(α∗d) children that send a u-message.

(ii) The root of the second process T̂ is a check node a0. The root spawns Po(d) children, which are variable nodes.

They indepdently send messages f,s,u with probabilities α∗,α∗ −α∗,1−α∗. Apart from the root, the nodes

have offspring as under (i).

Let us note that the processes T ,T̂ , when truncated at depth t ∈ N, are equivalent to the following: generate

a 2-type branching tree up to depth t from the appropriate type of root in which each variable node has Po(d)

children which are check nodes and vice versa, generate messages from the leaves at depth t at random according

to q∗ and generate all other messages up the tree from these according to the WP update rule.

The following is the critical lemma describing the local structure. Given an integer t , let us define St to be the

set of messaged trees rooted at a variable node and with depth at most t , and similarly Ŝt for trees rooted at a

check node. For any T ∈St and matrix A, let us define

ξT (A) :=
1

n

∑

v∈V (A)

1
{

δt
G(A)v ∼= T

}

to be the empirical fraction of variable nodes whose rooted depth t neighbourhood G(A) with edges towards the

root annotated by the WP messages (wa→y (A), wy→a(A))a,y is isomorphic to T . For T̂ ∈ ŜT , the parameter ξT̂ (A) is

defined similarly. We also define ζT := P [Tt
∼= T ] and ζT̂ := P

[

T̂t
∼= T̂

]

to be the probabilities that the appropriate

branching process is isomorphic to T or T̂ respectively.
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Lemma 4.2. For any constant t and any trees T ∈St and T̂ ∈ Ŝt we have

lim
n→∞

|ξT (A)−ζT | = 0 and lim
n→∞

|ξT̂ (A)−ζT̂ | = 0 in probability.

In other words, picking a random vertex and looking at its local neighbourhood gives asymptotically the same

result as generating a Po(d) branching tree to the appropriate depth and initialising messages at the leaves accord-

ing to q∗.

Lemma 4.2 states that messages at the end of WP are roughly distributed according to q∗, but of course, q∗
does not reflect the messages at the start of the WP algorithm; our initialisation, in which all messages are s, is

represented by the message distribution q 0 = (q (v)
0 , q (c)

0 ) := ((0,1,0), (0,1,0)), but as the WP algorithm proceeds, the

distribution will change, which motivates the following definition of an update function on message distributions.

Definition 4.3. Given a message distribution q =
((

q (v)
f

, q (v)
s , q (v)

u

)

,
(

q (c)
f

, q (c)
s , q (c)

u

))

, let us define the message distri-

bution ϕ(q) by setting

ϕ(q)(v)
f

:=P
[

Po
(

d
(

q (c)
u +q (c)

s

))

= 0
]

, ϕ(q)(c)
f

:=P

[

Po
(

d q (v)
f

)

≥ 1
]

,

ϕ(q)(v)
s :=P

[

Po
(

d q (c)
u

)

= 0
]

·P
[

Po
(

d q (c)
s

)

≥ 1
]

, ϕ(q)(c)
s :=P

[

Po
(

d q (v)
f

)

= 0
]

·P
[

Po
(

d q (v)
s

)

≥ 1
]

,

ϕ(q)(v)
u :=P

[

Po
(

d q (c)
u

)

≥ 1
]

, ϕ(q)(c)
u :=P

[

Po
(

d
(

q (v)
f

+q (v)
s

))

= 0
]

.

We further recursively define ϕ◦t (q) :=ϕ
(

ϕ◦(t−1)(q)
)

for t ≥ 2, and define ϕ∗(q) := limt→∞ϕ◦t (q) if this limit exists.

The function ϕ represents an update function of the WP message distributions in an idealised scenario, but it

turns out that this idealised scenario is close to the truth. The following lemma is critical in order to be able to

apply the results of [11]. Let us define the total variation distance between message distributions q 1, q 2 by

dT V

(

q 1, q 2

)

:= dT V

(

q (v)
1 , q (v)

2

)

+dT V

(

q (c)
1 , q (c)

2

)

.

Lemma 4.4. We have ϕ∗ (

q 0

)

= q∗. Furthermore, there exist ε,δ> 0 such that for any message distribution q which

satisfies dT V

(

q , q∗
)

≤ ε, we have dT V

(

ϕ
(

q
)

, q∗
)

≤ (1−δ)dT V

(

q , q∗
)

.

In the language of [11], this lemma states that q∗ is the stable limit of q 0. Before proving this lemma, we first

show how to use it to prove Lemma 4.2. We begin with the critical application of the main result of [11]. Recall that

w(A, t ) denote the messages after t iterations of WP on the Tanner graph G(A) with all initial messages set as s,

and w(A) = limt→∞ w(A, t ).

Lemma 4.5. For any d ,δ> 0 there exists t0 ∈N such that w.h.p. w(A) and w(A, t0) are identical except on a set of at

most δn edges.

Proof. Since q∗ is the stable limit of q 0, this follows directly from [11, Theorem 1.5]. �

Using Lemma 4.5, we can determine the local limit of the graph with final WP messages.

Proof of Lemma 4.2. Fix t0 sufficiently large, and in particular large enough that Lemma 4.5 can be applied. Since

the local structure of the graph G(A) is that of a Po(d) branching tree, after t0 iterations of WP for some sufficiently

large t0, the local structure with incoming messages is approximately as Tt0 and T̂t0 . Subsequently, Lemma 4.5

implies that almost all messages at time t0 are the final ones, and in particular there are very few vertices whose

depth t0 neighbourhood will change. �

Proof of Lemma 4.4. For convenience, we will actually prove that q∗ is the stable limit of q 0 under the operator

ϕ◦2 rather than ϕ – the advantage is that this 2-step operator acts on the coordinates (corresponding to variable

and check nodes) independently of each other. The analogous statement for ϕ follows from that for ϕ◦2 due to

continuity.

Furthermore, by symmetry we may prove the appropriate statements just for the first coordinate, i.e. for q (v)
∗ –

the corresponding proof for q (c)
∗ is essentially identical.

As a final reduction, let us observe that since for any message distribution we have q (v)
f

+ q (v)
s + q (v)

u = 1, it is

sufficient to consider just two of the three coordinates. In this case it will be most convenient to consider q (v)
f

and

q (v)
u , so let us restate what we are aiming to prove.
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Consider the operator ϕ̃ : [0,1]2 → [0,1]2 defined by ϕ̃(x1, x2) :=
(

ϕ̃1(x1),ϕ̃2(x2)
)

, where

ϕ̃1(x1) := exp
(

−d exp(−d x1)
)

, ϕ̃2(x2) := 1−exp
(

−d exp(−d (1−x2))
)

.

This corresponds precisely to the action of ϕ◦2 on
(

q (v)
f

, q (v)
u

)

. Thus our goal is to prove that (1−α∗,α∗) is the stable

limit of (0,0) under ϕ̃.

Now observe that ϕ̃1(x1) = 1−φd (1− x1) and recall that φd was defined in (1.1). By Lemma 2.2 and Proposi-

tion 2.3, φd is a contraction on [α∗,1] with unique fixed point α∗, and so correspondingly ϕ̃1 is a contraction on

[0,1−α∗] with unique fixed point 1−α∗.

On the other hand, ϕ̃2 is exactly the function φd . Therefore, similarly, by Lemma 2.2 and Proposition 2.3, ϕ̃2 is

a contraction on [0,α∗] with unique fixed point α∗. It follows that (1−α∗,α∗) is the limit ϕ̃∗(0,0).

To show that it is the stable limit, we simply observe that ϕ̃′
1(1−α∗) =φ′

d
(α∗) < 1 by Proposition 2.3, and similarly

ϕ̃′
2(α∗) = φ′

d
(α∗) < 1. This implies that each coordinate function is a contraction in the neighbourhood of the

corresponding limit point, and therefore so is ϕ̃. �

4.2. Proof of Proposition 2.5. To determine the asymptotic proportion of vertices in Vf(A), by Lemma 4.2 it suf-

fices to determine the probability that in T the root receives at least one f-message. This event has probability

P

[

Po(d(q (v)
∗,f

)) ≥ 1
]

= 1−exp(−d(1−α∗)) =α∗

since q (v)
∗,f

= 1−α∗ and by (3.9).

An analogous argument yields the statement for Vu(A). �

4.3. Proof of Proposition 2.6. To determine the asymptotic proportion of vertices in Vs(A), by Lemma 4.2 it suf-

fices to determine the probability that in T the root receives at least two s-messages and no f-messages. This

occurs with probability

P
[

Po(d(α∗−α∗)) ≥ 2
]

·P [Po(dα∗) = 0] =
(

1−exp(−d(α∗−α∗))−d(α∗−α∗)exp(−d(α∗−α∗))
)

·exp(−dα∗)

= exp(−dα∗)−exp(−dα∗)(1+d(α∗−α∗)),

as claimed. The analogous statement for Cs(A) can be proved similarly, or follows from the statement for Vs(A) by

symmetry.

The statement on degree distributions follows directly from the approximation using T or T̂ : conditioned on a

node lying in Vs or Cs, it must certainly receive at least two s-messages from its neighbours. Furthermore, a neigh-

bour is in Cs or Vs respectively if and only if it sends an s-message to this vertex. The distribution of neighbours

sending s is Po(λ) without the conditioning (where recall that λ= d(α∗−α∗)), therefore with the conditioning it is

Po≥2(λ), as required. �

4.4. Proof of Proposition 2.4. For a matrix A we let

Vf(A, t ) = {v ∈V (A) : ∃a ∈ ∂v : wa→v (A, t ) = f} , Vu(A, t ) = {v ∈V (A) : ∀a ∈ ∂v : wa→v (A, t ) = u} , (4.1)

Cf(A, t ) = {a ∈C (A) : ∀v ∈ ∂a : wv→a(A, t ) = f} , Cu(A, t ) = {a ∈C (A) : ∃v ∈ ∂a : wv→a(A, t ) = u} (4.2)

be the sets of nodes of G(A) classified as frozen or unfrozen after t iterations of WP. Furthermore, let B(v, t ) denote

the nodes that are within distance t of v . Let Bt be the set of variable nodes v such that B(v, t ) contains at least

one cycle.

Claim 4.6. Let t0 ≥ 1. If v0 ∈Vu(A, t0) and v0 ∉Bt0 , then v0 ∉F (A).

Proof. Let v0 ∈Vu(A, t0). We will consider a subtree T of G(A) rooted at v0 which we produce in the following way.

All of the neighbours of v0 are added to T as children of v0. Furthermore, since each such neighbour a is a check

node which sends v0 a u-message at time t0, the check node a has at least one further neighbour (apart from v0)

from which it receives a u-message at time t0 −1 – we choose one such neighbour arbitrarily and add it to T as a

child of a. We continue recursively, for each variable node adding all neighbours (apart from the parent) if there

are any, and for each check node at depth i adding one neighbour (distinct from the parent) from which it receives

message u at time t0 − i .

Since the leaves at depth t0 send out u-messages at time 1, they must be unary variables (if they exist at all

which is not the case if, for example, t0 is odd). Therefore T has the property that for any of its variable nodes, all

its neighbours are also in T , while all checks have precisely two neighbours in T .
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Ṽ

C̃

Ũ

FIGURE 3. An instance of the randomly generated trees added to G(A) to produce G ′(A) in Def-

inition 5.1: the variable and check root sets Ṽ ,C̃ are shown in blue; the attachment nodes Ũ in

green; the thick red edges are those in the trees, which are added to G(A); the thin black edges

were already present in G(A); all explicitly drawn nodes were already present but, apart from

possibly the attachment nodes (i.e. those in Ũ ), were previously isolated in G(A).

Therefore we can obtain a vector in the kernel of A that sets xv0 to 1 by simply setting all the variable nodes in

T to 1 and all other variables to zero. This shows that v0 6∈F (A). �

Proof of Proposition 2.4. First observe that Claim 4.6 implies Vu(A, t0)
⋂

F (A) ⊆ Bt0 . Calculating the expectation

of the number of vertices lying on cycles of length up to 2t0 and applying Markov inequality gives us that indeed
∣

∣Bt0

∣

∣ = o(n). By choosing t0 sufficiently large according to Lemma 4.5 we have |Vu(A, t0)| = |Vu(A)| +o(n) w.h.p.

which concludes the proof. �

5. THE STANDARD MESSAGES

In this section we prove Proposition 2.7, which states that the proportion of frozen variables is likely close to one

of the fixed points of φd . Along the way we will establish auxiliary statements that will pave the way for the proof

of Proposition 2.8 (which rules out the unstable fixed point) in Section 6 as well.

5.1. Perturbing the Tanner graph. A key observation toward Proposition 2.7 is that if we make some minor al-

terations to G(A), the resulting graph G ′(A) is essentially indistinguishable from G(A). Let T = T(d) be the tree

generated by a Galton-Watson process with the two types ‘variable node’ and ‘check node’. The root is a variable

node v0. Each variable node spawns Po(d) check nodes as offspring. Similarly, the offspring of a check node con-

sists of Po(d) variable nodes. In addition, let T̂= T̂(d) be the tree generated by a Galton-Watson process with the

same offspring distribution whose root is a check node a0. Given an integer t , we obtain Tt and T̂t from T and T̂,

respectively, by deleting all nodes whose distance from the root exceeds t , so these are trees of depth (at most) t .

(Unlike the branching processes from Definition 4.1, the trees T,T̂ do not incorporate messages.)

Definition 5.1. Let 0 ≤ω1 =ω1(n) = o(
p

n), 0 ≤ω2 =ω2(n) = n1/2−Ω(1) and obtain G ′(A) from G(A) as follows.

(i) Generate ω1 many T2 trees and ω2 many T̂1 trees independently.

(ii) For each node v in the final layer of these trees (which is a variable node), embed v onto a variable node of G(A)

chosen uniformly at random and independently.

(iii) Embed the remaining nodes of the trees randomly onto nodes which were previously isolated such that variable

nodes are embedded onto variable nodes and checks onto checks.

Let G ′(A) denote the resulting graph and let A′ be its adjacency matrix. (Thus G ′(A) = G(A′) is the Tanner graph of

A′.)
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Let Ṽ ,C̃ denote the set of variable and check nodes of G ′(A) respectively onto which the roots of the T2 and T̂1

branching trees from Definition 5.1 (i) are embedded. Similarly, let Ũ = (∂C̃ ∪∂2Ṽ ) \ Ṽ be the set of variable nodes

of G(A) where the checks from Definition 5.1 attach to the bulk of the Tanner graph in Step (ii). An example is

shown in Figure 3.

Note that it is possible that this process fails, for example if there are not enough isolated nodes available, in

which case we simply set G ′(A) := G(A). However, since w.h.p. the total size of all trees is O(ω1 +ω2), and w.h.p.

there are Ω(n) isolated variable and check nodes available, the failure probability is exp(−Ω(n)) and thus negligible

for our purposes. For the same reason w.h.p. no two nodes from the trees are embedded onto the same node of

G(A).

Fact 5.2. If ω1 +ω2 = n1/2−Ω(1), then dTV(G(A),G ′(A)) = n−Ω(1).

This routine observation simply follows from the fact that w.h.p. we only added n1/2−Ω(1) edges attached to

isolated nodes in such a way that the expected degrees are bounded, and the attachment variables were chosen

uniformly at random. In particular the number of changes is of lower order than the standard deviation in the

number of nodes of each type which has changed.

We point out that Ṽ ,C̃ are representative of G ′(A) as a whole.

Fact 5.3. Let Λ : (G ,u) 7→ Λ(G ,u) ∈ [0,1] be any function that maps a pair consisting of a graph and a node to a

number. If 1 ¿ω1,ω2 = n1/2−Ω(1), then

E

∣

∣

∣

∣

∣

1

n

∑

v∈V (G ′(A))

Λ(G ′(A), v)−
1

|Ṽ |
∑

v∈Ṽ

Λ(G ′(A), v)

∣

∣

∣

∣

∣

= o(1), E

∣

∣

∣

∣

∣

1

n

∑

a∈C (G ′(A))

Λ(G ′(A), a)−
1

|C̃ |
∑

a∈C̃

Λ(G ′(A), a)

∣

∣

∣

∣

∣

= o(1).

Proof. The statement for Ṽ follows since the local structure of G(A), and therefore also of G ′(A) by Fact 5.2, is that

of a Po(d) branching tree, and this is clearly also the case at the variables of Ṽ . Formally, if v is a variable node

chosen uniformly at random from V (G ′(A)) and ṽ is a random element of Ṽ , then Fact 5.2 implies that (G ′(A), v )

and (G ′(A), ṽ ) have total variation distance o(1) given G ′(A) w.h.p. Therefore, the empirical average of Λ on the

entire set V (G ′(A)) is well approximated by the average on Ṽ w.h.p. The second statement concerning C̃ follows

similarly. �

5.2. Construction of the standard messages. In Section 2.2 we defined Warning Propagation messages via an

explicit combinatorial construction that captured our intuition as to the causes of freezing. In the following we

pursue a converse path. We define a set of messages implicitly, purely in terms of algebraic reality. We call these

{f,u}-valued messages the standard messages. The battle plan is to ultimately match this implicit definition with

the explicit construction from Section 2.2.

The standard messages can be defined for any m ×n-matrix A. Given a subset U of nodes of a graph G , we

denote by G −U the graph obtained from G by deleting U and all incident edges. For a node x, we write G − x

instead of G − {x}. For each adjacent variable/check pair (v, a) of G(A) we define

mv→a(A) =
{

f if v is frozen in G(A)−a,

u otherwise,
ma→v (A) =

{

f if v is frozen in G(A)− (∂v \ {a}),

u otherwise.
(5.1)

Hence, mv→a(A) = f iff v is frozen in the matrix obtained from A by deleting the a-row. Moreover, ma→v (A) = f iff

v is frozen in the matrix obtained by removing the rows of all b ∈ ∂v except a. Let m(A) = (mv→a(A),ma→v (A))v∈∂a .

Further, we define {f,?,u}-valued marks for the variables and checks by letting

mv (A) =











f if ma→v (A) = f for at least two a ∈ ∂v ,

? if ma→v (A) = f for precisely one a ∈ ∂v ,

u otherwise,

(5.2)

ma(A) =











f if mv→a(A) = f for all v ∈ ∂a,

? if mv→a(A) = f for all but precisely one v ∈ ∂a,

u otherwise.

(5.3)

The intended semantics is that f and ? both represent frozen variables/checks, meaning that a variable v is frozen

if mv (A) 6= u while for any check a we have ma(A) 6= u if all variables v ∈ ∂a are frozen. But for checks or variables

with mark ?, freezing hangs by a thread since, for instance, a variable v withmv (A) =? receives just a single ‘freeze’
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message. We will see in Corollary 5.6 below how this manifests itself in the messages sent out by ?-variables or

checks.

We consider a dumbed-down version of the Warning Propagation operator WPA from Section 2.2 that “updates”

the messages from (5.1) to messages m̂v→a(A) as follows:

m̂v→a(A) =
{

f if mb→v (A) = f for some b ∈ ∂v \ {a},

u otherwise,
(5.4)

m̂a→v (A) =
{

f if my→a(A) = f for all y ∈ ∂a \ {v},

u otherwise.
(5.5)

We next show that the standard messages constitute an approximate fixed point of the WPA operator and that the

marks mostly match their intended semantics w.h.p.

Lemma 5.4. For all d > 0 we have

E

∑

v∈V (A)
a∈∂v

1 {mv→a(A) 6= m̂v→a(A)}+1 {ma→v (A) 6= m̂a→v (A)} = o(n), (5.6)

E |{v ∈V (A) :mv (A) 6= u}4F (A)| = o(n), E

∣

∣{a ∈C (A) :ma(A) 6= u}4F̂ (A)
∣

∣= o(n). (5.7)

We prove Lemma 5.4 by way of the perturbation from Section 5.1. Specifically, in light of Fact 5.3 it suffices to

consider G ′(A) and the sets of variables/checks Ṽ ,C̃ onto which the roots of the T2 and T̂1 branching trees from

Definition 5.1 are embedded. The following lemma summarises the main step of the argument. Recall that Ũ is

the set of variable nodes where the trees from Definition 5.1 attach to the bulk of the Tanner graph in Step (ii) (see

Figure 3).

Claim 5.5. There exists 1 ¿ω∗ =ω∗(n) ≤ n1/2−Ω(1) such that for all ω1,ω2 ≤ω∗ and every d > 0 w.h.p. we have

my→a(A′) = f ⇔ y ∈F (A) for all a ∈ C̃ ∪∂Ṽ , y ∈ Ũ ∩∂a. (5.8)

Furthermore, w.h.p. a random vector x ∈ ker A satisfies

P
[

∀y ∈ Ũ \F (A) : x y =σy |G(A),G ′(A)
]

= 2−|Ũ \F (A)| for all σ ∈ F
Ũ \F (A)
2 . (5.9)

Finally, F (A) ⊆F (A′) and w.h.p. we have f (A′) = f (A)+o(1).

Proof. Let us begin with the last statement. The inclusion F (A) ⊆F (A′) is deterministically true because A′ is ob-

tained from A by effectively adding checks (viz. “activating” formerly dormant isolated checks). Moreover, Propo-

sition 2.11 shows that the distribution of a random x ∈ ker A is n−Ω(1)-symmetric w.h.p. Since A′ is obtained from A

by adding no more than O(ω∗) checks w.h.p. and since any additional check reduces the nullity by at most one, the

distributions of a uniformly random x ′ ∈ ker A′ and of x are mutually 2O(ω∗)-contiguous w.h.p. Therefore, Proposi-

tion 2.16 implies that w.h.p.

∆2(x , x ′) = o(1), (5.10)

provided that ω∗(n) grows sufficiently slowly. Finally, since the marginals of the individual entries x i , x ′
i

are either

uniform or place all mass on zero by Fact 2.17, (2.14) and (5.10) yield

f (A′)− f (A) =
1

n

n
∑

i=1

1{vi ∈F (A′)}−1{vi ∈F (A)} ≤
2

n

n
∑

i=1

dTV(x i , x ′
i ) ≤ 4∆2(x , x ′) = o(1). (5.11)

The other two assertions (5.8) and (5.9) follow from similar deliberations. Indeed, to prove (5.9) we observe that

given G(A) the set Ũ of variable nodes where the bottom layers of the trees from Definition 5.1 attach in Step (ii)

is just a uniformly random set of O(ω∗) variable nodes of G(A). Therefore, providing ω∗ →∞ sufficiently slowly,

Proposition 2.11 shows that w.h.p.

P
[

∀y ∈ Ũ \F (A) : x y =σy |G(A),G ′(A)
]

−2−|Ũ \F (A)| =O(n−Ω(1)) for any σ ∈ F
Ũ \F (A)
2 . (5.12)

Now, the projections of the vectors x ∈ ker A onto the coordinates in Ũ \F (A) form a subspace of FŨ \F (A)
2 . Assuming

that |Ũ | = O(ω∗) and that ω∗ → ∞ sufficiently slowly, (5.12) implies that the dimension of this subspace equals

|Ũ \F (A)|. Hence we obtain (5.9).
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Regarding (5.8), fix some check a ∈ C̃ ∪ ∂Ṽ and think of G ′(A), and therefore also its adjacency matrix A′, as

being constructed in two steps. In the first step we embed all the other new checks b ∈ (C̃ ∪∂Ṽ ) \ {a} and insert

the edges that join them to the variable nodes of G(A). Let G ′′(A) be the outcome of this first step and let A′′ be its

adjacency matrix. Subsequently we independently choose the set of neighbours ∂a \ Ṽ among the variable nodes

of G(A) to obtain G ′(A). Let x ′′ be a random element of ker A′′. Repeating the argument towards (5.10) we see that

∆2(x , x ′′) = o(1) w.h.p. Hence, repeating the steps of (5.11) we conclude that |F (A)4F (A′′)| = o(n) w.h.p. Since in

our two-round exposure ∂a \ Ṽ is independent of A′′, we thus conclude that ∂a ∩F (A′′) \ Ṽ = ∂a ∩F (A) \ Ṽ w.h.p.

Hence, the definition (5.1) of the standard messages implies (5.8). �

Proof of Lemma 5.4. By Fact 5.3 it suffices to prove the fixed point conditions for the variables and checks Ṽ ,C̃ of

G ′(A) which are the roots of the T2 and T̂1 branching processes added in Definition 5.1. Hence, with ω∗ from in

Claim 5.5 let ω1 =ω∗ and ω2 = 0 and assume that (5.8)–(5.9) are satisfied. We may also assume that the subgraph

of G ′(A) induced on X = Ṽ ∪Ũ ∪∂Ṽ is acyclic. Pick a variable v ∈ Ṽ and an adjacent check a ∈ ∂v . We will show

that under the assumptions the fixed point property is satisfied deterministically.

The definition (5.1) of the standard messages provides that ma→v (A′) = f iff v is frozen in G ′ − (∂v \ {a}). A

sufficient condition is that ∂a \ {v} ⊆F (A). Conversely, if ∂a \ ({v}∪F (A)) 6= ;, then (5.9) shows that v is unfrozen

in G ′(A)− (∂v \ {a}). For there exists σ ∈ ker A such that
∑

y∈∂a\{v}σy = 1, and because the subgraph induced on X

is acyclic this vector σ extends to a vector σ′ ∈ ker A′ with σ′
v = 1. Hence, v 6∈ F (A′). Furthermore, (5.8) ensures

that ∂a \ {v} ⊆F (A) iff my→a(A′) = f for all y ∈ ∂a \ {v}. Hence, ma→v (A′) = f iff my→a(A′) = f for all y ∈ ∂a \ {v}. In

other words, we obtain

ma→v (A′) = m̂a→v (A′) for all v ∈ Ṽ , a ∈ ∂v. (5.13)

A similar argument shows that

mv→a(A′) = m̂v→a(A′) for all v ∈ Ṽ , a ∈ ∂v. (5.14)

Indeed, (5.1) guarantees that mv→a(A′) = f if there is a check b ∈ ∂v \ {a} such that ∂b \ {v} ⊆ F (A). Such a check

satisfies mb→v (A′) = f, and thus (5.4) shows that m̂v→a(A′) = f. Conversely, suppose that mv→a(A′) = u. Then

(5.1) shows that v is unfrozen in G ′(A)− a. Hence, the kernel of the matrix obtained from A′ by deleting the a-

row contains a vector σ′′ with σ′′
v = 1. Therefore, any check b ∈ ∂v \ a features a variable y ∈ ∂b \ ({v}∪F (A)).

Consequently, because the subgraph induced on X is acyclic, (5.9) implies that v is unfrozen in the subraph G ′(A)−
(∂v \ {b}) where the only check adjacent to v is b. Thus, mb→v (A′) = u. Finally, (5.4) shows that m̂v→a(A′) = u.

The proof of (5.7) proceeds along similar lines. Indeed, v ∈ Ṽ is frozen in A′ if there exists a check a ∈ ∂v such

that ∂a \ {v} ⊆ F (A). Hence, (5.8) shows that the existence of a check a ∈ ∂v with ma→v (A′) = f is a sufficient

condition for v ∈ F (A′). Conversely, (5.9) shows that the absence of such a check is a sufficient condition for

v 6∈F (A′). Thus, recalling the definition (5.2), we obtain the first part of (5.7).

To prove the second part we combine (5.6)–(5.7) with (5.14) to see that a ∈ F̂ (A′) iff there is at most one y ∈ ∂a

with my→a(A′) = u. For clearly a ∈ F̂ (A′) if no such y exists, while if there is precisely one such y the presence

of the check a will freeze this variable. Conversely, if at least two y, y ′ ∈ ∂a satisfy my→a(A′),my ′→a(A′) 6= f, then

a 6∈F (A′) due to (5.9). Thus, a glance at the definition (5.3) of ma(A′) completes the proof of (5.7). �

Proposition 2.7 is a statement about the proportion of variables identified as frozen by WP; in order to prove this

result, we will need to analyse the distribution of the numbers of incoming and outgoing messages of each type at

a node. This motivates the following definitions.

Given a vector L = (`uu,`uf,`fu,`ff) ∈N
4
0 and z ∈ {f,?,u}, let

∆A(z,L) =
∑

v∈V (A)

1 {mv (A) = z}
∏

x,y∈{u,f}

1
{∣

∣

{

a ∈ ∂v :ma→v (A) = x and mv→a(A) = y
}∣

∣= `x y

}

,

ΓA(z,L) =
∑

a∈C (A)

1 {ma(A) = z}
∏

x,y∈{u,f}

1
{∣

∣

{

v ∈ ∂a :mv→a(A) = x and ma→v (A) = y
}∣

∣= `x y

}

.

These random variables count variables/checks with certain marks and given numbers of edges with specific in-

coming/outgoing messages. For instance, `uf provides the number of edges with an incoming u-message and an

outgoing f-message. Of course, for some choices of z and L the variables ∆A(z,L) and ΓA(z,L) may equal zero

deterministically. We can think of ∆ and Γ as generalised degrees, giving information not just about the number
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of edges, but the number of edges with each type of message. The following corollary pinpoints the generalised

degree distribution. For α, α̂ ∈ [0,1] and L = (`uu,`uf,`fu,`ff) ∈N
4
0, we define

d(α̂,u,L) = 1 {`fu = `uf = `ff = 0} ·P [Po(dα̂) = 0] ·P [Po(d(1− α̂)) = `uu] , (5.15)

d(α̂,?,L) = 1 {`fu = 1, `uu = `ff = 0} ·P [Po(dα̂) = 1] ·P [Po(d(1− α̂)) = `uf] , (5.16)

d(α̂,f,L) = 1 {`fu = `uu = 0,`ff ≥ 2} ·P [Po(dα̂) = `ff] ·P [Po(d(1− α̂)) = `uf] , (5.17)

g(α,u,L) = 1 {`uf = `ff = 0,`uu ≥ 2} ·P [Po(d(1−α)) = `uu] ·P [Po(dα) = `fu] , (5.18)

g(α,?,L) = 1 {`uf = 1, `uu = `ff = 0} ·P [Po(d(1−α) = 1] ·P [Po(dα) = `fu] , (5.19)

g(α,f,L) = 1 {`fu = `uf = `uu = 0} ·P [Po(d(1−α)) = 0] ·P [Po(dα) = `ff] . (5.20)

Corollary 5.6. Let d > 0. For any z ∈ {f,?,u} and L = (`uu,`uf,`fu,`ff) ∈N
4
0 we have

lim
n→∞

1

n
E
[∣

∣∆A(z,L)−d( f̂ (A), z,L)
∣

∣+
∣

∣ΓA(z,L)−g( f (A), z,L)
∣

∣

]

= 0, (5.21)

lim
n→∞

E
[∣

∣ f (A)−φd ( f (A))
∣

∣+
∣

∣ f̂ (A)− (1+d(1− f (A)))exp
(

−d(1− f (A))
)∣

∣

]

= 0.

Proof. In light of Fact 5.3 it once again suffices to prove the various estimates for the variables/checks from Ṽ ,C̃ .

Hence, with ω∗ from Claim 5.5 let 1 ¿ω1,ω2 ¿ω∗.

To prove the second part of (5.21) we consider a check a ∈ C̃ . The construction in Definition 5.1 ensures that

a randomly selected k(a) ∼ Po(d) random variable nodes of G as neighbours. Each of them belongs to F (A) with

probability f (A). Thus, k(a) decomposes into two independent Poisson variables kf(a) and ku(a) with means

f (A)d and (1− f (A))d . Furthermore, the definition (5.3) of the marks ensures that the mark of a depends only on

the incoming messages. Moreover, (5.3) implies together with (5.8) that w.h.p. over the choice of A for any fixed

integers `u,`f ≥ 0 we have

P
[

ma(A′) = u, kf(a) = `f, ku(a) = `u | A
]

= 1 {`u ≥ 2}P
[

Po(d(1− f (A))) = `u
]

P
[

Po(d f (A)) = `f
]

+o(1). (5.22)

Indeed, (5.3) ensures that ma(A′) = u only if a receives at least two u-messages. Furthermore, as Fact 5.5 shows that

f (A′) = f (A)+o(1) w.h.p., we can rewrite (5.22) as

P
[

ma(A′) = u, kf(a) = `f, ku(a) = `u | A
]

= 1 {`u ≥ 2}P
[

Po(d(1− f (A))) = `u
]

P
[

Po(d f (A)) = `f
]

+o(1). (5.23)

Since by the fixed point property from Lemma 5.4 the reverse messages sent out by a are determined by the incom-

ing ones via (5.5) w.h.p., all messages returned by a check with mark u are u w.h.p. Therefore, (5.23) implies the sec-

ond part of (5.21). Finally, we observe that the identity limn→∞E

∣

∣ f̂ (A)− (1+d(1− f (A)))exp
(

−d(1− f (A))
)∣

∣= 0 is

equivalent to the statement that w.h.p. f̂ (A) = (1+d(1− f (A)))exp
(

−d(1− f (A))
)

+o(1), which actually follows from

(5.7), (5.18) and (5.21) by summing over L ∈N
4
0. More precisely, (5.7) implies that w.h.p. f̂ (A) = n−1 |{a :ma(A) 6= u}|+

o(1). Furthermore, by (5.21), w.h.p. for all but o(n) check nodes a we have ma(A) 6= u if and only if a is adjacent to

no edge along which both messages are u. A glance at (5.18) shows that the sum over all L ∈N
4
0 of g(α,u,L) is simply

P [Po(d(1−α)) ≥ 2] = 1− (1+d(1−α))exp(−d(1−α)). Considering the complement and substituting α= f (A), the

result follows.

The first part of (5.21) also follows from similar deliberations. For example, for x ∈ Ṽ we have mx (A′) = u iff

ma→x (A′) = u for all a ∈ ∂x. Furthermore, the fixed point property from Lemma 5.6 shows that w.h.p. ma→x (A′) =
f iff y ∈ F (A) for all y ∈ ∂a \ Ṽ . Since the variables y are chosen randomly and independently, we see that

P[ma→x (A′) = f | A] = P
[

Po(d(1− f (A))) = 0
]

+o(1) = exp(−d(1− f (A)))+o(1) = f̂ (A)+o(1) w.h.p. Because x has

a total of Po(d) independent adjacent checks, we obtain (5.21) for z = u; the cases z = f and z = ? are analogous.

Finally, the identity f (A) =φd ( f (A))+o(1) w.h.p. follows from Fact 5.3, (5.7) and (5.21) by summing on `uu. �

Proof of Proposition 2.7. Fix a small ε> 0 and let U (ε) = {α ∈ [0,1] : |α−α∗|∧|α−α0|∧|α−α∗| > ε}. Then Lemma 2.2

shows that there exists an integer t > 0 such that
∣

∣φ◦t
d

(α)−α∗
∣

∣∧
∣

∣φ◦t
d

(α)−α∗∣

∣< ε/2 for all α ∈U (ε). Hence,

∣

∣α−φ◦t
d (α)

∣

∣> ε/2 for all α ∈U (ε). (5.24)

By contrast, Corollary 5.6 shows that
∣

∣ f (A)−φd ( f (A))
∣

∣= o(1) w.h.p. Since φd ( · ) is uniformly continuous on [0,1],

this implies that
∣

∣ f (A)−φ◦t
d

( f (A))
∣

∣= o(1) w.h.p. Hence, (5.24) shows that P
[

f (A) ∈U (ε)
]

= o(1). Because this holds

for arbitrarily small ε> 0, the assertion follows. �
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6. THE UNSTABLE FIXED POINT

Proposition 2.7 shows that f (A) is close to one of the fixed points of the function φd w.h.p. The aim in this section

is to prove Proposition 2.8 by using the “hammer and anvil” strategy described in Section 1.4.2 to rule out the

unstable fixed point α0. The proof is subtle and requires three steps. First we show that a random x ∈ ker A sets

about half the unfrozen variables to one. Indeed, even if we weight the variable nodes by their degrees the overall

weight of the one-entries comes to about half w.h.p. Therefore, (1.2) implies that ker A contains 2Φd (α∗)n+o(n) such

balanced vectors w.h.p. This is the “anvil” part of the argument.

The “hammer” part consists of the next two steps showing that the existence of that many balanced solutions

is actually unlikely if f (A) ∼ α0. We proceed by way of a sophisticated moment computation. Specifically, we

estimate the number of fixed points of the operator from (5.4)–(5.5) that mark about α0n variable nodes unfrozen

as per (5.2). This expectation turns out to be of order exp(o(n)). Subsequently we compute the expected number

of actual balanced solutions compatible with such a WP fixed point. The answer turns out to be 2Φd (α0)n+o(n).

Since Φd (α0) < Φd (α∗) = maxαΦd (α), we conclude that a random matrix with f (A) ∼ α0 would have far fewer

“balanced” vectors in its kernel than the anvil part of the argument demands. Consequently, the event f (A) ∼ α0

is unlikely.

6.1. Degree-weighted solutions. Let us now carry this strategy out in detail. A vector x ∈ ker A is called δ-balanced

if
∣

∣

∣

∣

∣

∑

v∉F (A)

dA(v) (1 {xv = 1}−1/2)

∣

∣

∣

∣

∣

< δn.

The following observation is a simple consequence of Proposition 2.11.

Lemma 6.1. W.h.p. the random matrix A has 2Φd (α∗)n+o(n) many o(1)-balanced solutions.

Proof. Since (1.2) and Proposition 2.3 show that nul A ∼Φd (α∗)n w.h.p., it suffices to prove that a random x ∈ ker A

is o(1)-balanced w.h.p. To see this, fix any integer ` > 0. Proposition 2.11 implies together with Proposition 2.15

that the distribution of a random x ∈ ker A is o(1)-extremal w.h.p. Moreover, Fact 2.17 shows that the event {x v = 1}

has probability 1/2 for all v 6∈ F (A). Therefore, the definition (2.12) of the cut metric implies that for any ` ∈ N,

w.h.p. over the choice of A we have

E

[∣

∣

∣

∣

∣

∑

v 6∈F (A)

1{dA(v) = `}

(

1 {x v = 1}−
1

2

)

∣

∣

∣

∣

∣

| A

]

= o(n). (6.1)

As this is true for every fixed ` and the Poisson degree distribution of G(A) has sub-exponential tails, the assertion

follows from (6.1) by summing on `. �

6.2. Counting WP fixed points. Proceeding to the next step of our strategy, we now estimate the expected number

of approximate WP fixed points that leave about α0n variables unfrozen. We call such fixed points α0-covers. The

precise definition, in which we condition on the degree sequence dA of G(A), reads as follows.

Definition 6.2. Given dA let

V=
n
⋃

i=1

{vi }× [dA(vi )] and C=
n
⋃

i=1

{ai }× [dA(ai )]

be sets of variable/check clones. Anα-cover is a pair (m,π) consisting of a mapm :V∪C→ {f,u}2, (u, j ) 7→ (m1(u, j ),m2(u, j ))

and a bijection π :V→C such that the following conditions are satisfied.

COV1: For all i ∈ [n] and j ∈ [dA(vi )] we have
(

m1(π(vi , j )),m2(π(vi , j ))
)

=
(

m2(vi , j ),m1(vi , j )
)

.

COV2: For all but o(n) pairs (i , j ) with i ∈ [n] and j ∈ [dA(vi )] we have

m2

(

vi , j
)

=
{

f if m1 (vi ,h) = f for some h ∈ [dA(vi )] \
{

j
}

,

u otherwise.

COV3: For all but o(n) pairs (vi , j ) with i ∈ [n] and j ∈ [dA(ai )] we have

m2

(

ai , j
)

=
{

f if m1 (ai ,h) = f for all h ∈ [dA(ai )] \
{

j
}

,

u otherwise.
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COV4: For any z ∈ {f,?,u} and L = (`uu,`uf,`fu,`ff) ∈N
4
0 let

m(vi ) =











f if m1(vi , j ) = f for at least two j ∈ [dA(vi )],

? if m1(vi , j ) = f for precisely one j ∈ [dA(vi )],

u otherwise,

(6.2)

m(ai ) =











f if m1(ai , j ) = f for all j ∈ [dA(ai )],

? if m1(ai , j ) = f for all but precisely one j ∈ [dA(ai )],

u otherwise,

(6.3)

∆(z,L) =
n
∑

i=1

1 {m (vi ) = z}
∏

x,y∈{u,f}

1
{∣

∣

{

j ∈ [dA(vi )] :m1(vi , j ) = x, m2(vi , j ) = y
}∣

∣= `x y

}

, (6.4)

Γ(z,L) =
n
∑

i=1

1 {m(ai ) = z}
∏

x,y∈{u,f}

1
{∣

∣

{

j ∈ [dA(ai )] :m1(ai , j ) = x, m2(ai , j ) = y
}∣

∣= `x y

}

. (6.5)

Then with d( · ),g( · ) from (5.15)–(5.20) we have

∆(z,L) = nd(1−α0, z,L)+o(n), Γ(z,L) = ng(α0, z,L)+o(n). (6.6)

Let Z(α) be the number of α-covers. The main result in this section is the proof of the following bound.

Proposition 6.3. For any d > e w.h.p. over the choice of the degree sequence dA we have

Z(α0)

(dn)!
∏n

i=1 dA(vi )!dA(ai )!
= exp(o(n)) .

The rest of this section is devoted to the proof of Proposition 6.3. The following lemma decomposes Z(α0) into

a few factors that we will subsequently calculate separately.

Lemma 6.4. W.h.p. over the choice of dA we have Z(α0) = exp(o(n))H2L2E where

H=
(

n

n((d(1−α0, z,L))z∈{f,?,u},L∈N4
0
)

)

, L=
∏

z∈{f,?,u}
L=(`uu,`uf,`fu,`ff)∈N4

0

(

`uu+·· ·+`ff

`uu, . . . ,`ff

)nd(1−α0,z,L)

E=
(

dnα2
0

)

! ((dnα0(1−α0))!)2
(

dn(1−α0)2
)

!.

Proof. The first factor H simply accounts for the number of ways of partitioning the n variable nodes and the n

check nodes into the various types as designated by (6.4)–(6.5). Since we need to select a type for each variable and

check node, the number of possible designations actually reads
(

n

n((d(1−α0, z,L))z∈{f,?,u},L∈N4
0

)(

n

n((g(α0, z,L))z∈{f,?,u},L∈N4
0

)

exp(o(n)); (6.7)

the exp(o(n)) error term accounts for the o(n) error terms in (6.6). But a glimpse at (5.15)–(5.20) reveals that these

two multinomial coefficients coincide. Hence, (6.7) is equal to H2 exp(o(n)). Furthermore, the factor L accounts

for the number of ways of selecting, for each variable/check node, the clones along which messages of the four

types {f,u}2 travel. Finally, E counts the number of ways of matching up these clones so that COV2–COV3 are

satisfied. To be precise, since COV2–COV3 only provide asymptotic estimates rather than precise equalities, we

incur an exp(o(n)) error term; hence Z(α0) = exp(o(n))H2L2E. �

Lemma 6.5. We have 1
n

logL= l′+ l′′+o(1), where

l′ = exp(−d)
∞
∑

`=0

d`

`!
log(`!), l′′ =−

∑

z∈{f,?,u}
L=(`uu,`uf,`fu,`ff)∈N4

0

d(1−α0, z,L) log(`uu!`uf!`fu!`ff!).

Proof. Choose z ∈ {f,?,u} along with non-negative vector L ∈N
4
0 from the distribution

P [z = z,L = L] = d(1−α0, z,L) (z ∈ {f,?,u}, L ∈N
4
0).
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Then due to COV4 we have

1

n
logL= E

[

log(`uu+·· ·+`ff)!
]

−E
[

log(`uu! · · ·`ff!)
]

+o(1) = E
[

log(`uu+·· ·+`ff)!
]

− l′′+o(1). (6.8)

Moreover, (5.15)–(5.17) show that `uu + ·· · + `ff has distribution Po(d). Therefore, E
[

log(`uu+·· ·+`ff)!
]

= l′.
Hence, the assertion follows from (6.8). �

Lemma 6.6. We have 1
n

logH= d
(

1− log(d)−α0 logα0 − (1−α0) log(1−α0)
)

− l′′.

Proof. This is a straightforward computation. For the sake of brevity we introduce q(λ, i ) = P [Po(λ) = i ]. Using

Stirling’s formula, we approximate H in terms of entropy as

1

n
logH= H((d(1−α0, z,L))z∈{f,?,u},L∈N4

0
)+o(1). (6.9)

Depending on the choice of z ∈ {f,?,u}, the definitions (5.15)–(5.17) of the d(1−α0, z,L) constrain some of the

values `uu, . . . ,`ff to be zero. Hence, using the identity (2.1), we can spell the right hand side of (6.9) out as

H((d(1−α0, z,L))z∈{f,?,u},L∈N4
0
) =−

∑

z,L

d(1−α0, z,L) logd(1−α0, z,L)

=−
∑

`uu≥0

q(d(1−α0),0)q(dα0,`uu) log(q(d(1−α0),0)q(dα0,`uu))

−
∑

`uf≥0

q(d(1−α0),1)q(dα0,`uf) log(q(d(1−α0),1)q(dα0,`uf))

−
∑

`uf≥0,`ff≥2

q(d(1−α0),`ff)q(dα0,`uf) log(q(d(1−α0),`ff)q(dα0,`uf))

= d(1−α0)2 − (1−α0)
∑

`uu≥0

q(dα0,`uu)
[

`uu log(dα0)−dα0

]

−d(1−α0)2 log(d(1−α0)2)−d(1−α0)2
∑

`uf≥0

q(dα0,`uf)
[

`uf log(dα0)−dα0

]

−
(

α0 −d(1−α0)2
)

∑

`uf≥0

q(dα0,`uf)
[

`uf log(dα0)−dα0

]

−
∑

`ff≥2

q(d(1−α0),`ff)
[

`ff log(d(1−α0))−d(1−α0)
]

− l′′

=−l′′+d(1−α0)2 +dα0(1−α0)−dα0(1−α0) log(dα0)

−d(1−α0)2 log(d(1−α0)2)+d 2α0(1−α0)2 −d 2α0(1−α0)2 log(dα0)

+d(1−α0)−d(1−α0) log(d(1−α0))+ (1−α0) log(1−α0)+d(1−α0)2 log(d(1−α0)2)

+dα0(α0 −d(1−α0)2)−dα0(α0 −d(1−α0)2) log(dα0)

=−l′′−d logd −dα0 logα0 −d(1−α0) log(1−α0)+d + (1−α0) log(1−α0)+d(1−α0)2. (6.10)

Since 1−α0 = exp(−d(1−α0)), the assertion is immediate from (6.10). �

Lemma 6.7. W.h.p. over the choice of dA we have 1
n

log E
(dn)! = 2dα0 logα0 +2d(1−α0) log(1−α0).

Proof. This follows immediately from Stirling’s formula. �

Proof of Proposition 6.3. The proposition is an immediate consequence of Lemmas 6.4–6.7. �

6.3. Extending covers. While in the previous section we just estimated the number of covers, here we also count

actual solutions to the random linear system encoded by a cover. The following definition captures assignments σ

that, up to o(n) errors, comply with the frozen/unfrozen designations of a cover (m,π) and also satisfy the checks,

again up to o(n) errors. We extend σ : {v1, . . . , vn} → F2 to the set of V of clones by letting σ(vi , j ) =σ(vi ).

Definition 6.8. An α-extension consists of an α-cover (m,π) together with an assignment σ : {v1, . . . , vn} → F2 such

that the following conditions are satisfied.

EXT1: We have
∑n

i=1(1+dA(vi ))1 {σ(vi ) = 1, m(vi ) 6= u} = o(n).

EXT2: We have
∑n

i=1 dA(vi )1 {σ(vi ) = 1, m(vi ) = u} = o(n)+ 1
2

∑n
i=1 dA(vi )1 {m(vi ) = u} .

EXT3: We have
∑n

i=1 1
{

∑

j∈[dA (ai )]σ(π(ai , j )) 6= 0
}

= o(n).
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The first condition EXT1 posits that, when weighted according to their degrees, all but o(n) variables that are

deemed frozen under m are set to zero under σ. EXT2 provides that about half the variables that ought to be

unfrozen according to m are set to one, if we weight variables by their degrees. Finally, EXT3 ensures that all but

o(n) checks are satisfied.

Let X(α) be the total number of α-extensions. The main result of this section reads as follows.

Proposition 6.9. Let d > e. W.h.p. over the choice of the degree sequence dA we have

X(α0)

(dn)!
∏n

i=1 dA(vi )!dA(ai )!
= exp(nΦd (α0)+o(n)).

The following lemma summarises the key step toward the proof of Proposition 6.9. For a fixed m let π be a

random matching of the clones V,C such that (m,π) is an α0-cover.

Lemma 6.10. For a o(1)-balanced σ let p(m,σ) be the probability that σ satisfies all but o(n) checks. Then w.h.p.

over the choice of dA we have

p(m,σ) ≤ 2−|{i∈[n]:m(ai )=u}|+o(n).

Proof. Givenm the precise matchingπof the frozen/unfrozen clones remains random subject to conditions COV1–

COV3. We will expose this matching in two steps. First we expose the degree-weighted fraction of occurrences of

frozen/unfrozen variables set to one. Specifically, let r u ∼ 1/2 be the precise degree-weighted fraction of occur-

rences of unfrozen variables that are set to zero under σ; in formulae,

r u =
∑n

i=1

∣

∣

{

j ∈ [dA(ai )] :m1(ai , j ) = u, σ(π(ai , j )) = 0
}∣

∣

∑n
i=1

∣

∣

{

j ∈ [dA(ai )] :m1(ai , j ) = u
}∣

∣

. (6.11)

Similarly, let r f ∼ 1 be the degree-weighted fraction of frozen clones set to zero:

r f =
∑n

i=1

∣

∣

{

j ∈ [dA(ai )] :m1(ai , j ) = f, σ(π(ai , j )) = 0
}∣

∣

∑n
i=1

∣

∣

{

j ∈ [dA(ai )] :m1(ai , j ) = f
}∣

∣

. (6.12)

Once we condition on r u,r f, the precise matching of the various clones remains random. To study the con-

ditional probability that σ satisfies all but o(n) checks, we set up an auxiliary probability space. To be precise, let

χ=
(

χi j

)

i∈[n], j∈[dA (ai )]
be a random sequence of mutually independent field elements χi j ∈ F2 such that

P

[

χi j = 0
]

=
{

r u if m1(ai , j ) = u,

r f if m1(ai , j ) = f.
(6.13)

Further, consider the events

R =
{

n
∑

i=1

dA (ai )
∑

j=1

1
{

χi j = 0, m1(ai , j ) = z
}

= r z

n
∑

i=1

dA (ai )
∑

j=1

1
{

m1(ai , j ) = z
}

for z ∈ {f,u}

}

,

S =
{

n
∑

i=1

1

{

dA (ai )
∑

j=1

χi j 6= 0

}

= o(n)

}

.

Then because the matching π of the clones is random subject to COV1–COV3 we obtain

p(m,σ) = E[P [S |R,r f,r u]]. (6.14)

Hence, we are left to calculate P [S |R,r f,r u]. Calculating the unconditional probabilities is easy. Indeed, the

choice (6.11)–(6.12) of r u,r f and the definition (6.13) of χ and the local limit theorem for the binomial distribution

ensure that

P [R] =Ω(1/n). (6.15)

Furthermore, we claim that

P [S ] = 2−|{i∈[n]:m(ai )=u}|+o(n). (6.16)

Indeed, consider a check ai such that m(ai ) = u. Then there exists j ∈ [dA(ai )] such that m1(ai , j ) = u. Therefore,

the choice (6.11) of r u ensures that the event χi j 6= 0 occurs with probability 1/2+ o(1). Similarly, if m(ai ) 6= u,

then by the choice of r f the event χi j 6= 0 has probability at most o(dA(ai )). Since the definition (6.13) of the

27



χi j ensures that these events are independent for the different checks ai , we obtain (6.16). Finally, combining

(6.14)–(6.16) with Bayes’ rule, we obtain

p(m,σ) = E

[

P [S |R,r f,r u]
]

= E

[

P [S | r f,r u] ·P [R |S ,r f,r u]/P [R | r f,r u]
]

≤ 2−|{i∈[n]:m(ai )=u}|+o(n),

as desired. �

To complete the proof of Proposition 6.9 we combine Lemma 6.10 with the following statement about the num-

bers of variables/checks of the various types. Given z ∈ {f,u}, let us define εz := 1 {z = u}.

Lemma 6.11. Let (m,π) be an α0-cover. Then w.h.p. over the choice of dA ,

1

dn

n
∑

i=1

dA (vi )
∑

j=1

1
{

m(vi , j ) = (x, y)
}

∼α
1+εx−εy

0 (1−α0)1−εx+εy (x, y ∈ {f,u}), (6.17)

1

dn

n
∑

i=1

dA (ai )
∑

j=1

1
{

m(ai , j ) = (x, y)
}

∼α
1−εx+εy

0 (1−α0)1+εx−εy (x, y ∈ {f,u}), (6.18)

1

n

n
∑

i=1

1 {m(vi ) = f} ∼α0 −d(1−α0)2,
1

n

n
∑

i=1

1 {m(vi ) = u} ∼ 1−α0,
1

n

n
∑

i=1

1 {m(vi ) =?} ∼ d(1−α0)2, (6.19)

1

n

n
∑

i=1

1 {m(ai ) = u} ∼α0 −d(1−α0)2,
1

n

n
∑

i=1

1 {m(ai ) = f} ∼ 1−α0,
1

n

n
∑

i=1

1 {m(ai ) =?} ∼ d(1−α0)2. (6.20)

Proof. We observe that COV4 implies the estimate

1

n

n
∑

i=1

dA (vi )
∑

j=1

1
{

m(vi , j ) = (x, y)
}

∼ dα
εx

0 (1−α0)1−εx exp(−dεy (1−α0))(1−exp(−d(1−α0)))1−εy .

Using the identity (2.1), we obtain (6.17). The second identity (6.18) follows from (6.17) and COV1. Equations

(6.19)–(6.20) follow from the identity α0 = 1−exp(−d(1−α0)) and COV2 by summing on L. �

Proof of Proposition 6.9. Lemmas 6.10 and 6.11 imply that w.h.p. over the choice of dA ,

p(m,σ) ≤ 2|{i∈[n]:m(vi )=u}|−|{i∈[n]:m(ai )=u}|+o(n) ≤ 2n(1−2α0+d(1−α0)2+o(1)). (6.21)

Further, using the identity (2.1), we verify that 1−2α0+d(1−α0)2 =Φd (α0). Thus, the assertion follows from (6.21)

and Proposition 6.3. �

Proof of Proposition 2.8. We can generate a random Tanner graph G(A) with a given degree sequence dA by way

of the pairing model. Specifically, we generate a random pairing π of the sets V,C of clones and condition on

the event S that the resulting graph G(π) is simple. W.h.p. over the choice of the degree sequence dA we have

P [S | dA] =Ω(1); but in fact, for the purposes of the present proof the trivial estimate

P [S | dA] = exp(o(n)) w.h.p. (6.22)

suffices. Now, let E be the event that G(π) has at least 2Φd (α∗)n+o(n) many α0-extensions. Recall that w.h.p. over

the choice of dA there are
(

∑n
i=1 dA(vi )

)

! = (dn)!exp(o(n)) possible matchings of the 2
(

∑n
i=1 dA(vi )

)

clones in total,

and that each Tanner graph extends to
∏n

i=1 dA(vi )!dA(ai )! pairings. Therefore, Propositions 2.3 and 6.9, (6.22) and

Markov’s inequality show that w.h.p. over the choice of dA ,

P

[

E |S,dA

]

≤ 2−Φd (α∗)n+o(n) X(α0)

(dn)!
∏n

i=1 dA(vi )!dA(ai )!
≤ 2n(Φd (α0)−Φd (α∗))+o(n) = exp(−Ω(n)) w.h.p. (6.23)

To complete the proof, assume that P
[

f (A) =α0 +o(1)
]

> ε for some ε> 0. Then (1.2), Lemma 5.4, Corollary 5.6

and Lemma 6.1 show that P
[

A ∈ E | f (A) =α0 +o(1)
]

= 1−o(1). Hence, P
[

A ∈ E | dA

]

> ε/2 with probability at least

ε/2, in contradiction to (6.23). �
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7. SYMMETRY AND CORRELATION

The aim in this section is to prove Proposition 2.9, which states that w.h.p. the numbers of variables and checks in

the slush are not almost equal. Thus, we study the subgraph Gs(A) induced on Vs(A)∪Cs(A). We use the notation

ns := |Vs(A)| and ms := |Cs(A)|. We exploit the symmetry of the distribution of A by considering the transpose

of the matrix. While symmetry automatically implies that events are equally likely for A and A>, we would like

to be able to deduce that the event |Vs (A) | − |Cs (A) | ≥ ω occurs with probability asymptotically 1/2 for some

ω=ω(n) À 1. The main step is to prove the following.

Lemma 7.1. There exists some ω0
n→∞−−−−→∞ such that w.h.p. |ns−ms| ≥ω0.

As indicated above, Proposition 2.9 follows from this Lemma and symmetry considerations. We first describe

the symmetry property more explicitly.

Lemma 7.2. For any matrix A we have Vs

(

A>)

=Cs (A) and Cs

(

A>)

=Vs (A).

Proof. We can show by induction on t ∈N that the messages at time t in the Tanner graphs of A, A> are symmetric.

More precisely, the Tanner graphs are identical except that variable nodes become check nodes and vice versa. At

time 0 all messages are s in both graphs, while it can be easily checked that the update rules remain identical if we

switch checks and variables and also switch the symbols f and u. Therefore, introducing

Vs(A, t ) =
{

v ∈V (A) :
(

∀a ∈ ∂v : wa→v (A, t ) 6= f
)

and |{a ∈ ∂v : wa→v (A, t ) = s}| ≥ 2
}

,

Cs(A, t ) =
{

a ∈C (A) :
(

∀v ∈ ∂a : wv→a(A, t ) 6= u
)

and |{v ∈ ∂a : wv→a(A, t ) = s}| ≥ 2
}

.

we conclude that Vs(A, t ) = Cs(A>, t ) and Cs(A, t ) = Vs(A>, t ) for all t . Recalling (2.5)–(2.6), we see that Vs(A) =
⋂

t≥0 Vs(A, t ) and Cs(A) =
⋂

t≥0 Cs(A, t ), whence the assertion follows. �

Proof of Proposition 2.9. We apply Lemma 7.2 to deduce that

P

[

|Vs(A)|− |Cs(A)| ≥ω0

]

=P

[

∣

∣Cs

(

A>)∣

∣−
∣

∣Vs

(

A>)∣

∣≥ω0

]

=P
[

|Cs(A)|− |Vs(A)| ≥ω0

]

,

where for the second equality we used the fact that A, A> have identical distributions. Furthermore Lemma 7.1

implies that P
[

|Vs(A)|− |Cs(A)| ≥ω0

]

+P
[

|Cs(A)|− |Vs(A)| ≥ω0

]

= 1−o(1), and the desired statement follows. �

The proof strategy for Lemma 7.1 is similar to (but rather simpler than) the standard approach to proving a local

limit theorem: we will show that ns−ms is almost equally likely to hit any value in a range much larger than ω0,

and therefore the probability of hitting the much smaller interval [−ω0,ω0] is negligible. We begin by estimating

the sizes of some special sets of vertices. Recall λ from (2.8).

Definition 7.3. (i) Let R = R(A) be the set of check nodes a of degree two such that wv→a(A) = s for all v ∈ ∂a.

(ii) Let S = S(A) be the set of isolated variable nodes.

(iii) Let T = T (A) be the set of check nodes a of degree three such that wv→a(A) = s for all v ∈ ∂a.

(iv) Let U =U (A) be the set of variable nodes which have precisely two neighbours, both in T .

(v) Let

r = r (A) := |R|/n, s = s(A) := |S|/n, u = u(A) := |U |/n,

r̄ :=
exp(−d)λ2

2
, s̄ := exp(−d) , ū :=

(

exp(−d)λ2

2

)

·
(

exp(−dα∗)λ2/2

1−exp(−λ)

)2

.

Lemma 7.4. W.h.p.

r = (1+o(1))r̄ , s = (1+o(1))s̄, u = (1+o(1))ū.

In particular, there exists some ω1 →∞ such that

r =
(

1+o

(

1

ω1

))

r̄ , s =
(

1+o

(

1

ω1

))

s̄, u =
(

1+o

(

1

ω1

))

ū.

Proof. Since whether a node lies in each of these sets is a fact about its depth (at most) 2 neighbourhood (with

messages), by Lemma 4.2, it is enough to look at the probabilities that T2 (for S,U ) and T̂2 (for R) have the ap-

propriate structure. (Indeed, the statement for S could be proved directly using a Chernoff bound and without

appealing to Lemma 4.2.) An elementary check verifies that these probabilities are r̄ , s̄, ū, as appropriate. �
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Let 1 ¿ω1 ¿ n1/2 be a function such that Lemma 7.4 holds. For the remainder of this section, we will fix further

functions ω0,ω2 such that

1 ¿ω0 ¿ω1 ¿ n1/2 (7.1)

and such that ω2 is chosen uniformly at random from the interval [ω1/2,ω1] independently of A. In particular, we

will prove Lemma 7.1 with this ω0.

Claim 7.5. If |U | =Θ(n), then for all but o
(

(|U |
ω1

)

)

subsets U ′ ⊆U of size ω1, no node has more than one neighbour in

U ′.

Proof. It is a simple exercise to check that if a subset U ′ ⊆ U of size ω1 is chosen uniformly at random, then the

expected number of nodes of T for which two of their three neighbours are chosen to be in U ′ is O
(

|T |ω2
1/n2

)

=
o(1). Therefore by Markov’s inequality, w.h.p. this does not occur for any check node. �

We will use the following notation for the remainder of the section. Given a Tanner graph G and a set of variable

nodes W , let G 〈W 〉 denote the graph obtained from G by deleting the set of edges incident to W . Note that this

amounts to replacing the columns of the matrix corresponding to nodes of W with 0 columns.

Claim 7.6. Let G be any Tanner graph and U ′ ⊆U (G) be any subset whose nodes lie at distance greater than 2. Let

U ′′ ⊆U ′ be any subset of U ′. Then Vs

(

G
〈

U ′′〉)=Vs(G) \U ′′.

In other words, removing U ′′ from G does not have any knock-on effects on the slush.

Proof. Let G ′ :=G
〈

U ′′〉, and let us run WP on both G ′ and G simultaneously, initialising with all messages being s.

We verify by induction on t that the messages on the common edge set (those in G ′) are identical in both processes,

since a discrepancy can only enter at edges incident to a deleted edge (i.e. in G \ G ′), but our choice of U ′′ ⊆U is

such that the messages emanating from the vertices of T incident to U ′′ remain s. �

For any r, s,u, let Gr,s,u denote the class of graphs with the appropriate parameters, i.e. with r (G) = r , with

s(G) = s and with u(G) = u, and let

G
′
r,s,u =G

′
r,s,u;ω2

:=Gr ′,s′,u′ , where r ′ := r +
2ω2

n
, s′ := s +

ω2

n
, u′ := u −

ω2

n
.

The intuition behind this definition is that if we delete a set U ′′ ⊆U ′ of size ω2 to obtain G ′, then by Claim 7.5 no

remaining messages are changed, and therefore

• |R(G ′)| = |R(G)|+2ω2 (for each vertex of U ′′, its two neighbours are moved into R);

• |S(G ′)| = |S(G)|+ω2 (the vertices of U ′′ are moved into S);

• |U (G ′)| = |U (G)|−ω2.

Furthermore, for any integer ` ∈ Z, let Gr,s,u(`) ⊆ Gr,s,u be the subset consisting of graphs such that ns−ms = `,

and similarly define G
′
r,s,u(`) ⊆G

′
r,s,u to be the subset consisting of graphs such that ns−ms = `′ := `−ω2.

Proposition 7.7. Suppose that we have parameters r, s,u satisfying

r =
(

1+o

(

1

ω1

))

r̄ , s =
(

1+o

(

1

ω1

))

s̄, u =
(

1+o

(

1

ω1

))

ū.

Then for any integer ` ∈Z we have P
[

G(A) ∈Gr,s,u(`)
]

= (1+o(1))P
[

G(A) ∈G
′
r,s,u(`)

]

.

Proof. We construct an auxiliary bipartite graph H with classes Gr,s,u(`),G ′
r,s,u(`), and with an edge between G ∈

Gr,s,u(`) and G ′ ∈G
′
r,s,u(`) if G ′ can be obtained from G by deleting the edges incident to a set U ′′ ⊆U (G) of size ω2.

(Note that by Claim 7.6, G ′ satisfies n′
s = ns−ω2 and m′

s = ms, so n′
s−m′

s = (ns−ms)−ω2 = `−ω2 = `′, so such

an edge is plausible.)

By Claim 7.5 (and the fact that ω2 ≤ω1), every graph G ∈ Gr,s,u(`) is incident to (1+o(1))
(un
ω2

)

edges of H , since

almost every choice of ω2 nodes from U will result in a graph from G
′
r,s,u(`).

On the other hand, given a graph G ′ ∈ G
′
r,s,u(`), we may construct a graph G ∈ Gr,s,u(`) by picking any set of ω2

nodes within S(G ′), any set of 2ω2 nodes within R(G ′) and adding 2ω2 edges between them in the appropriate way.

Thus we may double-count the edges of H and obtain

∣

∣Gr,s,u(`)
∣

∣

(

un

ω2

)

= (1+o(1))
∣

∣G
′
r,s,u(`)

∣

∣

(

sn

ω2

)(

r n

2ω2

)

(2ω2)!

2ω2
.
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Since r, s,u are very close to their idealised values r̄ , s̄, ū, some standard approximations lead to
∣

∣Gr,s,u(`)
∣

∣

∣

∣G
′
r,s,u(`)

∣

∣

= (1+o(1))

(

s̄ r̄ 2n2

2ū

)ω2

. (7.2)

Substituting in the definitions of r̄ , s̄, ū, some elementary calculations and (3.9) show that s̄ r̄ 2

2ū
= 1

d 2 = 1
p2n2 . Substi-

tuting this into (7.2), we obtain
∣

∣Gr,s,u(`)
∣

∣= (1+o(1))
∣

∣G
′
r,s,u(`)

∣

∣p−2ω2 . (7.3)

On the other hand, let us observe that for any graph G ∈Gr,s,u(`) and any graph G ′ constructed from G as above,

G ′ has precisely 2ω2 edges fewer than G , and therefore

P
[

G(A) =G ′]=P [G(A) =G] p−2ω2 (1−p)2ω2 = (1+o(1))P [G(A) =G] p−2ω2 . (7.4)

Combining (7.3) and (7.4), we deduce the statement of the proposition. �

Proof of Lemma 7.1. For any (r, s,u) = (1+o(ω−1
1 ))(r̄ , s̄, ū) and for any G ∈Gr,s,u , pick an arbitrary subset U ′′ ⊆U ′ of

size ω2, where U ′ is as in Claim 7.5 and let G ′ :=G
〈

U ′′〉.

Let us define the set S =
{

(r, s,u) : r
r̄
= s

s̄
= u

ū
= 1+o(1)

}

. Observe that since ω2 ≤ω1 = o(n) we have

(r, s,u) ∈S ⇔
(

r +
2ω2

n
, s +

ω2

n
,u −

ω2

n

)

∈S .

Using this fact, we obtain

P [|ns−ms| ≤ω0] =
(

∑

(r,s,u)∈S

∑

|`|≤ω0

P
[

G(A) ∈Gr,s,u(`)
]

)

+o(1)

P.7.7=
(

∑

(r,s,u)∈S

∑

|`|≤ω0

P
[

G(A) ∈G
′
r,s,u(`)

]

)

+o(1) =P [|ns−ms+ω2| ≤ω0]+o(1).

However, since ω2 is chosen uniformly at random from the interval [ω1/2,ω1], and in particular independently of

A, we may change our point of view and say that

P [|ns−ms+ω2| ≤ω0] =P [ω2 = |ms−ns|±ω0] ≤
2ω0 +1

ω1/2
= o(1),

as required. �

8. MOMENTS AND EXPANSION

8.1. Overview. In this section we prove Proposition 2.10. The proofs of the two statements of the proposition

proceed via two rather different arguments. First we show that it is unlikely that |Vs(A)| − |Cs(A)| is large and at

the same time f (A) ∼ α∗, which would imply that the slush is almost entirely frozen. The proof relies on the fact

that G(A) is unlikely to contain a moderately large, relatively densely connected subgraph. Specifically, let A be a

matrix. A flipper of A is a set of variable nodes U ⊆V (A) such that for all a ∈ ∂U we have |∂a ∩U | ≥ 2. Let Fε(A) be

the set of all flippers U of A of size |U | ≤ εn. Moreover, let Fε(A) =
∑

U∈Fε(A) |U | be the total size of all flippers of A

which individually each have size at most εn.

Lemma 8.1. For any d > 0 there exists ε> 0 such that for any function ω=ω(n) À 1 we have Fε(As) ≤ω w.h.p.

The proof of Lemma 8.1 can be found in Section 8.2. We will combine Lemma 8.1 with the following statement to

bound the size of Vs(A) \F (As).

Lemma 8.2. The set U =Vs(A) \F (As) is a flipper of As of size |U | ≥ |Vs(A)|− |Cs(A)| and U ∩F (A) =;.

Proof. Clearly, nul As ≥ |Vs(A)|− |Cs(A)| and thus

2|Vs(A)|−|Cs(A)| ≤ 2nul As = |ker As| ≤
∣

∣

∣

{

ξ ∈ F
|Vs(A)|
2 : ∀v ∈F (As) : ξv = 0

}∣

∣

∣= 2|U |.

Hence, |U | ≥ |Vs(A)|− |Cs(A)|.
To show that U is a flipper of A we consider a variable node v ∈U and an adjacent check node a ∈Cs(A). Assume

for a contradiction that ∂a ∩U = {v}. Then for all other variable nodes u ∈ ∂a ∩Vs(A) we have u ∈ F (As). Hence,

the only way to satisfy check a is by setting v to zero, too. Thus, v ∈F (As), which contradicts v ∈U .
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Finally, to show that U ∩F (A) =; it suffices to prove that any vector ξs ∈ ker As extends to a vector ξ ∈ ker A. To

see this we recall the peeling process (2.7) that yields Vs(A). Let us actually run this peeling process in two stages.

In the first stage we repeatedly remove check nodes of degree one or less from G(A):

while there is a check node of degree one or less, remove it along with its adjacent variable (if any).

The set of variable nodes that this process removes is precisely Vf(A) and we extend ξs by setting ξv = 0 for all

v ∈Vf(A). Next we repeatedly delete variable nodes of degree one or less:

while there is a variable node of degree one or less, remove it along with its adjacent check (if any).

Let y1, . . . , y` be the variable nodes that this process deletes, and suppose that they were deleted in this order. Then

we inductively extend ξs by assigning the variables in the reverse order y`, . . . , y1 as follows. At the time yk was

deleted, where 1 ≤ k ≤ `, this variable node either had no adjacent check node at all, in which case we define

ξyk
= 0, or there was precisely one adjacent check node bk . In the latter case we set ξyk

to the (unique) value that

satisfies bk given the previously defined entries of ξ. The construction ensures that ξ ∈ ker A. �

Second, we bound the probability that |Cs(A)|− |Vs(A)| is large and at the same time f (A) ∼ α∗. The proof of the

following lemma, which we postpone to Section 8.3, is based on a delicate moment calculation.

Lemma 8.3. For any d > e there exists ε> 0 such that for any ω=ω(n) À 1 we have

P [|Cs(A)|− |Vs(A)| ≥ω and |Vs(A)∩F (A)| < εn] = o(1).

Proof of Proposition 2.10. Fix a small enough ε > 0 and suppose that ω→∞. To prove the first statement let E =
{|Vs(A)| − |Cs(A)| ≥ ω} and E

′ = {Fε(A) <ω}. Lemma 8.2 shows that if the event E ∩E
′ occurs, then the set U =

Vs(A) \ F (As), being a flipper of size at least ω (by E ), cannot be included in Fε(A) (because of E
′) and therefore

has size at least εn. Additionally, we have U ∩F (A) = ; while U ⊆ Vs(A) ⊆ V (A) \ Vu(A). Hence, Proposition 2.4

implies f (A) ≤ |V (A) \Vu(A)|/n +o(1)−ε. Consequently, Proposition 2.5 and Lemma 8.1 yield

P
[

E ∩
{

f (A) >α∗−ε/2
}]

≤P
[

{Fε(A) >ω}∪
{

|V (A) \Vu(A)|/n >α∗+ε/3
}]

= o(1).

Thus, Propositions 2.7 and 2.8 show that P
[

E ∩
{∣

∣ f (A)−α∗
∣

∣> ε
}]

= o(1).

With respect to the second statement, let A = {|Cs(A)| − |Vs(A)| ≥ ω} and A
′ = {|Vs(A)∩F (A)| < εn}. Then

Lemma 8.3 shows that

P
[

A ∩A
′]= o(1). (8.1)

Moreover, Proposition 2.5 and (2.3) show that

P
[{

f (A) ≤α∗+ε/2
}

\A
′]= o(1), (8.2)

and the assertion is immediate from (8.1), (8.2) and Propositions 2.7 and 2.8. �

8.2. Proof of Lemma 8.1. A (u,c,m)-flipper of As consists of a set U ⊆Vs(A) of size |U | = u whose neighbourhood

C = ∂U∩Cs(A) has size |C | = c such that the number the number of U -C -edges in Gs(A) is equal to m. Let Z (u,c,m)

be the number of (u,c,m)-flippers. As a first step we deal with flippers whose average variable degree exceeds two.

Claim 8.4. For any d > 0,δ> 0 there exists ε> 0 such that

E

[

∑

U∈Fε(A)

|U |1
{

∑

x∈U

|∂x ∩Cs(A)| ≥ (2+δ)|U |
}]

= o(1).

Proof. Recalling p = d/n ∧1, we write the simple-minded bound

E [uZ (u,c,m)] ≤ u

(

n

u

)(

n

c

)(

uc

m

)

pm ; (8.3)

here
(n

u

)

counts the number of choices for U ,
(n

c

)

accounts for the number of possible sets of c check nodes,
(uc

m

)

bounds the number of bipartite graphs on the chosen variable and check sets, and pm bounds the probability that

the chosen subgraph is actually contained in G(A). We aim to bound the r.h.s. of (8.3) subject to the constraints

m ≥ max{2c, (2+δ)u} , 1 ≤ u ≤ εn for a small enough ε> 0. (8.4)

We consider three separate cases.
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Case 1: c ≤ u: we estimate
(

n

u

)(

n

c

)(

uc

m

)

pm ≤
(en

u

)2u
(

eucd

mn

)m

≤
(en

u

)2u
(

ecd

2n

)(2+δ)u

≤
(

e4+δd 2+δ
)u (u

n

)δu
. (8.5)

Combining (8.3)–(8.5), we obtain

∑

1≤c≤u≤εn

E [uZ (u,c,m)] ≤
∑

1≤u≤εn

u2
(

e4+δd 2+δ
)u (u

n

)δu
= o(1). (8.6)

Case 2: u ≤ c ≤ 100u: due to (8.4) we obtain
(

n

u

)(

n

c

)(

uc

m

)

pm ≤
(en

u

)u (en

c

)c
(

eud

2n

)c (

eud

2n

)m/2

≤
(en

u

)u
(

e2d

2

)c (

eud

2n

)u(1+δ/2)

≤
(

e2d

2

)400u
(u

n

)δu/2
. (8.7)

Combining (8.3) and (8.8), we get

∑

1≤u≤εn
u≤c≤100u

E [uZ (u,c,m)] ≤
∑

1≤u≤εn

100u2

(

e2d

2

)400u
(u

n

)δ/2
= o(1). (8.8)

Case 3: 100u ≤ c ≤ n: the condition (8.4) yields
(

n

u

)(

n

c

)(

uc

m

)

pm ≤
(

100en

c

)1.1c (

edu

n

)2c

≤
(

edu

n

)c/2

.

Hence,

∑

1≤u≤εn
100u≤c≤n

E [uZ (u,c,m)] ≤
∑

1≤u≤εn

u
∑

100u≤c≤n

(

edu

n

)c/2

≤
∑

1≤u≤εn

u

(

edu

n

)u

= o(1). (8.9)

Finally, the assertion follows from (8.6), (8.8) and (8.9). �

Complementing Claim 8.4, we now estimate the sizes of flippers of average check degree greater than two.

Claim 8.5. For any d > 0,δ> 0 there exists ε> 0 such that

E

[

∑

U∈Fε(A)

|U |1
{

∑

a∈∂U∩Cs(A)

|∂a ∩U | ≥ (2+δ)|C |
}]

= o(1).

Proof. The proof is rather similar to the proof of the previous claim, except that we swap the roles of u and c. Once

more we start from the naive bound (8.3), but this time m satisfies m ≥ max{2u, (2+δ)c} and 1 ≤ u ≤ εn.

Case 1: u ≤ c: we have
(

n

u

)(

n

c

)(

uc

m

)

pm ≤
(en

c

)2c
(

eud

2n

)(2+δ)c

≤ (ed)5c
(u

n

)δc
. (8.10)

Case 2: c ≤ u ≤ 100c: we estimate
(

n

u

)(

n

c

)(

uc

m

)

pm ≤
(en

u

)u (en

c

)c
(

ecd

2n

)u (

ecd

2n

)m/2

≤
(en

c

)c
(

e2d

2

)u (

ecd

2n

)c(1+δ/2)

≤
(

100e2d

2

)u
(u

n

)δu/200
. (8.11)

Case 3: 100c ≤ u: we have
(

n

u

)(

n

c

)(

uc

m

)

pm ≤
(en

u

)1.1u
(

edc

n

)2u

≤
(

edu

n

)c/2

. (8.12)

Summing (8.10), (8.11) and (8.12) on u,c,m such that m ≥ (2+δ)c, we obtain
∑

u,c,m E [uZ (u,c,m)] = o(1). �

Finally, we need to deal with flippers of average variable and constraint degree about two.

Claim 8.6. For any d > e there exists ε> 0 such that for any ω=ω(n) À 1 we have

P

[

∑

U∈Fε(A)

|U |1
{

∑

x∈U

|∂x ∩Cs(A)| ≤ (2+ε)|U |,
∑

a∈∂U∩Cs(A)

|∂a ∩U | ≤ (2+ε)|C |
}

>ω

]

= o(1).
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Proof. Choose L = L(d) > 0 sufficiently large and subsequently ε> 0 sufficiently small. Moreover, for a vertex u of

Gs(A) let ds(u) signify the degree of u in Gs(A). Further, with ν,λ from (2.8) let D be the event that the graph Gs(A)

enjoys the following four properties.

D1: |Vs(A)| = (ν+o(1))n and |Cs(A)| = (ν+o(1))n.

D2: For any 2 ≤ `≤ L we have
∑

x∈Vs(A) 1 {ds(x) = `} =P [Po≥2(λ) = `]νn +o(n).

D3: For any 2 ≤ `≤ L we have
∑

a∈Cs(A) 1 {ds(a) = `} =P [Po≥2(λ) = `]νn +o(n).

D4: The bounds from (2.11) hold for the degree sequence of G(A).

Then Proposition 2.6 and Lemma 2.14 imply that

P [D] = 1−o(1). (8.13)

We aim to count (u,c,m)-flippers U ⊆Vs(A) with neighbourhoods C = ∂U ∩Cs(A) of size |C | = c such that

m =
∑

x∈U

|∂x ∩C | =
∑

a∈C

|∂a ∩U | ≤ (2+ε)(u ∧ c), and, of course, min
a∈C

|∂a ∩U | ≥ 2. (8.14)

To estimate the number Z (u,c,m) we recall from Proposition 2.6 that the graph Gs(A) is uniformly random given

the degrees. Therefore, according to Lemma 2.13 it suffices to bound the number of (u,c,m)-flippers of a random

graph chosen from the pairing model with the same degree sequence. Thus, let Γs be a random perfect matching

of the complete bipartite graph on the vertex sets

V =
⋃

v∈Vs(A)

{v}× [ds(v)], C =
⋃

a∈Cs(A)

{a}× [ds(a)].

Further, let Gs be the multigraph obtained from Γs by contracting the clones {v}× [ds(v)] and {a}× [ds(a)] of the

variable and constraint nodes into single vertices for all v ∈ Vs(A), a ∈ Cs(A). Due to (8.13) it suffices to establish

the bound
∑

u,c,m:1≤u≤εn

uE [Z (u,c,m) |D] =O(1). (8.15)

To prove (8.15) we first count viable choices of U . Since (8.14) implies that 2u ≤ m ≤ (2+ε)u, no more than δu

of the vertices in the set U have degree greater than two. Further, D1 and D2 show that there are no more than
(

(ν+o(1))n

u

)(

u

εu

)

(

λ2 +o(1)

2(exp(λ)−λ−1)

)(1−ε)u

≤
(

eL

ε

)εu (

e(ν+o(1))n

u

)u (

λ2 +o(1)

2(exp(λ)−λ−1)

)u

(8.16)

such sets U .

By a similar token, most check nodes in C have precisely two neighbours in U . Thus, we estimate the number

of choices of C ⊆Cs(A) of size c along with a set C of m clones of these checks as follows. Summing on all vectors

k = (k1, . . . ,kc ) of integers ki ≥ 2 with
∑

i ki = m and on all sequences (b1, . . . ,bc ) ∈Cs(A)c , we obtain the bound

1

c !

∑

b1,...,bc∈Cs(A)

∑

k

c
∏

i=1

(

ds(bi )

ki

)

=
1

c !

∑

k

c
∏

i=1

∑

b∈Cs(A)

(

ds(b)

ki

)

. (8.17)

Now, (8.14) implies that
∑

i≤c 1 {ki > 2}ki ≤ 3εc. Therefore, D3 and D4 ensure that for any k ,

c
∏

i=1

∑

b∈Cs(A)

(

ds(b)

ki

)

≤ L3εc
c

∏

i=1

∑

b∈Cs(A)

(

ds(b)

2

)

≤ L3εc ((ν+o(1))n)c

(

λ2 exp(λ)+o(1)

2(exp(λ)−λ−1)

)c

. (8.18)

Furthermore, there are no more than
(m−c−1

c−1

)

=
(m−c−1

m−2c

)

possible vectors k and thus (8.14) yields
(

m − c −1

m −2c

)

≤
(

2e

ε

)εc

. (8.19)

Combining (8.17)–(8.19) with D1, we see that the number of possible C ,C is bounded by
(

2eL3

ε

)εc (

e(ν+o(1))n

c

)c (

λ2 exp(λ)+o(1)

2(exp(λ)−λ−1)

)c

. (8.20)

Finally, since D2 and D4 imply that

∑

x∈Vs(A)

ds(x) = (1+oε(1))νnE[Po≥2(λ)] = (1+oε(1))
νnλ(exp(λ)−1)

exp(λ)−λ−1
,
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the probability that Γs matches the designated variable/check clones comes to

m!(
∑

x∈Vs(A) ds(x)−m)!

(
∑

x∈Vs(A) ds(x))!
=

(

∑

x∈Vs(A) ds(x)

m

)−1

=
(

e(λ(exp(λ)−1)ν+oε(1))n

m(exp(λ)−λ−1)

)−m

. (8.21)

Combining (8.16), (8.20) and (8.21) (and dragging all o(1)-error terms into the oε(1)), we obtain

E [Z (u,c,m) |D] ≤
(eνn

u

)u (eνn

c

)c
(

e(λ(exp(λ)−1)ν+oε(1))n

m(exp(λ)−λ−1)

)−m (

λ2 exp(λ)

2(exp(λ)−λ−1)

)c (

λ2

2(exp(λ)−λ−1)

)u

.

Hence, (8.14) yields

E [Z (u,c,m) |D] ≤
(u

n

)m−u−c
(

λ2 exp(λ)+oε(1)

(exp(λ)−1)2

)u

. (8.22)

Since λ> 0 we have λ2 exp(λ)/((exp(λ)−1)2) < 1. Therefore, (8.22) implies (8.15) for small ε> 0. �

Proof of Lemma 8.1. The lemma follows from Claims 8.4, 8.5 and 8.6. More precisely, let given d > e, let ε1 be the

ε given by Claim 8.6, and subsequently set δ := ε1 and let ε2,ε3 be the ε given by Claims 8.4 and 8.5 respectively.

Then let us set ε0 := ε1 ∧ε2 ∧ε3.

Now Claims 8.4 and 8.5 imply that w.h.p. there is no U ∈ Fε0 (A) with
∑

x∈U |∂x ∩Cs(A)| ≥ (2+ δ)|U | or with
∑

a∈∂U∩Cs(A) |∂a∩U | ≥ (2+δ)|C |. On the other hand, conditioning on this event, since ε0 ≤ ε1 = δ we have Fε0 (A) ⊆
Fδ(A), and therefore Claim 8.6 implies that w.h.p. Fε0 (A) ≤ω for any function ω=ω(n) À 1, as required. �

8.3. Proof of Lemma 8.3. The proof is based on a somewhat delicate moment calculation. Suppose that |Vs(A)∩
F (A)| < εn, i.e., very few coordinates in the slush are frozen. Then Fact 2.17 implies that for most v ∈ Vs(A) the

corresponding entry xs,v of a random vector xs ∈ ker As takes the value 0 with probability precisely 1/2. Further-

more, since |Vs(A)| = Ω(n) w.h.p., Proposition 2.11 implies that for most pairs u, v ∈ Vs(A) the entries xs,u , xs,v

are stochastically independent. Therefore, w.h.p. the random vector xs has Hamming weight (1/2+oε(1))|Vs(A)|.
Hence, a tempting first idea toward the proof of Lemma 8.3 might be to simply calculate the expected number of

vectors of Hamming weight (1/2+oε(1))|Vs(A)| in the kernel of As.

This strategy would work if we could replace the oε(1) error term above by O(n−1/2). Indeed, there are 2|Vs(A)|

candidate vectors of Hamming weight |Vs(A)|/2+O(
p

n). Moreover, it is not very hard to verify that a given such

vector satisfies all checks with probability Θ(2−|Cs(A)|). As a consequence, the expected number of vectors in ker As

of Hamming weight |Vs(A)|/2+O(
p

n) tends to zero if |Cs(A)|−|Vs(A)|À 1. But unfortunately this simple calcula-

tion does not extend to larger ε as required by Lemma 8.3. The reason is that for larger ε a second order term pop

up, i.e., the probability that all checks are satisfied reads

2−|Cs(A)|+Oε(ε2)|Cs(A)|.

This quadratic term is due to the presence of checks of degree two. We deal with this problem by observing that

a check node of degree two simply imposes an equality constraint on its two adjacent variables. Thus, any two

variable nodes that appear in a check node of degree two can be contracted into a single variable node and then

the check node can be eliminated. A variant of the moment calculation, without the quadratic error term, can then

be applied to the matrix that the multigraph resulting from the contraction procedure induces.

To carry out this programme we first investigate the subgraph G ′
s(A) obtained from Gs(A) by deleting all checks

of degree greater than two. More precisely, invoking Lemma 2.13, for the apparent technical reason we will instead

analyse the random multigraph G
′
s that results by applying the contraction procedure to the random multigraph

Gs chosen from the pairing model with the same degrees as Gs(A). The proof of the following lemma can be found

in Section 8.4.

Lemma 8.7. For any d > e there exists b > 0 such that for anyω=ω(n) À 1 the random graph G
′
s enjoys the following

properties w.h.p.

(i) The largest component of G
′
s has size at most ω logn.

(ii) G
′
s contains no more than ω cycles.

(iii) For any t > 0 no more than |Vs(A)|exp(−bt ) variable nodes belong to components of size at least t .
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Now obtain the multigraph G
′′
s from Gs by deleting all checks of degree two and contracting every connected

component of G
′
s into a single variable node. Let us write V

′′
s and C

′′
s for the set of variable and check nodes of G

′′
s

and let A
′′
s denote the matrix encoded by G

′′
s . Further, for v ∈ V

′′
s ∪C

′′
s let d ′′

s (v) be the degree of v in G
′′
s . Finally,

let K
′′
ε be the set of all vectors ξ ∈ kerA

′′
s such that

∣

∣

∣

∣

∣

1

2
−

∑

x∈V
′′
s

d ′′
s (x)1 {ξx = 0}

∑

x∈V
′′
s

d ′′
s (x)

∣

∣

∣

∣

∣

< ε.

In Section 8.5 we will prove the following statement.

Lemma 8.8. For any d > e there exists ε> 0 such that for any ω=ω(n) À 1 we have

P
[

|C ′′
s | ≥ |V ′′

s |+ω and K
′′
ε 6= ;

]

= o(1).

In addition, we observe the following.

Lemma 8.9. For any d > e, ε> 0 there exists δ> 0 such that

P
[

|Vs(A) \F (A)| > (1−δ)|Vs(A)| and K
′′
ε =;

]

= o(1).

The proof of Lemma 8.9 can be found in Section 8.6.

Proof of Lemma 8.3. The assertion is an immediate consequence of Lemmas 8.7, 8.8 and 8.9. �

8.4. Proof of Lemma 8.7. We apply a branching process argument to a random graph chosen from the pairing

model, not unlikely the one from [37]. Specifically, let (ds(v))v∈Vs(A) be the degree sequence of the graph Gs(A)

and let m′
s be the number of check of degree two in Gs(A). Let us write b1, . . . ,bm′

s
for the check nodes of G

′
s.

Starting from an edge exiting b1, we will explore the set of all nodes of G
′
s that can be reached via that edge. We will

describe this exploration process as a branching process, which will turn out to be subcritical.

To be precise, let ∆ =
∑

v∈Vs(A) ds(v) and let Γ′
s be a random perfect matching of the complete bipartite graph

with vertex sets

V =
⋃

v∈Vs(A)

{v}× [ds(v)] and C =
({

α1, . . . ,αm′
s

}

× [2]
)

∪
{

β1, . . . ,β∆−2m′
s

}

.

As always, {v}× [ds(v)] and {αi }× [2] represent sets of clones of the variable node v and the check node αi , re-

spectively. The ‘ballast’ clones β1, . . . ,β∆−2m′
s

are included so that both sides of the bipartition have the same size.

Further, deleting β1, . . . ,β∆−2m′
s

and contracting the other clones into single vertices, we obtain a random multi-

graph G (Γ) from the matching Γ. This multigraph is identical in distribution to G
′
s.

Claim 8.10. W.h.p. all connected components of G (Γ) have size O(logn).

Proof. To trace the set of nodes reachable from (α1,1), we classify each clone as either unexplored, active or inac-

tive. At the start of the process only (α1,1) is active and all other clones are unexplored; thus,

A0 = {(α1,1)} , U0 =
{

(α1,2), (α2,1), (α2,2), . . . , (αm′
s

,1), (αm′
s

,2)
}

\A0, I0 =;.

The classification determines the order in which the edges of the matching Γ are exposed. Specifically, if at some

time t ≥ 1 no active check clone remains, the process stops and we let T0 = t −1. Otherwise, at time step t ≥ 1 an

active clone (αi t ,ht ) ∈ At−1 is chosen uniformly at random and we let It = It−1 ∪ {(αi t ,ht )}. If the second clone

(αi t ,3−ht ) of the same check is either active or inactive, we let Ut = Ut−1, At = At−1 \
{

(αi t ,ht )
}

. Otherwise we

expose the edge of Γ incident with the other clone (αi t ,3−ht ) of check αi t . Let y t be the variable node on the

other end of this edge. We then declare all as yet inactive clones of checks αi , i ∈ [m′
s], that are adjacent to clones

of y t active. Formally, we let

It =It−1 ∪ {(αi t ,1), (αi t ,2)}, At =
(

At−1 ∪
(

∂Γ(y t × [ds(y t )])∩
{

(αi ,1), (αi ,2) : i ∈ [m′
s]

}))

\It

and Ut =Ut−1 \ (At ∪It ). Let At be the σ-algebra generated by the first t step of the process.

The aim is to investigate the stopping time T0. We may condition on the event ds(v) ≤ log2 n for all v . Moreover,

we claim that for 1 ≤ t ≤ T0 ∧ log3 n,

E [|At |− |At−1| |At−1] < 0. (8.23)

Indeed, |At | − |At−1| is trivially negative if (bi t ,3 − ht ) 6∈ Ut−1. Further, if (αi t ,3 − ht ) ∈ Ut−1, then Γ matches

this clone to a random vacant variable clone. Because t ≤ log3 n and maxv ds(v) ≤ log2 n while the slush has size
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|Vs(A)| =Ω(n), the distribution of ds(y t ) is within O(n−0.99) in total variation of the distribution (ds(v)/∆)v∈Vs(A) of

the degree of the variable node of a random variable clone. We subsequently expose all edges of Γ incident with a

clone of y t that was unexplored at time t−1. Once more because t ≤ log3 n and maxv ds(v) ≤ log2 n, the conditional

probability that a specific unexplored clone of y t links to an unexplored clone from the set
{

(αi ,1), (αi ,2) : i ∈ [m′
s]

}

is bounded by 2m′
s/∆+O(n−0.99). Therefore, we obtain the bound

E [|At |− |At−1| |At−1] ≤ o(1)−1+E

[

2m′
s

∆
2

∑

v∈Vs(A)

ds(v)(ds(v)−1)

]

≤
λ2 exp(λ)

(exp(λ)−1)2
−1+o(1). (8.24)

Moreover, it is easy to check that λ> 0 for all d > e and that

z2 exp(z)

(exp(z)−1)2
< 1 for any z > 0. (8.25)

Thus, (8.23) follows from (8.24) and (8.25). Finally, (8.23) implies that (|At |)t is dominated by a random walk with

a negative drift. Consequently, P
[

T0 ≥ c logn
]

= o(n−1) for a suitable c > 0. The assertion follows from the union

bound. �

Claim 8.11. There exists b = b(d) > 0 such that w.h.p. for all t > 0 the number of variable nodes of G
′
s that belong to

components of size at least t is bounded by |Vs(A)|exp(−bt ).

Proof. Let Z t be the number of variable nodes of G
′
s that belong to components of size at least t . Tracing the same

exploration process as in the previous proof and using (8.24), we find ζ= ζ(d) > 0 such that

E[Z t ] ≤ |Vs(A)|exp(−2ζt ). (8.26)

If t > loglogn, say, then the assertion simply follows from (8.26) and Markov’s inequality. Thus, suppose that

t ≤ loglogn and |Vs(A)| =Ω(n) and that the largest component of G
′
s contains no more than logn loglogn variable

nodes. Then adding to or removing from G
′
s a single edge can alter Z t by at most 2t . Therefore, the assertion

follows from (8.26) and Azuma’s inequality. �

As a next step we need to estimate the number of short cycles.

Claim 8.12. The expected number of nodes on cycles of G
′
s of size at most log2 n is bounded.

Proof. Let ` ≤ log2 n, let y = (y1, . . . , y`) ∈ Vs(A)` be a sequence of variables, let i = (i1, i ′1, . . . , i`, i ′
`

) be a sequence

that contains two clones of each variable y1, . . . , y` and let α = (α1, . . . ,α`) be a sequence of ` distinct checks of

degree two. Let E (y , i ,α) be the event that Γ connects the two clones of αh with (yh , i ′
h

) and (yh+1, ih+1). Since

Proposition 2.6 shows that ∆=Ω(n) and `≤ log2 n, we obtain

P
[

E (y , i ,α) | (dx )x ,m′
s

]

∼
(

2/∆2
)`

.

Furthermore, we have

E

[

∑

x∈Vs(A)

dyi
(dyi

−1)

|Vs(A)|

]

∼
λ2 exp(λ)

exp(λ)−λ−1
, E

[

∆

|Vs(A)|

]

∼
λ(exp(λ)−1)

exp(λ)−λ−1
, E

[

m′
s

|Vs(A)|

]

∼
λ2

2(exp(λ)−λ−1)
.

Consequently, the expected number of nodes on cycles of length ` works out to be

1

2`

∑

y ,i ,α

2`P
[

E (y , i ,α) | (dx )x ,m′
s

]

∼
(

λ2 exp(λ)

(exp(λ)−1)2

)`

= exp(−Ω(`)).

Summing on ` completes the proof. �

Proof of Lemma 8.7. The statement follows from Claims 8.10–8.12. �
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8.5. Proof of Lemma 8.8. To simplify the notation we introduce N = |V ′′
s |, M = |C ′′

s |. Moreover, we write d1, . . . ,dN

for the degrees of the variable nodes of G
′′
s and k1, . . . ,kM ≥ 3 for the degrees of the constraints. We need the

following facts about M , N and the degrees.

Claim 8.13. W.h.p. we have

M , N =Ω(n), max
1≤i≤N

di ≤ log3 N , max
1≤i≤M

ki ≤ log2 N ,
M
∑

i=1

k2
i =O(M),

N
∑

i=1

d 2
i =O(N ). (8.27)

Proof. The first estimate follows immediately from Proposition 2.6 and Lemma 8.7. The second statement follows

from Lemma 8.7 (i) and the fact that the maximum degree of G(A) is of order logn w.h.p., which also implies the

third bound. Similarly, the sum of the squares of the check degrees of G(A) is bounded w.h.p. due to routine

bounds on the tails of the binomial distribution. This implies that
∑M

i=1 k2
i
= O(M) because M = Ω(n) w.h.p. by

Proposition 2.6. To obtain the final bound we apply the Chernoff bound to conclude that for any d > 0 there exists

b > 0 such that w.h.p.

1

n

n
∑

i=1

1
{

|∂G(A)vi | ≥ t
}

≤ exp(−bt )/b. (8.28)

In other words, the degree sequence of G(A) has an exponentially decaying tail w.h.p. Assuming N =Ω(n), we see

that (8.28) implies the bound

1

N

N
∑

i=1

1 {di ≥ t } ≤ exp(−b′t )/b′ (8.29)

for some b′ > 0. Furthermore, Lemma 8.7 (iii) implies an exponentially decaying tail for the component sizes

of G
′
s. Since G

′′
s is obtained by contracting the components of G

′
s, the desired bounds follow from (8.29) and

Lemma 2.18. �

In the following we will condition on the event D that the conditions (8.27) are satisfied. Let σ ∈ F
N
2 be a uni-

formly random vector. We will prove Lemma 8.8 by estimating the probability that σ ∈K
′′
ε . To this end, let

W =
∑N

i=1 di 1 {σi = 1}
∑N

i=1 di

count the degree-weighted one-entries of σ. The following claim bounds the probability that W deviates signifi-

cantly from 1/2.

Claim 8.14. For any d > e there is s = s(d) > 0 such that P [|W −1/2| ≥ t |D] ≤ 2exp(−st 2N ).

Proof. This is an immediate consequence of (8.27) and Azuma’s inequality. �

As a next step we calculate the probability that σ ∈ kerA
′′
s given W .

Claim 8.15. For any d > e there exist ε > 0,γ > 0 such that uniformly for every w ∈ (1/2 − ε,1/2 + ε) for which

w
∑M

i=1 ki is an even integer we have

logP
[

A
′′
sσ= 0 |W = w,D

]

≤−M log2−γM(w −1/2)3 +O(1).

Proof. Consider a random vector ξ= (ξi j )i∈[M ], j∈[ki ] where we choose every entry ξi j ∈ F2 to be a one with proba-

bility w independently. Let S be the event that
∑

j∈[ki ]ξi j = 0 for all i ∈ [M ]. Moreover, let

R =
{

M
∑

i=1

ki
∑

j=1

(

1{ξi , j = 1}−w
)

= 0

}

.

Because G
′′
s is drawn from the pairing model, we have

P
[

A
′′
sσ= 0 |W = w,D

]

=P [S |R] . (8.30)
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We will calculate the probability on the r.h.s. of (8.30) via Bayes’ rule. The unconditional probabilities are com-

puted easily. Indeed, for every i ∈ [M ] we have

P

[

∑

j∈[ki ]

ξi j = 0

]

=
k
∑

j=0

1
{

j even
}

(

k

j

)

w j (1−w)k− j

=
1

2

[

k
∑

j=0

(

k

j

)

w j (1−w)k− j +
k
∑

j=0

(

k

j

)

(−w) j (1−w)k− j

]

=
1+ (1−2w)k

2
.

Hence,

P [S ] =
M
∏

i=1

1+ (1−2w)ki

2
. (8.31)

Furthermore, the local limit theorem for the binomial distribution shows that

P [R] =Θ(M−1/2). (8.32)

In addition, (8.27) and the local limit theorem for sums of independent random variables yield

P [R |S ] =Θ(M−1/2). (8.33)

Combining (8.31)–(8.33) and recalling that the ξi j are independent, we obtain

logP [S |R] =
M
∑

i=1

log
1+ (1−2w)ki

2
+O(1) =−M log2+

M
∑

i=1

log(1+ (1−2w)ki )+O(1). (8.34)

To complete the proof we compute the derivatives of the last expression, keeping in mind that ki ≥ 3 for all i :

∂ logP [S |R]

∂w
=

M
∑

i=1

−2ki (1−2w)ki−1

1+ (1−2w)ki
,

∂2 logP [S |R]

∂w2
=

M
∑

i=1

4ki (ki −1)(1−2w)ki−2

1+ (1−2w)ki
−

4k2
i

(1−2w)2ki−2

(

1+ (1−2w)ki
)2

,

∂3 logP [S |R]

∂w3
=

M
∑

i=1

−8ki (ki −1)(ki −2)(1−2w)ki−3

1+ (1−2w)ki
+

8k2
i

(ki −1)(1−2w)ki−2(1−2w)ki−1

(

1+ (1−2w)ki
)2

+
16k2

i
(ki −1)(1−2w)2ki−3

(

1+ (1−2w)ki
)2

−
16k3

i
(1−2w)3ki−2

(

1+ (1−2w)ki
)3

.

Evaluating these derivatives at w = 1/2, we obtain

∂ logP [S |R]

∂w

∣

∣

∣

w=1/2
=

∂2 logP [S |R]

∂w2

∣

∣

∣

w=1/2
= 0,

∂3 logP [S |R]

∂w3
=−48

M
∑

i=1

1 {ki = 3} . (8.35)

Finally, combining (8.30), (8.34) and (8.35) with Taylor’s formula completes the proof. �

Proof of Lemma 8.8. Choose ε= ε(d) > 0 small enough. Summing over w ∈ (1/2−ε,1/2+ε) such that w
∑N

i=1 di is

an even integer, we obtain

P
[

Kε 6= ; |D, M ≥ N +ω
]

≤ 2N
P

[

A
′′
sσ= 0, |W −1/2| < ε |D, M ≥ N +ω

]

≤ 2N
∑

w

P
[

W = w |D, M ≥ N +ω
]

P
[

A
′′
sσ= 0 |W = w,D, M ≥ N +ω

]

.

Combining this bound with Claims 8.14 and 8.15, we obtain

P
[

Kε 6= ; |D, M ≥ N +ω
]

≤ 2N
dε
p

Ne
∑

h=1

∑

w :h−1≤w
p

N≤h

P
[

W = w |D, M ≥ N +ω
]

P
[

A
′′
sσ= 0 |W = w,D, M ≥ N +ω

]

≤ 2N−M
∑

1≤h≤ε
p

n

exp
(

−Ω
(

h2
)

+O
(

h3M N−3/2
)

)

=O
(

2N−M
)

= o(1),

provided that M ≥ N +ω and ε> 0 is small enough. �
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8.6. Proof of Lemma 8.9. The following observation is an easy consequence of the construction of As.

Claim 8.16. If v, y ∈V (As) are variables such that ξv = ξy for all ξ ∈ ker As, then ξv = ξy for all ξ ∈ ker A.

Proof. By construction the matrix As is the minor of A induced on Vs(A)×Cs(A). Although some of the checks

a ∈ Cs(A) may contain variables v 6∈ Vs(A), all such v are frozen in A. Therefore, any ξ ∈ ker A induces a vector

ξs ∈ ker As. �

We now combine Claim 8.16 with Proposition 2.11 to prove the lemma. Hence, let U be the event that |Vs(A) \

F (A)| > (1−δ)|Vs(A)|. Provided that δ = δ(d ,ε) > 0 is chosen small enough, routine tail bounds for the binomial

distribution imply that the event

E =
{

∑

v∈Vs(A)∩F (A)

ds(v) <
ε

4

∑

v∈Vs(A)

ds(v)

}

satisfies P [U \E ] = o(1). (8.36)

Further, with xs = (xs,y )y∈Vs(A) ∈ ker As chosen randomly, Proposition 2.11 and Claim 8.16 ensure that the event

{

∑

y,y ′∈Vs(A)\F (A)

∣

∣

∣

∣

P
[

xs,y = xs,y ′ = 0 | A
]

−
1

4

∣

∣

∣

∣

< |Vs(A)| log−9 n

}

has probability 1−o(1). As a consequence, since all degrees of Gs(A) are bounded by logn w.h.p., the event

R =
{

∑

y,y ′∈Vs(A)\F (A)

ds(y)ds(y ′)

∣

∣

∣

∣

P
[

xs,y = xs,y ′ = 0 | A
]

−
1

4

∣

∣

∣

∣

<
(

∑

y∈Vs(A)

ds(y)

)2

log−4 n

}

satisfies P [R] = 1−o(1). Hence, (8.36) yields P [U \ (E ∩R)] = o(1). In effect, it suffices to prove that on the event

U ∩E ∩R we have Kε 6= ;.

To verify this we recall that any variables y, y ′ that get contracted in the course of the construction of G ′′
s(A)

deterministically satisfy xs,y = xs,y ′ . As a consequence, for a random x ′′
s ∈ ker A′′

s we have

∑

y,y ′∈V ′′
s (A)\F (A′′

s
)

d ′′
s (y)d ′′

s (y ′)

∣

∣

∣

∣

P

[

x ′′
s,y = x ′′

s,y ′ = 0 | A
]

−
1

4

∣

∣

∣

∣

=
∑

y,y ′∈Vs(A)\F (A)

ds(y)ds(y ′)

∣

∣

∣

∣

P
[

xs,y = xs,y ′ = 0 | A
]

−
1

4

∣

∣

∣

∣

.

Therefore, if U ∩E ∩R occurs, then so does the event

S =
{

∑

y,y ′∈V ′′
s (A)\F (A′′

s
)

d ′′
s (y)d ′′

s (y ′)

∣

∣

∣

∣

P

[

x ′′
s,y = x ′′

s,y ′ = 0 | A
]

−
1

4

∣

∣

∣

∣

<
(

∑

y∈V ′′
s (A)\F (A′′

s
)

d ′′
s (y)

)2

log−3 n

}

.

To complete the proof, consider the random variable

X =

∑

y∈V ′′
s (A)\F (A′′

s
) d ′′

s (y)1
{

x ′′
s,y = 0

}

∑

y∈V ′′
s (A)\F (A′′

s
) d ′′

s (y)
.

Then on U ∩E ∩R we have E[X | A] ∼ 1/2 because x ′′
s,y = 0 with probability 1/2 for every y ∈V ′′

s (A)\F (A′′
s). More-

over, because U ∩E ∩R ⊆S the conditional second moment works out to be E[X 2 | A] ∼ 1/4. Hence, Chebyshev’s

inequality shows that P [|X −1/2| < ε/4 | A] = 1−o(1). In particular, on U ∩E ∩R there exists a vector ξ ∈ ker A′′
s

such that
∣

∣

∣

∣

∣

∣

∑

y∈V ′′
s (A)\F (A′′

s
) d ′′

s (y)1
{

ξ′′y = 0
}

∑

y∈V ′′
s (A)\F (A′′

s
) d ′′

s (y)
−

1

2

∣

∣

∣

∣

∣

∣

<
ε

4
.

Recalling the definition of the event (8.36), we conclude that ξ ∈Kε and thus Kε 6= ;.

Acknowledgment. We are grateful to Jane Gao for a helpful conversation at the beginning of this project that

brought the two-peaked nature of the function Φd to our attention.

40



REFERENCES

[1] D. Achlioptas, A. Coja-Oghlan: Algorithmic barriers from phase transitions. Proc. 49th FOCS (2008) 793–802.

[2] D. Achlioptas, M. Molloy: The solution space geometry of random linear equations. Random Structures and Algorithms 46 (2015) 197–231.

[3] P. Ayre, A. Coja-Oghlan, P. Gao, N. Müller: The satisfiability threshold for random linear equations. Combinatorica, in press.

[4] A. Bandyopadhyay, D. Gamarnik: Counting without sampling: asymptotics of the log-partition function for certain statistical physics

models. Random Structures and Algorithms 33 (2008) 452–479.

[5] V. Bapst, A. Coja-Oghlan: Harnessing the Bethe free energy. Random Structures and Algorithms 49 (2016) 694–741.

[6] J. Barbier, D. Panchenko: Strong replica symmetry in high-dimensional optimal Bayesian inference. arXiv:2005.03115 (2020).

[7] B. Bollobás: Random graphs. Cambridge University Press (2001).

[8] C. Bordenave, M. Lelarge, J. Salez: The rank of diluted random graphs. Ann. Probab. 39 (2011) 1097–1121.

[9] C. Bordenave, M. Lelarge, J. Salez: Matchings on infinite graphs. Probability Theory and Related Fields 157 (2013) 183–208.

[10] S. Cocco, O. Dubois, J. Mandler, R. Monasson: Rigorous decimation-based construction of ground pure states for spin glass models on

random lattices. Phys. Rev. Lett. 90 (2003) 047205.

[11] A. Coja-Oghlan, O. Cooley, M. Kang, J. Lee, J. B. Ravelomanana: Warning Propagation on random graphs. arXiv:2102.00970.

[12] A. Coja-Oghlan, O. Cooley, M. Kang, K. Skubch: How does the core sit inside the mantle? Random Structures and Algorithms 51 (2017)

459–482.

[13] A. Coja-Oghlan, O. Cooley, M. Kang, K. Skubch: Core forging and local limit theorems for the k-core of random graphs. Journal of Combi-

natorial Theory, Series B 137 (2019) 178–231.

[14] A. Coja-Oghlan, W. Perkins, K. Skubch: Limits of discrete distributions and Gibbs measures on random graphs. European Journal of Com-

binatorics 66 (2017) 37–59.

[15] A. Coja-Oghlan, A. Ergür, P. Gao, S. Hetterich, M. Rolvien: The rank of sparse random matrices. Proc. 31st SODA (2020) 579–591.

[16] A. Coja-Oghlan, M. Hahn-Klimroth: The cut metric for probability distributions. SIAM J. on Discrete Mathematics, in press.

[17] A. Coja-Oghlan, F. Krzakala, W. Perkins, L. Zdeborová: Information-theoretic thresholds from the cavity method. Advances in Mathematics

333 (2018) 694–795.

[18] A. Coja-Oghlan, W. Perkins: Belief Propagation on replica symmetric random factor graph models. Annales de l’institut Henri Poincare D

5 (2018) 211–249.

[19] A. Coja-Oghlan, W. Perkins: Spin systems on Bethe lattices. Communications in Mathematical Physics 372 (2019) 441–523.

[20] H. Connamacher, M. Molloy: The satisfiability threshold for a seemingly intractable random constraint satisfaction problem. SIAM J.

Discret. Math. 26 (2012) 768–800.

[21] C. Cooper, A. Frieze, W. Pegden: On the rank of a random binary matrix. Electronic Journal of Combinatorics 26 (2019) #P4.12.

[22] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh, M. Rink: Tight thresholds for cuckoo hashing via XORSAT. Proc.

37th ICALP (2010) 213–225.

[23] J. Ding, A. Sly, N. Sun: Proof of the satisfiability conjecture for large k. Proc. 47th STOC (2015) 59–68.

[24] O. Dubois, J. Mandler: The 3-XORSAT threshold. Proc. 43rd FOCS (2002) 769–778.
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APPENDIX A. THE PINNING OPERATION AND THE OVERLAP

A.1. Proof of Proposition 2.11. Let A be an m×n-matrix over F2 and let s1, s2, . . . ∈ [n] be a sequence of uniformly

distributed random variables, mutually independent and independent of all other sources of randomness. Further,

for an integer t ≥ 0 let A[t ] be the matrix obtained by adding t more rows to A such that the j -th new row contains

precisely one non-zero entry in position s j . The proof of Proposition 2.11 is based on the following fact.

Lemma A.1 ([15, Lemma 3.1]). For ε > 0,` > 0 let T = T (ε,`) = d4`3/ε4e+1. Then for all m,n > 0 and all m ×n-

matrices A over F2 the following is true. Draw t ∈ [T ] uniformly and choose x ∈ ker A[t ] randomly. Then

∑

i1,...,i`∈[n]

σ∈F`2

E

∣

∣

∣

∣

∣

P
[

x i1 =σ1, . . . , x i` =σ` | A[t ]
]

−
∏̀

h=1

P
[

x ih
=σh | A[t ]

]

∣

∣

∣

∣

∣

< εn`.

To prove Proposition 2.11 we will combine Lemma A.1 with the observation that the random matrix A is essentially

invariant under the random perturbation required by Lemma A.1. To be precise, let Z be the set of all indices i ∈ [n]

such that Ai j = 0 for all j ∈ [n]. Further, for an integer t ≥ 0 let A 〈t〉 be the matrix obtained from A as follows. If

|Z | ≤ t , then A 〈t〉 = A. Otherwise draw a family z1, . . . , z t ∈ Z of t distinct row indices uniformly at random and

obtain A 〈t〉 from A by replacing the i h-th entry in row zh by one for h = 1, . . . , t , where i h is chosen uniformly at

random from [n] independently for each h ∈ [t ]. Thus, instead of attaching t new rows as in Lemma A.1 we simply

insert a single non-zero entry into t random all-zero rows of A.

Lemma A.2. Let d > 0, let T = o(
p

n) be an integer and choose t ∈ [T ] uniformly. Then dTV(A, A 〈t〉) = o(1).

Proof. Because each entry of A is non-zero with probability d/n independently, the number X of rows of A with

at most one non-zero entry has distribution Bin(n, (1−d/n)n +d(1−d/n)n−1). Further, given X the number X 0 of

all-zero rows has a binomial distribution

X 0 ∼ Bin

(

X ,
(1−d/n)n

(1−d/n)n +d(1−d/n)n−1

)

.

Let A | (X , X 0) denote the distribution of A given X , X 0. We have X ≥ exp(−d)n w.h.p. Given X ≥ exp(−d)n the

conditional variance satisfies Var[X 0 | X ] =Ω(n). Therefore, the local limit theorem for the binomial distribution

implies that A | (X , X 0) and A | (X , X 0 − t ) have total variation distance o(1). Furthermore, A | (X , X 0 − t ) is dis-

tributed precisely as A 〈t〉. �

Proof of Proposition 2.11. The proposition is an immediate consequence of Lemmas A.1 and A.2. �

A.2. Proof of Corollary 2.12. Due to Proposition 2.11 we may assume that A satisfies

1

n2

n
∑

h,i=1

|P [xh =σ1, x i =σ2 | A]−P [xh =σ1 | A]P [x i =σ2 | A]| = o(1) for all σ1,σ2 ∈ F2. (A.1)

Hence, fix x ∈ ker A. For σ ∈ F2 let I (x,σ) = {i ∈ [n] \F (A) : xi =σ}. Further, define

Rσ(x, x ′) =
1

n

∑

i∈I (x,σ)

1
{

x ′
i =σ

}

.

Then Fact 2.17 implies that

E
[

Rσ(x, x ′) | A
]

=
|I (x,σ)|

2n
. (A.2)

Moreover, (A.1) implies that Var
[

Rσ(x, x ′) | A
]

= o(1). Combining this bound with (A.2) and applying Chebyshev’s

inequality, we conclude that

E

[∣

∣

∣

∣

Rσ(x, x ′)−
|I (x,σ)|

2n

∣

∣

∣

∣

| A

]

= o(1). (A.3)

Further, since R(x, x ′) = f (A)+
∑

σ∈F2
Rσ(x, x ′), (A.3) shows that

E
[∣

∣R(x, x ′)−
(

f (A)+ (1− f (A))/2
)∣

∣ | A
]

= o(1) for every x ∈ ker A. (A.4)

Averaging (A.4) on x ∈ ker A completes the proof.
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APPENDIX B. PROOF OF LEMMA 2.13

We first note that since in the pairing model we must connect variable nodes with check nodes, certainly Gs cannot

contain any loops. We therefore need to show that there is at least a constant probability of creating no double-

edges.

Suppose that d1, . . . ,dn are the degrees of variable nodes in Gs(A) (where we set di = 0 if the corresponding

node is not in Gs(A)), and similarly let d̂1, . . . , d̂n be the degrees of check nodes. Let m :=
∑n

i=1 di =
∑n

i=1 d̂i . It

follows from Proposition 2.6 that w.h.p. m =Θ(n). It also follows from the fact that the degree of a node in Gs(A)

are necessarily at most its degree in G(A) that w.h.p.
∑n

i=1 d 2
i

,
∑n

i=1 d̂ 2
i
= O(n). In what follows, we will implicitly

condition on these high probability events.

Let X = X (d1, . . . ,dn , d̂1, . . . , d̂n) be the random variable counting the number of double-edges in Gs. Then we

have

E[X ] =
n
∑

i=1

n
∑

j=1

2

(

di

2

)(

d̂ j

2

)

1

m(m −1)
=O(1).

Similarly, it is an easy exercise to show that for any integer ` ∈ N the `-th moment of X satisfies E[(X )`] = (1+
o(1))E[X ]`. Therefore X is asymptotically distributed as a Po(E[X ]) random variable, and we have P[X = 0] →
exp(−E[X ]) > 0, as required.

To show that Gs conditioned on being simple has the same distribution as Gs(A), we simply need to observe that

every simple bipartite graph with the appropriate distribution is equally likely to be Gs(A). To see this, consider

two Tanner graphs S,S′ with the same degree distribution, and a Tanner graph H such that Hs = S. Let H ′ be the

Tanner graph obtained from H by replacing S with S′, but otherwise leaving edges unchanged. Then the peeling

process used to obtain the slush is completely identical on H \ S and H ′ \ S′, and therefore H ′
s = S′. Since H , H ′

have the same number of edges, both are equally likely to be G(A). Summing over all possibilities for H such that

Hs = S, we deduce that S,S′ are equally likely to be Gs(A).

APPENDIX C. PROOF OF LEMMA 2.14

For the first part of the lemma, notice that |∂v | is distributed as a binomial random variable with parameter n and

p for any v ∈V (A)∪C (A). Suppose v ∈V (A) and let c =
⌈

log(n)/2
⌉

. Then we have

P [∃v : |∂v | ≥ c] ≤ n

(

n

c

)

pc ≤ n

(

n

c

)

(

d

n

)c

≤ n

(

ed

c

)c

= exp

[(

1−
log2

2

)

logn −
log(n)

2
·
(

loglog(n)
)

+O(loglogn)

]

= o(1). (C.1)

Similarly, for a constraint a ∈C (A) we have

P [∃a : |∂a| ≥ c] = o(1). (C.2)

Combining (C.1) and (C.2) completes the proof of the first part. For the second part, let x0 be an arbitrary variable

node. Then,

E

[

∑

x∈V (A)

1

`!

∏̀

j=1

(|∂x|− j +1)

]

=
n

`!
E

[

∏̀

j=1

(|∂x0|− j +1)

]

=
n

`!

n!

(n −`)!
p` ≤

d`n

`!
.

Hence, the assertion follows from Markov’s inequality.

APPENDIX D. PROOF OF LEMMA 2.18

Assume, without loss of generality, that 0 < c1 < 10−5. Moreover, let c0 > 0 , define a = exp(c1) > 1 and log(m)
a n :=

loga . . . loga n, where the logarithm with basis a is taken m times. For any m ∈N (or more precisely for any m such

that we have sm > 0), define

sm := 6log(m)
a n.

Let us set q j := max
{

wi : i ∈ P j

}

, and define the event

E j ,m :=
{

sm+1 < max
{

q j , |P j |
}

≤ sm

}

and the set

Em :=
{

j : E j ,m holds
}

.
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Note in particular that
⋃

m′≥m E j ,m′ is the event that |P j | ≤ sm and wi ≤ sm for all i ∈ P j , i.e. both the partition class

and all associated weights are at most sm . We also observe that
⋃∞

m=1 Em = [`]. We further define

xm :=
1

n

∑

j∈Em

(

∑

i∈P j

wi

)2

,

so in particular we have

x =
∞
∑

m=1

xm . (D.1)

We therefore aim to bound each xm . Let m0 = m0(n) be the largest integer such that sm0 ≥
100log(1/c1)

c1
.

We first consider the case when m ≤ m0. Observe that if j ∈ Em , then we have |P j | ≤ sm and for all i ∈ P j we have

wi ≤ sm , and therefore
(

∑

i∈P j

wi

)2

≤ s4
m . (D.2)

On the other hand, we can bound |Em | from above by making a case distinction. Let us define

E (1)
m :=

{

j : E j ,m holds and q j ≥ |P j |
}

,

E (2)
m :=

{

j : E j ,m holds and q j ≤ |P j |
}

.

Case 1: q j ≥ |P j |.
Then we have wi ≥ sm+1 for some i ∈ P j , but since this can hold for at most c0a−sm+1 n ≤ c0s−5

m n values of i , we

have

|E (1)
m | ≤ c0s−5

m n.

Case 2: q j ≤ |P j |.
Then we have |P j | ≥ sm+1, which can also only hold for at most c0a−sm+1 n ≤ c0s−5

m n values of j , so

|E (2)
m | ≤ c0s−5

m n.

Thus we have |Em | ≤ 2c0s−5
m n and together with (D.2) we deduce that xm ≤ 2c0s−1

m . Thus (D.1) gives

x ≤ 2c0

m0
∑

m=1

1

sm
+

∞
∑

m=m0+1

xm . (D.3)

We further observe that for any m ≤ m0 we have

sm

sm−1
=

6loga

( sm−1

6

)

sm−1
≤

6loga sm−1

sm−1
≤

6loga sm0

sm0

.

We have
6loga sm0

sm0

=
6

100log(1/c1)

(

log100+ log(1/c1)+ loglog(1/c1)
)

.

In order to bound the ratio
6loga sm0

sm0
, we define the function

g (c1) =
6

10

(

log(100)+ log

(

1

c1

)

+ loglog

(

1

c1

))

− log

(

1

c1

)

.

We have limc1→0 g (c1) =−∞ and g (10−5) <−0.375985860. Also,

g ′(c1) =
2

5c1
−

3

5c1 log(1/c1)
> 0,

so g is increasing in that interval and g (c1) < 0. Thus, we have
6loga sm0

sm0
< 1/10 because

6loga sm0

sm0
< 1/10 is equivalent

to g (c1) < 0. Therefore,
m0
∑

m=1

1

sm
≤

1

sm0

(

1+
1

10
+

1

100
+ . . .

)

≤ 10−9. (D.4)
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It remains to estimate
∑∞

m=m0+1 xm , for which we now restrict attention to i and j such that wi , |P j | ≤ sm0+1 ≤

100
log(1/c1)

c1
. Then we have

(

∑

i∈P j
wi

)2
≤ 108

(

log(1/c1)
c1

)4
, and we trivially have |

⋃

m≥m0+1 Em | ≤ `≤ n, therefore

∞
∑

m=m0+1

xm ≤ 108

(

log(1/c1)

c1

)4

(D.5)

and substituting (D.4) and (D.5) into (D.3) gives

x ≤ 2 · c0 ·10−9 +108

(

log(1/c1)

c1

)4

.

For the case c1 ≥ 10−5, choose c ′1 such that c ′1 ≤ 10−5, then c0 exp(−c1t ) ≤ c0 exp(−c ′1t ). Thus, by considering the

pair (c0,c ′1) and the above reasoning we get

c2 = 2 · c0 ·10−9 +108

(

log(1/c ′1)

c ′1

)4

.
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WARNING PROPAGATION: STABILITY AND SUBCRITICALITY

OLIVER COOLEY, JOON LEE, JEAN B. RAVELOMANANA

ABSTRACT. Warning Propagation is a combinatorial message passing algorithm that unifies and generalises a wide vari-

ety of recursive combinatorial procedures. Special cases include the Unit Clause Propagation and Pure Literal algorithms

for satisfiability as well as the peeling process for identifying the k-core of a random graph. Here we analyse Warning

Propagation in full generality on a very general class of multi-type random graphs. We prove that under mild assump-

tions on the random graph model and the stability of the the message limit, Warning Propagation converges rapidly. In

effect, the analysis of the fixed point of the message passing process on a random graph reduces to analysing the pro-

cess on a multi-type Galton-Watson tree. This result corroborates and generalises a heuristic first put forward by Pittel,

Spencer and Wormald in their seminal k-core paper (JCTB 1996). [MSc: 05C80]

1. INTRODUCTION

1.1. Motivation and contributions. The study of combinatorial structures in random graphs is a huge field en-
compassing a wide variety of different topics, and the techniques used to study them are as plentiful and as varied
as the topics themselves, but there are common themes to be found in approaches in seemingly unrelated ar-
eas. One such theme is the implementation of a discrete-time algorithm to pinpoint the desired substructure.
A classic example is Unit Clause Propagation, an algorithm which traces implications in a Boolean satisfiability
problem [1, 13]. If the formula contains unit clauses, i.e. clauses containing only one literal, the algorithm sets the
corresponding variable to the appropriate truth value. This clearly has further knock-on effects: other clauses in
which the variable appears with the same sign are now automatically satisfied and can be deleted; but clauses in
which the variable appears with the opposite sign are effectively shortened, potentially giving rise to further unit
clauses, and the process continues. Ultimately, we may reach a contradiction or a satisfying assignment, or neither
if the process stops with all clauses containing at least two literals. In this case we can “have a guess”, assigning a
random truth value to a random variable and continue the process.

Another quintessential example is the peeling process for the k-core, in which recursively vertices of degree at
most k − 1 are deleted from the graph until what remains is the (possibly empty) k-core (see e.g. [23, 20]). Fur-
ther examples include the study of sparse random matrices, the freezing phase transition in random constraint
satisfaction problems, bootstrap percolation or decoding low-density parity check codes [2, 6, 10, 14, 21, 24].

Warning Propagation is a a message passing scheme that provides a unified framework for such recursive pro-
cesses [19]. Roughly speaking, the scheme sends messages along edges of a graph which are then recursively
updated: the messages that a vertex sends depends on the messages that it receives from its neighbours according
to some update rule. The semantics of the messages and the choice of update rule is fundamentally dependent
on the particular problem to which the scheme is applied: the messages may indicate truth values of variables
in a satisfiability formula, for example, or membership of the k-core. To understand the combinatorial substruc-
tures under consideration, we need to understand the fixed points of the corresponding recursive algorithms, or
equivalently the fixed points of the appropriate instances of Warning Propagation.

There have been many different approaches to analysing such recursive processes using a variety of different
techniques. One classical tool is the differential equations method [27], which was used in the seminal k-core pa-
per of Pittel, Spencer and Wormald [23] as well as in the analysis of Unit Clause Propagation [1]. Other approaches
include branching processes [25], enumerative methods [5], or birth-death processes [16, 17].

However, despite their very different appearances, these approaches all share a common feature: in one way or
another, they show that the recursive process converges quickly to its fixed point. In other words, the final outcome
of the process can be approximated arbitrarily well by running only a bounded number of rounds of the recursive
process. Equivalently, in each of these particular instances, the Warning Propagation scheme converges quickly.

Jean B. Ravelomanana is supported by DFG CO 646/4.

Oliver Cooley is supported by Austrian Science Fund (FWF): I3747.
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In this paper we analyse Warning Propagation in full generality on a very general multi-type model of random
graphs. Special cases of this model include not just the Erdős-Rényi binomial random graph model G

(

n, p
)

and its
k-partite analogues, but also the stochastic block model, random regular graphs or indeed random graphs with a
prescribed degree sequence, and factor graphs of random hypergraphs. We prove that under mild, easy-to-check
assumptions Warning Propagation converges rapidly. Not only does this result confirm the heuristic that running
Warning Propagation for a bounded number of rounds suffices to approximate its ultimate fixed point arbitrarily
well, our result also identifies the essential reason for this behaviour. More precisely, after a large but bounded
number of steps, the subsequent knock-on effect of a single change can be modelled by a branching process; we
demonstrate that a mild stability assumption guarantees that this branching process is subcritical. The upshot is
that late changes in the process will ultimately fizzle out rather than triggering a cascade of further effects.

Apart from re-proving known results in a new, unified way, the main results of this paper facilitate new appli-
cations of Warning Propagation. Indeed, to analyse any specific recursive process that can be translated into the
formalism of Theorem 1.3 below one just needs to investigate the recursion on a multi-type Galton-Watson tree
that mimics the local structure of the respective random graph model. Typically this task boils down to a mundane
fixed point problem in Euclidean space. Theorem 1.3 thus enables an easy and accurate analysis of generic recur-
sive processes on random structures. A concrete example that actually inspired this work was our need to study a
recursive process that arises in the context of random matrix theory [4].

1.2. Random graph model. Our goal is to study warning propagation on a random graph G, which may be chosen
from a wide variety of different models, and which we first describe briefly and informally—the formal require-
ments on G are introduced in Section 2.2, specifically in Assumption 2.10.

We will assume that the vertices of G are of types 1, . . . ,k for some fixed integer k; we denote by Vi the set of ver-
tices of type i for i ∈ [k] and set ni := |Vi |. The ni need not be deterministically fixed, but may themselves be ran-
dom variables depending on an implicit parameter n ∈N which tends to infinity, and in particular all asymptotics
are with respect to n unless otherwise specified. Vertices of different types may exhibit very different behaviour,
but vertices of the same type should behave according to the same random distribution. More specifically, for a
vertex v ∈ Vi the (asymptotic) distribution of the numbers of neighbours of each type j ∈ [k] will be described by
Z i , which is a probability distribution on N

k
0 , the set of sequences of natural numbers of length k; the j -th entry

of Zi describes the numbers of neighbours of type j . This will be introduced more formally in Section 2.1
To give a concrete example, if we were to study simply G (n,d/n) for some fixed constant d , we would set k = 1

and n1 = n, and each vertex would have Po(d) neighbours of type 1. For random d-regular graphs, we would
also have k = 1 and n1 = n, but now the number of neighbours would be deterministically d (i.e. the random
distribution would be entirely concentrated on d).

A slightly more complex example is random d-SAT with n variables and m clauses of size d . The standard way of
representing an instance of the problem is to have vertex classes V1,V2 representing the variables and the clauses
respectively, with an edge between a variable v and a clause A if v appears in A. Furthermore, the edge is coloured
depending on whether v is negated in A or not. However, since we do not allow for edges of different types, we
must represent this differently. This can be done by adding two further classes V3,V4 and subdividing an edge v A

with a vertex of type 3 if v is unnegated in A and of type 4 otherwise. Then a vertex of V1, representing a variable,

would have Po
(

dm
2n

)

neighbours of type 3 and similarly and independently of type 4; a vertex of V2, representing

a clause, would have X ∼ Bin (d ,1/2) neighbours of type 3 and d − X neighbours of type 4; while vertices of V3,V4

would each have precisely one neighbour each of types 1 and 2.
We will have various relatively loose restrictions on the graph model G which are required during the proof, see

Section 2.2 for the full list. Informally, we require G to satisfy four conditions with high probability, namely:

• The vertex classes have the same order of magnitude and not too large variance.
• The graph G is uniformly random given its type-degree sequence.
• There are few vertices of high degree.
• The local structure is described by the Ti (Z1, . . . ,Zk ).

Here we note in particular that we require each Vi to have bounded average degree.

1.3. Warning propagation. In this section we formally introduce the Warning Propagation (WP) message passing
scheme and its application to random graphs. Applied to a graph G, Warning Propagation will associate two di-
rected messages µv→w ,µw→v with each edge v w of G. These messages take values in a finite alphabet Σ. Hence, let
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M (G) be the set of all vectors
(

µv→w

)

(v,w )∈V (G)2 :vw∈E (G) ∈ Σ
2|E (G)|. The messages get updated in parallel according

to some fixed rule. To formalise this, for d ∈N let
((

Σ

d

))

be the set of all d-ary multisets with elements from Σ and let

ϕ :
⋃

d≥0

((

Σ

d

))

→Σ (1.1)

be an update rule that, given any multiset of input messages, computes an output message. Then we define the
Warning Propagation operator on G by

WPG : M (G) →M (G) , µ=
(

µv→w

)

vw 7→
(

ϕ
({{

µu→v : uv ∈ E (G) ,u 6= w
}}))

vw ,

where {{a1, . . . , ak }} denotes the multiset whose elements (with multiplicity) are a1, . . . , ak .
In words, to update the message from v to w we apply the update rule ϕ to the messages that v receives from

all its other neighbours u 6= w .
To give some examples of concrete instances, when studying the k-core the messages would typically be 0 or 1,

and the update rule would be defined by ϕ (A)= 1
{
∑

a∈A a ≥ k −1
}

, i.e. a vertex sends a message of 1 to a neighbour
iff it receives at least k −1 messages of 1 from its other neighbours. At the end of the process, the k-core consists of
precisely those vertices which receive at least k messages of 1 from their neighbours. Alternatively, in a constraint
satisfaction problem, the message from a variable to a constraint may indicate that the variable is frozen to a
specific value due to its other constraints, while the message from a constraint to a variable indicates whether that
constraint requires the variable to take a specific value.

Let us note that in many applications, the obvious approach would be to define the WP scheme with different
update rules ϕ1, . . . ,ϕk for each type of vertex, or indeed where the update rule takes account of which type of
vertex each message was received from. While this would be entirely natural, it would lead to some significant
notational complexities later on. We therefore adopt an alternative approach: the messages of the alphabet Σ

will, in particular, encode the types of the source and target vertices, and we can therefore make do with a single
update function which receives this information and takes account of it. Of course, this means that along a par-
ticular directed edge, many messages from Σ are automatically disqualified from appearing because they encode
the wrong source and target types. Indeed, at a particular vertex all incoming messages must encode the same ap-
propriate target type, and therefore many multisets of messages can never arise as inputs of the update function.
On the other hand, the major benefit of this approach is that much of the notational complexity of the problem
is subsumed into the alphabet Σ and the update function ϕ. This will be discussed more formally in Sections 2,
and 3.

In most applications of Warning Propagation the update rule (1.1) enjoys a monotonicity property which en-
sures that for any graph G and for any initialisationµ(0) ∈M (G) the pointwise limit WP∗

G

(

µ(0)
)

:= limt→∞ WPt
G

(

µ(0)
)

exists, although in general monotonicity is not a necessary prerequisite for such a limit to exist. If it does, then
clearly this limit is a fixed point of the Warning Propagation operator.

Our goal is to study the fixed points of WP and, particularly, the rate of convergence on the random graph G.
We will assume that locally G has the structure of a multi-type Galton-Watson tree. We will prove that under mild
assumptions on the update rule, the WP fixed point can be characterised in terms of this local structure only. To
this end we need to define a suitable notion of a WP fixed point on a random tree. At this point we could consider
the space of (possibly infinite) trees with WP messages, define a measure on this space and consider the action that
the WP operator induces. Fortunately, the recursive nature of the Galton-Watson tree allows us to bypass this com-
plexity. Specifically, our fixed point will just be a collection of probability distributions on Σ, one for each possible
type of directed edge, such that if the children of a vertex v in the tree send messages independently according
to these distributions, then the message from v to its own parent will also have the appropriate distribution from
the collection. The collection of distributions can be conveniently expressed in matrix form. For a matrix M , we
denote by M

[

i , j
]

the entry at position
(

i , j
)

in the matrix and by M [i ] the i -th row
(

M
[

i , j
])

j∈[k].
1

Definition 1.1. Given a set S, a probability distribution matrix on S is a k ×k matrix Q in which each entry Q
[

i , j
]

of Q is a probability distribution on S.

The intuition is that the entry Q
[

i , j
]

should model the probability distribution of the message along an edge
from a vertex of type i to a vertex of type j . Heuristically, the incoming messages at a vertex will be more or less

1We avoid the usual Mi j index notation since this will clash with other subscripts later on.
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independent of each other; short-range correlations can only arise because of short cycles, of which there are very
few in the sparse regime, while long-range correlations should be weak if they exist at all. We will certainly initialise

the messages independently.

Definition 1.2. For a graph G and a probability distribution matrix Q on Σ, we refer to initialising messages in G

according to Q to mean that we initialise the messageµu→v (0) for each directed edge (u, v) independently at random

according to Q
[

i , j
]

, where i and j are the types of u and v respectively.

In many applications, the initialisation of the messages is actually deterministic, i.e., each entry of Q is concen-
trated on a single element of Σ, but there are certainly situations in which it is important to initialise randomly.

Given the local structure of the random graph model G as described by a multi-type Galton-Watson tree, we
can compute the asymptotic effect of the warning propagation update rules on the probability distribution matrix:
for a directed edge v w of type

(

i , j
)

, we consider the other neighbours of v with their types according to the local
structure, generate messages independently according to the current probability distribution matrix and compute
the updated message along v w . Since the generation of neighbours and of messages was random, the updated v w

message is also random and its distribution gives the corresponding entry of the updated matrix. Repeating this
for all i , j ∈ [k] gives the updated matrix. This process is described more formally in Section 2.1.

With this notion of updating probability distribution matrices, we can consider the limit of an initially chosen
matrix Q0. More specifically, we will need the existence of a stable WP limit, meaning that the update function is
a contraction in the neighbourhood of the limit with respect to an appropriate metric. Again, formal details are
given in Section 2.1.

1.4. Main result. Given a probability distribution matrix Q0 on Σ, we ask how quickly Warning Propagation will
converge on G from a random initialisation according to Q0.

We will use WPt
v→w

(

µ(0)
)

to denote the message from v to w in G after t iterations of WPG with initialisation µ(0).
Note that the graph G is implicit in this notation.

Theorem 1.3. Let G be a random graph model satisfying Assumption 2.10 and let P,Q0 be probability distributions

onΣ such that P is the stable WP limit of Q0 . Then for anyδ> 0 there exists t0 = t0
(

δ,Z ,ϕ,Q0
)

such that the following

is true.

Suppose that µ(0) ∈M (G) is an initialisation according to Q0. Then w.h.p. for all t ≥ t0 we have

∑

v,w :vw∈E (G)

1
{

WPt
v→w

(

µ(0)) 6= WPt0
v→w

(

µ(0))}< δn.

In other words, the WP messages at any time t ≥ t0 are identical to those at time t0 except on a set of at most
δn directed edges. Thus Theorem 1.3 shows that under a mild stability condition Warning Propagation converges
rapidly. Crucially, the number t0 of steps before Warning Propagation stabilises does not depend on the underlying
parameter n, or even on the exact nature of the graph model G, but only on the desired accuracy δ, the degree
distribution Z , the Warning Propagation update rule ϕ and the initial distribution Q0.

1.5. Discussion and related work. Theorem 1.3 implies a number of results that were previously derived by sep-
arate arguments. For instance, the theorem directly implies the main result from [23] on the k-core in random
graphs. Specifically, the theorem yields the threshold for the emergence of the k-core threshold as well as the typi-
cal number of vertices and edges in the core (in a law of large numbers sense). Of course, several alternative proofs
of (and extensions of) this result, some attributed as simple, exist [8, 9, 11, 12, 16, 18, 20, 25], but here we obtain
this result as an application of a more general theorem.

Since our model also covers multi-type graphs, it enables a systematic approach to the freezing phenomenon
in random constraint satisfaction problems [19, 21, 22], as well as to hypergraph analogues of the core problem [7,
16, 18, 20, 23, 25, 26] by considering the factor graph.

The specific application that led us to investigate Warning Propagation in general deals with random matrix
theory [4]. In that context Warning Propagation or equivalent constructions have been applied extensively [3, 10,
15, 19]. Technically the approach that is most similar to the present proof strategy is that of Ibrahimi, Kanoria,
Kraning and Montanari [15], who use an argument based on local weak convergence.
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1.6. Proof outline. A fundamental aspect of the proof is that we do not analyse WP directly on G and consider
its effect after t0 iterations, but instead define an alternative random model Ĝt0 (see Definition 3.4): Rather than
generating the edges of the graph and then computing messages, this random model first generates half-edges with
messages, and then matches up the half-edges in a consistent way. Thus in particular the messages are known a
priori. The key point is that the two models are very similar (Lemma 3.7).

Among other things, it follows from this approximation that very few changes will be made when moving from

WPt0−1
G

(

µ(0)
)

to WPt0
G

(

µ(0)
)

, but in principle these few changes could cause cascade effects later on. To rule this
out we define a branching processTwhich approximates the subsequent effects of a single change at time t0. The
crucial observation is that the stability of the distributional fixed point P implies that this branching process is
subcritical (Proposition 6.3), and is therefore likely to die out quickly. Together with the fact that very few changes
are made at step t0, this ultimately implies that there will be few subsequent changes.

1.7. Paper overview. The remainder of the paper is arranged as follows. In Section 2 we formally introduce the no-
tation, terminology and assumptions on the model G which appear in the statement of Theorem 1.3 and through-
out the paper. In Section 3 we define the Ĝt0 model and introduce Lemma 3.7, which states that this model is a
good approximation for Warning Propagation on G. In Section 4 we present various preliminary results that will
be used in later proofs. In Section 5 we go on to prove Lemma 3.7.

In Section 6 we introduce the branching process T and prove that it is subcritical. In Section 7 we then draw
together the results of previous sections to prove that after t0 iterations of WP, very few further changes will be
made, and thus prove Theorem 1.3.

2. PREREQUISITES

In this section we formally define some of the notions required for the statement of Theorem 1.3, as well as
introducing the assumptions that we require the model G to satisfy. For a set S, we will denote by P (S) the space
of probability distributions on S. We will occasionally abuse notation by conflating a random variable with its
probability distribution, and using the same notation to refer to both.

2.1. Distributional fixed points.

Definition 2.1. For each i ∈ [k], let Zi ∈ P
(

N
k
0

)

. For j ∈ [k], denote by Zi j the marginal distributions of Zi on the

j -th entry. We say that
(

i , j
)

∈ [k]2 is an admissible pair if P
(

Zi j ≥ 1
)

6= 0, and denote by K =K (Z1, . . . ,Zk ) the set

of admissible pairs.

Intuitively, the Zi will describe the local structure of the random input graphG, in the sense that the distribution
of the neighbours with types of a vertex v ∈ Vi will be approximately Zi (see Definition 2.8 later). Therefore the
admissible pairs describe precisely those pairs of classes Vi and V j between which we expect some edges to exist.
In particular, if the Zi accurately describe the local structure, then

(

i , j
)

is admissible if and only if
(

j , i
)

is also
admissible.

Note, however, that if we aim to analyse the message along a directed edge from v ∈ Vi to w ∈ V j , we need to
know about the distribution of the other neighbours of v , and cannot simply draw from Zi because we already have
one guaranteed neighbour of type j , which may affect the distribution. This motivates the following definition.

Definition 2.2. Let Z1, . . . ,Zk ∈ P
(

N
k
0

)

. For each
(

i , j
)

∈ K , define Yi j = Yi j (Zi ) ∈ P
(

N
k
0

)

to be the probability

distribution such that for (a1, . . . , ak ) ∈N
k
0 we have

P
(

Yi j = (a1, . . . , ak )
)

:=
P

(

Zi =
(

a1, . . . , a j−1, a j +1, a j+1, . . . , ak

))

P
(

Zi j ≥ 1
) .

Equivalently, Yi j and Zi satisfy the following relation. Let Ei j be the event Zi j ≥ 1. Then for any (a1, . . . , ak ) ∈N
k
0

such that a j ≥ 1 we have

P
(

Yi j =
(

a1, . . . , a j−1, a j −1, a j+1, . . . , ak

))

=P
(

Zi = (a1, . . . , ak )
∣

∣Ei j

)

.

We will talk about generating vertices with types according to a distribution D on N
k
0 , by which we mean that we

generate a vector (z1, . . . , zk ) according to D, and for each i ∈ [k] we generate zi vertices of type i . Usually, D will be
Zi or Yi j for some i , j ∈ [k]. Depending on the context, we may also talk about generating neighbours, children,
half-edges etc. with types, in which case the definition is analogous.
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Definition 2.3. Given D ∈ P
(

N
k
0

)

and a vector q =
(

q1, . . . , qk

)

∈ (P (Σ))k of probability distributions on Σ, let us

define a multiset M
(

D, q
)

of elements of Σ as follows.

• Generate a vector (a1, . . . , ak ) according to D.

• For each j ∈ [k] independently, select a j elements of Σ independently according to q j . Call the resulting

multiset M j .

• Define M
(

D, q
)

:=
⊎k

j=1 M j .2

The motivation behind this definition is that D will represent a distribution of neighbours with types, typically
Zi or Yi j for some i , j ∈ [k]. Meanwhile q will represent the distributions of messages from the vertices of various
types, typically chosen according to the appropriate entry of a probability distribution matrix, which are heuristi-
cally almost independent. Thus M

(

D, q
)

describes a random multiset of incoming messages at a vertex with the
appropriate distribution.

We can now formally describe how the WP update function affects the distribution of messages, as described
by a probability distribution matrix on Σ.

Definition 2.4. Given a probability distribution matrix Q on Σ with rows Q [1] , . . . ,Q [k], let φϕ (Q) denote the prob-

ability distribution matrix R on Σ where each entry R
[

i , j
]

is the probability distribution on Σ given by

R
[

i , j
]

:=ϕ
(

M
(

Yi j ,Q [i ]
))

.

Further, let φt
ϕ (Q) = φϕ

(

φt−1
ϕ (Q)

)

denote the t th iterated function of φϕ evaluated at Q. In order to ease notation,

we sometimes denote φt
ϕ (Q) by Q (t ) when φϕ is clear from the context.

In an idealised scenario, this update function precisely describes how the probability distribution matrix should
change over time: along a directed edge of type

(

i , j
)

, the messages in the next step will be determined by other

incoming messages at the source vertex; the neighbours and their types may be generated according to Yi j ; the
corresponding messages are generated according to Q [i ].

We will ultimately show that this idealised scenario is indeed a reasonable approximation. But we are also
interested in what occurs when we iterate this process from an appropriate starting matrix. Does it converge to
some limit? In order to quantify this, we need the following metric on the space of probability distribution matrices,
which is a simple extension of the standard total variation distance for probability distributions, denoted dTV (·, ·).

Definition 2.5. The total variation distance of two k ×k probability distribution matrices Q and R on the same set

S is defined as dTV (Q ,R) :=
∑

i , j∈[k] dTV
(

Q
[

i , j
]

,R
[

i , j
])

.

It is elementary to check that dTV is indeed a metric on the space of k×k probability distribution matrices on Σ,
and whenever we talk of limits in this space, those limits are with respect to this metric. We can now define the key
notion of a stable WP limit, which is fundamental to Theorem 1.3.

Definition 2.6. Let P be a probability distribution matrix on Σ and ϕ :
⋃

d≥0

((

Σ

d

))

→Σ be a WP update rule.

(1) We say that P is a fixed point if φϕ (P ) = P.

(2) A fixed point P is stable if φϕ is a contraction on a neighbourhood of P with respect to the total variation

distance dTV as defined in Definition 2.5.

(3) We say that P is the stable WP limit of a probability distribution matrix Q0 on Σ if P is a stable fixed point,

and furthermore the limit φ∗
ϕ (Q0) := limt→∞φt

ϕ (Q0) exists and equals P.

2.2. Assumptions on the G model. In order to apply the results of this paper, we will need the random graph G to
be reasonably well-behaved; formally, we require a number of relatively mild properties to be satisfied. In order to
introduce the assumptions, we need to introduce some terminology and notation.

Recall that depending on the application, the numbers of vertices n1, . . . ,nk in each of the k classes may be
random, or some may be random and others deterministic. For example, if we consider the standard bipartite
factor graph of a binomial random r -uniform hypergraph H r

(

n, p
)

, then one class representing the vertices of
H r

(

n, p
)

would have n1 = n vertices deterministically, while the other class representing the edges of H r
(

n, p
)

would have n2 ∼ Bin
((n

r

)

, p
)

vertices.

2The symbol
⊎

denotes the multiset union of two multisets A,B , e.g. if A = {{a,a,b}} and B = {{a,b,c ,c}} then A
⊎

B = {{a,a,a,b,b,c ,c}}.
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We seek to model this situation, which we do by introducing a probability distribution vector N = (N1, . . . ,Nk ) ∈
P

(

N
k
0

)

. Each Ni is a probability distribution on N0, although in general they may be dependent on each other. As
mentioned informally earlier, we will also have an implicit parameter n, so N = N (n), and we are interested in
asymptotics as n →∞. Note that as in the example of factor graphs of hypergraphs above, and in many other ex-
amples, we could certainly have N1 = n deterministically. As previously mentioned, we will often conflate random
variables and their associated probability distributions; in particular we will use ni instead of Ni .

Definition 2.7. For a k-type graph G, the type-degree of a vertex v ∈V (G), which we denote by d (v), is the sequence

(i ,d1, . . . ,dk ) ∈ [k]×N
k
0 where i is the type of v and where d j is the number of neighbours of v of type j . Moreover, the

type-degree sequence D (G) of G is the sequence (d (v))v∈V (G) of the type-degrees of all the vertices of G.

This is an obvious generalisation of the standard degree sequence in which we additionally keep track of the
types of the vertices and their neighbours. We note that for (d (v))v∈V (G) to be well defined, we need an order for
the set of vertices V (G). Since the order of the type-degree sequence will not play any role in future, we may choose
such an order arbitrarily.

We also need to describe the local structure of the graph in terms of a branching process which depends on the
degree distributions Z1, . . . ,Zk .

Definition 2.8. Let Z1, . . . ,Zk ∈ P
(

N
k
0

)

and for all
(

i , j
)

∈ K , let Yi j be as in Definition 2.2. For each i ∈ [k], let

Ti :=Ti (Z1, . . . ,Zk ) denote a k-type Galton-Waltson process defined as follows:

(1) The process starts with a single vertex u of type i .

(2) Generate children of u with types according to Zi .

(3) Subsequently, starting from the children of u, further vertices are produced recursively according to the fol-

lowing rule: for every vertex w of type h with a parent w ′ of type ℓ, generate children of w with types accord-

ing to Yhℓ independently.

Moreover, for r ∈N0 we denote by T
r

i
the branching process Ti truncated at depth r .

It will be part of our assumptions on G that the branching processes Ti do indeed describe the local structure
of G w.h.p.. To quantify this statement, we will need to compare the distributions of the Ti with the empirical local
structure of G. Given a k-type graph G, a vertex u ∈ V (G) and r ∈ N0, let BG (u,r ) be the k-type subgraph of G

induced by the neighbourhood of u up to depth r (i.e. all vertices that can be reached by a path of length at most r

from u), rooted at the vertex u. We say that two (vertex-)rooted k-type graphs G and G ′ are isomorphic, which we
denote by G ∼= G ′, if there exists a graph isomorphism between G and G ′ which preserves the roots and the types
of the vertices. Let G⋆ be the set of isomorphism classes of (vertex-)rooted k-type graphs (or more precisely, a set
consisting of one representative from each isomorphism class). We define the following empirical neighbourhood
distribution for a given k-type graph G.

Definition 2.9. Let G be a k-type graph with parts V1 (G) , . . . ,Vk (G), let i ∈ [k] and r ∈N0. Then for a graph H ∈G⋆,

we define

U
G
i ,r (H) :=

1

|Vi (G)|
∑

u∈Vi (G)

1 {BG (u,r ) ∼= H } .

In other words, UG
i ,r (H) is the proportion of vertices in the class Vi (G) whose r -depth neighbourhood in G is

isomorphic to H . When the graph G is clear from the context, we will drop the superscript G in UG
i ,r .

Note that UG
i ,r defines a probability distribution on the class of rooted k-type graphs H of depth at most r , and

therefore it can be compared with the truncated branching processes T
r

i
, which we will do in Assumption 2.10

(specifically A4). This assumption lays out the various properties that are required for our proofs. For parameters
a = a (n) and b = b (n), we sometimes use the notation a ≪ b as a shorthand for a = o (b), and similarly a ≫ b for
b = o (a).
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Assumption 2.10. There exist functions

1≪∆0 =∆0 (n) ≪ n1/10 (2.1)

and ζ= ζ(x)
x→∞−−−−→∞ and a probability distribution vector Z := (Z1, . . . ,Zk ) ∈

(

P
(

N
k
0

))k
such that for all i ∈ [k] and

for all x ∈R, we have

P
(

‖Zi‖1 > x
)

≤ exp(−ζ(x) ·x) , (2.2)

and such that the random graph G satisfies the following properties:

A1 For all i ∈ [k] we have E(ni ) =Θ (n) and Var (ni ) = o
(

n8/5
)

.

A2 For any two simple k-type graphs G and H satisfying D (G) = D (H), we have P (G=G) = (1+o (1))P (G= H ).

A3 W.h.p. ∆(G) ≤∆0;

A4 For any i ∈ [k] and r ∈N0 we have

dTV
(

U
r
i (G) ,T r

i (Z )
)

≪
1

∆
2
0

w.h.p.

Note that informally, A4 states that the local structure of G is asymptotically described by the branching pro-
cesses (Ti )i∈[k] with speed of convergence faster than 1/∆2

0. For most random graph models, it is rather easy to
verify that (2.1), (2.2) and A1, A2, A3 hold with the appropriate choice of parameters, and the main difficulty is to
bound the speed of convergence of the local structure as required by A4.

2.3. Choosing the parameters. Given that the truth of the assumptions is fundamentally dependent on the choice
of the parameters ∆0,ζ,Z , for which there may be many possibilities, let us briefly discuss how best to choose
them.

The probability distribution vector Z . First observe that given the graph model G, due to A4 there is only one
sensible choice for the probability distribution vector Z , namely the one which describes the local structure of
G (in the sense of local weak convergence). For example, in the case of the Erdős-Rényi binomial random graph
G (n,d/n) for some constant d , we have k = 1 would choose Z = Z1 = Z11 to be the Po(d) distribution. On the
other hand, for the analogous balanced bipartite random graph G (n,n,d/n) we would set Z = (Z1,Z2), where
Z1 = (Z11,Z12) = (0,Po (d)) and similarly for Z2.

The function ζ. This function only appears in the restriction, given by (2.2), that the tail bounds of the Zi dis-

tributions decay super-exponentially fast. As such, we can simply set ζ(x) := mini∈[k]
− lnP(‖Zi ‖1>x)

x
for all x. The

assumption demands that this expression tends to infinity.

The degree bound ∆0. The most critical property of ∆0 is A3, which states that w.h.p. it is an upper bound on
the maximum degree of G. To make the task of proving A4 easier, it is most convenient to choose ∆0 as small as
possible such that A3 is satisfied. However, if in fact a bounded ∆0 would suffice for this purpose (for example when
considering random d-regular graphs), we would choose ∆0 tending to infinity arbitrarily slowly in order to ensure
that the lower bound in (2.1) is satisfied. In fact, the condition ∆0 ≫ 1 in (2.1) is imposed purely for technical
convenience later on, and (by choosing ∆0 to grow arbitrarily slowly if necessary) does not actually impose any
additional restrictions on the random model.

A typical non-regular scenario would be that we have Θ (n) vertices whose degrees are Poisson distributed with
bounded expectation, in which case we could choose ∆0 = ln n.

Assumption 2.10 actually contains a further hidden parameter which, for simplicity, we just chose to be 1/5.
More precisely, we have the following.

Remark 2.11. In Assumption 2.10, the conditions P1 and (2.1) can be replaced by the assumption that there exists

some constant 0 <β< 1/3 such that:

(2.1)’ 1≪∆0 ≪ nβ/2;

(A1)’ For all i ∈ [k], we have E(ni ) =Θ (n), and Var (ni )= o
(

n2(1−β)
)

.

In Assumption 2.10 we arbitrarily chose β= 1/5 since the only additional restrictions this places on the model G,
once we account for being able to choose other parameters appropriately, are that w.h.p. ∆(G) ≪ n1/10 and
Var (|Vi |) = o

(

n8/5
)

. It seems unlikely that there will be a natural model G for which this fails to hold, but for which
8



it would be true for some different choice of β. Nevertheless, the proof would still go through in the more general
case.

Let us make one further remark regarding A2, which states that any two graphs with the same type-degree
sequence are asymptotically equally likely under G. This condition is not satisfied for certain natural random graph
models, for example random triangle-free graphs. However, a standard trick allows us to weaken the conditions a
little such that this model would indeed be covered.

Remark 2.12. Assumption 2.10 can be replaced by the following:

There is a random graph model G∗ and an event E such that

• PG∗ (E ) =Θ (1);

• G∼G
∗|E , i.e. G∗ conditioned on E is precisely G;

• G
∗ satisfies Assumption 2.10.

So for example when G is the random triangle-free graph, we would choose G
∗ to be the unconditioned random

graph, and E to be the event that G∗ is triangle-free. The reason the proof still goes through is that our results can
be applied to G

∗ and give a high probability statement, which then also holds w.h.p. in the space conditioned on
the Θ (1)-probability event E . We omit the details.

2.4. Some simple consequences. We next collect a few consequences of the assumptions that will be convenient
later. Assumption 2.10 guarantees the existence of some parameters, but we will need to fix more for the proof.
Specifically, we have the following.

Proposition 2.13. If Assumption 2.10 holds, then there exists a function F : [0,∞) → [1,∞) and functions ω0 =
ω0 (n) ,c0 = c0 (n) ,d0 = d0 (n) such that:

F1 F is monotonically increasing and invertible;

F2 For any sequences of real numbers a = a (n) and b = b (n), if 1≤ a ≪ b then F (a) ≪ F (b);

F3 For any sequence of real numbers a = a (n) ≫ 1 and for any constant c > 0 we have F (a) ≫ exp(ca);

F4 There exists a sufficiently large x0 ≥ 0 such that for all x > x0 and all i ∈ [k], we have

P
(

‖Zi‖1 > x
)

≤
1

F (x)
.

Moreover,

P1 1≪∆
2
0 ≪ω0 ≪ n1/5;

P2 F−1
(

∆
2
0

)

≪ d0 ≪ lnω0;

P3 ∆0 exp(Cd0) ,∆2
0 ≪ c0 ≪ F (d0) ,ω0 for any constant C,

and the random graph G satisfies the following.

B1 For any i ∈ [k] and r ∈N0 we have

dTV
(

U
r
i (G) ,T r

i (Z )
)

≤
1

ω0
w.h.p.

For the rest of the paper, we will fix parameters ∆0,ω0,c0,d0 and a function F as in Assumption 2.10 and Propo-
sition 2.13. An obvious consequence of (P3) is that for any constant t0,

max{d0,∆0} · |Σ|2(t0+2)d0 ≤∆0 · |Σ|2(t0+3)d0 = o (c0) , (2.3)

and this form will often be the most convenient in applications. Before proving Proposition 2.13, we prove an
auxiliary claim which will be helpful both for this proof and later in the paper.

Claim 2.14. If P1, F1 and F3 hold, then F−1
(

∆
2
0

)

≪ lnω0.

Proof. Suppose it is not true that F−1
(

∆
2
0

)

≪ lnω0. Then (passing to a subsequence of necessary) there exists some

constant c > 0 such that F−1
(

∆
2
0

)

≥ c ln(ω0). Applying F to both sides, we deduce ∆
2
0 ≥ F (c ln (ω0)), since F is

monotonically increasing by F1. Moreover, by F3 we have F (c ln (ω0)) ≫ ω0, so we conclude that ∆2
0 ≫ω0, which

contradicts P1. �

In the proof of Proposition 2.13, for simplicity we will allow functions to take the values ±∞, and define ex-
pressions involving division by 0 or ∞ in the obvious way. This avoids annoying technical complications required
to deal with some special cases—turning this into a formally correct proof would be an elementary exercise in
analysis.
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Proof of Proposition 2.13. First let us fix F1 (x) := mini∈[k]
1

P(‖Zi ‖1>x) and observe that F1 (x) = exp(ζ1 (x) ·x) for

some non-negative function ζ1 (x)
x→∞−−−−→ ∞. This means that F1 satisfies conditions F3 and F4, but not neces-

sarily conditions F1 and F2. We therefore modify this function slightly. More precisely, we can modify the function
ζ1 to obtain ζ2 satisfying:

• ζ2 (0) = 0;
• ζ2 (x) is continuous and monotonically strictly increasing;
• ζ2 (x) ≤ ζ1 (x) for all sufficiently large x ∈R;

• ζ2 (x)
x→∞−−−−→∞.

We now set F (x) := exp(ζ2 (x) ·x) . It can be easily checked that F satisfies all the necessary conditions.
Now let us setω0 :=∆

2
0·ω, whereω=ω(n) is a function tending to infinity arbitrarily slowly. Since 1≪∆

2
0 ≪ n1/5,

if ω grows sufficiently slowly, P1 is also satisfied. Similarly, since A4 is satisfied, if ω grows sufficiently slowly, we
also have B1.

We also set d0 := F−1
(

∆
2
0

)

·ω. Then the lower bound in P2 is clearly satisfied. Furthermore Claim 2.14 shows
that the upper bound also holds provided ω tends to infinity slowly enough.

Finally we will show that, provided ω grows slowly enough, ∆0 exp(Cd0) ≪ ∆
2
0 ≪ F (d0) ,ω0, and then picking

c0 :=∆
2
0 ·ω, we have that P3 holds.

We first recall that F (x) = exp(ζ2 (x) ·x), where ζ2 (x)
x→∞−−−−→∞. Thus F−1 (x) = ln x

ζ3(x) , where ζ3 (x) = ζ2
(

F−1 (x)
) x→∞−−−−→

∞. It follows that, for any constant C > 0, we have exp(Cd0) = exp

(

C (ln∆0)ω
ζ3

(

∆
2
0

)

)

≤ exp
(

(ln∆0)ω
ζ4(n)

)

for sufficiently large n

and for some appropriate function ζ4 (n)
n→∞−−−−→ ∞ (which is independent of C ). By choosing ω ≪ ζ4, we have

exp(Cd0) ≪ ∆0 and therefore also ∆0 exp(Cd0) ≪ ∆
2
0. Now to complete the proof, observe that d0 ≫ F−1

(

∆
2
0

)

by

definition, and therefore F2 implies that ∆2
0 ≪ F (d0). On the other hand, ∆2

0 ≪ω0 by definition of ω0. �

A further consequence of the assumptions is that the degree distributions have bounded moments.

Remark 2.15. Claim 2.14 and F4 together imply that for all i ∈ [k], the distribution ‖Zi‖1 of the total degree of a

vertex of type i has finite moments, i.e. E
(

‖Zi‖s
1

)

is finite for any s ∈N, and in particular for any i , j ∈ [k] and s ∈N

the moment E
(

Z
s
i j

)

are finite. It also follows that for every admissible pair
(

i , j
)

∈ K , the moments E
(∥

∥Yi j

∥

∥

s

1

)

are

finite (this can be verified with an elementary check). We will often use these facts during the proofs.

We will also need the simple observation that the class sizes are reasonably concentrated around their expecta-
tions.

Claim 2.16. W.h.p. for all i ∈ [k] we have ni =
(

1+o
(

1
ω0

))

E(ni ) .

Proof. By A1, for all i ∈ [k], we have E(ni ) = Θ (n) and Var(ni ) = o
(

n8/5
)

. Let ω = ω(n) := n8/5

maxi∈[k] Var(ni ) , so in

particular ω → ∞. (Note that if Var (ni ) = 0 for all i , then the claim is trivial, so we may assume that ω is well-
defined.) Then Chebyshev’s inequality implies that

P
(∣

∣ni −E(ni )
∣

∣≥ n4/5)≤P

(

∣

∣ni −E(ni )
∣

∣≥
√

ω ·Var (ni )
)

≤
1

ω
= o (1) .

In other words, w.h.p. ni =
(

1+O
(

1
n1/5

))

E(ni ), and since ω0 ≪ n1/5 by P1, taking a union bound over all i ∈ [k]

gives the desired result. �

3. AN ALTERNATIVE MODEL

Although our main result is primarily a statement about G, a key method in this paper is to switch focus away
from this model to a second model, denoted Ĝ, which is easier to analyse. To introduce this second model, we
need some more definitions.

3.1. Message histories. Let Gn denote the set of Σ-messaged graphs on vertex set [n], i.e. graphs on [n] in which
each edge uv comes equipped with directed messages µu→v ,µv→u ∈Σ.

We will denote by µu→v (t) the message from u to v after t iterations of WP, and refer to this as the t-message

from u to v . Alternatively, we refer to the t-in-message at v or the t-out-message at u (this terminology will be
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especially helpful later when considering half-edges). In all cases, we may drop t from the notation if it is clear
from the context.

In fact, we will need to keep track not just of the current Warning Propagation messages along each edge, but of
the entire history of messages. For two adjacent vertices u, v , define the t-history from u to v to be the vector

µu→v (≤ t) :=
(

µu→v (0) , . . . ,µu→v (t)
)

∈Σ
t+1.

We will also refer to µu→v (≤ t) as the t-in-story at v , and as the t-out-story at u. The t-story at v consists of the
pair

(

µu→v (≤ t),µv→u (≤ t)
)

, i.e. the t-in-story followed by the t-out-story. It will sometimes be more convenient to
consider the sequence consisting of the t-in-story followed by just the 0-out-message, which we call the t-input.
In all cases, we may drop t from the notation if it is clear from the context.

We denote by G
(t )
n the set of Σt+1-messaged graphs on vertex set [n] – the labels along each directed edge, which

come from Σ
t+1, will be the t-histories. 3

With a slight abuse of notation, for t1 < t2 we will identify two graphs G ∈ G
(t1)
n and H ∈ G

(t2)
n , whose messages

are given by µ(G) and µ(H) respectively, if

• E (G) = E (H);
• µ(G)

u→v (t) =µ(H)
u→v (t) for all t ≤ t1;

• µ(H)
u→v (t) =µ(H)

u→v (t1) for all t1 < t ≤ t2.

In other words, the underlying graphs are identical, the t1-histories are identical, and subsequently no messages

change in H . In particular, this allows us to talk of limits of messaged graphs Gt ∈G
(t )
n as t →∞.

Definition 3.1. For any t ∈ N and probability distribution matrix Q0 on Σ, let Gt = Gt (n,Q0) ∈ G
(t )
n be the random

Σ
t+1-messaged graph produced as follows.

(1) Generate the random graph G.

(2) Initialise each message µu→v (0) for each directed edge (u, v ) independently at random according to Q0[i , j ]
where i and j are the types of u and v respectively.

(3) Run Warning Propagation for t rounds according to update rule ϕ.

(4) Label each directed edge (u, v) with the story
(

µu→v (0) , . . . ,µu→v (t)
)

up to time t.

We also define G∗ := limt→∞Gt , if this limit exists.

We aim to move away from looking at Gt and instead to consider a random graph model Ĝt in which we first
generate half-edges at every vertex, complete with stories in both directions, and only subsequently reveal which
half-edges are joined to each other; thus we construct a graph in which the WP messages are known a priori. The
trick is to do this in such a way that the resulting random messaged graph looks similar to Gt .

In order to define this random model, we need a way of generating a history randomly, but accounting for the
fact that the entries of a history are, in general, heavily dependent on each other, which we do in Definition 3.3. We
first need to define a variant of the Ti branching trees.

An edge-rooted graph is a simple graph with a distinguished directed edge designated as root edge. When we
have an edge-rooted tree rooted at the directed edge (u, v ), we will think of v as the parent of u, and in all such
situations v will have no other children. More generally, whenever we talk of messages along an edge of such a
tree, we mean along the directed edge from child to parent.

We will also need to describe the part of the local structure that influences a message along a directed edge
(u, v). This motivates the following definition.

Definition 3.2. Let Z1, . . . ,Zk be probability distributions on N
k
0 and for all i , j ∈ [k], let Yi j be as in Definition 2.2.

For each
(

i , j
)

∈K , let Ti j :=Ti j (Z1, . . . ,Zk ) denote a k-type Galton-Waltson process defined as follows:

(1) The process starts with a directed root edge (u, v ) where u has type i and v has type j . We refer to v as the

parent of u, and v will have no further children.

(2) Subsequently, starting at u, vertices are produced recursively according to the following rule: for every vertex

w of type h with a parent w ′ of type ℓ, generate children of w with types according to Yhℓ independently.

Moreover, for r ∈N0 we denote by T
r

i j
the branching Ti j truncated at depth r .

3Note that the definition of G
(t )
n makes no assumption that the histories along directed edges arise from running Warning Propagation – in

principle, they could be entirely inconsistent – although of course in our applications, this will indeed be the case.
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Note that the process Ti j can equivalently be produced by taking the process Ti conditioned on the root u

having at least one child v of type j , deleting the entire subtree induced by the descendants of v and rooting the
resulting tree at the directed edge (u, v ).

Definition 3.3. Given a probability distribution matrix Q on Σ, for each i , j ∈ [k] we define random variables

X (0)
i j

, X (1)
i j

, X (2)
i j

, . . . as follows. Let Ti j be a randomly generated instance of the process Ti j defined in Definition 3.2.

(1) Initialise all messages in Ti j according to Q.

(2) For each t ∈ N0, let X (t )
i j

:= µu→v (t) be the message from u to v after t iterations of Warning Propagation

according to the update rule ϕ where v is the root of Ti j and u its only child.

Finally, for each t ∈N0, let φt
ϕ (Q) be the probability distribution matrix R on Σ

t+1 where each entry R
[

i , j
]

is the

distribution of
(

X (0)
i j

, . . . , X (t )
i j

)

. As in Definition 2.4, in order to ease notation, we sometimes denote φt
ϕ (Q) by Q (≤t ).

Note that Q (≤t ) is not a vector
(

Q (0), . . . ,Q (t )
)

of probability distribution matrices, but is instead a matrix in which
every entry is a probability distribution on vectors of length t +1.

Note also that while it is intuitively natural to expect that the marginal distribution of Q (≤t )
[

i , j
]

on the ℓ-th

entry has the distribution of Q (ℓ)
[

i , j
]

, which motivates the similarity of the notation, this fact is not completely
trivial. We will therefore formally prove this in Claim 4.1.

3.2. The random construction. We define the t-in-compilation at a vertex v to be the multiset of t-inputs at v ,
and the t-in-compilation sequence is the sequence of t-in-compilations over all vertices of [n]. As before, we often
drop the parameter t from the terminology when it is clear from the context.

We can now define the alternative random graph model to which we will switch our focus.

Definition 3.4. Given a probability distribution matrix Q0 on Σ, a sequence Z = (Z1, . . . ,Zk ) of probability dis-

tributions on N
k
0 , a probability distribution vector N = N (n) ∈ P

(

N
k
0

)

and an integer t0, we construct a random

messaged graph Ĝt0 = Ĝt0 (n,N ,Z ,Q0) by applying the following steps.

(1) Generate n1, . . . ,nk according to the probability distribution vector N , and for each i ∈ [k] generate a vertex

set Vi with |Vi | = ni .

(2) For each i ∈ [k] and for each vertex v in Vi independently, generate an in-compilation by:

(a) Generating half edges with types
(

i , j
)

for each j ∈ [k] according to Zi ;

(b) Giving each half-edge of type
(

i , j
)

a t0-in-story according to Q
(≤t0)
0

[

j , i
]

independently;

(c) Giving each half-edge of type
(

i , j
)

a 0-out-message according to Q0
[

i , j
]

independently of each other

and of the in-stories.

(3) Generate t-out-messages for each time 1 ≤ t ≤ t0 according to the rules of Warning Propagation based on the

(t −1)-in-messages, i.e. if the t0-in-stories at v, from dummy neighbours u1, . . . ,u j , are µui→v (≤ t0), we set

µv→ui (t) =ϕ
({{

µu1→v (t −1) , . . . ,µui−1→v (t −1) ,µui+1→v (t −1) , . . . ,µu j →v (t −1)
}})

.

(4) Consider the set of matchings of the half-edges which are maximum subject to the following conditions:

• Consistency: a half-edge with in-story µ1 ∈ Σ
t0+1 and out-story µ2 ∈ Σ

t0+1 is matched to a half-edge

with in-story µ2 and out-story µ1;

• Simplicity: the resulting graph (ignoring unmatched half-edges) is simple.

Select a matching uniformly at random from this set and delete the remaining unmatched half-edges.

From now on we will always implicitly assume that the choice of various parameters is the natural one to com-
pare Ĝt0 with Gt0 , i.e. that N is precisely the distribution of the class sizes of G and Z is the probability distribution
vector which describes the local structure of G as required in Assumption 2.10, while Q0 will be the probability
distribution matrix according to which we initialise messages in G.

We will show later (Claim 4.2) that the distribution of an out-story is identical to the distribution of an in-story,
which means that the expected number of half-edges with story

(

µ1,µ2

)

is (almost) identical to the expected num-
ber of half-edges with the dual story

(

µ2,µ1

)

. Heuristically, this suggests that almost all half-edges can be matched
up and therefore few will be deleted in Step 4. This will be proved formally in Proposition 5.5.

Remark 3.5. Note that Step 3 of the construction is an entirely deterministic one – the t-out-messages at time t ≥ 1
are fixed by the incoming messages at earlier times. Therefore all in-stories and out-stories (before the deletion of

half-edges) are in fact determined by the outcome of the random construction in Steps 1 and 2.
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3.3. Contiguity. Observe that Ĝt0 and Gt0 both define random variables in G
(t0)
n . With a slight abuse of notation,

we also use Ĝt0 and Gt0 to denote the distribution of the respective random variables. Given a Σ
t+1-messaged graph

G ∈ G
(t )
n , we will denote by G the Σ-messaged graph in Gn obtained by removing all messages from each history

except for the message at time t , i.e. the “current” message.
There are two main steps in the proof of Theorem 1.3:

(1) Show that Ĝt and Gt have similar distributions for any constant t ∈N (Lemma 3.7).
(2) Use this approximation to show that, for some large constant t0 ∈N, the messaged graphs Gt0 and G∗ are

also very similar, i.e. very few further changes are made after t0 steps of Warning Propagation.

In particular, we must certainly choose t0 to be large enough that φt0
ϕ (Q0) is very close to the stable WP limit P

of Q0. It will follow that the distribution of a message along a randomly chosen directed edge in Ĝt0 (and therefore

also in Gt0 ) of type
(

i , j
)

is approximately P
[

i , j
]

(see Claim 4.1).
We need a way of quantifying how “close” two messaged graphs are to each other. Given sets A and B , we use

A∆B := (A \ B)∪ (B \ A) to denote the symmetric difference.

Definition 3.6. Given t ∈N0, two Σ
t+1-messaged graphs G1,G2 ∈G

(t )
n and δ> 0, we say that G1 ∼δ G2 if:

(1) E (G1)∆E (G2) ≤ δn;

(2) The messages on E (G1)∩E (G2) in the two graphs agree except on a set of size at most δn.

We further say that G1 ≈δ G2 if in fact the underlying graphs are identical (i.e. E (G1)∆E (G2) =;).

The crucial lemma that justifies our definition of the Ĝ model is the following.

Lemma 3.7. For any integer t0 ∈N and real numberδ> 0, the randomΣ
t0+1-messaged graphs Ĝt0,Gt0 can be coupled

in such a way that w.h.p. Ĝt0 ∼δ Gt0 .

This lemma is proved in Section 5.

3.4. Message Terminology. We have introduced several pieces of terminology related to messages in the graph,
which we recall and collect here for easy reference. For a fixed time parameter t ∈ N and a directed edge, the t-

history is the sequence of messages at times 0,1, . . . , t along this directed edge. Further, for a (half-)edge or set of
(half-)edges incident to a specified vertex, we have the following terminology.

• The t-in-message is the incoming message at time t .
• The t-out-message is the outgoing message at time t .
• The t-in-story is the sequence of t ′-in-messages for t ′ = 0, . . . , t .
• The t-out-story is the sequence of t ′-out-messages at times t ′ = 0, . . . , t .
• The t-story is the ordered pair consisting of the t-in-story and t-out-story.
• The t-input is the ordered pair consisting of the t-in-story and 0-out-message.
• The t-in-compilation is the multiset of t-inputs over all half-edges at a vertex.
• The t-in-compilation sequence is the sequence of t-in-compilations over all vertices.

When the parameter t is clear from the context, we often drop it from the terminology.

4. PRELIMINARY RESULTS

We begin with some fairly simple observations which help to motivate some of the definitions made so far, or
to justify why they are reasonable. The first such observation provides a slightly simpler way of describing the
individual “entries”, i.e. the marginal distributions, of the probability distribution φt

ϕ (Q0) [i , j ] ∈P
(

Σ
t+1

)

.

Claim 4.1. For any t ′, t ∈N0 with t ′ ≤ t and for any i , j ∈ [k], the marginal distribution of φt
ϕ (Q0)

[

i , j
]

on the t ′-th

entry is precisely φt ′
ϕ (Q0)

[

i , j
]

, i.e. for any µ ∈Σ we have

P

((

φt
ϕ (Q0)

[

i , j
]

)

[

t ′
]

=µ
)

=









∑

µ=(µ0 ,...,µt )∈Σt+1

µt ′=µ

P

(

φt
ϕ (Q0)

[

i , j
]

=µ
)









=P

(

φt ′
ϕ (Q0)

[

i , j
]

=µ
)

.
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Proof. Using the notation from Definition 3.3, we have

∑

µ=(µ0 ,...,µt )∈Σt+1

µt ′=µ

P

(

φt
ϕ (Q0)

[

i , j
]

=µ
)

=
∑

µ=(µ0,...,µt )∈Σt+1

µt ′=µ

P

(

X (0)
i j

=µ0, . . . , X (t )
i j

=µt

)

=P

(

X
(t ′)
i j

=µ
)

.

We will prove by induction that P
(

X
(t ′)
i j

= µ
)

= P

(

φt ′
ϕ (Q0)

[

i , j
]

=µ
)

. For t ′ = 0, again using Definition 3.3 the dis-

tribution of X (0)
i j

is simply Q0
[

i , j
]

, so suppose that t ′ ≥ 1, that the result holds for 0, . . . , t ′ − 1 and for any pair

(h,ℓ) ∈ [k]2. Let x1, . . . , xd be the children of the root node u in the Ti j branching tree defined in Definition 3.2
so the numbers and types of the children are given by the distribution Yi j . By the recursive nature of the Ti j

branching tree and the induction hypothesis, the message from any xm of type h to u at time t ′−1 has distribution

φt ′−1
ϕ (Q0) [h, i ] and this is independent for all vertices. Thus, in order to get the message from u to v at time t ′, we

generate a multiset of messages M

(

Yi j ,φt ′−1
ϕ (Q0) [i ]

)

as in Definition 2.3 and apply the Warning Propagation rule

ϕ. By Definition 2.4, the distribution of ϕ
(

M

(

Yi j ,φt ′−1
ϕ (Q0) [i ]

))

is φϕ

(

φt ′−1
ϕ (Q0)

)

[

i , j
]

=φt ′
ϕ (Q0)

[

i , j
]

. �

Claim 4.2. Given a half-edge of type
(

i , j
)

at a vertex u of type i in the graph Ĝt0 before any half-edges are deleted,

the distribution of its out-story is given by φ
t0
ϕ (Q0)

[

i , j
]

.

We note also that after half-edges are deleted, this distribution will remain asymptotically the same, since w.h.p.
only o (n) half-edges will be deleted (see Proposition 5.5).

Proof. Given such a half-edge at u, let us add a dummy vertex v of type j to model the corresponding neighbour
of u. Apart from (u, v), the vertex u has some number d of half-edges with types connected to dummy vertices
c1, ...,cd generated according to Yi j . For each d ′ ∈ [d], let rd ′ be the type of the vertex cd ′ . Each half-edge (cd ′ ,u)

receives t0-in-story according to φ
t0
ϕ (Q0)

[

r ′
d

, i
]

. This is equivalent to endowing each cd ′ with a Trd ′ i tree indepen-
dently where the root edge is (cd ′ ,u), initialising the messages from children to parents in these trees according to
Q0 and running t0 rounds of Warning Propagation. Combining all these (now unrooted) trees with the additional
root edge (u, v ), whose message is also initialised according to Q0 independently of all other messages, we have a
Ti j tree in which all messages are initialised independently according to Q0. Then by Definition 3.3, µu→v (≤ t0) is

distributed as φt0
ϕ (Q0)

[

i , j
]

. �

Recall that for each µ ∈ Σ, its source and target types are encoded in it. We define a function to denote these
types.

Definition 4.3. For a message µ ∈Σ with source type i and target type j , we define

g
(

µ
)

=
(

i , j
)

, g1
(

µ
)

= i , g2
(

µ
)

= j , ḡ
(

µ
)

=
(

j , i
)

. (4.1)

Recall that not all messages can appear along any edge, and for the same reason not all vectors of messages are
possible as message histories, which motivates the following definition.

Definition 4.4. We say that a vectorµ=
(

µ0,µ1, . . . ,µt

)

∈Σ
t+1 is consistent if the g

(

µt ′
)

are all equal for all 0≤ t ′ ≤ t ,

in other words, the source types of the µt ′ are equal and the target types of the µt ′ are equal. Let Ct ⊆ Σ
t+1 be the set

of consistent vectors in Σ
t+1. For µ ∈Ct we slightly abuse the notation and define

g
(

µ
)

= g
(

µ0
)

, g1
(

µ
)

= g1
(

µ0
)

, g2
(

µ
)

= g2
(

µ0
)

, ḡ
(

µ
)

= ḡ
(

µ0
)

.

Furthermore, we say that µ1,µ2 ∈ Ct are compatible if g
(

µ1

)

= ḡ
(

µ2

)

, i.e. the source type of µ1 is the target type

of µ2 and vice versa. Let Dt ⊆C
2
t be the set of directed pairs of compatible vectors.

Note that even with this definition, not all consistent vectors are necessarily possible as message histories, since
for example there may be some monotonicity conditions which the vector fails to satisfy.

Definition 4.5. Let Q be a probability distribution matrix on Σ, let σ ∈Σ and µ ∈Ct for some t ∈N. We define

PQ (t) (σ) :=P
(

Q (t ) [g (σ)
]

=σ
)

and PQ (≤t)

(

µ
)

:=P
(

Q (≤t ) [g
(

µ
)]

=µ
)

.
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In other words,PQ (t) (σ) and PQ (≤t)

(

µ
)

are the probabilities of obtaining σ and µ if we sample from Q (t ) and Q (≤t )

in the appropriate entry g (σ) and g
(

µ
)

of those matrices respectively, the only entries which could conceivably
give a non-zero probability.

Given an integer t and µ1,µ2 ∈ Σ
t+1, let mµ1,µ2

denote the number of half-edges in Ĝt with story
(

µ1,µ2

)

, i.e.
with in-story µ1 and out-story µ2, after Step 3 of the random construction (in particular before unmatched half-
edges are deleted). Observe that at a single half-edge of type

(

i , j
)

:=
(

g1
(

µ1

)

, g2
(

µ1

))

, the in-story is distributed

as Q (≤t )
0

[

j , i
]

and by Claim 4.2 the out-story is distributed as Q (≤t )
0

[

i , j
]

. Moreover, the in-story and out-story
are independent of each other. Therefore the probability that the half-edge has in-story µ1 and out-story µ2 is
precisely

qµ1,µ2
:=

{

P
Q

(≤t )
0

(

µ1

)

·P
Q

(≤t)
0

(

µ2

)

if
(

µ1,µ2

)

∈Dt ,

0 otherwise.

The following fact follows directly from the definition of qµ1,µ2
.

Fact 4.6. For any
(

µ1,µ2

)

∈Σ
t+1 we have qµ1 ,µ2

= qµ2 ,µ1
.

We will also define

mµ1,µ2
:=

{

E

(

Zg (µ1)

)

E

(

ng1(µ1)

)

qµ1,µ2
if

(

µ1,µ2

)

∈Dt ,

0 otherwise.
(4.2)

Claim 4.7. For any i , j ∈ [k], we have E
(

Zi j

)

E(ni ) =
(

1+O
(

∆0
ω0

))

E
(

Z j i

)

E
(

n j

)

. In particular,

mµ1 ,µ2
=

(

1+O

(

∆0

ω0

))

mµ2,µ1
.

Proof. Let us fix i , j ∈ [k]. The statement is trivial if i = j , and therefore we may assume that this is not the case.
Let us consider the number of edges of ei , j ,e j ,i of types

(

i , j
)

and
(

j , i
)

respectively in G, which must of course
be identical. This can be expressed as

∑

v∈Vi
dG, j (v), where dG, j (v) denotes the number of neighbours of v which

have type j .
Now for each d ∈N, define Sd to be the family of (vertex-)rooted k-type graphs of depth 1 rooted at a vertex of

type i , and with exactly d vertices of type j . Then we have

ei , j =
∑

v∈Vi

dG, j (v) =
∑

v∈Vi

∑

d∈N
d ·1

{

dG, j (v)= d
}

=
∑

v∈Vi

∑

d∈N

∑

H∈Sd

d ·1 {BG (v,1) ∼= H } .

Now conditioning on the high probability event that ni =
(

1+o
(

1
ω0

))

E(ni ) (see Claim 2.16) and that there are no

vertices of degree larger than ∆0 (see A3), we have w.h.p.

ei , j = ni ·
(

∑

d≤∆0

d
∑

H∈Sd

P (Ti
∼= H )±∆0 ·dTV

(

U
G

i ,1,Ti

)

)

= ni

(

∑

d≤∆0

dP
(

Zi j = d
)

+O

(

∆0

ω0

)

)

= E(ni )

(

E
(

Zi j

)

+O

(

∆0

ω0

))

.

By symmetry we also have ei , j = e j ,i = E
(

n j

)

(

E
(

Z j i

)

+O
(

∆0
ω0

))

. It easily follows that E
(

Zi j

)

= 0 ⇔ E
(

Z j i

)

= 0, in

which case the statement follows trivially. On the other hand, if these expectations are non-zero, then we have

E
(

Zi j

)

+O
(

∆0
ω0

)

=
(

1+O
(

∆0
ω0

))

E
(

Zi j

)

, and similarly for E
(

Z j i

)

, so the result follows by rearranging. �

5. CONTIGUITY: PROOF OF LEMMA 3.7

The aim of this section is to prove Lemma 3.7, the first of our two main steps, which states that Ĝt0 and Gt0 have
approximately the same distribution. We begin with an overview.

5.1. Proof strategy. The overall strategy for the proof is to show that every step of the construction of Ĝt0 closely re-
flects the situation in Gt0 . More precisely, the following are the critical steps in the proof. Recall from Definition 3.1
that G is the underlying unmessaged random graph corresponding to Gt0 , and similarly let Ĝ denote the underlying
unmessaged random graph corresponding to Ĝt0 . The following either follow directly from our assumptions or will
be shown during the proof.
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(1) The vectors representing the numbers of vertices of each type in Ĝt0 and Gt0 are identically distributed.
(2) The local structure of G is described by the Ti branching processes for i ∈ [k].
(3) After initialising Warning Propagation on G according to Q0 and proceeding for t0 rounds, the distribution

of the in-story along a random edge of type
(

i , j
)

is approximately φ
t0
ϕ (Q0)

[

j , i
]

.
(4) Given a particular compilation sequence, i.e. multiset of stories (which consist of in-stories and out-stories)

on half-edges at each vertex, each graph with this compilation sequence is almost equally likely to be cho-
sen as G.

(5) If we run Warning Propagation on Ĝ, with initialisation identical to the constructed 0-messages in Ĝt0 , for
t0 steps, w.h.p. the message histories are identical to those generated in the construction of Ĝt0 except on
a set of o (n) edges.

The first step is trivially true since we chose the vector N to be the distribution of the class sizes in G. The
second step is simply B1, and the third step is a direct consequence of the second (see Proposition 5.6). One minor
difficulty to overcome in this step is how to handle the presence of short cycles, which are the main reason the
approximations are not exact. However, since the local structure is a tree by B1, w.h.p. there are few vertices which
lie close to a short cycle (see Claim 5.3).

We will need to show that, while the presence of such a cycle close to a vertex may alter the distribution of
incoming message histories at this vertex (in particular they may no longer be independent), it does not funda-
mentally alter which message histories are possible (Proposition 5.1). Therefore while the presence of a short cycle
will change some distributions in its close vicinity, the fact that there are very few short cycles means that this
perturbation will be masked by the overall random “noise”.

The fourth step is precisely A2, while the fifth step is almost an elementary consequence of the fact that we
constructed the message histories in Ĝt0 to be consistent with Warning Propagation (Proposition 5.10). In fact, it
would be obviously true that all message histories are identical were it not for the fact that some half-edges may
be left unmatched in the construction of Ĝ and therefore deleted, which can cause the out-messages along other
half-edges at this vertex to be incorrect. This can then have a knock-on effect, but it turns out (see Proposition 5.5)
that w.h.p. not too many edges are affected.

5.2. Plausibility of inputs. We begin by showing that, if we initialise messages in a (deterministic) graph in a way
which is admissible according to Q0, any t0-input at a half-edge of type

(

i , j
)

produced by Warning Propagation

has a non-zero probability of appearing under the probability distribution φ
t0
ϕ (Q0)

[

j , i
]

.

Proposition 5.1. Let G be any k-type graph in which the type-degree of each vertex of type i has positive probability

under Zi and let (u, v) be a directed edge of G of type
(

i , j
)

. Suppose that messages are initialised in G arbitrarily

subject to the condition that each initial message is consistent with the vertex types and has non-zero probability

under Q0, i.e. for every directed edge
(

u′, v ′) of type
(

i ′, j ′
)

, the initial message σ ∈ Σ from u′ to v ′ satisfies g (σ) =
(

i ′, j ′
)

and furthermore PQ0 (σ) 6= 0. Run Warning Propagation with update rule ϕ for t0 steps and let µin :=µu→v (≤
t0) and µout := µv→u (0) be the resulting t0-in-story and 0-out-story at v along (u, v ) respectively.

Then

P

((

φ
t0
ϕ (Q0)

[

i , j
]

,Q0
[

j , i
]

)

=
(

µin,µout
)

)

6= 0.

Proof. We construct an auxiliary tree G ′, in which each vertex has a corresponding vertex in G. For a vertex w ′ in
G ′, the corresponding vertex in G will be denoted by w . We construct G ′ as follows. First generate u′ as the root of
the tree, along with its parent v ′. Subsequently, recursively for each t ∈ {0}∪ [t0 −1], for each vertex x′ at distance t

below u′ with parent y ′, we generate children for all neighbours of the vertex x in G except for y .
Note that another way of viewing G ′ is that we replace walks beginning at u in G (and whose second vertex is not

v) by paths, where two paths coincide for as long as the corresponding walks are identical, and are subsequently
disjoint. A third point of view is to see G ′ as a forgetful search tree of G, where (apart from the parent) we don’t
remember having seen vertices before and therefore keep generating new children.

We will initialise messages in G ′ from each vertex to its parent (and also from v to u) according to the corre-
sponding initialisation in G, and run Warning Propagation with update rule ϕ for t0 rounds.

Let µ′
in = µ′

u′→v ′ (≤ t0) be the resulting t0-in-story and µ′
out = µ′

v ′→u′ (0) be the 0-out-story at v ′ along
(

u′, v ′) in

G ′. Recall that µin and µout are the corresponding t0-in-story and 0-out-story at v in G . The crucial observation is
the following.
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Claim 5.2. µ′
in =µin and µ′

out =µout.

We delay the proof of this claim until after the proof of Proposition 5.1, which we now complete. Since each
initial message has non-zero probability under Q0, we have PQ0

(

µout
)

6= 0. Recall that φt0
ϕ (Q0)

[

i , j
]

was defined as

the probability distribution of
(

X (0)
i j

, . . . , X
(t0)
i j

)

, the message history in a Ti j tree in which messages are initialised

according to Q0. Therefore the probability that φt0
ϕ (Q0)

[

i , j
]

=µin =µ′
in is certainly at least the probability that a

T
t0

i j
tree has exactly the structure of G ′ (up to depth t0) and that the initialisation chosen at random according to

Q0 is precisely the same as the initialisation in G ′. Since G ′ is a finite graph whose type-degrees for all vertices not
at distance t0 from u has positive probability under Z , there is a positive probability that a random instance of T

t0
i j

is isomorphic to G ′. Furthermore, since each initial message has a positive probability under Q0, the probability of
choosing the same initialisation as in G ′ is also nonzero, as required. �

We now go on to prove the auxiliary claim.

Proof of Claim 5.2. By construction the 0-out-message at v ′ along
(

v ′,u′) is identical to the corresponding 0-out-
message in G so µ′

out =µout. It remains to prove that the t0-in-stories are identical.
For any vertex x′ ∈ G ′ \ {v ′}, let x′

+ denote the parent of x′. In order to prove Claim 5.2, we will prove a much
stronger statement from which the initial claim will follow easily. More precisely, we will prove by induction on
t that for all x′ ∈ G ′ \ {v ′}, µ′

x′→x′
+

(≤ t) = µx→x+ (≤ t). For t = 0, by construction µ′
x′→x′

+
(0) = µx→x+ (0) for any

x′ ∈G ′ \{v ′} because messages in G ′ are initialised according to the corresponding initialisation in G. Suppose that
the statement is true for some t ≤ t0 −1. It remains to prove that µ′

x′→x′
+

(t +1) = µx→x+ (t +1). By the induction

hypothesis, µ′
y ′→x′ (t) =µy→x (t) for all y ′ ∈ ∂G ′ x′ \ {x′

+}. Hence,

{{

µ′
y ′→x′ (t) : y ′ ∈ ∂G ′x′ \ {x′

+}
}}

=
{{

µy→x (t) : y ′ ∈ ∂G ′x′ \ {x′
+}

}}

=
{{

µz→x (t) : z ∈ ∂G x \ {x+}
}}

,

i.e. the multisets of incoming messages to the directed edge
(

x′, x′
+
)

in G ′ and to the directed edge (x, x+) in G at
time t are identical. Therefore also

µ′
x′→x′

+
(t +1) =ϕ

({{

µy ′→x′ (t) : y ′ ∈ ∂G x′ \ {x′
+}

}})

=ϕ
({{

µz→x (t) : z ∈ ∂G x \ {x+}
}})

=µx→x+ (t +1) ,

as required. �

Proposition 5.1 tells us that no matter how strange or pathological a messaged graph looks locally, there is still
a positive probability that we will capture the resulting input (and therefore w.h.p. such an input will be generated
a linear number of times in Ĝt0 ). In particular, within distance t0 of a short cycle the distribution of an input may

be significantly different from
(

φ
t0
ϕ (Q0)

[

i , j
]

,Q0
[

j , i
])

. However, we next show that there are unlikely to be many
edges this close to a short cycle.

Claim 5.3. Let W0 be the set of vertices which lie on some cycle of length at most t0 in G, and recursively define

Wt :=Wt−1 ∪∂Wt−1 for t ∈N.

Then w.h.p.
∣

∣Wt0

∣

∣=O
(

n
ω0

)

.

Proof. Any vertex which lies in Wt0 certainly has the property that its neighbourhood to depth 2t0 contains a cycle.

However, since for any i ∈ [k], the branching process T
2t0

i
certainly does not contain a cycle, Assumption B1

(together with the fact that w.h.p. there are O (n) vertices in total due to A1) shows that w.h.p. at most O (n/ω0)
vertices have such a cycle in their depth 2t0 neighbourhoods. �

5.3. The deleted half-edges. In the construction of Ĝ we deleted some half-edges which remained unmatched in
Step 4, and it is vital to know that there are not very many such half-edges. We therefore define E0 to be the set of
half-edges which are deleted in Step 4 of the random construction of Ĝ.

Definition 5.4. Given integers d , t ∈N0, a messaged graph G ∈ G
(t0)
n and a multiset A ∈

((

Σ
t+2

d

))

, define nA = nA (G)

to be the number of vertices of G which receive in-compilation A.

Further, let γi
A = γi

A (t) denote the probability that the t-in-compilation at a vertex of type i when generating Ĝt

is A.
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Observe that for any d , t ∈N0, the expression
∑

A∈
((

Σt+2

d

)) nA (G) is simply the number of vertices of degree d , and

therefore for any t ∈N0 we have
∑

d∈N0

∑

A∈
((

Σt+2

d

)) nA (G) = |V (G)|.

Recall that in Proposition 2.13, apart from the function F and the parameter ω0, we also fixed parameters c0,d0,
which we will now make use of.

Proposition 5.5. W.h.p. |E0| = o
(

np
c0

)

.

Proof. Let us fix two t0-in-stories µ1,µ2 ∈ Σ
t0+1 and consider the number of half-edges mµ1 ,µ2

with t0-in-story µ1
and t0-out-story µ2. We aim to show that mµ1,µ2

is concentrated around its expectation mµ1 ,µ2
as defined in (4.2).

Recall that the multiset of t0-stories at a vertex is determined by the t0-in-compilation, i.e. the multiset of t0-inputs.

For each d1,d2 ∈ N, let Bd1 ,d2 = Bd1 ,d2

(

µ1,µ2

)

denote the set of t0-in-compilations A ∈
((

Σ
t0+2

d2

))

consisting of d2

many t0-inputs which lead to d1 half-edges with t0-story
(

µ1,µ2

)

, and let xA denote the number of vertices which

receive t0-in-compilation A in Step 3 of the construction of Ĝt0 (in particular before the deletion of half-edges).
Then we have

mµ1,µ2
=

∑

d1 ,d2∈N

∑

A∈Bd1,d2

d1xA

We split the sum into two cases, depending on d2. Consider first the case when d2 > d0. By A1 w.h.p. the total
number of vertices is Θ (n), and by F4 the probability that any vertex has degree larger than d0 is at most 1/F (d0),
and it follows that w.h.p. the number of half-edges attached to vertices of degree larger than d2 is dominated by

d2 ·Bin
(

Θ (n) , 1
F (d2)

)

. Thus the expected number of half-edges attached to such high degree vertices is at most

Θ (1)
∑

d2≥d0

d2n

F (d2)
=Θ (1)

d0n

F (d0)
,

Now by (P3) we have F (d0) ≫ c0 and also d0 ≤
√

exp(d0) ≪p
c0, and therefore d0n

F (d0) = o
(

np
c0

)

. An application of

Markov’s inequality shows that w.h.p. the number of half-edges attached to vertices of degree at least d0 is o
(

np
c0

)

.

We now turn our attention to the case d2 ≤ d0. Here we observe that for any A each vertex of Vi is given t0-
in-compilation A with probability γi

A independently, and so the number of vertices which receive A is distributed
as

X :=
k
∑

i=1

Xi =
k
∑

i=1

Bin
(

ni ,γi
A

)

.

Conditioning on the high probability event that ni =
(

1+o
(

1
ω0

))

E(ni ) (see Claim 2.16), and in particular is

Θ (n), a standard Chernoff bound shows that with probability at least 1−exp
(

−Θ
(

(ln n)2
))

the random variable X

is within an additive factor
p

n ln n of its expectation, and a union bound over all at most |Σ|(t0+1)d0
(2.3)= o (c0) ≪ n1/5

choices for A of size at most d0 shows that w.h.p. this holds for all such A simultaneously.
It follows that w.h.p.

∣

∣mµ1,µ2
−mµ1,µ2

∣

∣≤
∣

∣

∣mµ1 ,µ2
−E

(

Zg (µ1)

)

qµ1,µ2
ng1(µ1)

∣

∣

∣+
∣

∣

∣E

(

Zg (µ1)

)

qµ1,µ2
ng1(µ1) −mµ1,µ2

∣

∣

∣

≤ |Σ|(t0+1)d0
p

n ln n+o

(

n
p

c0

)

+o

(

n

ω0

)

= o

(

n
p

c0

)

, (5.1)

To see the last estimate, note that by (2.3) we have |Σ|(t0+1)d0
p

n ln n ≪ c0
p

n ln n = o
(

n/
p

c0
)

, where second esti-

mate follows since c0 ≪ω0 ≪ n1/5 by P1 and P3. This last fact also implies that
p

c0 ≪ c0 ≪ω0.
Since this is true for any arbitrary t0-stories µ1,µ2, we can deduce that w.h.p.

∣

∣mµ1,µ2
−mµ2 ,µ1

∣

∣=
∣

∣mµ1 ,µ2
−mµ2,µ1

∣

∣+o

(

n
p

c0

)

.

Moreover, by Claim 4.7 we have
∣

∣mµ1 ,µ2
−mµ2 ,µ1

∣

∣ = O
(

n∆0
ω0

)

P3= o
(

np
c0

)

. Hence
∣

∣mµ1 ,µ2
−mµ2 ,µ1

∣

∣ = o
(

np
c0

)

, and a

union bound over all of the at most |Σ|2(t0+1) = O (1) choices for µ1,µ2 implies that w.h.p. the same is true for all

choices of µ1,µ2 simultaneously.
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Finally, we observe that (deterministically) the number |E0| of half-edges left unmatched is

|E0| =
∑

µ1 6=µ2

1

2

∣

∣mµ1 ,µ2
−mµ2 ,µ1

∣

∣+
∑

µ1

1
{

mµ1,µ1
∉ 2N

}

.

The first term is o
(

np
c0

)

w.h.p. by the arguments above, while the second term is deterministically at most the

number of µ1 over which the sum ranges, which is at most |Σ|t0+1 = O (1). Therefore w.h.p. |E0| = o
(

np
c0

)

, as re-

quired. �

5.4. Similar in-compilations. Our next goal is to show that the in-compilation sequence distribution in Gt0 is
essentially the same as that in Ĝt0 .

Proposition 5.6. Let t0 be some (bounded) integer. Then w.h.p. the following holds.

(1) For every integer d ≤ d0 and for every A ∈
((

Σ
t0+2

d

))

we have nA

(

Gt0

)

,nA

(

Ĝt0

)

=
(
∑

i∈[k] γ
i
Ani

)

+o
(

np
c0

)

.

(2) Ĝt0 ,Gt0 each contains at most n
c0

vertices of degree at least d0.

Proof. The proof is technical, but ultimately standard and we give only a short overview. The proofs of the two
statements for Ĝt0 essentially already appear in the proof of Proposition 5.5, which estimated the same parameters
in the random model before half-edges were deleted. We therefore only need to additionally take account of the
fact that some half-edges were deleted, but Proposition 5.5 itself implies that this will not affect things too much.

To prove the first statement for Gt0 we apply B1. More precisely, the sets of local neighbourhoods up to depth t0

in G of all vertices of Vi look similar to ni independent copies of T
t0

i
(Z ). Furthermore, since the message initial-

isation in G is according to Q0, and since there are very few dependencies between the local neighbourhoods, the
same is true if we consider the messaged local neighbourhoods at time 0. Since these messaged neighbourhoods
determine the corresponding t0-input at the root, a Chernoff bound shows that w.h.p. we have concentration of
nA

(

Gt0

)

around its expectation. Importantly the 1/ω0 term that describes the speed of convergence of the local

structure to T
t0

i
is smaller than 1/

p
c0, the (normalised) error term in the statement.

For the second statement, we also apply B1, although here we only need to go to depth 1 and need not consider
any messages. We also use A3 to bound the number of half-edges attached to vertices at which G and the copies of
T

1
i

disagree. Otherwise the proof is similar. �

Let a0 :=
p

c0

4d0|Σ|(t0+2)d0
. As a corollary of Proposition 5.6, we obtain the following result.

Corollary 5.7. After re-ordering vertices if necessary, w.h.p. the number of vertices whose in-compilations are differ-

ent in Ĝt0 and Gt0 is at most n
a0

.

Proof. Assuming the high probability event of Proposition 5.6 holds, the number of vertices with differing in-
compilations is at most









d0
∑

d=0

∑

A∈
((

Σ
t0+2

d

))

2n
p

c0









+
2n

c0
≤

2n
p

c0

(

d0
∑

d=0

|Σ|(t0+2)d

)

+
2n

c0

≤
2n
p

c0
d0 |Σ|(t0+2)d0 +

2n

c0
=

2n

4a0
+

2n

c0
≤

n

a0
,

where the last approximation follows by definition of a0. �

5.5. Matching up. Next, we show that choosing the random matching as we did in Step 4 of the construction of Ĝt0

is an appropriate choice. We already defined the type-degree sequence of a graph, which generalises the degree
sequence, but we need to generalise this notion still further to also track the in-coming stories at a vertex.

Definition 5.8. For any Σ
t0+1-messaged graph G ∈ G

(t0)
n , let Hi = Hi (G) denote the in-compilation at vertex i , for

i ∈ [n] and let H (G) := (H1, . . . , Hn ) be the in-compilation sequence.

Claim 5.9. Suppose that G1,G2 are two graphs on [n] with H (G1) = H (G2). Then P (G=G1) = (1+o (1))P (G=G2) .

Proof. If H (G1) = H (G2), then in particular D (G1) = D (G2). Then by Assumption A2, we have that P (G=G1) =
(1+o (1))P (G=G2). �
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5.6. Message consistency. We also need to know that the message histories generated in the construction of Ĝt0

match those that would be produced by Warning Propagation. Let ĜWP denote the graph with message histories
generated by constructing Ĝt0 , stripping all the message histories except for the messages at time 0 and running
Warning Propagation for t0 steps with this initialisation. Furthermore, let X0 be the set of vertices at which some
half-edges were deleted in Step 4 of the construction of Ĝt0 , and for t ∈N let Xt be the set of vertices at distance at
most t from X0 in Ĝt0 .

Proposition 5.10. Deterministically we have ĜWP = Ĝt0 except on those edges incident to Xt0 . Furthermore, on those

edges incident to Xt0 but not Xt0−1, the message histories in ĜWP and Ĝt0 are identical up to time t0 −1.

Proof. Since the two underlying unmessaged graphs are the same, we just need to prove that at any time 0 ≤ t ≤
t0, the incoming and outgoing messages at a given vertex v ∉ Xt−1 are the same for Ĝt0 and ĜWP (where we set
X−1 :=;). We will prove the first statement by induction on t . At time t = 0, the statement is true by construction
of ĜWP. Now suppose it is true up to time t for some 0 ≤ t ≤ t0 −1 and consider an arbitrary directed edge (u, v)
between vertices u, v ∉ Xt . By Definition 3.4 (2), the (t +1)-out-message from u in Ĝt0 is produced according to the
rules of Warning Propagation based on the t-in-messages to u at time t . Since u ∉ Xt , none of its neighbours lie
in Xt−1 and therefore by the induction hypothesis, these t-in-messages are the same for Ĝt0 and ĜWP. Hence, the
(t +1)-out-message along (u, v ) is also the same in Ĝt0 and ĜWP. This proves the first statement of the proposition,
while the second follows from the inductive statement for t = t0 −1. �

In view of Proposition 5.10, we need to know that not too many edges are incident to Xt0 .

Proposition 5.11. Let t ∈N be any constant. W.h.p. the number of edges of Ĝ incident to Xt is o (n).

Proof. The statement for t = 0 is implied by the (slightly stronger) statement of Proposition 5.5. For general t , the
statement follows since the average degree in Ĝ is bounded. More precisely, the expected number of edges of Ĝ
incident to Xt is (O (1))t |X0| =O (1) |X0| = o (n), and an application of Markov’s inequality completes the proof. �

5.7. Final steps. We can now complete the proof of Lemma 3.7.

Proof of Lemma 3.7. We use the preceding auxiliary results to show that every step in the construction of Ĝt0 closely
mirrors a corresponding step in which we reveal partial information about Gt0 . Let us first explicitly define these
steps within Gt0 by revealing information one step at a time as follows.

(1) First reveal the in-compilation at each vertex, modelled along half-edges.
(2) Next reveal all out-stories along each half-edge.
(3) Finally, reveal which half-edges together form an edge.

Corollary 5.7 shows that Step 2 in the construction of Ĝt0 can be coupled with Step 2 in revealing Gt0 above
in such a way that w.h.p. the number of vertices on which they produce different results is at most n

a0
= o (n).

Furthermore, Proposition 5.10 shows that, for those vertices for which the in-compilations are identical in Step 2,
the out-stories generated in Step 3 of the construction of both Ĝt0 and Gt0 must also be identical (deterministically).
Therefore before the deletion of unmatched half-edges in Step 4 of the definition of Ĝt0 , w.h.p. Condition (2) of
Definition 3.6 is satisfied. On the other hand, Proposition 5.5 states that w.h.p. o

(

n/
p

c0
)

= o (n) half-edges are
deleted, and therefore the condition remains true even after this deletion.

Now in order to prove that we can couple the two models in such a way that the two edge sets are almost the
same (and therefore Condition (1) of Definition 3.6 is satisfied), we consider each potential story µ ∈ Σ

2(t0+1) in
turn, and construct coupled random matchings of the corresponding half-edges. More precisely, let us fix µ and
let m̂ be the number of half-edges with this story in Ĝt0 . Similarly, define m to be the corresponding number of
half-edges in Gt0 . Furthermore, let r̂1 be the number of half-edges with story µ in Ĝt0 \Gt0 , let r̂2 be the number of
half-edges with the “dual story” µ∗, i.e. the story with in-story and out-story switched, and correspondingly r1,r2

in Gt0 \ Ĝt0 .
For convenience, we will assume that µ∗ 6=µ; the case when they are equal is very similar.
Let us call an edge of a matching good if it runs between two half-edges which are common to both models. Note

that this does not necessarily mean it is common to both matchings, although we aim to show that we can couple
in such a way that this is (mostly) the case. Observe that, conditioned on the number of good edges in a matching,
we may first choose a matching of this size uniformly at random on the common half-edges, and then complete
the matching uniformly at random (subject to the condition that we never match two common half-edges).
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Observe further that the matching in Ĝt0 must involve at least m̂− r̂1− r̂2 good edges, and similarly the matching
in Gt0 must involve at least m−r1 −r2, and therefore we can couple in such a way that at least min{m̂− r̂1 − r̂2,m−
r1 −r2} edges are identical, or in other words, the symmetric difference of the matchings has size at most max{r̂1 +
r̂2,r1 + r2}.

Repeating this for each possible µ, the total number of edges in the symmetric difference is at most twice the

number of half-edges which are not common to both models. We have already shown that there are at most o
(

n
a0

)

+

o
(

np
c0

)

= o
(

n
a0

)

vertices at which the in-compilations differ, and applying the second statement of Proposition 5.6,

we deduce that w.h.p.the number of half-edges which are not common to both models is at most d0 ·o
(

n
a0

)

+2· n
c0

=
o (n) as required. �

6. SUBCRITICALITY: THE IDEALISED CHANGE PROCESS

With Lemma 3.7 to hand, which tells us that Gt0 and Ĝt0 look very similar, we break the rest of the proof of
Theorem 1.3 down into two further steps.

First, in this section, we describe an idealised approximation of how a change propagates when applying WP
repeatedly to Gt0 , and show that this approximation is a subcritical process, and therefore quickly dies out. The
definition of this idealised change process is motivated by the similarity to Ĝt0 .

In the second step, in Section 7 we will use Lemma 3.7 to prove formally that the idealised change process closely
approximates the actual change process, which therefore also quickly terminates.

Definition 6.1. Given a probability distribution matrix Q on Σ, we say that a pair of messages (σ0,τ0) is a potential
change with respect to Q if there exist some t ∈N and some µ=

(

µ0,µ1, . . . ,µt

)

∈Ct+1 such that

• µt−1 =σ0;

• µt = τ0;

• P

(

φt
ϕ (Q)

[

ḡ
(

µ
)]

=µ
)

> 0.

We denote the set of potential changes by P (Q).

In other words, (σ0,τ0) is a potential change if there is a positive probability of making a change from σ0 to τ0 in
the message at the root edge at some point in the Warning Propagation algorithm on a Tg (σ0) branching tree when
initialising according to Q . The following simple claim will be important later.

Claim 6.2. If P is a fixed point and (σ0,τ0) ∈P (P ) with g (σ0) =
(

i , j
)

, then P
[

i , j
]

(σ0) > 0 and P
[

i , j
]

(τ0) < 1.

Proof. The definition of P (P ) implies in particular that there exist a t ∈N and a µ ∈Ct+1 such that µt−1 =σ0 and

P

(

φt
ϕ (P )

[

i , j
]

=µ
)

> 0. Furthermore, by Claim 4.1, the marginal distribution of the t-th entry of φt
ϕ (P )

[

i , j
]

is

φt
ϕ (P )

[

i , j
]

= P
[

i , j
]

(since P is a fixed point), and therefore we have P
[

i , j
]

(σ0) ≥P

(

φt
ϕ (P )

[

i , j
]

=µ
)

> 0.

On the other hand, since P
[

i , j
]

is a probability distribution on Σ, clearly P
[

i , j
]

(τ0) ≤ 1−P
[

i , j
]

(σ0)< 1. �

6.1. The idealised change branching process. Given a probability distribution matrix Q on Σ and a pair (σ0,τ0) ∈
P (Q), we define a branching process T = T (σ0,τ0,Q) as follows. We generate an instance of Ti j , where

(

i , j
)

=
ḡ (σ0), in particular including messages upwards to the directed root edge (v,u), so u is the parent of v . We then

also initialise two messages downwards along this root edge, µ(1)
u→v =σ0 and µ(2)

u→v = τ0. We track further messages
down the tree based on the message that a vertex receives from its parent and its children according to the WP

update rule ϕ. Given a vertex y with parent x, let µ(1)
x→y be the resultant message when the input at the root edge

is µ(1)
u→v =σ0, and similarly µ(2)

x→y the resultant message when the input is µ(2)
u→v = τ0. Finally, delete all edges

(

x, y
)

for which µ(1)
x→y = µ(2)

x→y , so we keep only edges at which messages change (along with any subsequently isolated
vertices). It is an elementary consequence of the construction that T is necessarily a tree.

6.2. Subcriticality. Intuitively, T approximates the cascade effect that a single change in a message from time
t0 − 1 to time t0 subsequently causes (this is proved more precisely in Section 7). Therefore while much of this
paper is devoted to showing that T is indeed a good approximation, a very necessary task albeit an intuitively
natural outcome, the following result is the essential heart of the proof of Theorem 1.3.
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Proposition 6.3. If P is a stable fixed point, then for any (σ0,τ0) ∈ P (P ), the branching process T =T (σ0,τ0,P ) is

subcritical.

Proof. Let us suppose for a contradiction that for some (σ0,τ0) ∈P (P ), the branching process has survival proba-
bility ρ > 0. We will use the notation a Î b to indicate that given b, we choose a sufficiently small as a function of
b.4

Given ρ and also Σ,ϕ,P , let us fix further parameters ε,δ ∈R and t1 ∈N according to the following hierarchy:

0< εÎ
1

t1
Î δ Î ρ,

1

|Σ|
≤ 1.

In the following, given an integer t and messages σt ,τt ∈ Σ, we will use the notation σt := (σt ,τt ). Let us define a
new probability distribution matrix Q on Σ as follows. For each

(

i , j
)

∈ [k]2 and for all µ ∈Σ

Q
[

i , j
](

µ
)

:=











P
[

i , j
](

µ
)

−ε if
(

i , j
)

= g (σ0) and µ=σ0;

P
[

i , j
](

µ
)

+ε if
(

i , j
)

= g (σ0) and µ= τ0;

P
[

i , j
](

µ
)

otherwise.

In other words, we edit the probability distribution in the g (σ0) entry of the matrix P to shift some weight from
σ0 to τ0, but otherwise leave everything unchanged. Note that since (σ0,τ0) ∈ P (P ) is a potential change, for
sufficiently small ε, each entry Q

[

i , j
]

of Q is indeed a probability distribution (by Claim 6.2 for
(

i , j
)

= g (σ0) or
trivially otherwise).

Let us generate the t1-neighbourhood of a root vertex u of type i in a Ti branching process and initialise mes-
sages from the leaves at depth t1 according to both Q and P , where we couple in the obvious way so that all
messages are identical except for some which are σ0 under P and τ0 under Q . We call such messages changed

messages.
We first track the messages where we initialise with P through the tree (both up and down) according to the

Warning Propagation rules, but without ever updating a message once it has been generated. Since P is a fixed
point of ϕ, each message µ either up or down in the tree has the distribution P

[

g
(

µ
)]

(though clearly far from
independently).

We then track the messages with initialisation according to Q through the tree, and in particular track where
differences from the first set of messages occur. Let xs (σ1) denote the probability that a message from a vertex at
level t1 − s to its parent changes from σ1 to τ1. Thus in particular we have

x0 (σ1) =
{

ε if σ1 =σ0,

0 otherwise.

Observe also that messages coming down from parent to child “don’t have time” to change before we consider
the message up (the changes from below arrive before the changes from above). Since we are most interested
in changes which are passed up the tree, we may therefore always consider a message coming down as being
distributed according to P (more precisely, according to P

[

i , j
]

, where i , j are the types of the parent and child
respectively).

We aim to approximate xs+1 (σ1) based on xs , so let us consider a vertex u at level t1 − (s +1) and its parent v .
Let us define Cd = Cd (u) to be the event that u has precisely d children. Furthermore, let us define Du (σ2) to be
the event that exactly one change is passed up to u from its children, and that this change is of type σ2. Finally,
let bu (σ1) be the number of messages from u (either up or down) which change from σ1 to τ1 (there may be more
changes of other types).

The crucial observation is that given the neighbours of u and their types, each is equally likely to be the parent
– this is because the tree Ti is constructed in such a way that, conditioned on the presence and type of the parent,
the type-degree distribution of a vertex of type j is Z j , regardless of what the type of the parent was. Therefore
conditioned on the event Du (σ2) and the values of d and bu (σ1), apart from the one child from which a change of
type σ2 arrives at u, there are d other neighbours which could be the parent, of which bu (σ1) will receive a change

of type σ1. Thus the probability that a change of type σ1 is passed up to the parent is precisely bu (σ1)
d

.

4In the literature this is often denoted by a ≪ b, but we avoid this notation since it has a very different meaning elsewhere in the paper. In

particular, here we aim to fix several parameters which are all constants rather than functions in n.

22



Therefore in total, conditioned on Cd and Du (σ2), the probability ad ;σ1,σ2 that a change of type σ1 is passed on
from u to v is

ad ;σ1,σ2 =
d
∑

ℓ=1

(

P (bu (σ1)= ℓ |Cd ∧Du (σ2)) ·
ℓ

d

)

=
1

d
·E(bu (σ1) |Cd ∧Du (σ2)) .

Now observe that this conditional expectation term is exactly as in the change process. More precisely, in the T
process we know automatically that only one change arrives at a vertex, and therefore if we have a change of type
σ2, the event Du (σ2) certainly holds. Therefore, letting h = g1 (σ2) and ℓ= g2 (σ2),

∑

d≥1

∑

d∈Se(d)

P (Yhℓ = d )d ad ;σ1,σ2 = T [σ1,σ2] , (6.1)

where Se(d) is the set of sequences d := (d1, . . . ,dk ) ∈N
k
0 such that

∑k
ℓ′=1 dℓ′ = d and T is the |Σ|2 ×|Σ|2 transition

matrix associated with the T change process, i.e. the entry T [σ1,σ2] is equal to the expected number of changes
of type σ1 produced in the next generation by a change of type σ2.

On the other hand, defining Eu to be the event that at least two children of u send changed messages (of any
type) to u, we also have

xs+1 (σ1) ≥
∑

d≥1

∑

d∈Se(d)

P (Yhℓ = d )
∑

σ2∈Σ2

ad ;σ1 ,σ2P (Du (σ2) |Cd )

≥
∑

d≥1

∑

d∈Se(d)

P (Yhℓ = d )
∑

σ2∈Σ2

ad ;σ1 ,σ2

(

d xs (σ2)−P (Eu |Cd )
)

. (6.2)

For each s ∈ N, let xs be the |Σ|2-dimensional vector whose entries are xs (σ) for σ ∈ Σ
2 (in some arbitrary order).

We now observe that, since P is a stable fixed point, i.e. φϕ is a contraction on a neighbourhood of P , and since
dTV (P,Q) = ε, for small enough ε we have

∑

σ∈Σ2

xs (σ) = ‖x s‖1 = dTV

(

P,φs
ϕ (Q)

)

≤ dTV (P,Q) = ‖x0‖1 = ε,

and so we further have

P (Eu|Cd ) ≤
(

d

2

)

ε2 ≤ d2ε2. (6.3)

Furthermore, we observe that since ad ;σ1 ,σ2 is a probability term by definition, we have
∑

σ2∈Σ2

ad ;σ1,σ2 ≤
∑

σ2∈Σ2

1 = |Σ|2 . (6.4)

Substituting (6.1), (6.3) and (6.4) into (6.2), we obtain

xs+1 (σ1) ≥
∑

σ2∈Σ2

T [σ1,σ2] xs (σ2)−|Σ|2 ε2
∑

d≥1

d2
∑

d∈Se(d)

P (Yhℓ = d ) .

Moreover, we have
∑

d≥1

d2
∑

d∈Se(d)

P (Yhℓ = d )=
∑

d≥1

d2
P

(

‖Yhℓ‖1 = d
)

= E
(

‖Yhℓ‖2
1

)

.

Now for any h,ℓ ∈ [k] we have that E
(

‖Yhℓ‖2
1

)

is finite by Remark 2.15, so defining c := maxh,ℓ∈[k] E
(

‖Yhℓ‖2
1

)

, we
have

|Σ|xs+1 ≥ T xs −c |Σ|2 ε2

(where the inequality is pointwise). As a direct consequence we also have xs ≥ T s x0 − sc |Σ|2 ε2 (pointwise), and
therefore

‖x s‖1 ≥ ‖T s x0‖1 − sc |Σ|4 ε2.

Now since the change process has survival probability ρ > 0 for the appropriate choice of σ0 = (σ0,τ0), choosing
x0 = εeσ0 (where eσ0 is the corresponding standard basis vector) we have

‖x s‖1 ≥ ‖T s x0‖1 − sc |Σ|4 ε2 ≥ ρ‖x0‖1 − sc |Σ|4 ε2 = ε
(

ρ− sc |Σ|4 ε
)

.
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On the other hand, since P is a stable fixed point, there exists some δ > 0 such that for small enough ε we have
‖x s‖1 ≤ (1−δ)s ε for all s. In particular choosing s = t1, we conclude that

ε
(

ρ− t1c |Σ|4 ε
)

≤ ‖x t1‖1 ≤ (1−δ)t1 ε.

However, since we have εÎ 1/t1 Î δÎ ρ,1/ |Σ|, we observe that

(1−δ)t1 ≤ ρ/2 < ρ− t1c |Σ|4 ε,

which is clearly a contradiction. �

7. APPLYING SUBCRITICALITY: PROOF OF THEOREM 1.3

Our goal in this section is to use Proposition 6.3 to complete the proof of Theorem 1.3.

7.1. A consequence of subcriticality. Recall that during the proof of Proposition 6.3 we defined the transition
matrix T of the change process T, which is a |Σ|2 ×|Σ|2 matrix where the entry T [σ1,σ2] is equal to the expected
number of changes of type σ1 that arise from a change of type σ2. The subcriticality of the branching process is

equivalent to T n n→∞−−−−→ 0 (meaning the zero matrix), which is also equivalent to all eigenvalues of T being strictly
less than 1 (in absolute value). We therefore obtain the following corollary of Proposition 6.3.

Corollary 7.1. There exist a constant γ> 0 and a positive real |Σ|2-dimensional vector α (with no zero entries) such

that

Tα≤
(

1−γ
)

α

(where the inequality is understood pointwise). We may further assume that ‖α‖1 = 1.

Proof. Given some ǫ > 0, let T ′ = T ′ (ǫ) be the matrix obtained from T by adding ǫ to each entry. Thus T ′ is a
strictly positive real matrix and we may choose ǫ to be small enough such that all the eigenvalues of T ′ are still less
than 1 in absolute value. By the Perron-Frobenius theorem, there exists a positive real eigenvalue that matches the
spectral radius ρ

(

T ′) < 1 of T ′. In addition, there exists a corresponding eigenvector to ρ
(

T ′), say α, all of whose
entries are non-negative; since every entry of T ′ is strictly positive, it follows that in fact every entry of α is also
strictly positive. We have T ′α = ρ

(

T ′)α, and we also note that Tα < T ′α since every entry of T ′ is strictly greater
than the corresponding entry of T . Thus we deduce that Tα< ρ

(

T ′)α, and setting γ := 1−ρ
(

T ′)> 0, we have the
desired statement.

The final property that ‖α‖1 = 1 can be achieved simply through scaling by an appropriate (positive) normalis-
ing constant, which does not affect any of the other properties of α. �

However, let us observe that in fact the change process that we want to consider is slightly different – rather than

having in-messages distributed according to P , they should be distributed according to φt0−1
ϕ (Q0). Since P is the

stable limit of Q0, this is arbitrarily close, but not exactly equal, to P . We therefore need the following.

Corollary 7.2. There exists δ0 > 0 sufficiently small that for any probability distribution Q on Σ which satisfies

dTV (P,Q) ≤ δ0, the following holds. LetT1 =T(σ0,τ0,Q) and let T1 be the transition matrix ofT1. Then there exist a

constant γ> 0 and a positive real |Σ|2-dimensional vector α (with no zero entries) such that

T1α≤
(

1−γ
)

α

(where the inequality is understood pointwise).

In other words, the same statement holds for T1, the transition matrix of this slightly perturbed process, as for T .
In particular, T1 is also a subcritical branching process.

Proof. Observe that since dTV (P,Q) ≤ δ0, for any ǫ we may pick δ0 = δ(ǫ) sufficiently small such that T1 and T differ
by at most ǫ in each entry. In other words, we have T1 ≤ T ′ pointwise, where T ′ = T ′ (ǫ) is as defined in the proof of
Corollary 7.1. Thus we also have T1α≤ T ′α= ρ

(

T ′)α=
(

1−γ
)

α as in the previous proof. �

For the rest of the proof, let us fix δ as in Theorem 1.3 and a constant δ0 Î δ small enough that the conclusion
of Corollary 7.2 holds, and also such that w.h.p.

∑k
i=1 ni ≤ δ−1/100

0 n, which is possible because by Claim 2.16 we

have ni = (1+o (1))E(ni ) = Θ (n) w.h.p.. Moreover, suppose that t0 is large enough that P ′ := φ
t0−1
ϕ (Q0) satisfies

dTV
(

P,P ′)≤ δ0 (this is possible since φ∗
ϕ (Q0) = P ).
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7.2. The marking process. We now use the idealised formT1 of the change process to give an upper bound on the
(slightly messier) actual process. For an upper bound, we will slightly simplify the process of changes made by WP

to obtain WP∗
(

Gt0

)

= WP∗
(

G0

)

from Gt0 . 5

We will reveal the information in Gt0 a little at a time as needed.

• Initialisation
– We first reveal the t0-inputs at each vertex, and the corresponding out-stories according to the update

rule ϕ. We also generate the outgoing messages at time t0 +1. Any half-edge whose t0-out-message is
σ0 and whose (t0 +1)-out-message is τ0 6=σ0 is called a change of type σ0.

– For each out-story which includes a change, this half-edge is marked.
• We continue with a marking process:

– Whenever a half-edge at u is marked, we reveal its partner v . The edge uv is marked.
– If v is a new vertex (at which nothing was previously marked), if the degree of v is at most k0 and if

the inputs are identical in Gt0 and Ĝt0 , we consider the remaining half-edges at v and apply the rules
of Warning Propagation to determine whether any out-messages will change. Any that do become
marked. We call such a vertex a standard vertex.

– If v does not satisfy all three of these conditions, we say that we have hit a snag. In particular:
∗ If v is a vertex that we have seen before, it is called a duplicate vertex;
∗ If v is a vertex of degree at most d0 whose inputs are different according to Gt0 and Ĝt0 , it is

called an error vertex; 6

∗ If v is a vertex of degree larger than d0, it is called a freak vertex.
In each case, all of the half-edges at v become marked. Such half-edges are called spurious edges, and
are further classified as defective, erroneous and faulty respectively, according to the type of snag we
hit. The corresponding messages can change arbitrarily (provided each individual change is in P (P )).

Note that a duplicate vertex may also be either an error or a freak vertex. However, by definition, no snag is both
an error and a freak vertex.

We first justify that this gives an upper bound on the number of changes made by Warning Propagation. Let EWP

be the set of edges on which the messages are different in Gt0 and in WP∗
(

Gt0

)

, and let Emark be the set of edges

which are marked at the end of the marking process. Note that the set Emark is not uniquely defined, but depends
on the arbitrary choices for the changes which are made at snags.

Proposition 7.3. There exists some choice of the changes to be made at snags such that EWP ⊆ Emark.

Proof. We proceed in rounds indexed by t ∈ N0. We define EWP (t) to be the set of edges on which the messages

are different in WPt
(

Gt0

)

compared to Gt0 , while Emark (t) is the set of edges which are marked after t steps of

the marking process. Since EWP = limt→∞EWP (t) and Emark = limt→∞Emark (t), it is enough to prove that for each
t ∈N0 we have EWP (t) ⊆ Emark (t), which we do by induction on t .

The base case t = 0 is simply the statement that the set of initial marks contains the changes from Gt0 to Gt0+1,
which is clearly true by construction.

For the inductive step, each time we reveal the incoming partner of a marked outgoing half-edge, if this is a
vertex at which nothing was previously marked, i.e. a standard vertex, then we proceed with marking exactly ac-
cording to Warning Propagation.

On the other hand, if at least one edge was already marked at this vertex we simply mark all the outgoing half-
edges, and if we choose the corresponding changes according to the changes that will be made by Warning Propa-
gation, the induction continues. �

In view of Proposition 7.3, our main goal is now the following.

Lemma 7.4. At the end of the marking process, w.h.p. at most
√

δ0n edges are marked.

During the proof of Lemma 7.4, we will make extensive use of the following fact.

5Note here that with a slight abuse of notation, we use WP to denote the obvious function on Gn which, given a graph G with messages

µ ∈M (G), maps
(

G,µ
)

to WP
(

G,µ
)

:=
(

G,WPG

(

µ
))

.
6Note that error vertices include in particular those at which we deleted unmatched half-edges in Step 4 of the construction of Ĝt0 .
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Claim 7.5. W.h.p., for every µ ∈ Σ
t0+1 such that PQ (≤t)

(

µ
)

6= 0, the total number of inputs of µ over all vertices is at

least δ1/100
0 n.

Proof. SincePQ (≤t)

(

µ
)

6= 0, there certainly exists some d ∈N and some A ∈
((

Σ
t0+1

d

))

such thatµ ∈ A andγA > 0. Since

we chose δ0 sufficiently small, so in particular δ1/100
0 < γA , Proposition 5.6 implies that w.h.p. there are certainly at

least γAn−o (n) ≥ δ1/100
0 n vertices which receive input A, which is clearly sufficient. �

Given a positive real number d and a probability distribution D on N
k
0 , we denote by D|≤d the probability dis-

tribution D conditioned on the event ‖D‖1 ≤ d . Recall that P ′ :=φ
t0−1
ϕ (Q0), and recall also from Definition 2.3 that

M
(

D, q
)

is a random multiset of messages. With a slight abuse of notation, we will also use M
(

D, q
)

to refer to
the distribution of this random multiset.

Proposition 7.6. Whenever a standard vertex v is revealed in the marking process from a change of type σ1, the

further changes made at outgoing half-edges at v have asymptotically the same distribution as in the branching

processT
(

σ1,τ1,P ′) below a change of type σ1.

Proof. First, we note that v is revealed in the marking process from a change of type σ1 so the vertex v has type i :=
g1 (σ1) and its parent (i.e its immediate predecessor in the branching process T

(

σ1,τ1,P ′)) has type j := g2 (σ1).

Now, given that v is a standard vertex , we may use Ĝt0 instead ofGt0 to model it. Moreover, there are Yi j |≤d0 further
half-edges at v . By Remark 2.15 and Markov’s inequality, the event

∥

∥Yi j

∥

∥

1 ≤ d0 is a high probability event. Thus,
the distribution Yi j |≤d0 tends asymptotically to the distribution Yi j . Furthermore, by Claim 4.1, each of these
further half-edges has a t0-in-message distributed according to P ′ independently. Since v was a new vertex, these
in-messages have not changed, and therefore are simply distributed according to M

(

Yi j ,P ′[i ]
)

, as inT
(

σ0,τ0,P ′).
Note that in the idealised process T

(

σ0,τ0,P ′) we additionally condition on these incoming messages produc-
ing ξ0, the appropriate message to the parent. In this case we do not know the message that v sent to its “parent”,
in the marking process. However, this message is distributed as P ′[i , j ], and letting X denote a random variable
distributed as M

(

Yi j , q i

)

, the probability that the multiset of incoming messages at v is A is simply

P
(

P ′[i , j ]=ϕ (A)
)

P
(

X = A |ϕ (X ) =ϕ (A)
)

.

Since P ′ is asymptotically close to the stable fixed point P , we have that P
(

P ′[i , j ]=ϕ (A)
)

is asymptotically close to
P

(

ϕ (X ) =ϕ (A)
)

for each A, and so the expression above can be approximated simply byP
(

{X = A}∩
{

ϕ (X ) =ϕ (A)
})

=P (X = A), as required. �

7.3. Three stopping conditions. In order to prove Lemma 7.4, we introduce some stopping conditions on the
marking process. More precisely, we will run the marking process until one of the following three conditions is
satisfied.

(1) Exhaustion - the process has finished.
(2) Expansion - there exists some σ1 = (σ1,τ1) ∈ Σ

2 such that at least δ3/5
0 ασ1 n messages have changed from

σ1 to τ1 (where α is the vector from Corollary 7.2).
(3) Explosion - the number of spurious edges is at least δ2/3

0 n.

Lemma 7.4 will follow if we can show that w.h.p. neither expansion nor explosion occurs.

7.3.1. Explosion.

Proposition 7.7. W.h.p. explosion does not occur.

We will split the proof up into three claims, dealing with the three different types of spurious edges.

Claim 7.8. W.h.p., the number of defective edges is at most δ2/3
0 n/2.

Proof. A type-i vertex v of degree d will contribute d defective edges if it is chosen at least twice as the partner of
a marked half-edge. Using Claim 7.5, at each step there are at least δ1/100

0 n possible half-edges to choose from, of

which certainly at most d are incident to v , and thus the probability that v is chosen twice in the at most
√

δ0n

steps is at most
(

d

δ1/100
0 n

)2
(

√

δ0n
)2

= δ49/50
0 d2.
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Thus setting S to be the number of defective edges and c := maxi∈[k] E
(

‖Zi‖3
1

)

, we have

E(S)≤
k
∑

i=1

∞
∑

d=0

d
(

P
(

‖Zi‖1 = d
)

ni

)

δ49/50
0 d2 = δ49/50

0

k
∑

i=1

ni

∞
∑

d=0

d3
P

(

‖Zi‖1 = d
)

≤ δ49/50
0 ·δ−1/100

0 n ·c ≤ δ4/5
0 n.

On the other hand, if two distinct vertices have degrees d1 and d2, then the probability that both become snags
may be estimated according to whether or not they are adjacent to each other, and is at most

d1d2

δ1/100
0 n

·
d1d2

(

δ1/100
0 n

)3

(

√

δ0n
)3
+

d2
1 d2

2
(

δ1/100
0 n

)4

(

√

δ0n
)4

≤ 2d2
1 d2

2δ
24/25
0 .

Therefore we have

E
(

S2)≤ E(S)+
∑

i , j ,ℓ,m∈[k]

∞
∑

d1 ,d2=0

d1d2P
(∥

∥Yi j

∥

∥

1 = d1
)

ni ·P
(

‖Ymℓ‖1 = d2
)

nm ·2d2
1 d2

2δ
49/25
0

≤ δ4/5
0 n+2δ49/25

0 max
i , j∈[k]

(

E

(

∥

∥Yi j

∥

∥

3
1

))2 (

δ−1/100
0 n

)2

≤ δ4/5
0 n+δ48/25

0 n2 max
i , j∈[k]

(

E

(

∥

∥Yi j

∥

∥

3
1

))2
≤ δ9/5

0 n2,

where the last line follows due to Remark 2.15 for sufficiently small δ0. Finally, Chebyshev’s inequality shows that
w.h.p. the number of spurious is at most δ2/3

0 n/2, as claimed. �

Recall that a0 :=
p

c0

4d0|Σ|(t0+2)d0
.

Claim 7.9. W.h.p. the number of erroneous edges is at most
d0np

a0
.

Proof. Observe that Corollary 5.7 implies in particular that the number of edges of Gt0 which are attached to ver-
tices of degree at most d0 where the incoming message histories differ from those in Ĝt0 (i.e. which would lead us
to an error vertex if chosen) is at most d0

n
a0

, and therefore the probability that we hit an error in any one step is

at most d0n/a0

δ1/100
0 n

= 1
δ1/100

0 (a0/d0)
. Furthermore, any time we meet an error we obtain at most d0 erroneous edges, and

since the marking process proceeds for at most δ3/5
0 n steps, therefore the expected number of erroneous edges in

total is at most

δ3/5
0 n ·

d0

δ1/100
0 (a0/d0)

= δ59/100
0 n ·

d2
0

a0
.

Now, by (P3), we have c0 ≫ exp(Cd0) ≫ d6
0 |Σ|

2(t0+2)d0 so
p

c0 ≫ d3
0 |Σ|

(t0+2)d0 which implies that a0 ≫ d2
0 . Thus,

application of Markov’s inequality completes the proof. �

Claim 7.10. W.h.p.the number of faulty edges is at most ∆0
np
c0

.

Proof. This is similar to the proof of Claim 7.9. By assumption A3, w.h.p. there are no vertices of degree larger
than ∆0. Moreover, by Proposition 5.6, w.h.p. the number of edges adjacent to vertices of degree at least d0 is

at most n/c0, so the probability of hitting a freak is at most ∆0
c0

. If we hit a freak, at most ∆0 half-edges become

faulty, therefore the expected number of faulty edges is δ3/5
0 n ·O

(

∆0 · ∆0
c0

)

= O

(

∆
2
0n

c0

)

. By P3 we have c0 ≫∆
2 so an

application of Markov’s inequality completes the proof. �

Combining all three cases we can prove Proposition 7.7.

Proof of Proposition 7.7. By Claims 7.8, 7.9 and 7.10, w.h.p. the total number of spurious edges is at most

δ2/3
0 n

2
+

d0n
p

a0
+
∆0n
p

c0
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Again, by (P3), we have c0 ≫ exp(Cd0) ≫ d6
0 |Σ|

2(t0+2)d0 and c0 ≫ ∆
2
0. Thus, we have

p
a0 ≫ d0 and

p
c0 ≫ ∆0.

Hence,

δ2/3
0 n

2
+

d0n
p

a0
+
∆0n
p

c0
≤ δ2/3

0 n

as required. �

7.3.2. Expansion.

Proposition 7.11. W.h.p. expansion does not occur.

Proof. By Proposition 7.7, we may assume that explosion does not occur, so we have few spurious edges. Therefore

in order to achieve expansion, at least 2
3

√

δ0n edges would have to be marked in the normal way, i.e. by being
generated as part of aT branching process rather than as one of the δ0n initial half-edges or as a result of hitting a
snag.

However, we certainly reveal children in T of at most δ3/5
0 ασ2 n changes from σ2 to τ2, for each choice of σ2 =

(σ2,τ2) ∈Σ
2, since at this point the expansion stopping condition would be applied. Thus the expected number of

changes from σ1 to τ1 is at most

∑

σ2∈Σ
δ3/5

0 ασ2 nTσ1 ,σ2 = (Tα)σ1 δ
3/5
0 n ≤

(

1−γ
)

ασ1δ
3/5
0 n.

We now aim to show that w.h.p. the actual number of changes is not much larger than this (upper bound on the)
expectation, for which we use a second moment argument. Let us fix some σ2 ∈Σ

2. For simplicity, we will assume
for an upper bound that we reveal precisely s := δ3/5

0 ασ2 n changes of type σ2 in T. Then the number of changes
of type σ1 that arise from these is the sum of s independent and identically distributed integer-valued random

variables X1, . . . , Xs , where for each r ∈ [s] we have E(Xr ) = Tσ1,σ2 and E
(

X 2
r

)

≤ c := maxi , j∈[k] E

(

∥

∥Yi j

∥

∥

2
1

)

. Therefore

we have Var (Xr ) ≤ c2 =O (1), and the central limit theorem tells us that Var
(
∑s

r=1 Xr

)

=O
(p

s
)

. Then the Chernoff
bound implies that w.h.p.

∣

∣

∣

∣

s
∑

r=1
Xr −E

( s
∑

r=1
Xr

)∣

∣

∣

∣

≤ n1/4O
(p

s
)

=O
(

n3/4)≤
γ

2
δ3/5

0 Tσ1 ,σ2ασ2 n.

Taking a union bound over all |Σ|4 choices of σ1,σ2, we deduce that w.h.p. the total number of changes of type σ1

is at most
(

1−γ
)

ασ1δ
3/5
0 n+

∑

σ2

γ

2
δ3/5

0 Tσ1 ,σ2ασ2 n =
(

1−γ/2
)

ασ1δ
3/5
0 n

for any choice of σ1, as required. �

7.3.3. Exhaustion.

Proof of Lemma 7.4. By Propositions 7.7 and 7.11, neither explosion nor expansion occurs. Thus the process fin-
ishes with exhaustion, and (using the fact that ‖α‖1 = 1) the total number of edges marked is at most

∑

σ1∈Σ2

δ3/5
0 ασ1 n+δ2/3

0 n =
(

δ3/5
0 +δ2/3

0

)

n ≤
√

δ0n

as required. �

7.4. Proof of Theorem 1.3. We can now complete the proof of our main theorem.

Proof of Theorem 1.3. Recall from Proposition 7.3 that edges on which messages change when moving from WP t0 (G0)
to WP∗ (G0), which are simply those in the set EWP, are contained in Emark.

Furthermore, Lemma 7.4 states that |Emark| ≤
√

δ0n. Since we chose δ0 Î δ, the statement of Theorem 1.3
follows. �
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8. CONCLUDING REMARKS

We remark that in the definition of the Ĝt0 model, rather than deleting unmatched half-edges, an alternative
approach would be to condition on the event that the statistics match up in such a way that no half-edges need be
deleted, i.e. such that the number of half-edges with t0-in-story µ1 and t0-out-story µ2 is identical to the number
of half-edges with t0-in-story µ2 and t0-out-story µ1, while the number of half-edges with both t0-in-story and
t0-out-story µ is even. Subsequently one would need to show that this conditioning does not skew the distribution
too much, for which it ultimately suffices to show that the event has a probability of at least n−Θ(1).

In some ways this might even be considered the more natural approach, and indeed it was the approach we
initially adopted in early versions of this paper. However, while the statement that the conditioning event is at
least polynomially likely is an intuitively natural one when one considers that, heuristically, the number of half-
edges with each story should be approximately normally distributed with standard deviation O

(p
n

)

, proving this
formally is surprisingly delicate and involves some significant technical difficulties.

Since at other points in the proof we already need to deal with “errors”, and unmatched half-edges can be han-
dled as a subset of these, this approach turns out to be far simpler and more convenient.
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METASTABILITY OF THE POTTS FERROMAGNET ON RANDOM REGULAR

GRAPHS

AMIN COJA-OGHLAN, ANDREAS GALANIS, LESLIE ANN GOLDBERG, JEAN BERNOULLI RAVELOMANANA,
DANIEL ŠTEFANKOVIČ, ERIC VIGODA

Abstract. We study the performance of Markov chains for the q-state ferromagnetic Potts model on
random regular graphs. While the cases of the grid and the complete graph are by now well-understood,
the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the properties
of the Potts distribution has remained elusive. It is conjectured that the performance of Markov chains
is dictated by metastability phenomena, i.e., “phases” (clusters) of the sample space where Markov chains
with local update rules, such as the Glauber dynamics, are bound to take exponential time to escape, and
therefore cause slow mixing. The phases that are believed to drive these metastability phenomena in the
case of the Potts model emerge as local, rather than global, maxima of the so-called Bethe functional, and
previous approaches of analysing these phases based on optimisation arguments fall short of the task.

Our first contribution is to detail the emergence of the metastable phases for the q-state Potts model
on the d-regular random graph for all integers q, d ≥ 3, and establish that for an interval of temperatures,
delineated by the uniqueness and the Kesten-Stigum thresholds on the d-regular tree, the two phases coexist.
The proofs are based on a conceptual connection between spatial properties and the structure of the Potts
distribution on the random regular graph, rather than complicated moment calculations.

Based on this new structural understanding of the model, we obtain various algorithmic consequences.
We first complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below the
uniqueness threshold, showing an exponential lower bound on the mixing time above the uniqueness thresh-
old. Then, we obtain tight results even for the non-local and more elaborate Swendsen-Wang chain, where
we establish slow mixing/metastability for the whole interval of temperatures where the chain is conjectured
to mix slowly on the random regular graph. The key is to bound the conductance of the chains using a
random graph “planting” argument combined with delicate bounds on random-graph percolation. MSC:
05C80, 60B20, 94B05

1. Introduction

1.1. Motivation. Spin systems on random graphs have turned out to be a source of extremely challenging
problems at the junction of mathematical physics and combinatorics [37, 38]. Beyond the initial motivation of
modelling disordered systems, applications have sprung up in areas as diverse as computational complexity,
coding theory, machine learning and even screening for infectious diseases; e.g. [1, 14, 23, 35, 41, 43, 44].
Progress has been inspired largely by techniques from statistical physics, which to a significant extent still
await a rigorous justification. The physicists’ sophisticated but largely heuristic tool is the Belief Propagation
message passing scheme in combination with a functional called the Bethe free energy [36]. Roughly speaking,
the fixed points of Belief Propagation are conjectured to correspond to the ‘pure states’ of the underlying
distribution, with the Bethe functional gauging the relative weight of the different pure states. Yet at closer
inspection matters are actually rather complicated. For instance, the system typically possesses spurious
Belief Propagation fixed points without any actual combinatorial meaning, while other fixed points need not
correspond to metastable states that attract dynamics such as the Glauber Markov chain [12, 15]. Generally,
the mathematical understanding of the connection between Belief Propagation and dynamics leaves much
to be desired.

In this paper we investigate the ferromagnetic Potts model on the random regular graph. Recall, for an
integer q ≥ 3 and real β > 0, the Potts model on a graph G = (V,E) corresponds to a probability distribution
µG,β over all possible configurations [q]V , commonly referred to as the Boltzmann/Gibbs distribution; the
weight of a configuration σ in the distribution is defined as µG,β(σ) = eβHG(σ)/Zβ(G) where HG(σ) is the

Coja-Oghlan supported by DFG CO 646/3 and 646/4. Ravelomanana supported by DFG CO 646/4. Vigoda supported by
NSF CCF-2007022.
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number of edges that are monochromatic under σ, and Zβ(G) =
∑

τ∈[q]V eβHG(τ) is the normalising factor
of the distribution. In physics jargon, β corresponds to the so-called inverse-temperature of the model,
HG( · ) is known as the Hamiltonian, and Zβ( · ) is the partition function. Note, since β > 0, the Boltzmann
distribution assigns greater weight to configurations σ where many edges join vertices of the same colour;
thus, the pairwise interactions between vertices are ferromagnetic.

The Potts model on the d-regular random graph has two distinctive features. First, the local geometry of
the random regular graph is essentially deterministic. For any fixed radius ℓ, the depth-ℓ neighbourhood of all
but a tiny number of vertices is just a d-regular tree. Second, the ferromagnetic nature of the model precludes
replica symmetry breaking, a complex type of long-range correlations [36]. Given these, it is conjectured that
the model on the random regular graph has a similar behaviour to that on the clique (the so-called mean
field case), and there has already been some preliminary evidence of this correspondence [6, 20, 19, 23]. On
the clique, the phase transitions are driven by a battle between two subsets of configurations (phases): (i)
the paramagnetic/disordered phase, consisting of configurations where every colour appears roughly equal
number of times, and (ii) the ferromagnetic/ordered phase, where one of the colours appears more frequently
than the others. It is widely believed that these two phases also mark (qualitatively) the same type of phase
transitions for the Potts model on the random regular graph, yet this has remained largely elusive.

The main reason that this behaviour is harder to establish on the random regular graph is that it has a
non-trivial global geometry which makes both the analysis of the distribution and Markov chains significantly
more involved (to say the least). In particular, the emergence of the metastable states in the distribution,
which can be established by way of calculus in the mean-field case, is out of reach with single-handed
analytical approaches in the random regular graph and it is therefore not surprising that it has resisted a
detailed analysis so far. Likewise, the analysis of Markov chains is a far more complicated task since their
evolution needs to be considered in terms of the graph geometry and therefore much harder to keep track of.

Our main contribution is to establish the emergence of the metastable states, viewed as fixed points of
Belief Propagation on this model, and their connection with the dynamic evolution of the two most popular
Markov chains, the Glauber dynamics and the Swensen-Wang chain. We prove that these natural fixed
points, whose emergence is directly connected with the phase transitions of the model, have the combinatorial
meaning in terms of both the pure state decomposition of the distribution and the Glauber dynamics that
physics intuition predicts they should. The proofs avoid the complicated moment calculations and the
associated complex optimistion arguments that have become a hallmark of the study of spin systems on
random graphs [3]. Instead, building upon and extending ideas from [5, 16], we exploit a connection between
spatial mixing properties on the d-regular tree and the Boltzmann distribution.

We expect that this approach might carry over to other examples, particularly other ferromagnetic models.
Let us begin by recapitulating Belief Propagation.

1.2. Belief Propagation. Suppose that n, d ≥ 3 are integers such that dn is even and let G = G(n, d)
be the random d-regular graph on the vertex set [n] = {1, . . . , n}. For an inverse temperature parameter
β > 0 and an integer q ≥ 3 we set out to investigate the Boltzmann distribution µG,β ; let us write σG,β for
a configuration drawn from µG,β.

A vital step toward understanding the Boltzmann distribution is to get a good handle on the partition
function Zβ(G). Indeed, according to the physicsts’ cavity method, Belief Propagation actually solves both
problems in one fell swoop [36]. To elaborate, with each edge e = uv of G, Belief Propagation associates
two messages µG,β,u→v, µG,β,v→u, which are probability distributions on the set [q] of colours. The message
µG,β,u→v(c) is defined as the marginal probability of v receiving colour c in a configuration drawn from the
Potts model on the graph G− u obtained by removing u. The semantics of µG,β,v→u is analogous.

Under the assumption that the colours of far apart vertices of G are asymptotically independent, one can
heuristically derive a set of equations that links the various messages together. For a vertex v, let ∂v be the
set of neighbours of v, and for an integer ℓ ≥ 1 let ∂ℓv be the set of vertices at distance precisely ℓ from v.
The Belief Propagation equations read

µG,β,v→u(c) =

∏

w∈∂v\{u} 1 + (eβ − 1)µG,β,w→v(c)
∑

χ∈[q]

∏

w∈∂v\{u} 1 + (eβ − 1)µG,β,w→v(χ)
(uv ∈ E(G), c ∈ [q]). (1.1)
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The insight behind (1.1) is that once we remove v from the graph, its neighbours w 6= u are typically far
apart from one another because G contains only a negligible number of short cycles. Hence, we expect that
in G − v the spins assigned to w ∈ ∂v \ {u} are asymptotically independent. From this assumption it is
straightforward to derive the sum-product-formula (1.1).

A few obvious issues spring to mind. First, for large β it is not actually true that far apart vertices
decorrelate. This is because at low temperature there occur q different ferromagnetic pure states, one for
each choice of the dominant colour. To break the symmetry between them one could introduce a weak external
field that slighly boosts a specific colour or, more bluntly, confine oneself to a conditional distribution on
subspace where a specific colour dominates. In the definition of the messages and in (1.1) we should thus
replace the Boltzmann distribution by the conditional distribution µG,β( · | S) for a suitable S ⊆ [q]n.
Second, even for the conditional measure we do not actually expect (1.1) to hold precisely. This is because
for any finite n minute correlations between far apart vertices are bound to remain.

Nonetheless, precise solutions (µv→u)uv∈E(G) to (1.1) are still meaningful. They correspond to stationary
points of a functional called the Bethe free energy, which connects Belief Propagation with the problem of
approximating the partition function [47]. Given a collection (µu→v)uv∈E(G) of probability distributions on
[q], the Bethe functional reads

BG,β

(

(µu→v)uv∈E(G)

)

=
1

n

∑

v∈V (G)

log

[

∑

c∈[q]

∏

w∈∂v

1 + (eβ − 1)µw→v(c)

]

−
1

n

∑

vw∈E(G)

log

[

1 + (eβ − 1)
∑

c∈[q]

µv→w(c)µw→v(c)

]

.

(1.2)

According to the cavity method the maximum of BG,β

(

(µu→v)uv∈E(G)

)

over all solutions (µu→v)uv∈E(G) to
(1.1) should be asymptotically equal to logZβ(G) with high probability.

In summary, physics lore holds that the solutions (µu→v)uv∈E(G) to (1.1) are meaningful because they
correspond to a decomposition of the phase space [q]n into pieces where long-range correlations are absent.
Indeed, these “pure states” are expected to exhibit metastability, i.e., they trap dynamics such as the Glauber
Markov chain for an exponential amount of time. Moreover, the relative probabilities of the pure states are
expected to be governed by their respective Bethe free energy. In the following we undertake to investigate
these claims rigorously.

Before proceeding, let us mention that ferromagnetic spin systems on random graphs have been among the
first models for which predictions based on the cavity method could be verified rigorously. Following seminal
work by Dembo and Montanari on the Ising model [18] vindicating the “replica symmetric ansatz”, Dembo,
Montanari and Sun [20] studied, among other things, the Gibbs unique phase of the Potts ferromagnet on the
random regular graph, and Dembo, Montanari, Sly and Sun [20] established the free energy of the model for
all β (and d even). More generally, Ruozzi [42] pointed out how graph covers [46] can be used to investigate
the partition function of supermodular models, of which the Ising ferromagnet is an example. In addition,
Barbier, Chan and Macris [6] proved that ferromagnetic spin systems on random graphs are generally replica
symmetric in the sense that the multi-overlaps of samples from the Boltzmann distribution concentrate on
deterministic values.

1.3. The ferromagnetic and the paramagnetic states. An obvious attempt at constructing solutions
to the Belief Propagation equations is to choose identical messages µu→v for all edges uv ∈ E(G). Clearly,
any solution (µ(c))c∈[q] to the system

µ(c) =
(1 + (eβ − 1)µ(c))d−1

∑

χ∈[q](1 + (eβ − 1)µ(χ))d−1
(c ∈ [q]) (1.3)

supplies such a ‘constant’ solution to (1.1). Let Fd,β be the set of all solutions (µ(c))c∈[q] to (1.3). The Bethe
functional (1.2) then simplifies to

Bd,β
(

(µ(c))c∈[q]

)

= log

[

∑

c∈[q]

(

1 + (eβ − 1)µ(c)
)d
]

−
d

2
log

[

1 + (eβ − 1)
∑

c∈[q]

µ(c)2
]

. (1.4)
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One obvious solution to (1.3) is the uniform distribution on [q]; we refer to that solution as paramag-
netic/disordered and denote it by µp. Apart from µp, other solutions to (1.3) emerge as β increases for
any d ≥ 3. Specifically, let βu > 0 be the supremum value of β > 0 where µp is the unique solution to
(1.3).1 Then, for β = βu, one more solution µf emerges such that µf(1) > µf(i) =

1−µf (1)
q−1 for i = 2, . . . , q,

portending the emergence of a metastable state and, ultimately, a phase transition. In particular, for any
β > βu, a bit of calculus reveals there exist either one or two distinct solutions µ with µ(1) > µ(i) = 1−µ(1)

q−1

for i = 2, . . . , q; we denote by µf the solution of (1.3) which maximises the value µ(1) and refer to it as
ferromagnetic/ordered. At the critical value

βp = max {β ≥ βu : Bd,β(µp) ≥ Bd,β(µf)} = log
q − 2

(q − 1)1−2/d − 1
.

the ferromagnetic solution µf takes over from the paramagnetic solution µp as the global maximiser of the
Bethe functional. Yet, up to the Kesten-Stigum threshold

βh = log(1 + q/(d− 2))

the paramagnetic solution remains a local maximiser of the Bethe free energy. The relevance of these critical
values has been demonstrated in [23] (see also [19] for d even, and [29] for q large), where it was shown
that 1

n logZβ(G) is asymptotically equal to maxµ Bd,β(µ), the maximum ranging over µ satisfying (1.3). In
particular, at the maximum it holds that µ = µp when β < βp, µ = µf when β > βp and µ ∈ {µp, µf} when
β = βp.

1.4. Slow mixing and metastability. To investigate the two BP solutions further and obtain connections
to the dynamical evolution of the model, we need to look more closely how these two solutions µp, µf manifest
themselves in the random regular graph. To this end, we define for a given distribution µ on [q] another
distribution

νµ(c) =
(1 + (eβ − 1)µ(c))d

∑

χ∈[q](1 + (eβ − 1)µ(χ))d
(c ∈ [q]). (1.5)

Let νf = νµf and νp = νµp for brevity; of course νp = µp is just the uniform distribution. The distributions
νf and νp represent the expected Boltzmann marginals within the pure states corresponding to µf and µp.
Indeed, the r.h.s. of (1.5) resembles that of (1.3) except that the exponents read d rather than d− 1. This
means that we pass from messages, where we omit one specific endpoint of an edge from the graph, to actual
marginals, where all d neighbours of a vertex are present. For small ε > 0, it will therefore be relevant to
consider the sets of configurations

Sf(ε) =

{

σ ∈ [q]n :
∑

c∈[q]

∣

∣

∣

∣

∣σ−1(c)
∣

∣− nνf(c)
∣

∣

∣
< εn

}

, Sp(ε) =

{

σ ∈ [q]n :
∑

c∈[q]

∣

∣

∣

∣

∣σ−1(c)
∣

∣− nνp(c)
∣

∣

∣
< εn

}

,

whose colour statistics are about nνf and nνp, respectively; i.e., in Sp, all colours appear with roughly equal
frequency, whereas in Sf colour 1 is favoured over the other q − 1 colours (which appear with roughly equal
frequency).

We are now in position to state our main result for Glauber dynamics. Recall that, for a graph G = (V,E),
Glauber is initialised at a configuration σ0 ∈ [q]V ; at each time step t ≥ 1, Glauber draws a vertex uniformly
at random and obtains a new configuration σt by updating the colour of the chosen vertex according to the
conditional Boltzmann distribution given the colours of its neighbours. It is a well-known fact that Glauber
converges in distribution to µG,β; the mixing time of the chain is defined as the maximum number of steps
t needed to get within total variation distance ≤ 1/4 from µG,β, where the maximum is over the choice of
the initial configuration σ0, i.e., the quantity maxσ0

min{t : dTV(σt, µG,β) ≤ 1/4}.
For metastability, we will consider Glauber launched from a random configuration from a subset S ⊆

[q]V of the state space. More precisely, let us denote by µG,β,S = µG,β(· | S) the conditional Boltzmann

1The value does not have a closed-form expression, but there is an equivalent formulation of it given by the equality

eβu = 1 + infy>1
(y−1)(yd−1+q−1)

yd−1
−y

.
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distribution on S. We call S a metastable state for Glauber dynamics on G if there exists δ > 0 such that

P

[

min{t : σt 6∈ S} ≤ eδ|V | | σ0 ∼ µG,β,S

]

≤ e−δ|V |.

Hence, it will most likely take Glauber an exponential amount of time to escape from a metastable state.

Theorem 1.1. Let d, q ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small ε > 0, the following
hold w.h.p. over the choice of G = G(n, d).

(i) If β < βh, then Sp(ε) is a metastable state for Glauber dynamics on G.
(ii) If β > βu, then Sf(ε) is a metastable state for Glauber dynamics on G.

Further, for β > βu, the mixing time of Glauber is eΩ(n).

Thus, we can summarise the evolution of the Potts model as follows. For β < βu there is no ferromagnetic
state. As β passes βu, the ferromagnetic state Sf emerges first as a metastable state. Hence, if we launch
Glauber from Sf , the dynamics will most likely remain trapped in the ferromagnetic state for an exponential
amount of time, even though the Boltzmann weight of the paramagnetic state is exponentially larger (as we
shall see in the next section). At the point βp the ferromagnetic state then takes over as the one dominating
the Boltzmann distribution, but the paramagnetic state remains as a metastable state up to βh. Note in
particular that the two states coexist as metastable states throughout the interval (βu, βh).

The metastability for the Potts model manifests also in the evolution of the Swendsen-Wang (SW) chain,
which is another popular and substantially more elaborate chain that makes non-local moves, based on the
random-cluster representation of the model. For a graph G = (V,E) and a configuration σ ∈ [q]V , a single
iteration of SW starting from σ consists of two steps.

• Percolation step: Let M = M(σ) be the random edge-set obtained by adding (indepentently) each
monochromatic edge under σ with probability p = 1− e−β .

• Recolouring step: Obtain the new σ′ ∈ [q]V by assigning each component2 of the graph (V,M) a
uniformly random colour from [q]; for v ∈ V , we set σ′

v to be the colour assigned to v’s component.
We define metastable states for SW dynamics analogously to above. The following theorem establishes the
analogue of Theorem 1.1 for the non-local SW dynamics. Note here that SW might change the most-frequent
colour due to recolouring step, so the metastability statement for the ferromagnetic phase needs to consider
the set Sf(ε) with its q − 1 permutations.

Theorem 1.2. Let d, q ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small ε > 0, the following
hold w.h.p. over the choice of G = G(n, d).

(i) If β < βh, then Sp(ε) is a metastable state for SW dynamics on G.
(ii) If β > βu, then Sf(ε) together with its q− 1 permutations is a metastable state for SW dynamics on G.

Further, for β ∈ (βu, βh), the mixing time of SW is eΩ(n).

1.5. The relative weight of the metastable states. At the heart of obtaining the metastability results of
the previous section is a refined understanding of the relative weight of the ferromagnetic and paramagnetic
states. The following notion of non-reconstruction will be the key in our arguments; it captures the absence of
long-range correlations within a set S ⊆ [q]n, saying that, for any vertex v, a typical boundary configuration
on σ∂ℓv chosen according to the conditional distribution on S does not impose a discernible bias on the
colour of v (for large ℓ, n; recall, ∂ℓv is the set of all vertices at distance precisely ℓ from v). More precisely,
let µ = µG,β and σ ∼ µ; the Boltzmann distribution exhibits non-reconstruction given a subset S ⊆ [q]n if
for any vertex v it holds that

lim
ℓ→∞

lim sup
n→∞

∑

c∈[q]

∑

τ∈S

E [µ(τ | S)× |µ(σv = c | σ∂ℓv = τ∂ℓv)− µ(σv = c | S)|] = 0,

where the expectation is over the choice of the graph G.

Theorem 1.3. Let d, q ≥ 3 be integers and β > 0 be real. The following hold for all sufficiently small ε > 0
as n→ ∞.

(i) For all β < βp, E [µG,β(Sp)] → 1 and, if β > βu, then E
[

1
n logµG,β(Sf)

]

→ Bd,β(µf)− Bd,β(µp).

2Note, isolated vertices count as connected components.
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(ii) For all β > βp, E [µG,β(Sf)] → 1/q and, if β < βh, then E
[

1
n logµG,β(Sp)

]

→ Bd,β(µp)− Bd,β(µf).

Furthermore, the Boltzmann distribution given Sp exhibits non-reconstruction if β < βh and the Boltzmann
distribution given Sf exhibits non-reconstruction if β > βu.

Theorem 1.3 shows that for β < βp the Boltzmann distribution is dominated by the paramagnetic state
Sp for β < βp. Nonetheless, at βu the ferromagnetic state Sf and its q − 1 mirror images start to emerge.
Their probability mass is determined by the Bethe free energy evaluated at µf . Further, as β passes βp
the ferromagnetic state takes over as the dominant state, with the paramagnetic state lingering on as a
sub-dominant state up to βh. Finally, both states Sp and Sf are free from long-range correlations both for
the regime of β where they dominate and for those β where they are sub-dominant.

1.6. Discussion. Our slow mixing result for Glauber dynamics when β > βu (Theorem 1.1) significantly
improves upon previous results of Bordewich, Greenhill and Patel [11] that applied to β > βu + Θq(1); in
fact, it complements the recent fast mixing result of Blanca and Gheissari [8] on the random d-regular graph
that applies to all β < βu, leaving therefore only open the mixing time at the critical case β = βu (which is
believed to be polynomial in n).

Similarly, our slow mixing result for Swendsen-Wang dynamics when β ∈ (βu, βh) (Theorem 1.2) strength-
ens earlier results of Galanis, Štefankovič, Vigoda, Yang [23] which applied to β = βp, and by Helmuth,
Jenseen and Perkins [29] which applied for a small interval around βp; both results applied only for q suf-
ficiently large. To obtain our result for all integers q, d ≥ 3, we need to carefully track how SW evolves on
the random regular graph for configurations starting from the ferromagnetic and paramagnetic phases, by
accounting for the percolation step via delicate arguments, whereas the approaches of [23, 29] side-stepped
this analysis by considering the number of monochromatic edges instead. Extrapolating from the mean-field
case (see discussion below), it is natural to conjecture that this slow mixing result is best-possible, i.e., for
β /∈ (βu, βh), SW mixes rapidly on the random regular graph. Note, the result of [8] already implies a
polynomial bound on the mixing time of SW when β < βu (due to comparison results by Ullrich that apply
to general graphs [45]).

Finally, Theorem 1.3, aside from being critical in establishing the aforementioned slow mixing and metasta-
bility results, is the first to detail the relative weight of the ferromagnetic and paramagnetic phases for all
β in the interval (βu, βh) and establish their coexistence; the case β = βp had previously been detailed
in [29] (see also [23]). Together with Theorems 1.1 and 1.2, it delineates firmly a correspondence with the
(simpler) mean-field case, the Potts model on the clique. In the mean-field case, there are qualitatively
similar thresholds βu, βp, βh and the mixing time for Glauber and SW have been detailed for all β, even at
criticality, see [9, 10, 26, 24, 17, 28]. One tantalising future question is to establish whether the fast mixing
of SW for β = βu and β ≥ βh translates to the random regular graph as well.

We remark here that, from a worst-case perspective, it is known that sampling from the Potts model
on d-regular graphs is #BIS-hard for β > βp [23], and we conjecture that the problem admits a poly-
time approximation algorithm when β < βp. However, even showing that Glauber mixes fast on any
d-regular graph in the uniqueness regime β < βu is a major open problem, and Theorems 1.1 and 1.2 further
demonstrate that getting an algorithm all the way to βp will require using different techniques. On that
front, progress has been made on the random regular graph: [29] obtained an algorithm for d ≥ 5 and q
large that applies to all β by sampling from each phase separately (using different tools); also, for β < βp,
Efthymiou [21] gives an algorithm with weaker approximation guarantees but which applies to all q, d ≥ 3
(see also [7]). In principle, and extrapolating again from the mean-field case, one could use Glauber/SW
to sample from each phase on the random regular graph for all q, d ≥ 3 and all β. Analysing such chains
appears to be relatively far from the reach of current techniques even in the case of the random regular
graph, let alone worst-case graphs. In the case of the Ising model however, the case q = 2, the analogue of
this fast mixing question has recently been established for sufficiently large β in [27] on the random regular
graph and the grid, exploiting certain monotonicity properties.

Finally, let us note that the case of the grid has qualitatively different behaviour than the mean-field and
the random-regular case. There, the three critical points coincide and the behaviour at criticality depends
on the value of q; the mixing time of Glauber and SW has largely been detailed, see [9, 34, 25].

6



2. Overview

In this section we give an overview of the proofs of Theorems 1.1–1.3. Fortunately, we do not need to start
from first principles. Instead, we build upon the formula for the partition function Zβ(G) and its proof
via the second moment method from [23]. Additionally, we are going to seize upon facts about the non-
reconstruction properties of the Potts model on the random (d− 1)-ary tree, also from [23]. We will combine
these tools with an auxiliary random graph model known as the planted model, which also plays a key role
in the context of inference problems on random graphs [15].

2.1. Preliminaries. Throughout most of the paper, instead of the simple random regular graph G, we are
going to work with the random d-regular multi-graph G = G(n, d) drawn from the pairing model. Recall
that G is obtained by creating d clones of each of the vertices from [n], choosing a random perfect matching
of the complete graph on [n]× [d] and subsequently contracting the vertices {i} × [d] into a single vertex i,
for all i ∈ [n]. It is well-known that G is contiguous with respect to G [31], i.e., any property that holds
w.h.p. for G also holds w.h.p. for G.

For a configuration σ ∈ [q]V (G) define a probability distribution νσ on [q] by letting

νσ(s) = |σ−1(s)|/n (s ∈ [q]).

In words, νσ is the empirical distribution of the colours under σ. Similarly, let ρG,σ ∈ P([q] × [q]) be the
edge statistics of a given graph/colouring pair, i.e.,

ρG,σ(s, t) =
1

2|E(G)|

∑

u,v∈V (G)

1{uv ∈ E(G), σu = s, σv = t}.

We are going to need the following elementary estimate of the number of d-regular multigraphs G that attain
a specific ρG,σ.

Lemma 2.1 ([13, Lemma 2.7]). Suppose that σ ∈ [q]n. Moreover, suppose that ρ = (ρ(s, t))s,t∈[q] is a
symmetric matrix with positive entries such that dnρ(s, t) is an integer for all s, t ∈ [q], dnρ(s, s) is even for
all s ∈ [q] and

∑q
t=1 ρ(s, t) = νσ(s) for all s ∈ [q]. Let G(σ, ρ) be the event that ρG,σ = ρ. Then

P [G(σ, ρ)] = exp

[

dn

2

q
∑

s,t=1

ρ(s, t) log
νσ(s)νσ(t)

ρ(s, t)
+O(log n/n)

]

.

2.2. Moments and messages. The routine method for investigating the partition function and the Boltz-
mann distribution of random graphs is the method of moments [3]. The basic strategy is to calculate, one way
or another, the first two moments E[Zβ(G)], E[Zβ(G)2] of the partition function. Then we cross our fingers
that the second moment is not much larger than the square of the first. It sometimes works. But potential
pitfalls include a pronounced tendency of running into extremely challenging optimisation problems in the
course of the second moment calculation and, worse, lottery effects that may foil the strategy altogether.
While regular graphs in general and the Potts ferromagnet in particular are relatively tame specimens, these
difficulties actually do arise once we set out to investigate metastable states. Drawing upon [5, 16] to sidestep
these challenges, we develop a less computation-heavy proof strategy.

The starting point is the observation that the fixed points of (1.3) are intimately related to the moment
calculation. This will not come as a surprise to experts, and indeed it was already noticed in [23]. To
elaborate, let ν = (ν(σ))σ∈[q] be a probability distribution on the q colours. Moreover, let R(ν) be the set
of all symmetric matrices (ρ(σ, τ))σ,τ∈[q] with non-negative entries such that

∑

τ∈[q]

ρ(σ, τ) = ν(σ) for all σ ∈ [q]. (2.1)

Simple manipulations (e.g., [13, Lemma 2.7]) show that the first moment satisfies

lim
n→∞

1

n
logE[Zβ(G)] = max

ν∈P([q]),ρ∈R(ν)
Fd,β(ν, ρ), where

Fd,β(ν, ρ) = (d− 1)
∑

σ∈[q]

ν(σ) log ν(σ) − d
∑

1≤σ≤τ≤q

ρ(σ, τ) log ρ(σ, τ) +
dβ

2

∑

σ∈[q]

ρ(σ, σ).
(2.2)
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Thus, the first moment is governed by the maximum or maxima, as the case may be, of Fd,β.
We need to know that the maxima of Fd,b are in one-to-one correspondence with the stable fixed points

of (1.3). To be precise, a fixed point µ of (1.3) is stable if the Jacobian of (1.3) at µ has spectral radius
strictly less than one. Let F+

d,β be the set of all stable fixed points µ ∈ Fd,β. Moreover, let F1
d,β be the set

of all µ ∈ F+
d,β such that µ(1) = maxσ∈[q] µ(σ). In addition, let us call a local maximum (ν, ρ) of Fd,β stable

if there exist δ, c > 0 such that

Fd,β(ν
′, ρ′) ≤ Fd,β(ν, ρ)− c

(

‖ν − ν′‖2 + ‖ρ− ρ′‖2
)

(2.3)

for all ν′ ∈ P([q]) and ρ′ ∈ R(ν′) such that ‖ν− ν′‖+ ‖ρ− ρ′‖ < δ. Roughly, (2.3) provides that the Hessian
of Fd,β is negative definite on the subspace of all possible ν, ρ.

Lemma 2.2 ([23, Theorem 8]). Suppose that d ≥ 3, β > 0. The map µ ∈ P([q]) 7→ (νµ, ρµ) defined by

νµ(σ) =
(1 + (eβ − 1)µ(σ))d

∑

τ∈[q](1 + (eβ − 1)µ(τ))d
, ρµ(σ, τ) =

eβ1{σ=τ}µ(σ)µ(τ)

1 + (eβ − 1)
∑

s∈[q] µ(s)
2

(2.4)

is a bijection from F+
d,β to the set of stable local maxima of Fd,β. Moreover, for any fixed point µ we have

Bd,β(µ) = Fd,β(ν
µ, ρµ).

For brevity, let (νp, ρp) = (νµp , ρµp) and (νf , ρf) = (νµf , ρµf ). The following result characterises the stable
fixed points F1

d,β.

Proposition 2.3 ([23, Theorem 4]). Suppose that d ≥ 3, β > 0.

(i) If β < βu, then (1.3) has a unique fixed point, namely the paramagnetic distribution νp on [q]. This
fixed point is stable and thus Fd,β attains its global maximum at (νp, ρp).

(ii) If βu < β < βh, then F1
d,β contains two elements, namely the paramagnetic distribution νp and the

ferromagnetic distribution νf ; (νp, ρp) is a global maximum of Fd,β iff β ≤ βp, and (νf , ρf) iff β ≥ βp.
(iii) If β > βh, then F1

d,β contains precisely one element, namely the ferromagnetic distribution νf , and

(νf , ρf) is a global maximum of Fd,β.

Like the first moment, the second moment boils down to an optimisation problem as well, albeit one
of much higher dimension (q2 − 1 rather than q − 1). Indeed, it is not difficult to derive the following
approximation (once again, e.g., via [13, Lemma 2.7]). For a probability distribution ν ∈ P([q]) and a
symmetric matrix ρ ∈ R(ν) let R⊗(ρ) be the set of all tensors r = (r(σ, σ′, τ, τ ′))σ,σ′,τ,τ ′∈[q] such that

r(σ, σ′, τ, τ ′) = r(τ, τ ′, σ, σ′) and
∑

σ′,τ ′

r(σ, σ′, τ, τ ′) =
∑

σ′,τ ′

r(σ′, σ, τ ′, τ) = ρ(σ, τ) for all σ, τ. (2.5)

Then, with H(·) denoting the entropy function, we have

lim
n→∞

1

n
logE[(Zβ(G))2] = max

ν,ρ∈R(ν),r∈R⊗(ρ)
F⊗
d,β(ρ, r), where

F⊗
d,β(ρ, r) = (d− 1)H(ρ) +

d

2
H(r) +

dβ

2

∑

σ,σ′,τ,τ ′∈[q]

(1{σ = τ}+ 1{σ′ = τ ′}) r(σ, σ′, τ, τ ′).

(2.6)

A frontal assault on this optimisation problem is in general a daunting task due to the doubly-stochastic
constraints in (2.5), i.e., the constraint r ∈ R⊗(ρ). But fortunately, to analyse the global maximum (over ν
and ρ), these constraints can be relaxed, permitting an elegant translation of the problem to operator theory.
In effect, the second moment computation can be reduced to a study of matrix norms. The result can be
summarised as follows.

Proposition 2.4 ([23, Theorem 7]). For all d, q ≥ 3 and β > 0 we have maxν,ρ∈R(ν),r∈R⊗(ρ) F
⊗
d,β(ρ, r) =

2maxν,ρ Fd,β(ν, ρ) and thus E[Zβ(G)2] = O(E[Zβ(G)]2).

Combining Lemma 2.2, Proposition 2.3 and Proposition 2.4, we obtain the following reformulation of [23,
Theorem 7], which verifies that we obtain good approximations to the partition function by maximising the
Bethe free energy on Fd,β.
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Theorem 2.5. For all integers d, q ≥ 3 and real β > 0, we have lim
n→∞

n−1 logZβ(G) = max
µ∈Fd,β

Bd,β(µ) in

probability.

2.3. Non-reconstruction. While the global maximisation of the function F⊗
d,β and thus the proof of The-

orem 2.5 boils down to matrix norm analysis, in order to prove Theorems 1.3 and 1.1 via the method of
moments we would in addition need to get a good handle on all the local maxima. Unfortunately, we do not
see a way to reduce this more refined question to operator norms. Hence, it would seem that we should have
to perform a fine-grained analysis of F⊗

d,β after all. But luckily another path is open to us. Instead of pro-
ceeding analytically, we resort to probabilistic ideas. Specifically, we harness the notion of non-reconstruction
on the Potts model on the d-regular tree.

To elaborate, let Td be the infinite d-regular tree with root o. Given a probability distribution µ ∈ {µp, µf}
we define a broadcasting process σ = σd,β,µ on Td as follows. Initially we draw the color σo of the root o
from the distribution νµ. Subsequently, working our way down the levels of the tree, the color of a vertex v
whose parent u has been coloured already is drawn from the distribution

P [σv = σ | σu] =
µ(σ)eβ1{σ=σu}

∑

τ∈[q] µ(τ)e
β1{τ=σu}

.

Naturally, the colours of different vertices on the same level are mutually independent. Let ∂ℓo be the
set of all vertices at distance precisely ℓ from o. We say that the broadcasting process has the strong
non-reconstruction property if

∑

τ∈[q]

E

[

∣

∣P [σo = τ | σ∂ℓo]− P [σo = τ ]
∣

∣

]

= exp(−Ω(ℓ)),

where the expectation is over the random configuration σ∂ℓo (distributed according to the broadcasting
process). In words, this says that the information of the spin of the root decays in the broadcasting process;
the term “strong” refers that the decay is exponential with respect to the depth ℓ.

Proposition 2.6 ([23, Theorem 50]). Let d, q ≥ 3 be integers and β > 0 be real.

(i) For β < βh, the broadcasting process σd,β,µp
has the strong non-reconstruction property.

(ii) For β > βu, the broadcasting process σd,β,µf
has the strong non-reconstruction property.

In order to prove Theorems 1.1 – 1.3 we will combine Proposition 2.6 with reweighted random graph models
known as planted models. To be precise, we will consider two versions of planted models, a paramagnetic
and a ferromagnetic one. Then we will deduce from Proposition 2.6 that the Boltzmann distribution of these
planted models has the non-reconstruction property in a suitably defined sense. In combination with some
general facts about Boltzmann distributions this will enable us to prove Theorems 1.1 – 1.3 without the need
for complicated moment computations.

2.4. Planting. We proceed to introduce the paramagnetic and the ferromagnetic version of the planted
model. Roughly speaking, these are weighted versions of the common random regular graph G where the
probability mass of a specific graph is proportional to the paramagnetic or ferromagnetic bit of the partition
function. To be precise, for ε > 0, recall the subsets Sp = Sp(ε), Sf = Sf(ε) of the configuration space [q]n.
Letting

Zf(G) =
∑

σ∈Sf

eβHG(σ) and Zp(G) =
∑

σ∈Sp

eβHG(σ), (2.7)

we define random graph models Ĝf , Ĝp by

P

[

Ĝf = G
]

=
Zf(G)P [G = G]

E[Zf(G)]
, P

[

Ĝp = G
]

=
Zp(G)P [G = G]

E[Zp(G)]
. (2.8)

Thus, Ĝf and Ĝp are d-regular random graphs on n vertices such that the probability that a specific graph
G comes up is proportional to Zf(G) and Zp(G), respectively.

We need to extend the notion of non-reconstruction to Ĝp, Ĝf . Specifically, we need to define non-
reconstruction for the conditional Boltzmann distributions µG,β( · | Sp), µG,β( · | Sf). We thus say that for a
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graph/configuration pair (G, σ), an event S ⊆ [q]n, a positive real ξ > 0, a real number γ ∈ [0, 1], an integer
ℓ ≥ 1 and a probability distribution µ on [q] the conditional (γ, ξ, ℓ, µ)-non-reconstruction property holds if

1

n

∑

v∈[n]

∑

ω∈[q]

∣

∣νµ(ω)− µG,β(σG,β,v = ω | S,σG,β,∂ℓv = σ∂ℓv)
∣

∣ < ξ (2.9)

holds with probability 1−γ. In words, (2.9) provides that on the average over all v the conditional marginal
probability µG,β(σG,β,v = ω | S,σG,β,∂ℓv = σ∂ℓv) that v receives colour ω given the boundary condition
induced by σ on the vertices at distance ℓ from v and given the event S is close to νµ(ω).

Further, while (2.9) deals with a specific graph/configuration pair (G, σ), we need to extend the definition
to the random graph models Ĝf and Ĝp. For a graph G let σG,f denote a sample from the conditional
distribution µG,β( · | Sf). Also define σG,p similarly for Sp. We say that for the random graph Ĝf has the
(η, ξ, ℓ)-non-reconstruction property if

E

[

µ
Ĝf ,β

({

(Ĝf ,σĜf ,f
) fails to have the (ξ, ℓ, µf)-non-reconstruction property conditional on Sf

})]

< η.

(2.10)

Thus, we ask that (2.9) holds for a typical graph/configuration pair obtained by first drawing a graph Ĝf

from the planted model and then sampling σ
Ĝf ,f

from µ
Ĝf

( · | Sf). We introduce a similar definition for Ĝp.
The following proposition shows that the non-reconstruction statements from Proposition 2.6 carry over

to the planted random graphs. This is the key technical statement toward the proofs of Theorems 1.1–1.3.

Proposition 2.7. Let d ≥ 3.

(i) Assume that βu < β. Then Ĝf has the (o(1), 1/ log logn, ⌈log logn⌉)-non-reconstruction property.

Moreover, for any δ > 0 there exist ℓ = ℓ(d, β, δ) > 0 and χ = χ(d, β, δ) > 0 such that (Ĝf ,σĜf ,f
) has

the (exp(−χn), δ, ℓ, µf)-non-reconstruction property.

(ii) Assume that β < βh. Then Ĝp has the (o(1), 1/ log logn, ⌈log logn⌉)-non-reconstruction property.

Moreover, for any δ > 0 there exist ℓ = ℓ(d, β, δ) > 0 and χ = χ(d, β, δ) > 0 such that (Ĝp,σĜp,p
) has

the (exp(−χn), δ, ℓ, µp)-non-reconstruction property.

Together with a few routine arguments for the study of Boltzmann distributions that build upon [5], we
can derive from Proposition 2.7 that for β > βu two typical samples from the ferromagnetic Boltzmann
distribution have overlap about νf ⊗ νf . This insight enables a truncated second moment computation that
sidesteps a detailed study of the function F⊗

d,β from (2.6). Indeed, the only observation about F⊗
d,β that we

need to make is that F⊗
d,β(νf ⊗νf , ρf ⊗ρf) = 2Fd,β(νf , ρf). Similar arguments apply to the paramagnetic case.

We can thus determine the asymptotic Boltzmann weights of Sp, Sf on the random regular graph as follows.

Corollary 2.8. Let d, q ≥ 3 be arbitrary integers.

(i) For β > βu, for all sufficiently small ε > 0, we have w.h.p. 1
n logZf(G) = Bd,β(µf) + o(1).

(ii) For β < βh, for all sufficiently small ε > 0, we have w.h.p. 1
n logZp(G) = Bd,β(µp) + o(1).

Finally, combining Corollary 2.8 with the definition (2.8) of the planted models and the non-reconstruction
statements from Proposition 2.7, we obtain the following conditional non-reconstruction statements for the
plain random regular graph.

Corollary 2.9. Let d, q ≥ 3 be arbitrary integers.

(i) For β > βu, the Boltzmann distribution µG,β given Sf exhibits the non-reconstruction property.
(ii) For β < βh, the Boltzmann distribution µG,β given Sp exhibits the non-reconstruction property.

Theorem 1.3 is an immediate consequence of Corollaries 2.8 and 2.9.

3. Quiet planting

In this section we prove Proposition 2.7 along with Corollaries 2.8 and 2.9. We begin with an important
general observation about the planted model called the Nishimori identity, which will provide an explicit
constructive description of the planted models.
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3.1. The Nishimori identity. We complement the definition (2.8) of the planted random graphs Ĝf , Ĝp

by also introducing a reweighted distribution on graphs for a specific configuration σ ∈ [q]n. Specifically, we
define a random graph Ĝ(σ) by letting

P

[

Ĝ(σ) = G
]

=
P [G = G] eβHG(σ)

E[eβHG(σ)]
. (3.1)

Furthermore, for ε > 0, recalling the truncated partition functions Zf , Zp from (2.7), we introduce reweighted
random configurations σ̂f = σ̂f(ε) ∈ [q]n and σ̂p = σ̂p(ε) ∈ [q]n with distributions

P [σ̂f = σ] =
1 {σ ∈ Sf}E[e

βHG(σ)]

E[Zf(G)]
, P [σ̂p = σ] =

1 {σ ∈ Sp}E[e
βHG(σ)]

E[Zp(G)]
. (3.2)

We have the following paramagnetic and ferromagnetic Nishimori identities.

Proposition 3.1. For any integers d, q ≥ 3 and real β, ε > 0, we have

(Ĝp,σĜp,p
)

d
=(Ĝ(σ̂p), σ̂p), (Ĝf ,σĜf ,f

)
d
=(Ĝ(σ̂f), σ̂f). (3.3)

Proof. Let G be a d-regular graph on n vertices and σ ∈ [q]n. We have

P

[

(Ĝp,σĜp,p
) = (G, σ)

]

= P

[

σ
Ĝp,p

= σ
∣

∣

∣
Ĝp = G

]

P

[

Ĝp = G
]

= µG,β

(

σ
∣

∣

∣
Sp

) Zp(G)P [G = G]

E[Zp(G)]
. (3.4)

Moreover, by the definition of the Boltzmann distribution µG,β,

µG,β (σ|Sp) =
eβHG(σ)

1 {σ ∈ Sp}

Z(G) µG,β (Sp)
, µG (Sp) =

Zp(G)

Z(G)
. (3.5)

Combining (3.4) and (3.5), we obtain

P

[

(Ĝp,σĜp,p
) = (G, σ)

]

=
eβHG(σ)P [G = G]

E
[

eβHG(σ)
] ·

E
[

eβHG(σ)
]

1 {σ ∈ Sp}

E[Zp(G)]

= P

[

Ĝ (σ̂p) = G
∣

∣

∣σ̂p = σ
]

P [σ̂p = σ] = P

[

(Ĝ(σ̂p) = G, σ̂p = σ)
]

,

as claimed. The very same steps apply to Ĝf . �

Nishimori identities were derived in [15] for a broad family of planted models which, however, does not
include the planted ferromagnetic models Ĝp, Ĝf . Nonetheless, the (simple) proof of Proposition 3.1 is
practically identical to the argument from [15].

While the original definition (2.8) of the planted models may appear unwieldy, Proposition 3.1 paves the
way for a more hands-on description. But as a preliminary step we need to get a handle on the empirical
distribution of the colours under the random configurations σ̂f , σ̂p. Additionally, we also need to determine
the edge statistics ρĜp,σ̂p and ρĜf ,σ̂f . The following two lemmas solve these problems for us.

Lemma 3.2. Suppose that 0 ≤ β < βh. Then E[Zp(G)] = exp(nFd,β(νp, ρp) +O(log n)).

Proof. To obtain a lower bound on E[Zp(G)] let σ0 ∈ [q]n be a configuration such that |σ−1
0 (s)| = n

q +O(1)

for all s ∈ [q]. Let ν(s) = |σ−1
0 (s)|/n. Then

ρν(s, t) =
eβ1{s=t}

q(q − 1 + eβ)
+O(1/n) = ρp(s, t) +O(1/n) (s, t ∈ [q]).

Therefore, Lemma 2.1 yields

E[Zp(G)] ≥
∑

σ∈[q]n

1

{

∀s ∈ [q] : |σ−1(s)| = nν(s)
}

P [G(σ, ρν )] exp

(

βeβdn

2(q − 1 + eβ)
+O(1)

)

≥ qn exp

(

βeβdn

2(q − 1 + eβ)
+O(log n)

)

= exp (nFd,β(νp, ρp) +O(log n)) . (3.6)

11



Conversely, since there are only nO(1) choices of ν, ρ, Lemma 2.2 and Proposition 2.3 imply that

E[Zp(G)] ≤ exp (nFd,β(νp, ρp) +O(log n)) . (3.7)

The assertion follows from (3.6) and (3.7). �

Lemma 3.3. Suppose that β > βu. Then E[Zf(G)] = exp(nFd,β(νf , ρf) +O(log n)).

Proof. As in the proof of Lemma 3.2 let σ0 ∈ [q]n be a configuration such that |σ−1
0 (s)| = nνf(s) +O(1) for

all s ∈ [q]. Letting ν(s) = |σ−1
0 (s)|/n we see that ρν(s, t) = ρf(s, t) + O(1/n) for all s, t ∈ [q]. Therefore,

Lemma 2.1 yields

E[Zf(G)] ≥

(

n

νn

)

exp

(

−
dn

2
DKL (ρ

ν‖ν ⊗ ν) +
βeβdn

∑

s∈[q] µf(s)
2

2
(

1 + (eβ − 1)
∑

s∈[q] µf(s)2
) +O(log n)

)

= exp (nFd,β(νf , ρf) +O(log n)) . (3.8)

As for the upper bound, once again because there are only nO(1) choices of ν, ρ, Lemma 2.2 and Proposition 2.3
yield

E[Zf(G)] ≤ exp (nFd,β(νf , ρf) +O(log n)) . (3.9)

Combining the lower and upper bounds from (3.8) and (3.9) completes the proof. �

Lemma 3.4. For any integers d, q ≥ 3 and real β ∈ (0, βh), there exist c, t0 > 0 such that

P

[

dTV

(

νσ̂p , νp
)

+ dTV

(

ρĜ(σ̂p),σ̂p , ρp

)

> t
]

≤ exp(−ct2n+O(log n)) for all 0 ≤ t < t0.

Proof. Suppose that ν is a probability distribution on [q] such that nν(s) is an integer for all s ∈ [q].
Moreover, suppose that ρ = (ρ(s, t))s,t∈[q] is a symmetric matrix such that dnρ(s, t) is an integer for all
s, t ∈ [q], dnρ(s, s) is even for all s ∈ [q] and

∑q
t=1 ρ(s, t) = ν(s) for all s ∈ [q]. Retracing the steps of the

proof of Lemma 3.3, we see that

∑

σ∈[q]n

1 {νσ = ν}P [G(σ, ρ)] exp

(

βdn

2

q
∑

s=1

ρ(s, s)

)

= exp (nFd,β(ν, ρ) +O(log n)) . (3.10)

Therefore, the assertion follows from Proposition 2.3 and the definition (2.3) of stable local maxima. �

Lemma 3.5. For any integers d, q ≥ 3 and real β > βu, there exist c, t0 > 0 such that

P

[

dTV

(

νσ̂f , νf
)

+ dTV

(

ρĜ(σ̂f ),σ̂f , ρf

)

> t
]

≤ exp(−ct2n+O(log n)) for all 0 ≤ t < t0.

Proof. The argument from the proof of Lemma 3.4 applies mutatis mutandis. �

At this point we have handy, constructive descriptions of the models Ĝp, Ĝf . Indeed, Lemmas 3.4 and 3.5
provide that the planted configurations σ̂p and σ̂f have colour statistics approximately equal to νp and νf
w.h.p., respectively. Moreover, because the random graph models are invariant under permutations of the
vertices, σ̂p and σ̂f are uniformly random given their colour statistics. In addition, the edge statistics of the
random graphs Ĝ(σ̂p) and Ĝ(σ̂f) concentrate about ρf and ρp. Once more because of permutation invariance,
the random graphs Ĝ(σ̂p) and Ĝ(σ̂f) themselves are uniformly random given the planted assignment σ̂p or
σ̂f and given the edge statistics.

Thus, let Sf and Sp be the σ-algebras generated by σ̂f , ρ
Ĝf ,σ̂f and σ̂p, ρ

Ĝp,σ̂p , respectively. Then we
can use standard techniques from the theory of random graphs to derive typical properties of Ĝ(σ̂p) given
Sp and of Ĝ(σ̂f) given Sf , which are distributed precisely as Ĝp and Ĝf by Proposition 3.1. Using these
characterisations, we are now going to prove Proposition 2.7.
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3.2. Proof of Proposition 2.7. Lemma 3.4 gives sufficiently accurate information as to the distribution of
σ̂p, ρ

Ĝp,σ̂p for us to couple the distribution of the colouring produced by the broadcasting process and the
colouring that σ̂p induces on the neighbourhood of some particular vertex of Ĝp, say v.

Lemma 3.6. Let d, q ≥ 3 be integers and β ∈ (0, βh) be real. Then, for any vertex v and any non-negative
integer ℓ = o(log n), given Sp w.h.p. we have

dTV(σ̂p,∂ℓv, τ∂ℓo) = O
(

dℓ
(

dTV(ν
σ̂p , νp) + dTV(ρ

Ĝ(σ̂p),σ̂p , ρp) +O(n−0.99)
))

.

Proof. Proceeding by induction on ℓ, we construct a coupling of σ̂p,∂ℓv and τ∂ℓo. Let

ζ = dTV(ν
σ̂p , νp) + dTV(ρ

Ĝ(σ̂p),σ̂p , ρp). (3.11)

In the case ℓ = 0 the set ∂ℓv consists of v only, while ∂ℓo comprises only the root vertex o itself. Hence,
the colours σ̂p(v) and τ(o) can be coupled to coincide with probability at least 1− ζ. As for ℓ ≥ 1, assume
by induction that ∂ℓ−1v is acyclic and that σ̂p,∂ℓ−1v and τ∂ℓ−1o coincide. Given ∂ℓ−1v and σ̂p,∂ℓ−1v every
vertex u at distance precisely ℓ − 1 from v in Ĝp then requires another d − 1 neighbours outside of ∂ℓ−1v.
Because Ĝp is uniformly random given Sp, for each u these d − 1 neighbours are simply the endpoints
of edges eu,1, . . . , eu,d−1 drawn randomly from the set of all remaining edges with one endpoint of colour
σ̂p(u). Since ℓ = o(logn), the subgraph ∂ℓv consumes no more than no(1) edges. As a consequence, for
each neighbour w 6∈ ∂ℓ−1v the colour σ̂p(w) has distribution ρν(σ̂p(u), · ), up to an error of no(1)−1 in total
variation. Finally, the probability that two vertices at distance precisely ℓ from v are neighbours is bounded
by no(1)−1 as well.

By comparison, in the broadcasting process on Td the colours of the children of y are always drawn
independently from the distribution ρp(σd,β,νp(y), · ). Hence, the colours of the vertices at distance ℓ in the
two processes can be coupled to completely coincide with probability 1−O(dℓ(ζ + no(1)−1)), as claimed.

In addition, since we work with the conditional Boltzmann distributions where we “cut off” a part of the
phase space, we need to verify that the configuration is very unlikely to hit the boundary of Sp. To see this,
recall from Proposition 2.3 that, for β ∈ (0, βh), (νp, ρp) is a stable local maxima of Fd,β i.e. there exist
δ, c > 0 such that

Fd,β(ν
′, ρ′) ≤ Fd,β(νp, ρp)− c

(

‖νp − ν′‖2 + ‖ρp − ρ′‖2
)

(3.12)

for all ν′ ∈ P([q]) and ρ′ ∈ R(ν′) such that ‖νp−ν′‖+‖ρp−ρ
′‖ < δ. Now, choose ε in the definition of Sp(ε)

such that ε > δ and define Tp(δ) =
{

σ ∈ [q]n : 1
n

∑

c∈[q]

∣

∣σ−1(c)
∣

∣ = νp + δ∆
}

for some ∆ > 0. Moreover,

define a probability distribution ν′p on the q colours by ν′p(c) = 1
q + δ∆

q for all c ∈ [q] and let ρ′p ∈ R(ν′p)

the corresponding maximizer for Fd,β(ν′p, ·) (as in 2.4). Furthermore, choose ∆ sufficiently small so that
‖νp − ν′p‖+ ‖ρp − ρ′p‖ < δ. Thus, by (3.12) and Lemma 3.2 we have

P [σ̂p ∈ Tp(δ)] =
∑

σ∈Tp(δ)

1 {σ ∈ Sp}E[e
βHG(σ)]

E[Zp(G)]
≤

exp
(

nFd,β(ν
′
p, ρ

′
p)
)

exp (nFd,β(νp, ρp) +O(log n))

≤ exp
((

−c
(

δ2∆ + ‖ρp − ρ′‖2
)

+ o(1)
)

n
)

≤ exp ((−K + o(1))n)

for some sufficiently large constant K, as desired. �

The colouring of the neighbourhood of v1 in Ĝf admits a similar coupling with the ferromagnetic version
of the broadcasting process.

Lemma 3.7. Let d, q ≥ 3 be integers and β > βu be real. Then, for any vertex v and any non-negative
integer ℓ = o(log n), given Sf w.h.p. we have

dTV(σ̂f,∂ℓv, τ∂ℓo) = O
(

dℓ
(

dTV(ν
σ̂f , νf) + dTV(ρ

Ĝ(σ̂f),σ̂f , ρf) + n−0.99
))

.

Proof. The argument from the proof of Lemma 3.6 carries over directly. �
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Proof of Proposition 2.7. We prove the first statement concerning Ĝf ; the proof of the second statement
for Ĝp is analogous. Due to Proposition 3.1 we may work with the random graph Ĝ(σ̂f) with planted
configuration σ̂f . Fix an arbitrary vertex v and ℓ = ⌈log logn⌉. For the first assertion, by the Nishimori
identity, it suffices to prove that

∑

c∈[q]

E

∣

∣

∣
νf(c)− µ

Ĝ(σ̂f ),β
(σv = c | σ∂ℓv = σ̂f ,∂ℓv)

∣

∣

∣
< ℓ−3, (3.13)

where the expectation is over the choice of the pair (Ĝ(σ̂f), σ̂f). Indeed, the desired (o(1), ℓ−1, ℓ)-non-
reconstruction property follows from (3.13) and Markov’s inequality.

To obtain (3.13) we first apply Lemma 3.5, which implies that with probability 1− o(1/n),

dTV

(

νσ̂f , νf
)

+ dTV

(

ρĜ(σ̂f ),σ̂f , ρf

)

≤ n−1/4. (3.14)

Further, assuming (3.14), we obtain from Lemma 3.7 that

dTV(σf,∂ℓv, τ∂ℓo) = o(n−1/5). (3.15)

Hence, the colourings ∂ℓv and τ∂ℓo can be coupled such that both are identical with probability 1−o(n−1/5).
Consequently, (3.13) follows from Proposition 2.6.

Thus, we are left to prove the second assertion concerning (exp(−χn), δ, ℓ, µf)-non-reconstruction. Hence,
given δ > 0 pick a large enough ℓ = ℓ(d, β, δ) > 0, a small enough ζ = ζ(δ, ℓ) > 0 and even smaller
ξ = ξ(δ, ℓ, ζ) > 0, χ = χ(d, β, ξ) > 0. Then in light of Lemma 3.5 we may assume that

dTV

(

νσ̂f , νf
)

+ dTV

(

ρĜ(σ̂f ),σ̂f , ρf

)

< ξ. (3.16)

Further, let X be the number of vertices u such that
∑

c∈[q]

∣

∣

∣νf(c)− µ
Ĝ(σ̂f ),β

(σu = c | σ∂ℓu = σ̂f ,∂ℓu)
∣

∣

∣ > ζ.

Then Proposition 2.6, (3.16) and Lemma 3.7 imply that E[X ] < ζn. Moreover, X is tightly concentrated
about its mean. Indeed, adding or removing a single edge of the random d-regular graph Ĝ(σ̂f) can alter the
ℓ-th neighbourhoods of no more than dℓ vertices. Therefore, the Azuma–Hoeffding inequality shows that

P [X > E[X | Sf ] + ζn | Sf ] < exp(−χn), (3.17)

as desired. �

3.3. Proof of Corollary 2.8. We derive the corollary from Proposition 2.7, the Nishimori identity from
Proposition 3.1 and the formula (2.6) for the second moment. As a first step we derive an estimate of
the typical overlap of two configurations drawn from the Boltzmann distribution. To be precise, for a
graph G = (V,E), the overlap of two configurations σ, σ′ ∈ [q]V is defined as the probability distribution
ν(σ, σ′) ∈ P([q]2) with

νc,c′(σ, σ
′) =

1

n

∑

v∈V (G)

1 {σv = c, σ′
v = c′} (c, c′ ∈ [q]).

Thus, ν(σ, σ′) gauges the frequency of the colour combinations among the vertices.

Lemma 3.8. Let d, q ≥ 3 be integers and β < βh be real. Let σ
Ĝp,p

,σ′
Ĝp,p

be independent samples from

µ
Ĝp,β

( · | Sp). Then E

[

dTV

(

ν(σ
Ĝp,p

,σ′
Ĝp,p

), νp ⊗ νp
)

]

= o(1).

Proof. Due to the Nishimori identity (3.3) it suffices to prove that w.h.p. for a sample σ
Ĝ(σ̂p)

from
µ
Ĝ(σ̂p),β

( · | Sp) it holds that

dTV

(

ν(σ̂p,σĜ(σ̂p),p
), νp ⊗ νp

)

= o(1) (3.18)

To see (3.18), for colors s, t ∈ [q], we consider the first and second moment of the number of vertices u with
σ̂p(u) = s and σ

Ĝ(σ̂p),p
(u) = t. To facilitate the analysis of the second moment, it will be convenient to

consider the following configuration σ
′
Ĝ(σ̂p),p

. Let v,w be two random vertices such that σ̂p(v) = σ̂p(w) = s.
14



Also let ℓ = ℓ(n) = ⌈log logn⌉. Now, draw σ
′′
Ĝ(σ̂p),p

from µ
Ĝ(σ̂p),β

( · | Sp) and subsequently generate σ
′
Ĝp,p

by re-sampling the colours of the vertices at distance less than ℓ from v,w given the colours of the vertices at
distance precisely ℓ from v,w and the event Sp. Then σ

′
Ĝ(σ̂p),p

has distribution µ
Ĝ(σ̂p),β

( · | Sp). Moreover,
since for two random vertices v,w their ℓ-neighbourhoods are going to be disjoint, Proposition 2.7 implies
that w.h.p.

P

[

σ
′
Ĝp,p

(v) = χ, σ′
Ĝp,p

(w) = χ′ | σ̂p, Ĝ(σ̂p),v,w
]

= νp(χ)νp(χ
′) + o(1) for all χ, χ′ ∈ [q]. (3.19)

Hence, for a colour t ∈ [q] let X(s, t) be the number of vertices u with σ̂p(u) = s and σ
′
Ĝp,p

(u) = t. Then

(3.19) shows that w.h.p.

E

[

X(s, t) | σ̂p, Ĝ(σ̂p)
]

∼
n

q2
, E

[

X(s, t)2 | σ̂p, Ĝ(σ̂p)
]

∼
n2

q4
.

Thus, (3.18) follows from Chebyshev’s inequality. �

Lemma 3.9. Let d, q ≥ 3 be integers and β > βu be real. Let σ
Ĝf ,f

,σ′
Ĝf ,f

be independent samples from

µ
Ĝf ,β

( · | Sf). Then E

[

dTV

(

ν(σ
Ĝf ,f

,σ′
Ĝf ,f

), νf ⊗ νf
)

]

= o(1).

Proof. The same argument as in the proof of Lemma 3.8 applies. �

We proceed to apply the second moment method to truncated versions of the paramagnetic and ferro-
magnetic partition functions Zp, Zf where we expressly drop graphs that violate the overlap bounds from
Lemmas 3.8 and 3.9. Thus, we introduce

Yp(G) = Zp(G) · 1
{

E
[

dTV(ν(σG,p,σ
′
G,p), νp ⊗ νp)

]

= o(1)
}

, (3.20)

Yf(G) = Zf(G) · 1
{

E
[

dTV(ν(σG,f ,σ
′
G,f), νf ⊗ νf)

]

= o(1)
}

. (3.21)

Estimating the second moments of these two random variables is a cinch because by construction we can
avoid an explicit optimisation of the function F⊗

d,β from (2.6). Indeed, because we drop graphs G whose
overlaps stray far from the product measures νp ⊗ νp and νf ⊗ νf , respectively, we basically just need to
evaluate the function F⊗

d,β at νp ⊗ νp and νf ⊗ νf .

Corollary 3.10. Let d ≥ 3.

(i) If β < βh, then E[Yp(G)] ∼ E[Zp(G)] and E[Yp(G)2] ≤ exp(o(n))E[Zp(G)]2.
(ii) If β > βu, then E[Yf(G)] ∼ E[Zf(G)] and E[Yf(G)2] ≤ exp(o(n))E[Zf (G)]2.

Proof. Assume that β < βh. Let Ep = {G : E
[

dTV(ν(σG,p,σ
′
G,p), νp ⊗ νp)

]

= o(1)}. Combining Lemma 3.8
with the Nishimori identity (3.3), we obtain

E[Yp]

E[Zp]
= P

[

Ĝp ∈ Ep

]

∼ 1 (3.22)

and thus E[Yp] ∼ E[Zp].
Regarding the second moment, consider the set Pp(n) of all probability distributions ν on [q] × [q] such

that nν(χ, χ′) is an integer for all χ, χ′ ∈ [q] and such that dTV(ν,u) = o(1). Let Rp(ν, n) be the set of all
distributions ρ on [q]4 such that

ρ(χ, χ′, χ′′, χ′′′) = ρ(χ′′, χ′′′, χ, χ′) for all χ, χ′, χ′′, χ′′′ ∈ [q] and (3.23)
∑

χ′′,χ′′′∈[q]

ρ(χ, χ′, χ′′, χ′′′) = ν(χ, χ′) for all χ, χ′ ∈ [q] (3.24)
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and such that nρ(χ, χ′, χ′′, χ′′′) is an integer for all χ, χ′, χ′′, χ′′′ ∈ [q]. Using the definition (3.20) of Yp,
Lemma 2.1 and the linearity of expectation, we bound

E
[

Yp(G)2
]

≤ (1 + o(1))
∑

σ,σ′∈[q]n

1 {dTV(ν(σ, σ
′), νp ⊗ νp) = o(1)}E

[

eβ(HG(σ)+HG(σ′))
]

≤
∑

ν∈Pp(n)

(

n

νn

)

∑

ρ∈Rp(ν,n)

exp
[dn

2

q
∑

χ,χ′,χ′′,χ′′′=1

ρ(χ, χ′, χ′′, χ′′′) log
ν(χ, χ′)ν(χ′′, χ′′′)

ρ(χ, χ′, χ′′, χ′′′)

+ β (1 {χ = χ′′}+ 1 {χ′ = χ′′′}) +O(log n)
]

.

(3.25)

For any given ν the term inside the square brackets is a strictly concave function of ρ. Therefore, for any
ν there exists a unique maximiser ρ∗ν . Moreover, the set Rp(ν, n) has size |Rp(ν, n)| = nO(1). Hence, using
Stirling’s formula we can simplify (3.25) to

E
[

Yp(G)2
]

≤
∑

ν∈Pp(n)

exp
[

− n

q
∑

χ,χ′=1

ν(χ, χ′) log ν(χ, χ′) +
dn

2

q
∑

χ,χ′,χ′′,χ′′′=1

ρ∗ν(χ, χ
′, χ′′, χ′′′) log

ν(χ, χ′)ν(χ′′, χ′′′)

ρ∗ν(χ, χ
′, χ′′, χ′′′)

+ β (1 {χ = χ′′}+ 1 {χ′ = χ′′′}) +O(log n)
]

.

(3.26)

To further simplify the expression notice that the maximiser ρ∗ν is the unique solution to a concave optimi-
sation problem subject to the linear constraints (3.23)–(3.24). Since the constraints (3.24) themselves are
linear in ν, by the inverse function theorem the maximiser ρ∗ν is a continuous function of ν. In effect, since
|Pp(n)| = nO(1), we can bound (3.26) by the contribution of the uniform distribution νp ⊗ νp only. We thus
obtain

E
[

Yp(G)2
]

≤ qn exp
[dn

2

q
∑

χ,χ′,χ′′,χ′′′=1

ρ∗νp⊗νp(χ, χ
′, χ′′, χ′′′) log

νp(χ, χ
′)νp(χ

′′, χ′′′)

ρ∗νp⊗νp(χ, χ
′, χ′′, χ′′′)

+ β (1 {χ = χ′′}+ 1 {χ′ = χ′′′}) + o(n)
]

. (3.27)

Finally, the maximiser ρ∗νp⊗νp in (3.27) works out to be ρ∗νp⊗νp = ρp⊗ρp. To see this, recall from Lemma 3.8
that νp is the uniform distribution on [q]. It therefore remains to show that subject to (3.23)–(3.24), the
function

g(ρ) =

q
∑

χ,χ′,χ′′,χ′′′=1

ρ(χ, χ′, χ′′, χ′′′) log
νp(χ)νp(χ

′)νp(χ
′′)νp(χ

′′′)

ρ(χ, χ′, χ′′, χ′′′)
+ β (1 {χ = χ′′}+ 1 {χ′ = χ′′′})

= −4 log q −

q
∑

χ,χ′,χ′′,χ′′′=1

ρ(χ, χ′, χ′′, χ′′′) log (ρ(χ, χ′, χ′′, χ′′′))− β (1 {χ = χ′′}+ 1 {χ′ = χ′′′})

attains its maximum at the distribution ρ = ρp⊗ρp. Since g is strictly concave, the unique maximum occurs
at the unique stationary point of the Lagrangian

Lp = g(ρ) +
∑

χ,χ′,χ′′,χ′′′

λχ,χ′,χ′′,χ′′′ (ρ (χ, χ′, χ′′, χ′′′)− ρ (χ′′, χ′′′, χ, χ′))

+
∑

χ,χ′

λχ,χ′





∑

χ′′,χ′′′∈[q]

ρ(χ, χ′, χ′′, χ′′′)− ν(χ, χ′)



 .

Since the derivatives work out to be
∂Lp

∂ρ(χ, χ′, χ′′, χ′′′)
= −1− log ρ(χ, χ′, χ′′, χ′′′) + λχ,χ′,χ′′,χ′′′ − λχ′′,χ′′′,χ′,χ′ + λχ,χ′ + β1{χ = χ′′}+ β1{χ′ = χ′′′},

for the choice ρ = ρp ⊗ ρp there exist Lagrange multipliers such that all partial derivatives vanish.
The proof of (ii) proceeds analogously. �
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Proof of Corollary 2.8. The corollary is now an immediate consequence of Corollary 3.10, the Paley-Zygmund
and Azuma inequalities. �

3.4. Proof of Corollary 2.9. To prove Corollary 2.9 we derive the following general transfer principle from
the estimate of the Boltzmann weights of Sf and Sp from Corollary 2.8.

Lemma 3.11. Let d ≥ 3.

(i) If β < βh, then for any event E with P

[

Ĝp ∈ E
]

≤ exp(−Ω(n)) we have P [G ∈ E ] = o(1).

(ii) If β > βu, then for any event E with P

[

Ĝf ∈ E
]

≤ exp(−Ω(n)) we have P [G ∈ E ] = o(1).

Proof. This follows from a “quiet planting” argument akin to the one from [2]. Specifically, Theorem 2.5
and Proposition 2.3 show that for β < βh the event Zp = {Zp(G) = E[Zp(G)] exp(o(n))} occurs w.h.p.
Therefore, recalling the definition (2.8) of the planted model, we obtain

P [G ∈ E ] ≤ P [G ∈ E ∩ Zp] + P [G 6∈ Zp] ≤
E[1{G ∈ E}Zp(G)] exp(o(n))

E[Zp(G)]
+ o(1)

≤ exp(o(n))P
[

Ĝp ∈ E
]

+ o(1) = o(1). (3.28)

Since the simple random regular graph G is contiguous with respect to G, assertion (i) follows from (3.28).
The proof of (ii) is identical. �

Proof of Corollary 2.9. The assertion follows from Lemma 3.11 and Proposition 2.7. �

4. Metastability and Slow mixing

In this section, we prove Theorems 1.1 and 1.2. Recall from Section 1.3 the paramagnetic and ferromag-
netic states Sp(ε) and Sf(ε) for ε > 0. For the purposes of this section we will need to be more systematic
of keeping track the dependence of these phases on ε. In particular, we will use the more explicit notation
Zεp(G) and Zεf (G) to denote the quantities Zp(G) and Zf(G), respectively, from (2.7).

The following lemma reflects the fact that νp and νf are local maxima of the first moment.

Lemma 4.1. Let q, d ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small constants ε′ > ε > 0,
there exists constant ζ > 0 such that w.h.p. over G ∼ G, it holds that

(1) |If β < βh, then Zεp(G) ≥ e−n
3/4

E[Zεp(G)] and Zε
′

p (G) ≤ (1 + e−ζn)Zεp(G).

(2) If β > βu, then Zεf (G) ≥ e−n
3/4

E[Zεf (G)] and Zε
′

f (G) ≤ (1 + e−ζn)Zεf (G).

Proof. We first prove Item 1. Recall from (2.2) the function F (ν, ρ) := Fd,β(ν, ρ) for ν ∈ P([q]) and ρ ∈ R(ν).
By Proposition 2.3, (νp, ρp) is a stable local maximum of F for β < βh, cf. (2.3). Therefore, for all sufficiently
small constants ε′ > ε > 0, there exists constant ζ > 0 such that

F (ν, ρ) ≤ F (νp, ρp)− 4ζ (4.1)

for all ν ∈ P([q]) and ρ ∈ R(ν) with

ε < ‖ν − νp‖+ ‖ρ− ρp‖ ≤ ε′. (4.2)

Using (3.10), we see that

E
[

Zε
′

p (G)− Zεp(G)
]

≤
∑

ν,ρ

exp(nF (ν, ρ) +O(log n))

where the sum ranges over ν ∈ P([q]) and ρ ∈ R(ν) satisfying (4.2) such that nν(s), dnρ(s, t) are integers
for all s, t ∈ [q], and dnρ(s, s) is even. Since there are at most nO(1) choices for such colour statistics ν, ρ,
we obtain that E

[

Zε
′

p (G)− Zεp(G)
]

≤ en(F (νp,ρp)−3ζ) for all sufficiently large n. By Markov’s inequality, we
therefore have that w.h.p. Zε

′

p (G)− Zεp(G) ≤ enF (νp,ρp)−2ζn.
Moreover, by applying Azuma’s inequality to the random variable logZεp(G) by revealing the edges of

G one-by-one, and using Lemma 3.2, we obtain that w.h.p. it holds that Zεp(G) ≥ e−n
3/4

E[Zεp(G)] ≥

enF (νp,ρp)−ζn. Therefore, we obtain that

Zεp(G) ≥ e−n
3/4

E[Zεp(G)] ≥ enF (νp,ρp)−ζn and therefore Zεp(G) ≥ e−ζn
(

Zε
′

p (G) − Zεp(G)
)

,
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yielding Item 1 of the lemma, as wanted. For the second item, the proof is completely analogous, using the
fact from Proposition 2.3 that (νf , ρf) is a local maximum of F (ν, ρ) for β > βu. �

Theorem 1.1 will follow by way of a conductance argument. Let G = (V,E) be a graph, and P be the
transition matrix for the Glauber dynamics defined in Section 1.4. For a set S ⊆ [q]V define the bottleneck
ratio of S to be

Φ (S) =

∑

σ∈S, τ 6∈S µG,β(σ)P (σ, τ)

µG,β(S)
(4.3)

The following lemma provides a routine conductance bound (e.g., [33, Theorem 7.3]). For the sake of
completeness the proof is included in Appendix A.

Lemma 4.2. Let G = (V,E) be a graph. For any S ⊆ [q]V such that µG(S) > 0 and any integer t ≥ 0 we
have ‖µG,SP

t − µG,S‖TV ≤ tΦ(S).

Proof of Theorem 1.1. We prove the statement for the pairing model G, the result for G follows immediately
by contiguity. Let ε′ > ε > 0 and ζ > 0 be small constants such that Lemma 4.1 applies, and let G ∼ G be
a graph satisfying the lemma. Set for convenience µ = µG,β; we consider first the metastability of Sf(ε) for
β > βu.

Since Glauber updates one vertex at a time it is impossible in one step to move from σ ∈ Sf(ε) to
τ ∈ [q]n\Sf(ε

′), i.e., P (σ, τ) = 0, and therefore

Φ
(

Sf(ε)
)

=

∑

σ∈Sf (ε)

∑

τ /∈Sf(ε)
µ(σ)P (σ, τ)

µ
(

Sf(ε)
) =

∑

σ∈Sf (ε)

∑

τ∈Sf(ε′)\Sf (ε′)
µ(σ)P (σ, τ)

µ
(

Sf(ε)
)

By reversibility of Glauber, for any σ, τ ∈ [q]n we have µ(σ)P (σ, τ) = µ(τ)P (τ, σ), and therefore
∑

σ∈Sf (ε)

∑

τ∈Sf(ε′)\Sf (ε)

µ(σ)P (σ, τ) =
∑

τ∈Sf(ε′)\Sf (ε)

µ(τ)
∑

σ∈Sf (ε)

P (τ, σ) ≤
∑

τ∈Sf(ε′)\Sf (ε)

µ(τ) = µ
(

Sf(ε
′)\Sf(ε)

)

Hence, Φ
(

Sf(ε)
)

≤
µ
(

Sf (ε
′)\Sf (ε)

)

µ
(

Sf (ε)
) =

Zε′

f (G)−Zε
f (G)

Zε
f
(G) ≤ e−ζn, where the last inequality follows from the fact

that G satisfies Lemma 4.1. Lemma 4.2 therefore ensures that for all nonnegative integers T ≤ eζn/3
∥

∥µ
(

· | Sf(ε)
)

PT − µ
(

· | Sf(ε)
)∥

∥

TV
≤ T · Φ(Sf) ≤ e−2ζn/3. (4.4)

Now, consider the Glauber dynamics (σt)t≥0 launched from σ0 drawn from µG,β,Sf(ε), and denote by Tf =
min {t > 0 : σt /∈ Sf(ε)} its escape time from Sf(ε). Observe that σt has the same distribution as µ( · |
Sf(ε))P

t, so (4.4) implies that for all nonnegative integers T ≤ eζn/3

∣

∣P [σT ∈ Sf(ε)]− 1
∣

∣ < e−2ζn/3, or equivalently P [σT /∈ Sf(ε)] ≤ e−2ζn/3.

By a union bound over the values of T , we therefore obtain that P[Tf ≤ eζn/3] ≤ e−ζn/3, thus proving that
Sf(ε) is a metastable state for β > βu. Analogous arguments show that Sp(ε) is a metastable state for
β < βh.

The slow mixing of Glauber for β > βu follows from the metastability of Sf(ε). In particular, from
Theorem 1.3 we have that

∥

∥µ
(

· | Sf(ε)
)

− µ
∥

∥ ≥ 3/5 and therefore, from (4.4),
∥

∥µ
(

· | Sf(ε)
)

PT − µ
∥

∥ ≥ 1/2,
yielding that the mixing time is eΩ(n). �

The final ingredients to estabilish Theorem 1.2 are the following results, bounding the probability that
Swendsen-Wang escapes Sp(ε) and Sf(ε). More precisely, for a graph G, a configuration σ ∈ [q]n, and
S ⊆ [q]n, let PGSW (σ → S) denote the probability that after one step of SW on G starting from σ, we end
up in a configuration in S.

The following proposition shows that for almost all pairs (G, σ) from the paramagnetic planted distribution
(

Ĝ
(

σ̂p(ε)
)

, σ̂p(ε)
)

, the probability that SW leads to a configuration in the paramagnetic phase, slightly
enlarged, is 1− e−Ω(n).

Proposition 4.3. Let q, d ≥ 3 be integers and β ∈ (βu, βh) be real. Then, for all sufficiently small constants
ε′ > ε > 0, there exists constant η > 0 such that with probability 1 − e−ηn over the planted distribution
(G, σ) ∼

(

Ĝ
(

σ̂p(ε)
)

, σ̂p(ε)
)

, it holds that PGSW
(

σ → Sp(ε
′)
)

≥ 1− e−ηn.
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The following establishes the analogue of the previous proposition for the ferromagnetic planted distribu-
tion

(

Ĝ
(

σ̂f(ε)
)

, σ̂f(ε)
)

. Note here that SW might change the dominant colour due to recolouring step, so,
for ε > 0, we now need to consider the set of configurations S̃f(ε) that consists of the ferromagnetic phase
Sf(ε) together with its q − 1 permutations, and the probability that SW escapes from it, starting from a
ferromagnetic state.

Proposition 4.4. Let q, d ≥ 3 be integers and β ∈ (βu, βh) be real. Then, for all sufficiently small constants
ε′ > ε > 0, there exists constant η > 0 such that with probability 1 − e−ηn over the planted distribution
(G, σ) ∼

(

Ĝ
(

σ̂f(ε)
)

, σ̂f(ε)
)

, it holds that PGSW
(

σ → S̃f(ε
′)
)

≥ 1− e−ηn.

Proof of Theorem 1.2. We prove the statement for the pairing model G, the result for G follows immediately
by contiguity. We consider first the metastability for the ferromagnetic phase when β > βu. Let ε′ > ε > 0
and η, ζ > 0 be small constants such that Lemma 4.1 and Propositions 4.3, 4.4 all apply. Let θ = 1

10 min{η, ζ}.
Let Q be the set of d-regular (multi)graphs that satisfy both items in Lemma 4.1. Moreover, let Q′ be the

set of d-regular (multi)graphs G such that the set of configurations where SW has conceivable probability of
escaping S̃f(ε

′) has small weight, i.e., the set

SBad(G) =
{

σ ∈ S̃f(ε)
∣

∣PGSW
(

σ → S̃f(ε
′)
)

< 1− e−ηn
}

has aggregate weight ZBad(G) =
∑

σ∈SBad(G) e
βH(G) less than e−θnZεf (G). We claim that for a d-regular

graph G such that G ∈ Q ∩ Q′, it holds that ΦSW
(

S̃f(ε)
)

≤ 10e−ηn, where ΦSW (·) denotes the bottleneck
ratio for the SW-chain. Indeed, we have

ΦSW
(

S̃f(ε)
)

=

∑

σ∈S̃f (ε)
µ(σ)PGSW (σ → [q]n\S̃f(ε))

µ
(

S̃f(ε)
) ≤

µ
(

SBad(G)
)

+
∑

σ∈S̃f (ε)\SBad(G) µ(σ)P
G
SW (σ → [q]n\S̃f(ε))

µ
(

S̃f(ε)
)

We can decompose the sum in the numerator of the last expression as
∑

σ∈S̃f (ε)\SBad(G)

µ(σ)PGSW
(

σ → [q]n\S̃f(ε
′)
)

+
∑

σ∈S̃f (ε)\SBad(G)

µ(σ)PGSW
(

σ → S̃f(ε
′)\S̃f(ε)

)

.

For σ ∈ S̃f(ε)\SBad(G), we have PGSW
(

σ → [q]n\S̃f(ε
′)
)

≤ e−ηn and therefore the first sum is upper
bounded by e−ηnµ

(

S̃f(ε)
)

. The second sum, using the reversibility of the SW chain, is upper bounded
by µ

(

S̃f(ε
′)\S̃f(ε)

)

. Using these, we therefore have that

ΦSW
(

S̃f(ε)
)

≤
µ
(

SBad(G)
)

+ e−ηnµ
(

S̃f(ε)
)

+ µ
(

S̃f(ε
′)\S̃f(ε)

)

µ
(

S̃f(ε)
) ≤ 10e−θn,

since
µ
(

SBad(G)
)

µ
(

S̃f (ε)
) = ZBad(G)

qZε
f
(G) ≤ e−θn from the assumption G ∈ Q′ and

µ
(

S̃f (ε
′)\S̃f (ε)

)

µ
(

S̃f (ε)
) =

q(Zε′

f (G)−Zε
f (G))

qZε
f
(G) ≤ e−θn

from Lemma 4.1. By arguments analogous to those in the proof of Theorem 1.1, we have that S̃f(ε) is a
metastable state for graphs G ∈ Q ∩ Q′. Therefore, to finish the metastability proof for the random graph,
it suffices to show that P(G ∈ Q ∩ Q′) = 1 − o(1). We prove the statement for the pairing model G, the
result for G follows immediately by contiguity.

To do this, let G(n, d) be the set of all multigraphs that can be obtained in the pairing model and
Λd,β(n) =

{

(G, σ)
∣

∣G ∈ G(n, d), σ ∈ S̃f(ε)
}

. Let E be the pairs (G, σ) ∈ Λd,β(n) where one step of SW
starting from G, σ stays within S̃f(ε

′) with probability 1− e−Ω(n), more precisely

E =
{

(G, σ) ∈ Λd,β(n)
∣

∣PGSW
(

σ → S̃f(ε
′)
)

≥ 1− e−ηn
}

.

The aggregate weight corresponding to pairs (G, σ) that do not belong to E can be lower-bounded by
∑

(G,σ)∈Λd,β\E

eβHG(σ) ≥
∑

(G,σ)∈Λd,β\E;

G∈Q\Q′

eβHG(σ) =
∑

G∈Q\Q′

∑

σ∈ΣBad(G)

eβHG(σ) ≥ e−θn
∑

G∈Q\Q′

Zεf (G).
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For graphs G ∈ Q we have Zεf (G) ≥ e−n
3/4

E[Zεf (G)], and therefore

∑

(G,σ)∈Λd,β\E

eβHG(σ) ≥ e−(θn+n3/4)
∣

∣Q\Q′
∣

∣ E
[

Zεf (G)
]

= e−(θn+n3/4)
∣

∣Q\Q′
∣

∣

∑

(G,σ)∈Λd,β
eβHG(σ)

∣

∣G(n, d)
∣

∣

(4.5)

From the definition of
(

Ĝ
(

σ̂f(ε)
)

, σ̂f(ε)
)

, cf. (3.1),(3.2), observe that
∑

(G,σ)∈Λd,β\E
eβHG(σ)

∑

(G,σ)∈Λd,β
eβHG(σ)

= P
[(

Ĝ(σ̂f(ε)), σ̂f(ε)
)

∈ Λd,β\E
]

≤ e−ηn ≤ e−10θn,

where the penultimate inequality follows from Proposition 4.4 and the last from the choice of θ. Combining
this with (4.5), we obtain P[G ∈ Q\Q′] = o(1). Since P[G ∈ Q] = 1− o(1) from Lemma 4.1, it follows that

P[G ∈ Q ∩Q′] ≥ P[G ∈ Q]− P[G ∈ Q\Q′] ≥ 1− o(1).

This concludes the proof for the metastability of the ferromagnetic phase S̃f(ε) when β > βu.
A similar bottleneck-ratio argument shows that Sp(ε) is a metastable state for β < βh. The slow mixing of

SW for β ∈ (βu, βh) follows from the metastability of S̃f(ε) when β ∈ (βu, βp] and the metastability of Sp(ε)

when β ∈ [βp, βh). In particular, let S ∈ {S̃f(ε), Sp(ε)} be such that
∥

∥µ
(

· | S
)

− µ
∥

∥ ≥ 1/2, then Lemma 4.2
gives that for T = eΩ(n), it holds that

∥

∥µ
(

· | S
)

PTSW − µ
∥

∥ ≥ 1/2 − 1/10, yielding that the mixing time is
eΩ(n). �

5. Remaining Proofs for Swendsen-Wang

To analyse the Swendsen-Wang dynamics on the d-regular random graph G, we will need to consider
the component structure after performing edge percolation with probability p ∈ (0, 1). Key quantities we
will be interested in are the size of the largest compoment, which will allow us to track whether we land in
the paramagnetic or ferromagnetic phases, as well as the sum of squares of component sizes; the first will
signify whether we land in the paramagnetic or ferromagnetic phases, and the second will allow us to track
the random fluctuations caused by the colouring step of SW. Both of these ingredients have been worked
out in detail for the mean-field case; here the random regular graph makes all the arguments more involved
technically, even for a single iteration (recall that the reason it suffices to analyse a single iteration is because
of the quiet planting idea of Sections 3 and 4).

5.1. Percolation on random regular graphs. For a graph G and p ∈ (0, 1), we denote by Gp the random
graph obtained by keeping every edge of G with probability p. Working in the configuration model, we will
denote by Gp := Gp(n, d) the multigraph obtained by first choosing a random matching of the points in
[n] × [d], then keeping each edge of the matching with probability p, and finally projecting the edges onto
vertices in [n]. It will also be relevant to consider the multigraph G̃p := G̃p(n, d) where in the second step we
instead keep a random subset of exactly m = [pdn/2] edges. To help differentiate between the two models,
we will refer to Gp as the binomial-edge model, whereas to G̃p as the exact-edge model. Note that for an
n-vertex multigraph G of maximum degree d with m edges, the two models are related by

P
[

Gp = G | E(Gp) = m
]

= P[G̃p̃ = G], where p̃ = 2m/nd.

see for example [22, Lemma 3.1]. Based on this, it is standard to relate the two models for events that are
monotone under edge inclusion.3

Lemma 5.1. Let d ≥ 3 be an integer and p∗ ∈ (0, 1) be a constant. There exists a constant c > 0 such that,
for any constant δ ∈ (0, 1), for any increasing property E and any decreasing property F on multigraphs of
maximum degree d, it holds that

1
2P[G̃p∗−δ ∈ E ] ≤ P[Gp∗ ∈ E ] ≤ P[G̃p∗+δ ∈ E ] + e−cδ

2n,

1
2P[G̃p∗+δ ∈ F ] ≤ P[Gp∗ ∈ F ] ≤ P[G̃p∗−δ ∈ F ] + e−cδ

2n.

3A set of multigraphs E is an increasing (resp. decreasing) property if for any G = (V, E) ∈ E, we have that G′ = (V, E′) ∈ E

for all G′ with E′ ⊆ E (resp. E ⊆ E′).
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Proof. Let A be the event that E(Gp∗) has (p∗±δ)dn/2 edges. By standard Chernoff bounds we obtain that
there exists a constant c > 0 such that P(A) ≥ 1 − e−cδ

2n. Further, conditioned on |E(Gp∗)| = pdn/2 for
some p, the graph Gp∗ has the same distribution as G̃p, and therefore, using the fact that E is an increasing
property, we have that P[G̃p∗+δ ∈ E ] ≥ P[G̃p∗ ∈ E | A] ≥ P[G̃p∗−δ ∈ E ], and the inequalities are reversed for
F , yielding the lemma. �

It is a classical result [4] that for percolation on random d-regular graphs there is a phase transition at
p = 1/(d − 1) with regards to the emergence of a giant component, see also [39, 30, 40, 32]. To prove
Propositions 4.3 and 4.4, we will need to control the sizes of the components in the strictly subcritical and
supercritical regimes with probability bounds that are exponentially close to 1, which makes most of these
results not directly applicable.

For a graph G and an integer i ≥ 1, we denote by Ci(G) the i-th largest component of G (in terms
of vertices); |Ci(G)| and |E(Ci(G))| denote the number of vertices and edges in Ci(G). The following
proposition gives the desired bound on the component sizes in the subcritical regime.

Proposition 5.2. Let d ≥ 3 be an integer and p0 < 1/(d− 1) be a positive constant. There exists constants
c,M > 0 such that the following holds for all integers n. For any positive p < p0, with probability at least
1− e−cn over the choice of either G ∼ Gp or G ∼ G̃p, it holds that

∑

i≥1 |Ci(G)|
2 ≤Mn.

Proof. The proof is fairly standard and actually holds for percolation on an arbitrary graph of maximum
degree d. We argue initially for the binomial-edge case G ∼ Gp. Consider the process where we consider the
vertices of G in an arbitrary order, and we explore by breadth-first-search the components of those vertices
that have not been discovered so far. Suppose that we have already explored the components C1, . . . , Ck and
we are exploring the component Ck+1 starting from vertex v. Since the graph has maximum degree d, the size
of Ck+1 is stochastically dominated above by a branching process where the root has offspring distribution
Bin(d, p0) and every other vertex has Bin(d − 1, p0). Since p0 < 1/(d− 1), the latter process is subcritical
and therefore there exist constants c′,K > 0 (depending only on d and p0) such that for all t > K, it holds
that

P
[

|Ck+1| > t | C1, . . . , Ck
]

≤ e−c
′t. (5.1)

We have that
∑

i≥1 |Ci(G)|
2 =

∑

k≥1 |Ck|
2 ≤ K2n+

∑

k≥1 |Ck|
2
1{Ck ≥ K}. From (5.1), we have that the sum

in the last expression is stochastically dominated by the sum of n i.i.d. random variables with exponential
tails, and therefore there exists constants c,M ′ > 0, depending only on p0, such that with probability
1− e−cn the sum is bounded by M ′n, yielding the result with M =M ′ +K2. The exact-edge case G ∼ G̃p

follows by applying Lemma 5.1, noting that the graph property
∑

i≥1 |Ci(G)|
2 ≤ Mn is decreasing under

edge-inclusion. �

The supercritical regime is more involved since we need to account for the giant component using large
deviation bounds. While there is not an off-the-self result we can use, we can adapt a technique by Kriv-
elevich, Lubetzky and Sudakov [32] that was developed in a closely related setting (high-girth expanders,
refining the results of Alon, Benjamini and Stacey [4]).

For d ≥ 3 and p ∈ ( 1
d−1 , 1), let φ = φ(p) ∈ (0, 1) be the probability that a branching process with offspring

distribution Bin(d− 1, p) dies out, i.e., φ(p) ∈ (0, 1) is the (unique) solution of

φ = (pφ+ 1− p)d−1, and define χ = χ(p), ψ = ψ(p) from χ = 1− (pφ+ 1− p)d, ψ = 1
2dp(1 − φ2). (5.2)

In Appendix B, we show the following adapting the argument from [32].

Lemma 5.3. Let d ≥ 3 be an integer, p ∈ ( 1
d−1 , 1) be a real, and χ, ψ = χ(p), ψ(p) be as in (5.2). Then, for

any δ > 0, with probability 1− e−Ω(n) over the choice of either G ∼ Gp or G ∼ G̃p, it holds that

|C1(G)| = (χ± δ)n, |E(C1(G))| = (ψ ± δ)n.

With this and a bit of algebra, we can derive the analogue of Proposition 5.2 in the supercritical regime.

Proposition 5.4. Let d ≥ 3 be an integer. Consider arbitrary p0 ∈ ( 1
d−1 , 1) and let χ0 = χ(p0) be as in

(5.2). Then, for all δ > 0, there exist ε, c,M > 0, such that the following holds. For all sufficiently large

integers n and any p = p0±ε, with probability at least 1− e−cn over the choice of either G ∼ Gp or G ∼ G̃p,
it holds that |C1(G)| = (χ0 ± δ)n and

∑

i≥2 |Ci(G)|
2 ≤Mn.
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To prove Proposition 5.4, the following inequality between χ and ψ will be useful; it will allow us to
conclude that once we remove the giant component, the remaining components are in the subcritical regime.

Lemma 5.5. Let d ≥ 3 be an integer and p ∈ ( 1
d−1 , 1). Then,

2(
1
2dp−ψ)

d(1−χ) < 1
d−1 .

Proof. Using (5.2), we have

d(1−χ)
d−1 − 2(12dp− ψ) = d

d−1(pφ+ 1− p)d − dpφ(pφ+ 1− p)d−1 = d
d−1(pφ+ 1− p)d−1(1− p− (d− 2)pφ),

so it suffices to show that 1−p− (d−2)pφ > 0. Let g(y) = y− (py+1−p)d−1 and note that g(φ) = 0. Then,
we have that g(0) < 0 and g(1) = 0. Moreover, g′(y) = 1 − (d− 1)p(py + 1 − p)d−2 and hence g′(1) < 0. It
follows that g(y) > 0 for y ↑ 1, and therefore there is y ∈ (0, 1) such that g(y) = 0. Note that g is strictly
concave and therefore cannot have three zeros in the interval (0, 1], so y = φ, and therefore g′(φ) > 0. It
remains to observe that g′(φ) = 1−p−(d−2)pφ

pφ+1−p , from where the desired inequality follows. �

Proof of Proposition 5.4. Let ψ0 = ψ(p0) and consider an arbitrarily small δ > 0. Since χ(p) and ψ(p) are
continuous functions of p in the interval ( 1

d−1 , 1), we can pick ε > 0 so that, for all p = p0 ± ε it holds that

d|p − p0|, |χ(p) − χ0|, |ψ(p) − ψ0| ≤ δ/10 and, by Lemma 5.5,
2(

1
2dp−ψ)+4δ

d(1−χ)−δ < 1
d−1 − δ. Consider now an

arbitrary p = p0 ± ε and consider random G sampled from either of the distributions Gp or G̃p. Using the
monotonicity of the events {|C1(G)| ≥ t}, {|E(C1(G))| ≥ t}, we obtain from Lemmas 5.1 and 5.3 (as well
as a standard Chernoff bound for the number of edges in G) that there exists a constant c′ > 0, depending
only on d, p0, ε (but not on p), such that with probability at least 1− e−c

′n over the choice of G it holds that
|E(G)| = 1

2dpn± δn, |C1(G)| = (χ0 ± δ)n, and |E(C1(G))| = (ψ0 ± δ)n. Let E denote this event.
Note that conditioned on |C1(G)|, |E(C1(G))| and |E(G)|, the remaining components of G are distributed

according to those in the exact-edge model G̃p̃(ñ, d) with ñ = n−|C1(G)| and p̃ = 2
dñ (|E(G)|− |E(C1(G))|),

conditioned on the event F that all components have size less than |C1(G)|. Hence, conditioned on E , we
have that p̃ ≤ 2( 1

2
dpn−ψn)+4δn

2(n−χn)−δn < 1
d−1 − δ where the last inequality follows from the choice of ε, i.e., G̃p̃(ñ, d)

is in the subcritical regime. Therefore, the probability of F is 1 − e−Ω(n) and hence the conditioning on F
when considering G̃p̃(ñ, d) can safely be ignored. From Proposition 5.2, we have that there exist constants
M, c′′ > 0, depending only on d and p0, so that with probability at least 1 − e−c

′′n over the choice of
G′ ∼ G̃p̃(ñ, d), it holds that

∑

i≥1 |Ci(G
′)|2 ≤Mñ. Therefore, we have

∑

i≥2 |Ci(G)|
2 ≤Mn. �

5.2. Percolation in the planted model. Recall the edge-empirical distributions ρG,σ, ρp, ρf , cf. (2.4).
The following lemma will allow us to deduce the regime (subcritical or supercritical) that dictates the
percolation step of SW when we start from the paramagnetic and ferromagnetic phases.

Lemma 5.6. For β < βh, any colour s ∈ [q] in the paramagnetic phase satisfies (1− e−β)
ρp(s,s)
νp(s)

< 1
d−1 . For

β > βu, any colour s ∈ [q] in the ferromagnetic phase satisfies (1− e−β)ρf (s,s)νf (s)
= (eβ−1)µf (s)

1+(eβ−1)µf (s)
; this is larger

than 1
d−1 for the colour s = 1, and less than 1

d−1 for all the other q − 1 colours.

Proof. For the paramagnetic phase and any colour s ∈ [q], it follows from (2.4) that

νp(s) =
1
q , ρp(s, s) =

eβ

qeβ+(q2−q)
,

so (1 − e−β)
ρp(s,s)
νp(s)

< 1
d−1 is equivalent to (1 − e−β) eβ

eβ+q−1
< 1

d−1 which is true iff β < βh, since βh =

log(1 + q
d−2 ).

For the ferromagnetic phase, recall from Section 1.3 that x = µf(1) is the largest number in the interval
(1/q, 1) that satisfies

x =
(1 + (eβ − 1)x)d−1

(1 + (eβ − 1)x)d−1 + (q − 1)
(

1 + (eβ − 1)1−xq−1

)d−1
. (5.3)
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Let t = 1+(eβ−1)x

1+(eβ−1)
1−x
q−1

and note that t > 1 since x > 1/q and β > 0. Moreover, (5.3) can be written as

x = td−1

td−1+(q−1)
, and hence td−1 = (q−1)x

1−x . Then, it follows from (2.4) that for colour s = 1 we have

νf(1) =
td

td + (q − 1)
=

tx

tx+ 1− x
, ρf(1, 1) =

eβx2

1 + (eβ − 1)
(

x2 + (1−x)2

q−1

)

=
eβtx2

(tx+ 1− x)
(

1 + (eβ − 1)x
) ,

(5.4)
whereas for colours s 6= 1 we have

νf(s) =
1

td + (q − 1)
=

1−x
q−1

tx+ 1− x
, ρf(s, s) =

eβ
(

1−x
q−1

)2

1 + (eβ − 1)(x2 + (1−x)2

q−1 )
=

eβt
(

1−x
q−1

)2

(tx+ 1− x)
(

1 + (eβ − 1)x
) .

Using these expressions, it is a matter of few manipulations to verify that (1 − e−β)ρf (s,s)νf (s)
= (eβ−1)µf (s)

1+(eβ−1)µf (s)

for all colours s ∈ [q].
Using this, for s = 1, we have that the inequality (1− e−β)ρf (1,1)νf (1)

> 1
d−1 is equivalent to (eβ − 1)x > 1

d−2 .

Plugging x = td−1

td−1+(q−1) into t = 1+(eβ−1)x

1+(eβ−1)
1−x
q−1

and solving for (eβ − 1) yields that eβ − 1 = (t−1)(td−1+q−1)
td−1−t .

Therefore the desired inequality becomes

(t− 1)td−1

td−1 − t
> 1

d−2 , or equivalently (d− 2)td−1 − (d− 1)td−2 + 1 > 0,

which is true for any t > 1. For a colour s 6= 1, the inequality (1 − e−β)ρf (s,s)νf (s)
< 1

d−1 can be proved
analogously. We have in particular the equivalent inequality (eβ − 1)1−xq−1 < 1

d−2 , which further reduces to
t−1

td−1−t <
1
d−2 ; the latter again holds for any t > 1. �

5.3. Tracking one step of SW - Proof of Propositions 4.3 and 4.4.

Proposition 4.3. Let q, d ≥ 3 be integers and β ∈ (βu, βh) be real. Then, for all sufficiently small constants
ε′ > ε > 0, there exists constant η > 0 such that with probability 1 − e−ηn over the planted distribution
(G, σ) ∼

(

Ĝ
(

σ̂p(ε)
)

, σ̂p(ε)
)

, it holds that PGSW
(

σ → Sp(ε
′)
)

≥ 1− e−ηn.

Proof. Let ε > 0 be a sufficiently small constant so that by Lemma 3.4, for any constant δ > 0, with
probability 1− e−Ω(n) over the choice of (G, σ) ∼

(

Ĝ(σ̂p(ε)), σ̂p(ε)
)

, we have

‖νσ − νp‖ ≤ δ and
∥

∥ρG,σ − ρp
∥

∥ ≤ δ. (5.5)

Let ε′ be an arbitrary constant such that ε′ > ε. We will show that there exists a constant η > 0 such that
for arbitrary ν and ρ ∈ R(ν) satisfying ‖ν − νp‖ ≤ δ and ‖ρ− ρp‖ ≤ δ, for (G, σ) ∼

(

Ĝ(σ̂p(ε)), σ̂p(ε)
)

, it
holds that

P

[

PGSW
(

σ → Sp(ε
′)
)

≥ 1− e−ηn
∣

∣ νσ = ν, ρG,σ = ρ
]

≥ 1− e−ηn (5.6)

and therefore the conclusion follows by aggregating over ν and ρ, using the law of total probability and the
probability bound for (5.5).

Choose (G, σ) ∼
(

Ĝ(σ̂p(ε)), σ̂p(ε)
)

conditioned on νσ = ν and ρG,σ = ρ. Observe that Ĝ(σ) is a
uniformly random graph conditioned on the sizes of the vertex/edge classes prescribed by ν, ρ. For i ≥ 1, let
Ci(Gσ,SW ) be the components of G (in decreasing order of size) starting from the configuration σ after the
percolation step of the SW dynamics with parameter p = 1 − e−β, when starting from the configuration σ.
We will show that there exists a constant M > 0 such that

P

[

∑

i≥1

|Ci(Gσ,SW )|2 ≤Mn
∣

∣

∣ νσ = ν, ρG,σ = ρ

]

≥ 1− e−Ω(n). (5.7)

Assuming this for the moment, for a colour s ∈ [q], let Ns be the number of vertices with colour s ∈ [q] after
the recoloring step of SW. Note that the expectation of Ns is n/q, and whenever the event in (5.7) holds,
by Azuma’s inequality we obtain that 1

nNs is within an additive ε′ from its expectation with probability
1− e−Ω(n). By a union bound over the q colours, we obtain (5.6).
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For a colour s ∈ [q], let G(σ−1(s)) be the induced graph on σ−1(s), and note that since G is uniformly
random conditioned on ν and ρ, G(σ−1(s)) has the same distribution as the exact-edge model H(s) ∼

G̃r̃(s)(ñ(s), d) where ñ(s) = nν(s) and r̃(s) = ρ(s,s)
ν(s) . Percolation on this graph with parameter p is therefore

closely related to the binomial-edge model Gr(s)(ñ(s), d) with r(s) = pr̃(s). More precisely, note that for all
sufficiently small δ > 0, Lemma 5.6 guarantees that the percolation parameter r(s) is bounded by a constant
strictly less than 1/(d− 1), so by Theorem 5.2 there exists a constant M > 0 such that

P

[

∑

i≥1

|Ci(Gr(s))|
2 ≤Mñ(s)

]

≥ 1− e−Ω(r̃n(s)) ≥ 1− e−Ω(n). (5.8)

Note that, for any p ∈ (0, 1), the property
{

G : P
[
∑

i≥1 |Ci(Gp)|
2 ≤Mn

]

≥ 1−e−Ω(n)
}

is a decreasing graph
property, i.e., if G is a subgraph of G′, we can couple the random graphs Gp and G′

p so that
∑

i≥1 |Ci(Gp)|
2 ≤

∑

i≥1 |Ci(G
′
p)|

2. Viewing the event in (5.8) as a property of the binomial-edge model Gr̃(s)(ñ(s), d), it follows
from Lemma 5.1 that with probability 1−e−Ω(n) over the choice of the exact-edge modelH(s) ∼ G̃r̃(s)(ñ(s), d)
it holds that

P

[

∑

i≥1

|Ci(Hp(s))|
2] ≤Mñ(s)

]

≥ 1− e−Ω(n).

Applying this for colours s = 1, . . . , q and H(s) = G(σ−1(s)), we obtain by the union bound that with
probability 1 − e−Ω(n) over the choice of (G, σ) ∼

(

Ĝ(σ̂p(ε)), σ̂p(ε)
)

conditioned on νσ = ν and ρG,σ = ρ,
the components of G after the percolation step of SW satisfy (5.7), as claimed, therefore finishing the
proof. �

Proposition 4.4. Let q, d ≥ 3 be integers and β ∈ (βu, βh) be real. Then, for all sufficiently small constants
ε′ > ε > 0, there exists constant η > 0 such that with probability 1 − e−ηn over the planted distribution

(G, σ) ∼
(

Ĝ
(

σ̂p(ε)
)

, σ̂p(ε)
)

, it holds that PGSW
(

σ → Sp(ε
′)
)

≥ 1− e−ηn.

Proof of Proposition 4.4. The first part of the proof is analogous to that of Theorem 4.3. Let ε > 0 be a
sufficiently small constant, so that by Lemma 3.5, for any constant δ > 0, with probability 1− e−Ω(n) over
the choice of (G, σ) ∼

(

Ĝ(σ̂f(ε)), σ̂f(ε)
)

, we have

‖νσ − νf‖ ≤ δ and
∥

∥ρG,σ − ρf
∥

∥ ≤ δ. (5.9)

We will show that there exists a constant η > 0 such for arbitrary ν and ρ ∈ R(ν) satisfying ‖ν − νf‖ ≤ δ

and ‖ρ− ρf‖ ≤ δ, for (G, σ) ∼
(

Ĝ(σ̂f(ε)), σ̂f(ε)
)

it holds that

P

[

PGSW
(

σ → S̃f(ε
′)
)

≥ 1− e−ηn
∣

∣ νσ = ν, ρG,σ = ρ
]

≥ 1− e−ηn (5.10)

and therefore the conclusion follows by aggregating over ν and ρ.
Choose (G, σ) ∼

(

Ĝ(σ̂f(ε)), σ̂f(ε)
)

conditioned on νσ = ν and ρG,σ = ρ. Observe that Ĝ(σ) is uniformly
random conditioned on ν, ρ. Choose (G, σ) ∼

(

Ĝ(σ̂f(ε)), σ̂f(ε)
)

conditioned on νσ = ν and ρG,σ = ρ.
Observe that Ĝ(σ) is uniformly random conditioned on ν, ρ. For i ≥ 1, let Ci(Gσ,SW ) be the components
of G (in decreasing order of size) starting from the configuration σ after the percolation step of the SW
dynamics with parameter p = 1 − e−β , when starting from the configuration σ. We will show that there
exists a constant M > 0 such that

P

[

C1(Gσ,SW ) = n
(

1− q(1−νf (1))
q−1

)

± ǫ′n,
∑

i≥2

|Ci(Gσ,SW )|2 ≤Mn
∣

∣

∣ νσ = ν, ρG,σ = ρ
]

≥ 1− e−Ω(n) (5.11)

We first complete the proof of the theorem assuming this for the moment, and return to the proof of
(5.11) later. In particular, assume w.l.o.g. that C1(Gσ,SW ) gets colour 1. For a colour s ∈ [q], let Ns
be the number of vertices outside C1(Gσ,SW ) that get colour s ∈ [q] after the recoloring step of SW.
Note that in the final configuration after the recolouring step, the number of vertices with colour s ∈ [q]

is Ns + 1{s = 1}|C1(Gσ,SW )|. Now, the expectation of Ns is n−|C1(Gσ,SW )|
q , and whenever the event in

(5.7) holds, by Azuma’s inequality we obtain that 1
nNs is within an additive ε′ from its expectation with

probability 1 − e−Ω(n). Therefore, by a union bound over the q colours, the Potts configuration obtained
after one step of SW belongs to S̃f(ε

′) with probability 1− e−Ω(n), which establishes the claim in (5.10).
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It remains to prove (5.11). As in the proof of Theorem 4.3, for a colour s ∈ [q], let G(σ−1(s)) be
the induced graph on σ−1(s), and note that G(σ−1(s)) has the same distribution as the exact-edge model
H(s) ∼ G̃r̃(s)(ñ(s), d) where ñ(s) = nν(s) and r̃(s) = ρ(s,s)

ν(s) . By considering again the binomial-edge model
Gr(s)(ñ(s), d) with r(s) = pr̃(s), and using the inequalities in Lemma 5.6 for the ferromagnetic phase, we
obtain that for all colours s 6= 1 the parameter r(s) is bounded by a constant strictly less than 1

d−1 and
hence the model is in the subcritical regime. In fact, by the same line of arguments as in Theorem 4.3, we
therefore have that there exists a constant M0 > 0 (depending only on d, β but not on ν or ρ) such that, for
all colours s 6= 1 with probability 1− e−Ω(n) over the choice of H(s) ∼ G̃r̃(s)(ñ(s), d), it holds that

P

[

∑

i≥1

|Ci(Hp(s))|
2 ≤M0ñ(s)

]

≥ 1− e−Ω(n) (5.12)

By contrast, for s = 1, the binomial-edge model Gr(s)(ñ(s), d) is in the supercritical regime since r(s) = rf±ε

where rf = (1 − e−β)ρf (1,1)νf (1)
= (eβ−1)µf (1)

1+(eβ−1)µf (1)
is a constant larger than 1

d−1 (by Lemma 5.6). Let χf = χ(rf)

be as in (5.2), so by Proposition 5.4 there exists a constant M1 > 0 such that

P

[

∣

∣C1(Gr(s))
∣

∣ = ñ(s)(χf ±
ǫ′

2 )
]

, P

[

∑

i≥2

|Ci(Gr(s))|
2 ≤M1ñ(1)

]

≥ 1− e−Ω(n). (5.13)

We will shortly show that

1−
q(1 − νf(1))

q − 1
= χfνf(1) or equivalently χf =

qνf(1)− 1

(q − 1)νf(1)
. (5.14)

Assuming this for now, note that since |C1(G)| and P
[∑

i≥2 |Ci(Gp)|
2
]

are monotone under edge-inclusion,
we can again use Lemma 5.1 to go back to the percolation model for the colour s = 1. So, we conclude that
with probability 1− e−Ω(n) over the choice of H(s) ∼ G̃r̃(s)(ñ(s), d), it holds that

P

[

∣

∣C1(Hp(s))
∣

∣ = ñ(s)(χf ± ǫ′),
∑

i≥1

|Ci(Hp(s))|
2 ≤M1ñ(s)

]

≥ 1− e−Ω(n).

Combining (5.12) and (5.13) with a union bound over the q colours, we obtain (5.11) with M = maxM0,M1.
It only remains to prove (5.14). Recall from (5.4) that νf(1) = td

td+(q−1)
where t = 1+(eβ−1)x

1+(eβ−1)
1−x
q−1

and

x = µf(1). So, χf =
qνf (1)−1
(q−1)νf (1)

is equivalent to showing that

χf = 1− (1/t)d. (5.15)

Now, recall from (5.2) that χf = 1−
(

1− rf + rfφf
)d

, where φf = φ(rf ). So (5.15) reduces to showing that

1/t = 1− rf + rfφf ,which using t = 1+(eβ−1)x

1+(eβ−1)
1−x
q−1

and rf =
(eβ−1)x

1+(eβ−1)x
is equivalent to φf = 1−x

(q−1)x . (5.16)

From (5.2), y = φf is the unique solution in (0, 1) of the equation

y =
(

1− rf + rfy
)d−1

, (5.17)

and note that 1−x
(q−1)x ∈ (0, 1) since x > 1/q. So, to prove the equality φf = 1−x

(q−1)x in (5.16), it suffices to
show that setting y = 1−x

(q−1)x satisfies (5.17). This follows from the fact that x = µf(1) satisfies the Belief
propagation equations; in particular, from (5.3) we have

x =
(1 + (eβ − 1)x)d−1

(1 + (eβ − 1)x)d−1 + (q − 1)
(

1 + (eβ − 1)1−xq−1

)d−1
,

from which it follows that y = 1−x
(q−1)x =

(

1+(eβ−1)x)

1+(eβ−1)
1−x
q−1

)d−1

=
(

1 − rf + rfy
)d−1

. This finishes the proof of

(5.14) and therefore the proof of Proposition 4.4. �
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Appendix A. Proof of Lemma 4.2

Lemma 4.2. Let G = (V,E) be a graph. For any S ⊆ [q]V such that µG(S) > 0 and any integer t ≥ 0 we
have ‖µG,SP

t − µG,S‖TV ≤ tΦ(S).

Proof. We adapt the argument from [33, proof of Theorem 7.3]. For σ, τ ∈ [q]V and A,B ⊆ [q]V let

Q(σ, τ) = µG(σ)P (σ, τ) and Q(A,B) =
∑

σ∈A,τ∈B

Q(σ, τ).

Moreover, for a set S ⊆ [q]V , let µG,β,S = µG,β (·|S). We have

µG(S) ‖µG,β,SP − µG,β,S‖TV = µG(S)
∑

σ∈[q]Vn

µG,β,SP (σ)≥µG,β,S(σ)

(µG,β,SP (σ) − µG,β,S(σ)) . (A.1)

Now, by definition, µG,β,S(τ) = µG ({τ} ∩ S)/µG (S) so µG,β,S(τ) = 0 if τ /∈ S and µG,β,S(τ) = µG(τ)/µG (S)
otherwise. Hence,

µG(S)µG,β,SP (σ) =
∑

τ∈[q]V

µG(S)µG,β,S(τ)P (τ, σ) =
∑

τ∈S

µG(τ)P (τ, σ) ≤
∑

τ∈[q]V

µG(τ)P (τ, σ) = µG(σ)

(A.2)

where the last equality in (A.2) holds because µG is the stationary distribution. Next, dividing (A.2) through
by µG(S) and using the fact that µG,β,S(τ) = µG(τ)/µG (S) for τ ∈ S, we have

µG,β,SP (τ) ≤ µG,β,S(τ) for τ ∈ S. (A.3)

Furthermore, since µG,β,S(τ) = 0 for τ ∈ Sc,

µG,β,SP (τ) ≥ µG,β,S(τ) = 0 for τ ∈ Sc. (A.4)

Combining (A.3), (A.4) and again the fact that µG,β,S(σ) = 0 for σ ∈ Sc we see that Equation (A.1) becomes

µG(S) ‖µG,β,SP − µG,β,S‖TV =
∑

σ∈Sc

µG(S)µG,β,SP (σ). (A.5)
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Once more, since µG,β,S(τ) = 0 if τ ∈ Sc and µG,β,S(τ) = µG(τ)/µG(S) if τ ∈ S we have
∑

σ∈Sc

µG(S)µG,β,SP (σ) =
∑

σ∈Sc

∑

τ∈S

µG(S)µG,β,S(τ)P (τ, σ) =
∑

σ∈Sc

∑

τ∈S

µG(τ)P (τ, σ) = Q(S, Sc) (A.6)

Combining (A.5) and (A.6), we obtain

µG(S) ‖µG,β,SP − µG,β,S‖TV = Q(S, Sc), and hence ‖µG,β,SP − µG,β,S‖TV = Φ(S, Sc).

In addition, for any u ≥ 0, it is easy to see that we have
∥

∥µG,β,SP
u+1 − µG,β,SP

u
∥

∥

TV
≤ ‖µG,β,SP − µG,β,S‖TV = Φ(S, Sc).

Therefore, the result follows using the triangle inequality on the telescoping sum

µG,β,SP
t − µG,β,S =

t−1
∑

u=0

µG,β,SP
u+1 − µG,β,SP

u. �

Appendix B. Proof of Lemma 5.3

The proof follows closely the approach in [32] that was carried out for high-girth expanders. While the
random regular graph is an expander itself, it contains a few small cycles and we only need to adapt the
argument in order to account for their presence.

Lemma 5.3. Let d ≥ 3 be an integer, p ∈ ( 1
d−1 , 1) be a real, and χ, ψ = χ(p), ψ(p) be as in (5.2). Then, for

any δ > 0, with probability 1− e−Ω(n) over the choice of either G ∼ Gp or G ∼ G̃p, it holds that

|C1(G)| = (χ± δ)n, |E(C1(G))| = (ψ ± δ)n.

Proof. Let δ > 0 be an arbitrarily small constant, and set η = δ/(100dp). It suffices to prove the result for
the binomial-edge model Gp, the result for the exact-edge model G̃p follows from Lemma 5.1 since |C1(G)|
and |E(C1(G))| are monotone under edge-inclusion.

Let ε ∈ (0, p) be an arbitrarily small constant to be chosen later, and let p̂ := p−ε
1−ε ; note that ε = p−p̂

1−p̂ .
We can think of the construction of Gp into the following steps: (i) we sample a random d-regular graph
G = (V,E) ∼ G from the pair model, (ii) keep each of the edges in E independently with probability p̂, to
obtain the edge set Ê, (iii) keep each of the edges in E independently with probability ε > 0, to obtain the
edge set Eε, (iv) the final graph has vertex set V and edge set Ê ∪ Eε.

For a large integer R > 0 to be chosen later, let φR be the probability that a branching process with
offspring distribution Bin(d − 1, p̂) has died out after R generations, and χR = 1 − (1 − p̂ + p̂φR)

d, ψR =
1
2dp̂
(

1−φ2R
)

. Then, by choosing ε > 0 sufficiently small, for all sufficiently large R we have that |χR−χ| ≤ η,
|ψR − ψ| ≤ η.

It is a well-known fact that the random regular G = (V,E) ∼ G, i.e., the graph after step (i), is an
expander and the local neighbourhoods of all but a small fraction of the vertices are trees. More precisely,
there is a constant ζ > 0 such that for any integer R > 0 the following hold with probability 1− e−Ω(n):

(1) the (2R)-neighbourhoods of all but ηn vertices will be isomorphic to the (2R)-neighbourhood of the
root of a d-regular tree. Let Z = Z(R) denote the set of these vertices, and ZE = ZE(R) be the set
of edges whose both endpoints are in Z; we have |Z| = (1 ± η)n and |ZE | = (1 ± 2η)d2n (since we
lose at most d edges for every vertex in V \Z.

(2) every set S ⊆ V with ηn ≤ |S| ≤ n/2 has at least ζ|S| edges with exactly one endpoint in S.
Item 1 follows by the Azuma-Hoeffding inequality (since for any R > 0, E[n − Z] = O(1) and adding or
removing a single edge of G can change the (2R)-neighbourhoods of at most dR vertices), whereas Item 2
follows from a standard union-bound argument. For the rest of the proof, fix G to be any d-regular graph
satisfying Items 1 and 2.

Consider the graph after the percolation step (ii), i.e., the graph (V, Ê). For v ∈ Z, let 1v be the indicator
that there is a neighbour u ∈ ∂v such that vu ∈ Ê and u has a simple path of length R that starts from
it and does not include v; if 1v = 1, we will say that v belongs to a large component. Since v ∈ Z, it
has d-neighbours whose R-neighbourhoods look like trees, so E[1v] = 1 − (1 − p̂ + p̂φR)

d = χR. For an
edge e ∈ ZE , let 1e be the indicator that e ∈ Ê and that there is a simple path of length R starting
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from either of the endpoints of e which does not include e. Since e ∈ ZE , we have E[1e] = p̂(1 − φ2R) If
1e = 1, we will say that e belongs to a large component. By Azuma’s inequality, the random variables
X =

∑

v∈Z 1v and Y =
∑

e∈ZE
1e are within ηn from their expectation with probability 1 − e−Ω(n). We

have E[X ] = (1 ± η)nχR = (χ ± 2η)n and E[Y ] = (1 ± 2η)nψR = (ψ ± 3η)n. Therefore, after percolation
step (ii), with probability 1 − e−Ω(n), we have a set VL of vertices from Z and a set EL of Y = (ψ ± 4η)n
edges from ZE which belong to large components, with |VL| = X = (χ ± 4η)n and |EL| = Y = (ψ ± 4η)n.
We also conclude that there are at most n/R components with size ≥ R, which we denote by C1, . . . , Ck for
some k ≤ n/R.

Now consider the graph after the percolation step (iii), i.e., the graph (V,Eε). We claim that with
probability 1− e−Ω(n), every partition of C1, . . . , Ck into two parts A,B with |A|, |B| ≥ ηn has a path joining
them. Indeed, by Menger’s theorem and the expansion property in Item 2, for any disjoint vertex sets A,B
with |A|, |B| ≥ ηn, there are at least ζηn edge-disjoint paths from A to B. Of these paths, at least half
of them have at most d

ζη edges (otherwise |Eε| >
1
2dn), so the probability that none of them is present

after the percolation step is at most (1 − εd/(ζη))ζηn/2. Since k ≤ n/R, there are at most 22n/R ways to
partition C1, . . . , Ck into A,B, so by a union bound the probability that a partition exists is upper bounded
by 22n/R(1 − εd/(ζη))ζηn/2 ≤ e−Ω(n) by choosing R large with respect to ε, η, ζ.

It follows from the above that the final graph (V, Ê ∪Eε) contains a connected component C with at least
(χ− 6η)n vertices from Z; otherwise, for the first i such that |C1 ∪ · · · Ci| ≥ ηn, we must have |C1 ∪ · · · Ci| ≤
(χ − 5η)n, and from |C1 ∪ · · · Ck| ≥ (χ − 4η)n, we obtain two disconnected parts A,B with |A|, |B| ≥ ηn.
This component C must contain at least Y − 10dηn ≥ (ψ − 14dη)n edges since we lose at most d edges per
vertex of VL\C.

Note that the vertices in V (C) ∩ Z belong to VL and therefore |V (C) ∩ Z| ≤ |VL| ≤ (χ+ 4η)n. There can
be at most ηn vertices in V (C)\Z (by Item 1). Therefore |C| = (χ± 6η)n. Similarly, the edges in E(C)∩ZE
belong to EL and analogously to above we obtain that |E(C)| = (ψ ± 14dη)n.

It only remains to show that C is the largest component with probability 1 − eω(n). For large K, an
Azuma-Hoeffding bound shows that the number of vertices that belong to components of size ≤ K in the
graph (V, Ê ∪ Eε) is at least (1 − χ − 4η)n with probability 1 − e−Ω(n). Therefore, via a union bound, we
obtain that every component in (V, Ê∪Eε) other than C has at most 20ηn vertices with probability 1−eΩ(n),
and therefore is smaller than C.

This finishes the proof of Lemma 5.3. �
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