SUPPLEMENTARY INFORMATION TO THE MANUSCRIPT: "Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium" of Shivam Yadav, Martin Centola, Mathilda Glaesmann, Denys Pogoryelov, Roman Ladig, Mike Heilemann, L.C. Rai, Özkan Yildiz and Enrico Schleiff

SUPPLEMENTARY FIGURES

Supplementary Fig. 1: Kinetics of the activity of anaCyp40ΔTM-His.

Supplementary Fig.2: The generation of the AFS-I-anacyp40 mutant and antisense RNA transcription.

Supplementary Fig. 3: A second example for the BN-PAGE shown in Fig. 4a.

Supplementary Fig. 4: The generation of the AFS-anacyp40-strep mutant.

Supplementary Fig. 5: The wild-type and AFS-anacyp40-strep response to high NaCl.

Supplementary Fig. 6: Full blot for Figure 4d.

Supplementary Fig. 7: Full blot for Figure 4e.

Supplementary Fig. 8: Estimated resolution of the super-resolution microscopy images.

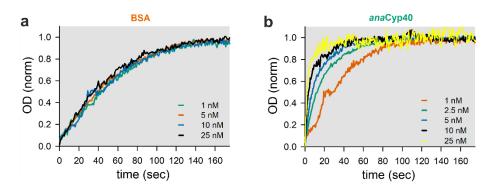
Supplementary Fig. 9: Super-resolution microscopy images of the wild type control.

Supplementary Fig. 10: The interactions of monomers in the anaCyp40 crystal.

Supplementary Fig. 11: Crystal contacts between the C-terminus of one *ana*Cyp40 molecule with C-domain of a second molecule

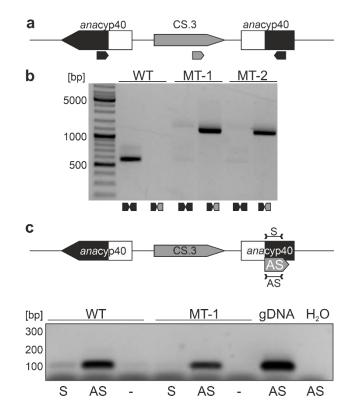
Supplementary Fig. 12: Comparison of anaCyp40 Q-domain to structurally related proteins.

Supplementary Fig. 13: The electrostatic surface potential distribution of anaCyp40

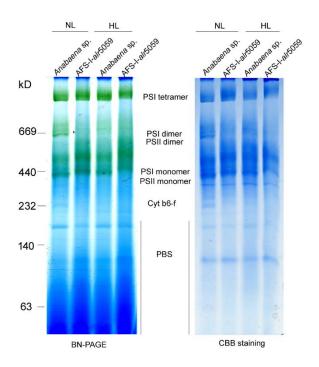

SUPPLEMENTARY TABLES

Supplementary Table 1: List of genes used for phylogenetic analysis.
Supplementary Table 2: Overview on transmembrane domain prediction.
Supplementary Table 3: Kinetic parameters of cyclophilins from different species.
Supplementary Table 4: List of Anabaena strains used in this study
Supplementary Table 5: PBS composition.
Supplementary Table 6: Photosynthetic parameter of wild-type and AFS-I-anacyp40.
Supplementary Table 7: Data collection and refinement statistics
Supplementary Table 8: Oligonucleotides used in this study.
Supplementary Table 9: Plasmids used in this study.

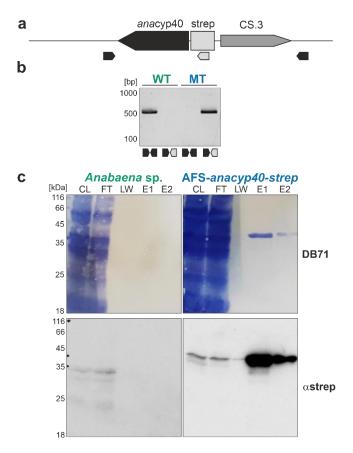
REFERENCES IN SUPPLEMENTARY MATERIALS ONLY


SUPPLEMENTARY DATA

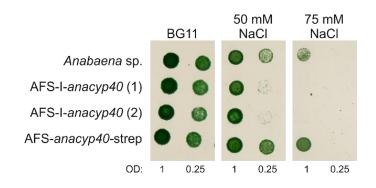
Supplementary Data to Figure 1, 2, 3, 5 and Supplementary Figure 1


Supplementary Fig. 1: Kinetics of the activity of *ana*Cyp40_{ΔTM}-His.

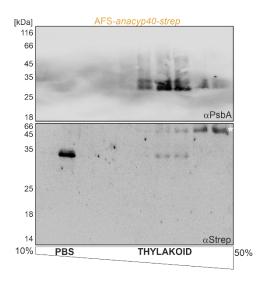
Purified BSA (**a**) or *ana*Cyp40 $_{\Delta TM}$ -His (**b**) at indicated concentrations were incubated with 40 μ M N-succinyl-ala-ala-pro-phe-p-nitroanilidine and the catalytic reaction monitored by the increase of absorption at 390 nm. The values were normalized to the baseline and to the maximum. A representative experiment is shown.


Supplementary Fig. 2: The AFS-I-anacyp40 mutant and antisense RNA transcription.

a The model for the generated mutant indicating the position of the insertion of the plasmid and the place of annealing of used oligonucleotides is shown. b The segregation of the mutant was analyzed with gene and plasmid specific oligonucleotides (Supplementary Table 7) on genomic DNA isolated from wild-type and from AFS-I-anacyp40. The experiment was periodically repeated to confirm the segregation throughout the study. c. On top, a model of the genomic organization of the mutant strain indicating the position of the antisense region. The produced PCR products are indicated. For the analysis of the RNA presence, the RNA extraction was performed as described using TRIzol (Thermo Fisher Scientific)^{1,2}. RNA was isolated from wild type (WT) and AFS-I-anacyp40 (MT-1) after 24 h of growth in BG110 (BG11 without nitrate) where the antisense RNA transcript was induced³. The absence of DNA in the RNA samples was tested by PCR (not shown). For specific first strand cDNA synthesis 200 ng of RNA were used as template. Revert Aid Transcriptase was utilized (Thermo Fisher Scientific) according to manufacturer's protocol, specific oligonucleotides for the sense (S) and the antisense (AS) transcript were used (0.2 µM) for priming DNA synthesis. To control the RNA self-priming, a control was included where oligonucleotides were omitted (-)⁴. The efficiency of the oligonucleotides used for probing the antisense RNA was tested on gDNA, and the absence of self-annealing by PCR in the absence of RNA or DNA (H_2O). The analysis was performed on three independent cultures. In (b) and (c) the base-pair number for the migration of the molecular main marker is indicated.

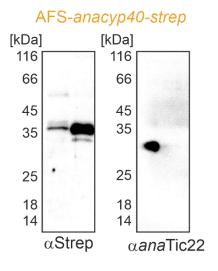

Supplementary Fig. 3: A second example for the BN-PAGE shown in Fig. 4a.

a Membranes of wild-type (green) and AFS-I-anaCyp40 (orange) grown in BG11 liquid medium at 40 or 120 μ E illumination were solubilized and subjected to BN-PAGE. The chlorophyll staining (left) and the Coomassie Blue staining (right) are shown. The Coomassie Blue staining was quantified by ImageJ and the intensity of the individual complexes was normalized to the intensity in wild-type grown at 40 μ E light intensity. A representative example of three independent trials is shown. The migration of the molecular weight standards is indicated on the left and the molecular weight is given in kDa.

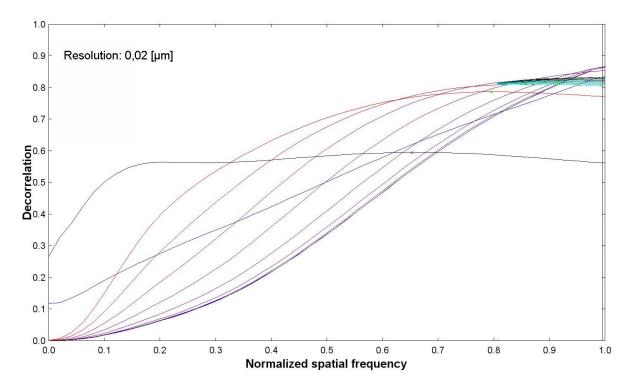


Supplementary Fig. 4: The generation of the AFS-anacyp40-strep mutant.

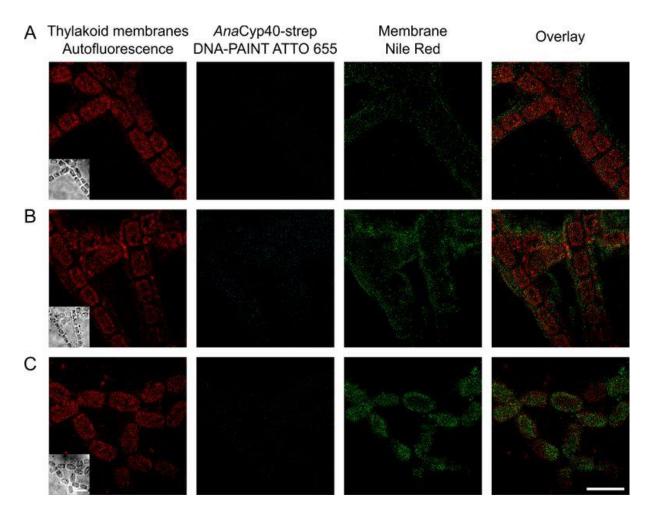
a The model for the generated mutant indicating the position of the insertion of the plasmid and the place of annealing of used oligonucleotides is shown. **b** The segregation of the AFS*anacyp40*-strep mutant was analyzed with gene and plasmid specific oligonucleotides (Supplementary Table 7) as indicated in (a) on genomic DNA isolated from wild-type (WT) and from AFS-*anacyp40*-strep (MT). The base-pair number for the migration of the molecular main marker is indicated on the left.**c** The specific precipitation of *ana*Cyp40-strep was tested after solubilisation of wild-type cells and cells from AFS-*anacyp40*-strep. The cell lysate (CL), flow through (FL), last wash fraction (LW) and Elution 1 and 2 (E1 / E2) was subjected to SDS-PAGE followed by Western Blotting. Shown is the DB71 stain (top) and the detection with antistrep antibodies. In the cell lysate and flow through a protein band cross-reactive with the used antibodies is detectable in wild type strain, which is no longer detectable in in the last wash fraction or elution. In turn, the protein *ana*Cyp40-strep cell lysate. The protein is specifically enriched as found by DB71 staining. The migration of the molecular weight standards is indicated on the left and the molecular weight is given in kDa.



Supplementary Fig. 5: The wild-type and AFS-*anacyp40*-strep response to high NaCI. The *Anabaena* sp. wild type, two independently generated AFS-I-*anaCyp40* strains (marked with (1) and (2)) as well as the AFS-I-*anacyp40-strep* mutant were spotted onto BG11 control plates and NaCI-containing BG11 plates (50 mM and 75 mM NaCI as indicated). The suspensions had an initial optical density (750 nm) of 1 or 0.25 (indicated at the bottom). The images were taken after 7 days of growth.

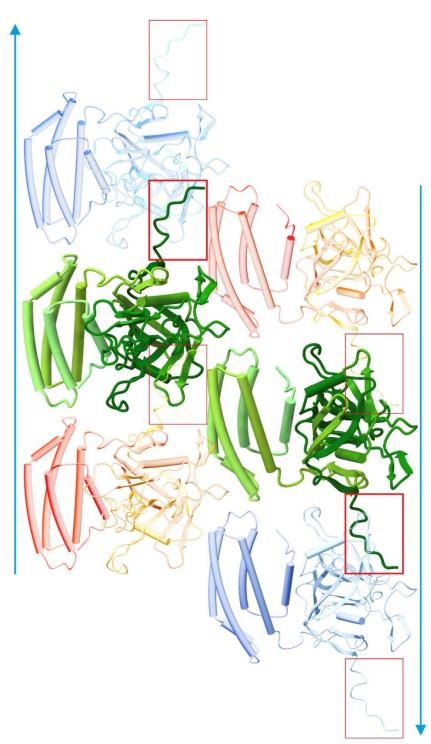

Supplementary Fig. 6: Full blot for Figure 4d.

The strain AFS-*anaCyp40*-strep was grown in BG11, cells harvested and solubilized and subjected on top of a 10-50% sucrose gradient. The fractions were subjected to SDS-PAGE followed by Western blotting and incubation with indicated antibodies. PBS and Thylakoid membrane fractions are indicated. The star indicates a cross reactivity of the antibody. The migration of the molecular weight standards is indicated on the left and the molecular weight is given in kDa.

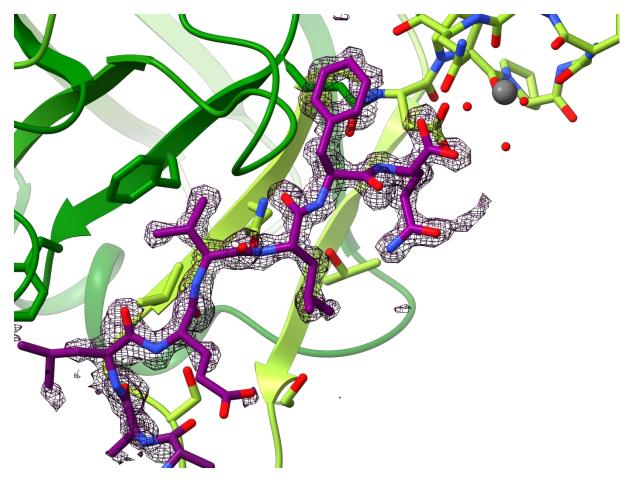


Supplementary Fig. 7: Full blot for Figure 4e.

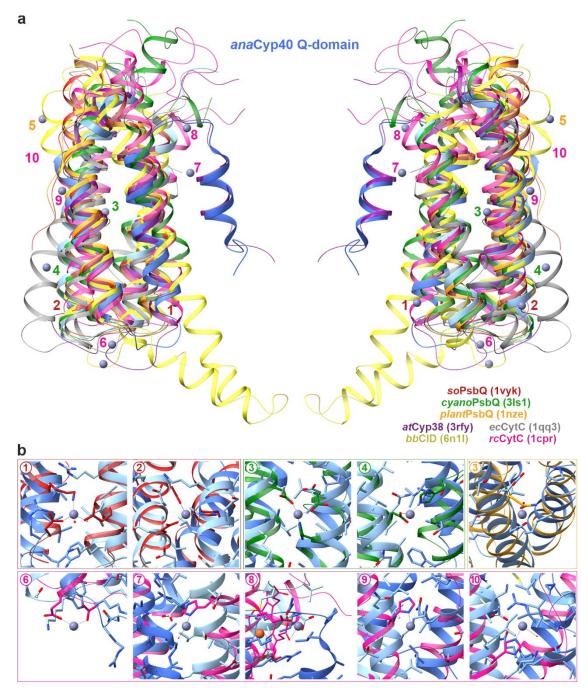
Cell lysate (lane 1) and phycobilisomes (lane 2) were isolated from AFS-*anaCyp40*-strep and subjected to SDS-PAGE followed by Western blotting and incubation with indicated antibodies. The migration of the molecular weight standards is indicated on the left of each blot and the molecular weight is given in kDa.



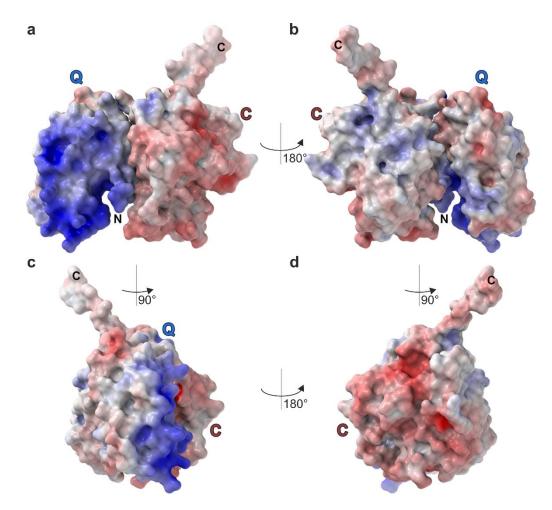
Supplementary Fig. 8: Estimated resolution of the super-resolution microscopy images. High-pass filtered decorrelation functions of *ana*Cyp40 visualized with DNA-PAINT (super-resolution microscopy). A Parameter-free image resolution estimation based on decorrelation analysis was performed.⁵ The resolution of the *ana*Cyp40 channel was determined to be 20 nm, which exceeds the maximum theoretical resolution of regular confocal imaging by about a factor of 7.⁶



Control measurements to evaluate specific antibody labelling were performed as described in material and methods. The endogenous fluorophores (red), *ana*Cyp40-strep (cyan) and the membrane (green) were visualized in cyanobacteria only stained with the primary antibody (A), the secondary antibody (B), or in unstained cyanobacteria (C), using identical imager strad concentrations and imaging conditions to measurements shown in Figure 5. In all controls the endogenous fluorophores and membrane are clearly visible, but only few localizations were detected for anaCyp40 strep. Representative images of multiple recordings are shown. All images are adjusted to the same scale as indicated by the bar [5 µm] in the right corner.



Supplementary Fig. 10: The interactions of monomers in the anaCyp40 crystal.


A cutout of the molecular organization of *ana*Cyp40 monomers in the crystal. The monomers form layers in which the monomers form antiparallel rows, indicated by the two blue oppositely oriented arrows. The residual amino acids of the C-terminal cleavage site (red box) are involved in the crystal contacts between *ana*Cyp40 molecules and interacts with residues on the β -barrel surface of the next molecule.

Supplementary Fig. 11: Crystal contacts between the C-terminus of one *ana*Cyp40 molecule with C-domain of a second molecule. The C-terminal amino acids "LEVLFQ" from the PreScission protease recognition site are shown in the Fo-Fc omit map at 3σ contour level.

Supplementary Fig. 12: Comparison of *ana*Cyp40 Q-domain to structurally related proteins. **a** The N-terminal Q-domain of *ana*Cyp40 is superimposed to diverse helix bundles of structurally related proteins identified by DALI⁷ and which have an RMSD < 2 Å. In addition to the cyanobacterial and plant PsbQs (1vyk⁸: red; 3ls1⁹: green; 1nze¹⁰: orange), also bacterial cytochrome C (1qq3¹¹: grey, 1cpr¹²: magenta), the complement inhibitory domain of BBK32 (6n1I¹³: yellow), and the Q-domain of *at*Cyp38 (3rfy¹⁴: purple) are superimposed to *ana*Cyp40 Q-domain. Although most of these proteins have Zn²⁺ bound on their surface, neither the positions of the Zn²⁺ ion nor the coordinating residues are conserved. **b** Individual comparison of the sites where Zn²⁺ ions were bound and the corresponding site in anaCyp40. The location of the Zn²⁺ ions on the helix bundle is indicated by the numbers.

Supplementary Fig. 13: The electrostatic surface potential distribution of *ana*Cyp40. Electrostatic surface potential distribution of *ana*Cyp40 seen from different perspectives. **a** and **b** show the representation presented in Fig. 6a, while **c** and **d** are counter-clockwise and clockwise 90° vertical rotations of a, respectively. The position of the N- and C-terminus (small letters), as well as of the Q- and C-domain (large letters) are indicated. The Q-domain is mainly positively charged (shown in blue) while the C domain is slightly negatively charged (shown in red).

	rotein ID and the gene accession number. The sequer Organism	Protein ID	Gene
	Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576)	Q8YM80	alr5059
	Gloeobacter violaceus (strain PCC 7421)	Q7NG65	gll3308
	Anabaena cylindrica (strain ATCC 27899 / PCC 7122)	K9Z9J9	Anacy_0270
	Nostoc punctiforme (strain ATCC 29133 / PCC 73102)	B2J712	Npun_F0441
	Nostoc sp. (strain ATCC 29411 / PCC 7524)	K9QZX2	Nos7524_5280
		Q3MAQ2	Ava 2316
	Anabaena variabilis (strain ATCC 29413 / PCC 7937)		Ava_2310 Aazo 0811
•	Nostoc azollae (strain 0708)	D7E1K7	—
•	Cyanobacterium stanieri (strain ATCC 29140 / PCC 7202)	K9YIG0	Cyast_0282
	Microcystis aeruginosa (strain NIES-843)	B0JTU3	MAE_13090
0.	Cyanothece sp. (strain ATCC 51142)	B1WP74	cce_0505
1.	Arthrospira platensis (strain NIES-39 / IAM M-135)	D4ZPR7	NIES39_D07450
2.	Trichodesmium erythraeum (strain IMS101)	Q116D7	Tery_1312
3.	<i>Lyngbya sp.</i> (strain PCC 8106)	A0YPV7	L8106_21422
4.	Stanieria cyanosphaera (strain ATCC 29371 / PCC 7437)	K9Y016	Sta7437_4152
5.	Acaryochloris marina (strain MBIC 11017)	B0CD62	AM1_0603
6.	Chamaesiphon minutus (strain ATCC 27169 / PCC 6605)	K9UJP7	Cha6605_3707
7.	Synechocystis sp. (strain PCC 6803 / Kazusa)	PPI3_SYNY3	sll0408
8.	Prochlorococcus marinus (strain AS9601)	A2BNF1	A9601_00241
9.	Cyanobium gracile (strain ATCC 27147 / PCC 6307)	K9P908	Cyagr_2330
20.	Synechococcus sp. (strain ATCC 27144 / PCC 6301 / SAUG 1402/1)	A0A0H3K3E3	ppiB
1.	Thermosynechococcus elongatus (strain BP-1)	Q8DKN8	tlr0821
2.	Vitrella brassicaformis (strain CCMP3155)	A0A0G4EJ74	Vbra_20474
3.	Emiliania huxleyi	R1F9L9	EMIHUDRAFT_44095
24.	Cyanidioschyzon merolae	M1USH1	CYME_CMK307C
5.	Galdieria sulphuraria	M2XYR0	Gasu_36910
6.	Chondrus crispus	R7QPR7	CHC_T00000384001
	Phaeodactylum tricornutum (strain CCAP 1055/1)	B7FU48	PHATRDRAFT_11022
.7. 28.	Ectocarpus siliculosus	D8LET7	CYN
.o. 29.	Chlamydomonas reinhardtii	A8IRU6	CYN38
i0.	Volvox carteri	D8UIB6	VOLCADRAFT_10811
51. 	Chlorella variabilis	E1Z2A2	CHLNCDRAFT_33486
2.	Ostreococcus lucimarinus (strain CCE9901)	A4RWY9	OSTLU_38395
3.	Micromonas commoda (strain RCC299 / NOUM17 / CCMP2709)	C1FEJ6	TLP40
4.	Klebsormidium flaccidum	KFL_000140480	KFL_000140480
5.	Marchantia polymorpha	Mapoly0001s0360	
6.	Oryza sativa subsp. indica	B8BAB3	Osl_29072
57.	Brachypodium distachyon	1116Q4	100824311
8.	Hordeum vulgare subsp. vulgare	A0A287WPI4	n/a
39.	Aegilops tauschii	M8CD05	F775_28503
0.	Triticum aestivum	A0A1D6CYY9	-
1.	Eragrostis tef	maker-scaffold7841-a	-
2.	Sorghum bicolor	A0A1Z5RAB0	SORBI_3007G116950
3.	Zea mays	B6U5I1	100285487
4.	Setaria italica	K3YHT3	101781132
5.	Musa acuminata	GSMUA_Achr1G13990_00	-
6.	Nicotiana attenuata	 A0A1J6IL97	TLP40
7.	Solanum lycopersicum	K4BBJ8	XP_004232290.1
8.	Cucumis sativus	A0A0A0LHY2	Csa_3G836450
9.	Lotus japonicus	Lj2g3v1014320	-
9. 0.	Manihot esculenta	A0A2C9UIA1	- MANES_15G183100
0. 1.		U5GVV7	
/I.	Populus trichocarpa		
2	Prunus persica	M5WTM9	PRUPE_3G283500
3.	Arabidopsis thaliana	CYP40_ARATH	CYP40
52. 53. 54. 55.		CYP40_ARATH A0A061ED69 A0A1R3IDS8	CYP40 TCM_016868 CCACVL1_12798

57.	Amborella trichopoda	W1PHN6	AMTR_s00058p00167600
58.	Physcomitrella patens subsp. patens	A9T157	PHYPA_030052
59.	Chenopodium quinoa	-	XP_021727682
60.	Glycine max	I1N5T2	GLYMA_19G009700
61.	Brassica napus	A0A078IGH2	BnaC05g48850D
62.	Gossypium hirsutum	A0A1U8HQH8	LOC107888646
63.	Selaginella moellendorffii	D8R8R1	SELMODRAFT_408578
64.	Deinococcus radiodurans R1	Q9RRF0	DR_2542
65.	Streptococcus pneumoniae R6	Q8DQG5	ppiA
66.	Homo sapiens	Q9Y3C6	PPIL1
67.	Mus musculus	Q9D0W5	Ppil1
68.	Escherichia coli str. K-12 substr. MG1655	P0AFL3	ppiA
69.	Caenorhabditis elegans	Q9U1Q3	cyn-15
70.	Schizosaccharomyces pombe	Q09928	cyp8
71.	Saccharomyces cerevisiae S288C	P23285	CPR2
72.	Drosophila melanogaster	Q9W0Q2	Cypl

Supplementary Table 2: Overview on transmembrane domain prediction. Transmembrane domain and signal sequence prediction was performed with TMHMM¹⁵, TMpred¹⁶, HMMTOP¹⁷, Phobius¹⁸, SPLIT¹⁹ and PRED-TMR²⁰.

program	Start AA	End AA	Score
ТМНММ	13	30	0.91
TMpred	12	30	2170
HMMTOP	13	30	17.0082
Phobius	13	24	0.87285
SPLIT	10	26	7.87
PRED-TMR	13	31	Not defined
CONSENSE	13	30	

Supplementary Table 3: Kinetic parameters of cyclophilins from different species				
Species	Enzymatic activity	References		
Anabaena PCC7120 (anaCyp40)	0.07 s ⁻¹	(This study)		
Piriformospora indica (PiCyPA)	0.10 s ⁻¹	(Trivedi et al. 2013) ²¹		
Arabidopsis thaliana (AtCyp19-3)	0.036 s ⁻¹	(Kaur et al. 2015) ²²		
<i>Oryza sativa</i> (TaCypA-1)	0.039 s ⁻¹	(Sekhon et al. 2013) ²³		
Zea mays (PPI)	0.08 s ⁻¹	(Sheldon and Venis, 1996) ²⁴		
Spinacia oleracea (TLP40)	0.04 s ⁻¹	(Fulgosi et al. 1998) ²⁵		

Supplementary Table 4: List of Anabaena strains used in this study				
Anabaena strain	Resistance	Relevant properties	Source	
PCC 7120		Wild type	C. P. Wolk	
AFS- <i>ana</i> cyp40-strep	Sp ^r Sm ^r	C-terminal Strep tag fusion	This study	
AFS-I-anacyp40	Sp ^r Sm ^r	Gene interruption	This study	

^aAFS, Anabaena Frankfurt Schleiff; Sp, spectinomycin; Sm, streptomycin.

Supplementary Table 5: Proteins of the PBS. Given are the subcomplex annotation, the gene ID and the annotated name, the number of amino acids, the percentage of prolines in the sequence and the RPKM value extracted from Flaherty et al.²⁶.

Complex	Gene ID	Name	22	% proline	RPKM
category	Gene iD	Name	aa	76 proline	
	Alr0020	ApcE	1132	6.0	96
	Alr0021	ApcA1	161	3.1	275
	Alr0022	АрсВ	162	1.9	313
APC	Asr0023	АрсС	68	2.9	153
	All0450	ApcA2	161	3.1	7
	All2327	ApcF	169	3.0	26
	All3653	ApcD	161	4.3	67
	Alr0528	СрсВ	173	2.3	337
	Alr0529	CpcA	163	3.7	879
	Alr0530	CpcC	266	3.5	956
	Asr0531	CpcD	80	1.2	923
CPC	Alr0532	CpcE	276	5.1	168
CFC	Alr0533	CpcF	200	5.0	29
	Alr0534	CpcG1	279	5.0	25
	Alr0535	CpcG2	247	6.1	43
	Alr0536	CpcG3	237	4.2	58
	Alr0537	CpcG4	253	3.2	42
	Alr0523	PecB	172	1.2	1230
	Alr0524	PecA	162	3.7	152
PEC	Alr0525	PecC	278	2.5	166
	Alr0526	PecE	253	4.3	30
	Alr0527	PecF	173	2.3	3

Supplementary Table 6: Photosynthetic parameter of wild-type and AFS-I-*anacyp40*.

	WT		AFS-I-anacyp40	
	40 µE	120 µE	40 µE	120 µE
Pm (µmol min ⁻¹ mg _{CHL} ⁻¹)*	4.5±0.3	6.0±0.3	5.1±0.3	3.3±0.2
Ec (µE m ⁻² s ⁻¹)**	110±10	150±20	130±20	190±30
F_/F_(590 nm)	0.17	0.17	0.16	0.18
F /F (440 nm)	2.3	0.9	2.0	0.9

* Value for 1000 μE m⁻² s⁻¹, ** estimated according to Ec = - [100 μE m⁻² s⁻¹]/ln (1-[OER] / Pm); [O] = Pm * (1 - exp (-[L]/Ec)) - Ek; Pm ... maximal rate of net oxygen production at light saturation; Ec ... compensation irradiance, at which oxygen production was balanced by oxygen consumption; Ek ... the irradiance at the onset of photosynthesis saturation

_

Supplementary Table 7: Data collection and refinement statistics				
anaCyp40 _{∆™}				
Data collection				
Space group	P 21 (4)			
Cell dimensions	a = 41.2 Å, b = 103.2 Å, c = 44.2 Å β = 114.7°			
Matthews coeff. (Å ³ Da ⁻¹)	2.3			
Solvent content (%)	46.5			
No. Molecules per AU	1			
Resolution (Å)	52 – 1.14 (1.14 – 1.18)			
Wavelength (Å)	λ = 1.0			
X-ray source	ESRF ID29			
No. observed reflections	1706153 (64337)			
No. unique reflections	115733 (5453)			
Completeness (%)	95 (91.3)			
R _{meas} (%)	0.22 (0.754)			
R _{pim} (%)	0.058 (0.788)			
Ι/Ισ	7.5 (1.6)			
Refinement				
Resolution (Å)	50 - 1.14			
No. unique reflections	115662			
No. Reflections in test set	5617			
Rwork/Rfree (%)	17.68/19.47			
Wilson B-Factor (Å ²)	48.81			
No. atoms in AU	3445			
Protein	2664			
Ligands	31			
Water	579			
r.m.s. deviations:				
Bond lengths (Å)	0.014			
Bond angels (°)	1.371			

Supplementary Table 8: Oligonucleotides used in this study.				
Primer Name	Sequence			
Anabaena sp. mutant ger	neration			
AFS-I-anacyp40-F1	GGATCCAATAAATAATAAGCCAGTACG			
AFS-I-anacyp40-R1	GGATCCGTAAATTCTAACCCATTATAG			
AFS-anacyp40-strep-F1	ATCGATGCTGCATTGAGCTATTCC			
AFS-anacyp40-strep-R1	TTACTTTTCGAACTGCGGGTGGCTCCAGGCTGATTGGGGTTGTACTAAA			
Anabaena sp. mutant co	nfirmation by colony PCR			
AFS-I-anacyp40-F2	CGGTAGAGCTTTATTGCGGTA			
AFS-I-anacyp40-R2	GTTCTTTACCTGGTGGATCTCC			
AFS-anacyp40-Strep-F2	GATTGATGGGTTACGCCTAGTC			
AFS-anacyp40-Strep-R2	CTTTTCGAACTGCGGGTGGCTCCA			
Cloning for heterologous	expression			
<i>ana</i> cyp40 _{∆TM(1-35)} -F3	ATATATGCTCTTCTAGTGCCGCCTTGCCATCTGGAAATGCGATT			
<i>ana</i> cyp40 _{∆TM(1-35)} -R3	TATATAGCTCTTCATGCGGCTGATTGGGGTTGTACTAAATTGTC			
q-RT PCR				
anacyp40-F4	TTGCGGTATGCACTCCCAAT			
anacyp40-R4	GCGGGATGCTTTACTCAGGT			
RT-as5059	GGACTCCTTCCAGTAACGCC			
RT-5059	GCTGTAACCATCCACCACAAC			
5059-fw	CCTTGCCATCTGGAAATGCG			
5059-rv	GCTTGCAGTTCGCGTACTGG			
rnpB-rv	GGGTTTACCGAGCCAGTACC			
rnpB-fw	AGGGAGAGAGTAGGCGTTGG			
16SrRNA-R	CACACTGGGACTGAGACAC			
16SrRNA-R	CTGCTGGCACGGAGTTAG			
Sequencing primers				
Τ7	TAATACGACTCACTATAGGG			
SP6	ATTTAGGTGACACTATAG			

Plasmid	Marker ^a	Properties	Source or reference
pGEM-T	Apr	TA cloning vector	Promega
pGEM-T-Easy	Apr	TA cloning vector	Promega
pCSV3	Sp ^r Sm ^r	pRL500 with substituted Ap ^r gene	Olmedo-Verd et al.27
pRL623	Cm ^r	Mobilization helper and methylases for Aval- Avall and AvallI sites	Elhai et al. ²⁸
		Shuttle vector derived from RP4 suitable for mobilizing plasmids to Anabaena sp. PCC	
pRL443	Apr	7120	Elhai et al. ²⁸
pINITIAL	Cm ^r	Initial sequencing vector for FX cloning	Geertsma and Dutzler ²⁹
pF7XC3H	Cm ^r Kan ^r	Expression vector for FX subcloning	Geertsma and Dutzler ²⁹
pGEMT-I- <i>ana</i> cyp40	Apr	pGEMT with frag. (bp 168-665) of alr5059	This study
		pGEMT Easy with full length alr5059 and a C-	
pGEMT-Easy- <i>ana</i> cyp40-strep	Apr	terminal Strep-tag	This study
pCSV3-I- <i>ana</i> cyp40	Sp ^r Sm ^r	pCSV3 with frag. (bp 168-665) of alr5059	This study
		pCSV3 with full length alr5059 and a C-	
pCSV3- <i>ana</i> cyp40-strep	Sp ^r Sm ^r	terminal Strep-tag	This study
pINIT_cat- <i>ana</i> cyp40 _{ΔTM(1-35)}	Cm ^r	pINIT_cat with alr5059 frag. (aa 36-368)	This study
F7XC3H-anacyp40 _{∆TM(1-35)} -HRV			
3C- His ₁₀	Cm ^r Kan ^r	F7XC3H with alr5059 frag. (aa 36-368)	This study

Supplementary Table 9: Plasmids used in this study.

REFERENCES IN SUPPLEMENTARY INFORMATION ONLY

1. Stevanovic M, Lehmann C, Schleiff E. The response of the TonB-dependent transport network in Anabaena sp. PCC 7120 to cell density and metal availability. *Biometals.* 26, 549-560 (2013).

2. Ho, E.C., Donaldson, M.E. and Saville, B.J., 2010. Detection of antisense RNA transcripts by strand-specific RT-PCR. In *RT-PCR Protocols* (pp. 125-138). Humana Press, Totowa, NJ.

3. Brenes-Álvarez, M. et al. Elements of the heterocyst-specific transcriptome unravelled by co-expression analysis in *Nostoc sp.* PCC 7120. *Environ. Microbiol.* **21**, 2544-2558 (2019).

4. Haddad, F., Qin, A.X., Giger, J.M. *et al.* Potential pitfalls in the accuracy of analysis of natural sense-antisense RNA pairs by reverse transcription-PCR. *BMC Biotechnol* **7**, 21 (2007).

5. Descloux, A., Grußmayer, K.S. & Radenovic, A. Parameter-free image resolution estimation based on decorrelation analysis. *Nat Methods* **16**, 918–924 (2019).

6. Paddock, S.W. Confocal laser scanning microscopy. Biotechniques 27, 992-1004 (1999).

7. Holm, L. DALI and the persistence of protein shape. Protein Sci. 29, 128-140 (2020).

8. Balsera, M., Arellano, J.B., Revuelta, J.L., de las Rivas, J., Hermoso, J.A. The 1.49 A resolution crystal structure of PsbQ from photosystem II of *Spinacia oleracea* reveals a PPII structure in the N-terminal region. *J. Mol. Biol.* **350**, 1051-1060 (2005).

9. Jackson, S.A., Fagerlund, R.D., Wilbanks, S.M., Eaton-Rye, J.J. Crystal structure of PsbQ from Synechocystis sp. PCC 6803 at 1.8 A: implications for binding and function in cyanobacterial photosystem II. *Biochem.* **49**, 2765-2767 (2010).

10. Calderone, V., Trabucco, M., Vujicić, A., *et al.* Crystal structure of the PsbQ protein of photosystem II from higher plants. *EMBO Rep.* **4**, 900-905 (2003).

11 Arnesano, F., Banci, L., Bertini, I., Ciofi-Baffoni, S., Woodyear, T.L., Johnson, C.M. & Barker, P.D. Structural consequences of b- to c-type heme conversion in oxidized Escherichia coli cytochrome b562. *Biochem.* **39**, 1499-1514 (2000).

12 Tahirov, T.H., Misaki, S., Meyer, T.E., Cusanovich, M.A., Higuchi, Y. & Yasuoka, N. Structure of cytochrome c' from Rhodobacter capsulatus strain St Louis: an unusual molecular association induced by bridging Zn ions. *Acta. Crystallogr. D* **53**, 658-664 (1997).

13 Xie, J., Zhi, H., Garrigues, R.J., Keightley, A., Garcia, B.L. & Skare, J.T. Structural determination of the complement inhibitory domain of Borrelia burgdorferi BBK32 provides insight into classical pathway complement evasion by Lyme disease spirochetes. *PLoS Pathog.* **15**, e1007659 (2019).

14. Vasudevan, D., Fu, A., Luan, S. & Swaminathan, K. Crystal structure of Arabidopsis cyclophilin38 reveals a previously uncharacterized immunophilin fold and a possible autoinhibitory mechanism. *Plant Cell*, **24**, 2666-2674 (2012).

15. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J. Mol. Biol.* **305**, 567-580 (2001).

16. Hofmann, K. & Stoffel W. TMbase - A database of membrane spanning proteins segments. *Biol. Chem. Hoppe-Seyler* **374**,166 (1993).

17. Tusnady, G. E. & Simon, I. The HMMTOP transmembrane topology prediction server. *Bioinformatics*, **17**, 849-850 (2001).

18. Kall, L., Krogh, A. & Sonnhammer, E.L. A combined transmembrane topology and signal peptide prediction method. *J. Mol. Biol.* **338**, 1027-1036 (2004).

19. Juretic, D., Zoranic, L. & Zucic, D. Basic charge clusters and predictions of membrane protein topology. *J. Chem. Inf. Comput. Sci.* **42**, 620-632 (2002).

20. Pasquier, C., Promponas, V.J., Palaios, G.A., Hamodrakas, J.S. & Hamodrakas, S.J. A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm. *Protein Eng.* **12**, 381-385 (1999).

21. Trivedi, D.K., Ansari, M.W., Dutta, T., Singh, P. and Tuteja, N., 2013. Molecular characterization of cyclophilin A-like protein from Piriformospora indica for its potential role to abiotic stress tolerance in E. coli. *BMC research notes*, *6*(1), pp.1-9.

22. Kaur, G., Singh, S., Singh, H., Chawla, M., Dutta, T., Kaur, H., Bender, K., Snedden, W.A., Kapoor, S., Pareek, A. and Singh, P., 2015. Characterization of peptidyl-prolyl cis-trans isomerase-and calmodulin-binding activity of a cytosolic Arabidopsis thaliana cyclophilin AtCyp19-3. *PloS one*, *10*(8), p.e0136692.

23. Sekhon, S.S., Kaur, H., Dutta, T., Singh, K., Kumari, S., Kang, S., Park, S.G., Park, B.C., Jeong, D.G., Pareek, A. and Woo, E.J., 2013. Structural and biochemical characterization of the cytosolic wheat cyclophilin TaCypA-1. Acta Crystallographica Section D: Biological Crystallography, 69(4), pp.555-563.

24. Sheldon, P.S. and Venis, M.A., 1996. Purification and characterization of cytosolic and microsomal cyclophilins from maize (Zea mays). *Biochemical Journal*, *315*(3), pp.965-970.

25. Fulgosi, H., Vener, A. V., Altschmied, L., Herrmann, R. G. & Andersson, B. A novel multi-functional chloroplast protein: identification of a 40 kDa immunophilin-like protein located in the thylakoid lumen. *EMBO J*, **17**, 1577-1587 (1998).

26. Flaherty, B.L., Van Nieuwerburgh, F., Head, S.R. & Golden, J.W. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation. *BMC Genomics*. **12**, 332 (2011).

27. Olmedo-Verd, E., Muro-Pastor, A.M., Flores, E. & Herrero, A. Localized induction of the ntcA regulatory gene in developing heterocysts of Anabaena sp. strain PCC 7120. *J. Bacteriol.* **188**, 6694-6699 (2006).

28. Elhai, J., Vepritskiy, A., Muro-Pastor, A.M., Flores, E. & Wolk, C.P. Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. *J. Bacteriol.* **179**, 1998-2005 (1997).

29. Geertsma, E.R. & Dutzler, R. A Versatile and Efficient High-Throughput Cloning Tool for Structural Biology." *Biochem.* **50**, 3272-3278 (2011).