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Abstract. In physics, the wavefunctions of bosonic particles collapse when the system undergoes a Bose–
Einstein condensation. In game theory, the strategy of an agent describes the probability to engage in a
certain course of action. Strategies are expected to differ in competitive situations, namely when there is
a penalty to do the same as somebody else. We study what happens when agents are interested how they
fare not only in absolute terms, but also relative to others. This preference, denoted envy, is shown to
induce the emergence of distinct social classes via a collective strategy condensation transition. Members
of the lower class pursue identical strategies, in analogy to the Bose–Einstein condensation, with the upper
class remaining individualistic.

1 Introduction

Humans do not live in isolation. It is well established
that the social context is important, influencing, beside
others, memory, cognition, risk awareness, accountabil-
ity and decision making [1–5]. An important example is
the emergence of cooperation, for which non-monetary
components to the utility are needed within a game-
theoretical setting. Examples are reputation seeking [6–
8], the desire to minimize risks [9,10], or the willingness
to socialize [11].

A generic non-monetary contribution to utility func-
tions is a term arising from comparing rewards. Here we
follow [12] and use ‘envy’ for contribution to game-theo-
retical utility function that models inter-agent compar-
isons [13]. Alternatively one could speak of an aversion
to unfairness. Envy arises from the observation that the
satisfaction individuals gain from making and spending
money depends not only on absolute levels, but in good
part also on how their own consumption level compares
with that of others [14]. The importance of comparing
ourselves to others is also at the core of relative income
theory [15,16]. Relative success is furthermore funda-
mental for competitions in general, being it a track race
or evolutionary competition [17,18].

For the study of envy, we examine games in which a
psychological component is added to the classical, the
monetary payoff [19]. Our focus is the question whether
envy may have a qualitative impact on the structure of
self-consistent multi-player Nash states. We find that
this is the case, in the sense that that competitive soci-
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eties split endogenously into distinct social classes when
envy becomes relevant.

One-to-one inter-agent interactions are not present in
our framework. This implies, that the sole determinant
for behavior are the individual payoffs, which can be
evaluated both in absolute and in relative terms. An
analogy between agents and the distinguishable parti-
cles of classical physics can hence be made [20], with the
game-theoretical space of available options correspond-
ing to the physical state space. Strategy condensation
occurs when the initially distinct strategies of a macro-
scopically large number of agents collapses into a single,
encompassing strategy. This process can be considered
as a classical correspondence of the Bose–Einstein con-
densation (BEC), which is characterized by the macro-
scopic occupation of a single state, usually the ground
state [21]. At its core, BEC is however a quantum phe-
nomenon. A similar analogy in term of a classical de-
facto Bose–Einstein distribution has been pointed out
in the context of complex networks [22].

2 Framework

In a first step we discuss our approach to model a soci-
ety of competing agents, adding subsequently the psy-
chological component, envy.

Agents have i ∈ [1, N ] possible options, with each
options yielding a basic payoff, vi. This is the mon-
etary income the agent receives if nobody else would
select the same option. For the modeling of the inter-
agent competition, we define with pα

i ≥ 0 the strategy
of agent α ∈ [1,M ], namely the probability to select
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option i, with the normalization condition
∑

i pα
i = 1.

The number of options and agents is respectively N and
M . Strategies are pure when pα

i reduces to a discrete
δ-function, as pα

i → δik, being mixed otherwise. The
real-world income Iα of an agent is given by

Iα =
∑

i

Iα
i pα

i , Iα
i = vi

⎛

⎝1 − κ
∑

β �=α

pβ
i

⎞

⎠ , (1)

where κ ≥ 0 encodes the strength of the competition.
Payoff reduction is proportional to

∑
β �=α pβ

i , which cor-
responds in lowest order (modulo higher-order combi-
natorial factors) to the probability to encounter other
agents. Overcrowded options yielding negative payoffs
will be avoided. In this study we set κ = 1/2, which
describes the case that two agents with identical pure
strategies share resources equally. More than two agents
can opt for the same course of action i hence only when
playing mixed strategies, with pα

i < 1.
The exact functional form of the bare utility vi is of

minor importance. Mapping options i to a scalar quan-
tity, the quality qi ∈ [0, 1], allows to define a functional
representation for vi = v(qi). We use

v(qi) =
1 + qi

1 − θqi
, θ ∈ [0, 1[ , (2)

with the parameter θ regulating the relative width
of the distribution of bare utilities. One has v(qi) ∈
[1, 2/(1 − θ)], which translate into v(qi) ∈ [1, 4] when
θ = 0.5.

2.1 Nash equilibria without envy

It is assumed throughout this study that the basic util-
ity function vi is non-generate, viz that vi �= vj for all
option pairs i �= j. Per se, without an additional psycho-
logical component, the utility defined by (1) has then a
straightforward solution. Agents play exclusively pure
strategies, with either one or two agents per option.
Throughout this study we denote these two types of
pure strategies as ‘pure-1’ and ‘pure-2’.

2.2 Information requirement

Formulating the competition ∼κ in terms of strategies,
as done in (1), demands at face sight a high amount
of information, namely the knowledge of the strategies
ρα

i of all participating agents. This is however not the
case. For a proof we rewrite the probability to encounter
other agents at a given option i as

∑

β �=α

pβ
i =

∑

β

pβ
i − pα

i , (3)

which is solely a function of the agent’s own strat-
egy, pα

i , and the overall mean number Ni =
∑

β pβ
i of

agents selecting the option in question. Agents need to

be aware hence only of their own strategy and of the
mean occupations Ni, but not of the specifics of the
strategies of everybody else.

2.3 Envy – comparing success

A basic reference level for success within a well-mixed
population is the average income Ī,

Ī =
1
M

∑

α

Iα, (4)

with Iα being defined by (1). On the level of individu-
als, envy results from direct person-to-person compar-
ison. Here we examine instead the population effect,
for which the average income Ī is taken as the yard-
stick. Both approaches, using Ī as a reference, or pair-
wise comparisons, become identical, as shown in the
appendix, when income differences are small.

In terms of the overall reward function Rα
i , the effect

of envy is encoded by

Rα
i = Iα

i + ε pα
i log

(
Iα

Ī

)

, (5)

where the first term on the right-hand side corresponds
to the monetary utility. The strength of second term,
the psychological component, is regulated by ε ≥ 0.

The rationale for the functional form of the envy
term in (5) is straightforward. The agent is happy when
earning above average, when Iα > Ī, and unhappy
otherwise. The log-dependency ensures that the envy
term contributes positively in the first, and negatively
in the second case. The envy term couples directly to
the strategy, pα

i , with the consequence that the current
strategy is enforced when Iα > Ī. Below the average,
when Iα < Ī, agents are motivated in contrast to search
for alternatives. It is also worth mentioning that the
log-dependency log(Iα/Ī) of the envy term in (5) is in
agreement with the Weber–Fechner law, which states
that the brain discounts sensory stimuli [23], numbers
[24], time [25], and data sizes [26] logarithmically.

In previous studies envy has been assumed to result
from comparing rewards [20,27], and not incomes,
as done here. In that case the envy term involves
log(Rα/R̄), instead of (5), where R̄ is the mean reward.
The resulting framework demands however that agents
can estimate the psychological state of the other agents,
which is included in Rα, but not in Iα, which seems
to be less plausible. A well-defined large-size limit is
attained in any case for constant ε when scaling M and
N such that the ratio ν = M/N , the fraction of agents
per options, is retained [27].

2.4 Numerics

Agents maximize their expected rewards Rα,

Rα =
∑

i

Rα
i pα

i (6)
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viz the sum of the monetary utility Iα and of the envy
term. Numerically, this is achieved using standard evo-
lutionary dynamics [28],

pα
i (t + 1) =

pα
i (t)Rα

i (t)
∑

j pα
j (t)Rα

j (t)
, (7)

which describes the transition of strategies at time t to
t + 1. Adding a constant offset R0 to the bare rewards
Rα

i leads to a smooth convergence. If not otherwise
stated, R0 = 20 has been used.

Once (7) has been iterated till self-consistency, the
resulting payoffs Rα

i are positive. When negative val-
ues appear as an intermediate step, they are set to a
lower bound R0, which has been taken to be zero. It
is advantageous to use the representation (3) for the
interaction term. We focused here on the case M = N ,
together with κ = 0.5 and θ = 0.5. Testing extensively
for alternative parameter settings we find that the over-
all picture emerging is remarkably robust.

For the results presented below the evolution dynam-
ics (7) is iterated 105 times, if not otherwise stated. The
initial strategies pα

i (t = 0) are drawn randomly from
[0, 1], and normalized subsequently. We did test that the
resulting strategy distributions are stable against small
stochastic perturbations. The resulting states are hence
‘local’ Nash-equilibria, in the sense that it is disadvan-
tageous for agents to make small changes to their pα

i .

3 Results

We analyze our results in particular with respect to the
size of the support Sα of the individual strategies pα

i ,

Sα = {i | pα
i > 0} , (8)
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Fig. 1 Assorted competition. The payoffs of α ∈
[1, 100] agents (circles), i ∈ [1, 100] options, and ε = 1. The
data points of the payoff functions Rα

i are connected by
lines. 50 agents engage in pure strategies which are not con-
tested (pure-1, blue), with 21 agents playing pure strategies
that are pursued also by another agent (pure-2, red). The
rest, 8 agents, follow distinct mixed strategies (green), with
an average support of 2.9. Also given is the bare utility v(qi)
(black). Shown in the brackets, (Ns/Np), is the number Ns

of distinct strategies of a given type, together with the num-
ber Np of engaged agents
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Fig. 2 Class-stratified state. The payoffs of M = 100
agents (circles), for N = 100 options qi and ε = 4. The lines
connect payoffs Rα

i for one and the same agent α. There are
15 agents playing pure strategies which are not contested
(pure-1, blue), with 23 agents playing pure agents that are
played also by another agent (pure-2, red). The rest, 39
agents, play the identical mixed strategy (green) covering
62 options. Also shown is the bare utility v(qi) (black). The
cross (light yellow) indicates the locus of vanishing envy,
viz where Iα = Ī. The brackets, (Ns/Np), show the number
Ns of distinct strategies of a given type together with the
number of agents Np playing the respective type of strategy

which is given by the set of options selected with finite
probability. The smallest possible support is one, corre-
sponding to the case of a pure strategy. Strategies with
non-trivial support are mixed.

3.1 Low envy: assorted competitive state

In Fig. 1 a typical payoff configuration for ε = 1 is
given. Shown are the entirety of all M = 100 payoff
functions Rα

i , viz the respective values for all i = 1, .., N
options, as defined by (5). Larger bare utilities v(qi)
are taken each by two agents playing pure strategies, a
configuration denoted with ‘pure-2’. This region cannot
be invaded by competitors, given that Iα

i , as defined by
(1), vanishes in the pure-2 region for third parties. Most
agents are engaged in ‘pure-1’ strategies, which means
that they play pure strategies that are contested, if at
all, only by agents playing mixed strategies, but not by
other agents pursing pure strategies.

In the absence of envy, when ε = 0, only pure-1 and
pure-2 strategies are present. For small values of envy,
as for the data presented in Fig. 1, mixed strategies
start to invade the pure-1 region at the boundary to
the pure-2 strategies, with additional support at low
values of v(qi). Mixed strategies are distinct for low ε,
which means that no two agents pursue identical mixed
strategies. Supports are comparatively small. Overall, a
competitive Nash equilibrium with assorted strategies
is observed.

3.2 Large envy: condensed mixed strategies

The spectrum of payoffs functions reorganizes dramat-
ically for larger value of ε. Not with regard to the two
sets of pure-1 and pure-2 strategies, which change only
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with respect to their sizes, but regarding the mixed
strategies. All mixed strategies collapse into a single
strategy pursued by a finite fraction of agents, the lower
class. The situation is illustrated in Fig. 2 for ε = 4.
About 40% of all agents play one and the same mixed
strategy, with the respective support covering about
60% of option space.

The details of the individual strategies are private
information within the framework examined here. Only
the cumulative weights,

∑
β pβ

i , are available, see (3).
There is consequently no inbuilt mechanism allowing
an agent to copy somebody else’s strategy. The incomes
received, Iα, are however public, which means that they
can be compared with each other, the core functionality
of envy. The condensation of the strategies of a large
number of agents is therefore a collective phenomenon
in the sense of statistical physics [17]. It occurs when
increased levels of envy lead to a substantial inter-agent
coupling.

Agents are identical, apart from their strategies,
which are drawn at the start from a flat random distri-
bution. Chance, the starting strategy, determines there-
fore the outcome – whether the agent will belong in
the end to the individualistic pure-1 or pure-2 clusters,
or whether it will become part of the masses, loosely
speaking, sharing the same mixed strategy with many
others.

3.3 Social classes separated by income gaps

In Fig. 3 we present the player specific averages corre-
sponding to the payoff functions shown in Figs. 1 and 2.
For pure strategies, the rewards Rα correspond to the
respective peaks of the payoff functions. When sorted
by ascending values, the rewards of pure-1, pure-2 and
mixed strategies are intertwined for ε = 1, but not for
ε = 4. It is also noticeable that there is no gap in
the ε = 4 reward spectrum between mixed and pure-
2 strategies, whereas a substantial gap is present for
the corresponding income data. This phenomenon can
be traced back to a discontinuity of the player specific
envy Eα,

Eα = Rα − Iα = ε log
(

Iα

Ī

)

Pα
2 , Pα

2 =
∑

i

(pα
i )2 ,

(9)
compare (5). For pure strategies Pα

2 → 1 holds, but not
for mixed strategies. This is true in particular for the
mixed strategy of the condensed state realized for ε = 4,
which has a substantial support and correspondingly
small probabilities pα

i . The envy term Eα jumps hence
together with Pα

2 at the boundary of the mixed and the
pure-2 cluster, which have respectively low/large values
of |Eα|. Note that Iα < Ī at the boundary, as indicated
in Fig. 2, which implies a negative Eα < 0 and that
pure-2 strategies must have larger incomes at boundary
to the lower class. The latter due to the continuity of
the reward spectrum Rα.

The occurrence of substantial gaps in the income
spectrum shows that the society of agents separates
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Fig. 3 Player specific rewards and incomes. For all agents,
the rewards Rα (top panel) and the incomes Iα (bottom
panel), as sorted by value. Shown are the results correspond-
ing to the payoffs presented in Figs. 1 and 2, for both ε = 1
(filled symbols) and ε = 4 (open symbols). Also shown are
the population averages Ī for the incomes (light green). Note
the income gaps for ε = 4

spontaneously into distinct social classes under the
influence of envy [20]. Incomes are distributed over a
finite range also for low values of envy, as evident from
the data presented in Fig. 3. The resulting distributions
are however continuous, which implies that there is no
unbiased criterion to subdivide the society into sepa-
rated social classes. The situation changes beyond the
strategy condensation transition, where three differen-
tiated strategy clusters emerge:

– Lower class: A finite fraction of agents (‘the
masses’) pursues the identical mixed strategy, with
incomes that are below the average, Iα < Ī.

– Middle class: The middle class claims the options
with the highest bare utilities v(qi). The price paid
is that options are selected by pairs of agents, which
halves the respective monetary yields. The resulting
incomes Iα are both below and above the population
average Ī.

– Upper class: Agents playing pure strategies that
are contested only by lower-class agents, but not by
other pure strategies.

The here used definition of social classes in terms of
separated income clusters is convenient for modeling
studies, but less suitable for demographic investiga-
tions. Real-world income distributions do not show
clear income gaps [29].
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Fig. 4 Evolution of strategies played. Top: For N = M =
200 the fractions of observed strategies, as a function of
envy. Shown are the relative fractions of different strategies,
for pure-1 (blue), pure-2 (red) and mixed (green). Counted
are the numbers of strategies, not agents. The data is aver-
aged over ten random initial conditions. Bottom: The cumu-
lative support of all mixed strategies divided by the number
of available options, N . The ratio can exceed unity, as mixed
strategies may partially overlap

3.4 Strategy condensation transition

In Fig. 4 the evolution of key strategy-related quantities
is shown as a function of envy. Data for slightly larger
numbers of agents and options, N = 200 = M , has
been averaged over ten random initial conditions. The
absolute system size is of minor importance, as long as
the ratio M/N of agents per options is kept [27]. The
fractions of strategies played are given relative to the
total number of observed distinct strategies. For the
Nash equilibrium of Fig. 1, to give an example, there
are 50 + 21 + 8 = 79 different strategies. The fractions
of pure-1, pure-2 and mixed strategies would then be
50/79, 21/79 and 8/79. One observes that mixed strate-
gies are most important, in terms of relative numbers,
around ε ≈ 1.5.

Beyond ε ≈ 5.5, the mixed strategy of the lower-
class starts to invade intermittently the cluster of pure-2
strategies, which shrinks consequently in terms of rel-
ative importance. The strict ordering of the supports
of the mixed and the pure-2 strategies in qi-space, as
presented in Fig. 2, is hence lost for very large values
of ε.

Also included in Fig. 4 is the total support of all
mixed strategies, with mixed strategies played by more
than one agent counted only once. The total support
has been divided by the overall number of options, N ,
with values above unity indicating that mixed strate-
gies overlap on the average. The option space covered
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Fig. 5 Envy reduces monetary incomes Mean incomes Ī
and rewards, R̄, as defined by (4) and (6). As a function of
envy, mean incomes drop substantially beyond the strategy
condensation transition, which starts between ε = 1.5 and
ε = 2. Envy, a psychology component, affects real-world
monetary incomes adversely

jumps substantially between ε = 1.5 and ε = 2.0, due to
the emergence of mixed strategies with extended sup-
ports. Between ε = 1.5 and ε = 2.0 the average rela-
tive support of mixed strategies rises eight-fold, from
3.0 to 23.9. Total support drops beyond the peak, at
ε ≈ 2.5, due to corresponding decrease in the num-
ber of mixed strategies. At this stage there is typically
one large condensed mixed strategy, together with a
few smaller mixed strategies, all leading to very sim-
ilar incomes. The number of smaller mixed strategies
becomes progressively smaller with increasing envy. For
ε = 4 and ε = 6 there are, e.g., on the average 2.9 and
respectively 1.0 mixed strategies, with actual numbers
fluctuating between individual simulations and initial
conditions. In Fig. 2 the case of a single mixed strat-
egy has been shown for ε = 4. Residual smaller mixed
strategies would have been essentially indistinguishable
on the scale.

It is important to point out, that the strategy con-
densation transition appears from replicator dynamics,
see Eq. (7), which is the only way for agents to evolve
their strategies. Other forms of learning, f.i. by join-
ing other strategies, are not present. The formation of
an extended class of agents with (numerically) identical
strategies is hence due to a collective effect.

3.5 Social dilemma

In Fig. 5 the evolution of the population averages Ī
and R̄ with envy are presented, respectively for incomes
and rewards. The mean reward varies comparatively
little with ε, overall an increase from 1.86 to 2.11 can
be observed between ε = 0 to ε = 7. The situation
is different for Ī, which drops noticeably within the
class-stratified state. Once strategy condensation sets
in, around ε = 1.5–2.5, incomes start to drop progres-
sively.

The evolutionary benefits of envy as a multi-faceted
human emotion are not fully understood [30]. It is how-
ever generically assumed that envy is a direct conse-
quence of the core defining feature of Darwinian evo-
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lution, namely that only the ‘fittest’ survives. To be
among the top performers is defined in relative, and
not in absolute terms [18,31]. Our results, that envy
is detrimental to the overall welfare of societies, sug-
gest in this perspective a social dilemma. As an opera-
tive human psychological trait [13], envy seems to have
disparate effects on individual and societal levels. It is
hence important to study, as done in the following sec-
tions, what happens when envy is not a uniform char-
acteristic, but a heterogeneous, player-specific trait.

3.6 Player-specific envy levels

The stability of the phenomenology emerging from our
framework, that a strategy condensation transition is
induced by raising levels of envy, can be studied against
various perturbations. Here we examine the case that
agents have distinct degrees of envy. For this question
we use a particularly straightforward protocol, namely
that the player specific envy-parameters εα are uni-
formly distributed on the interval [0, 2ε̄], where ε̄ is the
mean envy level.

One finds that varying agent specific levels lead only
to quantitative changes, leaving the basic processes
intact. A typical outcome for N = M = 100 is shown in
Fig. 6, where the payoff functions are given for ε̄ = 4,
together with the ordered incomes Iα. The latter is
given for comparison also for ε̄ = 1. Two observations
are retained, the occurrence of a transition resembling
the condensation of strategies, and that a substantial
income gap opens between the lower class and the rest
of the society. We notice that the mean income drops
with raising ε̄, here from Ī = 1.85 to Ī = 1.58 when
going from ε̄ = 1 to ε̄ = 4. A social dilemma is hence
present also when agents are characterized not by uni-
form, but by player-specific levels of envy.

For ε̄ = 1 one finds pure-1 (49/49), pure-2 (21/42)
and mixed (9/9) strategies. For ε̄ = 4 we have pure-1
(23/23), pure-2 (17/34) and “mixed (1/43)” strategies.
Beyond the transition, a lower class emerges. At the
resolution of the plot presented in Fig. 6, differences in
respective rewards or incomes, Rα and Iα, of the 43
lower-class agents cannot be discerned. It is however
not possible that agents with different envy εα satisfy
(5) for identical strategies and incomes. On a fine scale
it should hence be the case that the lower class splits
into a mixed (43/43) state, albeit with only small dif-
ferential payoffs. We verified that this concurs with the
numerical results shown in Fig. 6 for ε̄ = 4, for which
the lower class has a small but finite bandwidth.

It is remarkable, that the strict condensation of
strategies observed for identical εα ≡ ε̄, is retained to
a very good approximation when envy becomes specific
to the individual agents. For an understanding we recall
that the expectation value (9) of the envy term involves
with Pα

2 =
∑

i(p
α
i )2 the sum of the squared strategy.

Strategies with macroscopic support obey the scaling
|Sα| ∼ N , which implies Pα

2 ∼ N/N2 ∼ 1/N . In this
case, the envy term will vanish in the thermodynamic
limit N → ∞, with differences in the εα becoming irrel-
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Fig. 6 Agents with personalized levels of envy. Top: As
for Fig. 2, but for agents with player-specific envies εα that
are distributed equally on the interval [0, 2ε̄], with a mean
ε̄ = 4. The ‘scattering’ of the payouts for pure strategies is
a consequence of the varying levels of envy. Denoting the
mixed state (green) as (1/43), as done the legend, is an
approximation. On a fine numerical level, the lower class is a
(43/43) state, albeit with only very small payoff differences.
Bottom: The respective average incomes, as in Fig. 3. Both
for ε̄ = 1 and ε̄ = 4 (indicated by ε in the legend)

evant. The band of lower-class agents showing up in
Fig. 6 will hence become degenerate in the thermody-
namic limit.

3.7 Correlations between income levels and envy

We investigated whether the player specific incomes Iα

are correlated with the respective envy-strengths, εα.
We used ε̄ = 4, as in Fig. 6, but this time for a larger
system, with M = N = 400, which allows for a reliable
statistics. In Fig. 7 the results are shown as a scat-
ter plot in the (εα, Iα) plane. It is clear that the pure-
1, pure-2 and mixed strategies form strategy-specific
bands that are separated in the (εα, Iα) plane.

The incomes Iα of lower class members range from
1.058 to 1.067, which is just above the minimum of
the bare utility, v(0) = 1. The width of the lower-class
band of about 1% is proportional to sum over squared
strategies, as discussed above, and hence small. The
data presented in Fig. 7 shows furthermore that agents
with low values of envy εα can be found with a some-
what increased probability close to the mean income,
Ī = 1.525, which was to be expected. Members of the
lower class have in contrast substantial values of εα.
When envy is large, the incentive to search for alterna-
tives is substantial for agents with below the average
incomes.
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Fig. 7 Envy specific incomes. For distributed player spe-
cific values of envy, εα ∈ [0, 8], the incomes Iα for a society
with M = N = 400 agents and options. The numbers of
agents playing pure-1, pure-2 and mixed strategies are 55,
174, and 171, which adds to M = 400. As for the data shown
in Fig. 6, the denotation (1/171) is an approximation. On
a fine numerical scale, the lower class (green) is composed
of 171 distinct levels, being a (171/171) state. Lower-class
agents play very similar, but not identical strategies. The
three different types of strategies form non-overlapping clus-
ters in the (εα, Iα) plane

3.8 Ultimatum game

Envy is a multi-faceted human trait that may act both
on societal and on individual levels, with both types
being equivalent to lowest order, as discussed in the
appendix. The latter observation allows to gauge the
magnitude of ε from lab studies, which are available for
two-person games.

A reference game revolving around the notion of fair-
ness is the ultimatum game [32,33]. In the ultimatum
game a given amount of monetary utility s0 is parti-
tioned according to what one of the players, the pro-
poser, suggests. Say as 70–30% shares. The other player,
the responder, may accept or decline. When declining,
nobody gets anything. The expected outcome depends
on whether the game is interpreted within a closed-
or an open-room framework. Standard testing proto-
cols presume the first case, namely that the game takes
place in a closed room separated from everything else.
It would then be rational for the responder to accept
offers of every size, even then getting only 10%, which
is however not observed.

Experimentally, people tend to reject offers that are
too unfair. This makes sense in an open-room setting,
namely for the case that both participants could poten-
tially be competitors in the outside world. Unfair offers
would provide the divider with a fitness advantage. An
aversion to unfairness, which is functionally equivalent
to envy, is then rational.

We specialize to s0 = 1 and denote with s ∈ [0, 1]
the monetary utility the responder would receive when
accepting, with the proposer getting 1−s. Applying our
generic utility (5) to the ultimatum game we have

R(s) = s + ε log (s/s̄) , s̄ = 1/2, (10)

0 1 2 3 4
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Fig. 8 Ultimatum game with envy. The decision space for
the responder in the ultimatum game with envy, as defined
by (10). Even substantially unfair offers are accepted when
the envy parameter ε is small, but only nearly fair offers
for large envy. Experimentally, offers below s = 0.4 are rare
[34], which indicates that ε ≈ 1.75

for the reward function of the responder. We denoted
with s̄ the average monetary utility and used that the
responder plays pure strategies (accepting/declining).
The responder accepts offers leading to positive rewards,
declining negative R(s).

The proposer maximizes its gains when the offer is as
unfair as possible, namely close to sε, the lowest offer
the responder will accept. It is, in effect, an judgment
call. A large number of experiments have shown that
sε ≈ 0.4 [34], which indicates an value of ε ≈ 1.75.
This value can be extracted from the data presented in
Fig. 8, which shows the solution of R(s) = 0.

The order of magnitude for the strength of envy, ε ≈
1.75, is surprisingly large. In comparison, the range of
the monetary utility is s ∈ [0, 1]. We can hence expect,
that real-world envy parameters and monetary utilities
are of the same order of magnitude, with envy being
possible somewhat larger.

Here we used the concept of envy to model the exper-
imental outcomes of the ultimatum games. An alterna-
tive would be, besides others, to postulate that both
participants dispose of a ‘self-centered inequity aver-
sion’ [34], which means that both players dislike unfair
outcomes, to varying degrees, and not only the respon-
der. In our case the strength of the envy parameter of
the proposer does not enter. For the proposer, maximiz-
ing 1−s or R(1−s) leads to the same conclusion, as both
are monotonically increasing when 1 − s > 1/2. Our
view, that the proposer is mainly interested in profit
maximization, draws support from experimental stud-
ies [35].

The fact that responder rarely accept offers below
40% implies that envy is impactful. Within our frame-
work, this leads to a specific value of ε, which is about
1.75 times the overall bare utility. Transferring this
value to the case of competitive societies, we would have
ε ≈ 3 × 1.75 ∼ 5.25. This value arises when the range
v(1)−v(0) = 3 is taken for the reference utility. At this
point it is important to stress that the resulting ε is only
a rough order of magnitude estimate. It suggests in any
case that envy matters and that that our result, that
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Fig. 9 Divide-the-cake competition. For player specific
values of envy in the range εα ∈ [0, 8], the incomes Iα, com-
pare Fig. 7. Here we used M = N = 200 agents and options
and the ‘divide-the-cake’ interaction, as specified by (11)

values of ε ≈ 2.5 and larger lead to a class-stratified
state, is not just an academic exercise.

3.9 Alternative formulations

It is only rarely possible to fully analyze non-uniform
games with arbitrary large numbers of options and
agents. Examples are sealed auctions and animal con-
flict models with continuous bidding ranges [36,37].
The situation is more intricate for resource distribu-
tion games, like the framework examined here, as evi-
denced by the numerically obtained structure of the
payoff functions shown in Fig. 1. The complication is in
particular due to the presence of a á priori not known
number of mixed strategies, for which the strategy func-
tions pα

i are to be determined maximizing M coupled
self-consistency conditions for the individual rewards
Rα.

An important point regards the robustness of our sce-
nario, namely that competitive societies become unsta-
ble under the influence of envy. For example, we studied
the ’divide-the-cake’ type inter-agent competition

Iα
i =

vi

1 +
∑

β �=α pβ
i

, (11)

which describes the situation that agents playing pure
strategies equally divide the bare reward vi when going
for one and the same option. Only quantitative differ-
ences are found, as illustrated in Fig. 9.

A substantially different formulation is

Rα
i = vi − κ

∑

β �=α

pβ
i + εpα

i log
(

Rα

R̄

)

(12)

which has been studied in the past [20,27]. Here Rα =∑
i Rα

i pα
i and R̄ =

∑
α Rα/M . Envy is now a function

of the reward, and not of the monetary income. This
implies a recursive functionality, given that rewards
depend in turn on the envy term. We hence believe
that that (12), which also leads to a class-stratified state
with increasing ε, is less realistic. It has however been
possible to treat the condensed state analytically [27].

Note that the κ-term in (12) is not proportional to vi,
as in (1).

For the framework investigated here, there is only
a single references value for comparing incomes, the
population average Ī. Alternatively, agents could com-
pare their incomes on a pairwise level, as discussed in
the appendix. This would require M − 1 operations
per agent. In between these two extremes, the aver-
age incomes of the peer community could be relevant,
e.g. for societies of agents with a well defined network
structure.

4 Conclusions

The evolutionary drivers of core human traits, like
cooperation [38–40], altruism [41,42], charity [43] and
revenge [44], to name a few, have been investigated
intensively. To a certain extent, our propensity to value
success not just as such, but also in relative terms, is
set apart. Given that natural selection works on rela-
tive success [45], it benefits evolutionary success when
being sensitive to the success of others. From this view
it is not surprising that non-human animals may also
be averse to inequalities [46,47]. As the closest avail-
able notion we used ’envy’ to denote terms in reward
functions based on relative success. As all psychologi-
cal traits, envy has in addition an extended palette of
distinct facets. Three key findings emerge.

The first observation is that strategies may condense
collectively. This happens when a large number of small
mixed strategies starts to exhaust option space, merg-
ing into a single big strategy. Small and big denote here
the relative sizes of the respective supports, specifically
when measured in units of overall option spaces. Small
supports are intensive, viz not growing when increasing
the number of options N , while keeping a constant den-
sity M/N of agents per available options. Supports are
in contrast big when they are extensive, that is when
they scale with N . When strategies condense, an exten-
sive number of agents play the identical mixed strategy,
which is characterized in turn by an extensive support.

Our second core result concerns the structure of
the society once mixed strategies did condense. Clear
gaps open in the spectrum of the monetary income
between distinct clusters of agents. These gaps provide
a well defined criterion for the subdivision of the soci-
ety into different social classes. Our results lead con-
sequently to the conjecture that envy may play a key
role for the original emergence of class-stratified soci-
eties. Besides being separated by income gaps, the three
emerging clusters of agents correspond to distinct strat-
egy types, with lower, middle and upper class agents
playing respectively mixed, pure-2 and pure-1 strate-
gies, where the two types of pure strategies differ with
respect to the amount of competition encountered.

It is possible to generalize our framework to the ulti-
matum game, which allows to to estimate the real-world
value of envy. Comparing with the experimental results
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for the ultimatum game one finds that human societies
are possibly located within the class-stratified phase.

Finally we observe that envy, as defined here, is
counterproductive for general welfare, which can be
regarded as a generalized social dilemma. The average
income drops when envy becomes progressively more
important, in particular once strategy condensation sets
in. All in all we suggest that the study of games with
mixed payoff functions, containing both monetary and
psychological components, is a timely subject.
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Appendix

We used in (5) that envy is based on a comparison with the
population mean. Alternatively, as in [34], one could start
with a pairwise formulation for envy,

Envy
∣
∣
α

=
ε

M

∑

β �=α

log

(
Iα

Iβ

)

, (13)

which expresses that agents make direct, one-to-one com-
parisons with everybody else. As before, we define with
Ī =

(∑

α Iα
)

/M the average monetary income. Expand-

ing with respect to small relative deviations (Iβ − Ī)/Ī from
the mean, we obtain

log

(
Iα

Iβ

)

= log(Iα) − log(Iβ)

= log(Iα − Ī + Ī) − log(Iβ − Ī + Ī)

= log

(

1 +
Iα − Ī

Ī

)

− log

(

1 +
Iβ − Ī

Ī

)

≈ Iα − Iβ

Ī
. (14)

Noting that the vanishing term β = α could have be added
to right-hand side of (13), we apply the sum (ε/M)

∑

β to

the linearized expression (14). The result is

Envy
∣
∣
α

≈ ε
Iα − Ī

Ī
≈ ε log

(
Iα

Ī

)

. (15)

which coincides in linear approximation with our original
definition, as used in (5).
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